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1. Introduction 
 

1.1 Bone grafts 
According to the 3rd edition report of The Burden of Musculoskeletal Diseases in the 

United States, the number of people who received care after suffering bone fractures 

rose to more than 23 million [1]. As fracture incidences have been shown to have a 

bimodal distribution with a high rate for elderly people [2], an increase in fracture 

prevalence in an ever-aging society can be expected in the future. While most fractures 

heal within 3–8 weeks [3], about 5–10% of fractures end in non-unions [4], which 

together with infected non-unions, high-energy injuries and bone loss due to i.e. tumor 

resection cause critical bone defects [5]. The treatment of bone defects is challenging 

for the attending surgeon, and in many cases, bone grafts are required. While 

autologous bone grafting is currently still considered the gold standard [6,7], some 

limitations are associated with autologous grafting, such as risk of infections, additional 

surgical sites and limited bone supply [8].  

Allografts and xenografts present viable alternatives to autografts as they solve the 

problem of limited autologous bone supply and do not require an additional surgical 

site for graft harvesting [9]. However, allogenic and xenogenic grafting can carry the 

risk of infection [10] and may induce an immunological reaction in the graft recipient 

[11]. Thus, a successful usage of allografts and xenografts in vivo requires a thorough 

removal of immune response eliciting material, such as bone marrow content or 

potential pathogens [12]. This is usually achieved by decellularizing the bone graft 

using a combination of chemical substances (Triton X-100, sodium dodecyl sulfate, 

hydrogen peroxide), enzymes (DNase, trypsin) and physical treatment (centrifugation, 

sonication, temperature treatment).  

While decellularization may be viewed as the central step in graft processing, donor 

selection [13] and graft harvesting [14] have also been shown to exert an influence on 

the graft’s properties. Properties of the bone graft such as surface area, surface 

structure, chemical composition and mechanical stability may be altered by the 

processing of the graft [15–17] and may influence the implantation in vivo or the growth 

of bone forming cells such as mesenchymal stem cells, for instance. Hence, special 

attention must be paid in terms of processing. 
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1.2 Mesenchymal stem cells 
Mesenchymal stem cells (MSCs) are adult human stem cells [18] which were first 

described by Friedenstein et al. in the 1960s and 1970s [19]. Originally, they were 

isolated from bone tissue [20] and showed a multilineage potential. While MSCs 

account for ∼	0.01–0.001% of all cells in the bone marrow [21], they have also been 

successfully isolated from a variety of tissues, such as adipose tissue [22,23], 

peripheral blood [24], dental tissue [25], synovial fluid [26], amniotic fluid [27], 

Wharton’s jelly [28] and from the placenta [29]. However, some authors suggest that 

they can be found in all organs and tissues [30].  

MSCs have traditionally been described with a trilineage potential, able to differentiate 

into adipocytes, chondrocytes and osteoblasts. However, more recent publications 

describe an even greater differentiation potential of MSCs, also being able to 

differentiate into tendon [31], muscle [32], cardiomyocytes, pancreatic cells, 

hepatocytes and neuronal cells, depending on the tissue of isolation [18,33]. 

While the physiological functions of MSCs in situ are not yet fully comprehended, 

MSCs have been found to contribute to the formation of hematopoietic 

microenvironments, modulate the activity of immune cells and to regulate cell traffic 

[34].  

 

1.2.1 Defining mesenchymal stem cells 
One of the challenges presented when working with MSCs is the heterogeneous 

nature of MSC cultures. Different laboratories often use different isolation methods for 

MSCs, usually based on their ability to readily adhere to plastic. This renders MSC 

cultures heterogeneous, thus making it difficult to compare study outcomes conducted 

with MSCs across different laboratories. In order to address this problem, the 

International Society for Cellular Therapy published a statement in which they propose 

minimal criteria for the definition of mesenchymal stem cells. According to this 

statement, MSCs must (1) exhibit adherence to plastic, (2) display certain cell surface 

markers, such as CD105, CD 73 and CD90 and lack other markers such as CD45, 

CD34, CD14, CD19 and HLA-DR surface molecules. Additionally, (3) MSCs must 

show the potential to differentiate in vitro into adipocytes, chondrocytes and 

osteoblasts [35].  
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1.2.2 Areas of application of mesenchymal stem cells 
To this date, several clinical studies have been conducted with mesenchymal stem 

cells which have underlined their regenerative potential in a variety of applications. A 

randomized, double-blinded, placebo-controlled, dose escalation study showed a 

significant improvement in the left ventricular ejection fractions of patients after 

suffering from myocardial infarction when treated with intracoronarily delivered MSCs 

compared to the placebo group [36]. Phase 1, 2 and 3 trials are currently ongoing for 

further validation of MSC treatment for cardiac regeneration [37]. Additionally, MSCs 

have also shown potential to support renal tissue after acute kidney infarction [38,39].  

Some positive effects could be observed in patients suffering from spinal cord injury 

when treated with MSCs, however, what effect MSCs have on motor neuron function 

is still inconclusive [40]. Furthermore, MSCs also show promising results in the 

advancement of treatment strategies for patients with type I [41] and II [42] diabetes.  

However, they have been extensively researched and used in the area of bone and 

cartilage repair. In patients suffering from osteoarthritis, treatment with MSCs lead to 

an improvement in pain and symptoms [43,44], while the generation of large sized 

cartilage in vitro has recently been accomplished using MSCs [45], creating the 

possibility to treat larger sized cartilage defects. Patients suffering from osteogenesis 

imperfecta, a genetically inherited condition resulting in brittle bones, have also profited 

from allogenic bone marrow transplants as the receival of new mesenchymal 

progenitors improved the condition [46]. Avascular femoral head osteonecrosis is 

another condition in which MSCs haven shown to slow progression of the disease and 

additionally avoid subsequent femoral head collapse and joint replacement [47,48]. 

Fractures resulting in atrophic non-unions, despite adequate surgical intervention have 

been successfully treated using autologous MSCs [49].  

Likewise, MSCs show promising results concerning the treatment of critical-size bone 

defect [50]. In vivo studies have repeatedly shown an acceleration in bone repair when 

bone grafts were loaded with MSCs prior to implantation [51,52] and several authors 

have demonstrated the utility of MSCs when treating patients with atrophic bone 

[53,54]. 
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1.2.3 Immunomodulatory and immune-evasive properties of 
mesenchymal stem cells 
Another well-described characteristic of MSCs is their immunomodulatory and 

immuno-evasive property in vitro. When cultured with other cells, MSCs secrete 

soluble factors that have been shown to possess an immunosuppressive activity [55]. 

Additionally, MSCs have been shown to express no MHC class II and only low levels 

of MCH class I [56]. Clinical trials using allogenic MSCs have been conducted with 

success [36], thus raising the question if the usage of autogenic MSCs is just as 

effective as they have to be expanded in vitro 4–6 weeks prior to usage. However, 

more recent publications question the traditional view on immunosuppression and 

immuno-evasion. Several in vivo studies have shown a difference in study outcomes 

based on the usage of allogenic and autogenic MSCs [57,58]. It is proposed that this 

effect is observed when MSCs mature in the donor to more differentiated cells, which 

in turn express higher levels of MHC I and II [59], thus losing their immuno-privileged 

status.  

The immunomodulatory properties of MSCs are also used as an explanation for study 

outcomes involving the treatment of diseases caused by underlying immunological 

issues. As such, beneficial effects of MSC treatment have been found in diseases such 

as Crohn’s disease [60], multiple sclerosis [61], amyotrophic lateral sclerosis [62] and 

steroid resistant graft versus host disease [63].  

 

1.2.4 Role of mesenchymal stem cells in bone formation 
Mesenchymal stem cells also play a pivotal role during bone formation after bone 

fractures. After a fracture, blood vessels rupture and a hematoma is formed, preventing 

further loss of blood and of bioactive factors [64]. Initial fracture site environment is 

characterized by inflammation and hypoxia, promoting and signaling immune cells 

participating in the healing process [65] and bone progenitors are recruited to the site 

of fracture around day 3 [66]. While this migration to the fracture site is not yet 

completely understood and several factors are involved, [67] the stromal cell-derived 

factor 1 (SDF-1)/CXCL12 CXCR4 chemotactic axis is the most researched mechanism 

in this context [68,69]. Inhibition of this pathway significantly alters fracture repair [70]. 

MSCs migrate to the fracture site from several niches such as the periosteum, 

endosteum, bone marrow [71] and the perivascular niche [72]. The occurrence of 



 5 

MSCs in the perivascular niche is not limited to bone tissue but mesenchymal stem 

cells have been shown to be present in the perivascular niche throughout the entire 

body [73]. This might explain why authors establish that MSCs have been found in 

various organs such as the spleen, kidney, liver, lungs, pancreas, brain, aorta and the 

vena cava [30,74]. Circulating MSCs have also been found, however, it is not clear yet 

to what extent they are recruited in fracture healing [75,76]. After the fracture 

hematoma has formed, SDF-1 levels rise [77], which in turn attracts CXCR4 

expressing cells. Since the SDF-1 gene is regulated by the hypoxia-inducible factor-1 

(HIF-1) [78], hypoxia in the fracture hematoma contributes to chemotactic factor 

secretion and cell migration. Additionally, the hypoxic environment induces the 

secretion of vascular endothelial growth factor (VEGF) [79], stimulating the formation 

of new blood vessels which is critical for new bone formation [80]. MSCs have shown 

to significantly contribute to VEGF secretion [81]. Following migration, MSCs 

differentiate into osteogenic cells and contribute to the formation of bone substance 

[82].  

 

1.2.5 Osteogenic differentiation of mesenchymal stem cells 
Osteogenic differentiation of MSCs is a two-step process: (1) lineage commitment and 

(2) maturation [83]. The process of lineage commitment is complex, controlled by 

multiple factors. Ascorbic acid has been found to increase extracellular matrix (ECM) 

secretion followed by an upregulation of osteogenic markers such as alkaline 

phosphatase (ALP) and osteocalcin [84]. Dexamethasone, on the other hand, 

increased cell proliferation and ALP activity [85] while β-glycerophosphate provides 

phosphates for mineral deposition [84]. Countless chemical factors are involved in 

osteogenic differentiation, which may act in a synergistical fashion [86]. In addition to 

chemical factors, physical factors such as mechanical forces [87] and biological factors 

such as oxygen supply have also shown to influence differentiation. Hypoxia is known 

to inhibit osteogenic differentiation [88] and to promote MSC to differentiate into 

cartilage [89], thus underlining the importance of vascularization in bone repair. The 

process of osteogenic maturation is usually evaluated using histochemical and 

molecular biological methods. The expression of osteogenic genes such as 

osteopontin, osteonectin, osteocalcin, bone morphogenic protein 2 (BMP-2) and 

alkaline phosphatase can be evaluated using quantitative real-time polymerase chain 
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reaction (qRT-PCR) [90]. Additionally, ALP activity can be quantified by using an 

alkaline phosphatase assay. Following maturation, MSCs start to deposit calcium 

(Ca2+), which is also referred to as the mineralization phase [91]. These calcium 

depositions can be stained with Alizarin Red and evaluated either histologically or 

quantified photocolorimetrically [92].  

