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Imaging techniques have evolved impressively lately, allowing whole new concepts like
multimodal imaging, personal medicine, theranostic therapies, and molecular imaging to
increase general awareness of possiblities of imaging to medicine field. Here, we have
collected the selected (3D) imaging modalities and evaluated the recent findings on
preclinical and clinical inflammation imaging. The focus has been on the feasibility of
imaging to aid in inflammation precision medicine, and the key challenges and
opportunities of the imaging modalities are presented. Some examples of the current
usage in clinics/close to clinics have been brought out as an example. This review
evaluates the future prospects of the imaging technologies for clinical applications in
precision medicine from the pre-clinical development point of view.
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Cardiogreen; MaRIA score, Magnetic Resonance Index of Activity; MI, myocardial infarction; MMP, Matrix
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INTRODUCTION

The frequency selective perception of electromagnetic waves is
certainly one of the most astonishing achievements of evolution.
The benefits of seeing were so striking that almost all species have
picked up the concept in one way or another.

In medicine, visual inspection has always been the first line of
assessing health and disease. As civilization advanced, so have
the methods that help us see. Today, modern imaging methods
allow us to visualize microbes, soft tissue, motion, specific
antibodies, brain function, metabolism, and much more. An
unprecedented plethora of imaging methods is available, not
only to diagnose a patient, but to understand the mechanisms of
life and disease.

Newmethods are being added to the quiver continuously, and
hitherto inaccessible information becomes available. Different
methods capture different aspects, and their combination adds
up to a more complete picture of reality.

As treatment options explode, treatment control and
choosing the right treatment for the patient becomes ever
more important. Here, imaging is a key component to make
personalized medicine come true: treating each patient effectively,
efficiently, and individually.

Modern imaging methods, however, are just as complex as life
and disease. Dedicated research communities have formed to face
this challenge. In this review, we focus on the advances in imaging
inflammation. It summarizes the results of the International
Symposium (PMI 2020 Inflammation Medicine From Bench to
Bedside) arranged by the German Excellence Cluster Precision
Medicine in Chronic Inflammation (PMI) in Hamburg on 2020.
For each methods, we provide a brief introduction into the
technology and describe appl icat ions with respect
to inflammation.
MRI

Magnetic Resonance Imaging (MRI) is the gold standard when it
comes to 3D, tomographic soft tissue, and functional imaging.
Without ionizing radiation and only few contraindications it has
become the method of choice for many diagnostic needs.
Applications include imaging anatomy (1), flow (2), brain
activity (3), microstructure (4), and, to some extent,
metabolism (5) – all non-invasively and in vivo. To do so, MRI
is taking advantage of the fact that nature has provided for small,
magnetic sensors that are abundant in biological tissue – the
magnetic moments of nuclear spins. The strongest magnetic
moment of a stable atom is that of hydrogen 1H – the most
abundant element in our body (approx. 1025 –more than all stars
in the known universe). These magnetic moments can be excited
by electromagnetic waves and emit a similar signal in return.
These intrinsic sensors probe their surroundings and convey
unique information that allows distinguishing tissues or
molecules e.g. gray brain matter from the white one, or choline
from creatine. From these data, the images (or spectra)
are reconstructed.
Frontiers in Immunology | www.frontiersin.org 2
Modern MRI systems can be programmed in many ways to
yield images weighted by selected properties. Common examples
include rather physical parameters such as T1, T2 or
susceptibility weighting, physiological parameters such as
perfusion, or structural parameters such as diffusion. While
there is no dedicated “inflammation weighting”, some
parameters were established as surrogate markers for
inflammation; these will be discussed in the following.

While these images have shown great value for diagnostics, it
should be kept in mind that they are not photographs but maps
of abstract quantum mechanical or physical parameters. In the
following, we review selected aspects of MRI with respect to
imaging inflammation of vessels and the gut. In addition, we
discuss the application of hyperpolarized MRI, which allows
metabolic imaging in real-time.

Imaging Perfusion in Inflammation
With MRI
Background
The term perfusion refers to the transportation of oxygen and
nutrients from the blood to tissues and organs by means of
capillaries. In several brain diseases and pathologies, the blood
supply is altered, which influences the perfusion of the affected
areas. Therefore, the quantification of tissue perfusion provides
valuable information to assess clinical diagnosis and medical
treatment (6). Magnetic Resonance Imaging (MRI) can be used
to measure perfusion levels without the use of ionizing radiation.
Using this method, perfusion maps are calculated, providing a
visual tool to support the clinical diagnosis of inflammatory
brain diseases. By using MRI, the hemodynamics of perfusion
can be described by means of various parameters, such as
Cerebral Blood Flow (CBF) and Volume (CBV). Additionally,
perfusion can also be characterized by the average time required
for a particle (e.g., blood cell) to move through the vasculature
(Mean Transit Time - MTT) and the particle velocity (7).

With MRI perfusion can be measured using exogenous or
endogenous tracers. The most commonly used methods are
Dynamic Susceptibility Contrast (DSC-MRI) (8), Dynamic
Contrast-Enhanced (DCE-MRI) (9, 10)—both relying on the
injection of a gadolinium-based external contrast-agent (CA)—
and Arterial Spin Labelling (ASL) (11), which uses the water
molecules in the blood as an endogenous tracer.

Applications
By tracking a CA bolus through the blood vessels, DSC-MRI
reflects hemodynamic information as a hypointense signal in T2

or T∗
2 weighted images due to the increase in magnetic

susceptibility of the CA in the blood (12). DSC-MRI is the
standard for measuring perfusion in the human brain with MRI
(12, 13), like in strokes and brain tumors. Additionally, this
technique can provide information that helps differentiate
malignant brain lesions such as metastases, lymphoma, and
microvascular leakiness (14, 15).

DCE-MRI, sometimes called Permeability MR, is the
standard approach for the measurement of perfusion outside
the brain (16), e.g. in the liver (17) or prostatic (18). Here, the
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shortening of the relaxation time T1 by CA results in increased
signal on, T1 weighted images, where the CA accumulates. The
time course of the MR signal, reflects the response of the target
tissue to the CA’s arrival. Providing quantitative information on
the integrity of the Blood-Brain Barrier (BBB), tumor growth
factors, and response to treatment.

The BBB permeability is the main neuroinflammatory
phenomenon that can be assessed with DCE-MRI (19), for
example, while monitoring the active phases of multiple
sclerosis. In principle, the integrity of the BBB does not define
an inflammation process “per se” , but most of the
neuroinflammatory activity affects the integrity of the BBB (20).

In contrast, ASL uses magnetically labeled water in the blood
as an endogenous CA. There are several ASL techniques—which
mainly differ on the characteristics of the labeling method—with
pseudo-continuous ASL (pCASL) (21) being the method of
choice in the clinical routine (22). It is an entirely non-invasive
technique, able to provide absolute values of blood perfusion in
tissue. By using this technique, it is possible to obtain perfusion
territory maps that can provide invaluable information for the
treating, planning and monitoring of cerebrovascular diseases,
tumour blood supply, and vessel malformation (23). Recent
advances in ASL aim to identify the specific territory that is
supplied by a specific artery. This territorial-ASL, also called
selective-ASL, allows to determinate and visually pinpoint not
only perfusion territories but also flow, providing patient-specific
information for the diagnosis of cerebrovascular disease (23).

Imaging Inflamed Vessel Walls
Background
For the workup of intracranial arteriopathies, conventional
angiographic methods, including Digital Subtraction
Angiography (DSA), Computed Tomography (CT), and
magnetic resonance imaging (MRI) are routinely employed.
Still, these methods can only depict the lumen and evaluation
of disease status and progression depends on the extent of change
in luminal diameter. For the differential diagnosis of
arteriopathies, visualization and analysis of the artery walls can
provide valuable information. While direct measurement of wall
thickness is not possible in clinical MRI scanners due to the
limited spatial resolution, visualization of diseased thickened or
contrast-enhancing vessel segments is feasible with MR Vessel
Wall Imaging (VWI). To depict the arterial wall, a high contrast
between the vessel lumen and the wall is needed. The signal from
flowing blood can be suppressed by special MR sequences, so-
called Black-Blood MR imaging (BB MRI), increasing the
contrast between the vessel wall and lumen. A frequently used
sequence for BB MRI is a pre-and postcontrast 3D T1-weighted
fast spin-echo sequence (3D T1 FSE), which effectively
suppresses the signal from flowing blood and providing full
brain coverage within an adequate examination time (24, 25).
The signal from flowing blood is suppressed primarily by intra-
voxel signal dephasing due to the velocity distribution within the
imaging voxel and the outflow of the blood from the imaging
slice during examination (26, 27). To improve blood signal
suppression further, the sequence can be complemented by
additional flow suppression modules (28, 29).
Frontiers in Immunology | www.frontiersin.org 3
To reduce the artificial thickening of the vessel wall due to
partial volume effects, a sufficiently high submillimeter resolution
is required. However, the high spatial resolution comes at the
cost of a low Signal to Noise Ratio (SNR) and a longer
examination time, which might lead to motion artefacts. Thus,
commonly used isotropic voxel sizes range between 0.5 – 0.8
mm3. MR imaging at higher magnetic fields (7T or more) can
improve the SNR (30). The development of new acceleration
techniques can reduce the examination time (31) while
maintaining or increasing the spatial resolution.

