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ABSTRACT 

In vivo cellular behavior is highly relevant to understand for various diseases and future tissue 

engineering but challenging to study using traditional in vitro cell growth methods: Many cellular 

mechanism functions differently when cells are grown in three-dimensional (3D) conditions similar to 

in vivo conditions as in traditional 2D culture techniques. As it is known for some time that 2D cell 

cultures and their mechanical properties influence the cellular behavior, this is also true for the 3D 

environment. Especially for the stability of the nucleus, the subcellular compartment responsible for 

storing the main part of our DNA, the 3D environment, and the mechanical and structural properties 

of it are highly valuable. Considering an implant inside the body’s soft tissue, the mechanical and 

structural properties will mediate the cell-matrix interaction. Recent advances in biomaterial 

research have enabled both cell growth in 3D and increased control of the cell-matrix interaction on 

an artificial substrate, e.g., as with structured PDMS channels. Despite these advances, there remain 

challenges in this field. An essential challenge until now is the creation of 3D structured samples that 

display the properties of the extracellular matrix in a controllable manner. These properties are 

hydration for the diffusive exchange of nutrition, controllable variability of the mechanical 

properties, and highly controllable biofunctionalization in 3D.  

In this thesis, novel means of growing cells in 3D environments with defined mechanical properties, 

creating new bio-crosslinker and investigating substance release from hydrated matrices showing the 

power of biomaterial-cell interactions for life sciences and biomedical research are presented 

In the first part of this work, the 3D cell-matrix interactions are discussed using fibrosarcoma cells 

grown in 3D-microstructured hydrogel matrices with a range of controlled mechanical properties. 

With the tuning of the matrix stiffness, cell behavior was affected, creating a preference for specific 

positions within the structured environment. Interestingly, the mechanical properties of the matrix 

were also found to impact the nucleus, affecting the stability of the nuclear envelope, and the 

intracellular position of the nucleus during cell migration.  

The second part of this thesis focuses on two different approaches for cell-matrix interactions in two 

dimensions (2D). In the first approach, the focus is on the compliance of miniaturized biosensors to 

primary endothelial cells. In the second approach, a chemically engineered bio-crosslinker is 

presented for enhanced biofunctionalization and cell adhesion. For studying the new bio-crosslinker 

(BCL) effectiveness, cells were grown on pHEMA, a protein-inert hydrogel. Once inserted inside the 



 

vii 
 

pHEMA precursor mixture, the pHEMA hydrogels included free reactive groups and can be 

biofunctionalized with fibronectin instantly to support cell adhesion.  

In the final part of this thesis, I present a study of hydrogel matrices, which release different drugs. I 

demonstrate the influence of the drug solution on hydrogel swelling and its release for an anti-

seizure drug. The possibility of matrix degradation within the incubation time is also investigated. 

Initial studies have shown that the substances were released over several days, attesting to the high 

suitability for indirect drug administration. In the second approach, an anti-inflammatory drug 

release from swollen hydrogel matrices is investigated. The aim here was to create an anti-

inflammatory soft substratum for future tissue cuts. 

The results of the investigations presented in this work have also highlighted three essential features 

of biomaterials: matrix structural size, matrix topography or architecture, and dimensionality. Each 

element played a key role in the studies presented in this work, clearly demonstrating the 

importance of each when designing, and working with biomaterials.  
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ZUSAMMENFASSUNG 

Das Wissen und Verständnis über das Zellverhalten für in vivo Konditionen ist ein wichtiges 

Unterfangen für die Erforschung verschiedenster Krankheiten und die zukünftige Entwicklung 

künstlicher Gewebe. Dies erfordert Veränderungen in der in vitro Zellkultur, da klassische Methoden 

nicht ausschließlich allen Anforderungen gerecht und in vivo Konditionen nicht vollständig abgebildet 

werden können:  Einige Mechanismen innerhalb einer Zelle reagieren unterschiedlich, wenn die 

Kultivierung in drei-dimensionalen Bedingungen, ähnlich zu in vivo Konditionen, statt in zwei-

dimensionalen Bedingungen stattfindet. Die klassischen 2D Zellkulturen können schwerlich die 

Bedingungen bieten, wie sie Zellen natürlicherweise in den weichen und beengten Verhältnissen im 

Gewebe vorfinden.  

Ein weiterer wichtiger Punkt in der Zellkultur, den es zu beachten gilt, ist der Einfluss der 

mechanischen und topographischen Eigenschaften, die von den genutzten Substraten auf die Zellen 

einwirken. Diese verändern nachweislich das Verhalten der Zellen während 2D in vitro Anwendungen 

als auch in ersten 3D Anwendungen. Insbesondere die Stabilität des Zellkerns, Träger der DNA, kann 

von den Eigenschaften der Proben in 3D beeinflusst werden. Dies ist insbesondere wichtig für 

Implantate in weichen Geweben, wie zum Beispiel dem Gehirn. Fortschritte in der Biomaterial-

Forschung konnten die Zellkultivierung in 3D und damit eine gesteigerte Kontrolle der Zell-Matrix 

Interaktion ermöglichen. Hierzu werden z.B. 3D Kanäle aus PDMS für die 3D Zell-Matrix Interaktion 

genutzt.  Trotz der großen Fortschritte liegt eine weitere Herausforderung bis heute in der 

Herstellung von 3D Proben, die der extrazellulären Matrix (EZM) gleich oder zumindest nahe-kommt. 

Folgende wichtige Eigenschaften der EZM sollten beachtet werden:  Der hoher Wasser Anteil des 

Gewebes, der es den Zellen ermöglicht Diffusion an Nährstoffe zu gelangen; Die mechanische 

Adaption der Substrate an das jeweilige Gewebe; Die Möglichkeit der kontrollierten 

Biofunktionalisierung für die Adhäsion von Zellen. 

In der vorliegenden Arbeit werden neue Ansätze für das Wachstum von Zellen in mechanisch 

adaptierten und 3D strukturierten Proben vorgestellt, sowie ein neues Molekül für die verbesserte 

Biofunktionalisierung von 3D Proben. Zusätzlich wird die Freisetzung von Substanzen aus mechanisch 

adaptierten Hydrogelen für den zukünftigen in vivo Einsatz präsentiert. Diese Themen zeigen den 

Einfluss der Biomaterial-Forschung auf die Life Sciences und biomedizinische Forschung. 

Im ersten Teil der Arbeit werden die Untersuchungen der 3D Zell-Matrix Interaktionen vorgestellt. 

Fibrosarcoma Zellen wurden dazu in 3D strukturierten Proben untersucht, die eine Spannweite an 
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unterschiedlichen mechanischen Eigenschaften besaßen. Mit den veränderten mechanischen 

Eigenschaften wurde die Stabilität des Zellkerns beeinflusst und verändert. Interessanterweise 

zeigten sich auch Veränderungen im Zellverhalten, die den bevorzugten Ort innerhalb der Proben 

und auch die Lokalisierung des Zellkernes innerhalb der Zelle beeinflussten. 

Im zweiten Teil meiner Arbeit fokussiere ich mich auf die Zell-Matrix Interaktion auf 2D Proben. 

Hierzu zeige ich zwei unterschiedliche Ansätze. In einem Ansatz untersuchte ich die Vereinbarung 

von Biosensoren und deren Biokompatibilität auf empfindliche Endothelzellen. Im zweiten Teil wird 

ein neu designtes Molekül, ein Bio-Crosslinker (BCL), präsentiert, das die Biofunktionalisierung von 

3D strukturierten Proben verbessern wird. Für die Untersuchung der Effektivität wurde ein inertes 

Hydrogel genutzt, pHEMA, und der Einfluss des BCL auf die Zelladhäsion beobachtet. Es konnte 

festgestellt werden, dass der BCL erfolgreich eingebaut und mit Fibronektin funktionalisiert werden 

konnte.  

Im finalen Part meiner Arbeit präsentiere ich Untersuchungen der Medikamenten-Freisetzung aus 

geschwollenen Hydrogelen. Im ersten Ansatz wurde ein Medikament gegen epileptische Anfälle in 

ein degradierbares Hydrogel infiltriert und eine langsame Freisetzung beobachtet. Die 

Infiltrationsmenge des Medikamentes als auch die Abgabe wurde durch die Konzentration der 

Lösungen beeinflusst. Im zweiten Teil wurde die Freisetzung einer anti-entzündlichen Substanz aus 

einem Hydrogel untersucht. Das Ziel war der Erhalt einer weichen anti-entzündlichen Unterlage für 

die Kultivierung von Gewebeschnitten. 

Alle Ergebnisse, die in dieser Arbeit präsentiert werden, weisen auf drei höchst wichtige 

Eigenschaften von Biomaterialien hin: Die Größe der Strukturen in den Matrixen, den Einfluss der 

Topografie oder der Architektur und vor allem die Dimensionalität. Jede Eigenschaft spielt eine 

wichtige Rolle in dieser Arbeit und demonstriert ihren Einfluss, wenn es darum geht Biomaterialien 

zu konzeptionieren. 
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1 INTRODUCTION AND THEORETICAL BACKGROUND 

The presented work is segmented in several sections. Firstly, the overall topics and theoretical 

background are introduced within this particular section. These topics provide an overview of the 

following presentation of the investigations. The investigations are collected in chapters 2, “3D cell-

matrix interaction”, chapter 3, “2D cell matrix interaction”, and chapter 4,”Swollen Hydrogel matrices 

as drug-release reservoirs“ according to their content. Specific methods are mentioned in the 

scientific chapters. Supporting information to general procedures are placed in the appendix. 

1.1 INTRODUCTION TO THE PRINCIPLES OF CELL-MATRIX INTERACTIONS 

Cell adhesion and migration can be regulated by their interaction with the matrix materials. These 

can be distinguished in various topics such as the type of material itself, its stiffness, and in particular, 

in their dimensionality. In this chapter, I will discus how cells interact with different known matrices: 

the extracellular matrix (ECM) and synthetic 2D as well as 3D matrices. Furthermore, I will describe 

the potentials of engineering the cell-matrix interaction by using topographical and mechanical 

discrepancies. When not declared otherwise, all explanations and descriptions are for anchor-

dependent cells, cells that need to adhere to the matrix to proliferate and migrate.  

1.1.1 The cell and its compartments 

During cell adhesion and migration, the whole cell body with its compartments is involved. Here, a 

short introduction of the essential cell components is given.  

The nucleus of a cell contains the main part of the DNA. Its core element consists of a nucleolus and 

chromatin. The chromatin part is a complex from nucleosomes and can vary in size and hierarchical 

structure in dependence from the animal. [1], [2] Two kinds of structures are present in the 

chromatin and should be defined: the euchromatin and the heterochromatin. While euchromatin is 

in a more open and accessible form and is actively transcribed, the latter is more compact and less 

transcribed. Both have because of the packaging different stiffness and define with the ratio present 

between euchromatin and heterochromatin the stiffness of the chromatin. [3] It has been found that 

the ratios vary by mechanotransduction following conversion from one structure to the other. With 

this, the stiffness of the chromatin is changed actively, and it determines the endurance of the 

nucleus towards deformation. [3]–[12] These inner structures, as mentioned above, are surrounded 

by the nuclear lamina, which is constituted from different types of lamins such as lamin A, lamin B, or 

lamin C. It is found to be responsible for providing an outer structural component towards the 

chromatin part. It gives in dependence on the displayed lamins a resistance against deformation. [9] 
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Mutated, Lamin A or C, are part of several diseases, e.g., cardiomyopathies. [9]–[11] The lamina is 

connected to the chromatin via SUN domains and to the inner membrane of the nuclear envelope, 

one of the two lipid bilayer that protects the nucleus. [1] 

Further, at the other direction of the SUN domains, the SUN domains bind towards domains of 

nesprin proteins. These nesprin proteins are located through the outer membrane of the nuclear 

envelope. Both protein domains, the SUN and the nesprins form the LINK complexes. The stability of 

the nuclear envelope is directed through lamin A and C as they are the connection in the lamina 

towards the LINK complexes (linker of nucleoskeleton and cytoskeleton). The LINK complexes are 

directly connected to the perinuclear actin caps. Via the perinuclear actin caps, the LINK complexes 

are connected to the cytoskeleton, and thus all forces and strains are subjected to the nucleus. The 

cytoskeleton mediates the force sensing and signaling to and from the nucleus and controls the 

nucleus position within the cell body. [1], [3], [11], [13]–[15] In addition, the cytoskeleton is a 

structural component of the cell and is responsible for cell shape as well as cell migration and 

division. The cytoskeleton consists of different kinds of filaments. These filaments are 

microfilaments, intermediate filaments, and microtubules. The intermediate filaments form the stiff 

structural components of the cell. The microtubule is responsible for the internal cell trafficking of 

cell compartments in the cytoplasm, movement, and division of the cell. For cell movement, the 

positioning of the microtubules connected to the centromere in respect to the nucleus is essential. 

[16]–[18] 

The microfilaments contain actin- and perinuclear actin filaments. These filaments mediate the stress 

and deformation from the surrounding matrix towards the cell. At the same time, cells exert stress 

towards the matrix using these actin filaments to gain information about the mechanical properties 

of the matrix. [15], [19] Both the microtubules and the actin fibers are needed for the positioning of 

the nucleus during migration, which facilitates the overall motility. Also, the positioning of the 

nucleus is highly important for the cells to function as it contains the main part of the DNA. 

Positioning the nucleus in an adverse place during migration in, e.g., a confined 3D environment 

could lead towards unnecessary damages of the nucleus and further towards the DNA. [3], [14], [15], 

[20]–[22] The cell membrane is the outer cell layer where cell adhesion complexes are located. These 

adhesion complexes are composed of the integrins and adhesion clusters. The adhesion clusters are 

inside the cytoplasm, and their composition and size depend on the matrix stiffness. They also 

depend on the matrix dimensionality and bind the actin filaments to the integrins and the cell 

membrane. [23]–[26] Because of the mentioned interconnections inside the cell, the cell-matrix 

interaction is not just organized by the adhesion complexes from the cell but from the whole diverse 

compartment of the cell, which interacts as a whole. [27]–[29]  
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1.1.2 The cell within the extracellular matrix 

In their natural environment, cells are attached to the extracellular matrix (ECM). The ECM forms a 

fibrous network in between the cells and mediates cellular processes such as migration and 

differentiation. Basic components are adhesive glycoproteins and glycosaminoglycans such 

hyaluronic acid, which is responsible for taking high compression loads as well as the healing in 

tissues. [30], [31] The adhesive glycoproteins can bind to cell membranes as well as to 

glycosaminoglycans and collagen fibers. Depending on the tissue, these adhesive glycoproteins are 

specified for the cell types. [32]–[34] The structure of the ECM is preserved by collagen and elastin 

fibers. Collagen is secreted from the cells that can appear in various assemblies like collagen type I 

with its fibrillar structure. Elastin grants the contractile behavior to the expanding tissue, e.g., 

muscles and blood vessels.  The actual adhesion of cells to the surrounding ECM is mediated by 

fibronectin and laminin, which binds the collagen fibers directly to the cells membrane via focal 

adhesion complexes (FAC). These FACs can contain proteins such as FAK, p130CAS, vinculin, talin, or 

zyxin, as well as integrins. [25], [30], [33] The structural and mechanical cues of the ECM are 

determined from the density and stiffness of the fibrous structures.  These govern the migration and 

proliferation behavior of the cells. Furthermore, cells can reorder their environment by protease 

reaction to adapt the motility. [30], [32], [35]–[37] 

 

1.1.3 Adhesion and migration on 2D surfaces and in 3D environments 

The cell behavior inside the natural ECM is mediated by structure and stiffness, as described above. 

Mediation by structure and stiffness will also be true for any new material synthesized. Because of 

this, any new material needs to be tested. The results of the cell-matrix interactions in vitro will lead 

us to predictions towards the in vivo usage of these materials, such as implant devices.  

1.1.3.1 Cell interaction with 2D matrix surfaces  

The interaction between synthetic matrix and cell in 2D takes place on the cell's basal side. Here, the 

cell is in contact with the material and forms FAC with it. In Figure 1A, a cell adheres to a hydrogel 

surface, which includes collagen. The exemplary FAC in Figure 1 contains Integrin, Vinculin, and Zyxin.  

The cell adheres with Integrin to the collagen fibers. The FAC themselves are directly connected to 

the cytoskeleton via actin fibers. The actin fibers are directly attached to the cell nucleus via LINK 

complexes. This attachment enables a direct translation of forces from and to the matrix to and from 

the nucleus. In the assumption of an ideal distribution of adhesive proteins, cells do not only adhere 

but migrate on the surface.  
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The cell spreading on the 2D surface is influenced by these adhesion molecules but also by the 

stiffness of the material. The spreading of the FACs is regulated from the matrix stiffness and the 

possibility to adhere to the material. [38], [39] With increasing matrix stiffness, the number, and size 

of the cells FAC rise.  At the same time, the speed of the cell increases with the size of the FACs up to 

a point when the size of the FACs exhibit such a strong adhesion, that the cell migration is inhibited. 

[40] Cellular motility on 2D surfaces can be described in two different modes, lamellipodia and 

amoeboid migration. The lamellipodia migration is based on the movement of filopodia. The cell is 

attached at the end, and filopodia are created at first by actin polymerization until the adhesion is 

created. The end of the cells the FACs are then depolymerized. For the amoeboid migration, the 

primary attachment is at the cell front. Pseudopodia are created towards the front, followed by blebs 

to form the next pseudopodia, while the last is depolymerized. The nucleus and the cell body are 

moved behind. The general nucleus is positioned behind the centromere and the microtubules. [41] 

 

Figure 1 Exemplary sketches for eukaryotic cellular adhesion on 2D hydrogel surfaces and in a 3D 
collagen matrix. A) the 2D adhesion on hydrogel shows the nuclei compartments involved in adhesion 
and migration as well as an exemplary adhesion complex. The adhesion complexes are clustered 
basal to the hydrogel surface to attach to the bio-functionalized hydrogel surface. B) The 3D adhesion 
in the collagen matrix is depicted with a cell inside the matrix structure. Here, the cell does not form 
focal adhesion complexes, but the adhesion proteins are distributed through the whole cytoplasm of 
the cell.  
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1.1.3.2 Cell interaction with 3D environments 

The cell's interactions with a synthetic 3D environment are the closest form to gain insight into the 

processes involved when the cells attach to their natural in vivo environment. The artificial 3D 

environments can be composed of different materials. These materials used for 3D environments 

vary (see Figure 2) and can be formed, e.g., from collagen networks or PDMS channels.  [42]–[45] In 

contrast to 2D in vitro cell tests, cells in 3D environments are exposed with their whole body towards 

the surrounding material, see Figure 1B. Cells on 2D surfaces show distinct FAC located at their basal 

side. In contrast, the cells in 3D have no distinct FAC areas, but the proteins are distributed through 

the whole cytoplasm. These proteins have shown variation in number and type with the mechanical 

properties of the matrices. As an example, vinculin, which is agglomerated by traction forces, is 

depleted in soft hydrogels. ß1 integrins and also zyxin, an adhesion protein that exerts traction forces 

to the environment, can be found in such soft hydrogels. Adhesion and migration inside the matrix 

depend on the mechanical properties of the material and architecture as the space for cell 

proliferation and migration is essential. [46]–[49] Several modes of amoeboid and mesenchymal 

modes have been found, such as prominent protrusions and sub protrusions formed hierarchically, 

nuclear pistons, migration via blebbing myosin contraction at the cell front to name a few. [13], [23], 

[39], [40], [50]–[54] The cell nucleus, an organelle that influences the proper cellular function, is vital 

during 3D migration as it represents the stiffest component inside the cell. The positioning and 

motion of the nucleus inside the cell are orchestrated during the cytoskeleton. The microtubules and 

the perinuclear actin cap reorient the nucleus and push and pull it through constrictions by applying 

traction forces. [14], [22] The same is observed to test and indent the matrix materials as a first step 

to invade foreign tissue, e.g., transendothelial migration. [3], [41] 

 

1.1.4 Engineering the cell-matrix interaction 

1.1.4.1 Topographical influences on adhesion and migration of cells 

The interaction of cells towards a matrix is driven by the mechanical properties of the material, the 

materials chemistry, and surface charge and by the dimensionality and the architecture, in 2D the 

topography of those materials. [38], [39], [55], [56] These interactions are found in the ECM, where 

different structural features exist, from aligned collagen fibers to fibers, which are homogeneously 

clustered in scar tissue and result in different phenotypes of cells of one type. [57] The influence and 

importance of architectural features in vivo are so significant that even in different biological classes, 

the architecture of comparable structures can be located. [58] This is because cells are surrounded 

naturally by structured 3D architectures, which assist the proper function of cells. The 

architecture/topography surrounding the cell helps and influences the alignment of intracellular 
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compartments such as the cytoskeleton, which then also aligns the nucleus. The 

topography/architecture then affects the morphology and direction of migration as well as the 

generated forces towards the matrix, which increases with higher dimensionality in 2D to 2.5D.  

[59]–[61] Here, the term 2.5D is used for samples, that display a topography that encloses the cells in 

a not yet completely. In this dimensionality, 2.5D, single cells are not entirely surrounded from the 

matrix.  

 

Figure 2 Exemplary topographically and architectural in vitro environments. The examples are 
separated according to their dimensionality 2D, half-enclosed (2.5D), and 3D environments. They are 
further parted, according to their material parameters. These are bulk materials (mostly stiff without 
hydration and from one batch) such as glass or PDMS (A-C); there are fibrous materials (D-F) and 
hydrogels (G-I).  Examples from the literature can be found in the supporting Table 1. 

3D architecture has been shown to highly support cell proliferation and cell alignment and migration 

in preferred directions. [62], [63] In Figure 2, different dimensionalities and architectures are shown. 
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The dimensionalities are parted in 2D surfaces, half-enclosed set-ups, and 3D enclosed 

environments. A table supports figure 2 with examples of the sketched dimensionalities and 

architecture. Table 1 does not claim to be complete, although it will provide exemplary in vitro 

environments for cell experiments. In this work, topography and architecture are meant to be used 

interchangeably in context to dimensionality. A topography of PDMS grooves is a surface-based half-

enclosed structure, and this is meant to be used in 2D. In a 3D matrix, a channel would be an 

architectural feature as it surrounds the whole object which is subjected to the matrix. 

 

1.1.4.2 Mechanical influence on adhesion and migration of cells 

As discussed in section 1.1.3.1,  cells adhere to materials by forming FAC towards the 2D matrix at 

the basal side. In 3D, the focal adhesion proteins are distributed within the whole cytoplasm. On 2D 

surfaces, the FAC enhance its size and number with the increase of the Young’s modulus of the 

material. [40] In fact, for cells in 3D matrices, the focal adhesion proteins vary in their occurrence 

according to the mechanical properties of the matrix and are distributed throughout the cytoplasm. 

Compared to the FACs on 2D surfaces, the appearing adhesion proteins in 3D environments were 

found to be more stable than on 2D surfaces. Doyle et al. found that the stable occurrence of the 

focal adhesion proteins has a reduced fluctuation in 3D and form a stationary connection between 

the integrins and the cytoskeleton.    Both, the quantity and the distribution of the focal adhesion 

proteins, result from the forces generated between the matrix substrate and the cell-integrin 

receptors. [25], [46], [64], [65] With stiff substrates, the attached cells form stress fibers between the 

adhesion points. The attached integrins can then recruit additional adhesion proteins. On soft 

matrices, cells apply forces towards the substrate (traction forces). [20], [38] The Young’s modulus 

describes the stress on the material applied and the resulting strain. The stress-strain curve and its 

slope give the actual material stiffness value. [66]–[68] The Young’s modulus is a material-dependent 

parameter. In this work, the main focus is on the matrix material hydrogel. 
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Table 1 Support table for Figure 2. Exemplary in vitro environments for cell experiments, part 1. 