 

1.2.6 Alkaline phosphatase  
Alkaline phosphatase is an enzyme found on the outer cell membrane of many different 

cells in the body and exists in different isotypes [93]. The prevalent form found in bone 

tissue is the tissue non-specific alkaline phosphatase (TNAP). While the importance of 

ALP activity in mineralization has been thoroughly established, its exact mechanism is 

not yet completely understood. ALP is transcribed early in the process of osteogenic 

differentiation, rising ∼	11 days after osteogenic induction and decreasing during the 

phase of early mineralization [91]. This points, at least in part, to a role in the early 

phase of mineralization. Early cues on its role and function were derived from patients 

suffering from mutations in the ALP gene. In these patients, severe forms of 

hypophosphatasia could be observed [94]. These findings led to the understanding 

that ALP uses extracellular inorganic pyrophosphates (ePPi) as a substrate and 

hydrolyzes them to inorganic phosphate (Pi), which is a mineralization promoter [95]. 

Thus, ALP provides phosphates for the synthesis of hydroxyapatite, a mineral that 

makes up bone substance and in which calcium and phosphates are stored [96], as 

well as reducing inhibitors for mineralization (ePPi) [95].  

 

1.3 Mesenchymal stem cell applications in conjunction with 
bone grafts 
MSCs have also been studied in depth in conjunction with evaluating bone grafts. Bone 

grafts have shown the potential to influence differentiation of MSCs into the osteogenic 

lineage [97,98]. Furthermore, the combined application of MSCs and bone grafts 

demonstrated enhanced healing properties of large bone defects in vivo after 

implantation [99,100]. However, only a few studies have been conducted that 

investigate the usage of bone grafts loaded with stem cells for the treatment of bone 

defects in human subjects [101–103]. This might be in part due to the efforts involved 
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in harvesting and expanding autologous MSCs and the small number of patients with 

bone defects for whom standard treatment procedures are unsuitable.   

In addition to their ability to produce new bone tissue, the therapeutic potential of MSCs 

has in part been attributed to paracrine effects that MSCs exert via cytokines and 

growth factors [104] on adjacent MSCs and bone tissue upon integration in vivo [105]. 

At the same time, cytokine secretion by MSCs and bone forming cells can be 

influenced by the implant’s properties, such as in CaP containing grafts, being able to 

influence the cells’ secretome towards an osteogenic profile through adenosine 

signaling [106]. Physicochemical properties of the graft have a direct influence on cell 

adherence and cell proliferation of MSCs after seeding onto bone grafts [107–109], 

playing an important role upon application of seeded grafts in vivo. Ideally, the 

processing of bone grafts for tissue engineering applications should decellularize the 

graft completely, inactivate any potential harmful pathogens, maintain biomechanical 

stability and in conjunction with stem cell applications, demonstrate osteoconductive 

or osteoinductive properties combined with high biocompatibility as defined by Williams 

[110]. 

Figure 1. Overview - Mesenchymal stem cell therapy in patients with bone defects. Bone grafts 
are regularly used when treating patients with bone defects. These bone grafts can be harvested 
and processed from xenogenic or allogenic bone sources without the necessity to create an 
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additional surgical site. Mesenchymal stem cells on the other hand can be isolated from various 
tissues such as adipose tissue, bone marrow, blood and the placenta and have shown the 
potential to support healing processes. Recent studies have also shown MSCs to improve graft 
integration and bone regeneration when seeded onto bone grafts prior to implantation. Hence, 
this work focuses on the processing of bone grafts and their in vitro ability to host MSCs, allow 
for adequate proliferation and osteo-induce seeded MSCs.   
 
1.4 Aim and objectives 
Several decellularization methods, such as decellularization based on chemical 

treatment [111], sonication [112] and irradiation [113] have been proposed, yet it 

remains unclear which method results in favorable properties for in vivo use as well as 

favorable reseeding properties in conjunction with MSCs. In this study, we compare 

two decellularization methods adapted from published protocols for bone grafts based 

on chemical treatment [111] or sonication [112]. The effect of each method on the 

graft’s surface texture, composition and decellularization, including bone marrow 

removal, was investigated. Decellularized grafts as well as two commercially available 

grafts, one allograft (Tutoplast®) and one xenograft (Bio-Oss®), were further subjected 

to element analysis and MSC viability assays with extracts derived from the grafts. 

Commercially available grafts were included in this study as additional references for 

standardized graft processing. Self-decellularized grafts as well as commercially 

available grafts were reseeded with MSCs pre-differentiated in osteogenic medium and 

cell adhesion, proliferation and osteogenic activity was assessed in order to compare 

their performance in conjunction with MSCs. 

 

2. Materials and Methods 
 

2.1 Ethical approval 
The use of human tissue and cells was approved by the local ethical advisory board of 

the Medical Faculty of Christian-Albrechts-University in Kiel (Approval number - 

D459/13), Germany, including the consent from the individual donors.  
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2.2 Comparison of two decellularization approaches 
 

2.2.1 Cutting and preparation of bone cylinders 
Femoral heads were obtained from patients undergoing total hip replacement surgery 

due to coxarthrosis. Criteria for exclusion was necrosis, tumor and infections. Donors 

consisted of five female and five male donors, ranging in age from 42 to 93 years 

(mean 73.2 years, SD ± 18.9 years) and 51 to 80 years (mean 69.8 years, SD ± 14.5 

years), respectively.  

Upon receival, femoral heads were placed in tissue buffer, consisting of GlutaMAXTM 

Medium 199 (Gibco, Darmstadt, Germany), 15% (v/v) fetal bovine serum (FBS) 

(Sigma, Taufkirchen, Germany), 1% (v/v) (100 U/mL / 100 µg/mL) 

Penicillin/Streptomycin (Pen/Strep) (Biochrom, Berlin, Germany), 1% (v/v) (20 µg/mL) 

Ciprofloxacin (Fresenius Kabi, Bad Homburg, Germany), 1% (v/v) (2.5 µg/mL) 

Amphotericin B (Biozol, Eching, Germany) and were then cut into slices using a table 

saw (Proxxon, Wecker, Luxembourg). This was done in conjunction with custom-built 

additions to the table saw. (1) A metal slider to the right of the saw blade served as 

protection (see Figure 2). (2) A custom-built slider with a metal right angle mounted on 

top, which could be adjusted in the direction of the x-axis and the y-axis, served as a 

stabilizer. Femoral heads were cut into discs with a thickness of 5 mm. For this, a 

caliper (Steinle, Ingelfingen, Germany) was used to adjust the distance between the 

saw blade and the cut guide in order to obtain bone discs with the proper thickness. 

After disinfecting all instruments and devices used for bone cutting with 70% (v/v) 

ethanol (Merck, Darmstadt, Germany) and additionally with Biocidal (WAK Chemie 

Medical, Steinbach, Germany), the femoral head was cut along the cut guide in a 

circular movement with a bone holding forceps (Aesculap, Tuttlingen, Germany). This 

was performed under aseptic conditions with the use of sterile surgical gloves 

(CardinalHealth, Dublin, OH, USA).  

Once the bone discs were cut, cylinders with a 6 mm diameter were cut out of the bone 

discs with a trephine hollow drill (Hager & Meisinger, Neuss, Germany) and a laser 

guided bench drilling machine (Bosch, Stuttgart, Germany) (Figure 3). Prior to 

decellularization, bone cylinders were washed in tissue buffer, placed in 48-well plates 

and stored at -80°C without the addition of buffers or liquids. 
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Figure 2. Workplace setup of table saw for manufacturing of bone discs. 

Figure 3. Workplace setup of laser guided bench drilling machine for manufacturing of bone 
cylinders. 
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2.2.2 Decellularization of allografts based on chemical treatment 
After defrosting, chemical decellularization was initiated by 3 freeze/thaw cycles with 

liquid nitrogen. For this, liquid nitrogen was poured into a container and bone cylinders 

were submerged using forceps (Aesculap, Tuttlingen, Germany) and a holding tube 

(Th. Geyer, Renningen, Germany). This was followed by placing the bone grafts in a 

48-well plate and incubating them two times for 24 hours, each in 750 μL 2% (v/v) 

Triton X-100 (Sigma-Aldrich, Taufkirchen, Germany) diluted with phosphate-buffered 

saline (PBS) (Fisher Scientific, Loughborough, UK). All solutions were sterile filtered 

before use. Incubation of bone grafts for decellularization purposes was always 

performed at room temperature on an orbital shaker (Edmung Bühler, Bodelshausen, 

Germany) if not otherwise specified. After treatment with Triton X-100, bone grafts 

were incubated for 24 hours in 750 μL 1% (w/v) sodium dodecyl sulfate (SDS) (Sigma-

Aldrich, Darmstadt, Germany) solution diluted in PBS. Then, they were washed with 

PBS for 30 min on an orbital shaker and incubated with 200 U/mL DNase I (Sigma-

Aldrich, Darmstadt, Germany) solution at 37°C for 12 hours using a dry block incubator 

(Eppendorf, Hamburg, Germany). The procedure was finished by washing the 

allografts three times for 2 hours with PBS on an orbital shaker. Allografts 

decellularized by this protocol are henceforth referred to as chemically processed 

allografts (CPAs). 