Application
Vasculitis: Central Nervous System (CNS) vasculitis is categorized
as either idiopathic Primary Angiitis of the CNS (PACNS), as CNS
manifestation of systemic rheumatologic diseases or associated with
infection. The diagnosis of PACNS is challenging since valid
biomarkers are not available. PACNS can present with a wide
range of nonspecific symptoms like headache, stroke/transient
ischemic attack, cognitive dysfunction, and seizures. Treatment
options include glucocorticoids, immunosuppressive agents as
cyclophosphamide, and the anti-CD20 monoclonal antibody
Rituximab. The diagnosis is mainly based on cerebrospinal fluid
analysis, typical findings in MRI and DSA, and biopsy. Imaging
plays an important role in the exclusion of differential diagnoses.
Digital subtraction angiography can reveal typical findings
(Figure 1, left) but is reported to have low sensitivity and
specificity (32). In the recent past, MR VWI has emerged as an
important supplementary tool not only for the detection of
parenchymal changes but for the improved visualization of the
vessel wall and vessel pathology in the differential diagnosis of CNS
vasculitides. In acute vasculitis, the arterial wall appears
circumferentially thickened and strongly and homogeneously
contrast-enhancing (Figure 1, right). The pattern of distribution
in the cerebral vasculature is typically multifocal and segmental. In
patients presenting with stroke, VWI findings can aid in
distinguishing vasculitis from other etiologies, including
intracranial atherosclerosis and reversible cerebral vasoconstriction
syndrome (33–38), and in monitoring the therapy response.
Moreover, MR VWI can assist in identifying a target lesion if a
biopsy is indicated.

Intracranial Aneurysms: Aneurysms of the intracranial
arteries were reported to have a prevalence of up to 3%. They are
often incidental findings on neuroimaging and generally harbor a
low risk of rupture (39, 40). In the case of a subarachnoid
hemorrhage following rupture of an intradural aneurysm, a
devastating outcome with persistent severe neurological deficits
or even death is frequent (41). Therefore, risk stratification of
patients diagnosed with an unruptured intradural aneurysm is
crucial, but optimal management remains controversial. Recently,
wall enhancement in intracranial saccular aneurysms on MR vessel
wall imaging has been associated with a higher risk for rupture (42–
46) (Figure 2). Experimental studies indicated that flow triggered
inflammation in the vessel wall (specifically, macrophage invasion
in the vessel wall) may cause formation and growth of intracranial
aneurysms (47–52). Moreover, recently published results found an
association of inflammatory processes in the aneurysm wall with
contrast enhancement on MR VWI (45, 53–56). Therefore, wall
June 2021 | Volume 12 | Article 692222
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enhancements may serve as a biomarker for inflammatory
processes associated with wall destabilization and a higher risk
for rupture of intracranial aneurysms and could aid in the risk
stratification of patients with an incidental aneurysm.

Imaging of Small and Large Bowel in
Patients With Inflammatory Bowel
Disease (IBD)
Inflammatory Bowel Diseases (IBD), including Ulcerative Colitis
(UC) and Crohn’s Disease (CD), are chronic inflammatory
disorders characterized by sequences of flares with active
symptomatic disease and periods of remission. While UC is
typically restricted to inflammation of the mucosa and the
submucosa of the large bowel, CD is a transmural process with
manifestation in the gastrointestinal tract from the mouth to anus,
predominantly at the terminal ileum, inducing stenoses and fistulas.
Frontiers in Immunology | www.frontiersin.org 4
IBD are disabling, life-long disorders associated with an increased
risk of colorectal cancer. Typical medications include steroids, 5-
aminosalicyclic acid products, immunomodulators, and biologicals
like Tumor Necrosis Factor (TNF) inhibitors. Complicated disease
courses require a surgical procedure (57, 58). Besides clinical and
serological assessment, endoscopy and video capsule endoscopy,
cross-sectional imaging, includingMRI, CT, and ultrasound (US), is
crucial in setting IBD as first-line techniques in diagnosis, staging,
and follow-up under medical therapy (59). CT enterography and
MR enterography provide comparable diagnostic performances in
patients with CD (60). Nevertheless, recent studies advise preferring
MR enterography because of the absence of ionizing radiation, a
very high soft-tissue contrast, and a lower incidence of adverse
events (61). Although MRI and US are regarded as complementary
methods in CD (59), most studies revealed superior accuracy of
MRI for detecting the presence, extent, and activity of small bowel
CD disease compared to US (62). In general, MRI protocol
comprises fastening and application of hyperosmolar oral contrast
agents like mannitol prior to the examination. Typical MRI
sequences are axial and coronal Fast Spin-Echo (FSE) T2W
sequences with and without fat saturation, axial and coronal
Steady-State Free Precession Gradient Echo (SSFP GE) sequences
without fat saturation, and non-enhanced coronal T1W sequence
with fat saturation followed by contrast-enhanced coronal and axial
T1W sequences with fat saturation. Free-breathing Diffusion-
Weighted Imaging (DWI) sequences (Figure 3) are optional (63).
MRI findings of active CD include segmental wall-thickening and
hyper-enhancement after gadolinium-based contrast media, edema,
strictures, ulcerations, restricted diffusion, sacculations, enlarged
local lymph nodes and hypervascular appearance of the
mesentery (comb sign). Several MR scoring systems have been
developed to measure disease activity, e.g., the Magnetic Resonance
Index of Activity (MaRIA score) (64). Due to side effects of
gadolinium-based contrast media – cerebral deposition and
nephrogenic systemic fibrosis – native techniques have gained
FIGURE 2 | Postcontrast 3T MR vessel wall imaging of a 5 mm aneurysm at
the middle cerebral artery bifurcation. Note the strong wall enhancement
(arrows) as a possible marker for visualization of wall inflammation.
FIGURE 1 | Digital subtraction angiography of the brain with injection in the right internal carotid artery in a patient with varicella-zoster vasculitis (left). Multiple
stenoses in the M1 segment of the right middle cerebral artery were found (arrows). 3T MR vessel wall imaging (right) shows strong contrast enhancement of the
corresponding segments (arrows). The inset shows a transverse section through the proximal M1 segment with circumferential wall enhancement pattern.
June 2021 | Volume 12 | Article 692222
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increasing interest inMRI (65). In recent studies, DWI was found to
be mostly equal to contrast-enhancedMRI in die assessment of IBD
(66, 67). There are also promising data regarding sophisticated DWI
methods in the assessment of disease activity in IBD, like Diffusion
Kurtosis Imaging (DKI), which reflects the heterogeneous water
diffusion behaviour more accurately compared to standard DWI
(68). Together with innovative tools for quantifying bowel motility
(69) in patients with CD, these techniques could offer the
opportunity to establish valid non-contrast-enhanced MRI
protocols for patients with IBD.

Imaging Inflammation With
Hyperpolarized MRI
Background
All of the MRI methods mentioned above offer unique insights
into the biology and the functions of the human body. Still, many
MRI applications fall short of their potential because scan times
are too long or the signal to noise ratio (SNR) is too low. For
example, MR is unique in being able to measure the biochemical
composition of tissue non invasively and in vivo. This technique,
MR-spectroscopy, has found important applications, but suffers
from low chemical and spatial sensitivity, while the scan times
are long (70–72).

At the same time, the early diagnosis of diseases before
macroscopic pathologies occur is direly needed (e.g. tumors,
aneurysm or chronic inflammation).

As a consequence, much research is focused on improving
MRI. Most of these methods offer fractional improvements, e.g. a
SNR gain of 30% by acceleration techniques. Other provide a
few-fold enhancement, e.g. by increasing the magnetic field from
1.5 T to 3 T and 7 T. MRI with hyperpolarized contrast agents,
however, has demonstrated to boost the signal by several orders
of magnitude – e.g. 10.000 or 100.000 fold of the selected
molecules. Like MRI, hyperpolarization is an inherently
quantum mechanical effect. As described above, MRI is based
on the magnetic moment of atomic nuclei, which is induced by
nuclear spins. In some aspects, this magnetic moment behaves
like the needle in a hiking compass. Like a compass, the nuclear
spins align in an outer magnetic field; unlike a hiking compass,
however, the spins don’t all align in the same direction. Instead,
the spins are distributed in parallel or antiparallel to the magnetic
field following the Botzmann distribution. As spins pointing up
Frontiers in Immunology | www.frontiersin.org 5
and down cancel, only the population difference effectively
contributes to MRI signal. The fraction of all spins
contributing to the signals is called polarization (P):

P = ðNb − NaÞ=(Nb + Na) = tanh (g ¼ B0=2kBT) ≈ g

¼ B0=kBT

Where N is the occupation number of the upper and the lower
energy levels a and b, ħ is the Planck constant, g is the
gyromagnetic ratio, B0 is the magnetic field applied, kb is the
Boltzmann constant, and T is the thermodynamic temperature.

For all practical matters in vivo, the polarization is very, very
small. In the magnetic field of the earth, ≈ 50 mT, the polarization
is only a few parts in a billion – only few ppb contribute
effectively to the MR signal. In a magnetic field of 1.5 T, the
fraction is increased to a few in a million. In other words:
99.999% of all spins in a sample (or body) are invisible in
routine MRI, leaving room for a dramatic enhancement of the
MR signal and new diagnostic applications.