Sketch Architecture/ 
Topography 

Material Stiffness Spacing BCL and BF Cells Speed Staining Morphology and 
Migration 

Examples 

A Surface 
pattern with 
gold NP 

Bulk SiC 
coated 
with Mg 

 - Pattern; 
63nm-84nm; 
quasi-
hexagonal 

No Ref-52- YFP-
paxillin 

- Yes; Stained actin 
filaments with 
phalloidin after 
fixation;  

Normal shape; No 
migration; 

[69][4] 

B Micropillar 
 

Bulk 
PDMS 
 

Sylgard 
184 

W: 0.6-
15µm D: 1-
5.6µm; 
H:1,3,6,8µm 

11-
(triethoxys
ilyl)undeca
nal 
coating; Fn 
 

Human 
endothelial 
cells (ECFCs) 
and HUVEC 

- Yes; live/dead staining; 
Mouse anti-vascular 
endothelial cadherin 
(VE- CAD) or mouse 
anti-fibronectin, FITC-
conjugated phalloidin 

Enhanced elongation and 
alignment; No migration; 

[70] 

C Channels with 
glass cover 

Bulk 
PDMS 
 

Sylgard 
184 

W:3µm-
10µm  
H: 11µm  
L: 150 µm 

Plasma 
active-
tion;  
Collagen; 

MDA-MB-
231, BT 549, 
and HS578T  

Faster in 
smaller 
channel; 
0.3-
0.7µm/m
in  

SiR-Actin for live cell 
imaging; F-actin and 
focal adhesions to 
align parallel to the 
channel direction 

Mesenchymal to 
amoeboid phenotype 
change while migration; 
strong blebbing, loss of 
actin, β1 integrin found in 
10µm and 3µm channel; 

[42] 

C Micropillars 
with glass 
cover 
 

Bulk 
PDMS 
with 
glass 
 

- W: 5,3 and 
2µm  
H: 10µm 
OR: H:15µm 
and 5µm  

Collagen NIH 3T3 
fibroblast 
 

- Modified nucleus with 
mCherry–Histone-4 
and GFP-
LifeAc;Changed Lmna 
amount; 

Nuclei deformation 
depends on constriction 
size and Lmna occurrence; 
Protrusion smaller with 
Lmn1-/-; Wild type cells 
slower in constrictions 

[43] 

E Fibrous half 
enclosed 
structure 
 

Aerograp
hite 
 

- Pores:  
10 μm-
100μm 
Filament 
diameter:  
0.5-3µm 

- Ref 52 wt; 
Ref-YFP-
paxillin; YFP-
fluorescence 

- YFP-fluorescence; RFP 
and Hoechst 
 

Assembled actin fibers, 
visible FAC for Ref-YFP-
paxillin cells; typical 
morphology;No migration  
 
 
 
 
 
 

[71] 
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Sketch Architecture/ 
Topography 

Material Stiffness Spacing BCL and BF Cells Speed Staining Morphology and 
Migration 

Examples 

F Fibrous 3D Collagen 
matrix 
 

4 to 60 
Pa 
 

Pore size:  
4μm² to 
1μm² 

- 
- 

MT1-MMP–
transduced 
HT1080  

Pore size 
depende
nt 

Yes; Alexa fluor-594 
phalloidin, propidium 
iodide, andanti-
vinculin antibodies  

Increased migration; Form 
dendritic spreading to flat 
polarized in dependence 
of the location inside the 
matrix; 

[72] 
 

G Plane 
hydrogel 

Hydrogel 
poly- 
acrylami
de (PA) 

0.1-
12kPa 

70µm thin 
gel 

sulfo-
SANPAH; 
Collagen I 
 

Contractile 
myocyte, 
C2C12 

- Rhodamine-phal- 
loidin, Hoechst 33342; 
Immunofluorescent 
antibodies to myosin 
or vinculin 

Elongated cells; Formation 
needed longer time on 
softer gels; Alignment 
towards other cells; No 
migration; 

[67] 

G Grooved 
surface 

Hydrogel
; PEG-
based 

91kPa - 
2600kPa 

Grooves 
with 
different 
width; 10µm 
worked best 

- NIH L929; 
fibroblasts 

- tetramethylrhodamine 
isothiocyanate (TRITC)-
conjugated phalloidin; 
4′6-diamidino-2- 
phenylindole; primary 
antibody anti-bovine 
VN from mouse; 
secondary antibodies ; 

Cells aligned with the 
grooves; grew best with 
softer hydrogels; 

[73] 

G Gold-NP 
pattern 
 

Hydrogel
; 
Plyethyle
ne glycol 
diacrylat
e based 

 15-200nm 
 

Gold NP 
 

3T3 
fibroblasts 

- - Normal cell behaviour, but 
at distances larger than 
100nm difficulties to 
attach and spread 

[74] 

H Microporous 
hydrogel 
 

Alginate 
 

 pores up to 
230µm 
 

Gold NP  
 

Dendritic 
cells 

- - Volume fraction of pores 
lead to more cells, 
effective with 50%; Porous 
system do not induce 
maturation  

[75] 

I Microstructur
ed hydrogel 

pAAm 18kPa Range up to 
20µ 
diameter,  

- A. castellanii 100-400 
nm/sec 

- Normal; Amoeboid 
sqeezing,  

[45] 
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1.1.4.3 Biofunctionalization of the material matrix 

Material matrices of a different kind, as shown in Figure 2 and Table 1, are used to investigate 

cellular behavior according to stiffness and architecture, also see chapters 2 and 3. Some of the 

materials require the coupling of the adhesion proteins to the matrix in order to create a bioactive 

surface and adapt the surface chemistry and charge according to the cells. [76] The bioactive surface 

is important, e.g., with hydrogels, as they have a hydrophilic surface or are mostly inert towards 

protein absorption. A bioactive surface is modified chemically with adhesion proteins specified to the 

cell type used. The adhesion proteins can be of various types: collagen, fibronectin, or RGD (arginine-

glycine-aspartic acid), all commonly used to promote cell adhesion. Cell adhesion will ensure proper 

cell functions in cell viability, migration, and proliferation. Besides the chemical modification also 

topographically structures can feature the unspecific adhesion of cells towards the surface. [57], [77]  

1.2 INTRODUCTION TO THE MATRIX MATERIALS 

1.2.1 Hydrogels as matrices for (bio)interactions and the hydrogel preparations 

The focus in this section is on hydrogels, their preparation, and their characterization. Hydrogels are 

the material of choice for various applications within medical applications, filters, or materials used 

in cell investigations due to their exceptional performance in all fields by providing a porous three-

dimensional network of polymeric crosslinked chains. [78], [79] This polymeric network is hydrophilic 

and absorbs water and will swell until equilibrium is reached. It offers the possibility for the diffusion 

of nutrition, proteins, and chemical signal molecules from and towards the cells. Herewith, hydrogels 

are the closest materials to mimicking synthetically in vivo conditions. [80] Their mechanical 

properties confine the range of use in applications, but these can be adjusted over the structural 

composite designs. The mechanical properties dependent on the hydrogels polymeric structure, the 

charges of the polymeric chains, and the swelling behavior. Obviously, the basis of these is the size of 

the meshes created from the crosslinked polymer chains. The mesh size is associated with the 

crosslinking density and the Young’s modulus, which is itself related to the polymer fraction as well 

as to the hydraulic permeability. [80]–[82] 

1.2.2 Hydrogel synthesis  

Different kinds of hydrogels can be found in nature or are artificially built. Natural hydrogels are, for 

example, collagen fibers or hyaluronic acid, which are components inside the ECM, but also alginate 

is a natural hydrogel. Synthetic hydrogels for example are polyacrylamide, Poly(N-

isopropylacrylamide) (pNIPAM) or Poly(2-hydroxyethyl methacrylate) (pHEMA). All of them can be 

synthesized in various forms, for instance, as fibers, as plane bulk samples, or structured with 

different topographies or internal architecture which will determine the cell behavior. [83] In this 
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work, I will concentrate on three different kinds of hydrogels: alginate, pHEMA, and pAAm as the 

basis of this work to investigate cell-matrix interactions. In hydrogels, the hydrophilic polymeric 

chains are crosslinked using different types of crosslinking methods. These will influence the 

performance of the hydrogel not just because of the concentrations, but by the charges incorporated 

into the mesh structure of the hydrogel. We can distinguish between two types of polymerizations in 

hydrogels: Firstly, the physical crosslinks that work due to physical forces such as van der Waals 

forces, entanglements of polymer chains, temperature-dependent physical attachment or by forming 

chelate complexes with ions. [80], [84]  The second type is using chemical covalent bonds. These 

bonds are, for most cases, stable and insoluble unless the crosslinker used has special properties 

such as a highly susceptible to hydrolysis [78]. Dissolvable covalent hydrogels are such as diamines, 

which are susceptible to hydrolyses. Non-degradable crosslinker, N,N’- Methylenebisacrylamide as an 

example, will be co-polymerized to the backbone of the resulting hydrogel. Just very harsh conditions 

such as high mechanical forces could divide those crosslinks without any recovery. Interestingly, this 

type of recovery after brute mechanical forces can be observed in hydrogels crosslinked via a 

physical ion linkage. [79] 

1.2.3 Physical crosslinks 

1.2.3.1 Alginate: 

A formidable example of physical crosslinking is alginate. Used in various biomedical applications due 

to its biocompatibility, the sodium salt of the alginate is crosslinked using Ca2+ ions. The structural 

polysaccharide of the brown algae is an isomeric bloc-co-polymer of two variations. One of the 

variation, the α-L. guluronic acid (G-blocks) will interact to the so called ‘Egg’box’ structures while 

forming chelate complexes with the calcium ions using the charges of the carboxyl and oxygen atoms 

(Figure 3B). The crosslinking density here depends on the concentration of the respective building 

blocks used for the crosslinking. Considerable is the amount of G- and β-D-mannuronic acid (M-

blocks) blocks, which influences the brittleness of the hydrogel. The block-co-polymers of MM, GM 

and MG conformation are flexible in their glycosidic bonds to each other and can rotate around these 

bonds. [84]–[87] Furthermore, the storage conditions of prepared alginate hydrogel samples are 

essential. Chelate complexes are formed by electrostatic interaction between the carboxylate and 

oxygen groups from the alginate G-Blocks with the divalent calcium ions. Stored in solvents with 

different chemical potentials or applying an osmotic pressure can lead to an exchange of ions or loss 

of ions to the environment, thus to a loss of junction zones a degradation of the alginate sample. 

[88], [89] The degradability of matrices is a powerful feature to adjust, for example, the growth of 

tissue and the destruction of supporting matrix, e.g., seaming from damaged tissue without 

additional operation to remove the threads. [90] Additionally, it comes with high importance of 



12 
 

compliance between the matrix, its degradation product and the surrounding tissue. Assuming an 

implant inserted into the brain where calcium ions are responsible for the guidance of signals 

between the neurons, an increase in calcium ions could be led to additional signaling between the 

neurons. [91], [92] This requires the usage of other methods to prepare a polymerized alginate. 

Therefore, other functional groups present inside the molecule structure needs to be used, such as 

carboxylic groups, which can be addressed for covalent crosslinking (Figure 3C). [78], [89], [93] 

 

Figure 3 Structure of sodium alginate and possible crosslinking procedures. A) depicts the structure of 
sodium alginate with its two building blocks 1 → 4) linked β-D-mannuronic acid (M-blocks) and α-L. 
guluronic acid (G-blocks). B) shows the physical crosslinking of alginate via divalent ions and the 
formation of the ‘Egg-box’ model. C) presents the covalent crosslinking of alginate using a diamine 
linker adipic acid dihydrazide (AAD) and EDC forming a mesh with free carboxylate groups.  

1.2.4 Covalent crosslinks  

1.2.4.1 EDC and AAD coupling 

Functional groups such as carboxylic acids (-COOH) can be conjugated with primary amines (-NH2) by 

using 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). [78] The EDC activates 

the carboxylate groups and reacts directly with the amine groups present. With this, an amide bond 

is formed. [94] A buffered, slightly acidic environment is favorable to stabilize the reaction. For this, 
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the buffer MES or MOPS can be used. The carboxyl groups are susceptible to nucleophilic 

compartments of molecules such as the amine groups of the adipic acid dihydrazide (AAD). The 

adipic acid dihydrazide can act as a degradable crosslinker due to the hydrazide bond formation, 

which can be hydrolized. [78] Figure 3C presents an exemplary synthesis via EDC and AAD. 

1.2.4.2 Free radical polymerization 

The free radical polymerization is used in mainly for the polymerization of synthetic hydrogels. 

Within three steps, the free radical polymerization occurs and creates covalently crosslinked 

polymeric structures. At the first step, the initiation, a free radical is formed by, e.g., UV-light, 

temperature, or redox initiators. A propagation follows as second step; one monomer by one is 

connected to a chain by transferring the radical. In the last step, the termination of the 

polymerization occurs with the lack of further monomers to be activated as well as with a radical 

combination. The radical polymerization can occur for each monomer with vinyl or with methacrylate 

groups. Polyacrylamide (pAAm) hydrogels, as an example, consist of the monomer acrylamide and 

the bifunctional crosslinker bisacrylamide.  Using the vinyl groups of the monomers and the 

polymerization is initiated by N,N,N‘,N‘-Tetramethylenediamine (TEMED) and ammonium persulfate 

(APS). [95] Figure 4 shows the reaction schemes of pAAm and pHEMA synthesis via radical 

polymerization using APS and TEMED.   
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Figure 4 Scheme for the radical polymerization. A) Acrylamide (AAm) reacts with N,N'–methylene-bis-
acrylamide (BIS) to the co-polymer pAAm. B) Hydroxyethylenemetharcylate (HEMA) and 
ethyleneglycoldimethacrylate (EGDMA) react to the co-polymer pHEMA. In both reactions, APS and 
TEMED as initiators are used. 

1.2.5 Hydrogel biofunctionalization procedures with different chemical components 

The biofunctionalization of hydrogels is required for most hydrogels since most hydrogels have no 

initial adhesion molecules available for cells or are inert toward protein absorption. This hydrogels 

can be from natural source such as alginate or from synthetic source such as Poly(2-hydroxyethyl 

methacrylate) (pHEMA) or polyacrylamide (pAAm) as mentioned before. Without proteins the 

adhesion of cells towards unmodified hydrogel surfaces is highly limited. Three possibilities for the 

biofunctionalization of hydrogels are discussed below. 

1.2.5.1  1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) 

The coupling via EDC is similar to the covalent crosslinking of the hydrogel. The EDC is used to 

activate a free carboxylate group and binds the adhesion protein to the matrix already prepared, e.g., 

RGD, Collagen, or fibronectin. Another opportunity is the crosslinking of RGD to alginate molecule 

chains via EDC with the support of N-Hydroxysulfosuccinimid (sulfo-NHS). Sulfo-NHS will stabilize the 

EDC reaction and can prevent the direct hydrolysis of the amide bond between the amine and the 

carboxyl group during the functionalization. This process for the biofunctionalization takes place at 



 

15 
 

the surface and closes to the surface, as the EDC molecules and adhesion proteins have to diffuse 

inside the sample. A 3D matrix biofunctionalization is here restricted to the depth of diffusion of all 

reactants. [78], [89], [96] 

1.2.5.2 Sulfosuccinimidyl-6-(40-azido-20-nitro phenylamino) hexanoate (Sulfo-SANPAH) 

The biofunctionalization of hydrogel surfaces can also be conducted with sulfo-SANPAH.  Sulfo-

SANPAH includes a photo reactive group, that reacts with available groups on the matrix surface such 

as carboxyl groups. Placed on the matrix and with UV-light is applied the sulfo-SANPAH is bound to 

the hydrogel. The sulfosuccinimidyl group can react with amine-containing molecules to bind 

adhesion proteins covalently to the hydrogel surface. This procedure is well established and practical 

for 2D cell-matrix in vivo investigations as the UV light can activate the sulfo-SANPAH at the surface. 

However, the depth necessary of diffusion of the sulfo-SANPAH and the reach of the UV light 

challenge this attempt for a 3D matrix biofunctionalization. [19], [97]–[99] 

1.2.5.3 Acrylic acid N-hydroxysuccimide ester (Acrylic-NHS) 

In contrast to EDC, sulfo-NHS, or sulfo-SANPAH application, the use of A-NHS is versatile in its use for 

different architectures, 2D as well as 3D. The NHS group is bound to an acrylate group with the 

advantage of being polymerizable into the overall polymeric matrix via free radical polymerization. 

[100] This has a significant advantage that the free reactive groups are highly available also in ‘small’ 

micrometer-sized 3D architectures such as in channel or pores. Due to this, the biofunctionalization 

of these structures can be done in 3D. The hydrogel matrices then produced have to be placed into 

the adhesion protein solution of choice. The structures created in 3D are then dependent on the 

diffusion of the molecules.  

1.3 INTRODUCTION TO THE BRAIN AS A POTENTIAL MATRIX ENVIRONMENT  

In their natural environments, cells, are not only within the ECM in proximity with cells of the same 

type of cells but with a variety of different types for different purposes. An example is the brain as 

one of the most essential tissues. Here, cells such as neurons, glia cells, cells of the brain ECM, and 

the endothelial cells for blood vessels are found in the brain. Within the brain and its different areas 

the proportion of the cell types define the stiffness of a particular brain region. Interestingly, the 

brain is one of the softest tissues inside the body with elastic moduli ranging from 40 Pa to 20,000 

Pa. [101] This range appears due to the high amount of water-absorbing proteins and the low 

amount of collagen I. They form a structured and very distinct architecture, where designated areas 

are responsible for distinct functions of the body. Moreover, ventricles filled with cerebrospinal fluid 

(CSF) can be found. This fluid acts as a damper against strikes, hydrates the brain, and as an 

additional transport system for hormones and byproducts inside the brain besides the blood vessels. 
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It is replaced several times a day in a human. [102] This soft tissue is not only protected by the 

cerebrospinal fluid but covered by several layers (dura mata and pia mata) and embedded into the 

skull for protection. [101] However, not always can an injury be prevented, and scar tissue is formed.  

This tissue is called glia scare and will also be formed by the insertion of implants like stiff electrodes, 

which are not mechanically compatible with the brain cells. The formation of glia scars around 

implant devices will limit its usability. Interestingly, these scars will be softer than the tissue has been 

before but will still encapsulate the device and prevent its functionality. Additionally, a reduced 

stiffness can occur with different diseases, inflammation, or acidosis. [103], [104] As an 

improvement, implant coatings of softer materials could be applied to the devices to obtain the 

mechanical compliance.   

However, compliance is not solitary the mechanical compliance between a single cell and the matrix 

material. Another perspective of compliance is for instance the diffusivity of a material or the 

material relaxation after applied strain. The diffusivity determines whether a material can let 

nutrition and other molecules pass through. This ability is present in hydrogels. Here, to adapt the 

diffusivity, the mesh size is important, which also will change the stiffness of the materials, see 

chapter 1.4. Even though this seems to be an ideal solution, the interaction of the implanted 

materials e.g. hydrogel and CSF with its proteins and ions should be monitored. [104], [105] 
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1.4 INTRODUCTION TO THE MECHANICAL MATRIX CHARACTERIZATION 

1.4.1 Stiffness, strains and their slopes 

As explained in section 1.1, cells are influenced by the topography and architecture but also strongly 

from the mechanics of the underlying or surrounding matrix. [19], [106], [107] This part will highlight 

the various ways of mechanical characterization for matrix materials can be. At first, we have to 

consider the stiffness of matrix material, as this describes the force applied to the matrix with a 

reached material displacement. The slope from this curve is the value for this matrix material and 

material constant. Second, we will consider the elasticity of the materials, which includes Hooke’s 

law as a definition of the spring constant. The spring constant   in equation (1) is defined as the 

vertical deflection  proportional to the force  applied for this deflection. The strain ,  equation 

(2), applied to a material is defined as the division of the change of length  by the start length . 

Further, the stress  on the matrix is described as the force  divided by the area  of the material, 

equation (3). The stress  and the strain  together with the Young’s modulus E, describe the 

elasticity of a material, see equation (4). [108]–[112]      

 

 

(1) 

 

 

(2) 

 

 

(3) 

 

 

(4) 

 

For materials with linear force displacement slopes, this law can be taken into account, as the strain 

and the displacement is directly proportional to the applied force. At third, we have materials with 
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non-linear force-displacement curves where the stiffness value is increased from a certain 

displacement on. This stiffness value is stable after reaching a so-called ‘plateau region’. This 

behavior comes from the partly viscous and elastic components inside these materials. It is found in 

many materials, especially in biological or biomimetic materials such as collagen fibers or hydrogels. 

In hydrogels, the polymeric network is flexible up to a point where the polymeric chains are strained 

too far away from the crosslinking point.  

 

1.4.2 Young’s modulus and the different models for indention methods 

Classically the Young’s modulus is investigated using a tensile test in order to determine the elasticity 

of a material of interest. However, a tensile test is not always possible, for example, with very soft or 

small samples. As the materials of choice in this work are mainly hydrogels, the Young’s moduli were 

determined with other methods. The Young’s modulus   is the relation between applied force or 

stress  and deformation of a material or strain  and describes the resistance of a material against a 

load.  It is a characteristic for the material composition. By adjusting the chemical composition, such 

as in hydrogels, the crosslinker concentration, the Young’s modulus can be easily adjusted. The 

chemical composition will not only change the Young’s modulus of the resulting matrix but can also 

have an influence on the surface tribology. The tribology properties of the matrix include the 

adhesive and friction behavior of samples to each other. For the determination of the Young’s 

modulus, several models have been formulated to include different restrictions to the calculations. 

Importantly, there is to mention the difference between the Young’s modulus and the stiffness in 

general and the terms used in this work. The Young’s modulus is a material parameter independently 

of the sample geometry and shall be the same, whereas the term stiffness can be dependent on the 

sample form.  The most common model is the Hertz model. It assumes a homogenous isotropic and 

fully elastic material, which is indented continuously with a perfect sphere or a cone. The indentation 

depth is very small, not more than 10% of the sample thickness and no interaction, no adhesion nor 

friction, happens between the sphere and the matrix. [109], [111], [113], [114] This model will be 

used later in this work, see chapter 2 and 4, as the hydrogels examined fit into the descriptions 

mentioned before. 

Nevertheless, other models exist and shall be mentioned here shortly, e.g., the Johnson-Kendall-

Roberst theory (JKR) and the Derjaguin-Muller-Toporov theory (DMT) included the adhesion between 

the sphere and the material and assumed contact between solid bodies. While the JKR model 

assumes the deformation of the two bodies due to surface tension and elastic deformation, the DMT 

model assumes full adhesion between the bodies involved. With this, the forces for the separation of 
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the two matrices, mostly van der Waals forces and molecular forces outside the contact zone, can be 

taken into consideration. [115], [116]  

 

1.4.3 Determination of the Young’s modulus 

The measurement of the Young’s modulus can be done in various ways. Two methods are: 

Indentation and rheometer tests. In indentation tests the matrix material is indented by a known 

force and indenter type and form. The displacement of the material and the indenter force provides 

the force-displacement curve. The slope of this curve is calculated with the applicable model for the 

Young’s modulus. Here, the Hertz model will be applied for all indentation measurements. These 

indentations can be done microscopically using an atomic force microscope (AFM), Figure 5A, or 

macroscopically with a non-sticking sphere of known size in mm range, Figure 5B. For the AFM a 

cantilever with known spring constant and bead diameter indent into the matrix and retract. 

According to the slopes created from the data, a fit from the Hertz model will be laid over the data. 

Thus, the data from the material can be compared to the Hertz model fit and assessed. Ideally, the 

Young’s modulus of the material will reach a plateau region, as the Young’s modulus is material 

dependent and should stop at a saturation point. As hydrogels depend on their elasticity on their 

polymeric mesh sizes created from the crosslinker concentration used and the environmental 

condition during the polymerization, it is highly important to measure the Young’s modulus at several 

positions. [108], [109], [117] 

The Young’s modulus according to the Hertz model: 

 

(5) 

 

Young’s modulus; applied force; Indenterradius; indentation depth;  Poisson’s ratio 

Another method to gain acquaintance with the mechanical matrix properties is the use of a 

rheometer, Figure 5C. With a rheometer, a sample is clamped into the sample holder, and oscillatory 

shear stresses are applied towards the sample. As a result, the complex shear modulus  is created, 

including G’ and G’’ and a complex component , see equation (6). G’ is the storage modulus and 

describes the matrix possibility depending on the storage capacity to store energy and thus describes 

the elastic part of the material. G’’ is the shear loss modulus and describes the viscous properties. Per 

definition, the proportion of G’>G’’ is for an elastic material and G’<G’’ for a viscous material. [109], 

[118] 
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(6) 

 

 

Figure 5 Schematic illustration of Young‘s modulus evaluation. A) and B) show the general setups for 
indention based measurements, which require several points of indentation per sample. The applied 
force is uniaxial.  A) The Schematic set-up of an AFM based measurement. The hydrogel sample is 
covalently bound to a glass slide to prevent movement of the sample. The cantilever with the 
attached bead will apply a force to the sample with defined speed until a deflection of the cantilever 
is measured. The deflection is determined by the laser beam concentrated on the top of the cantilever 
and reflected towards a photodetector. Each movement of the laser beam is recalculated towards 
movement and force applied to the sample matrix; the bead diameter is 21.82µm. In B) the macro 
indentation is depicted. The non-sticking sphere with a diameter of 6mm will indent a certain depth 
inside the sample sitting on top of a load frame. C) Depicts the general set-up for rheometer 
measurements. The force applied to the clamped sample oscillates in xy-plane. 

 

1.4.4 Determining the polymeric mesh size via mechanical measurements 

The polymeric structure defines the mechanical performance of the hydrogel matrix. The matrix 

characteristics can be described by the average mesh size of the polymeric network (also known 

as correlation length) which depends highly on the monomers chains or their molecular weight . 

The molecular weight is described by the repeating unit and its molecular weight  and the degree 

of crosslinking , see equation (7). The average mesh size also is related to the polymer fraction  in 

the swollen gel in equilibrium. This polymer volume fraction can be calculated with equation (8), 
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where  the volume ration of the polymer and  is the volume of the swollen gel.  [81], 

[108], [119] 

Additionally, the average mesh size of the polymeric network depends on the crosslinker density 

 and can be calculated by using the equation (11) derived  from Pescosolido et al., 2012. [119] 

Pescosolido et al., 2012 used the correlation between the shear modulus  and the crosslinker 

density  of the hydrogels, see equation (10). Furthermore,  and were related with the 

assumption of a polymeric network with a regular spherical mesh size. This spherical diameter is the 

average mesh size of polymeric network   is, see equation (11) With the relation between the 

measured Young’s modulus , the Poisson’s ratio , and the shear modulus , equation (9),  and 

 can be calculated.  is the gas constant,  the temperature and  is the Avogadro constant. 

Theses relations are depicted within the equations (8)-(11) below. [81], [108], [119] 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

As the whole matrix system is a system with and in water, the hydraulic properties of the hydrogel 

are important. An example is the swelling behavior of hydrogels as it is reported that the swelling 

takes place as long an equilibrium within their chemical potential is not reached. [81], [113] The 

fraction of water taken up and stored can be described by the volumetric water content  using the 

weight of the polymeric matrix mdry, the weight of the swollen sample mwet and the density of the 

solvent , see equation (12). The swelling %S can be described by the ratio of the final  mfinal 

and start mstart mass, see equation (13). 
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(12) 

 

 

(13) 

The polymeric chain structure and the crosslinking density act here as force, the chemical potential 

needs to overcome since the polymeric chains will interact with the solvents according to their 

charges. The same counts for molecules or drugs infiltrated into the hydrogel matrix, which diffuses 

inside and towards the border of the sample. This diffusion of molecules or release of molecules can 

apply stress towards the sample via osmotic pressure. It can, in dependence on the type of 

crosslinking, induce degradation of the material. [81], [89], [113] 

1.5 INTRODUCTION TO THE INTERACTION BETWEEN MATRIX MATERIAL AND MOLECULES 

Notable in this work is the definition of matrix and mesh. The matrix represents the whole hydrogel 

sample based on its polymeric network in the swollen and unswollen state. The mesh represents the 

existing polymeric network and its size, depending on the crosslinking density. The mesh is the base 

of the hydrogel behavior, such as swelling, and dictates in the end, the mechanical properties of the 

sample. The dimensionality defines whether a sample of any material displays a structure in 1D, like a 

thread, 2D (plane surface or a nanopattern of Gold-NP or FN); 2.5D or half enclosed structures 

represent a matrix where every object is exposed to more than a 2D surface but has at least one free 

side, see Figure 2. 3D is a fully closed structure, such as a channel made from various materials as 

mentioned earlier in section 1.1. 

1.5.1 Molecule release from matrix materials 

In this part of my work, I want to introduce the topic of interaction between the matrix and 

molecules, also called substances or drugs. In particular, this section is about passive substance 

release systems from hydrogel matrices used. Different hydrogel systems from natural as well as 

from synthetic hydrogels can be found for the substance release to the supernatant to in vitro and in 

vivo application. These systems can be based, e.g., on alginates polymerized with ions or covalently 

crosslinked or IPNs with and from polysaccharides, or nanocarrier systems to overcome the blood 

brain barrier like biodegradable nanoparticles. [120]–[124] 

The considerable advantage of hydrogels as carriers of substances are similar to those of the cell-

matrix interactions. It is the ease of substance infiltration due to swelling. The substances can be 
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nutrition for cells or drugs. With the high water content in hydrogels, aqueous dissolvable drugs can 

be easily used.  The adaption of the mechanical properties is controlled by the mesh size, which also 

mediates the infiltration and the release of substances. Interestingly, additional features such as 

electrostatic interactions, the degradability of the matrix, the pH response of the network, and the 

swelling properties can have a substantial impact on the substance matrix interaction. [125] Each of 

these factors can either increase the drug release, such as the degradation of the matrix or decrease 

the release. An example of such behavior would be molecules that are electrostatically attached to 

the matrix. Additionally, the sample size is also important to consider, as it influences the application. 

The administration side for in vivo studies can be wound dressings for dermal applications or nano-

sized applications for pulmonary administration. [125] 

 

1.5.2 Sink conditions for in vitro experiments 

The sink conditions are defined as the maximum substance concentration, which can be released into 

the supernatant. It usually should not exceed 30%, which means that the solubility limit of a 

substance introduced into the system is smaller than 30% of the total volume. With this, an artificial 

saturation of the substance and a decreased release time should be avoided. Several factors need to 

be considered. Here the three most important  sink condition factors are: First, the substance is 

dissolvable in the respective solvent/solvent-system. Second, the saturation limit of the substance 

investigated will not be reached during the investigations. Third, the concentration of the substance 

is within the measurable limit of the technique used. These requirements are called the ‘sink’ 

conditions and can be adjusted to each system. [126] From different references, the various volume 

specifications can be found: The volume of the solvent shall be nine to three times higher than the 

dissolution limit of the substance inside the respective solvent. [126]–[128] A possible drawback of 

the sink conditions could appear when the drug release from in vitro experiments should predict 

future in vivo applications. In vivo situations are much more condensed with a possible smaller 

volume for the dissolution on the on hand, on the other hand dynamic fluid exchange exists e.g., 

liquor exchange inside the brain or blood flow is challenging to mimic. [129] Furthermore, increased 

interaction in the sink condition due to the extended volume can compromise the matrix stability in 

the case of degradable hydrogels. Switching to non-sink conditions could here bring the results closer 

to the in vivo situation and protect the matrix. However, it can also alter the release kinetics from the 

matrix to the environment. [130], [131] 

 



24 
 

1.5.3 Release mechanism and kinetics: 

Three different types of drug release can be determined. First, the drug release via diffusion from the 

matrix. Second, the drug release via matrix swelling and, at last, the drug release using chemical 

changes inside the matrix. [132], [133] Highly significant for all types of release is the infiltration of 

drugs into the matrices as they influence the release kinetics. For hydrogels, two strategies are 

mainly used. The first is to include the drug into the hydrogel precursor solution. With this, the 

matrix is already loaded after polymerization, e.g., hydrogel NP, direct after the polymerization and 

dried. [134] For the second approach of infiltrating drugs into the prepared hydrogel matrices, these 

will be further dried and immersed into the drug bearing solution to take up the substance of choice. 