 

2.2.3 Decellularization of allografts based on sonication 
Grafts decellularized using sonication are referred to as sonication-based processed 

allografts (SPAs). Bone grafts were defrosted from -80°C, submerged in 1 mL of 

distilled water preheated to 60°C and sonicated for 15 min at 20 kHz with an amplitude 

of 12 microns using a sonication needle (Mk2 sonicator, MSE, London, UK). Allografts 

were then rinsed with PBS until the solution became clear and were then placed in 750 

μL PBS on an orbital shaker for 2 hours at 60°C. This was succeeded by a wash-

centrifuge sequence repeated three times. The sequence consisted in a washing step 

with distilled water at 60°C on an orbital shaker and a centrifugation step at 1850 x g 

for 15 min at room temperature (Heraeus, Hanau, Germany). The first washing step 

was performed for 30 min while the second and third for 10 min. Allografts were then 

sonicated first in 1 mL 3% (v/v) hydrogen peroxide (Sigma-Aldrich, Darmstadt, 

Germany) solution diluted with PBS at 60°C, and then in 1 mL 70% (v/v) ethanol (Th. 
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Geyer, Renningen, Germany) diluted with distilled water at room temperature, both for 

10 min at 20 kHz and with an amplitude of 12 microns. Allografts were then placed in 

distilled water at 60°C for 10 min on an orbital shaker and centrifuged for 15 min at 

1850 x g at room temperature. Decellularization was finished by placing allografts in 

distilled water at room temperature for 30 min on an orbital shaker. After completion of 

either CPA or SPA protocol, allografts were thoroughly washed and stored without the 

addition of buffers or solutions at 4°C until use. 

 

2.2.4 Commercial allografts and xenografts 
Tutoplast® (RTI Surgical, Alachua, FL, USA) and Bio-Oss® (Geistlich, Wolhusen, 

Switzerland) grafts were acquired as cancellous bone blocks from human and bovine 

origin, respectively, and were cut into cylinders with the same dimensions as used for 

decellularization. This was performed using a drilling machine (Dremel, Mt. Prospect, 

USA) with a 6 mm trephine hollow drill. As the cancellous bone blocks measured 1 cm 

in height, the cylinders were cut in half using a scalpel (Feather, Osaka, Japan) and a 

caliper to obtain the same size of the decellularized bone cylinders (6 mm diameter, 5 

mm height) as mentioned above. This process was performed under sterile conditions 

with a laminar flow workbench using sterile surgical gloves and sterile instruments. The 

drilling machine and the hollow drill were disinfected with both 70% (v/v) ethanol and 

Biocidal before use. Bio-Oss® and Tutoplast® are hence forth referred to as Bio-Oss® 

processed xenografts (BPXs) and Tutoplast® processed allografts (TPAs). 

 

2.2.5 Histological examination of decellularized allografts 
Histological examination was performed by fixation of bone cylinders in 4% 

paraformaldehyde (PFA) (Morphisto, Frankfurt am Main, Germany) for 24 hours. 

Samples were embedded in polymethyl methacrylate (PMMA) using a tissue processor 

(Tissue Processor TPC 15, Medite, Burgdorf, Germany). The medium in which the 

samples were embedded (PMMA) consisted of 500 g methyl methacrylate (MMA) 

(Fluka, Neu-Ulm, Germany), 3 g 2,2′-Azobis(2-methylpropionitrile) (Merck, Darmstadt, 

Germany), 100 mL Nonylphenol-polyethylene glycol acetate (Walter-CMP, Kiel, 

Germany) and 5 mL phthalic acid butyl ester (Merck, Darmstadt, Germany). After each 

sample was embedded and completely hardened in a 37°C water bath, they were cut 

using a bandsaw (Metabo, Nur̈tingen, Germany) and then polished with a grinding 
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machine (DP-U4, Struers, Erkrath, Germany) from 500-grit sandpaper to a 4000-grit 

paper. Once the samples were polished to a high gloss polish, they were glued onto a 

plastic microscope slide and the sample was horizontally cut along the slide with a 

thickness of approximately 200 µm using a high precision bandsaw (Exakt, 

Norderstedt, Germany). The thickness of the sample was further reduced to 40-60 µm 

using a high precision grinding machine (Exakt, Norderstedt, Germany) and 

microscope slides with samples were then polished to a high gloss polish.  
Staining was performed by consecutively incubating slides for 2 min with 0.1% (v/v) 

formic acid (Merck, Darmstadt, Germany), 90 min in 20% (v/v) methanol (Merck, 

Darmstadt, Germany) and 2 min in toluidine blue staining solution (Merck, Darmstadt, 

Germany). Solutions were diluted in distilled water, and in-between each step, slides 

were washed in distilled water. Images were taken with EVOS FL Auto 2 Imaging 

System (ThermoFisher Scientific, Bothell USA). 

 

2.2.6 Analysis via scanning electron microscopy 
Specimens were prepared for scanning electron microscopy (SEM) by fixation in 3% 

(v/v) glutaraldehyde (Sigma-Aldrich, Darmstadt, Germany) diluted in PBS. Following 

fixation for 24 hours, samples were treated with ethanol gradients ranging from 50% 

up to 99% (v/v) ethanol. For this, ethanol solutions with 50%, 60%, 70%, 80%, 90%, 

96% and 99% (v/v) ethanol were prepared. Specimens were consecutively incubated 

with each concentration for 2-5 min and then placed on specimen-tables (Agar 

Scientific, Stansted, UK) using carbon adhesive discs (Agar Scientific, Stansted, UK). 

Prior to imaging 3 μL of hexamethyldisilazane (ThermoFisher, Kandel, Germany) were 

applied and samples were gold sputtered with a 10 nm thick layer (SCD 005 Cool 

Sputter Coater, Bal-Tec, Balzers, Lichtenstein). Images were taken with Philips XL 30 

CP SEM (Philips, Amsterdam, Netherlands). 

 

2.2.7 DNA quantification of decellularized allografts 
In order to assess the degree of decellularization, DNA content was quantified from 

CPAs, SPAs, TPAs and BPXs. Additionally, controls that had not been treated other 

than by storing at -80°C were analyzed as a reference. Grafts were placed in 2 mL 

Eppendorf tubes and 1 mL nuclease-free water (Ambion, Carlsbad, CA, USA) was 

added. Then, three freeze/thaw cycles at -80°C and sonication for 30 seconds at 20 
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kHz and with an amplitude of 12 microns using a sonication needle was performed. 

After centrifuging at 2000 x g for 5 min at room temperature, the supernatant was 

transferred, and the total DNA amount quantified with Quant-iT PicoGreen® dsDNA 

assay kit (Molecular probes, Eugene, OR, USA). According to the assay kit manual 

standard DNA solutions were prepared with concentrations ranging from 1 ng/mL to 

2000 ng/mL DNA. After placing 100 µL of buffer solution to each well on a 96-well plate 

(Greiner Bio-One, Kremsmünser, Austria) 28 µL of standard solutions and samples 

solutions were added to the corresponding wells. Then, 72 µL of PicoGreen® solution 

was added which is an ultrasensitive fluorescent nucleic acid stain for quantitating 

double stranded DNA (dsDNA) as it emits fluorescent light when attached to dsDNA 

and excited by 485 nm light. Using standard DNA solutions, a standard curve was 

created from which DNA amount of sample values were calculated. Sample solutions 

were diluted appropriately to fit inside the standard curve.  

DNA quantification for each bone graft material (CPAs, SPAs, TPAs and BPXs) was 

performed for two cylinders from 3 donors in technical triplicates. The DNA amount 

was quantified as mentioned above by fluorescence with a microplate reader (TECAN, 

Maennedorf, Switzerland) at an excitation wavelength of 485 nm and an emission 

wavelength of 535 nm. 

 

2.2.8 Energy-dispersive X-ray spectroscopy 
Energy-dispersive x-ray spectroscopy (EDX) analysis was performed using a Philips 

XL 30 CP SEM. Prior to analysis, samples were sputtered with carbon. The SEM was 

operated with 25 kV and examined areas on grafts were chosen so that 2100 counts 

per second (CPS) were registered and dead time was 30–35%. Measurements were 

performed for a period of 200 live seconds (Lsec). Three donors were used for each 

bone graft material. Each cylinder was measured twice at two different surface areas 

of the graft. 

 

2.3 Comparison of reseeding properties with MSCs  
 

2.3.1 Isolation and culture of MSCs 
MSCs were isolated from cancellous bone of the femoral heads obtained from patients 

undergoing total hip replacement surgery. Isolation was performed as previously 
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mentioned [114,115]. Femoral heads were received from patients undergoing total hip 

replacement surgery.  Upon receival, femoral heads had been pre-cut in the operating 

room into quarters and were placed in tissue buffer preheated to 37°C. Working with 

sterile surgical gloves, pieces of cancellous bone were collected from the bone with a 

Luer forceps (Aesculap, Tuttlingen, Germany). Cancellous bone fragments were 

collected in Falcon 50mL tubes and PBS was added. After thoroughly shaking the tube, 

PBS was transferred to a new tube and the process was repeated until approximately 

6-8 Falcon tubes with PBS washing solution were obtained. Tubes with PBS wash 

solution were then centrifuged at 400 x g for 10 min. After the supernatant was 

aspirated the cell pallet on the bottom of the tube was reconstituted with 5 mL buffy 

coat buffer, consisting of PBS, 0.5% (v/v) FBS and 2 mM Ethylendiaminetetraacetat 

(EDTA) (SERVA, Heidelberg, Germany). Resuspended cells were then collected and 

run through a 40 µm cell strainer (Falcon, Durham, USA) and counted using an 

automated cell counter (CASY TT, OLS, Bremen, Germany). Cells were seeded in 

T175 flasks coated with collagen type I (Corning, Bedford, MA, USA) at a density of 

2x106 cells/cm2 and incubated at 37°C in Dulbecco’s Medium Essential Medium 

(DMEM)/Ham’s F-12 medium (Biochrom, Berlin, Germany) supplemented with 20% 

(v/v) FBS and 1% (v/v) Pen/Strep for the first 14 days. The first medium change was 

performed 24 hours after seeding to remove cells that had not attached to the flask. 

Henceforth, the medium was changed three times a week. After splitting cells from 

passage 0 to passage 1, culturing was continued using 10% (v/v) FBS. In passage 2 

osteogenic differentiation of MSCs was induced by incubation in osteogenic 

differentiation medium (ODM) for a minimum of two weeks consisting of DMEM/Ham’s 

F-12, 10% (v/v) FBS, 1% (v/v) Pen/Strep, 10 mM β-glycerophosphate (Sigma-Aldrich, 

Darmstadt, Germany), 0.1 μM dexamethasone (Sigma-Aldrich, Darmstadt, Germany) 

and 50 μM ascorbic acid (Sigma-Aldrich, Darmstadt, Germany). Experiments with 

MSCs were conducted with cells in passage no. 4 and 5. 