Several methods have been developed to increase the
polarization of a solid, liquid, or gas (73–75). Usually, these
methods use some spin order that is readily available in nature to
increase the polarization of the target substance. For biomedical
applications, hyperpolarized metabolites and gases are
particularly interesting.

Applications
Biomedical MRI of hyperpolarized metabolites in solution was
introduced in the early 2000s. Here a hyperpolarized CA is
injected in vivo and several metabolites are measured (e.g.
pyruvate to lactate, alanine, bicarbonate). Since then, impressive
works have been published, including the first applications to
humans, where real-time metabolism was detected in the brain
and heart (76, 77). In the prostate, cancerous metabolism was
detected before visible lesions occurred - an important step for early
diagnosis and personalized medicine (76).

As for inflammation (78), it was found that the inflamed paw
of an arthritis model (79) showed a higher pyruvate to lactate
ratio than the control paws (Figure 4). The higher amount of
lactate correlated to inflammation, as was validated by clinical
and histological analysis. In another study the same CA
(hyperpolarized pyruvate) was used to assess hepatocytes
A B C

FIGURE 3 | MRI in patient with active CD involving the ileum: there is bowel wall thickening in T2w sequence (A) and increased contrast media uptake in T1w, fat
suppressed imaging (B). Inflammation is also revealed by hyperintensity in DWI (C).
June 2021 | Volume 12 | Article 692222
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necrosis in a CCl4 rat model. The conclusions was that 13C
metabolic imaging with hyperpolarised [1-13C] pyruvate is
sensitive to inflammation (80). Lewis and co-workers showed
that hyperpolarized [1-13C]pyruvate can be used to evaluate the
local cardiac inflammatory response due to Myocardial
Infarction (MI) (81) with a broad potential across
cardiovascular diseases.

Eto and co-workers (82) followed a different approach and
used radicals in vivo for redox imaging in skeletal muscle
disorders associated with inflammation.

MRI with hyperpolarized gases, Xenon-129 (83) and Helium-
3 (84), provides unique diagnostic information on the human
lung (85, 86). Imaging the gas distribution provides ventilation
maps in 3D with high resolution (Figure 5), measuring the
diffusion allows to assessing the lung microstructure, e.g. the
alveolar condition (87). The gas exchange and function of the
lung can be measured by using spectroscopic MRI, where Xenon
Frontiers in Immunology | www.frontiersin.org 6
in the airspaces can be distinguished fron Xenon dissolved in
blood plasm and bound to red blood cells (88). These techniques
were used to access chronic obstructive lung disease (COPD)
(89), asthma (90), idiopathic pulmonary fibrosis (91) and a local
inflammation (92). For example, ventilation deficits can be
readily imaged with 129Xe-MRI. Likewise, Figure 5 depicts
clearly the lung degradation with different pulmonary diseases
obtained by ventilation 129Xenon MR-imaging.
EMISSION TOMOGRAPHY: PET
AND SPECT

Background
Positron Emission Tomography (PET) and Single Emission
Computer Tomography (SPECT) are well-established imaging
techniques in both clinical routine and pre-clinical research for a
FIGURE 4 | Measuring the metabolism of an arthritis model with hyperpolarized hyperpolarized MRI: anatomical 1H MRI (top left), quantitative metabolic map of
lactate-to-pyruvate ratio (top right) and corresponding 13C spectra. Arthritis was induced in the right paw of the rats while the left served as a control.
Hyperpolarized pyruvate was injected and 13C metabolic imaging performed. The inflamed paw exhibited a 65% increase in lactate signal and no alanine signal
indicating abnormal metabolism. Figure modified from [MacKenzie et al. (79)].
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large variety of applications. PET and SPECT rely on the
administration of specific radiotracers and subsequent
detection of high-energy photons. Both modalities stand out
for a superb sensitivity, which translates into the detection of
radioisotope concentrations in the nano to picomolar range. In
the case of SPECT, the selected molecules or particles are labeled
with gamma-emitting radioisotopes, whereas for PET positron-
emitting radioisotopes are required. The emitted positrons are
not directly detected by the scanner, but the pairs of high-energy
photons that arise from the interaction between positrons and
their counterparts, the electrons from the tissue. Thanks to this
feature, PET offers a higher efficiency than SPECT, as the latter
requires collimators to select only those photons from a certain
direction. In any case, the detected photons indirectly reveal the
location of the radiotracers. To extract this information,
tomographic image reconstruction is required,

The radioisotopes Technetium-99m (99mTc) and Fluorine-18
(18F) have remained for decades as workhorses for PET and
SPECT, respectively. The latter is mainly used to label
Flurodeoxyglucose (FDG); the resulting tracer 18F – FDG is a
commercially available glucose surrogate, and as such, it has been
successfully employed to track glucose metabolism within a large
variety of diseases. Additionally, a large variety of radioisotopes
can be used for labeling relevant substances, from simple
molecules such as water, to antibodies, drugs and even
Frontiers in Immunology | www.frontiersin.org 7
bacteria. As the radiotracers are designed to target selected
biochemical processes, their distribution in time and space
unveil the underlying metabolism and biokinetics. Theranostics
approaches go one step beyond, so that the radiolabelled
compounds, designed e.g. to irradiate malignant cells, can be
also localized by means of PET or SPECT.

At present, stand-alone PET scanners have become a rarity, and
bi-modal PET/CT and PET/MRI systems are used instead, not only
in the clinics but also for small-animal imaging. Also, SPECT/CT
scanners are commercially available; SPECT-MR still remains only
restricted to rodents, although some developments aimed to bring
SPECT/MR into the clinics have been reported (93). All these
synergistic approaches offer both functional and anatomical
information. Moreover, the information provided by additional
modality helps enhance the quality of the PET or SPECT images.
This, in turn, leads to improved lesion detection and, in the case of
PET, more accurate quantification. In the context of imaging
inflammation and infection, simultaneous PET/MRI has proved
to be advantageous compared to independent scans of the two
modalities (94). One concern for CT as additional modality is the
increased total radiation exposure. This is obviously not the case for
PET/MRI, as MRI does not require ionising radiation. In any case,
latest advances in instrumentation and software have contributed to
significantly reduce the delivered effective doses without
jeopardizing image quality.
FIGURE 5 | Ventilation imaging of the diseased human lung using 129Xe-MRI. Coronal ventilation images were acquired in subjects with asthma (upper row), COPD
(middle row), or cystic fibrosis (lower row). Numerous ventilation defects can be seen in each of the images secondary to airflow obstruction caused by the
underlying diseases. Figure taken from Mugler, J. P. et al., Journal of Magnetic Resonance Imaging (85).
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Whereas visual interpretation of PET and SPECT images
usually suffices for routine diagnostics, PET (and to a lesser
extend also SPECT) can also provide quantitative information.
Quantitative PET mainly refers to extracting from the
reconstructed images the absolute amount of radiotracer
accumulated in a specific region of interest within a certain
time frame. This information can be expressed in terms of e.g.
kBq/ml, or as a standardized uptake value and can be particularly
useful to assess the response to therapy. Furthermore, the rate of
tracer transportation and exchange (tracer pharmacokinetics)
can be estimated from dynamic PET data in combination with
kinetic modeling analysis.

Producing a PET image from the measured data is a complex
process. Thanks to the increasingly growing computing power of
desktop PCs and GPUs, the time required for image
reconstruction has been strongly reduced. Advanced
algorithms have become part of the manufacturers’ software so
that images are generated shortly after the scan is completed or
even on-the-fly. Still, there is room for further improvements at
the software level, which should go hand in hand with the
corresponding advances in instrumentation to fully exploit the
potential of novel components and designs (95). The recent
development of Total-Body (TB) PET scanners (96, 97) is
expected to boost molecular imaging and personalized
medicine. Such systems allow the entire patient body to be
imaged in a single scan, making a further dose reduction and
faster imaging possible (e.g., 1-min scans). In particular, TB-PET
opens the door to ultrahigh-resolution dynamic imaging with
100-ms short frames to capture the fast initial distribution of the
radiotracer. In the last decades, organ-specific imaging devices as
well as systems for intraoperative use have been developed
although very few imaging concepts have reached commercial
maturity. In contrast, dedicated rodent scanners, developed to
provide high sensitivity and high spatial resolution, are long
commercially available to support preclinical research. Current
small-animal PET scanners are characterized by a spatial
resolution of about 1 mm, whereas a better resolution (but
worse sensitivity) can be achieved by pre-clinical SPECT
systems. The progressive consolidation of zebrafish as a model
organism for pre-clinical research, also to investigate
inflammation (98, 99), is demanding the availability of specific
PET systems and protocols (100). In this vein, some of us have
started developing a dedicating system and imaging setup to
allow for zebrafish PET imaging (101).

Applications
Diagnostic PET and SPECT are routinely employed in oncology,
cardiology and neurosciences. Their suitability to image
inflammation has been long recognized (102–106), also
specifically for inflammatory bowel disease (107–115),
including preclinical research on murine models (116, 117).