Later these hydrogel samples are dried again. [134], [135] The diffusion based drug  or substance 

release has to be taken into account for fully swollen matrices. Depending on the substance 

molecules size and that of the polymeric matrix as well as of the charges of both, the substance 

molecules will move through the matrix by diffusion and mass transport. An equally dissolved 

substance inside the swollen sample is assumed without interacting with the matrix and substance 

charges. The substance release happens then at the interface between matrix and solvent on the 

chemically potential and concentration gradient. [130] In case of a swollen matrix with mesh sizes 

smaller than the substance molecules, the matrix needs other release mechanisms such as 

degradation of the whole, or swelling of the matrix, as friction due to size lowers the diffusion of the 

drug. In general, the diffusivity of a drug from a hydrogel can be calculated by the equation (14). 

 

(14) 

The diffusivity: ; the radius of the drug molecule: ; the viscosity of the solution  

The diffusivity in equation (14) is calculated without steric hindrance and excludes the influence of 

the mesh size. In the case of meshes and molecules with similar size friction and thus also the delay 

in the release has to be considered. [125] The substance release based on matrix-swelling acts upon 

the osmotic pressure, which is comparable to the chemical potential between the matrix and the 

surrounding. The swelling of the matrix is finished when equilibrium is reached, as in equation (15). 

[122], [135] 

 
(15) 

Where  describes the chemical potential for mixing term,  the term and   

describes the elastic term of swelling network chains.  describes the chemical potential outside 

the gel network. [122] In most cases, this type of release relies on dehydrated glassy samples. These 



 

25 
 

hydrogel samples do not contain any liquid but the dry polymeric mesh. However, their polymeric 

mesh can still swell and include water. In the dry state, they include the substance for the release 

ether loosely or connected to the matrix mesh. The swelling of the matrix and water uptake into the 

matrix lead to an increase relaxation of the mesh and a dissolution of the drug into water. The 

swelling of the matrix, as well as the dissolution of the substance and its release, lead to two 

boundaries moving in the opposite direction. [135] The substance release based on the matrix 

alterations is influenced by the chemical changes inside the matrix. These changes can be actively 

triggered by pH, temperature, or even hydrolysis of crosslinker. The hydrolysis will degrade the 

matrix and enables enhanced release to the incorporated substance and is an active matrix-

substance release system. [132]  

For the solvent and substance infiltrated into the hydrogel matrices as well as release from the 

matrices   the behavior can be described in various models. Both, infiltration and release indicate the 

transport from substances or solvents from one location to another. However, the usage of material 

matrixes, here hydrogels, requires two thoughts:  The idea that the behavior includes the diffusion of 

solvent and substances within the matrixes to another position or sample surfaces and the diffusion 

from the matrix to the surrounding supernatant. Several mathematical models for the description of 

the release kinetics have been established, which can be found elsewhere.  

The general release profiles can be determined with the release theory by Ritger and Peppas [136] :  

 

(16) 

 is the mass of drug released at time t;  the total mass of released drug;  a kinetic constant. 

in equation (16) is the diffusional exponent depending on the transport, sample geometry, and 

polydispersity and is given by the release fraction over one unit of time for the indication of the 

kinetics of release. With the diffusional exponent n, the different cases can be described. One case 

example is the classical behavior of Fickian diffusion with the diffusional exponent n=0.5. The Fickian 

diffusion for release is the transport of the substance or solvent in a greater time than the relaxation 

time of the polymeric structure. For the diffusional exponents n<0.5 or n=1 the release is described 

as non-Fickian or Case II diffusion. Nevertheless, this is a model and does not include e.g. the 

individual material properties, possible substance-matrix interaction and sink conditions (mentioned 

above) or pH of the supernatant. With the release from actual matrices and the substance-matrices 

interaction can be found to be different. [130], [137], [138] 
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1.5.4 Methods for quantifying released substance concentration 

1.5.4.1 HPLC measurements and UV-VIS spectroscopy 

Various methods can be used for determining the concentration of the substance released into the 

supernatant. Here, high-performance liquid chromatography (HPLC) and UV-Vis spectroscopy are 

used to investigate the release of the substances used. For the UV-Vis spectroscopy, a microplate 

reader determines the absorption of light from substances dissolved in the supernatant. The 

absorption of light can be determined as the substance molecules change their energetic status 

when irradiated with a particular wavelength. A valence electron will change its position in the outer 

orbitals. The energy necessary is described with:  

 

(17) 

 

Where  is the energy difference necessary to overcome the barrier between the orbitals;  is the 

Planck constant, f the frequency, c the speed of light and  the wavelength of the incident light. 

[139], [140] Another possibility to determine the concentration of the substance can be done by 

using a calibration curve. The calibration curve is applied measuring various standards with known 

concentrations. With these results, a calibration curve can be set up and a linear fit is applied. With 

the slope of this fit and the interception of the axis, the concentration can be determined. It is 

essential to consider the eventual dilution of the substances before the measurements took place, 

see equation below: 

 

(18) 

Where  is the concentration in µg/mL;  is the peak area/counts per peak area; A is the 

absorbance. 

The HPLC was used to measure the concentration of substances released from swollen alginate 

matrices. Extracts taken from the experimental volume were investigated. The extract is placed 

together with a solvent into a separating column and is passed through this column by pressure. 

After passing the column, the liquid passes a detector. This detector determines the diluted 

substance molecules. Detectors working on the basis of light determine the absorbance of light/the 

light, which is passed through after the solvent and the extract molecules absorbed parts of the light. 

Two types are possible to use: first one photodiode and the second an array of photodiodes. The 

more photodiodes are used the more spectra can be determined at the same time. Other detectors 
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use the index of refraction for samples without UV-Absorption, fluorescence detectors, 

electrochemical detectors or evaporative light scattering detectors. Here, the solvent is evaporated, 

and measurements are taken from aerosols. After passing the detector, a chromatogram is compiled 

from the data recorded. The peaks from this chromatogram resulting from the substances within the 

solvent can vary in height and width according to their concentration. For the determination of a 

substance concentration from an experiment, the same substance but in various known 

concentrations called the standard need to be measured. [139], [140] 

1.6 INTRODUCTION TO QUANTIFYING METHODS FOR THE BIOCOMPATIBILITY OF MATRICES AND 

THE CELL-MATRICES INTERACTION FOR 2D AND 3D 

In this work, different cell types for different experimental setups were used to study different 

effects of materials properties towards cellular behavior. In this part, the general cell culture is 

described and used if not stated differently in the experimental part. If not stated otherwise, all cells 

were cultured an incubator at 37 °C and 5 % CO2-atmosphere with the respective cell culture medium 

for rat embryonic fibroblasts wild type (Ref 52 wt), fibrosarcoma cells (HT1080 with transfected 

nucleus NSL- GFP and H2B-GFP) human umbilical vein endothelial cells (HUVEC) or Acanthamoeba 

castellanii.  The general cell culture can be found in the appendix, chapter 6.2 “General cell culture 

methods” on page VI. Adaptions are mentioned within the method sections for the particular 

chapter.  

1.6.1 Adhesion assay 

The investigation of in vitro cell growth on a material and its results provide the information whether 

a material is adequate for in vitro and eventual future in vivo applications. The area of adhesive cells 

covering the matrix surface can be determined by fluorescence microscopy from fluorescently 

stained cells. For this investigation, the cell cytoplasm is stained with calcein AM, which stains the 

cytoplasm of the cells. Because of this, the whole area of the cell is visible using fluorescence 

microscopy and can be determined according to the sample surface in %. For further information, 

the cells can be stained with Hoechst and Propidium Iodine. The first will stain the nucleus the latter 

will infiltrate and stain the dead cells. Images taken from the samples with different fluorescent 

channels can give the information about the cell adhesion, morphology and amount of living and 

dead cells. 

1.6.2 Morphology of cells 

Each cell type has its unique morphology when adhering to 2D surfaces. For Ref 52 wt and HT1080 on 

stiff and planar substrates such as the cell culture flask bottom, an elongated, dendritic, and 

polarized shape is expected. [12], [141], [142] As in other studies found, HUVEC grow preferred in a 
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densely packed monolayer and appear to achieve a mostly square-like structure when cultivated 

properly. [143], [144] For the evaluation of cellular attachment and optimal cell growth on produced 

2D samples, the cellular morphology assessed as compared to the known morphology on stiff and 

planar substrates. The difficulty is here that variances in stiffness and topography and especially in 

architecture (3D) can and will result in different morphological appearances. 

1.6.3 Cytotoxicity 

The influence of different materials on cells and cell cultures are not only measurable with direct 

contact experiments but with indirect methods.  There, not the physical properties but the chemical 

properties, the excess chemical products, the degraded byproducts of the material are assessed 

whether they have an influence towards the cells. A useful tool for this is the (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium chloride (MTT) cytotoxicity test, where the viability of the cells 

respective to a negative control is determined by the comparison of the metabolic conversion of MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium chloride into formazan. A negative control is 

the control, which will be tested for negative cytotoxicity with a sample, which is not cytotoxic. The 

opposite is the positive control, here, a toxic sample is used to be tested for positive cytotoxicity. The 

cytotoxicity of the materials in this work is judged in view of the ISO standard 10993-12. The means 

of the average viability results are compared. In the ISO standard 10993-12 it is stated that a material 

is not cytotoxic when for the 100% v/v extract as well as for the 70% v/v extract, the percentage of 

cell viability in respect to the negative control is at 70% or higher [145], [146]. By using the ISO 

standard 10993-5 and 12 and monitoring the results for different materials, a dissipation from other 

work and results are possible. A hypothesized difficulty here is that for degradable materials, the 

extract preparation of 72h might not be extended enough. This is because as the later in vitro or even 

in vivo experiments are designed for a more extended period of time, and those degradation 

products and released excess material will not be examined. One strategy to avoid this is to 

determine the time frame for the degradation and the point where at least 50% of the sample is 

degraded. Another critical point is to monitor the sample handling beforehand. The samples used are 

prepared with different synthesis steps, e.g., hydrogels and can include excess monomers or 

chemicals despite washing procedures and sterilization steps applied. Here the monitoring of the 

MTT results, is essential to adjust the preparation, e.g., adjust the washing process with several 

repetitions as one strategy mentioned. If not stated differently, the assay follows ISO standards 

10993-12 and 5 within this thesis. 

The cell viability in respect of the negative controls is determined by following equations: [146] 

 
(19) 
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(20) 

OD is the optical density determined with UV-Vis. The optical density for the investigated samples 

 is determined from the density of the blank well, ODempty subtracted from the optical 

density measured of the sample, ODλ , at a specific wavelength. The wavelength depends on the 

sample type, for the MTT assay a wavelength of 570nm will be used. To determine the cell viability in 

percent in respect to the control, the  optical density for the investigated sample is multiplied by 

hundred divided by the optical density for the negative control, ODcontrol . 
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2 3D CELL-MATRIX INTERACTION 

2.1 INTRODUCTION 

In this chapter, I present my work that was carried out to investigate cells in vitro in 3D 

microstructured hydrogel channels. Hydrogels are highly interesting for cell investigations as they 

provide a close similarity to the ECM. This is due to their hydrated matrix and the straightforward 

process to tailor them to the appropriate stiffness. With the approach to increase the dimensionality 

from 2D hydrogel surfaces to 3D enclosed environments with internal interconnected architectural 

features, new results can be found from the 3D cell-matrix interaction. These results are achieved 

accordingly to the adjusted amount of the crosslinker concentration of the hydrogel used. Thus, with 

the hydrogel surrounding the single cell, the mechanical properties will be directly targeted towards 

the cell and its compartments. In this way, from the cell membrane to the nucleus and further down, 

all compartments will be influenced by the hydrogel mechanics due to the hierarchically structured 

connection within the cell as discussed before in section 1.1. [13], [147], [148] As previous studies 

have shown on 2D samples, the stiffness or elasticity, as well as the thickness of the sample, will 

influence the cell behavior as a consequence of the cells ability to transform the mechanical signal 

from the 2D matrix into chemical signals inside the cells (see section 1.1.3). With this 

mechanotransduction, the structures inside the cells are mediated and react accordingly, e.g., 

rearranging FAC or the cytoskeleton. [11], [25], [38], [106], [149] Nevertheless, the majority of the in 

vitro studies according to the cell-matrix interaction has been conducted with 2D matrixes. However, 

for extensive knowledge about the behaviour of the cells the next step is the conversion of the 2D 

cell-matrix interaction studies into 3D investigations. It is found that with a higher degree of cell-

matrix contact, the interaction and influences towards the cells increases with the enlarged surface 

of the cell. [150] 

The impact of this enlarged surface contact of the cell to the matrix can be seen from various cell 

responses towards 3D environments. Changing the dimensionality for the cellular environment will 

change the migration behavior from the cells, as documented when 2D and 3D migration is 

compared. [151] One reason of the changed migration behavior can be the change in the positioning 

of the nucleus. [3] For two-dimensional migration the nucleus location is known to be at the back of 

the moving cell. For higher dimensional migration, the nuclei are found to be at the back but also at 

the leading front within the cell. The nucleus at the front can be used to open small spaces between 

attached cells on order to migrate through. Another strategy to migrate through tight 3D 

constrictions with the nucleus are the rupturing of the nuclear envelope or the alteration of the ECM 

environment. This alteration of the ECM is achieved via proteolytic cleavage. This change of position 
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will involve the cell compartments around the nucleus, especially those who are involved into the cell 

migration e.g. such as actomyosin complexes, or the perinuclear actin caps. [3], [11], [13], [152] 

Other investigations comparing 3D and 2D cell behavior found that the focal adhesion clusters are 

not firmly located at the adhesion surface like on 2D surface but can be distributed over the cell 

membrane surface (Figure 1B).  Still, they are active and mediate the cell's speed and deformability. 

[3], [23], [153] Several possibilities can be found to create a 3D enclosed environment. These are, for 

example, fibrous environments from collagen (Figure 2F) from a natural source without the need for 

biofunctionalization.  

Another option is the use of synthetic materials, ideally transparent materials such as PDMS or 

hydrogels. The advantage of transparent samples is the option to use light microscopy imaging 

techniques and the potential for live cell imaging. One option is the creation of macropores inside 

hydrogels with various techniques. [154]–[157] Mostly, these pores are several times larger than the 

cells of interests and create pores in sizes of several hundreds of µm. These pores have a clear 

advantage for high throughput possibilities. The drawback of these macropores is the imaging of 

single cell interactions with the matrix. These type of samples lead to excessive amounts of cells. 

Moreover, few cells are exposed to the material, but the majority will be in contact with cell-cell 

interactions. [155], [156] However, other options to regulate the cell-matrix interaction in a more 

controllable way are channels. To date, different types of channels exist for cell-matrix interaction 

made from different procedures and in various sizes. An example here is a microchannel network in 

hydrogels such as methacrylated gelatin or poly(ethylene glycol) diacrylate. The 3D environment was 

produced via 3D printing with a channel diameter from 100µm to 1000µm. [158] However, in order 

to gain knowledge about processes in single cell confinements or channels with spacing small enough 

for just one cell are required. To date, several versions of confined (channel) environments for 

cellular investigations exist. These options are, for instance: Semi-3D channels, were the wall of the 

existing channel left and right to the cell are made from pAAm gels. From basal, the cells are 

attached to the glass slide, and from the top, they experience no confinement. [77] In the 

Lammerding lab, environments from PDMS with defined constrictions are used. [159] Also, other 

groups work with confined PDMS channels. [42] Straight channels with a defined length and start and 

endpoint are mostly used. Interestingly, most confined and structures channels used for 3D cell 

experiments are made from PDMS. Some of these channels are summarized in  “Table 2 Selected 

overview of recent and actual three-dimensional experimental set-ups for cell investigation in 

channel” on page 58. Remarkably, the cells have contact towards the stiff PDMS and additionally 

towards a glass coverslip, which closes these constructs to a 3D environment while the knowledge 

about the impact of matrix stiffness for 2D experiments is proven. Knowing the importance of the 
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matrix stiffness towards the cells, challenges such as the engineering of soft, and mechanical adapted 

3D environments in small sizes for single cell investigations are given. 

In view of these challenges, a new 3D microstructured in vitro environment needed to be 

established. This has been done and resulted in a 3D microstructured hydrogel. This hydrogel was 

created with interconnected channels, as presented earlier. [45] In the following section, I show 

hydrogels penetrated with free, interconnected channels with different diameter and a small 

‘vascular like’ structure where cells can migrate in and grow. Firstly, I show results from experiments 

in 3D microstructured hydrogels with pathogenic cells, Acanthamoebae castellanii (A.castellanii) 

followed  by the results from the investigations of anchor dependent mammalian cells within the 3D 

structures in dependence of adapted hydrogel mechanics. 

2.2 RESULTS AND DISCUSSION FOR 3D CELL-MATRIX INTERACTION 

In this part of my thesis, I followed a method firstly published by us 2019 [45]. Herein, it was 

investigated whether pathogenic A.castellanii can be captured and investigated for several days, with 

the effect of decreased cell activity inside the microstructured hydrogels and noticeable decreased 

cell number in the supernatant. Both results qualify the microstructured hydrogels to be used in the 

future as a cell capture device. The production details of the 3D microstructured hydrogels are given 

below in section 2.4.2 and 2.4.3. In short: A sacrificial template from tetrapodal ZnO (t-ZnO) is 

prepared by pressing t-ZnO powder in a desired size and shape, and sintering the ceramic at 1150°C. 

Next, a polyacrylamide precursor solution is poured over the ceramic templates. After the 

polymerization of the hydrogel, the ceramic is removed by hydrolysis in hydrochloric acid. Later, the 

3D microstructured hydrogel sample is washed until a neutral pH is reached and prepared for further 

cell experiments such as described on page 61 in section 2.4.3 “Preparation of 3D microstructured 

pAAm matrices”. 

Figure 6 shows the potential of the microstructured hydrogels. A-F show the interconnected 

structures inside the hydrogels filled with a FITC-Dextran conjugate in solution as described in section 

6.5 and imaged with the spinning disc microscopy. Channels from t-ZnO can be varied in size and in 

packing density. Figure 6G displays the results of the decreased cell number in supernatant due to 

the microstructures of the hydrogels, which is invaded by the A. castellanii.  

 

For further details, the reader is referred to the following publication:  

S. Gutekunst, K. Siemsen, S. Huth, A. Möhring, B. Hesseler, M. Timmermann, I. Paulowicz, Y. Mishra, 

L. Siebert, R. Adelung, C. Selhuber-Unkel (2019): 3D Hydrogels Containing Interconnected 
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Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii. ACS 

Biomaterials Science & Engineering, 5 (4), 1784-1792. 

 

 

Figure 6) A-F show 3D images of fluorescently filled channels in PAAm from the z-view in a high 
intensity voxel representation. They present the possibility of various channel densities from the top 
with 0.3 g/cm³ down to 1g/cm³ of t-ZnO as well as the option of varying the production for different 
sizes and forms of the arms. A-C have been produced with PVB t-ZnO and D-E with EtOH-t-ZnO. G 
shows the highly important fact and prospective of cell-trap for pathogenic A. castellanii. After 120h 
(5 days) the control was highly flooded with pathogenic cells in the supernatant, while the A. 
castellanii incubated with the 3D structured samples where obviously lower and accumulated inside 
the structure. A)-G) Reprinted with permission from ACS Biomaterials Science & Engineering.1 [45] 

As these experiments showed a high success for the caption of pathogenic cells, the next reasonable 

step was to implement this sample for human cell types. For this, the ideal experimental and sample 

requirements for human cells were established and investigated, as described in the following 

sections. 

For further experiments with mammalian cells, several questions need to be answered: 

- Does the experimental set-up require adjustments for different cell types? 

- Which adjustments need to be taken? 

- Can the mechanical properties of the material be adjusted, and to which range? 

- Do the mechanical properties of the hydrogel influence the cellular behavior, especially 

towards the nucleus, and to which extent? 

 
1 https://pubs.acs.org/doi/10.1021/acsbiomaterials.8b01009 . Further permissions related to the materials 

have to be directed to ACS Biomaterials Science & Engineering. 

https://pubs.acs.org/doi/10.1021/acsbiomaterials.8b01009


 

35 
 

- Do occur more than the expected result of significant influence towards the nuclei diameter 

within the channels? 

- Are the results related to both: the mechanics and the dimensionality? 

2.2.1 Improving the 3D experimental parameter 

In this part of the thesis, I present the results according to the investigated cellular behavior of 

HT1080, fibrosarcoma cells, in hydrated 3D environments. Here, empty channels provided the 

structured environment to investigate whether an overall small constructed setting in combination 

with different mechanical properties influences this cell type. HT1080 cells, are cancer cells from the 

connective tissue and serve in this work as model system for soft tissue cells. They were chosen as 

they are a stable soft tissue cell line, highly motile, and are well established in stiff PDMS 3D 

environments. [160] The cells in this work were kindly provided from the Lammerding Lab and 

exhibit a transfected nucleus with NSL- GFP and H2B-RFP. While the first mark the rupture of the 

nuclear envelope, the protective lipid bilayer membrane around the nucleus with a nuclear 

localization sequence, the latter mark the histone proteins rich part from the nucleus, which is in the 

chromatin. 

The first question that required to be solved was to obtain the optimal conditions for the sample 

preparation and fixation. This was followed by the investigation towards the most effective 

biofunctionalization, as well as to find the best incubation time. Additionally, at the same time, the 

optimal hydrogel stiffness in range from the ‘soft tissues’ and the optimal storage timing needed to 

be determined. The range for ‘soft tissue’ regimes such as the upper range of the brain (from 40 Pa 

to 20,000 Pa. [101]) to the upper range of muscles [161] includes values from 1kPa to 50kPa.  

A first result was, that the 3D microstructured samples, which can be several millimeters thick for 

catching the A. castellanii, were too high. Aiming for the investigation of the cellular behavior of 

mammalian cells with focus to the nucleus and the three-dimensional imaging a thin 3D 

microstructured sample is of advantage. The benefit of thin samples is the opportunity to investigate 

the samples through all its depth. Due to this, the cells, their nuclei and the mechanical influence is 

visible in the microscope. Moreover, higher magnification is beneficial for detailed imaging of the 3D 

structures and the compartments of the cell within the 3D microstructured hydrogels. With this 

requirement and the consideration, that hydrogels and especially pAAm swells over 2000%, as shown 

in Gutekunst et al. [45], the thickness of the sacrificial template had to be adjusted as well. To enable 

the imaging through the whole depth of the sample, a hydrogel thickness of 2mm or less should be 

obtained. For this the sacrificial template thickness of 0.16mm with a diameter of 12mm and t-ZnO 

density of 0.9g/cm³ resulted in a manageable template. Both, the height and the diameter of the 

sacrificial template were necessary to overcome the drawback of the light weight of t-ZnO. In this 
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work PVB t-Zno were used, as it displays thin and elongated tetrapodal arms. However, other forms 

of t-ZnO can be used to achieve an interconnected microstructure with different forms, see above 

Figure 6D-F from EtOH-t-ZnO. The prepared samples were able to be stored for longer times, up to 

two years, with prior ozone treatment before usage as the treatment creates free binding sides on 

the ZnO surface. 

As the motility of the cells and especially the motion of the nucleus were of superior interests in this 

study, samples without any drift during the investigation are interesting. Imaging without drift from 

the samples, facilitate the later image analysis. With this consideration first experiments were 

conducted with microstructures samples fixated on a glass slide. For this purpose, the samples were 

prepared using the sacrificial templates as described in chapter 2.4.2, page 60, with the addition of a 

glass slide functionalized with 3-(Trimethoxysilyl)propyl methacrylate in order to form a covalent 

binding between a glass slide and the polymerizing hydrogel. Hence, the samples could not float 

around during microcopy. Interestingly, besides the improved sample fixation, a changed behavior 

and form of the 3D microstructured hydrogel samples was investigated because of the swelling. The 

fixated samples obtained a ‘mushroom’ from, with small covalently bound area at the glass surface 

and a larger convex form of the sample surface similar to Figure 7A.  Figure 7A shows a sketch of the 

mushroom form found.  

 

Figure 7 Left) A sketched microstructured pAAm sample attached to the 3-(Trimethoxysilyl)propyl 
methacrylate functionalized glass slide is slightly deformed. Right) HT1080 cells invade the space 
underneath a representative pAAm sample and glass slide despite covalent functionalization. The 
yellow line indicates the start of the sample. At the left side of the line, the cells are accumulated. The 
blue arrows indicate protrusions from the cells. Scale 50µm. 
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As this present chapter is about anchor dependent cells, the hydrogels pAAm had to be 

biofunctionalized. It was found that here an already incorporated bio-crosslinker (BCL) is the best 

choice. The bio-crosslinker molecule act as mediator between the hydrogel matrix and the adhesion 

proteins of choice, here collagen I. Therefore, acrylic acid N-hydroxysuccimide ester (A-NHS) has 

been used to incorporate reactive ester groups inside the hydrogel matrix. [100] For the experiments 

the cells were seeded on top of the 3D microstructured hydrogel samples. However, for the on glass 

fixated 3D microstructured hydrogel samples cells were hardly found adhering to the convex shaped 

of the biofunctionalized hydrogel sample. Additionally, cells were not found within the channels. An 

important aspect is the probable tension within the hydrogel sample, considering the matrix shape. 

Interestingly, cells preferred to squeeze themselves under the hydrogel sample despite the chemical 

bond between hydrogel and glass slide, see Figure 7.   Beyond the sample the cells form small 

protrusions to move forward (blue arrows). The cells are at this point on the glass surface directly 

beyond the hydrogel. These findings are in agreement with work according to curvotaxis, were cells 

avoid convex surfaces. It is also in agreement with the findings of the invasiveness from cancerous 

cells, which shows a preferred cancerous cell invasion into confined environments and fits the 

presented results. [162]–[164] According to these first results, the tension within the matrix was the 

probable reason for hindered cell invasion into the 3D microstructured hydrogel. With this, all further 

experiments were conducted with free hydrogel matrices, as sketched in  Figure 8. These samples 

were prepared by a t-ZnO template-mediated synthesis, as mentioned above, using hydrogel 

matrices with three different Young’s moduli. Furthermore, an improvement of the cell invasion 

inside the 3D microchannels was obtained by placing the hydrogel sample into a transwell with an 

induced gradient of FBS. Transwells are containers of various sizes with a membrane at the bottom. 

These transwells can be inserted into petri dishes or well-plates by hanging them on the frame or 

placing them directly into the well-plate. Their purpose is numerous such as indirect cell-co-cultures 

in the same well-plate or as migration assays through the pores of the membrane. In the present 

work, the membrane was from polyethylenterephthalat with 1.0 µm pores for 24well plates. Here, 

the transwell was used to apply a concentration gradient of growth factors to the hydrogel matrix 

and the cells. As the cells were seeded on top of the collagen I biofunctionalized microstructured 

hydrogel sample, the majority had to migrate through the hydrogel to reach the FBS, Figure 8A. 