 

2.3.2 Biocompatibility testing using extracts obtained from decellularized 
bone grafts 
In order to assess the biocompatibility of decellularized grafts, extracts of CPAs, SPAs, 

TPAs and BPXs were prepared according to ISO 10993. Then, the effect of extracts 

on MSC viability was assessed using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-
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carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium). Extracts were created by 

incubating decellularized bone grafts in 750 μL ODM at 37°C for either 24 hours or 72 

hours and stored at -20°C until use. MSCs were seeded at a density of 45,500 

cells/cm2 in a 96 well-plate (Sarstedt, Nümbrecht, Germany) that had been pre-coated 

with 33.6 μg/mL collagen type I solution diluted in PBS. After allowing cells to attach 

for 24 hours, ODM was aspirated, extracts were defrosted, centrifuged at 12,000 x g 

for 5 min, added to the cells and incubated for 48 hours. Metabolic activity of MSCs 

was assessed using CellTiter 96® AQueous One Solution Cell Proliferation Assay 

(Promega, Madison, WI, USA) according to manufacturer’s instructions. The MTS 

compound is a reagent that can be bioreduced by cells into a colored product and is 

presumed to be accomplished by dehydrogenase enzymes in metabolically active 

cells. Thus, the metabolic activity can be quantified colorimetrically. After incubating 

the cells with the extracts for 48 hours the extract solution was aspirated, and 100 µL 

of MTS reagent solution and 20 µL of ODM was added to the wells. After 2 hours of 

incubation the optical density was measured with a microplate reader (TECAN, 

Maennedorf, Switzerland) at 490 nm. Three MSC donors and three distinct bone 

donors for CPAs and SPAs were used to assess biocompatibility in technical 

triplicates. Data were depicted in relation to untreated controls. 

 

2.3.3 Seeding of MSCs onto constructs 
After coating grafts with 10 μg/mL fibronectin (Millipore, Temecula, CA, USA) 200,000 

MSCs were drop seeded in a volume of 100 μL ODM onto precoated CPAs, SPAs, 

TPAs and BPXs, placed in 48-well plate wells. After cells were left to attach to grafts 

for 1 hour at 37°C 650 μL of ODM was added and medium was exchanged three times 

a week. 

 

2.3.4 Evaluation of MSC-seeded constructs by CLSM and SEM 
microscopy 
After 7 days of cultivation, MSC-seeded constructs were fixed in 4% PFA solution 

followed by three wash cycles in PBS for 15 min and twice for 5 min. Samples were 

then treated with 0.5% (v/v) Triton X-100 diluted in PBS for 20 min. This was followed 

by washing in PBS. Intracellular F-actin was stained with 5 μg/mL 

tetramethylrhodamine (TRITC)-conjugated phalloidin (Sigma-Aldrich, Darmstadt, 
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Germany) in 1% (v/v) bovine serum albumin (BSA) (Millipore, Kankakee, USA) in PBS 

for 30 min. Hoechst 33258 (Sigma-Aldrich, Darmstadt, Germany) at a concentration of 

2 μg/mL in PBS for 15 min was used for nuclear counterstain. Samples were imaged 

by confocal laser scanning microscope (CLSM) (LSM 510 Meta, Zeiss, Oberkochen, 

Germany). After CLSM, MSC-seeded constructs were prepared for SEM as described 

above. 

 

2.3.5 DNA quantification of MSC-seeded constructs 
In order to evaluate cell attachment and cell proliferation of MSCs on SPAs, TPAs and 

BPXs, DNA quantification was performed on day 1, day 7 and day 14 after cell seeding. 

MSC-seeded constructs were transferred into new 48 well-plate wells and DNA was 

extracted by performing three freeze/thaw cycles at -80°C after the addition of 

nuclease-free water, followed by sonication at a frequency of 20 kHz and an amplitude 

of 12 microns for 30 seconds. At each time point DNA quantification was performed 

for two independent grafts and technical replicates for 3 donors. DNA quantification 

was performed as described above. 

 

2.3.6 ALP assay 

ALP activity was measured from supernatants of MSC-seeded constructs after day 

one, day seven and day fourteen using an alkaline phosphatase assay kit (Abcam, 

Cambridge, UK). Measurements were run in technical triplicates and ALP activity 

measurements were performed according to manufacturer’s instructions. Based on 

this kit, an ALP enzyme solution serves as a standard from which a standard curve is 

calculated. P-nitrophenyl phosphate (pNPP) is used as a substrate that can be 

dephosphorylated by ALP to p-Nitrophenol (pNP) and measured photocolorimetrically 

at OD 405 nm as a result of its change in color. ALP activity (in U/mL) was calculated 

as follows: # !
∆#	%	&

$ ∗ 𝐷, where B equals the amount of pNP in sample well calculated 

from the standard curve (µmol), ΔT equals the reaction time (in minutes), V equals the 

original sample volume added into the reaction well (mL) and D equals the dilution 

factor. Measurements were normalized to 1 μg DNA at the indicated time points. At 

each time point, ALP quantification was performed for two independent grafts and 

technical replicates for 3 donors. 
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2.3.7 Alizarin Red S quantification 
Alizarin Red S staining was performed to assess mineralization of MSCs on SPAs, 

TPAs and BPXs. After 7 and 14 days of cultivation, MSC-seeded constructs were fixed 

in 4% PFA for 1 hour in a 48-well plate, washed three times with PBS and consecutively 

incubated in 500 μL Alizarin Red S staining solution (40 mM, Merck, Darmstadt, 

Germany) for 60 min at room temperature on an orbital shaker. After washing MSC-

seeded constructs with distilled water in order to remove any excess, Alizarin Red S 

was extracted using a 10% (w/v) cetylpyridinium chloride (CPC) solution (Carl Roth, 

Karlsruhe, Germany) for 48 hours in a new 48-well plate. Finally, extracted Alizarin 

Red S was quantified by measuring the optical density at 560 nm and calculated in 

accordance with the standard curve. At each time point, Alizarin Red S quantification 

was performed for two independent grafts and technical replicates for 3 donors. 

 

2.4 Statistical analysis 
Statistical analysis was carried out using GraphPad Prism 7. Statistical significance 

was assessed using ANOVA, as indicated in the individual experiments. A p-value 

of p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001) was considered to 

be statistically significant. 

 

3. Results 
 

3.1 Comparison of two decellularization approaches 
 

3.1.1 Histological examination of decellularized allografts 
Histological examination of decellularized bone grafts with toluidine blue staining was 

performed in order to assess the decellularization efficacy of chemical and sonication-

based decellularization protocols (Figure 4). Untreated controls (Figure 4A) show 

trabecular structures in blue and marrow cavities extensively filled with bone marrow. 

Higher magnification of this sample (Figure 4B) shows deposited matrix peripherally to 

the trabecular structures (white arrow). Furthermore, cells showing the morphology of 

adipocytes can be detected in the marrow cavity (thin black arrow). CPAs only contain 

little to no marrow content (Figure 4C). However, some trabecular fragments in the 
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marrow cavities (thick black arrow) can be seen (Figure 4D). SPAs show completely 

empty marrow cavities and very distinct trabecular structures (Figure 4E). Higher 

magnification (Figure 4F) confirms marrow cavities void of any material.  

Figure 4. Histological assessment of chemically processed allografts, sonication-based 
processed allografts and controls. Toluidine blue stained sections show untreated control 
allografts (A, B), chemically processed allografts (C, D) and sonication-based processed 
allografts (E, F). Images document less cells and residues of bone marrow in sonication-based 
processed allografts compared to chemically processed allografts and control. White arrow (B) 
points to deposited matrix, thin black arrow (B) to peripherally located nuclei of adipocytes 
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and black thick arrows (D) point to trabecular fragments. Images A, C, E show stitched images 
using 42 individual images. Scale bar: A, C, E = 1 mm, B, D, F = 150 µm. 
 
3.1.2 SEM images of decellularized allografts 
In order to confirm histological examination and to further assess the surface 

topography of decellularized bone grafts, SEM images were taken (Figure 5). SEM 

images of untreated controls (Figure 5A) display a similar surface structure compared 

to CPAs (Figure 5C). Surface structure of SPAs (Figure 5E) differs visually from 

controls and CPAs. Additionally, SPAs (Figure 5F) display more trabecular structures 

devoid of bone marrow or soft tissue in the cavities compared to CPAs (Figure 5D). 

CPAs show a surface topography that resembles those of untreated control grafts 

(Figure 5B).  

Figure 5. Scanning electron microscope assessment of chemically processed allografts, 
sonication-based processed allografts and controls. Scanning electron microscope images 
show untreated control allografts (A, B), chemically processed allografts (C, D) and sonication-
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based processed allografts (E, F). Scanning electron microscope images depict more empty 
marrow cavities for sonication-based processed allografts in comparison to chemically 
processed allografts and control. Scale bar: A, C, E = 50 µm, B, D, F = 500 µm.  
 
3.1.3 DNA quantification of decellularized allografts 
In order to further verify and assess the efficacy of the decellularization protocols for 

CPAs and SPAs, DNA was quantified. Furthermore, as additional references and 

controls, DNA contents of commercially available and standardized grafts (TPAs and 

BPXs) were measured (Figure 6). DNA is depicted as absolute values (Figure 6A) and 

in relation to control allografts that had not been decellularized (Figure 6B). 

Decellularized CPAs revealed a mean value of 15,304 ng DNA. SPAs yielded a mean 

value of 40.3 ng, while controls showed an average of 58,279 ng. TPAs and BPXs 

yielded a total amount of 7.4 ng and 0.49 ng DNA, respectively. In relation to untreated 

controls, CPAs showed a non-significant DNA reduction to 85.98%, while SPAs 

showed a significant DNA reduction to 0.11%. Compared to controls, DNA levels of 

TPAs and BPXs showed a significant DNA reduction to 0.01% and 0%, respectively. 