The specificity of PET and SPECT relies on the choice of the
radiolabelled compound. Several radioactive tracers have been
used for the detection of the immune system and inflammation.
The gold standard of lymph node detection in surgical settings is
based on the Tc-99 sulfo-colloid nanoparticle. These technetium
levels are measured via gammascintillation counter from surgical
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samples or in situ by using gamma camera or SPECT. The sulfo-
colloid meshwork role is needed to slow down the radio-ligand
diffusion and ensure that the elimination of the complex will be
done through the lymphatic drainage via lymph nodes. In this
method, the technetium sulfo-colloid is injected several hours in
advance of the surgical operation, and the imaging is done prior
to the procedure. However, there is often no additional help to
the surgeon in an intraoperative setting except the possibility to
scan individual lymph nodes at the site with a radioactive
detection device. An injection of optical tracer, Cardiogreen
(ICG), has been used to bring this component to the surgery.
The ICG injection could help to detect sentinel lymph nodes in
intraoperative settings, but it can be used reliably only after skin
removal and up to 1-1.5 cm deep into the tissue (118, 119).
Alternatively, mini gamma cameras or freehand SPECT systems
could be used. These devices have been introduced for
intraoperative applications, although their use is not
widespread (120).

18F-FDG has been used successfully for the detection of highly
active inflammation. The use of FDG is based on the fact that
FDG resembles glucose enough that it is internalized by the cells
that are in need of glucose. FDG cannot be further metabolized,
like glucose, leading to FDG accumulation. The PET tracer 18F-
FDG thus allows cell imaging and cell labeling, while several
different cells take it up efficiently. Macrophage labeling has been
used to track the status of inflammation in arthritic patients. The
macrophages are first extracted from the blood, labeled with a
radioactive tracer, and reinjected into the bloodstream to follow
the accumulation to the organ of interest. Several inflammatory
disorders include sarcoidosis, atherosclerosis, vasculitis, IBD,
rheumatoid arthritis (RA), and degenerative joint disease are
imaged using immune cells. Gallium-67 (67Ga) citrate, 99mTc- or
89Zr-labelled leukocytes, indium-111 (111In), as well as 18F-FDG
represent the most widely used radiopharmaceutical agents (115,
120–122). In addition to cells, bacteria have been targeted and
imaged by using radiolabeled antibiotics (123). However, other
preparations, like labeled murine monoclonal antigranulocyte
antibodies and labeled human polyclonal nonspecific
immunoglobulin G, chemotactic peptides, interleukins,
chemokines, and liposomes, have been used to image
inflammation (124–127). Chelates that can be coupled to
different proteins, lipids, and sugars are widely used in the
development of new tracers. At another level, the combination
of PET with radiolabeled therapeutic agents, such as liposomal
glucocorticoids, is helping to push forward drug development in
the treatment of inflammatory diseases (128). It is thus to be
expected that current advances in radiochemistry and
radiopharmacy, together with improved imaging technology,
will further contribute to consolidate PET and SPECT as
indispensable tools for precision medicine.
OPTICAL IMAGING

Optics covers some of the oldest and most important forms of
medical diagnosis and research. By simply looking at a patient,
the shape and color perceived with the naked eye can already
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provide valuable diagnostic information. The strength of optics
in biomedicine is its potential for very high spatial resolution and
specific contrast. Optics is capable of visualizing sub-cellular
structures and stood at the beginning modern medicine. Today,
optical microscopes can resolve even structures only a couple of
10 nanometers in size and using fluorescence techniques, they
can provide molecular functional contrast. Since they do not use
ionizing radiation or particle beams, optical microscopes exhibit
very good non-destructive and even in vivo capabilities in
contrast to other high-resolution techniques like for example
electron microscopes or micro CT.

Thus, by now optical imaging and sensing is of paramount
importance in clinical and medical research laboratories in form
of benchtop devices. These range from standard types of
reflection, transmission and fluorescence microscopes to more
advanced confocal, two photon and Stimulated Emission
Depletion (STED) or Photo‐Activated Localization Microscopy
(PALM) super resolution microscopes. But also devices like flow
cytometers and cell sorters and almost all DNA sequencers use
optical methods – mainly fluorescence – for sensing. Right now,
the digital revolution, which enables fully electronic processing
of images and photos in consumer products, is starting to have a
massive impact on medical imaging (digital microscopes, camera
in a pill etc.). Supported by the new possibilities offered by
modern data processing units, the rise of optics in medicine
will continue.

Considering in vivo imaging applications in a clinical setting,
the eye and the skin are ideal target organs since they are very
easily accessible by optical technologies. With respect to other
target organs, besides the numerous biophotonic laboratory tools
mentioned above to sense extracted samples or cells outside the
body, the main problem of optical in vivo imaging for diagnosis
in patients is the poor penetration of light into highly scattering
tissue. Still, in many cases, it is possible to use endoscopes in
order to deliver light to deep inside the human body. Hence,
almost all epithelial structures at “barrier interfaces” are
accessible by current endoscopes. Today’s endoscope
technology in clinical routine almost exclusively performs
simple reflection imaging, which means, simple color images of
the sample are created. However, there are more advanced
optical imaging techniques as mentioned above, which could
provide an additional wealth of information for an earlier and
more precise diagnosis of disease.

Generally speaking, it were always advances in technology
which triggered a paradigm shift in the medical application of
optics and opened new realms of application to use optics as tool
for early diagnosis of disease, supporting treatment decisions and
monitoring patient response. Recently especially with the advent
of full digital imaging processing chains optical imaging is not
only used to generate image but also to quantify disease stages by
deriving robust parameters like layer thicknesses, vascular
branching densities or tissue elasticity. This allows an observer
independent quantification of health or disease status for more
consistent and precise treatment decisions.

In the following, several examples spearheading the
introduction of advanced optics to inflammation are described.
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Fluorescent and Molecular Imaging
Background
Clear advantages for optical imaging are the fact that optical
imaging devices and patient imaging are, in general, cheaper than
radioactive and MRI imaging. Optical imaging is sensitive, and
the theoretical resolution is excellent, allowing accurate
molecular imaging. Optical imaging can also be performed
more often in one person in contrast to CT or radioactive
imaging, which are limited due to maximum radiation dosages.
Some methods like ICG based rheumatoid arthritis imaging are
in sporadic use in clinics (129). The main reason that hinders the
usefulness of optical imaging in daily practice is the limited
penetration depth. The optical signal can travel only a couple of
centimeters at best when using Near-Infrared (NIR) wavelengths
and NIR probes. This distance can theoretically be extended up
to 10 cm when photoacoustic detection is used (130).
Photoacoustic Imaging (PAI) combines light and ultrasound
into an absorption-based non-invasive imaging technique. In
PAI the ultrasound signal emerging from the thermoelastic
expansion caused by optical absorption within biological
tissues or the contrast agent is measured. These spatial
limitations of the penetration depth are less relevant in small
animal imaging, where full 3D tomography can be performed
due to the small size of the animals of interest. Clinically
approved fluorophores can be sensitive to their environments
and give different readings based on their surroundings (131). At
the moment, one brand of 3-D fluorescence optical tomography
is available for a small animal. These include mice, hamsters, rats,
and small rabbits. For PAI, pre-clinical instruments for small
animals can be coupled with co-registered ultrasound imaging,
yielding a 2D or a 3D-tomograpic image with anatomical and
molecular information (132). Complicated immune reactions
can be studied in disease models like Dextran Sodium Sulfate
(DSS) inflicted acute and chronic IBD mouse models (133).
Several ready-made NIR-fluorescent tracers that can detect
enzymatic functions with great precision are commercially
available. There are tracers for various immune-related targets
like Matrix Metalloproteinase (MMP) recognition, angiotensin
probes, and neutrophil sensing elastases (134, 135). Optical 3D
imaging can be performed using the same imaging probes, which
are also used in cell experiments allowing convenient molecular
imaging from cells- to the tissue- and organ-imaging without
extra labeling steps. While optical tracers per se are relatively
small molecules - below 1000 Daltons - and can be coupled with
premade linkers, they are easy to use. There are optical tracers for
RNA, DNA, proteins, lipids, and carbohydrates. Although
contrast agents for fluorescence imaging are optimized for
maximal quantum yield some are also applicable in PAI like
ICG. However, better molecular tracers are needed for useful
immunological 3-D imaging. Fluorescence imaging requires
always contrast agents, whereas inflammation imaging with
PAI can be used to quantify the increased tissue oxygenation
(136), vascularization (137), or fibrosis (138) typical for
inflammation. Besides, non-targeted contrast agents like ICG,
IRDye, or melanin, or targeted contrast agents like liposomes
(139), microbubbles (137), or gold nanoparticles (140, 141) may
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enhance or specify the photoacoustic signal. Nanoparticle
imaging has been shown to offer promising results in immune
cell and disease imaging studies (139, 142, 143). The excellent
and encouraging results from small animal imaging should be
converted to clinical applications in the future. Surgery can
benefit from optical imaging with tracers and methods
developed for small animal imaging. Surgeons aided by using
optical cameras with fluorescent filters in surgical robots and
operational microscopies with fluorescent filters allow the better
gathering of the visual information on site. Optical imaging
could also be used together with endoscopic imaging in
gastrointestinal studies to improve IBD treatments significantly.