Additionally, the growth factors were probable diffused through the pores of the transwell and 

concentrated inside the hydrogel, and have served as another appeal towards the HT1080 cells to 

enter the sample. [165] The interconnected and fluorescently filled channel network within the 

hydrogel matrix is shown in a 3D representation in Figure 8B with one original single t-ZnO. The 

microstructured and fluorescently filled hydrogel matrixes and were imaged using a spinning disc 

laser confocal microscope preparing z-stacks. For cell imaging, z-stack and time-lapse imaging were 



38 
 

combined with multiple channels of fluorescence and phase-contrast, Figure 8C. The 3D 

representation was calculated using the maximum intensity representation and the software 

Xcellence. To gain knowledge about cellular behavior as close to the in vivo conditions, incubation 

times were improved. According to other work, migration, at least for 2D surfaces, is also influenced 

by the incubation time. [166] Additionally, the relaxation of the stress inside hydrogel matrices in 

general influences the cell behavior on 2D hydrogels. It has been investigated that a decreased level 

of stress within hydrogels results in an increased cell spreading. [167] With this, an enhanced time of 

incubation will lead to a possible reduction of stress inside the sample due to swelling of the hydrogel 

mesh to its equilibrium point, as explained earlier in chapter 1.5.3 (see also Figure 10B).  

 

Figure 8) Experimental set-up for the preparation of the 3D experiments. A) Preparation of the 
samples via sacrificial template synthesis, biofunctionalization, and the seeding and cultivation of 
cells in 3D. B) exemplary images; left: a t-ZnO; right: the hollow channel inside the hydrogel, filled 
with fluorescent dextran (green) and imaged with the confocal microscope, showing a high-intensity 
voxel representation. C) Experimental set-up for the imaging process. B) Left image reprinted with 
permission from ACS Biomaterials Science & Engineering.2 [45] 

With repeated cell tests with different experimental settings, the cell incubation time was set to five 

days to reduce possible tension within the samples and provide the required times for the cell 

invasion. Providing comparable imaging settings to other three-dimensional experiments such as in 

 
2 https://pubs.acs.org/doi/10.1021/acsbiomaterials.8b01009 . Further permissions related to the materials 

have to be directed to ACS Biomaterials Science & Engineering. 

https://pubs.acs.org/doi/10.1021/acsbiomaterials.8b01009
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the Lammerding Lab, the cell incubation was followed with 10h of microscopy with light exposure 

every 20 minutes, Figure 8C. 

The chosen range of mechanical values of ‘soft tissue’ from 1kPa to 50kPa within the hydrogel 

matrices was adjusted with the volumetric crosslinker concentration within the precursor solution.   

Three different mechanical values with the respective crosslinker concentration, bisacrylamide, of 

1vol.%, 4vol.% 3 , and 16vol.% have been chosen. The mean values of the hydrogels Young’s modulus 

1.1 kPa ±0.54kPa, 16.67 kPa ±0.88 kPa, and 50.09 kPa ±4.32kPa, further referred to as 1kPa, 17kPa 

and 50kPa, were investigated with a homebuilt indenter4 using the Hertz-model, see Figure 9. 

 

Figure 9  Indentations data from the crosslinker concentration used in vol.% in pAAm samples and 
their respective Young‘s moduli.  

At last, two different investigations were conducted. Firstly, the influence of the mechanical 

properties of the hydrogels towards the channel size within the 3D structured hydrogel matrices 

were investigated. This was because the focus of these investigations is towards the mechanical 

 
3 Similar volumetric crosslinker concentration as used in the investigation of A.castellanii in 3D environments 
[45] 
4 Described in our the work ‘3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for 
Capturing Human Pathogenic Acanthamoeba Castellanii’ ,[45] 
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influence of the 3D structures hydrogels on the cells. As the free channels inside the microstructured 

hydrogels represent the inverse t-ZnO, where the range of the tetrapod sizes is determined [45], the 

swelling behavior of the hydrogels with different vol.% of the crosslinker and the impact towards the 

channel sizes were investigated. To reveal the interconnected structures within the hydrogels, the 

channels were fluorescently filled and imaged. The imaging of the fluorescently filled channels were 

carry out by spinning disc confocal microscopy, directly after one night of infiltration with 

fluorescence solution. For the analysis of the channel sizes a 3D representation was calculated and 

the channels were measured. The channels were measured in their diameter at the tip and the base, 

which represents the smallest and the widest diameter of the channels. Notably, for cell experiments 

within confined 3D structures, the channel sizes will influence the ability of cells to enter the 

channels in view of the nucleus diameter as stiffest cell compartment.  As shown in Figure 10A, with 

increasing crosslinker volume, the diameter for channel tip and channel base decrease slightly, with 

all mean values below 5µm in diameter, which is below the cell diameter found for A. castellanii. [45]  

The infiltration of the fluorescence solution into the channels is described in the appendix in section 

6.5 page XII. 

At last, the long-time storage of hydrogels in solution was studied for two different volumetric 

crosslinker concentration, 4vol.% and 16vol.%. This aims to access the ideal time point of usage for 

hydrogel matrices and the equilibrium swelling to reduce tension within the hydrogel samples. For 

this, samples were stored over time in the fridge at 4°C in water. Figure 10 on page 41 shows the 

influence of the volumetric crosslinker concentration towards the channel sizes and the connected 

loss of Young’s moduli by hydrogel swelling over time within. From initial over 110kPa after one week 

of storage for 16vol.% and 70kPa for 4vol.% crosslinker, after two weeks of storage, the Young’s 

modulus obtained was in the range from 50kPa and 16kPa with a slow decline towards the stored 

time of 28 weeks. This relaxation and swelling of the pAAm needed to be considered for all cell 

experiments with the result that all samples were ready to be used after two weeks in solution, when 

stored on a fridge at 4°C. 

With this information gathered, the questions about the optimal sample preparation were answered: 

- Microstructures hydrogel matrixes should not be attached covalently to a glass surface to 

prevent tension within the hydrogel samples 

- The channel size within the microstructured hydrogel matrixes depends slightly on the 

crosslinker concentration 

- The hydrogel matrixes have to be stored for two weeks at 4°C to reach with swelling a stable 

Young’s modulus 
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- Optimum incubation and experimental time are: five days of incubation followed with 10h of 

microscopy with light exposure every 20 minutes 

The whole experimental setup and preparation are shown in Figure 8, page 38.  

 

 

Figure 10 A) Results of the measured diameter of the 3D channel in polyacrylamide. The channels 
were filled with a fluorescent dextran solution, imaged via confocal microscopy, and a 3D 
representation image has been calculated from the confocal image. The samples with the channels 
were dried via an ethanol series and immersed overnight in a fluorescent dextran solution at 4°C. The 
channel diameters have been measured according to the exemplary three-dimensional voxel image in 
A. The green channels were measured at the beginning (base, yellow circle) and the end (tip, red 
circle). The conical form of the channel represents the former structure of the tetrapod. Each dot 
within the graph represents one channel. B) The graph shows the loss of Young’s Moduli over time of 
polyacrylamide samples with 4 vol.% and 16 vol.% crosslinker concentration stored up to 28 weeks in 
the water at 4°C. For each measurement, individual samples were prepared and measured three 
times. The connected dotted lines were included to facilitate the identification of identical crosslinker 
concentrations. 
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2.2.2 3D c ell-matrix interaction with mammalian cells 

With the intention to examine cellular behavior in mechanically different 3D microstructured 

hydrogels, the experiments have been adapted as described above, and the cell culture was done as 

presented in the method section (see 2.4 on page 59). 

The initial questions for the cell experiments were: 

- Do different mechanical properties of the hydrogel have an influence towards the cellular 

behavior, especially towards the nucleus, and to which extent? 

- Do more than the expected result occur of significant influence towards the nuclei diameter 

within the channels? 

- Are the results related to both: the mechanics and the dimensionality? 

In order to answer these questions, I investigated the acquired data for the following topics: 

- The influence of the mechanical properties on the stability of the nuclear envelope 

- The cell location inside the 3D sample 

- The distribution of the nuclei located within the cell membrane during migration 

- The distribution of the nuclei diameter in 2D and 3D 

- The speed of the nucleus between image sequences and relation to cell motility 

At this point, I want to define the terms motion and migration used in this investigation. Migration 

refers to the overall movement of the whole cell, including the cell membrane. The term motion 

used here applies only to the cell nuclei, more specific to the position of the center of the nucleus 

from one image sequence to the next. Another term I want to clarify is cell diameter: The 3D 

diameter of the nucleus is the average of the minor axes manually measured, from at least three 

positions. The nuclei diameter in 2D is measured over the minor Feret diameter. The Feret diameter 

is the best fit diameter of an object between two parallel planes. Here, the minor axis, the minimum 

diameter was analyzed automatically using ImageJ. [168]  

Earlier, Figure 9 on page 39, the three mechanically differently hydrogels in this part of the work 

were introduced with the respective volumetric crosslinker concentration 1vol.%, 4vol.% 5 and 

16vol.%, further referred to 1kPa, 17kPa and 50kPa. These are the 3D microstructured hydrogel 

matrices for the subsequent cell investigation using HT1080 cells with a fluorescently transfected 

nucleus. The nucleus displays two different transfected parts, the nuclear localization sequence 

 
5 Similar volumetric crosslinker concentration as used in the investigation of A.castellanii in 3D environments 
[45] 
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which will indicate the rupture of the nuclear envelope membrane around the nucleus formed from a 

lipid bilayer in green (NLS-GFP), and the histone rich part of the chromatin in red (H2B-RFP). The 

nuclear envelope is of high interest, as it acts as ‘mechanical’ damper to protect the DNA inside the 

nucleus from destroying mechanical influences. [169] This is crucial, as the nucleus is the stiffest and 

largest cell compartment inside the cell membrane, storing the DNA. With this, it is by far the limiting 

parameter for migration in confined environments. This is similar to the in vivo environments. [43], 

[170] Moreover, as the cell-matrix interaction studies are now shifted strongly to experiments in 

synthetically produced confined 3D environments such as established from the Lammerding group 

[43], the nucleus is the point to study. [11] However, most of the established constrictions such as 

labyrinths or channels [42] are made of polydimethylsiloxane (PDMS) in a range much stiffer and not 

hydrated and with restricted nutrition access. Important in the studies in PDMS environments is the 

nucleus, its stability, and the stability of the nuclear envelope. The nuclear envelope will take the 

mechanical impact towards the nucleus and can rupture to decrease the mechanical stress. This is 

done, e.g., while migrating through small confinements. The rupture of the nuclear envelope is 

observable with a microscope for fluorescent transfected nuclei. Then the content of the nuclear 

envelope is released into close proximity of the cell. Similarly, the nuclear envelope can be repaired 

after passing the constriction, as shown from Denais et al (2016). [160]  When the nuclear envelope 

is repaired, the substance from the nuclear envelope is retrieved and the envelope is resealed. 

However, the rupture of the nuclear envelope has a damaging impact on the DNA. [159] When such 

constrictions, in particular channels, are designed within hydrogels, most groups have at least one 

surface made from glass presented towards the cell.  With this, the presented microstructured 

samples, entirely made from hydrogel, are up to now the most potent choice to investigate the 

mechanical force from soft tissue towards the nucleus. In particular, it is highly interesting validating 

the hydrogel channel impact within the range of ‘soft tissue’ towards the nuclear envelope and its 

stability. Figure 11 on page 44 shows an example of cells migrating through the hydrogel channels 

over time with the nucleus at the rear, red arrow. It is clearly evident, that the nuclear envelope is 

striped and ruptured from the nucleus while moving inside the channel, see image D. Figure 11E and 

F show the position after 0h and 10h of imaging in a high intensity voxel representation. With the 

nuclear envelope stripped from the nucleus inside the 3D microstructured hydrogels, it shows the 

importance of the material topography and architecture. This can be the topography for 2D surfaces 

or architectural conditions in 3D. For this work, samples were analyzed according to the ruptured 

nuclear envelope for each independent experiment and hydrogel stiffness.  
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Figure 11 Time-lapse images of a position in a z-stack in a 3D microstructured sample of 1kPa over 
10h. Phase contrast in grey, 488nm in green shows the NLS-GFP, and 561 in red shows the H2B-RFP of 
the cell nuclei. In A), the position is shown at t=0h; In B) and C), the same position and z-slide are 
shown at 9h:40min and 10h. The red arrow points to a cell that protrudes its cell nuclei at the front in 
another new channel. In D) all merged channels are shown. It is visible that NLS-GFP and the H2B-RFP 
do not overlay each other but that the nuclear envelope is sheared from the rest of the nucleus as the 
nuclear envelope is ruptured. E) Three-dimensional high intensity voxel representation at 0h of 
imaging F) Three-dimensional high intensity voxel representation at t= 10h of imaging. The red arrow 
indicates the visible separation of the nuclear localization sequences NLS-GFP from the histones in the 
chromatin rich part of the nucleus H2B-RFP. Scale bar A-D, 50µm ; E-F, 40µm 

The data about the nuclear envelope rupture in dependence of the hydrogel stiffness and the 

experimental set-up shown in Figure 8, is shown in Figure 12. For the present experimental set-up, it 

was found that for all mechanical properties, nuclear envelope rupture events take place with a 

distinct difference from the soft environment (1kPa, 17.75% ±3.91%) towards the stiff environments 

(17kPa, 59.71% ±11.22% and 50kPa, 41.41% ±18.47%) appears. The influence of the stiffness  to the 

rupture events of the nuclear envelope (Figure 12)  is significant (p=0.0171) between the 1kPa and 

the 17kPa hydrogels. The findings of the nuclear envelope rupture are in clear agreement with 

previous findings in constrictions from a few µm made from PDMS pods [6], [43], [159], [171] but 

were not often reported in PDMS channels. [42][160] 
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Figure 12 Rupture events of the nuclear envelope in [%] according to the surrounding material 
stiffness of 1kPa, 17kPa, and 50kPa. The findings are significant for the soft hydrogel towards the stiff 

hydrogel. 

 

Figure 13 shows the sketch of a green flourescently filled channel. The uniaxial channels are 
connected at the base forming a negative curvature. The curvatures of the single channels are zero 
due to their uniaxial appearance. 

As sketched in Figure 13 and also before in Figure 8B on page 38, the microstructures consist of the 

inverse structure if the t-ZnO. The channels are uniaxial and interconnected at the base from the 

channel or at the tip part from the channel. Both, the channels and the cavities inside the hydrogels 

show curvatures, which is the degree of change within a curve at a surface. The degree of change can 

be described as Gaussian curvature with zero, negative or positive curvatures, which indicates no 
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curvature at all, a concave and a convex surface. All three mentioned cases of curvature are present 

in biological systems, e.g., blood vessels. Figure 13 presents the curvatures existent within the 3D 

microstructured hydrogels due to the channels. The positions inside the microstructured hydrogel, 

such as the channels and cavities, have different curvatures, which can have an impact on cellular 

behavior. Experiments on 2D surfaces from other groups have demonstrated that cells experience, 

sense, and react to concave and convex forms known as curvotaxis. [172]–[175] The curvotaxis in this 

work is triggered by the location within the microstructured hydrogels. 

 

Figure 14 A) The location of the cells in [%] to the sample surface (On sample surface), the sample 
cavities (In cavity), and the sample channel (In channel) are shown according to the sample stiffness 
of 1kPa, 17kPa, and 50kPa. The graph shows the mean and standard deviation. B) The sketch depicts 
the potential locations of cells inside the 3D channels 
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In addition and to quantify the recorded data, the location of the cells given by the stiffness of the 

materials has been analyzed. Three locations were compared and defined as: Adherent cells on top 

of the sample, cells inside the sample cavities with negative curvature, and cells inside the channels 

with zero, Figure 14. In Figure 14A, the distribution of the cells located in and on the 3D structured 

hydrogel samples in percentage towards the the Young’s moduli are shown. An exemplary sketch of 

the potential location of the cells is depicted in Figure 14B. For the location on the sample surface, it 

was found that for stiff samples, the difference in cells located percentage to soft samples is clearly 

higher (p=0.206) for 50kPa hydrogels (60.07% ±11.22%) compared to hydrogels with the lowest 

stiffness (1kPa, 24.28% ±10.25%). When comparing the cavities, a higher percentage of cells were 

located inside the cavities of soft samples (1kPa, 29.06% ±10.73%) then in stiff samples (50kPa, 

10.78% ±6.42%). For the cellular appearance inside the channels, the percentage of total cells is in a 

similar range from 1kPa as well as for 17kPa hydrogels (around 50%) but was decreased for stiff 

hydrogels (50kPa, 29.14% ±6.23%). Interestingly, it appears that HT1080 preferably were inside 

channels with zero curvature, and less inside cavities with negative curvature. This preference of zero 

curvature is highly visible for the 17kPa channels towards the 17kPa cavities (p=0.0136) and the 

50kPa cavities (p=0.0034). Also, the preference of cell location in channels from 1kPa than in cavities 

from 50kPa hydrogels is evident high (p=0.0064), Figure 14A. The percentage of cells is for both 

curvatures, zero in channels and negative in cavities, were higher with the 1kPa and 17kPa hydrogels 

inside channels and cavities than for the stiffest hydrogel with 50kPa. The cell avoidance of 50kPa 

cavities is evidently shown in Figure 14A (significance p=0.001) with a cell percentage in cavities of 

10.78% ±6.42% and cell percentage on the hydrogel surface of 60.07% ±11.22%. The zero curvature 

inside channels is more favorable for the cells as the negative curvature of the cavities. The cells 

inside the 1kPa hydrogels appear not to mind cavities at all, see Figure 14A. Comparing the results to 

previous work about convexity and concavity structured surfaces on 2D samples, this behavior is in 

agreement with the general avoidance of concave surroundings with larger diameter and the 

preference of zero curvature. One explanation for this cellular behavior can be the associated 

bending of the stress fibers within the cells while residing in positive or negative curvatures. Residing 

in a location without any curvature reduces the interface area and hence minimized the energy, 

which is preferable. [174]–[178] Additionally, it appears that the durotactic and architectonical cues 

such as the curvature result in different outcomes for the presented cases mechanical properties of 

the experiments in this work. With increasing stiffness the importance of the archtitctures and 

curvature rose.  

For stiff hydrogels, the cells in this work prefer the zero curvature channels over the cavities but 

mostly adhere to the surface. For softer hydrogels, 1kPa, and 17kPa, the different location and their 

curvature are less challenging. Interestingly, it has been found elsewhere that the surrounding 
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curvature influences the lamin levels. In practice: the lamin A level increases with a convex structure 

and influences the stiffness of the nucleus or the nuclear envelope. [172] [43] This is in agreement 

with the findings of cancerous cells that are more likely to adhere to surfaces with concave 

curvature. [179] Hence, these data support the close connection between durotaxis and curvotaxis 

and my findings from Figure 12. The excitant curvature in connection with the hydrogel stiffness 

could have influenced the stability of the nuclear envelope by triggering the lamin levels. 

Additionally, curvotaxis and the stiffness decrease the number of invading cells into the stiff 50kPa 

hydrogel. In opposite to this, cells invade the channels with both lower Young’s moduli and the 

curvatures act on nuclear stability. With Figure 12A, it shows, that the influence of the curvature is 

more potent with a higher Young’s moduli. Hence, the nuclei rupture events between the 1kPa and 

the 17kPa were significantly different (p=0.0171).  

When speaking of positioning, the nucleus inside the cell is always an important part not just for 

mechanosensing but also as a stiff obstacle that needs to be aligned or squeezed for migration or 

used as a piston for transendothelial migration. [3] Because of these findings, cell migration was 

investigated with a view towards the nuclear positioning inside the cell during migration. Importantly 

it needs to be considered that because of the channel structure, the migration of cells is limited in 

direction, and options to rearrange the nucleus are rare. [180] Figure 15A shows a sketch of the 

nuclear position during cell migration, in D are the results depicted. 

Interestingly, for all material stiffness, the nucleus was mainly positioned at the center of the cell. For 

other positions, a preference as a function of stiffness was not found. The findings for the positioned 

nuclei at the center or the back are clearly different for 1kPa hydrogels, with p=0.0201. 

For 50kPa hydrogels, the findings for the front and the center are clear, see Figure 15A and B.  

The question to be answered for these results is now:   

-Why is the positioning of the nucleus within a 3D environment of importance? 

As described earlier in 1.1, the positioning of the nucleus is essential as it provides the functions of 

the cell, such as proliferation or migration. It has been reported that different localization positions 

have been observed in the dependence of the involved cell compartments. Dupin et al. [22] reported 

an intermediate filament dependent nucleus positioning, which pushes the nucleus towards the back 

of the cells. There, the level of lamin, despite lamin A, influences the position as the lamin level 

increase or decrease the stiffness of the nuclear envelope. This is supported by other reports and 

reviews about cellular migration, where the nucleus is located behind the centromere. [41], [180], 

[181] However, others reported the nucleus positioned in the front due to topographically, 

dimensional features, or even in vivo due to a changed centromere position behind the nucleus. In 

these cases, the microtubule actively positioned the centromere behind the nucleus caused by their 
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connections via dyneins. [3], [41] These findings explain the positioning of the cells for the front and 

the back. Petrie et al. found a positioning of the cell nucleus in the center due to the formation of a 

piston. This piston is meant to be at the leading front of the cell with a “compartmentalized 

pressure” (Petrie 2017, page 98) and facilitate the migration. [37] In summary, the mentioned 

localization options of the nuclei in this work seem to appear in all cases.  

 

Figure 15 A) Sketch of the nuclei position during migration in comparison to the hydrogel 
stiffness. A line has been applied to the cell center, and the nucleus was investigated whether 
it was in the front, in the center, or the back of the cell. D)The graph shows the mean and 
standard deviation. The significances were determined via the Kruskal Wallis test, means of 
the averages and standard deviation are shown. 

As shown in the data plotted in the figures earlier, the 3D environment, as well as the matrices 

stiffness, mediates the cellular behavior with respect to nuclear envelope stability and the 

localization of cell and nucleus during the investigations.  Besides these results, the smallest diameter 

of the nuclei, the minor axis, which can be achieved as a function of the mechanical properties and 

the diameter of the hydrogel channels is investigated.  With the overall confinement around the cells 

due to the channel structure, the mechanical properties of the matrix can be sensed by the cell and 

the nucleus. For each nucleus, its diameter, or minor axis, has been determined at three different 
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time points at 0h, 5h, and 10h of the imaging. The results are shown in Figure 16 on page 51. In 

Figure 16A, the averaged means for all three experiments of each crosslinker concentration 

respective of each stiffness are shown for the analyzed images sequences. The distribution of the 

nuclei diameter after ten hours for all three hydrogel stiffness showed similar and comparable means 

with a diameter at around 8µm with a deviation from around 3µm. This is contradictory to what was 

expected due to the result of other studies. There, channel confinements from PDMS as small as 

3.7µm x 1.7µm have been migrated through from cells. [182] To gain a more in-depth insight into the 

impact of the sole matrix mechanics, the nuclei diameters were analyzed of the control cells. These 

cells were seeded on top of the unstructured 2D pAAm samples from the same stiffness and 

treatment. Also, here, a direct impact of the stiffness on the nuclei diameters were not visible, as the 

distribution and the mean for all experiments are comparable, Figure 16B. 

Visualized in Figure 16B (left), the data of the 3D experiments as well of the 2D controls were 

compared in box-plots as a function of the dimensionality. Here, a significance p<0.0001 appeared. 

The data distribution of all minor axis shows the averaged means with 8.10µm ±1.69µm for 3D nuclei 

and 12.39µm ±2.17µm in minor axis for 2D nuclei. While the data point distribution for the diameter 

in their means is comparable, the form of the distribution is slightly different. It is clearly visible that 

the majority of the minor axis length for 1kPa samples are above the 8.10µm mean value, and for 

17kPa and 50kPa, the majority is somewhat below the 8.10µm diameter. These results could be 

explained by the slight influence of the crosslinker concentration towards the channel diameter, as 

depicted in Figure 10 on page 41. The crosslinker concentration influences the swelling behavior of 

the hydrogels, and with this, the channel sized present in the hydrogels. For the diameter of the cell 

on top of the hydrogel sample, the distribution is similar for 1kPa and 17kPa hydrogels and slightly 

lower for the 50kPa. However, since no clear trend is visible, a conclusion about these averaged 

mean values would be more speculative. The data presented in  Figure 16B (right) all data points for 

the single material properties for the 3D experiments as well as for the 2D controls.  
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Figure 16  Comparison of the nuclei diameter in 3D channels as well as on 2D hydrogel surfaces. A) No 
significances can be found for the diameter of the nuclei in 3D channels for three different time points 
B) Left: The data of all diameter of the cells in 3D at around 8µm and on 2D with around 12µm are 
compared. The data were analyzed with the Kruskal Wallis test. Right: All data points for the 
individual matrix stiffness are shown for the 3D hydrogel channel as well as for the 2D hydrogel 
surfaces.  

 

 



52 
 

It is shown in Figure 16 that the data distribution of the nuclei diameter, its minor axis, is not very 

different. Moreover, the strong impact towards the cell nucleus diameter is from the differences in 

dimensionality rather than the Young’s modulus. On biofunctionalized 2D surfaces, cells can spread 

much more while adhering to the hydrogel surface. Though the results mentioned above indicated 

less success in further data analysis, the nuclei were analyzed over time, and the change of the 

individual nuclei diameter from one-time point to the other, delta t, see on page 52 Figure 17.  

 

Figure 17 Distribution of the nucleus diameter changes from one time point towards the other, delta 
t, as a function of the matrix stiffness. The distribution includes the increase and decrease of the 
diameter as well. Left: Box plots show distribution with mean and the standard deviation. The change 
within the nuclei is dynamic and decreases with the increase of the crosslinker concentration.  
Right) Floating boxes show the mean and the standard deviation for the first five hours(left) and the 
last five hours(right). For all matrices, the change in diameter of the nuclei is larger for the last five 
hours of the experiment. 

On the left side of Figure 17, the averaged means of the changes within the individual diameter 

between the image sequences are shown as a function of the material stiffness. There, it is visible 

that the variation within the changes of the diameters minor axis decrease with the increase of the 

stiffness of the materials. The same figure shows on the right side, the data distribution as a floating 

box distinguished between the first and the last five hours of the experiment. There, the distribution 

of the minor axis change in length is larger. The evolving question here is:  

-Why is a change within the individual nuclei minor axis occurring? 
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The change in the minor axis of the cell nuclei can occur for several reasons. Firstly, it is reported that 

stress is applied to the nucleus, and thus, to the chromatin can lead to chromatin swelling. [41], [183] 

Moreover, some cells have been reported to increase and decrease the minor axis of the nucleus 

with tension and compression. [184] This is in agreement with the findings that even in 3D 

confinements, the actomyosin filaments and other compartments of the cell expose the nucleus to 

tension and compression during migration in 3D confinements. [185] For the right side of Figure 17, a 

similar trend is shown for the first five hours and the last five hours.  The change of the individual 

nuclei diameter for the last five hours is slightly larger than for the first five hours. These data for the 

last hours of imaging support the hypothesis that the chromatin on the nuclei is swelling due to the 

stress, increasing the nuclei diameter in its minor axis. In Figure 10 on page 41, the distribution of the 

channel diameter within the hydrogels according to the stiffness and crosslinker concentration is 

presented and shows larger diameter for the channel in base and tip in 1kPa hydrogels. Due to the 

lower volumetric amount of the crosslinker, the swelling is larger in 1kPa hydrogels when the 

equilibrium swelling of the polymeric mesh is achieved. With the swelling and the stiffness of 1kPa, 

the swelling of the nuclei and its variation can become probably larger as less resistance from the 

hydrogel matrices is applied. The nuclei investigated are not static in one location but also move 

within the cell’s membrane. This migration, or more precisely, the motion of nuclei in general within 

the confined cells and the motion speed of the nuclei in between the single image sequences, has 

been investigated. Firstly, it has been found that within the 3D microstructures the nuclei motion for 

all hydrogel stiffness occurs over 75%. The highest nuclei motion, the movement of the nuclei within 

the cell, has been found in 3D microstructured hydrogels with a Young’s moduli of 50kPa of 90%, see 

Figure 18.  