These data suggest a much more effective decellularization for the SPA compared to 

CPA processed grafts. Decellularization efficacy for SPA was tentatively lower but still 

comparable to the two commercially available grafts used as additional references.  
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Figure 6. DNA quantification of chemically processed allografts, sonication-based processed 
allografts, and commercially available allografts (Tutoplast processed allografts) and 
xenografts (Bio-Oss processed xenografts). Highest amounts of residual DNA were detected in 
chemically processed allografts which differed significantly from SPAs, based on Tukey’s 
multiple comparison in conjunction with ANOVA. TPAs and BPXs show low amounts of DNA 
(A). Values of sonication-based processed allografts, TPAs and BPXs are significantly lower 
compared to control (B), as assessed by Tukey’s multiple comparison in conjunction with 
ANOVA (n = 3 donors, two independent grafts were measured per donor, * p < 0.05, **** p < 
0.0001).  
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3.1.4 EDX analysis 
Element analysis was performed by EDX spectroscopy to reveal the elemental 

composition of CPAs and SPAs and compare it to commercially available TPAs and 

BPXs. Figure 7A shows significant differences in atomic percentage (At%) between 

CPAs and SPAs for oxygen (O) (12.88%) and nitrogen (N) (-10.06%). Among all bone 

grafts, TPAs displayed the least amount of calcium (Ca) and phosphorous (P) and the 

highest amount of N, differing significantly from all other tested grafts. BPXs showed 

the highest values in Ca and P, including significant differences to CPAs and TPAs 

with regard to Ca and significant differences to TPAs with regard to P. Values for N in 

BPXs were low, showing significant differences to SPAs and TPAs. Since it has 

previously been shown that grafts with a Ca/P ratio of ∼ 1.43 can induce osteogenesis 

[106], Ca/P ratios were displayed (Figure 7B). In addition, Ca/N and O/Ca ratios were 

displayed as N and O are ubiquitous in many organic compounds. For the bone 

essential Ca/P ratios did not differ significantly between grafts. However, TPAs showed 

the lowest Ca/N ratio whereas the O/Ca ratio was highest, showing significant 

differences compared to all other grafts.  
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Figure 7. Energy-dispersive x-ray spectroscopy analysis of chemically processed allografts, 
sonication-based processed allografts, Tutoplast processed allografts and Bio-Oss processed 
xenografts. Analysis shows element composition in atomic percentage (At%) (A) and Ca/P, 
Ca/N and O/Ca ratios (B) in order to assess chemical composition. Tutoplast processed 
allografts show the highest amount of N, a low Ca/N ratio and high O/Ca ratio while Bio-Oss 
processed xenografts show the highest values for Ca and P. Statistics are based on Tukey’s 
multiple comparison in conjunction with ANOVA (n = 3 donors, two different surface areas 
were measured per donor,* p < 0.05,** p < 0.01,*** p < 0.001,**** p < 0.0001).  
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3.2 Comparison of reseeding properties with MSCs 
 

3.2.1 Biocompatibility testing using extracts obtained from decellularized 
bone grafts 
In order to assess potentially harmful substances leaking out of the processed bone 

grafts, extracts were created by adding ODM to CPAs, SPAs, TPAs and BPXs and 

biocompatibility was assessed by MTS assay using MSCs. Extracts were created by 

incubating allografts and xenografts in ODM for 24 hours and 72 hours and were then 

added to MSCs on 96 well-plates 24 hours after seeding. After 48 hours of exposure 

to extracts, MTS assay was performed. Images of seeded MSCs were taken 24h hours 

after treatment using EVOS microscope in translucent mode.  

 
3.2.1.1 Testing of grafts with in-between freezing  
SPAs and CPAs used for biocompatibility testing were processed and decellularized 

as described above. Initially, SPAs and CPAs were frozen in -80°C after 

decellularization for practical reasons. Results of MTS assay (Figure 8A) performed 

after 48 hours of exposure to the extracts (extraction time 24 hours) showed an 

average of 1.84% of cell viability for CPAs, while cell viability for SPAs was 15.93%. 

BPXs, which were commercially acquired and had not been frozen, showed an 

average amount of 47.61%. Corresponding microscope images (Figure 8B), taken 48 

hours after exposure to extracts of CPAs, SPAs and BPXs, depict low cell densities for 

all grafts, while cells treated with extracts from BPXs show the largest cell size and 

CPAs the smallest cell size. Additionally, cells treated with extracts from CPAs 

displayed a roundish, dysmorphic morphology.  

 

 

 



 26 

Figure 8. Biocompatibility testing with mesenchymal stem cells performed for extracts of 
chemically processed allografts and sonication-based processed allografts in-between frozen 
and Bio-Oss processed xenografts. Allografts and xenografts, which had been stored at -80°C 
in-between, were incubated in osteogenic differentiation medium for 24 hours to create 
extracts. Extracts were then added to mesenchymal stem cells on 96 well-plates after cell 
attached to wells for 24 hours. After 48 hours of exposure to extracts MTS assay was performed 
(A). Chemically processed and sonication-based processed allografts show poor levels of cell 
viability after treatment with extracts. Cell viability of chemically processed allografts differed 
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significantly from control. Corresponding images taken 48 hours after exposure to extracts 
show a similar pattern (B). Statistics are based on Tukey’s multiple comparison in conjunction 
with ANOVA (n = 2 donors, measurements were performed in technical triplicates, * p < 0.05). 
 
3.2.1.2 Testing of grafts with in-between freezing and centrifugation of extracts 
Since initial biocompatibility testing, described above, showed poor results for CPAs 

and SPAs, a proposal was made to see whether centrifuging extracts prior to usage 

would increase the cell viability. As such, extracts of CPAs, SPAs and also BPXs were 

centrifuged at 12,000 x g for 5 min prior to incubation with MSCs. However, as seen in 

Figure 8, cell viability for CPAs and SPAs still stayed below 2% for 24-hour extracts 

(Figure 9A) and 72-hour extracts (Figure 9B). Cell viability of BPXs stayed at 44.45%. 

Cells in corresponding images (Figure 9C) taken 48 hours after exposure to extracts 

appear to show a similar morphology and cell density as images in previous figure 

(Figure 8B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

Figure 9. Biocompatibility testing with mesenchymal stem cells performed for extracts of 
chemically processed allografts and sonication-based processed allografts in-between frozen 
and centrifuged and Bio-Oss processed xenografts centrifuged. Allografts and xenografts, 
which had been stored at -80°C in-between, were incubated in osteogenic differentiation 
medium for 24 hours (A) or 72 hours (B) to create extracts. After centrifugation at 12,000 x g 
for 5 min extracts were added to mesenchymal stem cells on 96 well-plates after cell attached 
to wells for 24 hours. After 48 hours of exposure to extracts, MTS assay was performed. 
Chemically processed allografts and sonication-based processed allografts show poor levels of 
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cell viability after treatment with extracts. Cell viability of chemically processed allografts 
differed significantly from control. Corresponding images taken 48 hours after exposure to 
extracts show a similar pattern (C). Statistics are based on Tukey’s multiple comparison in 
conjunction with ANOVA (n = 3 donors, measurements were performed in technical 
triplicates, * p < 0.05, **** p < 0.0001). 
 
3.2.1.3. Testing of grafts with in-between freezing and sterile filtering of extracts 
As the causing agent for the reduction in cell viability could not be removed using 

centrifugation, a proposal was made to sterile filter the extracts prior to the addition of 

MSCs. This was accomplished by using a 0.2 µm filter (Sarstedt, Nümbrecht, 

Germany) through which the extracts were passed prior to incubation with MSCs. 

Figure 10 displays microscopy images of cells 48 hours after treatment. MSCs treated 

with ODM as control showed a high cell density with an elongated cell morphology. 

Cells treated with extracts from CPAs showed a low cell density with a mostly roundish 

morphology. Cell morphology in images of cells treated with extracts obtained from 

SPAs was similar to CPAs, yet cell density appeared to be higher.  
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Figure 10. Biocompatibility testing with mesenchymal stem cells performed for extracts of 
chemically processed allografts and sonication-based processed allografts in-between frozen 
and sterile filtered. Allografts which had been stored at -80°C in-between, were incubated in 
osteogenic differentiation medium for 24 hours to create extracts. After sterile filtration with 
a 0.2 µm filter, extracts were added to mesenchymal stem cells on 96 well-plates after cell 
attached to wells for 24 hours. After 48 hours of exposure to extracts, microscopy images were 
recorded. Mesenchymal stem cells treated with osteogenic differentiation medium as control 
showed a high cell density with an elongated cell morphology. In contrast to the control, cells 
treated with extracts from chemically processed allografts and sonication-based processed 
allografts still showed a low cell density and a roundish, dysmorphic cell morphology.  
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3.2.1.4 Testing of grafts without in-between freezing and centrifugation of extracts 
Up to this point, neither centrifuging extracts at 12 000 x g for 5 min nor sterile filtering 

them before adding them to MSCs showed any significant improvement of MSC 

viability.  

Initially, CPAs and SPAs were stored at -80°C as decellularization according to the 

decellularization protocols for CPAs and SPAs as described above was completed. 

This was done so that experiments could be started for both grafts at the same time 

as the decellularization process endured different time lengths and to preserve the 

grafts in their decellularized status. As none of the above-mentioned methods resolved 

the issue of low biocompatibility of the extracts based on MSC cell viability, the 

proposal was made that the in-between freezing of the allografts for storage until usage 

could potentially liberate apoptosis inducing agents. Thus, CPAs and SPAs were not 

frozen at -80°C after decellularization for storage but were rather store at 4°C until 

usage and extract were additionally centrifuged at 12,000 x g for 5 min. Results of MTS 

assay using 24-hour extracts showed a cell viability for CPA extracts of 62.04%, for 

SPA extracts 51.17% and BPX extracts 36.94% (Figure 11A). TPA extracts were 

additionally added to biocompatibility testing and in contrast to all other grafts showed 

a non-significant increase (112.28%). Extracts gained by 72-hour extraction time 

showed similar results (Figure 11B). Accordingly, the highest values in cell viability 

were observed for TPAs. In conjunction with the increased cell viability in CPAs and 

SPAs microscopy images (Figure 11C) taken after treatment with extracts showed a 

change in morphology in comparison to previous trials from a roundish, dysmorphic to 

an elongated spindle-like cell morphology. However, compared to controls, cell density 

was still lower.  
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Figure 11. Biocompatibility testing with mesenchymal stem cells performed for extracts of 
chemically processed allografts and sonication-based processed allografts not in-between 
frozen and Tutoplast processed allografts and Bio-Oss processed xenografts. Allografts and 
xenografts, which had been stored at 4°C in-between, were incubated in osteogenic 
differentiation medium for 24 hours (A) or 72 hours (B) to create extracts. After centrifugation 
at 12,000 x g for 5 min extracts were added to mesenchymal stem cells on 96 well-plates after 
cell attached to wells for 24 hours. After 48 hours of exposure to extracts MTS assay was 
performed. Chemically processed allografts and sonication-based processed allografts now 
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show levels of cell viability similar to Bio-Oss processed xenografts (A and B). In comparison 
to all other grafts, Tutoplast processed allografts showed no reduction in cell viability. 
Corresponding images taken 48 hours after exposure to extracts now show an elongated, 
spindle-like morphology of mesenchymal stem cells treated with extracts from chemically 
processed allografts and sonication-based processed allografts (C). Statistics are based on 
Tukey’s multiple comparison in conjunction with ANOVA (n = 3 donors, measurements were 
performed in technical triplicates, * p < 0.05, ** p < 0.01). 
 