Applications
The human Gastrointestinal (GI) tract microbiota has been a
subject of intense research throughout the 3rd Millennium. In
recent years, the importance of gut microbe diversity for human
health has become evident (144). Robust bacterial clusters, the
enterotypes, have been described (145). They are stable bacterial
communities composed of a limited number of species.
Additional information about bacterial colonizing behavior and
metabolism is needed to understand better the relevance of
specific strains to human health and diseases like IBD.
Fluorescence imaging offers a practical method to understand
dynamic interactions between microbe species and microbe-host
cells in the gastrointestinal tract. Optical in vivo imaging of either
bioluminescent or fluorescent bacteria is the basis for non-
invasive intestinal colonization detection. The intestine
anatomy does not make the GI tract imaging simple, the
irregular shape, and most importantly, the deeply embedded
organ cause difficulties in 3 D- fluorescence imaging and raise
special requirements for the fluorescent markers used.
Transcriptional reporters have widely been used in bacterial
imaging since Green Fluorescent Protein (GFP)- technology
was developed (146). GFP-based imaging has proceeded in
vivo in the mouse intestine, but the sensitivity does not meet
the need to observe bacteria in the physiologically needed range
(147). Bioluminescence imaging with luciferases has advantages
in sensitivity compared to GFP. Notably, the lux operons are
suitable for in vivo imaging because there is no need for added
substrate, and they have been used in whole-animal imaging in
the intestine (148). The background fluorescence from tissues
seen in GFP-labeled bacteria can be avoided if Red Fluorescent
Proteins (RFP) are used. The dual-color 3D imaging of different
bacteria utilizing infrared fluorescent proteins has been
presented (149), and several suitable RFPs are available at the
moment. Their usage in bacterial imaging has been recently
studied by Barbier and Damron (150). They compared the
expression, toxicity, photo stability, spectral overlapping, and
sensitivity of various fluorescent proteins in E. coli. The proteins
likeKatushka, mKeima, and E2-crimson (151–153) with red
fluorescence are the most promising candidates for the deep
tissue in vivo applications based on their fluorescence
characteristics. The protein toxicity was not a big issue, but
instead, spontaneous loss of plasmid in the absence of antibiotics
is evident and needs to be considered in study setups. Genetic
labels are limited to the bacteria for which cloning tools are
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available; thus, universal fluorescent labels will offer a powerful
tool for proper bacterial imaging. Universal, chemical,
fluorescent stains will overcome the question of fluorescence
range, while they can be used in higher wavelengths from 640-
800 nm, which the fluorescent proteins will not reach. The
chemical stains can be based on different chemical interactions.
Recently hydrophobic membrane stains have been utilized to
label E. coli (154). Also, electrostatic interactions can be adapted
to label bacteria in vivo conditions (155–157). A combination of
universal membrane-stain and near far-red fluorescent protein
Katushka has also been used successfully with E. coli strains. If
dual staining is used, the strains can be distinguished from each
other, and their mobility can be followed (154). A similar setup
could be used in the future to study the interactions of specific
bacteria in the colon.

The clinical need is to support the disease diagnostics and
evaluate the severity of bacterial inflammation. The most
straightforward form of imaging bacteria in the clinical
application is to use their endogenous fluorescence by exciting
the bacteria with low-intensity violet light (405 nm) (158, 159). In
several pre-clinical and clinical bacterial imaging studies, dual
radioactive and fluorescent imaging has proceeded mainly using
endoscopic set up (160). In these studies, the fluorescent staining
was primarily done using bacterial targeting molecules like
antibiotics or antibiotic peptides (161, 162), enzyme activated
tracers (163, 164), or bacterial lectins (165). In clinical
applications, the fluorescent markers cause extra inconvenience,
while most of the dyes are not clinically approved. However, few
multimodal pre-clinical studies having fluorescent markers as a
second marker have been conducted (166, 167). Added
fluorescent markers can be used to trace the bacteria from
histological samples, differentiate the bacteria type, and evaluate
the area of infection and thus aim in the future to image-guided
surgery. Though the presented studies are still difficult to
implement in clinics, the data collected from multimodal and
more theoretical fluorescence studies will, in any case, offer new
applications in bacterial diagnostics and treatments. In pre-
clinical imaging, PAI has similarly been applied for the
detection of different inflammatory diseases such as IBD (168–
171), arthritis (172–174), and vascular inflammation (140). With
the introduction of the first clinically approved photoacoustic
system, the first studies now show the potential for human patient
imaging (175).

Two-Photon Microscopy for Sectioning-
Free Virtual Haematoxylin and Eosin
(H&E) Imaging
Background
In the routine pathology workflow, single-cell layer thick sections
of tissue samples required for diagnosis are created by paraffin
sectioning. The method is quite a labor and time-intensive
process, requiring the sample to be fixed in paraffin for about
one day. It is then drained in an automatic machine, usually
overnight, which means that water in the tissue is first replaced
with alcohol, then with an organic solvent such as xylene, and
finally with paraffin. The tissue is then poured into the paraffin
and, after cooling, cut into slices of about 5μm thickness using a
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microtome. These are then placed on a microscope slide. With
the help of alcohol, the paraffin is washed out again and usually
stained with H&E. The only current established alternative is
frozen sectioning, where the sample is embedded in a medium,
then flash-frozen and cut into thin slices. The reachable thickness
strongly depends on the tissue but is usually a couple of μm
thicker than paraffin sections. Artifacts from the freezing process
or cutting are a common issue. Although frozen sectioning
delivers faster results, the diagnostic quality of the sections is
significantly lower than with paraffin sectioning. To establish a
faster, less labor-intensive, yet high-quality alternative to thin
sections, various optical imaging techniques for the creation of
virtual sections have been tested in the research community and
some of them were also commercialized (176–181). The tissue
sample does not have to be cut, but different optical effects are
used to achieve optical sectioning. In most cases, only staining is
necessary as sample preparation, which results in a drastic saving
of work and time. In a two-photon microscope (TPM) (182) it is
exploited that fluorescence can be excited not only by one
photon, which can happen anywhere in the light beam, but
also by several photons of a lower wavelength that combined
have enough energy to excite the fluorophore. Since these
photons must be at the same place simultaneously, there is
only a sufficient probability for this effect in the focus of the
microscope, i.e. in a small spot. The focus can now be moved
over the sample to make the dyes fluoresce point by point and
create a virtual slice plane.

TPM is a standard tool in neurobiology to observe the activities
of nerve cells (183). However, the setups used here usually fill an
entire air-conditioned and darkened room. In addition, the
titanium-sapphire (Ti : Sa) crystal lasers used are relatively
maintenance-intensive, and the existing free beam paths must
often be readjusted. A water cooling system is also necessary,
which requires regular maintenance. There is one solution, where
such a system has been engineered to be used in the clinic (184).We
in our group have found that lasers with longer pulse durations in
the range of a few 10 ps to a few nanoseconds (SubNs) can also be
used for TPM in contrast to the usual ~200fs pulse duration (185).
The same images can be obtained at constant average power if the
laser’s duty cycle is kept constant, i.e. longer pulses are used, and
their repetition rate is reduced by a corresponding factor. The use of
longer pulses has the decisive advantage that dispersion in glass
fibers no longer plays a major role, and the pulses in these fibers no
longer diverge, which would reduce their peak power and thus also
the fluorescence signal. For this reason, the laser and the complete
beam delivery system up to the microscope optics can now be
constructed from glass fibers and corresponding components,
which are also used in telecommunications technology. This not
only makes the complete setup much more reliable but also less
sensitive to temperature fluctuations and vibrations. This enables us
to build the entire setup into a mobile rack that can be used
anywhere and is also maintenance-free.

Applications
We use TPM of bulk tissue samples to create images that
resemble standard H&E-stained slides without any sectioning
and to evaluate whether it is a viable alternative. Before imaging,
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the bulk tissue samples are quick-stained (2-10 min) with
acridine orange (nuclei stain) and sulforhodamine 101
(counterstain) to achieve an H&E compatible staining. Our
home-built two-photon microscope images the unsectioned
tissue samples at high three-dimensional resolution. A plane
within the sample is scanned and the fluorescence from the focus
is collected by two separate spectral channels to separate nuclei-
and counterstain. A digital H&E-equivalent image ready for
histological assessment is created from the acquired data. A
porcine skin sample was successfully imaged without sectioning
using our TPMmicroscope as seen in Figure 6. Compared to the
preparation of H&E-stained paraffin sections of the same sample
for bright-field microscopy, this took considerably less time and
work. Similar image quality and features could be observed
compared to paraffin sections. Other types of tissue and more
samples are planned to be investigated. Moreover, we intend to
further increase the speed of the TPM microscope from
currently ~25 minutes/cm² up to 1-2 minutes/cm² with four
times more sensitive detectors and by improving the
performance of our acquisition and processing software. Also,
haematoxylin and eosin (H&E) as stains will be tested to achieve
a more realistic image impression. We believe that the pathology
workflow can be simplified with virtual H&E imaging with TPM
as an alternative to frozen- and paraffin sectioning in the future.
The remaining challenges are faster imaging and data processing.
It could also provide improved diagnostic accuracy by the
potential combination with other imaging modalities (e.g.
TPM fluorescence-lifetime-imaging) and the creation of 3D
images. Further investigations will include the comparability to
standard H&E staining and whether fluorescent immunostains
could be used as well.