 

Figure 18 Distribution of nuclei motion inside 3D microstructured hydrogels for all hydrogel matrix stiffness in 
percent for the different matrix stiffness. The highest fraction of nuclei motion is found for cells in 50kPa 
hydrogels. The fraction of nuclei motion is found for 17kPa hydrogels. 
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Connected with the occurrence of nuclei motion is the motion speed of the single nuclei within the 

cells inside the 3D microstructured hydrogels. For this investigation, the single nuclei were manually 

tracked, and the shift of the nucleus center was detected. The data in Figure 19 show the average 

speed of the nuclei in between the image sequences according to the Young’s moduli of the hydrogel 

on the left side. At the right, the nuclei speed distribution for the individual experiments is shown. 

Clearly, the speed of the nuclei is below 8nm/sec. A significant difference, p=0.0043, and p=0.0037, 

has been found between the overall mean speed between both softer hydrogels with 1kPa, 17kPa 

towards the 50kPa matrices. The mean of the average speed of the nuclei motion has around 

1.2nm/sec and 1.5nm/sec. The speed is prolonged in comparison to experiments within this type of 

3D samples conducted with pathogenic A. castellanii and without biofunctionalization The 

pathogenic cells obtained a speed of 50-340nm/s in samples with 16vol.% crosslinker during the 

experiments. [45] However, considering the confinement around the single cells and the nuclear 

envelope rupture events (Figure 12), the speed of the nuclei motion might be reduced in order to 

limit the stress towards the envelope. 

 

Figure 19 The distribution of the speed of the nuclei motion between the different material stiffness is 
shown. Left: The average speed of nuclei motion between image sequences in nm/sec per material 
stiffness is shown. The differences between 1kPa and 17kPa samples are significantly lower than to 
the 50kPa samples; Kruskall Wallis test. Right: Distribution of nuclei motion speed per individual 
experiment is shown, mean and standard deviation, N=3 with n=10.  

Nonetheless, in agreement with the literature about cells within 3D constrictions is the speed of cells. 

In constriction, the speed is increased within smaller constrictions and, as such, with higher stress 

towards the nuclei. The stiffest matrix shows significantly higher motion speeds from the nucleus 
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than the other both. With smaller confinements and thus higher stress from the matrix faster cell 

migration speed has been found in other research mentioned in a review. [186]  This is supported by 

the data in “Table 2 Selected overview of recent and actual three-dimensional experimental set-ups 

for cell investigation in channel” on page 58. 

An explanation could be that with stiffer hydrogels, the adhesion proteins on the cell membrane bind 

stronger towards the hydrogel. With this, a higher polarization and higher speed are possible. 

Additionally, the curvature seems to play a role as discussed earlier and is less favorable for the 

HT1080 cells. Because of this, they migrate faster to get around the 3D confinements. This result is 

additionally supported with other findings in this work; see Figure 15 on page 49. In Figure 20, 

control images of the H1080 cells for the control in well-plates, on 2D surfaces, and within the 3D 

microstructured hydrogels are presented exemplary for each matrix stiffness. The cells inside the 

channels did not show any distinct morphological appearance as a function of the respective 

hydrogel stiffness while interacting with the matrix. These morphological changes can be observed 

on the control images on top of the pAAm surfaces with different stiffness. These surfaces have been 

treated and were biofunctionalized at the same time  as the 3D microstructured samples. A 

morphology of elongated and spreaded cells was mainly found on the samples with the stiffness of 

1kPa. For the other surfaces, the cells were mostly roundish, a sign for less preferred matrix stiffness. 

Additionally, In the control images, a hydrogel channel overview is depicted and shows the cells with 

the intact nuclear envelope, but also situations where the nuclear envelope ruptured and is 

separated localize from the stiff part of the nucleus, see below on page 57. Control images of HT1080 

cells as overview are given in Figure 20.  

There, the transfected cells in control petri dishes, on control hydrogel surfaces and within the 

channels are shown. The petri dish controls display no differences in cell morphology. The cells on 

the hydrogel surfaces show the morphology of the cells on 2D surfaces for the different matrices 

stiffness. The cells show a more spread and elongated form for 1kPa and 50kPa hydrogels. For the 

17kPa hydrogels they are mostly roundish. The different morphologies indicate the preference of the 

cells towards the soft hydrogel with 1kPa of 2D samples. The morphologies of the cells in 3D are 

similar in all hydrogels with different Young’s moduli, with mostly cylindrical-shaped forming 

filopodia into the next segment of the channel or a new channel. The formation of filopodia or 

protrusions to test the near-by area is also known from other cancer cell types, which form 

invadopodia. Invadopodia are protrusions that test the properties of the environment. These 

protrusions can degrade the ECM by protease reactions to adapt to the close environment and 

create an opening. Moreover, invadopodia can also widen pores mechanically to migrate through or 

invade tissue. Nevertheless, this behavior depends on the stiffness of the material and, thus, the 

invasion. [187] 
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 However, in some cases, the cell is captured inside the cavity. In this state, the cell forms a three-

arm star form into channels. The cell nucleus is also deformed in this position. A deformed cell 

nucleus is shown in Figure 20 for the 50kPa hydrogel. There it is visible that the histone rich and stiff 

part of the nucleus is deformed since this part of the nucleus is transfected with H2B-RFP and is 

displayed in red. The nuclear envelope is ruptured in this position and the NLS-GFP is distributed in 

the channel, here in green. These control images show again the importance and differences of 2D 

and 3D cell culture and the influence towards the cell behavior. The irregularly structured hydrogel 

samples are not repeatable within its internal channel structures. Thus per sample, ten positions 

randomly selected were investigated as repetitions. Each sample represented one individual 

experiment, three individual experiments per mechanical property were carried out with ten 

repetitive and randomly investigated positions. If not stated differently, the statistical significances 

were determined by the Kruskal Wallis test for not normal distributed data sets of various sizes, 

which compares the means to each other. 
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Figure 20 Control images of cells, HT1080, in wells (control), on hydrogel 2D surfaces (Hydrogel Surface), and in hydrogel channel (Hydrogel Channel Overview) 
for polyacrylamide samples with Young’s Moduli of 1kPa, 17kPa, and 50kPa. Images show merged phase-contrast in grey and the transfected nuclei in green 
(NLS-GFP) and red (H2B-RFP). The overlay of these both transfections depict intact nuclei, while the occurrence of individual colors indicates a ruptured nuclear 
envelope, where green is the nuclear envelope and red the histonee rich part. 
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Table 2 Selected overview of recent and actual three-dimensional experimental set-ups for cell investigation in channel 

Materi
al 

Architectur
e 

Stiffness Spacing Incubatio
n time 

BCL and 
BF 

Cell type Staining/ 
Transfection 

Speed Morphology, Migration and Nucleus Reference 

PDMS Linear 
channel 

1.77MPa L:20µm 
H: 
3.7µm 
W:11.2-
1.7µm 

1 week Fn and 
Collagen 

A125 lung 
carcinoma cells, 
MDA-MB-231 
breast 
carcinoma cells,  
HT-1080 
fibrosarcoma 
cell contractility 
100-200nN, and 
primary breast 
cancer cells 
(IFDUC1) of 
mesenchymal 

YES; Hoechst for the 
nucleus; Cells partly 
with increased level 
of lamin A; MDA-MB-
231 and HT1080 cells 
that express 
enhanced green 
fluorescence protein 
(eGFP)-lamin A 

Speed increased in 
smaller 
confinements; is 
hindered by the 
nucleus until it is 
squeezed in; 

Nucleus as major point for resistance [182] 

PDMS Linear 
channel 

 L:150µ
m 
H:11µm 
W:7µm 

  sphingosylphos
phorylcholine 
(SPC)-treated 
Panc-1 cells 

 1-1.2µm/min 
mean;  
Depending on cell 
treatment 

Reduced permeation into 7µm 
channels; Nucleus too large; Elongated 
nucleus in the center of the cell; Sliding 
and push and pull mode; 

[150] 

PDMS Linear 
channel 

 L:- 
H:10µm 
W:3-
50µm 

 Collagen MDA-MB-231 Yes; fixed; Several 
different have been 
used for FAC; tubulin; 
Fluor live cell imaging: 
transfected 
fluorescent protein-
tagged end-binding 
protein 

Means around 0.8-
1.2µm/min for 3µm 
constriction 

Polarized; Decrease of stress fibers and 
FAC by confinement; Inhibition of 
myosin, Rho/ROCK, or β1-integrins has 
no influence on 3µm confinement but 
in 50µm confinement; confined 
migration with F-actin is disruption; 
depends on microtubules  

[52] 

PDMS Linear 
channel 

3kPa  
 

 Passivat
ed 

non-adherent 
subline of 
Walker 256 
carcinosarcoma 

 Around 5µm/min in 
mean of averages 

Blebbing Walker cells migrate in 
confinement without forming specific 
integrin-mediated focal adhesions; 
needs a friction 

[188] 

pAAm Interconnec
ted 
channel 

1kPa; 
17kPa; 
50kPa 

1.5µm-
16µm in 
variatio
n 

5 days A-NHS: 
Collagen 
I 

HT1080 Transfected nucleus 
with NLS-GFP and 
H2B-RFP 

Mean of averages: 
1kPa and 17kPa: 
~1.2nm/sec 
50kPa: 1.5nm/sec 

Elongated cell und nucleus; Filopodia; 
Ruptured nuclear envelope; Position of 
cells depends on material mechanics;  

See chapter 2 
in this thesis 
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2.3 CONCLUSION 

In this chapter, I answered the questions of whether a soft 3D microstructured hydrogel can be 

adjusted for the use with mammalian cells, which mechanical range is suitable, 1kPa – 50kPa, and 

whether these constructs will influence the cellular behavior positively. I was able to adapt the 

microstructured hydrogel matrices for sample for anchor dependent cells, which invaded and 

experienced the different Young’s moduli from the soft tissue regime. Moreover, I designed the 

experimental set-up and provided the opportunity of detailed confocal microscopy due to adjusted 

sizes and relaxed hydrogel matrices. Whereas it has been known from earlier work that cells such as 

the HT1080 cells will invade into PDMS channels and show a constriction dependent nuclear 

envelope rupture, the use of soft, hydrated 3D structured samples in order to investigate the nuclei 

behavior is new.  

It was found that nuclear rupture events depend on the mechanical properties of the material. The 

likelihood of rupturing increased with the stiffness of the material. Additionally, to the mechanical 

properties, for the rupture events, they are influencing the localization of the cells within the 3D 

microstructured samples. Furthermore, the localization is also influenced by the curvature of the 

channels and the cavities. Curvatures in connection with higher Young’s moduli are avoided from 

cells in contrast to those with softer matrices. The Young’s moduli influence the motion speed of the 

nuclei, which are faster with stiffer material. In the end, the materials stiffness, or the volumetric 

crosslinker concentration, has an influence on cellular behavior as well as the architectural structures 

inside the samples.  

 

 

2.4 PROCEDURE DETAILS FOR 3D CELL-MATRIX INTERACTION 

2.4.1 Cells and cell culture:  

HT1080; Fibrosarcoma cells. This cell type has transfected cell nuclei, transfected with NLS-GFP, 

green and H2B-RFP, red. NLS-GFP transfects the nuclear localization sequence, which is located 

through the nucleus and indicates the rupture of the nuclear envelope. H2B-RFP transfects the 

histones in the nucleus, which are embedded below the nuclear envelope. 

Cells were cultured as followed: 

For culturing and splitting, cells were cultivated in cell culture medium DMEM (Biochrom) containing 

10% fetal bovine serum (FBS, Biochrom GmbH), 1% Penicillin Streptomycin (penstrep, Sigma-Aldrich). 
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Cells were splitted 1:10 every 24h to 48h when the confluency inside the cell culture flask reached 

80%. For the subculturing and the time for the cultivation of cells with the 3D structured samples in 

the transwells (Millicell® Cell culture Inserts, Merck) with FBS gradient, the samples were placed into 

an incubator at 37°C and a 5% CO2 atmosphere. A day before the experiments, samples, and cells 

were transferred into a C02 independent medium FluoroBrite™ DMEM (in ‚FlouroBrite‘ medium , 

Gibco) containing 10% FBS, 1% penstrep, 1/50 GlutaMAX™ (Gibco, Germany), and 1/40 2-(4-(2-

Hydroxyethyl)-1-piperazinyl)-ethansulfic acid (HEPES, pH 8.5, Sigma) beyond the transwell and 1% 

penstrep, 1/50 GlutaMax, and 1/40 HEPES (pH 8.5) inside the transwell to gain samples free of 

phenol red, in order to reduce background fluorescence and increase the signal to noise ratio 

fluorophores. 

Culturing cells in hydrogel scaffolds within trans well plates were prepared as followed: A well of a 24 

well plate was filled with 2ml cell culture medium and the transwell was inserted. Inside the 

transwell, the hydrogel scaffold was placed, and 50 000 cells in cell culture medium were seeded on 

top of the hydrogel scaffold. Well, plates were incubated for at least 2h to enable cell adhesion to the 

scaffold, then the cell culture medium medium was exchanged with 600µl of  cell culture medium 

without FBS. This set-up was kept for the whole incubation time until the day before the experiment, 

then the cell culture medium was exchanged with ‚FlouroBrite‘ medium. The medium beyond and 

inside the transwell was exchanged daily. For the experiments, the samples were placed into an 

experiment PDMS chamber with a height of 5mm and a diameter of 8mm filled with ‘FlouroBrite’ 

medium. This chamber itself was placed in a petridish with a glass bottom (IBIDI). This petri dish was 

then later placed into a heating chamber (MI-IBC, Olympus) to provide a suitable surrounding 

temperature of 37°C for the cells while being imaged. 

2.4.2 Sacrificial templates 

Ceramic templates were prepared from PVB ZnO-tetrapod powder (provided as curtesy from the AG 

Adelung tf Kiel and synthesized as shown from Adelung et al. [189]–[191] The loose PVB ZnO-

tetrapods were pressed together in a form to yield a round template with a height of 0.16 mm, a 

diameter of 12 mm and a t-ZnO density of 0.9g/cm³. The annealing of the ceramic template was 

done for 5h at 1150°C, as described previously.  [45] The ZnO tetrapods served as sacrificial 

templates resulting in an inverse structure in the form of microchannels. Most importantly, the 

templates can be produced at once in high numbers and stored for up to two years as we found that 

treatment with UV-light and ozone using an ozone oven for 10 minutes increases the hydrophilicity 

after storage. Without challenges, the hydrogel precursor solution of polyacrylamide can be cast over 

the template after the ozone treatment. 
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2.4.3 Preparation of 3D microstructured pAAm matrices 

The microstructured 3D environment was prepared from polyacrylamide, a synthetic hydrogel 

material often used in biophysical studies. Additionally, an internal active bio-crosslinker was added 

during the polymerization to enable the biofunctionalization in the occurring 3D microstructures. The 

process of the hydrogel preparation is as followed: A solution from Acrylamide (AAm, 40%, Bio-Rad), 

Acrylic acid N-hydroxysuccimide ester (A NHS, Sigma-Aldrich), N,N’-Methylenebisacrylamide 

(BIS,2%,Bio-Rad), bi.dest. water (bi.dest. water, AppliChem, Germany), NaOH (2.5M, Sigma-Aldrich) 

and 2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonic acid (HEPES, Sigma-Aldrich) is mixed as a 

precursor solution. This solution is degassed to reduce the amount of oxygen. Furthermore, 

initiators, Ammonium persulfate (APS, 10%, Sigma-Aldrich) and N,N,N‘,N‘-Tetramethylenediamine 

(TEMED, Sigma-Aldrich), were introduced into the solution and carefully mixed. The solution was 

poured over the template, drop by drop, and a glass coverslip was placed on top to achieve a flat and 

thin hydrogel sample. After polymerization, the coverslip was removed, and the template with the 

polymerized precursor solution was immersed into hydrochloric acid (HCl 37%, Sigma-Aldrich) 0.5M, 

pH 1, until no sign of the ceramic template was left. Then, the now complete hydrogel sample was 

immersed into bi. dest. water. The water exchange was done until pH 7 was reached.  The amount of 

the components for the hydrogel is shown in Table 3 for a total volume of 500µL. 

 

Table 3: Components of the pAAm hydrogels with the bio-crosslinker A-NHS 

  1kPa 17kPa 50kPa 

 Crosslinker 1vol.% 4vol.% 16vol.% 
Monomer AAm, 40% 94.69µl 94.69µl 94.69µl 
Reactive 
ester  

A-NHS 0.003g 0.003g 0.003g 

 H2O bidest. Fill up to 500µl total 
 HEPES, pH. 8.5 5µl 5µl 5µl 
 NaOH, adjust to neutral pH 1µl 1µl 1µl 
Crosslinker BIS, 2% 5µl 20µl 80µl 
  Desiccation of solution 
Initiators APS, 10%, aq. 7.5µl 7.5µl 7.5µl 

TEMED 0.49µl 0.49µl 0.49µl 

2.4.4 Biofunctionalization: 

The sample biofunctionalization has been done with a concentration of 0.5mg/ml collagen 

(AdvancedBiomatrix). The concentrated collagen solution was diluted with acidic acid (Sigma-Aldrich) 

solution of 0.02M. All samples were placed for sterilization into EtOH 70vol.% (Walter) for 15minutes 

and subsequently washed three times with HEPES (pH 8.5), each for 15 min. The samples were then 

covered with a 0.5ml collagen solution at a concentration of 0.5mg/ml and incubated overnight at 

4°C. To cleave all excess collagen from the sample, they were washed three times with phosphate 



62 
 

buffered saline (PBS, Sigma-Aldrich). The covalent binding of the proteins to the samples is possible 

due to the active ester group of the A-NHS forming an amide bond with the adhesion protein.   

2.4.5 Imaging and analysis of 3D experiments with fibrosarcoma cells 

Fibrosarcoma cells, HT1080, inside the 3D microstructured hydrogels were investigated conducting 

spinning disc confocal imaging microscopy. Of high interest was the speed and motion of the 

transfected nuclei, as well as the rupture of the nuclear envelope as a function of the matrix stiffness. 

Additionally, the distribution of the cell location, the nuclei positioning, and the distribution of the 

nuclei diameter were investigated. The imaging was conducted with five dimensions using the 3D 

dimensions x,y, and z. The fourth dimension is time t, and the fifth dimension is the wavelength of 

the different channels. For the investigation, all 5D videos were analyzed using Fiji and additional 

plugins. To exclude the possible sample movement, the drift of the sample was readjusted by the 

plugin ‘Correct 3D drift’ to measure the actual movement of the cell. [168], [192] The cell tracking 

was done by using the plugin ‘Manual tracking’. [193] The basis of the cell tracking was always the 

center of the nucleus. For the diameter of the nuclei in 3D, the hand measurement tool was used at 

the minor axis of each nucleus at 90° to the channel wall. Each nucleus was measured at least three 

times at different positions, and the average value of the minor axis was used to be compared with 

the other nuclei minor axis. From the data obtained, the means and standard deviations from three 

independent experiments are shown. The results obtained were tested according to their 

significance by using the Kruskal-Wallis multi comparison test. This test is to be used in cases of non-

parametric results and not achieved normal distribution of the results for more than two data sets to 

compare.  
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3 2D CELL MATRIX INTERACTION  

This chapter presents the work conducted on 2D cell-matrices interaction. As discussed earlier in 

chapter 1.1.4, cellular behavior is mediated by the various properties of the matrix (i.e. chemical, 

mechanical, and topographical). For the chemical properties, the material type and the surface 

chemistry, particularly the biofunctionalization, have to be considered for in vitro cell-matrices 

investigations. Furthermore, the material type, or better the matrices, need to be biocompatible. 

Biocompatibility is the ability of a material to be in indirect or direct contact to living cells or tissue 

without a negative effect on them. [194] The ISO norms 10993-5 and 10993-12 for cytotoxicity tests 

declare a matrix material as biocompatible when the results of an MTT-assay (see chapter 1.6.3), 

exceeds 70% cell viability relative to the control for 100 vol.% and 50 vol.% extracts of the respective 

material. Extracts are prepared by immersing a known amount from the material of interest into cell 

medium at cell culture conditions. [145], [146] The investigation of these characteristics, the 

cytotoxicity and the biocompatibility, is highly important for cell experiments. Without them, the 

interpretation of the cellular behavior on different matrices is not possible.  This comparison for 

different matrixes improves the outcome and the understanding of the cell-matrix interaction. 

Expanded knowledge about the matrices and the in vitro cell-matrix interactions enables the future 

use of the matrices for in vivo application. This is true for hydrogel matrices, which is the focus of this 

work, but also for other types of matrices such as implants, or even from devices such as biosensors. 

These biosensors are required to sense in vivo bioelectric signals from tissues and can be produced 

from various matrix materials. Biosensor usage in vivo relies on not only the matrix properties of the 

device but the size as well. This size would then be relative to gain as much information as possible, 

with minimal invasive implantation. The miniaturization of the devices together with a crimpable 

material such as the biocompatible NiTi enables the use of biosensors in vessels or for brain 

applications. [195] A structured biosensor made from NiTi with its different ceramic coatings was 

investigated towards the 2D cell-matrix interaction and its possible future clinical use as discussed 

below in chapter 3.1 “Results, discussion, and conclusion for primary cells on biosensors” 

Additionally, a second matrix, a hydrogel, was investigated towards the 2D cell-matrix interaction, 

see chapter 3.2 “Results and discussion for ‚Engineering of a new bio-crosslinker for enhanced cell 

adhesion’”. In this part of the thesis, a chemically modified hydrogel poly(2-hydroxyethyl 

methacrylate) (pHEMA) was investigated. The chemical modification resulted from a newly created 

bio-crosslinker (BCL), which was introduced into the structure of the hydrogel. The BCL was used to 



64 
 

form a covalent bond to specific functional groups of adhesion molecules, which are required to form 

a bio-active hydrogel for anchor dependent cells. Without chemical modification, the pHEMA 

hydrogel is inert to protein adsorption and cell adhesion due to its hydrophilicity. This highly 

hydrophilic behaviour of pHEMA, inhibits the instantaneous absorption of proteins and adhesions 

ligands from the medium resulting in low numbers of cell adhesion. [196] This also reduces the ability 

of bacteria to attach to pHEMA besides its high biocompatibility. Its biocompatibility, the property to 

not have any adverse side effects from its chemical composition towards cells, favors pHEMA as a 

material of great importance for biological and medical applications. [197]–[199] However, the most 

common chemical modification and biofunctionalization attempts are based on additional 

treatments of the hydrogel matrices based on chemical functionalization, e.g., carbodiimide 

chemistry using EDC, or through UV light irradiation of the sample to activate sulfosuccinimidyl6-(4’-

azido-2’-nitrophenylamino) hexanoate (sulfo-SANPAH) as discussed earlier in section 1.2.5, “Hydrogel 

biofunctionalization procedures with different chemical components”. [86], [200] These are excellent 

procedures for matrix biofunctionalization at the surface for simple surface structures in 2D.  For 

other sample types with complex structures and higher sample depth, drawbacks could appear. 

These drawbacks could be limited light absorption for the activation of sulfo-SANPAH or the 

limitation of diffused chemicals within the depth of the sample. Both challenges would result in a 

reduced depth of sample biofunctionalization.  

The introduction of a bio-crosslinker (BCL) during the synthesis of the hydrogel matrices offers the 

possibility to obtain a three-dimensional distribution of reactive groups inside the hydrogel for 

biofunctionalization and later cell adhesion. Therefore, biofunctionalization and cell adhesion could 

be made possible throughout the whole hydrogel. The newly engineered BCL is made from three 

parts, the polymerization part, the linker, and the protein-binding part. The protein-binding site 

consists of a maleimide group, which reacts with thiol-functionalities of cysteine, which are present 

in fibronectin (FN). [201]–[204] The polymerization part consists of a methacryl group and the linker 

from diethyleneglycol. Up to this date, few approaches are reported for the use of an active 

bio-crosslinker during the polymerization. One example of another bio-crosslinker added to the 

precursor solution is mentioned in this work, section 2.4.4 “Biofunctionalization:” on page 61 in 

chapter 2 “3D cell-matrix interaction”. There, I used acrylic acid N-hydroxysuccimide ester in a 

polyacrylamide precursor mixture. Other options for instance biofunctionalization within the 3D 

volume would be the incorporation of adhesion proteins, e.g., acrylated RGD or monomers 

decorated with RGD before crosslinking using EDC. [86] All these strategies have slight drawbacks, 

such as the fast hydrolysis reaction of acrylic-NHS and its property to change the precursor pH 

strongly. In cooperation with Laura Schumacher, a new bio-crosslinker (BCL) was therefore 

synthesized to overcome the current limits of instant biofunctionalization. 
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3.1 RESULTS, DISCUSSION, AND CONCLUSION FOR PRIMARY CELLS ON BIOSENSORS 

Human umbilial vein endothelial cells (HUVEC cells) were investigated on structured biosensors 

which base is made from NiTi equipped with Pt electrodes and ceramic insulators. [205] Primary 

endothelial cells, HUVEC cells, were used in this experimental set-up as they are directly cultivated 

from living tissue. Moreover, this cell type would be later exposed to the biosensor during in vivo 

applications. Primary cells provide a unique opportunity for representative data close to cells in 

human tissue. The cytotoxicity was studied using the method discussed in chapter 1.6.3 on page 28 

for the different ceramic insulators, YSZ, SiOx, and TaO on the NiTi. In short: The material of interest is 

immersed into cell medium under cell culture conditions for the extraction of excess material and 

ions. The cell medium, now called the extract, is placed into a cell culture. Cells exposed to the 

extract will react to the content of the extract by average growth, decreased growth, and even cell 

death. This growth behavior is checked via a MTT assay. In a MTT assay the MTT, (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium chloride, is converted into formazan by cell 

metabolism. Similar is done to a negative control, a cell culture exposed to unedited cell medium. 

The cytotoxicity of a material or, more precise, the cell viability of the extract treated cells with 

respect to the control is related to the converted formazan. The amount of formazan can be 

determined via UV-Vis spectroscopy. All ceramics were found to be biocompatible with cell viability 

over 90% relative to the control independently from the extract concentration. [205] Interestingly, 

for the direct adhesion assay, the cells showed a distinct reaction, as depicted in Figure 21. The 

HUVAC cells were stained with calcein AM (green) and Hoechst 33342 (blue) to obtain information 

about the cytoplasm and nucleus. In Figure 21A, HUVEC is visible on the control, and the NiTi samples 

covered with Pt electrodes, light grey, and coated with a ceramic insulator.  It is visible that HUVEC 

preferred the control surface and the TaO coating over the YSZ coating with the result, that the 

biosensor coating of TaO may be more suitable for cells. The least preferred coating was that with 

SiOx. All these observations are in agreement with previous work.  This agreement shows, that 

cellular behavior towards the ceramic insulators is a general one and unaffected from other 

components of the biosensor. [206]–[211]   
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Figure 21 HUVEC growth on structured biosensor surfaces stained with calcein AM (green and for live cells) and 
Hoechst 33342 (Blue and for the nucleus). The Pt wires with a width around 50µm are coated with the ceramic 
insulator. The Pt areas with a width larger than 50µm are not coated. These are the electrodes A) Shows the cell 
growth on the structured biosensor surface with the different ceramic insulator coatings YSZ, SiOx, and TaO and 
the control. B) Shows the HUVEC growth influenced in their orientation by the Pt wires of different width. Scale 
50µm.  