Comparing the treatment groups with 24-hour extracts (Figure 12) previously 

described, a significant increase in cell viability could be observed between extracts of 

CPAs and SPAs which had been created after grafts were stored at -80°C after 

decellularization vs. grafts that were stored at 4°C. Extract that had been created from 

grafts stored at -80°C and had additionally been centrifuged prior to addition to cells 

did not show any increase in cell viability. Extracts obtained from BPXs did not show 

any significant increase in cell viability when extracts were centrifuged.  

As extracts obtained from CPAs and SPAs by storing at 4°C showed a significant 

increase in cell viability in-between storage at -80°C was abandoned and for all 

experiments in conjunction with MSCs grafts were henceforth stored at 4°C until use.  

Figure 12. Biocompatibility testing performed with mesenchymal stem cells for 24-hour 
extracts of chemically processed allografts, sonication-based processed allografts and Bio-Oss 
processed xenografts using different protocols. Displayed are 3 different treatment groups of 
grafts. First, chemically processed allografts and sonication-based processed allografts were 
stored at -80°C after decellularization. Extracts were added directly to mesenchymal stem 
cells. Second, all extracts were centrifuged at 12,000 x g for 5 min prior to addition to 
mesenchymal stem cells. Third, chemically processed allografts and sonication-based 
processed allografts were not stored at -80°C but were kept at 4°C until use. These extracts 
were also centrifuged.  
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MTS assay was performed after cells were incubated with extracts for 48 hours. Statistics are 
based on Tukey’s multiple comparison in conjunction with ANOVA (n = 2 donors black bars, 
n = 3 donors grey bars, measurements were performed in technical triplicates, *** p < 0.001, 
**** p < 0.0001). 
 
3.2.2 Evaluation of MSC-seeded constructs by CLSM and SEM 
microscopy 
While previous results characterized SPAs and CPAs after the decellularization, the 

following results were obtained after these grafts were reseeded with MSCs. First, 

CLSM images of cell- seeded constructs were taken 7 days after seeding (Figure 13). 

F-Actin staining was used to visualize the cytoskeleton and cells were depicted in 

combination with nuclear counterstain. Images of cell-seeded CPAs (Figure 13A and 

13B) display some background fluorescence in the red channel due to the material 

properties interfering to some extent with a distinct fluorescence pattern for the 

cytoskeleton. Nevertheless, several nuclei are visible, confirming the presence of cells 

on CPAs. Images of cell-seeded SPAs (Figure 13C) show abundant numbers of MSCs 

revealing an elongated morphology with centrally located nuclei (Figure 13D). CLSM 

images of cell-seeded TPAs (Figure 13E) show a high cell density. Upon higher 

magnification (Figure 13F), cells seem to display a smaller morphology than cells on 

SPAs (Figure 13D). MSCs on BPXs (Figure 13G and 13H) show cellular protrusions 

with a morphology not as elongated compared to SPAs and TPAs. Additionally, the 

cell density appears to be lower than on MSC-seeded SPAs and TPAs.  
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Figure 13. Morphology assessment of seeded mesenchymal stem cells on chemically processed 
allografts, sonication-based processed allografts, Tutoplast processed allografts and Bio-Oss 
processed xenografts using confocal laser scanning microscopy. Images display mesenchymal 
7 days after seeding onto chemically processed allografts (A, B), sonication-based processed 
allografts (C, D), Tutoplast processed allografts (E, F) and Bio-Oss processed xenografts (G, H) 
stained with TRITC-conjugated phalloidin / Hoechst nuclear stain co-stain. Images of 
chemically processed allografts depict cells, but as well, high levels of background fluorescence. 
mesenchymal stem cells on Bio-Oss processed xenografts show a lower cell density than cells 
on sonication-based processed allografts and Tutoplast processed allografts. Scale bars: A, C, 
E, G = 100 µm, B, D, F, H = 50 µm.  
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SEM images of MSC-seeded constructs shown in Figure 14 reflect findings from CLSM 

images. Cell-seeded CPAs (Figure 14A and 14B) display elongated cells and nuclear 

protrusions (white arrows). MSC-seeded SPAs also show elongated cells with several 

nuclear protrusions (Figure 14C and 14D). Congruent to CLSM images, MSCs on 

TPAs (Figure 14E) display a smaller morphology with a high number of cellular 

processes (Figure 14F). Seeded BPXs (Figure 14G and 14H) show few cells with few 

elongated processes analogous to Figure 13H.  

Figure 14. Morphology assessment of seeded mesenchymal stem cells on chemically processed 
allografts, sonication-based processed allografts, Tutoplast processed allografts and Bio-Oss 
processed xenografts using scanning electron microscopy. Images show mesenchymal stem 
cells 7 days after seeding onto chemically processed allografts, (A, B), sonication-based 
processed allografts (C, D), Tutoplast processed allografts (E, F) and Bio-Oss processed 
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xenografts (G, H). Chemically processed allografts, sonication-based processed allografts and 
Tutoplast processed allografts show elongated spindle-like cells while mesenchymal stem cells 
on Bio-Oss processed xenografts appear to be fewer in number. White arrows point to nuclear 
protrusions. Scale bars: A, C, E, G = 100 µm, B, D, F, H = 50 µm.  
 
3.2.3 DNA quantification of MSC-seeded constructs  
Cell adhesion to grafts (day 1) as well as the rate of proliferation (day 7 and 14) of 

MSCs on SPAs, TPAs and BPXs was determined by DNA quantification (Figure 15). 

The DNA content of corresponding unseeded grafts was subtracted as background for 

each group. In consequence to the results from Figure 6 where CPAs did not reveal a 

sufficient level of decellularization, CPA data were excluded from quantitative 

evaluation of the MSC performance after reseeding.  

DNA quantification after reseeding showed a significant increase of MSC numbers 

grown on TPAs on day 14 (2077 ng) compared to day 1 (685.7 ng) and day 7 (864.5 

ng), thus indicating the proliferation of MSCs on TPAs in the investigated time frame. 

In addition, after 14 days, significant differences in DNA amounts were observed for 

TPAs and SPAs, suggesting a better performance of MSCs on TPAs after reseeding. 

Although the cell growth on BPXs also showed a tentative increase up to 14 days 

(796.5 ng), DNA quantification data did not reveal significant differences for the 

investigated time points. Similar amounts of DNA were observed on day 1 for TPAs, 

SPAs and BPXs suggesting that the initial adhesion is comparable.  

Figure 15. DNA quantification of mesenchymal stem cells 1, 7 and 14 days after seeding onto 
sonication-based processed allografts, Tutoplast processed allografts and Bio-Oss processed 
xenografts. Tutoplast processed allografts show a significant increase in DNA from day 1 and 
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day 7 to day 14, suggesting proliferation of mesenchymal stem cells. Furthermore, DNA levels 
differed significantly between sonication-based processed allografts and Tutoplast processed 
allografts on day 14 indicating better cell growth on Tutoplast processed allografts. DNA 
background values determined for empty grafts (compare Figure 5) were subtracted from 
values obtained after mesenchymal stem cell-seeding. Statistics are based on Tukey’s multiple 
comparison in conjunction with ANOVA (n = 3 mesenchymal stem cell donors and 3 graft 
donors, two independent mesenchymal stem cell-seeded constructs were quantified per donor, 
* p < 0.05, ** p < 0.01, *** p < 0.001).  
 

3.2.4 Osteogenic activity determined by ALP assay  
Furthermore, ALP activity as an early marker for osteogenic differentiation was 

measured in order to assess MSC functionality on the grafts (Figure 16A). For this 

purpose, medium retrieved from MSC-seeded constructs was collected on day 1, 7 

and day 14 and ALP levels were normalized to the corresponding DNA content 

(compare Figure 15) in order to cope with a potential impact of the cell numbers on the 

ALP activity. BPXs displayed a tentative, yet non-significant increase of normalized 

ALP activity from day 1 to day 7. ALP levels of SPAs showed no significant increase 

or decrease throughout the 14-day period while TPAs showed a significant decrease 

from day 1 to day 14 in the alkaline phosphatase activity as early osteogenic marker.  
 

3.2.5 Quantification of mineralization of cell seeded constructs by Alizarin 
Red S  
Mineralization of MSC-seeded grafts was assessed by Alizarin Red S (Figure 16B) and 

included the subtraction of background values derived from grafts before cell seeding 

(see Supplemental Figure 1). Additionally, Alizarin Red S levels were normalized to 

the corresponding DNA content (Figure 16B, upper graph) to cope with a potential 

impact of the cell numbers on the degree of mineralization (compare Fig 15). After 

normalization to the DNA content, BPXs displayed a tentative yet non-significant 

increase in mineralization from 26.6 mM/μg DNA on day 7 to 69.3 mM/μg DNA on day 

14. However, increased mineralization levels for both BPXs and TPAs were 

documented when alizarin quantification was not normalized to DNA content (Figure 

15B, lower graph).  
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Figure 16. Alkaline phosphatase quantification (A) of cell-seeded constructs 1, 7 and 14 days 
and Alizarin Red S quantification (B) 7 and 14 days after seeding mesenchymal stem cells onto 
sonication-based processed allografts, Tutoplast processed allografts and Bio-Oss processed 
xenografts. (A) Alkaline phosphatase quantification was performed from supernatant retrieved 
from seeded grafts on day 1, 7 and 14. Alkaline phosphatase levels were normalized to DNA 
amount (compare Figure 14). Bio-Oss processed xenografts show the highest tentative, yet 
non-significant increase in Alkaline phosphatase levels from day 1 to day 7. Tutoplast 
processed allografts show a significant decrease from day 1 to day 14. (B) Alizarin Red S values 
were also normalized to corresponding DNA levels (Figure 15B, upper graph). Normalized data 
indicate the most prominent yet non-significant increase in calcification for Bio-Oss processed 
xenografts. Alizarin Red S data not normalized to DNA however (Figure 15B, lower graph) 
indicate a significant increase in calcification for both Bio-Oss processed xenografts and 
Tutoplast processed allografts. Statistics are based on Tukey’s multiple comparison in 
conjunction with ANOVA (n = 3 mesenchymal stem cell donors and 3 graft donors, two 
independent mesenchymal stem cell-seeded constructs were quantified per donor, * p < 0.05, 
** p < 0.01).  
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4. Discussion 
 

4.1 Assessment of degree of decellularization 
The increased incidence of bone defects, especially in cases of comminuted fractures 

or non-unions demand suitable bone grafts and therefore rising amounts of suitable 

allografts are required. Currently, several decellularization methods for allografts have 

been proposed but it still remains unclear which method results in favorable 

physiochemical properties or might be preferred in stem cell applications. Hence, the 

aim of this study was firstly to compare two decellularization methods concerning their 

decellularization capacity for bone grafts, and secondly, to investigate their impact on 

MSC functionality together with two commercially available grafts. 