Novel Endoscopic Imaging Approaches in
Inflammatory Bowel Disease
Background
Ulcerative colitis and Crohn`s disease comprise chronic
inflammatory bowel diseases that cause severe damage of the
integrity of the luminal gastrointestinal tract. The gold standard
for the diagnosis of IBD is a combination of clinical presentation,
endoscopy, and histology (186). Apart from that, endoscopy in
IBD plays a major role in predicting disease severity, extent, and
prognosis as mucosal healing was defined as a major therapeutic
goal (187). High definition white light endoscopy (HD-WLE) is
an important tool in the evaluation of IBD using various
endoscopic classification score, i.e. in UC the Ulcerative Colitis
Endoscopic Index of Severity (UCEIS) (188) and the endoscopic
Mayo score are the ones mainly applied in clinical routine (189).
These scores focus on endoscopic findings, such as ulceration,
friability of the surface, spontaneous bleeding, and mucosal
edema. Since these scores are always limited to the mucosal
surface, they exhibit a significant interobserver variability with
sensitivities, specificities, and accuracies of 70.8– 95.3%, 67.0–
100%, and 32.4–100%, respectively (190) in comparison to
histological inflammation as reference (189). Though studies
could demonstrate that mucosal healing, assessed after 14 weeks
of treatment, correlated with long-term remission in both IBD
entities, no commonly accepted definition of mucosal healing
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has been established so far. Endoscopic findings poorly correlate
with histological activity and are not suitable to predict relapse in
more individualized therapeutic strategies (190). Therefore,
various modern imaging modalities have been explored that
enhance detailed mucosa assessments in real-time, including
virtual chromoendoscopy techniques, i.e. Narrow-Band
Imaging (NBI), Confocal Laser Endomicroscopy (CLE), and
Optical Coherence Tomography (OCT).

Digital Chromoendoscopy, Narrow-Band-Imaging
Narrow-band-imaging (NBI) utilizes optical filters to illuminate
the tissue with defined wavelengths (415 and 540 nm) that are
absorbed by hemoglobin but have different penetration depths.
NBI, therefore, allows detailed examination of mucosal vascular
and surface patterns. In assessing inflammation in IBD and
predicting therapy response, divergent data have been
published so far. In a prospective study by Kudo et al. 30 UC
patients were longitudinally examined, showing good criteria of
the Rachmilewitz score and histological markers of inflammation
as well as subsequent relapse (191). In contrast, a more recent
study in 64 UC patients could not predict relapse within one year
of therapy (192). This discrepancy may be explained by the
different scoring systems used (Rachmilewitz vs. Nishio score)
with limitations to superficial criteria.

Endoscopic Ultrasound (EUS)
Recent data, in part unpublished, of our group evaluated the role of
EUS for the differentiation of CD and UC compared to healthy
controls. Combining the EUS criteria total wall thickness (TWT),
mucosal/submucosal thickness, and the presence of paracolonic
lymph nodes, we could differentiate between active CD and UC
with 92.3% sensitivity (193). Furthermore, TWT of the recto-
sigmoid colon strongly correlated to histological disease activity
prior to initiation of anti-inflammatory therapy and significantly
declined within the first two weeks of anti-TNF treatment preceding
the changes of the superficial, endoscopic appearance by several
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weeks. With a sensitivity and specificity of 0.9 a cut-off value of
approximately 8% reduction in TWT was calculated to predict
therapy response at this very early time point (194).

Confocal Laser Endomicroscopy (CLE)
CLE enables real-time imaging of the mucosal surface with ~1000x
magnification and a resolution of ~1micron. It is based on the tissue
fluorescence of the target area activated by probe emitting laser light
and collecting the emitted fluorescent light at the same time. Hence,
CLE requires the use of the intravenous contrast agent fluorescein
(1.0–5.0 mL of 10%)., CLE was performed with either an
endoscope-based confocal laser endomicroscopy (Pentax, Fort
Wayne, NJ, USA; “eCLE”) or a CLE probe (Cellvizio, Mauna Kea
Technologies, Paris, France; “pCLE”) that is negotiated via the
accessory channel of regular endoscopes. However, eCLE is no
longer available, even though the majority of confocal applications
were studied using it (195). Studies suggest that CLE of intestinal
inflammation in IBD can contribute to individualized therapy
guidance and predict response and relapse (196). Furthermore,
significant progress in molecular in vivo imaging may allow
exploration of the pathophysiology of IBD and targeted therapies
the therapy (197). In study by Li et al. a good correlation between
CLE evaluation of crypt architecture and fluorescein leakage with
histological findings in subjects with UC was observed. More than
50% of patients with mucosal healing detected during HD-WLE
exhibited acute inflammation on histology, whereas no patients in
remission confirmed by CLE demonstrated acute inflammation on
histology (198). The same group evaluated whether CLE could be
used to predict UC relapse in 43 patients with UC. The relapse rate
among subjects with CLE-confirmed active disease was significantly
higher compared to those with a non-active disease (P < 0.001)
(199). CLE has also been studied to specifically determine
gastrointestinal (GI) barrier function in patients with IBD (200).
Physiologically, intestinal epithelial cells shed from the epithelial
layer, whereas new cells migrate from the basal layers in crypts. This
gap created by cell shedding can be visualized by CLE and serves as
FIGURE 6 | Slide-free image of a bulk porcine skin sample stained with acridine orange and sulforhodamine 101. Zoom-ins show a hair follicle (top) and a sweat
duct (bottom). Total acquisition took 13 minutes plus. 10 minutes processing time.
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a marker of increased permeability in IBD patients resulting in
fluorescein leakage into the lumen (201). Kiesslich et al. observed a
significant barrier dysfunction in 47 patients with UC and 11
patients with CD and showed a correlation between intestinal
barrier dysfunction and increased risk of relapse (201). Similar
results were obtained by Buda et al., who demonstrated that a
composite score (Buda score) combining colonic fluorescein leakage
with crypt diameter predicts disease flare within one year of follow-
up (202).

Our own data suggest CLE-based real-time visualization of
blood flow, vascular pattern, and mucosal changes allows an
exact quantification of the level of inflammation in IBD. These
criteria proved to be reliable to predict early therapy response in
patients undergoing anti-integrin therapies (Vedolizumab,
VDO) already after two weeks of treatment (203).

Imaging Cutaneous Inflammation by
Optical Coherence Tomography (OCT)
Background
Optical biopsy is the concept to replace physical tissue sampling by
optically investigating tissue in vivo to gain information on
pathological changes. One promising approach is optical
coherence tomography (OCT), which is a well-established
imaging technique in ophthalmology (204). Analogous to
ultrasound, OCT uses the reflection of light waves from different
tissue interfaces. It measures the propagation time of light by
interferometry instead of direct time-of-flight measurements and
achieves a higher resolution than ultrasound. OCT is non-invasive,
non-contact, fast, and needs no additional marker or contrast
agents. Resolution is limited by the spectral band-width of the
light source and NA of the imaging optics. Traditionally, most OCT
systems provided a resolution of 5 micrometers or worse, which
only resolves tissue layers and larger morphology but not cellular
structures (205). Changes in these larger structures due to
inflammatory processes can be visualized and quantified in cross-
sectional or even volumetric images (206–208). Due to the use of
interferometry in the imaging process, OCT also depicts very
sensitively local motion. This enables a marker-free angiography
which visualizes vessels down to the capillary level (209, 210).

Very high resolution OCT systems have been investigated in the
past (211–215), but only recently their full potential has been
demonstrated for cellular imaging (216). At a resolution better
than 2 mm tissue structures on cellular and subcellular level become
visible (216–218). Besides resolution, imaging contrast is also
important. Contrary to fluorescence imaging, OCT lacks a cell-
specific contrast. Neither are specific marker available. However,
transferring the principle of OCT angiography to higher resolution
and longer time scales, a cell and tissue specific contrast was
introduced. It was first demonstrated with FF-OCT for en-face
images (219, 220) and recently also using scanning OCT for cross-
sectional imaging (221). The contrast is based on microscopy intra-
cellular motion, which in general caused by structures below the
imaging resolution, but is detected by the interferometric imaging
process on which OCT is based. Combining microscopic resolution
and dynamic motion contrast individual cells and connective tissue
are visible with a fluorescent-like contrast (Figure 7). Since
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microscopic motion is the basis of contrast, general tissue motion
destroys the contrast. Mechanical stabilization of the tissue is crucial
and currently in-vivo imaging has yet been demonstrated.
Analyzing cellular morphology and dynamic processes of
immune cells may, in the future, enable a marker-free optical
biopsy of inflammatory processes by OCT.

In ophthalmology, OCT has become standard for retinal
diagnosis and is also clinically used for imaging the anterior
segment of the eye. The unique properties of OCT which
provides micrometer lateral and axial resolution despite the
limited pupil size of the eye, make OCT the only imaging
technique, which can visualize and quantify the layered structure
of the retina. The retina offers unique optical access to neuronal
tissue and the microcirculation and gives opportunity to diagnose
and quantify systemic neuronal and vascular diseases. Diagnostic
applications include inflammatory diseases like lupus, systemic
sclerosis, Behçet disease, spondylitis, and familial Mediterranean
fever (208). OCT and OCT angiography are also valuable tool in
inflammation diagnosis of the anterior segment (222, 223). The
clinical applications of OCT in areas other than ophthalmology are
currently found in skin imaging, cardiovascular imaging, and
gastroenterology, as only there clinically approved OCT devices
are commercially available. Previously, most dermatology studies
dealt with the visual presentation of tumor diseases and only few
papers evaluated OCT’s potential for inflammatory diseases (206,
224–226) In gastrointestinal diseases the first results from
endoscopic optical biopsy were published 20 years ago (227).
OCT could be used to identify transmural inflammation and
morphological differentiation between UC and CD from patient
ex vivo tissue samples (228) and in vivo, providing a valuable tool to
distinguish CD from UC (229). This is especially relevant since
biopsies are insufficient to assess for transmural inflammation.
Although these data are encouraging, subsequent confirmation in
larger, longitudinal follow-up trials is missing so far.