In Figure 21B, an example of the cell growth on the structured biosensor is shown. The cell growth is 

influenced by the width of the Pt wires and their coating. The top row in Figure 21B depicts the 

layered images with calcein AM for the cytoplasma in green, Hoechst for the nuclei in blue, and 

reflective light microscopy in grey for the biosensor compartments , while the lower row shows 

nuclei stained in blue. The light grey represents the Pt wires, the dark grey the ceramic insulator. The 

width of the Pt wire mediates the direction of cell growth. For the wires larger than 50µm (left) and 

without coating the cells are aligned along the wires. For the coated wires with smaller width (50µm), 

the cells grow over the structures. The growth there is nearly perpendicular to the structure. This 
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becomes visible when the cell nuclei are compared along their major axis. The major axis is the 

widest length of the epileptically formed nucleus. This observation indicates that HUVEC aligns with 

the structures, which are larger than 50µm. Considering the production of the biosensor, this is 

reasonable as a marginal topography appears, which guides the cellular behavior, as discussed in 

chapter 1.1.4.1, “Topographical influences on adhesion and migration of cells” on page 5. The Pt 

wires are on top of the NiTi and coated with the ceramics using reactive sputtering techniques. [205] 

This might form a discrete curvature for the cells possible to sense and to grow over comparable to 

the cells on the small structured YSZ coating. This is in agreement with work about surface structures 

with curvature. [174]–[177], [212] The alignment of the cells shows that not only the basic material 

properties and negative cytotoxicity is important for the design of an implant, but also the 

topography as described in section ‘Cell interaction with 2D matrix surfaces’ on page 3. In conclusion, 

the miniaturized biosensor is highly biocompatible and in compliance with sensible human primary 

cells. Additionally, the potential of the intended structuring of future micro biosensors was shown for 

guided cell growth. [170], [213] 

 

For further details onto the biosensors, the reader is referred to the following publication: 

C. Chluba, K. Siemsen, C. Bechtold, C. Zamponi, C. Selhuber-Unkel, E. Quandt, R. Lima de Miranda 

(2020): Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and 

diagnostic instruments. Biosensors and Bioelectronics, 153, 112034. 

 

3.2 RESULTS AND DISCUSSION FOR ‚ENGINEERING OF A NEW BIO-CROSSLINKER FOR ENHANCED 

CELL ADHESION’ 

Engineering chemical functional molecules require the knowledge of the final application and the 

required properties. This part of this thesis will highlight the synthesis of an initially protein inert 

hydrogel, poly(2-hydroxyethyl methacrylate (pHEMA), into an immediate reactive hydrogel for 

biofunctionalization and cell adhesion. Furthermore, the effectiveness of the BCL was determined 

with cell adhesion assays and investigated cytotoxicity of the hydrogel matrix with incorporated bio-

crosslinker (BCL). The bio-activity of the former protein inert hydrogel pHEMA was based on the 

thiol-maleimide reaction which is possible because of the reactive new BCL, 3-maleimidopropionic 

acid diethyleneglycole methacrylate. For this instant bio-activity and increased reactivity of the 

pHEMA hydrogel towards adhesion proteins, the new BCL needed to be distributed throughout the 

whole three-dimensional polymeric pHEMA structure. The incorporation of the BCL into the hydrogel 
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was ensured by choosing a methacrylate group, which can react with its vinyl group in a free-radical 

polymerization. The vinyl group of the methacrylate group reacted with the monomer 

hydroxyethylenemetharcylate (HEMA) and crosslinker (CL) ethyleneglycoldimethacrylate (EGDMA) 

and formed the hydrogel pHEMA. Diethyleneglycol (PEG2) was chosen as non-toxic linker between 

the polymerization part and the protein-binding. The protein-binding part, a maleimide group was 

synthesized from ß-alanine and maleic anhydride. [204] The maleimide group is highly susceptible to 

thiol groups, which are present in amino acid functionalities like cysteine groups in fibronectin. This 

construction, the new bio-crosslinker incorporated into the pHEMA structure and connected to 

fibronectin (FN), resulted in a biofunctionalized pHEMA for enhanced cell adhesion. The details for 

synthesis and incorporation of the BCL are discussed in section 3.4.1 and 3.4.2, starting on page 75. 

In order to facilitate the reading of this work and the figures, a short code with definition is 

introduced. The crosslinker concentration, CL, which link the monomer chains together, is given in 

wt.%. The bio-crosslinker, BCL, links the adhesion protein to the polymeric structure with the 

concentration given in mol.%. The concentration of fibronectin (FN) is given in µg/mL. The 

abbreviation pHEMA_1CL_5BCL_1.5FN represents a pHEMA hydrogel with 1wt.% crosslinker EGDMA, 

5mol.% bio-crosslinker biofunctionalized with fibronectin of a concentration of 1.5µg/mL. 

To observe the biocompatibility of the newly created bio-crosslinker (BCL), 3-maleimidopropionic 

acid diethyleneglycole methacrylate, the BCL was incorporated into a pHEMA hydrogel. From the 

synthesized hydrogel matrices MTT assays were conducted following the ISO 10993-5 and ISO 10993-

12 to evaluate the cytotoxicity of the material using extracts from the hydrogels. The extracts were 

prepared by the immersion of the respective material of interest into cell medium under cell culture 

conditions as described earlier.  

 

Figure 22 Results of the in vitro MTT cytotoxicity tests presented with means value and standard 
deviation for different extract concentrations. All materials are biocompatible, and cell viability 
relative to the control is over 90% for all tested samples. CL refers to the crosslinker EGDMA in wt.%; 
BCL refers to the bio-crosslinker in mol.%. 
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Figure 22 shows the result of the MTT cytotoxicity tests. Here, no extract concentration had been 

found to be under 70% cell viability relative to the control. Moreover, the extract concentration for 

100vol.% and 50vol.% have been similarly over 90% cell viability, as seen Figure 22. Both, pHEMA 

with and without the BCL, can be rated biocompatible according to the ISO 10993-12, as discussed 

above. [146]  

 

 

Figure 23 Schemes of biofunctionalization with three variation. P depicts the rest of the adhesion 
protein; R depicts the rest of the molecule A) Functionalization of carboxylate groups using EDC in a 
buffered solution. In the end, a stable bond is formed. However, during the synthesis, the 
intermediate step is prone to hydrolysis.  B) A-NHS is adapted as BCL towards the hydrogel of interest, 
forming stable amid bonds when adhesion molecules come across the fixed A-NHS groups. C) depicts 
the reaction of the new BCL between the maleimide group of the incorporated BCL with a thiol-group 
of an adhesion molecule.  

In Figure 23, adhesion protein coupling using EDC and A-NHS [94] are shown as a comparison to the 

coupling with the new BCL.  While both are working, EDC coupling in our experimental work has 

shown to require more time due to several synthetic steps, while A-NHS molecules are slightly 

unstable during hydrogel synthesis as their hydrophilicity is increased as a result of the sulfonate 

group.  The biofunctionalized hydrogels were studied for their cell adhesion properties. For this, 

various concentrations of FN were used. The sample weight was chosen to be approximately 100mg 
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in order to have comparable amounts of BCL, with the assumption of an even distribution. The high 

affinity of fibronectin towards the BCL was anticipated, resulting from the high affinity of the 

maleimide group towards thiol- or amine groups, dependent on the present pH. [214] Since 

fibronectin is rich in cysteine (containing a thiol side group), reaction with the maleimide results in an 

organosulfide, specifically a thioether. Figure 23C depicts the scheme for the biofunctionalization 

using the synthesized BCL.  For the evaluation of hydrogels with BCL implementation, cell adhesion 

tests were carried out for two matrix types. Matrices without BCL and matrices with similar 

crosslinker (CL) ratio and with BCL were used. Interestingly, for both matrix types, cell adhesion was 

shown. The cell adhesion for pHEMA matrices with BCL was expected to be successful to be 

enhanced over cell adhesion on pHEMA without BCL. It was also expected that the cell adhesion and 

the cell covered surface area, variate with the FN concentration. At a closer look, Figure 24, a porous 

structuring of the samples has been found at the sample surface. The porous structure is visible due 

to the composite image of the merged bright field and fluorescent images. The cells in green were 

stained for their cytoplasm with calcein AM, and also for their nucleus and dead cells. These 

fluorescent dyes, Hoechst and propidium iodide, were adsorbed into the hydrogel sample, visible 

with the purple surface in Figure 24. Cell adhesion on these structures is in agreement with the 

literature, where different types of hydrogel matrixes, with specific topographies on 2D surfaces, 

enables cell adhesion without BCL or FN on protein inert hydrogels. [73], [177], [215]–[217]  

 

Figure 24 Shows a composite image of a porous pHEMA sample surface from a pHEMA_1CL_10FN 
sample with adhering cells. The composite image shows the merged bright field and fluorescence 
images from the fluorescently stained cells. Cells were stained with calcein AM, green, for their living 
cytoplasm, with Hoechst for their nuclei in blue and additionally with propidium iodide for dead cells, 
red. The cells are visible in green, the fluorescent dyes Hoechst and propidium iodide were adsorbed 
from the hydrogel matrix, depict the sample in purple. The sample is composed of 1wt.% EGDMA 
crosslinker and no bio-crosslinker. The sample was exposed to 10µg/mL FN. Scale bar: 50µm.  
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Figure 25 ) Shows the result of the cell adhesion assays and exemplary images. The concentration of 
the crosslinker (CL) is given in wt.%, the concentration of the bio-crosslinker (BCL) is given in mol.%. A) 
Shows the results of cell covered sample surfaces with the mean value and standard deviation in 
dependence of the fibronectin concentration after 24h of incubation. Cells were fluorescently stained 
with calcein to determine the adhesion area. Left four repetitions are shown, at the right side one 
repetition with another batch of BCL shown. Samples with 5BCL are covered with more cells 
compared to samples with no BCL. B)-I) show the cell morphology of Ref 52 wt cells on sample 
surfaces. Ref 52 wt cells were stained with Calcein AM, green.  B) – E) are pHEMA sample surfaces 
with 1CL and no BCL. B) pHEMA without BCL and 10FN C) pHEMA without BCL and 1.5FN D) pHEMA 
without BCL and 20FN and E) pHEMA without BCL without FN. All cells show a similar round 
morphology without lamellipodia. F)-I) are pHEMA sample surfaces with 1CL and 5BCL F) pHEMA with 
BCL and 10FN H) pHEMA with 5BCL and 20FN G) pHEMA with 5BCL and 1.5FN I) pHEMA with 5BCL 
and without FN. All cells show lamellipodia and a stretched morphology compared to the pHEMA 
surfaces without any BCL. The best distribution of cells at the surface can be found in for a 
biofunctionalization with 10FN and 5BCL(G). K) And L) show the distribution of Ref 52 wt cells in 
control wells. The distribution is evenly, and the cells are spread over the surface. Scale bar: 50µm 

In Figure 25 the cell adhesion on matrices without BCL was found to increase, with an increase of FN 

concentration. This agrees with the finding in other work on pHEMA, where the surface topography 

was altered, due to pHEMA brushes, resulting in an increase of protein absorption. [218] However, a 
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mean of over 5% cell covered surface area were not reached. The morphology of the attached cells 

was roundish, with less or no visible lamellipodia, a sign for unspecific and poor adhesion, see images 

above Figure 25B-E on page 71. For the pHEMA matrices with BCL, the mean of the cell covered 

surface area has been experimentally shown to be above 7%.  These results were also found for 

matrices with BCL but without added FN. The usage of cell culture medium where proteins are 

available, in combination with the surface topography and available BCL molecules for protein 

absorption, lead to cell adhesion. Moreover, the morphology of the adhering cells shows spreaded 

and elongated cells with visible lamellipodia. Additionally, the cells were not just clustered together 

but were found with a larger distribution over the surface, see Figure 25F-H, similar to the control 

cells J-K. 

The data and experiments within the sections 3.2 and 3.4 will be part of a manuscript ‘A 

polymerizable bio-crosslinker for implementation in pHEMA hydrogels to covalently link fibronectin 

for enhanced cell adhesion’ by myself, Laura Schumacher, Clement Appiah, Christine Selhuber-Unkel, 

and Anne Staubitz. My contribution to this manuscript was the idea and conceptual design of the 

study, the supervision of Laura Schumacher during her master thesis, parts of the cell experiments 

and their evaluation, and the lead part of the scientific writing. I worked in the lab of Prof. Dr. 

Christine Selhuber-Unkel as well as Laura Schumacher as part of her master thesis. Mainly, she 

worked in the lab from Prof. Dr. Anne Staubitz from Bremen University as well as Clement Appiah.  
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3.3 CONCLUSION AND PERSPECTIVES FOR 2D CELL MATRIX INTERACTION 

In the current chapter, the work conducted on 2D cell-matrix interactions on biosensors and pHEMA 

matrices was presented. Both matrices of profoundly different materials showed high 

biocompatibility, which enables them to be used in the future, in both in vitro and in vivo 

applications. The first part of this chapter, 3.1, showed the investigation of primary cells on 

miniaturized biosensors and their impact on cellular behavior. The biosensors, with its different 

coatings, proved to be highly biocompatible with all ceramic insulator coatings in relation to the 

control. The cell adhesion assays showed to be in favor of the TaO coating. Additionally, the 

insulating surface coating and the Pt wire mediate the cell growth. This indicates that indeed active 

guidance in cell growth in biosensors is possible. This active guidance could be used for directed cell 

growth and alignment on future biosensors or implants. Guided cell growth on the implants could 

facilitate the interaction between the implanted devices and cells from the tissue environment. 

In the second part of this chapter, 3.2, a novel synthesized biocrosslinker 3-maleimidopropionic acid 

diethyleneglycole methacrylate for the use inside of hydrogels was described, especially for the use 

with protein inert hydrogel matrices. The introduction of the new BCL during the hydrogel synthesis 

is a possible strategy to overcome the current difficulties in 3D biofunctionalization of protein inert 

hydrogel samples. It will open the way of high-throughput cell-matrix interaction tests for different 

types of adhesion proteins investigated from one sample. Moreover, in comparison to the actual 

method for the 3D biofunctionalization used in chapter ‘3D cell-matrix interaction’ the here 

presented method is less invasive to changes in pH inside the precursor mixture and with this more 

stable to use. Interestingly, the single original educts for the bio-crosslinker 3-maleimidopropionic 

acid diethyleneglycole methacrylate are known but they have not been synthesized together up to 

this point to obtain a new bio-crosslinker.  
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3.4 BIO-CROSSLINKER SYNTHESIS AND SAMPLE PREPARATION 

3.4.1 Creating and incorporating the bio-crosslinker 

The synthesis of the newly created bio-crosslinker (BCL) 3-maleimidopropionic acid diethyleneglycol 

methacrylate was done with its functional groups chosen according to the necessary requirements 

and aims. These aims are the enhanced cell adhesion to protein inert hydrogel matrices, the 

synthesis of a biocompatible hydrogel, and reactive groups susceptible to adhesion proteins. The BCL 

requires for its application a possibility for free-radical polymerization for the polymer binding part 

and the susceptibility of the protein binding part to specific functionalities of adhesion molecules. For 

this objective, the ECM adhesion protein fibronectin (FN, BioMatrix) was chosen as adhesion 

molecule. The adhesion protein FN includes a sequence to which cells adhere, the RGD-sequence 

(Arg-Gly-Asp). Additionally, FN contains large quantities of cysteine whose thiol functional groups can 

be addressed by several chemical reactions. [201]–[204] In this work, a maleimide group was chosen 

as the protein binding part because of the reactivity towards thiol groups and the stable formation of 

a thioether bond. The maleimide group was synthesized from ß-alanine (Alfa Aesar, Germany) and 

maleic anhydride (Roth), as depicted in Figure 26 on page 75. ß-alanine and maleic anhydride were 

synthesized in the presents of dimethylformamide (DMF), N-hydroxysuccinimide (Apollo Scientific) 

and dicyclohexylcarbodiimide (DCC, Merck) with a yield of 54% under nitrogen atmosphere forming 

3-maleimidopropionic acid-N-hydroxysuccinimide ester, Figure 26A. The polymer binding group and 

linker were synthesized from diethylene glycol (PEG2, Jkchemicals) and methacrylic acid. First, 

diethylene glycol was stirred in the presents of para-toluenesulfonic acid monohydrate (pTSA, Sigma 

Aldrich), toluene (Walter) and methoxyphenol (Sigma Aldrich). Next, methacrylic acid was added to 

the stirred solution. A yield of 71% was obtained from the product 2-(2-hydroxyethoxy)ethyl 

methacrylate, Figure 26B. After both products were obtained, Figure 26A and B, they were cleaned 

and purified before they served as educts for the synthesis of the bio-crosslinker, as depicted in 

Figure 26C. The bio-crosslinker 3-maleimidopropionic acid diethyleneglycole methacrylate was 

synthesized from 2-(2-hydroxyethoxy)ethyl methacrylate and 3-maleimidopropionic acid-N-

hydroxysuccinimide ester, Figure 26C.  Triethylamine (Fluorochem) was added to 2-(2-

hydroxyethoxy)ethyl methacrylate in ethyl acetate (Fischer Chemicals), followed by 3-

maleimidopropionic acid-N-hydroxysuccinimide ester. The suspension was heated under reflux and 

observed via thin layer chromatography. The product was reduced with evaporation and purified 

with column chromatography. As the BCL is able to co-polymerize with HEMA and EGDMA because 

of its methacryl functionality, the BCL will be distributed throughout the whole hydrogel volume 

crosslinked to the three-dimensional polymeric structure. 
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Figure 26 Scheme of BCL synthesis established with and by M.A. Laura Schumacher. A) Synthesis of 
the building block for the protein-binding part from ß-alanine and maleic anhydride. B) Synthesis for 
the polymerization and linker part from diethyleneglycol and methacrylic acid. C) Synthesis of the BCL 
from the products of A and B.  

3.4.2 Synthesizing pHEMA with the new bio-crosslinker 

The binding of the new bio-crosslinker into the pHEMA structure is enabled due to its methacryl 

functionality. The methacryl functionality has a vinyl group that will participate in free-radical 

polymerization used for various polymers and hydrogels. One of these hydrogels prepared via free-

radical polymerization is pHEMA. Free radicals initiate the polymerization from the reaction initiators 

such as ammonium persulfate (APS, Sigma-Aldrich). The reaction is accelerated with the use of 

N,N,N‘,N‘-Tetramethylenediamine (TEMED, Sigma-Aldrich) The radical polymerization is 

propagated from one monomer to the other until no monomer can be accessed and transfer the 

radical, which indicates the end of the polymerization process. Several factors have to be considered 

during the polymerization process i.e., temperature, UV-light, or pH. In the precursor solution, a pH 

value to high or too low affects the initiator's effectiveness. High temperature or UV-light can form in 

most polymer solution radicals itself and increasing the consumption of monomers with the result of 

shorter monomer chains. Low temperatures and low numbers of radicals can lead to the opposite 



76 
 

effect. The propagation for single chains works at its best, with a low chain conversion, which results 

in continuous long chains. Both cases will change the material properties of the hydrogel, such as the 

molar mass of the single chains and the hydrogel stiffness accordingly. [219]  

In the present work, the BCL, the monomer HEMA (100 mg, 0.77 mmol), water (0.10 mL), the 

crosslinker EGDMA (0.1 – 15 wt. %), and the initiator APS (0.1 wt.%, Sigma-Aldrich) were added into a 

pre-dried vial with a septum, purged with N2- gas for minutes and stirred with a magnet.  

Additionally, the solution was mixed in an ultrasonic bath (Bandelin electronics) for 5 minutes. Both 

procedures were done to obtain a hydrogel with equally distributed BCL.  In order to reduce the 

oxygen amount in the precursor mixture, the solution was degassed. Furthermore, the precursor 

solution was heated to 80°C for 5 minutes before the second initiator TEMED (0.15 wt.%, Sigma-

Aldrich) was added with a syringe (Braun). This mixture was again mixed in the ultrasonic bath for 

one minute. For the polymerization, the final solution was placed in a water bath of 80°C and 

polymerized in the absence of oxygen. After the polymerization, the hydrogels were detached from 

the vial and washed for three days in distilled water (AppliChem). 

 

3.4.3 Biocompatibility, biofunctionalization and cell adhesion on BCL containing pHEMA 

In order to examine the biocompatibility of the newly created bio-crosslinker 3-maleimidopropionic 

acid diethyleneglycole methacrylate and the efficiency of cell adhesion, cytotoxicity via MTT-assays 

and adhesion assays were conducted. For all assays, Ref 52 wt cells were used. The MTT-assay was 

conducted as described in section ‘cytotoxicity’ on page 28 using the ISO standard 10993-5 and 12. 

[145], [146] For the adhesion assay 50 000 cells per well in FlouroBrite medium (Gibco, USA) with 

10 % Fetal Bovine Serum (FBS; Biochrom, Germany) and 1 % penstrep were cultured for 24 h on the 

sample surface. For the biofunctionalization, which proves the availability of free reactive groups of 

maleimide, the adhesion protein fibronectin was used. Samples were sterilized in 70vol.% ethanol 

(Walter) and rinsed with a 50mM solution of 2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonic 

acid (HEPES, Sigma-Aldrich). Next, the samples were incubated overnight in a fibronectin solution of 

preferred concentration (1.5µg/mL up to 20µg/mL). After this, the samples were washed with 

phosphate buffered saline (PBS), and cells were seeded on top of the sample. The samples were 

then incubated for 24 h, after which staining solutions were added to observe the cell adhesion by 

fluorescent microscopy. For the examination of the direct influence of the samples towards the cell 

adhesion and morphology, the cells were fluorescently stained in their cytoplasm as well as in their 

nucleus using several dyes Calcein AM (BD Science) for the living cells, propidium iodide for the dead 

cells, and Hoechst for the nucleus. For the imaging, the BX43 (Olympus), as well as the IX81 
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(Olympus), were used. For the controls, the same number of cells were seeded into a 12well plate 

and treated similarly. 

For the determination of the sample area covered by cells in percentage, the area of the 

fluorescently stained cells was assessed using Fiji and its function of particle analysis. [168] All data 

presented show the means and standard deviation, averaged from the different positions and 

samples investigated. 
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4 SWOLLEN HYDROGEL MATRICES AS DRUG-RELEASE RESERVOIRS  

4.1 INTRODUCTION 

Hydrogels have been in use for substance and drug release in several applications. To name some, 

oral administered anticancer agents or ant-acids are available. [220]–[222] The ability of hydrogels to 

take up solutions, to swell, and to release the substances or drugs provide ideal conditions for the 

use in future in vivo or in vitro applications, where soft matrices are required. Even a release over 

hydrogel of nanoparticles to the raspatory system or the skin is reported. [223] Necessary for the 

treatments using drug release is the successful delivery to the aimed location. In case of the desired 

location of the brain any orally or dermally taken substance needs to go through the blood brain 

barrier. This barrier is around the brain and separates the brain from the rest of the immune system. 

[220] To overcome this barrier, the applied dosage must be tremendously high for reaching a low 

concentration at the local site within the brain. By positioning therefore a drug loaded and hydrated 

hydrogel directly inside the patient, e.g., inside the brain, high substance dosages towards the body 

could be avoided. [224] Advantageous for in vivo application would be degradable hydrogels to spare 

the patient additional invasive treatments. [225]–[227]  

However, studies of the in vitro applications of drug release towards single cells or organotypic tissue 

slices are important to increase the knowledge about the effectiveness. Nevertheless, as first step 

the release and influence of the substances or drugs of choice from and to the matrices need to be 

investigated. One drug of interest for such investigation is ethosuximide (ETX), which is a water-

soluble drug to treat childhood absence epilepsy. [228], [229] Childhood absence epilepsy affects the 

patient in a way, that activities, e.g., drawing or chewing, are abruptly paused for some considerably 

time of several seconds. During this timeframe, seizures within the brain can be made visible with 

electroencephalography. The electroencephalography shows spike waves for the seizures, which 

starts without pattern, but that can be reduced with anti-seizure drugs such as ETX. It is suggested, 

that ETX can block the respective T-type calcium channels, responsible for the synchronized activity 

of the neurons in charge. [91], [230] Another drug of choice for the investigation of the release from 

hydrogels in suspension would be curcumin. Curcumin is a hydrophobic favoured substance to be 

used in different approaches. It is a bioactive compound and known for its anti-inflammatory effects 

on the skin. [231] However, it is hardly water soluble and self-assembles within water. [231]–[233] In 

this chapter, I present the investigations regarding substance release from hydrated matrices in 

suspension to achieve an understanding of whether drug release from mechanical adapted and 

swollen hydrogels can appear over an extended period of time. For this, two different types of 

hydrogels were used, first a natural and degradable hydrogel based on alginate, and secondly, a 
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synthetic hydrogel, polyacrylamide. The substances used where ethosuximide (ETX) and curcumin 

(Cur).  

4.2 RESULTS AND DISCUSSION FOR ALGINATE-BASED HYDROGEL DRUG RELEASE 

In the drug release study based on degradable alginate-based hydrogels and ethosuximide (ETX), the 

alginate samples were prepared by covalently crosslinking using adipic acid dihydrazide (AAD) and 1-

ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) for the formation of a hydrazine 

bond. The hydrazine bond was required to avoid the traditionally method of physical crosslinks with 

Ca2+ ions as described in section 1.2.3.1 on page 11. The Ca2+ ions will form a chelate complex with 

the guluronic building blocks of different alginate molecules. Thus the alginate solution polymerizes 

and forms a hydrogel. However, as the alginate was indented to be used for studies in combination 

with anti-seizure drugs in vitro and later in vivo inside the brain, any use of Ca2+ ions inside the 

hydrogel would challenge the effect of ETX on the T-type calcium channels of the neurons. The 

detailed procedure for the alginate samples is described in section 4.4.1. on page 95. Shortly, a 2wt.% 

alginate solution was prepared in a buffer solution of 3-(N-morpholino)propanesulfonic acid (MOPS). 

The crosslinker AAD was added to the alginate solution. In total, three different concentrations, 

0.094M, 0.15M, and 0.2M, were prepared, later referred to as AADlow, AADmedium, and AADhigh. Next, 

the EDC solution was prepared in MOPS buffer. After cooling and degassing, the respective alginate-

AAD solution and the EDC solution were mixed in the ratio 1:1 and poured into a mold. After the 

polymerization the hydrogel samples were washed to remove the excess crosslinker educts. After 

these steps, the hydrogels were infiltrated with the substance of interest, here ethosuximide (ETX), 

as described in section 4.4.2, see also below (Figure 32). In short: Hydrogels were dehydrated in an 

ethanol (EtOH) series, were the volumetric concentration of the ethanol was increased from 70vol.% 

up to 99vol.%.  After taking with a tissue any additional EtOH from the hydrogel matrices, they were 

immersed in an aqueous solution with the respective drug of favored concentration. After the 

infiltration, the hydrogel matrices were immersed into glass flasks with lid filled the storage solution, 

an artificial liquor (aliquor), which represents the cerebrospinal fluid within the brain. The glass flasks 

with lid were placed in cell culture condition, 37°C and 5% CO2-gas , on a shaker to avoid static 

release conditions. 