 

4.1.1 Comparing decellularization of chemically processed allografts to 
sonication-based processed allografts 
Based on histological examination, SEM examination and DNA quantification, a higher 

efficacy in decellularization could be shown for SPAs in comparison to CPAs. This was 

documented by significantly higher amounts of DNA after decellularization in CPAs 

compared to SPAs, although CPAs were treated with DNase in an additional step. 

Similarly, SEM images revealed marrow cavities filled with tissue, underscoring 

incomplete decellularization in CPAs. SPAs, on the other hand, showed empty marrow 

cavities, revealing a rough surface structure and distinct trabecular structures. The 

increased clearance of marrow cavities in SPAs over CPAs might be due to the 

disrupting effect of sonication on cell membranes [116]. Additionally, mechanical 

energy exerted by sonication possibly helped to clear any residues [117]. In this study 

we treated SPAs, as mentioned above, by sonicating grafts at 20 kHz with an amplitude 

of 12 microns. This is in accordance to previous reports showing this frequency to have 

a cell membrane disrupting effect and a significant reduction in cell viability [116,118]. 

It is important to note that the efficacy of decellularization for SPAs in our experiments 

was comparable to TPAs and BPXs as commercial standardized products. 
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4.1.2 Decellularization of Tutoplast® processed allografts and Bio-Oss® 
processed xenografts 
Commercially available TPAs are generated by a combination of chemical and physical 

treatment steps including sonication, acetone treatment, osmotic treatment, 

sterilization via hydrogen peroxide solutions, serial dehydration and gamma irradiation 

[109,119]. BPXs differ from all other grafts as they originate from a bovine source and 

are treated with heat (300°C), alkaline chemicals and sterilization using dry heart [119]. 

This process is supposed to remove any proteins or antigenic structures [120]. 

Nevertheless, assessment of protein content, or the presence of immune response 

mediating material was not in the scope of this present study. 

 

4.2 Biocompatibility issues 
Initial biocompatibility testing based on extraction medium from grafts showed 

unsatisfactory levels of cell viability at ∼	1% to ∼	16% in CPAs and SPAs (Figure 8). 

BPXs, as reference for a commercially available graft, showed levels at ∼	50% while 

untreated medium was used as negative control (100%). Though the decrease of cell 

viability might be due to a variety of different agents acting in a biological, chemical or 

physical manner, the proposal was made to centrifuge extracts at 12,000 x g for 5 min 

in an effort to increase cell viability. Differential centrifugation at ∼	10,000 x g is known 

to form a pellet with mitochondria and subcellular particles [121], as well as particles 

with a larger size, such as cells [122] or bone debris [123] which already separate at 

lower speeds. However, centrifuging the extracts before addition to MSCs did not show 

an increase in cell viability (compare Figure 9 and Figure 12). In an attempt to remove 

any cell viability reducing agent which could induce apoptosis, extracts were sterile 

filtered with a pore size of 0.2 µm. Seeing as how this approach did not increase cell 

viability either (see Figure 10), a change of protocol concerning the storage of the grafts 

after decellularization was performed. Initially, before CPAs and SPAs were used in 

experiments, they were stored at -80°C for practical reasons. It was proposed, that this 

re-freezing could have an effect on the integrity of the graft and lead to the liberation 

of harmful substances. Thus, in-between storage was kept to a minimum and 

performed at 4°C. This change in protocol significantly raised the cell viability of both 

CPAs and SPAs to ∼	50% to ∼	60% (see Figure 11 and Figure 12), being comparable 

to cell viability values of BPXs. Even though BPXs were never frozen, as they were 
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acquired commercially and stored at room temperature, extracts derived from BPXs 

did not show a significant increase in cell viability when extracts were treated as 

mentioned above.  

The only graft showing no reduction in cell viability compared to controls were TPAs 

(Figure 11). Results for TPAs are congruent with other published data showing 

favorable cell viability properties for TPAs [107,124].  

Even though changing the protocol from storage at -80°C to storage at 4°C significantly 

increased the cell viability in CPAs and SPAs to ∼	50% to ∼	60%, cell viability levels 

still differed significantly from controls. This reduction of cell viability in CPAs, SPAs 

and also BPXs might be due to a variety of different reasons and its underlying 

biological mechanisms.  

 

4.2.1 Biocompatibility of chemically processed allografts and sonication-
based processed allografts  
The reduction in MSC viability for CPA extracts might be caused by chemical 

substances such as Triton X-100 and SDS, used in the decellularization process 

leaking out even after thorough washing. On the other hand many potential mediators 

such as TNF-α [125], cytochrome c [126] and miRNA released by cells during the 

decellularization method, or in not completely decellularized materials, might lead to 

reduced cell viability in MSCs treated with the extracts. Although the procedure 

includes intensive washing, an impact of such molecules cannot be excluded but might 

be determined in future studies.  

 

4.2.2 Biocompatibility of Bio-Oss® processed xenografts 
BPX extracts also induced a reduction in MSC cell viability. As BPXs have been shown 

to be void of any cellular material (Figure 4), and as a result, the above-mentioned 

explanations are not applicable to this graft. Though our findings are in line with other 

published data showing a reduction in cell viability [127,128], to our knowledge, no 

explanation has yet been given. Considering that BPXs mainly consist of 

hydroxyapatite and have a very porous consistency, a tentative explanation could 

constitute the induction of apoptosis by nanoparticles [129]. Even though our results 

regarding BPXs are consistent with in vitro data, it should be noted that a discrepancy 

between results from experiments in vitro and in vivo cannot be excluded. While in 
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vitro testing often offers the ability to study cellular and molecular processes more 

closely, a direct translation to an in vivo setting might often be limited. In fact, BPXs 

have repeatedly been shown to integrate well in vivo by demonstrating large quantities 

of osteoid matrix depositions and being enveloped well by adjacent tissue [130,131]. 

 

4.3 Mesenchymal stem cell functionality 
The impact of graft processing on the graft’s ability to host MSCs was assessed by 

examining cell morphology and cell density of seeded MSCs.  

 

4.3.1 MSC morphology and proliferation rate on Tutoplast® processed 
allografts 
CLSM revealed an elongated and spindle-like morphology of MSCs with a high cell 

density on SPAs and TPAs. 

DNA quantification to monitor cell adhesion and proliferation on the different grafts in 

a quantitative manner indicated the best MSC growth and proliferation on TPAs. These 

data were further supported by the MTS data for the TPA extracts indicating a good 

biocompatibility and viability levels close to the controls, as well as by the 

morphological assessment as described above. Further DNA quantification 

demonstrated that the initial adhesion was similar for all tested constructs so that the 

good cell growth on TPAs might not be explained by differences in initial cell adhesion 

or technical issues associated with the seeding procedure. 

 

4.3.2 Nitrogen levels as an indicator for organic material in Tutoplast® 
processed allografts and sonication-based processed allografts 
In this context, EDX analysis of bone grafts indicated in TPAs the highest value for 

nitrogen and conversely the lowest Ca/N ratios, followed by SPAs. Human bone is 

composed of a mineral phase (hydroxyapatite), an organic phase (mainly collagen type 

I) and water [96]. A high At% of nitrogen, ubiquitous in organic compounds, might 

correlate with a high amount of collagen [132] in TPAs and SPAs. MSCs, at the same 

time, readily adhere to collagen type I [133]. This in turn could explain superior 

properties for MSC functionality in regard to TPAs but not for SPAs. 
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4.3.3 Mesenchymal stem cell functionality of Bio-Oss® processed 
xenografts  
BPXs displayed the highest At% of calcium and phosphorous. Yet, Ca/P ratios were 

similar for all grafts and did not differ significantly. Shih et al. showed that calcium 

phosphate rich bone grafts can induce osteogenesis via a phosphate-adenosine 

signaling pathway [106]. It is interesting to note that while BPXs showed the highest 

At% of calcium and phosphorous, they also demonstrated the highest tentative, yet 

non-significant increase in ALP activity. Additionally, quantification of mineralization by 

Alizarin Red S showed tentative (DNA normalized) respectively significant (not 

normalized) increase potentially associated with osteoinductive properties of calcium 

rich BPXs. Accordingly, BPXs showed high background values in Alizarin Red S 

assays. While this further substantiates the results from EDX spectroscopy, depicting 

BPXs as the grafts with the highest amount of Ca (Figure 5A), it also limits to some 

extent the interpretability of results on mineralization due to these high background 

levels despite subtraction. 

 

4.4 Osteogenic activity 
Biomineralization and hydroxyapatite deposition is well known to depend on ALP 

activity as it provides phosphates during these processes [93,95]. Furthermore, ALP 

is amongst the early markers of osteoblast differentiation which is highly prominent in 

the starting phase of the mineralization process [134,135] but undergoes a 

downregulation when mineralization progresses. Accordingly, the significant decrease 

of ALP activity in TPAs, along with the increase in mineralization (non-normalized 

data), reflects such a typical marker profile widely described for osteogenic 

differentiation of MSCs and further underlines the impact of TPAs on MSC functionality. 

 

5. Summary 
The outcome of this study shows a higher efficacy in decellularization for sonication-

based processed allografts (SPAs) over chemically processed allografts (CPAs) based 

on DNA quantification, histological and scanning electron microscopy (SEM) 

evaluation. Moreover, the decellularization efficacy of SPAs was comparable to two 

commercial grafts, Tutoplast® processed allografts (TPAs) and Bio-Oss® processed 
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xenografts (BPXs), used as additional reference, also in terms of commercially 

standardized products. Biocompatibility assessment based on extracts derived from 

decellularized grafts showed a decrease in mesenchymal stem cell (MSC) viability for 

SPAs and CPAs, as well as for the commercially available BPXs. In contrast, 

biocompatibility was not impaired for TPAs, which also showed a better performance 

after reseeding with MSCs as indicated by confocal laser scanning microscopy (CSLM) 

and DNA assessment in order to monitor cellular proliferation. Here, a significant 

increase in DNA throughout a two-week time frame could be shown. BPXs induced a 

tentative increase in alkaline phosphatase (ALP) activity and mineralization in MSCs 

potentially associated with the high calcium content. Even though SPAs extracts 

showed a noticeable reduction of in vitro biocompatibility, results after reseeding with 

MSCs were comparable to commercially available grafts used in this study. 