Definitely the potential of OCT is not yet exhausted in the
field of inflammation. Especially, the significant increase in
imaging speed and imaging resolution in last year gives new
options for imaging inflammatory processes on a cellular level. A
response to treatment could be detected early to enable
individual adaptation of the treatment strategy through the
accurate representation of the inflammatory processes. If
molecular and cellular changes are detected at an early stage of
disease progression or in the treatment of inflammatory diseases,
in that case, it is possible to make and optimize individual
treatment decisions. The following section will concentrate on
dermatological applications of OCT, which is currently the only
field in which commercial OCT devices with cellular resolution
are available of clinical diagnosis (230).

Applications
The skin is the largest organ of the human body. In the clinical
routine, the patient’s skin is firstly examined with the naked eye.
Conspicuous skin lesions can be further assessed with the help of
dermoscopy, which allows the magnification of the skin surface and
the superficial vessels. Skin alterations, including cellular and deep
vascular changes, typically require tissue removal for histological
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examination. Histology is the gold standard diagnostic method.
However, invasiveness, expenditure of time, limitation to two-
dimensional sectioning, and lack of monitoring dynamic changes
make the histological examination evidently improvable. Hence,
there is a demand for non-invasive methods that enable real-time,
three-dimensional, and in vivo imaging of the skin.

OCT has the potential to combine fast bedside imaging with the
opportunity to monitor therapeutic effects (224). There are reports
on applications of OCT in dermatology mostly for skin tumors
(231), but rarely for inflammatory skin diseases (232) and
evaluation of treatment effects (233). Vascular alterations can be
detected using OCT angiography, also known as dynamic OCT
(234). Since 1997, reports related to OCT in dermatology have
increased (235). This implicates the growing importance of OCT for
clinical applications. Other well-established, in vivo imaging
modalities that could be compared to OCT are ultrasound (236),
confocal microscopy (237), multiphoton tomography (238), and
magnetic resonance imaging (239). The highest comparability with
regard to resolution and penetration depth is with OCT and high-
frequency ultrasound. Both methods provide time- and cost-
effectiveness. Also, OCT could be widely available in the future.
The resolution typically decreases with higher penetration depth.
Ultrasound imaging exhibits high tissue penetration visualizing fat
and muscle, but the resolution is lower compared to OCT (236).
Inflammation changes the tissue composition leading to higher
water content and lower collagen content. Therefore, it has been
shown for OCT that the signal penetration could even be increased
due to lower scattering. In contrast, inflammatory processes and
edema lead to a signal decrease for ultrasound (225).

Skin diseases that result in structural and vascular changes can be
determined and quantified in OCT. For example, atopic dermatitis
and plaque psoriasis are common inflammatory diseases that lead to
a higher first intensity peak in the A-scan due to higher reflectivity
(225). Further, the second intensity peak is correlated with
alterations of the dermal-epidermal junction. The efficacy of
potent biologic treatments could be assessed using OCT. Imaging
parameters could be skin structure, epidermal thickness (Figure 8),
entrance peak, dermal reflectivity, attenuation coefficient, plexus
depth, vessel diameter, density, and tortuosity (Figure 9) (224, 240).

OCT can be applied for monitoring psoriasis treatment. In the
near future, skin assessment with the use of OCT could become an
Frontiers in Immunology | www.frontiersin.org 14
inherent part of the clinical routine (233). Finally, the development
of an OCT-based inflammation score system with regard to skin
structure and perfusion could allow more tailored treatment
opportunities. The goal of precision medicine is the gain of more
predictive information from OCT data on early treatment response
or treatment failure of current biologic treatments.
CONCLUSIONS

Imaging inflammation is a key component to understand and
treat the various manifestations of the disease. Virtually all
modern imaging technologies have identified inflammation as
a goal and are developed methods to image it. The overview in
this article shows that different modalities are needed to tackle
different aspects of the disease. Impressive progress has been
made and will continue, bringing precision medicine to life.

In tumor imaging and analytics, several new methods have
been tested in clinics. These methods could be brought into use
quite easily in many cases of inflammation disease as well. Like,
cancer imaging techniques might solve problems that appear in
inflammation imaging today. Overall the problem of optical
imaging in medicine in humans is the shallow penetration. The
solutions might include guiding the light deep into the body
endoscopes or optical fibers and develop better imaging tracers.
Also, photoacoustic might be a valuable method in future
imaging. Optical 3D imaging offers the best platform for
extending molecular imaging from cells to the tissue and organ
level. OCT can be used to see micro-structures below the surface,
scan larger areas, quantify inflammation by geometry
measurements, and visualize blood flow. Thus OCT could be
used to image the structural tissue changes in IBD. PET and
SPECT, both being available for humans and rodents, can play a
key role in translating the knowledge gained in preclinical
research into the clinics. These two imaging techniques are
being already regularly used in macrophage detection and, in
the case of FDG-PET, also for energy consumption in
inflammations; however, further opportunities are expected if
more specific molecular targets with adequate radiolabeling are
developed. All of the imaging modalities would benefit from new,
better, and more specific tracers. New solutions in MRI would
A B DC

FIGURE 7 | (A) HE stained histology of the imaged sample at different location (I) cornified layer, (II) granular & spinous layers, (III) basal layers, (IV) lamina propria,
(V) muscle, and (VI) glass plate. (B) OCT image of mouse tongue; lamin propira (IV) can be identified by brighter contrast. (C) Corresponding dynamic contrast
mOCT image with a focus in basal layer (I-V) and even nuclei (*) are visible. (D) Dynamic contrast m OCT image with a focus in the lamina propria; the image size is
380x500 mm (zx); scale bar, 100 mm [from ref. (221)].
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FIGURE 8 | Acute and chronic inflammatory skin diseases can lead to an increase of the epidermal layer. Compared to healthy skin (A), involved skin in atopic
dermatitis (B) and in plaque psoriasis (C) exhibit a thicker epidermal layer. Changes of epidermal thickness (green line) can be visualized in vertical B-scans and
measured by OCT.
FIGURE 9 | Angiographic OCT allows the visualization of elongated capillary loops in the superficial papillary dermis and the underlying vessel plexus. In comparison
to the healthy control (A), changes of vascular pattern, vessel diameter, depth, and density can be observed in lesional skin in atopic dermatitis (B) and in plaque
psoriasis (C).
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TABLE 1 | Current clinical and relevant assortment of potential preclinical tracers of different imaging modalities have been gathered to the table.

Technique Disease/organ Marker Preclinical/Clinical References
number

ASL-MRI stroke / brain cerebral blood flow; arterial transit time Clinical (241–243)
stroke / pediatric brain cerebral blood flow Clinical (244–246)
tumors / brain cerebral blood flow Clinical (247, 248)

DCE-MRI multiplesclerosis (MS)/Brain blood-brain barrier permeability; volume transfer
constant; extracellular space volume fraction

Clinical (249)

stroke / brain blood-brain barrier permeability; contrast-agent
leakage rate; volume transfer constant

Clinical (250)

DCE-MRI multiplesclerosis (MS)/Brain BBB permeability Clinical (19)
prostatic hyperplasia / prostate perfusion fraction; extraction fraction; mean transit

time; extravascular-extracellular volume
Clinical (18)

DSC-MRI tumors / brain cerebral blood volume clinical (14, 15)
stroke / brain cerebral blood flow; cerebral blood volume; mean

transit time
clinical (243)

MRI Vasculitis/central nervous system/
brain

arterial wall thickening, vessel wall enhancement on
post-gadolinium black-blood MRI

Clinical (33–37)

Intracranial aneurysms/brain aneurysm wall enhancement on post-gadolinium
black-blood MRI

clinical (42–46, 53–
56)

IBD / small bowel and colon bowel wall thickening, restricted diffusion, edema,
increased contrast media uptake, strictures,
ulcerations, reduced motility, mesenterial reaction

clinical (59–64, 66–
69)

metabolic
hyperpolarized
MRI

arthritis anaerobic glycolysis; lactate; lactate dehydrogenase Preclinical/Clinical (79)

liver anaerobic glycolysis; lactate; lactate dehydrogenase preclinical (80)
myocardial infarction anaerobic glycolysis; lactate; lactate dehydrogenase Preclinical/Clinical (81)
muscullo skeletal anaerobic glycolysis; lactate; lactate dehydrogenase preclinical (82)
general inflammation pH; bicarbonate/CO2, zymonic acid; pyruvate

dehydrogenase
preclinical (251)

gaseous
hyperpolarized
MRI

lung, brain ventilation, dissolved-phase imaging; 129Xe clinical (83)

head, neck, lungs FLASH) MRI; 3He, proton (H2O, CH2-group) pre-clinical/clinical (84)
COPD/lung, asthma, cystic fibrosis ventilation, diffusion and dissoved-phase imaging;