Initially, the degradability of the lowest crosslinker concentration (AADlow) was studied to gain 

knowledge about the time frame when a material loss of at least 50% was achieved. The material loss 

indicates the matrix degradation and the accumulation of degradation products in the static storage 

solution. The storage solution was not exchanged during this process. In a later stage, and depending 

on the application, the storage solution can be diverse such as cell culture medium or another 

physiological solution like artificial liquor (aliquor), which represents the cerebrospinal fluid in the 
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brain. This is important since the accumulation of excess material and degradation products in static 

in vitro conditions could lead to cytotoxic effects in later investigations, as discussed in section 1.6.3 

“Cytotoxicity” on page 28. With the accumulated excess material and degradation products, the 

cytotoxicity was determined for the respective material. The alginate matrixes, without any 

dehydration processes treated, showed after seven days of incubation at room temperature in bi. 

dest. water, a weight loss of 50.06% ±13.21 %, and after 15 days a weight loss of around 60.44% 

±10.14% (Figure 27A). This is due to the hydrolysis of the hydrazine bonds in water and agrees with 

other work. [78], [227] Interestingly, the weight loss curve of the untreated hydrogel samples here 

presented has not a steep slope but seems to stabilize after 15 days. Within these 15 days, a 

degradation rate of 4.03% ±0.68% per day is found.  

Additionally, samples with three different AAD concentrations were evaluated according to their 

swelling behavior in bi. dest. water, as these results assign the optimal time point of equilibrium 

swelling and the ideal point for cell seeding on samples. In the following section, it is referred to as 

the lowest crosslinker concentration with AADlow. To the medium, crosslinker concentration is 

referred with AADmedium. The highest crosslinker concentration is indicated with AADhigh. Again, 

untreated samples were taken, dried at room temperature on air for some time, and next placed into 

bi. dest. water (3ml).  Remarkably, from the air-dried samples, the significant swelling of the samples 

could be observed after the initial 2h. Samples with the lowest AAD concentration (AADlow) swelled 

with a mean of 2612%, for AADmedium a mean of 706%, and for AADhigh, a mean of 574% was observed. 

After the first 2h, further swelling was, in its extent, neglectable, see below (Figure 27B). 

Nevertheless, it is shown with its low mean values but large standard deviation, which is ranging into 

the negative, that samples lose weight as if they degraded instantly when placed into bi. dest. water. 

Since the biocompatibility of samples used for in vitro and in vivo tests is highly required, the 

cytotoxicity was indirectly measured via MTT-assays. Due to the findings mentioned above, according 

to the degradability, the cytotoxicity of the samples and their degradation products were tested after 

the incubation and degradation for 8 days in 5ml cell culture medium. For the different 

concentrations of crosslinker used,  all concentrations were biocompatible, see below (Figure 27C). 

The means of the cell viability relative to the control were at 70% or higher for all extracts prepared, 

as discussed in section 1.6.3 “Cytotoxicity” on page 28 . This agrees with the findings and prior 

experiments about the biocompatibility of covalently crosslinked alginate. [78] 

 

 

For the direct test of cell-sample compliance, Ref 52 wt were seeded on top of biofunctionalized 

samples to assess whether they would grow with a healthy morphology, as discussed in section 1.6.2.  
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The cell morphology is different for the different cell types. A prediction of whether a cell 

morphology on a new sample material of any type indicates healthy cells is possible when the 

favored morphology of uncorrupted and healthy cells is known. Ref 52 wt cells are known to grow on 

cell culture well plates favorable in an elongated, polarized form with visible lamellipodia or focal 

adhesion cluster (FAC) formation. Cell adhesion was tested by seeding cells (Ref 52 wt) on top of 

covalently crosslinked alginate biofunctionalized with fibronectin or collagen I, as depicted in Figure 

27D and B on page 83. While the cells on the fibronectin biofunctionalized samples were imaged 

after 24h, the collagen I functionalized samples were imaged after 8 days of incubation. On both 

samples, elongated cells were found, indicating a not cytotoxic sample in direct contact. For the 

sample with collagen I biofunctionalization and long term incubation, a network of connected Ref 52 

wt cells is visible despite or especially due to the fact that the covalently crosslinked samples degrade 

over time. A hydrogel sample can be under stress, which would act on the adhering cells. The stress 

within the sample would act on the cells as if they would adhere to a stiffer matrix. The degradation 

of the hydrogel matrix could be responsible for relaxing the stress within the hydrogel. [167] 

Consequently, the stress relaxation within the cells would release the stress sensed from the 

adhering cells. 
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Figure 27 Weight loss and swelling behavior of covalently crosslinked alginate as well as the 
cytotoxicity evaluated via MTT-assays and representation of successful direct cell-sample interactions 
on 2D surfaces. A) Degradation of covalently crosslinked alginate, untreated, with the lowest amount 
of crosslinker used (AADlow) over 15 days, mean and standard deviation, n=12. B) Swelling data of 
untreated samples of all crosslinker concentrations after an initial swelling of 2h, mean and standard 
deviation, n=3. C) Cell viability relative to the control [%] assessed via MTT-assays, mean, and 
standard deviation, n=3. D) and F) exemplary cell adhesion images of cells on covalently crosslinked 
alginates biofunctionalized with fibronectin and collagen I. F) shows the cells on alginate, where MES 
buffer was used for the synthesis and fibronectin for the biofunctionalization. The cells were stained 
with calcein AM(green). E) Also, Ref 52 wt cells; alginate sample prepared with MOPS buffer and 
biofunctionalized with collagen I. Cell nuclei were stained with Hoechst (blue).  bar:100µm  
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The mechanical properties are important for matrix-cell interaction in vitro (as discussed in section 

1.1.4.2 on page 7) and especially for future in vivo applications as they mediate extern cellular 

behavior and cell internal processes. Consequently, the intention for the alginate-based hydrogels 

was the creation of a soft hydrogel with a Young’s modulus below 20kPa but also to assess the 

optimal mesh size for the release of substances within the brain. The optimal mesh size for drug 

release from hydrogel matrices depends on the molecular size of the investigated drug and the 

preferred release mechanism. Is the hydrogel mesh much smaller as the drug molecule, the release 

can take place due to swelling or degradation of the hydrogel matrix. Similar sized hydrogel mesh 

and drug molecule would interact with each other depending on the electrostatic charges of both. In 

a polymeric mesh much larger than the drug molecule the interaction between both would be 

limited and the release would be due to diffusion. However, the potential location for the drug 

release needs to be considered with the possible impact of the drug releasing matrix. The usage of 

hydrogel matrices with smallest polymeric mesh sizes would prolong possibly the drug release, but 

the small mesh size would increase the hydrogel stiffness. This increased stiffness could impact the 

tissue of the future application location adversely, leading to foreign body reaction. Nevertheless, the 

hydrogels matrices also needed to be in a state, were they were stiff enough to be easily handled for 

possible implantation procedures. This reasoning lead to the chosen crosslinker concentrations, 

AADlow, AADmedium and AADhigh. For the examination of the materials, the alginate with the lowest and 

with the highest concentration of crosslinker was analyzed using AFM. Thin alginate layers of 100µm-

300µm were prepared on glass slides, washed, dehydrated, and immersed into bi.dest. water before 

investigation. For the evaluation of the data, only the saturated curves were taken into account for 

the evaluation of the Young’s modulus using the Hertz model. [234] For the samples using a low 

concentration of crosslinker (AADlow) a distribution of different Young’s moduli has been found. Figure 

28A shows these values in box plots, where two samples displayed a relative mean value of 19.18kPa 

and 21.84kPa, while a third sample displayed a mean of 10.74kPa. The samples with a higher amount 

of AAD (AADhigh) showed mean values of Young’s modulus at around 6kPa. The data in Figure 28B 

show for the single positions measured at the samples a more random distribution within the 

Young’s moduli. This indicates a diffused concentration of actual crosslinks within the hydrogel at 

different positions. The reason for this could be due to diffusion inhomogeneity or particular due to 

the natural component alginate. The molecules of the sodium alginate display a range of sizes and 

could influence the crosslinking. The average mesh sizes of polymeric network  were calculated 

from the Young’s moduli values, as explained in chapter 1.4.  with following equations using the 

shear modulus G and the theoretical crosslinker density . [108], [119]  The shear modulus  and 

the Young’s modulus  are related over the Poisson’s ratio , equation (9). Followed with the relation 
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of the shear modulus and the crosslinker density  of the hydrogel in equation (10). The average 

mesh size of polymeric network  is then related to the crosslinker density  with unit volume 

assuming the meshes as a network of spheres, (11). The diameter of the spheres is then the average 

mesh size of polymeric network  .  is the gas constant,  the temperature and  is the 

Avogadro constant. 

 

Figure 28 Distribution of Young’s moduli and calculated average mesh size of the covalent crosslinked 
alginate matrices. A) Young‘s moduli from alginates with two different crosslinker concentration, and 
B) the relation of the Young’s moduli to the mesh size. In A) all data points from single samples are 
presented together in boxplots. These data points are specified for single positions per sample in 
together with the mean and the standard deviation of the calculated mesh sizes as bars in B). 

 

(9) 

 

(10) 



86 
 

 

(11) 

 

The Young’s moduli values for the AADhigh alginates were unexpectedly comparing the swelling 

results from the investigations of the swelling behavior found (Figure 29A). The swelling of the 

alginates with the high amount of the crosslinker adipic acid dihydrazite, AADhigh, was less prone to 

take up water, which is usually explained by the higher amount of crosslinker, which results in 

smaller mesh size. The reason could be an oversaturation of the AAD and their hydrazine groups, 

which form brittle intramolecular crosslinks, which are in agreement with other work. [78] It has 

been shown earlier that the Young’s modulus is strongly related to the mesh size of the polymeric 

part and its ability of swelling. [80], [81]  Hydrogels can be produced with a huge range in their 

stiffness from 0.5kPa up to 5MPa [235] , which depends highly on their average polymeric mesh size. 

For drug release investigations most studies report mesh sizes in a range of 5nm-100nm. [125]  With 

equations (9)-(11) the polymeric mesh size of the covalently crosslinked alginate was calculated to 

range between 0.5µm-3µm, see Figure 28B. For the investigations of the swelling behavior as result 

of the drug infiltration the hydrogel samples were treated as described in section 4.4.2 on page 96. In 

consequence the alginate matrices were dehydrated in an ethanol series, weighted and immersed in 

a solution with known concentration of the favoured drug. In this part of the work, ETX was used 

with three varying concentration. The ETX concentration ranged from 2M, 1.5M, and 0.5M, and 

water. It is to report that the 2M solution was an oversaturated solution which formed ‘oil’ droplets 

after resting and was a non-transparent solution after agitation, a sign of a supersaturated solution. 

[222], [236]  The infiltration of the ETX solutions showed an influence on the covalently crosslinked 

alginate matrices and their swelling behavior with respect to the concentration of ETX as depicted in 

Figure 29. 
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Figure 29 Swelling behavior of alginate matrices with respect to their crosslinker and ETX  as well as 
the theoretically calculated amount of ETX. A) shows the mean and standard deviation of all three 
independent experiments for the swelling behavior. In B) the means and standard deviations for the 
single independent experiments are depicted. The theoretically calculated amount of ETX inside the 
matrices are depicted in C) with means and standard deviation of all experiments. 
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While the lowest and highest AAD concentration had slightly similar swelling results shown as means 

with standard deviation from three independent experiments, see Figure 29A. The swelling for the 

medium crosslinker concentration shows in the same graph an increase of swelling with a decrease 

of the EXT concentration. The swelling of the samples was tested for statistical significance between 

the samples of the same crosslinker concentration and among the same solution concentrations of 

ETX. For this, results were tested positive for normal distribution of data, and an ANOVA test 

(uncorrected Fischer’s LSD test) was performed. As shown (Figure 29A),  the differences of the 

swelling in 2M ETX solution between the medium crosslinker concentration and the other both are 

significant. Moreover, for the medium crosslinker concentration, AADmedium, the swelling behaviors 

for the different ETX concentrations were also clearly different to each when comparing the results 

from the 2M towards the 0.5M and 0M solutions. This performance indicates a strong molecule-

matrix interaction of the AADmedium samples and less dominant for the samples of other crosslinker 

concentration. These samples seem to have too large mesh sizes to interact as strongly with the ETX 

inside the solutions, 0.5µm-3µm, as calculated earlier. Figure 29B shows the swelling of the samples 

in three independent experiments. Clearly, the range of hydrogel swelling differs for each 

experiment.  This is in agreement with the fact that the sodium alginic acid salt used is a natural 

product with a varying range of molecular sizes. Due to this, variations within different batches can 

be considered as expected. From the uptake of the solution into the matrix, a theoretical infiltrated 

ETX amount was determined, see Figure 29C, assuming a homogeneous distribution of ETX inside the 

solution. The theoretically calculated ETX amounts were below 40mg, with one outlier of AADhigh with 

the 2M ETX solution.  

Interestingly, the concentration of ETX released from the samples and measured via HPLC was higher 

than calculated, see Figure 30 . Considering the supersaturation of the 2M ETX solution, this is a 

reasonable consideration. Two phases formed from water and highly concentrated ‘oil’ droplets 

could have been not distributed evenly in the ETX solution. This could have lead to a not evenly 

infiltration of the ETX inside the samples and inside the matrix for different experiments. The release 

of ETX from fully swollen alginate matrices was evaluated for 20 days. During this time, the hydrogel 

matrices infiltrated with ETX were incubated under cell conditions, in artificial liquor (aliquor), and 

agitated at 80rpm. Additionally, every 24h, the whole release medium was exchanged with fresh 

aliquor to mimic the dynamic exchange of fluids inside the body. Via HPLC and double proof, an ETX 

concentration was detected even after 72h. Figure 30 presents data of two independent 

experiments, each with three samples. The data show the means and the standard deviations of the 

investigated ETX release, where A shows the ETX concentration in mg/ml, and B shows the total 

amount of ETX measured. For the alginate with the lowest crosslinker concentration, AADlow, 

infiltrated in 2M, 1.5M, and 0.5M ETX, different concentrations of released ETX were found. These 
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measured ETX amounts were respective 104.63mg ±51.22mg, 61.69mg ±0.019mg and 26.64mg 

±15.11mg obtained after 3h of incubation. These values were strongly decreased after 72h to 0.13 ±-

0.07mg, 0.02 ±0.02mg and 0mg ETX. An increase of ETX concentration was found for the medium 

crosslinker concentration, AADmedium. Similar to the findings for AADlow, the ETX concentrations 

decreased with time, Figure 29 and Figure 30. 

 

Figure 30 Results of the ETX concentration measured via HPLC using a logarithmic axis. In A) the ETX 
concentration is represented in the concentration mg/mL while in B) the whole concentration found in 
5mL supernatant  in mg is shown. 

The highest amounts of released ETX were found for samples with the greatest crosslinker 

concentration, AADhigh. Here, following amounts were found after 3h of incubation: 199.25mg 

±153.03mg, 126.31mg ±108.27 mg, 73.46mg ±74.069mg. These were decreased after 72h of 

incubation to: 2.54mg ±3.49 mg, 1.07mg ±1.19mg, 0.27mg ±0.47mg. The data show that the ETX 

concentrations found in the aliquor decreased as expected with time and infiltrated concentration. 

The range of the concentration found inside the AAD concentration increased with the increase of 

crosslinker (Figure 30). This indicates an interaction with the matrix, specifically with the crosslinker 



90 
 

involved as the ETX amount found increased with the crosslinker despite the large mesh sizes 

calculated from the Young’s moduli obtained with AFM measurements. As the matrices were already 

fully swollen, the polymeric matrices did not need time to swell or to dissolve the ETX. Thus, the 

samples released the ETX instantaneously via diffusion and mass transport from the sample into the 

supernatant around the hydrogel matrices. The matrix degradation inside the drug release condition 

was partly faster than described in other work, where alginate based hydrogels crosslinked with 

adipic acid dihydrazide without infiltrated substances were investigated. [78], [227], [237], [238] 

 Substantial for the matrix degradation could have been here the prior treatment of the hydrogel 

matrices, which includes the washing process, the dehydration of the matrices, and the infiltration of 

substances onto the matrices. Moreover, also the drug release with the incubation conditions was 

also responsible for the degradation of the hydrogel matrices. These treatments introduced the 

interaction between the crosslinker and the drug ETX into the matrices as well as a probable osmotic 

pressure due to a concentration gradient within the hydrogel matrices filled with ETX and the 

supernatant.  All treatments and interactions introduced probable stress towards the polymeric 

mesh and the covalent crosslinks. The impact of the stress on the hydrazine bonds could have made 

them more susceptible to hydrolysis and thus reduced the degradation time. A table of the time 

point of visual sample degradation can be found in the appendix in section 6.7 “Degradation of 

covalently crosslinked alginate” on page XIII. 
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4.2.1 Conclusion 

In this chapter, I presented the approach for swollen and degradable alginate matrices infiltrated 

with ETX, a drug for the treatment of absence epilepsy. The matrices were adapted to the lowest 

stiffness possible to achieve for usage. Whereas it is known that alginate can be used as degradable 

drug release matrices in various forms, from beads, NP or simple tables for the oral and systemic use 

[120], [123], [221], [239]–[242] few adjustments have been made for possible direct local application 

inside the brain. The here presented results could be useful for the possible application directly into 

the brain to gain a time window without adding drugs towards the patient. The fully swollen matrix 

enabled the direct release after insertion into the aliquor reservoir. With its soft degradable matrix, 

no mechanical harm will probably be done towards the future surrounding tissue. With its proven 

biocompatibility and degradability, it is ready to be tested in in vivo application. A first initial in vivo 

test in cooperation with Anna Buschhoff and Eva Peschke was conducted with much smaller hydrogel 

matrices (volume of 20µl) as investigated in vitro. The tests showed that the hydrated alginate 

matrices can be incorporated into the brain of a rat. The animal showed no adverse reaction ether to 

the implantation nor to the material. The next steps would be to increase the ETX concentration 

within the hydrogel matrices in order to decrease the seizures measured via EEG, and to investigate 

the degradation of the hydrogel matrices with magnetic resonance imaging (MRI). Future adaptions 

of the matrices could be done to enlarge the time window of the drug release. This adaption could be 

a second layer of a degradable and biocompatible hydrogel with a smaller polymeric mesh size. This 

could slow down the drug release from the hydrogel matrix.  
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4.3 RESULTS AND DISCUSSION FOR FREE CURCUMIN RELEASE FROM PAAM MATRICES 

Above I presented the findings for substance release from degradable alginate-based hydrogels. In 

this part, I present the investigated data of substance release from a synthetic PAAm based hydrogel. 

The substance used here was free curcumin. The aim is to investigate the release behavior from free 

curcumin (Cur) to gain a soft, hydrated, and curcumin releasing substratum for organotypic brain 

slice cultivation. Samples with 16vol.% BIS (Young’s modulus around 50kPa after equilibrium 

swelling) were prepared and treated as described below. Shortly: samples were dehydrated in an 

ethanol series, infiltrated with Cur, and immersed into a storage solution in a well plate for the 

investigation of the Cur release. The well plate was agitated and heated from below. For the 

infiltration Cur solutions with different molarities, 10µM, 20µM and 50µM were used. Samples and 

curcumin solution were incubated for three days in a fridge at 4°C to generate an uptake of curcumin 

by swelling. The release set-up and the measurements are described below, see 4.5.1 on page 97. 

Also here, the supernatant was exchanged every 24h to mimic the aliquor exchange inside the brain. 

The cumulative release was determined via UV-Vis with double determinations of micro-volumes 

from each well. The data in Figure 31 were determined using a calibration curve. The calibration 

curve was prepared for each measurement with data from a blank (just glass absorption was 

measured) micro-volume plate and Cur solutions with known concentrations. An adjustment of the 

calibration curves was necessary since some blanks showed deviations in the absorbance while the 

absorbance for the known Cur concentrations was stable. With this, the data for the blanks were set 

to known and right data points, which resulted in an adjusted calibration curve. 

For the first 24h inserted into a new solution, the curcumin release from the pAAm samples was a 

burst release (Figure 31). A burst release is an initial release of the substances or drugs showing a 

steep slope at first, which decreases rapidly after the first release. In the present case, all curcumin 

molecules from the pAAM surface and close to it seem to be released into the supernatant with the 

burst release. After the burst release, the following three days were stably from release day one to 

three. An enhanced release is seen after the exchange of supernatant within the first eight hours, as 

shown in Figure 31 on page 93. The cumulative release data points after 24h were slightly decreased. 

This directs to two possibilities: First, considering the fact that the release of the curcumin is 

enhanced in the first hours after the exchange of the supernatant due to large concentration 

differences of curcumin between sample and supernatant, the release is diffusion based. A later re-

adsorption into the matrix could have taken place using the different chemical potentials important 

for the drug release.  
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Figure 31 Data of the cumulative free curcumin release from polyacrylamide samples with 16 vol.% crosslinker. The release shows initial burst release followed 
from another three days of stable release for different infiltration concentrations (10µM, 20µM and 50µM curcumin) 
A) Data of cumulative release as mean and standard deviation from three samples. B) Curcumin release of single samples.(Calibration curve was adjusted and 
set stable for the determination of the blank (glass)) 
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The curcumin could be released from the high concentration inside the hydrogel mesh towards the 

supernatant (water) until an equilibrium is reached and back. Second, the hydrogel sample is still 

swelling and takes up a solution. With this effect ongoing over time and a slow swelling assumed, the 

curcumin is released but also taken up from the sample again. Both hypotheses seem probable, but 

the latter has to be taken into account more strongly. The reasons to consider the re-infiltration of 

Cur into the pAAm matrices are the storage, swelling, and initial infiltration conditions. As discussed 

earlier in this work in chapter 2,” 3D cell-matrix interaction” from page 31 on and in section 2.2.1 

“Improving the 3D experimental parameter” on page 35, the equilibrium swelling required two 

weeks within a fridge, see Figure 10C on page 41. The storage and swelling of hydrogels inside a 

fridge have been investigated over several weeks as found that pAAm tends to swell for some time. 

Here, it was found that an equilibrium and a mean stiffness was reached after two weeks of storage. 

With the dehydration of the hydrogel matrices and the infiltration Cur for three days within the 

fridge, the full swelling capacity of the pAAm matrices could have been still available. This would lead 

to swelling samples within the release solution. Interestingly, the data found for 20µM curcumin 

were different and not comparable towards the 10µM and 50µM results. Here, the release was 

superior for the 10µm and 50µM and barley visible for 20µM. Since the samples for the experiments 

came from the same batches, it cannot result from a material property or strong aberration during 

the infiltration. This molecule-matrix interaction seems to depend on the curcumin concentration 

and its eventual clustering of molecules in a certain size. 

4.3.1 Conclusion 

In this part of the chapter, I presented a polyacrylamide substratum infiltrated with curcumin. The 

release of curcumin was determined with UV-Vis. The hydrogel matrices showed a release of 

curcumin for several days with a large initial burst release followed with a more stable decreased 

release. The presented results show for each solution exchange an increased release with a 

decreased cumulative release after 24h. With this, the samples released the curcumin via diffusion 

due to concentration differences and re-absorbed the curcumin from the supernatant because of a 

not reached equilibrium swelling during the infiltration. The experiments showed the advantageous 

future applications of hydrogel substratum for in vitro organotypic brain slices or other organotypic 

cultured tissue slices. These substrates are hydrated, molecules, or substances below a certain size 

can enter or diffuse through to bring nutrition towards the slices. More importantly, hydrogels can 

generally be mechanically adapted for mechanically investigations of organotypic tissue slices similar 

to for the use of single cells. 
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4.4 METHODS FOR DEGRADABLE ALGINATES FOR DRUG RELEASE 

With the focus to produce a biodegradable and highly biocompatible hydrogel for future localized 

drug release towards the brain, a well-known component, alginate, was chosen. [84][237] 

4.4.1 Sample preparation and characterization of degradable alginate matrices 

The covalent crosslinked alginate-based hydrogel was prepared by a 2%.wt alginate solution in a 

0.1M Buffer solution. The Buffer was adjusted from the traditional used 2-(N-

morpholino)ethanesulfonic acid (MES, Sigma-Aldrich) to 3-(N-morpholino)propanesulfonic acid 

(MOPS, Sigma-Aldrich). In consequence, the comparable structure/size from MES and ethosuximide 

(ETX, Sigma-Aldrich), which has been overlaid with each other during the first HPLC measurements, 

did not give false-positive results. The crosslinker used was adipic acid dihydrazide, which formed 

with the free carboxylate groups of the alginate mediated by 1-ethyl-3-(-3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC, Alfa Aeser). This bond is degradable by the hydrolysis of the 

resulting hydrazine bonds between the carboxylate groups and the adipic acid dihydrazide (AAD, 

Sigma-Aldrich). [78], [227], [237] Three different AAD concentrations, 0.094M, 0.15M, and 0.2M, 

dissolved in 2wt.% alginate (Sigma-Aldrich) have been assessed for mechanical and substance release 

as well as biocompatibility and cell adhesion properties. The EDC concentration has been kept 

constant with 0.104M in MOPS buffer. For the biocompatibility, the samples of 800µL starting 

volume were washed twice and placed into an EtOH series, 70 %.vol - 99 %.vol, to dry the structure. 

Immediately after, the samples were washed and placed into sterilized bi.dest. water overnight for 

swelling. Following, the samples were placed in 5ml cell medium (DMEM, 1% penstrep, 10% FBS) into 

an incubator for seven days before the cytotoxicity tests have been performed. For the cell adhesion 

tests, the samples were washed, sterilized in 70%.vol EtOH for 15minutes and washed with 2-(4-(2-

Hydroxyethyl)-1-piperazinyl)-ethansulfonic acid (HEPES, Sigma-Aldrich) with pH 8.5. Cell adhesion 

was checked with fibronectin as well as with collagen I biofunctionalization to test the consequences 

about the carboxylate groups already used for the crosslinking and the direct impact on the cell 

adhesion morphology. In order to characterize the mechanical properties of the covalently 

crosslinked alginates and to determine the matrix mesh size, AFM measurements were applied and 

analyzed with the Hertz-model. The samples with the lowest and the highest concentration of 

crosslinker were investigated. For this, samples of an initial height were produced, washed twice, and 

placed into bi. dest. water for 24h in order to create similar mechanical and mesh size conditions for 

the characterized samples as well as those used for drug release investigations. The alginate samples 

were attached to functionalized glass slides and later glued into petri dishes so that they could not 

move around while measuring the stiffness. The glass slides were functionalized as described in 6.4 

“Hydrogel fixation on glass slides” on page X in the appendix, which serves as an interface for 
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covalent bonding with the alginate hydrogel. For the covalent bonding, the alginate was poured into 

a PTFE mold, and the functionalized glass slide was placed over the solution. [243]–[246] Calibration 

of the spring constant k, bead attachment, and measurement of the sensitivity from the cantilever 

were done before the AFM measurements. For each sample, three different macro positions were 

chosen, at least 1mm apart from each other. Each macro position was determined with nine micro 

positions 25µm apart from each other, measuring ten times each micro position. This was followed 

by measuring one micro position 100 times to assess eventual viscous behavior from the sample. The 

resulting force spectra curves were evaluated using the Hertz-model with the matlab code written 

from Huth et. al.. 