Nevertheless, in this present study, TPAs combined the best in vitro biocompatibility 

and performance in terms of proliferation and osteogenic differentiation after reseeding 

with MSCs. 
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6. Supplemental Material 
 

Supplemental figure 1. Alizarin Red S quantification of un-seeded sonication-based processed 
allografts, Tutoplast processed allografts and Bio-Oss processed xenografts as background. 
Background values of Alizarin Red S quantification were obtained by staining un-seeded grafts 
with Alizarin Red S solution and consecutively extracting and photocolorimetrically measuring 
the Alizarin Red S that attached to the un-seeded grafts. Bio-Oss processed xenografts show 
the highest values, differing significantly to all other grafts. Tutoplast processed allografts on 
the other hand, display the lowest values. Statistics are based on Tukey’s multiple comparison 
in conjunction with ANOVA (n = 3, ** p < 0.01). 
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9. List of Materials 
9.1. Instruments 

Instrument Model Manufacturer 
Bandsaw  Metabo BAS Metabo, Nur̈tingen, 

Germany 

Beakers DURAN SCHOTT, Mitterteich, 

Germany 

Bone holding forceps Patellar forceps 

185 mm 

Aesculap, Tuttlingen, 

Germany 

Caliper Pocket Vernier 

Calliper 

STEINLE, Ingelfingen, 

Germany 

CASY CASY TT OLS, Bremen, 

Germany 

Centrifuge Biofuge primo R Heraeus, Hanau, 

Germany 

Multifuge 3 S-R Heraeus, Hanau, 

Germany 

Confocal laser scanning 

microscopy 

LSM 510 Meta Zeiss, Oberkochen, 

Germany 

Cryo 1°C Freezing Container NALGENE® Mr. 

Frosty 

Thermo Scientific, 

USA 

Cryotank Locator 4 plus Thermo Scientific, 

Marietta OH, USA 

Dremel drilling machine Dremel 3000 Dremel, Mt. Prospect, 

USA 

Epi-fluorescent microscope EVOS FL Auto 

2 

Life Technologies, 

Grand Island, USA 

Fluorescent Microplate reader Spectra 

FLUORA plus 

TECAN, Maennedorf, 

Switzerland 

Fridge (4°C) Profi line LIEBEHERR, Austria 

Freezer (-20°C) Premium 

Nofrost  

LIEBEHERR, Austria 
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Comfort 

Freezer (-80°C) HERA freeze Heraeus, Hanau, 

Germany 

Fumehood Köttermann Köttermann, Uetze, 

Germany 

Graphpad Prism 7 Graphpad 

software 

GraphPad Software, 

Inc., La Jolla, CA, USA 

Grinding machine DP-U4 Struers, Erkrath, 

Germany 

High precision bandsaw Exakt 312 Exakt, Norderstedt, 

Germany 

High precision grinding machine Exakt 400 CS Exakt, Norderstedt, 

Germany 

Incubator BBD6220 & 

HERA cell 240 

Thermo Scientific, 

Langenselbold, 

Germany 

Laminar flow bench HERA safe Heraeus, Hanau, 

Germany 

Light microscope Axiovert 25 Zeiss, Oberkochen, 

Germany 

Luer forceps Luer Aesculap, Tuttlingen, 

Germany 

Microcentrifuge 3722L Fisher Scientific 

220VAC ROTH 

Orbital shaker Swip Edmund Bühler, 

Germany 

Pipette aid Pipetus HIRSCHMANN 

LABORGERÄTE 

Roller mixer SRT9 Stuart, Staffordshire, 

UK 

Scanning electron microscope 

(SEM) 

Philips XL 30 

CP SEM 

Philips, Amsterdam, 

Netherlands 
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Sonicator MSE MSE, London, UK 

Sputter coater SCD 005 Cool 

Sputter Coater 

Bal-Tec, Balzers, 

Lichtenstein 

Surgical kit Surgical kit Aesculap, Tuttlingen, 

Germany 

Thermoblock Thermomixer 

comfort 

Eppendorf, Hamburg, 

Germany 

Tissue Processor Tissue 

Processor TPC 

15 

Medite, Burgdorf, 

Germany 

Vaccum pump AC500 HLC, Bovenden, 

Germany 

Vaccum aid Vacu boy Integra Biosciences, 

Fernwald, Germany 

Vortex VORTEX-

GENIE 2 

Scientific Industries, 

Bohemia, NY, USA 

Waterbath 1004 GFL, Burgwedel, 

Germany 

Weighing machine BP211D Sartorius 

 

9.2 Consumables 
Consumables Manufacturer 
24-well-plates lid, sterile TPP, Trasadingen, Switzerland 

48-well-plates lid, sterile Falcon, corning NY, USA 

96-well-plates lid, sterile Sarstedt, Nümbrecht, Germany 

96-well-plates, F, Trans Greiner bio-one, Frickenhausen, 

Germany 

Aluminum foil Universal, Düsseldorf, Germany 

Carbon adhesive discs Agar Scientific, Stansted, UK 

Cell scrapers Sarstedt, Nümbrecht, Germany 

Cell Strainers 40 µm Nylon Falcon, Durham, USA 

Centrifuge Tubes (15mL, 50mL) Sarstedt, Nümbrecht, Germany 
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Filter 0.2 µm non-pyrogenic Sarstedt, Nümbrecht, Germany 

Microtubes (500µL, 1.5mL, 2mL) Sarstedt, Nümbrecht, Germany 

Needles 20G×1 ½”, Sterican® B.BRAUN, Melsungen, Germany 

Pasteur pipettes Assistant, Germany 

pH-indicator paper pH1-14 Merck, Darmstadt, Germany 

Pipette tips (10, 200, 1000µL) Sarstedt, Nümbrecht, Germany 

Serological Pipettes 

(5mL, 12mL and 25mL) 

Sarstedt, Nümbrecht, Germany 

Specimen-tables Agar Scientific, Stansted, UK 

Sterile surgical gloves  CardinalHealth, Dublin, OH, USA 

Syringe (5mL, 10mL, 20mL) BD, Madrid, Spain 

Tissue culture flasks vent. Cap 

(T25, T75, T175) 

Sarstedt, Nümbrecht, Germany 

 

9.3 Supplies 
Name Manufacturer 
Alizarin Red S Stain Solution Millipore, Billerica, USA 

Accutase® Biowest, Nuaillé, France 

Ascorbic acid Sigma-Aldrich, Darmstadt, Germany 

2,2′-Azobis(2-methylpropionitrile) Merck, Darmstadt, Germany 

β-Glycerophosphate Sigma-Aldrich, St. Louis, MO, USA 

Bio-Oss® Geistlich, Wolhusen, Switzerland 

Biocidal WAK Chemie Medical, Steinbach, 

Germany 

Bovine serum albumin (BSA) Millipore, Kankakee, USA 

Calcein AM fluorescent dye BD Biosciences, Bedford, USA 

Cell Tracker Invitrogen, Eugene, USA 

Collagen type I (rat tail) Corning, Bedford, MA, USA 

Cetylpyridinium chloride (CPC) Roth, Karlsruhe, Germany 

Cyproby FRESENIUS KABI, Bad Homburg, 

Germany 
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Dulbecco’s Medium Essential Medium 

(DMEM)/Ham F-12 1:1 

Biochrom, Berlin, Germany 

Dexamethasone Sigma-Aldrich, St. Louis, MO, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, St. Louis, MO, USA 

Ethylendiaminetetraacetat (EDTA) SERVA, Heidelberg, Germany 

Ethanol Merck, Darmstadt, Germany 

Fetal bovine serum (FBS) Sigma, Taufkirchen, Germany 

Fibronectin Millipore, Temecula, CA, USA 

Formic acid  Merck, Darmstadt, Germany 

Fungizone Biozol, Eching, Germany 

Glutaraldehyde Sigma-Aldrich, Darmstadt, Germany 

Hexamethyldisilazane ThermoFisher, Kandel, Germany 

Hoechst Sigma-Aldrich, Darmstadt, Germany 

Isopropanol Merck, Darmstadt, Germany 

Medium 199 GlutaMAXTM Gibco, Darmstadt, Germany 

Methanol Carl Roth, Karlsruhe, Germany 

Methyl methacrylate (MMA) Fluka, Neu-Ulm, Germany 

Nonylphenol-polyethylene glycol 

acetate 

Walter-CMP, Kiel, Germany 

Nuclease-free water Ambion, Carlsbad, CA, USA 

Paraformaldehyde solution in PBS 

4% 

Morphisto, Frankfurt am Main, 

Germany 

Phalloidin-TRITC Sigma-Aldrich, St. Louis, MO, USA 

Penicillin/ streptomycin (Pen/Strep) Biochrom, Berlin, Germany 

Phosphate buffered saline (PBS) 

10× 

Gibco, Darmstadt, Germany 

Phthalic acid butyl ester Merck, Darmstadt, Germany 

SDS Sigma-Aldrich, St. Louis, MO, USA 

Toluidine blue staining solution Merck, Darmstadt, Germany 

Triton® X-100 Sigma-Aldrich, Taufkirchen, Germany 

Tutoplast® RTI Surgical, Alachua, FL, USA 
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Water Ampuwa® FRESENIUS KABI, Bad Homburg, 

Germany 

 

9.4 Buffers and media 
Buffer Composition 
Buffy-coat buffer 2mM EDTA, 0.5% (v/v) FBS in PBS 

Tissue buffer 15% (v/v) FBS, 1% Pen/Strep, 1% 

Fungizone and 1% Cyproby in Medium 

199 GlutaMAXTM 

MSC growth medium 10% FBS 10% (v/v) FBS, 1% Pen/Strep in 

DMEM/Ham’s F-12 1:1 

MSC growth medium 20% FBS 20% (v/v) FBS, 1% Pen/Strep in 

DMEM/Ham’s F-12 1:1 

Osteogenic differentiation medium 

(ODM) 
10% (v/v) FBS, 1% (v/v) Pen/Strep, 10 

mM β-glycerol phosphate, 0,1 μM 

dexamethasone and 50 μM ascorbic 

acid in DMEM/Ham’s F-12 1:1 

 

9.5 Kits 
Kits Manufacturer 
Alkaline phosphatase assay kit Abcam, Cambridge, UK 

CellTiter 96® AQueous One 

Solution Cell Proliferation Assay 

Promega, Madison, USA 

Quant-iT PicoGreen dsDNA assay 

kit 

Molecular probes, Oregon, USA 
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