129Xe, 3He; Oxygen concetration, lung capacity.
clinical (85)

lung, kidney, brain/ COPD Ventilation, dissolved-phase imaging; 129Xe, 3He;
barrier uptake, red blood cell transfer, ventilation
defect percentage.

clinical (86)

lung/ emphysema diffusion imaging; 3He; apparent diffusion coefficient. clinical (87)
lung/COPD, Idiopathic pulmonary
fibrosis, left heart failure, pulmonary
arterial hypertension

Ventilation and gas transfer maps ; 129He; ventilation
defects, Red blood cell- transfer.

clinical (88)

lung/ COPD Transfer Contrast MRI; 129Xe; apparent diffusion
coefficient.

clinical (89)

lung/ COPD, asthma 3D dissolved-phase imaging; 129Xe; red blood cell to
tissue–plasma ratio.

clinical (90)

lung/ idiopathic pulmonary fibrosis Spectroscopic imaging; 129Xe; regional gas exchange. clinical (91)
lung/ COPD, asthma 2D and 3D ventilation imaging, 129Xe; dissolved-

phase to gas-phase xenon ratio.
clinical (92)

SPECT/PET
IBD /and many other inflammations 18F-FDG clinical (94, 102–117)
IBD Leukocytes99mTc-HMPAO-leukocytes clinical (252)
IBD CXCL899mTc-CXCL8 clinical
IBD b764Cu-FIB504.64-Fab Preclinical
IBD a4b764Cu-DATK32 Preclinical
IBD b764Cu-FIB504.64-Fab Preclinical
IBD b764Cu-FIB504.64-F(ab′)2 (fragments) Preclinical
IBD CD489Zr-GK1.5 cys-diabody Preclinical
IBD TNF-a99mTc-InfliximabRatsTNBS Preclinical
IBD IgG111In-IgGRabbitsTNBS Preclinical
IBD Leukocytes111In-WBC Preclinical

(Continued)
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TABLE 1 | Continued

Technique Disease/organ Marker Preclinical/Clinical References
number

IBD Liposomes111In-liposomes Preclinical
IBD IL-899mTc-HYNIC-IL-8RabbitsTNBS Preclinical
IBD Granulocytes99mTc-HMPAO-Granulocytes Preclinical
IBD and many inflammations imaging inflammatory cells Preclinical (253)
IBD and many inflammations 11C-PK11195, Preclinical
IBD and many inflammations 18F-FEDAA1106, Preclinical
IBD and many inflammations 18F-FEMPA, Preclinical
IBD and many inflammations 18F-GE-180, Preclinical
IBD and many inflammations 68Ga-DOTATATE, Preclinical
IBD and many inflammations 64Cu-DOTATATE, Preclinical
IBD and many inflammations 68Ga-DOTANOC, Preclinical
IBD and many inflammations 18F-FDR-NOC, Preclinical
IBD and many inflammations 68Ga-DOTATOC, Preclinical
IBD and many inflammations 64Cu-DOTA-DAPTA-comb nanoparticles, 64Cu-

DOTA-ECL1i,
Preclinical

IBD and many inflammations 64Cu-DOTA-vMIP-II, Preclinical
IBD and many inflammations 64Cu-vMIP-II-comb nanoparticles, Preclinical
IBD and many inflammations 18F-FOL Folate receptor bMacrophages, Preclinical
IBD and many inflammations 68Ga-NOTA-MSA, Preclinical
IBD and many inflammations 18F-FDM, Preclinical
IBD and many inflammations 64Cu-MMR and 68Ga-MMR nanobodies, Preclinical
IBD and many inflammations 18F-fluorothymidine, Preclinical
IBD and many inflammations 18F-fluoromethylcholine, Preclinical
IBD and many inflammations 11C-choline, Preclinical
IBD and many inflammations 68Ga-Fucoidan, Preclinical
IBD and many inflammations 64Cu-DOTA-anti-P-selectin antibodies, Preclinical
IBD and many inflammations 18F-4V, Preclinical
IBD and many inflammations 64Cu-VCAM nanobody, Preclinical
IBD and many inflammations 18F-HX4, Preclinical
IBD and many inflammations 18F-FMISO, Preclinical
IBD and many inflammations 62Cu-ATSM, Preclinical
IBD and many inflammations 18F-fluciclatide, Preclinical
IBD and many inflammations 18F-Galacto-RGD, Preclinical
IBD and many inflammations 18F-Flotegatide, Preclinical
IBD and many inflammations 64Cu-DOTA-C-ANF, Preclinical
IBD and many inflammations DOTA-CANF-comb nanoprobe, Preclinical
IBD and many inflammations 18F-florbetaben, Preclinical
IBD and many inflammations 18F-flutemetamol, Preclinical
IBD and many inflammations 68Ga-DOTATATE, Preclinical
IBD and many inflammations 18F-FET-bAG-TOCA Preclinical

Optical/PAI rheumatoid arthritis ICG blood flow indicator Clinical (131)
Many tracers examples aMSH, MMP binding tracer,
RGD,

Preclinical (133–143)

VEGF targeting nanoparticles, ASMase targeting
liposome,
Alendronate targeted nanoparticles

IBD Hemoglobin preclinical (168)
CD Hemoglobin and fibrosispreclinical (169–171)
Arthritis L-selectin/P-selectin-targeting contrast agent preclinical (172)
Arthritis Hemoglobin preclinical (172–175)
Atherosclerosis gold nanorods conjugated with MMP2 antibody preclinical (140)
Wound Endogeneous bacterial fluoresence Preclinical reviewed in

(158)
Invasive- and biomaterial-associated
bacterial infections

conjugated vancomycin to IRDye Early clinical trial (161, 167)

Tuberculosis fluorogenic substrates for beta-lactamase preclinical (164)
Wound infection Lectin base fluorescent nanoparticle preclinical (165)
Bacterial infections (implants) Antimicrobial peptide conjugated to a radioisotope

and a fluorescent dye
preclinical (166)

Not limited to certain organs or
diseases. Can be used to measure
morphological changes of tissue.

Fluorecenct stains and/or autofluorecence Certified medical devices for in
vivo skin measurements avaible.

(184)

(Continued)
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serve the possibility to track inflammation based on metabolic
activity differences between normal and inflamed tissues.

A combination of different imaging modalities would
simultaneously offer information about the structure, success
of targeting, or metabolic activity from the tissue of interest. In
fact, multimodality has already reached the clinical and
preclinical environments, e.g. through PET/CT and PET/MRI.
Further benefits could be achieved by developing bi- or even
multimodal imaging agents. Although bimodal probes have been
proposed for PET/MR as well as for PET and optical imaging,
they still remain less specific than the probes designed for each
single modality. In addition to diagnostic purposes, imaging
could be an extra tool in medical operations like in surgery.
There are indeed several concepts for intraoperative optical
imaging like optical fluorescent operational microscopes,
fluorescent cameras for robotic surgery, OCT integrated
surgical microscopes, as well as methods based on radioactive
signal detection. Among the latter, gamma, beta minus, and beta
plus probes, mini gamma cameras, intraoperative PET detectors
and freehand SPECT have proposed. We have gathered the
current clinical and relevant assortment of potential preclinical
tracers of different imaging modalities as a table (Table 1). Some
of these tracers, especially nano-probes, could be easily converted
to multimodal tracers. While some of these methods have
already reached the clinical arena, some others are still under
investigation. Here additional information collected by different
Frontiers in Immunology | www.frontiersin.org 18
imaging modalities would help to solve multiple current
unmet needs in inflammation like in robotic real-time
surgery operations.

The newly-developed research techniques are tested in
clinical and preclinical studies to improve diagnosis and
identify the individual patient response to treatment at an early
stage in precision medicine. The close cooperation of engineering
expertise with clinical applications leads to further developing
state-of-the-art imaging methods in inflammation medicine.
Modern optical microscopy already enables microscopically
small cell changes to be identified and assessed in real-time.
The existing experimental methods can only be transferred into a
clinical application with direct benefits for the patient by close
dialogue between the different scientific disciplines.
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TABLE 1 | Continued

Technique Disease/organ Marker Preclinical/Clinical References
number

Other applications are
preclinical.

Digital
chromoendoscopy

IBD/colon Mucosal surface patterns Clinical (191, 192)

Endoscopic
ultrasound

IBD/colon Total wall thickness, mucosal vascularity Clinical (193, 194)

Confocal laser
endomicroscopy

IBD/colon Crypt diameter, fluorescein leak, mucosal vascularity Clnical (195–203)

TPM Not limited to certain organs or
diseases. Can be used to measure
morphological changes of tissue.

Fluorecenct stains and/or autofluorecence Certified medical devices for in
vivo skin measurements avaible.
Other applications are
preclinical.

(184, 236,
238)

OCT Human eye Clinical (204, 205,
208, 210,
222, 223),

Human coronary artery Clinical (205, 216)
Human oesophagus Clinical (205, 207)
Human small intestine Clinical (205, 207)
Human colon Preclinical (205, 207,

214, 228,
229)

Human biliary and pancreatic ducts Clinical (205, 207)
Human lung Preclinical (205, 217,

218)
Skin Clinical (205, 212,

224–226, 230–
235, 239, 240)

confocal
microscopy

skin Clinical (233, 237)
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