4.4.2 Drug infiltration into hydrogel samples 

For the substance infiltration, the whole procedure is depicted below (Figure 32A). The samples were 

dried with an EtOH series. Afterwards the excess EtOH was taken from the samples with a tissue and 

weighted. Subsequently, the samples were placed into the ETX solution for 24h to transform from 

the glassy polymeric state towards the swollen and drug-loaded state. Later, 24h after immersion 

into the drug bearing solution, the samples were measured again. From the up-take of the solution, 

the theoretical drug loading was determined as the concentrations of the ETX were known. Three 

different ETX concentrations were examined: 0.5M, 1M, and 2M ETX. For the dissolution of ETX 

bi.dest. water was used, and the vortex was used. For the 2M solution, it was visible that a 

supersaturation took place. Once the solution was agitated, a fine whitish suspension appeared into 

the solution following with a clearing of the suspension and the materializing of ‘oily’ droplets into a 

clear solution as described in the literature.[236], [247]  

 

 

Figure 32 Sketch of infiltration routine for the substances such as ETX and curcumin into the 
hydrogels. Polymerized hydrogels in the swollen state are immersed into an EtOH series to remove 
the water from the hydrogel matrices. This is followed by wiping the EtOH from the matrices. Next, 
matrixes are immersed in an aqueous solution inhibiting the favored substance. 
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Each sample was placed into 1ml ETX solution, which was agitated directly before adding the sample 

into a 24 well plate. For one independent release experiment, each ETX concentration was infiltrated 

into three samples of each alginate sample type characterized after the three AAD concentration. For 

the control measurements, the different alginate samples were immersed into bi. dest. water. In 

order to determine the drug release from the swollen samples as close to in vivo conditions as 

possible, the release was conducted inside an incubator to mimic the temperature conditions and 

agitated at 80rpm with a plate (KS 130 basic, IKA) in order to mimic the in vivo dynamics. Moreover, 

the liquid system in which the swollen samples were immersed was an artificial buffer system of 5mL  

(recipe see appendix 6.9 “Artificial brain liquor for release experiments” on page XV in the appendix) 

and was exchanged every 24h for 20 days from glass vials with lid (22mm diameter x 50mm height, 

avantor). This exchange was applied to mimic a dynamic solution exchange like the brain liquor inside 

the brain. Extracts were taken at various time points 3h, 24h, 48h, 72h and 7d, and placed in tubes 

directly into a freezer at -20°C for storage. From the collected extracts, the accumulated ETX 

concentration was determined via HPLC measurements. The HPLC measurements of ETX 

concentrations have been kindly conducted from Hanna Götsche in the group ‘Pharmazeutische 

Technologie and Biopharmazie’ of Prof. Dr. Regina Scherließ at the Institute of Pharmazie at 

Christian-Albrechts-Universität zu Kiel. Consequently, the exchange of artificial liquor was performed 

for 20 days. Each day, the samples were visually examined whether the alginate matrix has been 

completely degraded. 

4.5 PAAM AS HYDROGEL MATRIX FOR MOLECULE RELEASE  

4.5.1 Sample preparation and characterization 

For the initial study of the release of free curcumin from a hydrogel matrix, a synthetic non-

degradable hydrogel, polyacrylamide (pAAm), has been prepared. This project has been conducted in 

cooperation with Christina Schmidt from the group of Priv.-Doz. Dr. rer. nat. Kirsten Hattermann-

Koch of the Institute of Anatomy. The polyacrylamide has been prepared with 16vol.% crosslinker to 

the whole solution. For the whole precursor solution 1000µL AAm, 800µL BIS; 3075µL bi. dest water, 

50µL HEPES and 75µL APS has been mixed, and degassed for at least 5 minutes. Next, the last 

initiator, TEMED, has been placed into the beaker glass and the solution was thoroughly merged by 

resuspension. 

Following, 800µL precursor solution was poured into a PTFE mold with a diameter of 1.5mm and a 

height of 5mm. Samples were washed in bi. dest. water and immersed for swelling for two weeks. 

Next, the pAAm samples were immersed in EtOH and a series of concentrations from 70 vol.% to 99 

vol.% to remove the water from the matrix, as shown above (Figure 32). The samples, now in a glassy 
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state, were measured and immersed into 2mL curcumin (Sigma-Aldrich) solution of different 

concentrations. Consequently, the samples took up the solution, and the curcumin were infiltrated 

into the matrix. The concentration used were 10µM, 20µM, and 5oµM and as control bi. dest. water. 

After three days immersed at 4°C in the dark, samples were measured to determine the swelling and 

the curcumin concentration available. 

For each weight measurement, the excess solutions were swabbed away with a paper, and the 

supernatant was collected for quantification. For the examination of the release, the samples were 

placed into 2mL water in a 12-well plate (Sarstedt) on a shaker (IKA) at 300rpm. Heating was 

administered from beyond with 37°C.  The cumulative release was determined for every 24h for 1h, 

2h, 4h, 6h, 8h for in total four days. The supernatant was exchanged accordingly, every 24h to mimic 

a dynamic system. The extract was taken in a volume of 2µL, and the concentration was determined 

with UV-Vis at 202nm wavelength in a micro-volume plate (Biotech).  
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5 CONCLUSION  AND PROSPECTS OF THE PRESENTED WORK 

In this work, the trinity of bio-matrix interaction from the surface to volume with additional drug 

release has been investigated. The determination has been done towards an enhanced 

understanding of cell-matrix and substance-matrix interaction. These are the keys and major 

objections necessary for augmented implant designs within soft tissue aiming for local substance 

release. For this superior aim, this work was divided into the sections 3D matrix-cell interaction, 2D 

cell-matrix interaction, and drug release.  

In the first part, mammalian cellular behavior within 3D microstructured as function towards the 

mechanical properties have been investigated in pAAm hydrogels. The range of the mechanical 

properties was chosen according to the range of soft tissue within the human body. The lower set-

point was the brain as the softest tissue possible. Here I reached a Young’ moduli of 1.1kPa ±0.54kPa 

with a 1vol.% crosslinker concentration. The highest set-point was chosen to be in the range of 

muscle tissue and reached a Young’s moduli of 50.09kPa ±4.32kPa with a 16vol.% crosslinker 

concentration. For the necessary biofunctionalization with collagen I, a bio-crosslinker was 

incorporated within the precursor with a successfully proved concentration of 35.47µM. With these 

approaches, I was able to show a relation between the cellular behavior in soft 3D environments 

connected with the architectural sample features. The cells did not just react towards the mechanical 

clues, e.g., with rupture events of the nuclear envelope, but had a strong preference of location 

within the structured matrix. Here it is conclusively shown that an implant not just needs to be 

compliant in a mechanical point of view but must display architectural features that support the 

preferred cellular reaction. Prospects for this approach of 3D microstructured in vitro samples are 

live cell staining for migration related cell compartments to gain more in-depth knowledge about the 

use of myosin or actin based migration path within soft structures. 

As the lamin concentration mediates the nuclear envelope stiffness, additional tests with varying 

lamin concentrations in cells and stained or transfected adhesion proteins like zyxin would broaden 

the information gained during the experiments within the microstructured hydrogels. With this 

sample type the use for traction force microscopy (TFM) could be used extensively in order to 

investigate the 3D cell-matrix interaction inside pre-structures environments. This would be 

beneficial as some influencing factors can be excluded, such as the need for cells to find a new path 

through the embedding environment.  
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The investigations of 2D cell-matrix interaction followed this work. Here, the main emphasis was on 

the cell interaction towards a protein inert hydrogel pHEMA with an incorporated newly designed 

bio-crosslinker. This bio-crosslinker can be incorporated into any hydrogel, which is synthesized using 

radical polymerization. The free protein binding unit is highly susceptible to cysteine, which is 

present in large amounts in fibronectin. For the protein inert hydrogel pHEMA it was possible with 

the new bio-crosslinker to increase the cell attachment. After 24h the pHEMA surface was covered 

with cells over 25%. For this the surface was biofunctionalized with 10µg/ml fibronectin. The 

favorable biocompatibility of pHEMA was maintained with the bio-crosslinker incorporated. For this 

work, prospects and next steps are the applications if the BCL not only in pHEMA but also in other 

hydrogels such as in pAAm and applicate the BCL for 3D microstructures hydrogels. Moreover, 

establishing this new bio-crosslinker to a standard BCL for biomaterials would reduce the time 

necessary for biofunctionalizations and enable high throughput investigations. 

Since local substance release was an essential feature in the last part of my work, I demonstrated the 

drug release from two different systems. In the first approach, it was shown that a time prolonged 

release in dependence of the internal hydrogel structure is possible. The drug ETX was released even 

after 72h, and the degradability of the covalently crosslinked alginate matrix was existent in the 

present of the infiltrated substance. This shows the availability of this system for future in vivo 

application. For the second approach, a release from non-degradable matrices of pAAm was 

established with curcumin, an anti-inflammatory substance. It was shown here for both approaches 

that the drug concentration is an essential factor for the successful release. In the future this 

acquired knowledge can be used for future in vivo and in vitro applications. The degradability, 

biocompatibility, and compliance of covalently crosslinked alginate with ETX made it to a perfect 

hydrated implant for local drug release in vivo. More, applying a degradable layer on top could 

prolong the release much further. For the second approach, it has been shown that substance such 

as curcumin can be steadily released from hydrated matrices. This can be used in order to create a 

softer substratum for organotypic tissue slices, e.g., brain slices, in order to investigate various 

stiffness influences. 

Overall, the common objective of these studies was the augmentation about the knowledge of 

matrix interaction in regard to cells with different dimensionalities and the matrix substance 

interaction. All three topics are related through three mayor points necessary to consider while 

working with biomaterials: matrix structural size, matrix topography or architecture, and 

dimensionality. Each point will feature reactions and emphasize the importance when designing 

biomaterials for actual clinical use. 
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6 APPENDIX 

6.1 LISTS OF CHEMICALS AND DEVICES 

Tab. A. 1 Companies of chemicals and cells part 1 

Chemicals and Cells  Company 

1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride  Alfa Aeser  

2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure Sigma-Aldrich 

2-(N-morpholino)ethanesulfonic acid  Sigma-Aldrich 

(3-(N-morpholino)propanesulfonic acid) Sigma-Aldrich 

6-well plates Sarstedt 

12-well plates Sarstedt 

24-well plates Sarstedt 

3-(Trimethoxysilyl)propyl methacrylate Sigma-Aldrich 

Acrylamide solution 40% Bio-Rad 

adipic acid dihydrazide  Sigma-Aldrich 

Acanthamoeba castellanii 
 

Acetic acid Sigma-Aldrich 

Accutase Biochrom 

Ammonium persulfate Sigma-Aldrich 

Acrylic acid N-hydroxysuccimide ester  Sigma-Aldrich 

Alginic acid sodium salt Sigma-Aldrich 

Ammonium iron(II) sulfate hexahydrate AppliChem 

ß-alanine Alfa aesar 

Bead for cantilever glass, microparticles GmbH 

Bi destilled water AppliChem 

Calcein AM BD science 

Calciumchloride AppliChem 

Collagen I BioMatrix 

Curcumin Sigma-Aldrich 

diethyleneglycol Jkchemicals 

DetachKit (C-41210; PromoCell, Heidelberg) PromoCell 

Dulbecco’s modified eagle medium  Biochrom 

Dimethylsulfoxid, Sigma-Aldrich 

Dimethylformamide Acros Organics 

Disodium hydrogen phosphate heptahydrate Roth 

Ethylenglycoledimetharcylate Sigma-Aldrich 

Etanol Walter 

Ethosuximide Sigma-Aldrich 

Fetal bovine serum Biochrom 

Fluorescein isothiocyanate − Dextran 500.000 − Conjugate Sigma-Aldrich 
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FluoroBrite™ DMEM  Gibco 

Fibronectin BioMatrix 

 

Tab. A. 2 Companies of chemicals and cells part 2 

Chemicals and cells Company 

D-glucose Sigma-Aldrich 

Glue, biocompatible two component glue , Reprorubber  Islandia, USA 

Glue; UHU Plus Schnellfest UHU GmbH & Co. KG 

GlutaMAX ™ Gibco, Germany 

N-hydroxysuccinimide Apollo Scientific 

Hydroxyethyl methacrylate TCI 

Hydrochloric acid 37% Sigma-Aldrich 

HUVEC medium PromoCell  

Hoechst ThermoFischer 

Ethyl acetate Fischer Chemicals 

Fibrosarcoma cells curtesy of the Lammerding lab 

Fibronectin BioMatrix 

Glass vials (Schnappdeckelgläser 22mm x 50mm) avantor 

Isopropanol Walter, Germany 

Maleic anhydride  Roth 

Magnesiumchloride Sigma-Aldrich 

methacrylanhydride TCI 

MEM Earle’s Merck 

Methacrylic acid TCI 

Magnesium sulfate monohydrate AppliChem 

N,N’- Methylenebisacrylamide  Bio-Rad 

Sodiumhydrogencarbonate VWR chemicals 

Sodiumhydroxide Sigma-Aldrich 

p-Tolousulfonic acid Sigma-Aldrich 

Phosphate buffered saline Sigma-Aldrich 

Penicillin Streptomycin Sigma-Aldrich 

Primary Human Umbilical Vein Endothelial Cells PromoCell  

proteose peptone  BD, Sparks 

Propidium Iodide ThermoFischer 

petri dish with glass bottom IBIDI  

t-ZnO synthsized in presents of PVB curtesy of the Adelung lab 

polydimethylsiloxane Sylgard 184 

Potassiumchloride Roth 

Potassiumdihydrogenchloride Roth 

Poly ethyleneglycol Jkchemicals 

polydimethylsiloxane Sylgard 184 

Proteose peptone  BD science 
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peptone yeast glucose (PYG) 712 medium 
 

Rat embryonic fibroblasts 52 wild type 
 

Sodium alginate Sigma 

Sodium citrate· 2H2O  Merck 

N,N,N‘,N‘-Tetramethylenediamine Sigma-Aldrich 

Transwell (Millicell® Cell culture Inserts) Merck 

Trypsin/EDTA solution Merck 

Tetrapodal zinc oxide curtesy of the Adelung lab 

Yeast extract  BD science 

 

Tab. A. 3 Companies of devices and software 

Devices and software Company 

Andromeda  Till Photonics 

Atomic force microscope, Nanowizard3  JPK Instruments 

BX-43  Olympus 

C-9100-13  Hamamatsu 

C-9300-221  Hamamatsu 

Cantilever; MikroMasch HQ:NSC36 Innovative Solutions Bulgaria 
Ltd. 

CO2-Incubator C150 Binder 

DFK 31BF03 Imaging Source 

CellSence Olympus 

Excell Microsoft 

FiJi (Is Just ImageJ) 2.0.0-rc-71/1.52p 
 

GraphPad Prism 

IC Capture  theImagingSource 

iChrome MLE Toptica Photonics AG 

Java 1.8.0_66 Oracle 

IX-81 Olympus 

MATLAB 2013a MathWorks  

MI-IBCD-F1-AF Tokai HIT 

Microplate reader and micro-volume plate Take 3 BioTech 

Motorized Stage SCAN IM 120x80 Merz 

MT20E Olympus 

Nanowizard Control Software version 4.3.5 JPK Instruments 

KS 130 basic  IKA 

Origin OriginLab 

Progress MF cool camera Jenoptik 

ThermoMixer C Eppendorf 

U-FSHA Olympus 

Ultra-sonic bath Bandelin electronics 

Vortex Genius 3 IKA 

Xcellence RT Olympus 

IX2-UCB Olympus 

sola light engine sola light engine 
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Syringe Braun 

DFK 31BF03FC  theImagingSource 

U-RFL-T Olympus 

10x UPlanFLN Olympus 

4x UPlanC N Olympus 

20xUPlanFL Olympus 

40xUPlanFL Olympus 
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6.2 GENERAL CELL CULTURE METHODS 

6.2.1 Rat embryonic fibroblasts and fibrosarcoma cells 

The stable cell lines rat embryonic fibroblasts wild type (Ref-52-wt), and the fibrosarcoma cells 

(HT1080 with transfected nucleus NSL- GFP and H2B-RFP, as a courtesy from the Lammerding lab, 

Cornell University) were cultured similarly. All cells were cultured in an incubator at 37 °C and 

5 % CO2-atmosphere (ThermoScientific, Heracel VIOS160i).  The medium for the cell culture was 

prepared from Dulbecco’s modified eagle medium (DMEM, Biochrom, Germany), 10% Fetal bovine 

serum (FBS, Biochrom, Germany), and 1% penicillin streptomycin (penstrep, Sigma Aldrich, 

Germany). Cells were subcultivated when they reached at a confluency of 80% within the cell culture 

flask to keep inside the exponential growth phase. Firstly, the old cell culture medium was removed, 

and the cells washed with sterile phosphate buffer saline (PBS, Sigma-Aldrich). Accutase (Merck 

Millipore, Germany) was then added 1ml/25cm² surface, and the culture flask was 5min incubated. 

The cells were then detached from the flask, rinsed with cell culture medium, and centrifuged 

(Heraeus Megafuge8, 800 g, 4 min). Consequently, the cells were seeded into another cell culture 

flask for cultivation or seeded on to the experiments and cultured there. 

6.2.2 Human umbilical vein endothelial cells (HUVEC) 

Primary human umbilical vein endothelial cells (HUVEC, primary cells, PromoCell, Germany) were 

examined in an experimental set-up to investigate in vitro the biostability of a future neuroimplant. 

For the subcultivation, the recommended medium (C-22011, PromoCell, Germany) has been used in 

combination with the recommended DetachKit (C-41210; PromoCell, Heidelberg). The subcultivation 

has been conducted as recommended from PromoCell. Cells were not used for experiments above 

the 10th passage to ensure the morphological and cellular stability  

6.2.3 Acanthamoeba castellanii (AC) 

Acanthamoeba castellanii were cultured at room temperature outside from an incubator in peptone 

yeast glucose (PYG) 712 medium. The medium exchange and the cell subcultivation was conducted at 

least once a week. For the subcultivation, the cells were detached from the cell culture flask by 

agitating and pounding the flask bottom. Detached cells were taken to a falcon tube and centrifuged 

at 800 g for 4 minutes. The resultant cell pellet was resuspended, and cells were counted with a 

Neubauer counting chamber to determine the cell concertation per mL. Depending on the task, cells 

were seeded with a preferred concentration ether to a culture flask for subcultivation or to an 

experimental set-up. The PYG medium contained following ingridiences: 20 g proteose peptone (BD, 

Sparks, USA), 1 g of yeast extract (BD, Sparks, USA), 34 mL of 0.1 M sodium citrate· 2H2O (Merck, 

Germany), 10 mL of 0.005 M Fe(NH4)- 2(SO4)2·6H2O (AppliChem, Germany), 10 mL of 0.25 M 
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Na2HPO4·7H2O (Roth, Germany), 8 mL of 0.05 M CaCl2 (AppliChem, Germany), 10 mL of 0.25 M 

KH2PO4 (Roth, Germany), 950 mL of distilled water, 10 mL of 0.4 M MgSO4· 7H2O (AppliChem, 

Germany), and 50 mL of 2 M glucose (Sigma−Aldrich, Germany). 

6.2.4 Cell adhesion assay 

The standard procedure after seeding and cultivating the cells to the sample surface is the staining of 

the cells. Therefore, a staining solution on the according to cell medium of 1/1000 calcein AM, 

propidium iodide (PI), and Hoechst was prepared and given to culture wells. These culture wells with 

samples and cultivated cells were then incubated for 20 minutes in cell culture environment and for 

10 minutes at room temperature in the dark. The samples were washed three times with PBS to 

remove all excess dyes from the background. If not stated differently, the respective cell medium 

was pipetted to the cells to prevent the cells from drying and imaged immediately. Samples, which 

were not investigated immediately after the staining were placed back into the incubator.  

The analysis of the calcein stained areas was done manually with ImageJ as well as automated (Fiji is 

ImageJ). [168] The threshold has been adapted manually because due to different foci planes 

existent in one sample. This has been done when not stated otherwise. 

The averages and standard deviations of the different positions and samples were calculated. Control 

experiments showed the cellular behavior in cell culture wells and served as an essential check 

whether the cell growth, behavior, or morphology was corrupted. All controls for the adhesion assays 

were positive for expected cellular behavior and morphology according to the particular cell type. 

6.2.5 Cytotoxicity assay 

First, the cell type, according to the investigated cause, was selected, if not stated differently for 

most experiments, Ref 52wt were chosen. Second, the samples to determine were sterilized with 70 

vol.% EtOH and placed in the respective cell culture medium for 72h. The third step was to seed 10 

000 cells per well in a 96 well plate with 100µL medium for 24h. After this 24h the extracts of 

different concentration (100 %, 70 %, 50 %, 15 %, 0 % v/v) with the respective cell culture medium 

was added to the cells for another 24h. Next, the 50µL MTT solution, 1mg/mL MEM Earle’s (Gibco, 

USA), was added to the cell culture for 2h to be metabolized. The sixth step included the exchange of 

MTT with 100µL isopropanol in order to destroy the cell membrane and dissolve the formatted 

formazan in an amount respective to the viability of the cells. The quantification of the cell viability as 

the last step of this method is done by UV/Vis. A microplate reader (EPOCH|2, BioTek Instrumenets 

Inc. Switzerland) was used at the wavelength of 570nm. [145], [146] 
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6.3 IMAGING THE CELL-MATRIX INTERACTION 

For the presented studies on 2D samples, two different microscopes were used to obtain phase 

contrast, fluorescence, and reflective light images. The first microscope, an inverted IX81 (Olympus, 

with the software CellSense) was used for phase contrast and fluorescence imaging as it can be used 

for transparent samples only. It is equipped with a digital camera (Orca 1, HAMAMATSU), a system 

controller (IX2-UCB), and a laser (sola light engine).  

Another microscope (BX 43, Olympus with the software IC capture) was also used for phase contrast 

and fluorescence imaging as well as for bright field imaging for non-transparent samples. This 

microscope is equipped with a DFK 31BF03FC camera from Imaging Source, a burner (U-RFL-T, 

Olympus). For both microscopes, the objectives 10x (Olympus, UPlanFLN) and 4x (Olympus UPlanC N) 

were used. 

In the study about cellular behavior in 3D microstructured hydrogels, the cellular movement, in 

particular, the motility and deformation of the nucleus in 3D, was investigated for a duration of 10h. 

In general, different compartments of the cell, such as the fluorescently transfected nuclear envelope 

and histone rich part and the cell membrane restricted through the hydrogel channel in the phase-

contrast mode, were highly interesting. For this, fast capture times and adapted light intensity for 

extended imaging processes were required. With these requirements spinning disc confocal 

fluorescence microscopy was conducted for the possibility of three-dimensional images live cell 

imaging obtained over time with different channels, phase contrast, and fluorescence.  

The set-up used is based on an inverted microscope (IX81, Olympus) with the following devices 

equipped and used: A C-9100-13 digital camera, a spinning disc confocal unit (Andromeda), a laser 

combiner (iChrome MLE) with a motorized bright field shutter (U-FSHA). Additionally, the motorized 

stage was used (SCAN IM 120x80) as well as a heating station (MI-IBC, Olympus) for prolonged live 

cell imaging. The objective 20x (Olympus, UPlanFLN) was used. 

For the controls the inverted microscope IX81 mentioned above was used with 10x (Olympus, 

UPlanFLN) and 40x (Olympus, UPlanFLN) objectives. 



 

IX 
 

 

6.3.1 Experiments conducted at Cornell University in the Lammerding Lab: 

The results from chapter 2, 3D cell-matrix interaction, with mammalian cells, would not have been 

possible without the initial experiments at Cornell University at my research sty abroad with the 

support from the Lammerding lab. Here I present how the initial experiments with the initial 

indication of a correlation of mechanical properties and nuclei rupture have been conducted (Figure 

33): 

 

 

Sa

mples were placed in a custom-built PDMS (Sylgard 184) experiment chamber and imaged with a 

confocal laser microscope from Zeiss, LSM 700, AxioObserver. The PDMS experiment chambers were 

placed into a custom-built heating stage (Phillip Isermann) and heated from above to keep the cells 

at 37°C. The software used was ZEN black. Acquisition settings were set with chosen channels: 

GFP(green) ʎ=488nm, and  RFP(red), ʎ= 555nm, which excites transfected nuclei of the cells. 

Additionally, the white light path, T-PMT, was chosen. Within the confocal mode, optimal pinhole 

size was set with 1AU.  Depending on sample height and incubation time, the imaging of z-stacks and 

time series varied. In each case, a position check was made to show viable (green fluorescent nuclei) 

cells within the samples. In the case of the experimental timeslot of z-stacks were done to show the 

distribution of the cell nuclei within the hydrogel scaffold. Time-lapse imaging was done over at least 

3h, best 13h. In the optimal case, time-lapse and z-stack imaging was done combined in one 

overnight experiment. Time intervals and frame numbers in z-stacks were varied to find the best 

Figure 33 First indicating results of a correlation between sample stiffness of 3D 
microstructured samples and the rupture events of nuclei.  
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solution for cells in the hydrogel scaffold. Depending on the complexity of image acquisition and 

scanning time frame sizes vary between 1024x1024 and 512x512 Px. For videos, a 10x objective has 

been used for control images, a 20x objective. With this 5D imaging was conducted, since 3D images 

in x,y and z direction in time-lapse t and with the wavelength ʎ of the different channels were taken. 

 

6.4 HYDROGEL FIXATION ON GLASS SLIDES 

To obtain hydrogels covalently bound onto glass slides, different approaches can be used. Here, a 

silanization with 3-(Trimethoxysilyl)propyl methacrylate was used. Glass slides were cleaned with 

NaOH (2.5M for 10minutes) followed with the washing in bi. dest. water for another 10 minutes in an 

ultrasonic bath. Next, glass slides were rinsed with EtOH (99%). This was followed by immersion of 

the glass slides for 15minutes in a solution from 97vol.% EtOH, 2vol.% 3-(Trimethoxysilyl)propyl 

methacrylate and 1vol.% acetic acid. The container with glass slides was agitated during the 

immersion of the glass slide. The glass slides were dried within an air stream and additionally backed 

in an oven at 120°C for one hour. The 3-(Trimethoxysilyl)propyl methacrylate molecules form 

hydroxyl groups via hydrolysis in the solution to the silane ligand. The molecules then assembly at 

the glass slides surface by condensation and form a covalent bond. The free methacrylate group can 

now be used for the covalent crosslinking of hydrogels towards the glass slide. For pAAm hydrogels, 

the methacrylate group is incorporated into the radical polymerization process. For the covalently 

crosslinked alginates, different binding scenarios are possible. Firstly, a hydrogen bonding between 

hydroxyl groups of the alginate and the carbonyl group. Secondly, an Aza-Micheal reaction between 

the secondary amine of the adipic acid dihydrazide group and the vinyl functionality of the 

methacrylate group. [248], [249]  
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Figure 34 Scheme of possible covalent bonding between hydrogels and a glass slide. A) PAAm bound 
to a glass slide via radical polymerization. B) Alginate bound to the glass slide via possible aza-
Micheal reaction of the secondary amine of adipic dihydrazide and the vinyl group. 
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6.5 INFILTRATION OF FLUORESCENT SOLUTIONS INTO MICROSTRUCTURES HYDROGELS AND 

IMAGING 

The process used has been described in our publication from 2019, Gutekunst et al.[45] Water from 

hydrogel samples was removed subsequently in an ethanol series starting from 50 vol.% up to 99 

vol.% ethanol. The samples were washed in each concentration for at least 20 minutes. After that, 

the samples were immersed overnight in a solution with Fluorescein isothiocyanate − Dextran 

500.000 − Conjugate (FITC- Dextran, 1.32 mg/mL, Sigma-Aldrich). After this night, the samples were 

imaged using confocal microscopy at 488nm in a petri dish with a glass bottom with the equipment 

as described above. Each z-tack was prepared by single images every 1.99µm. Subsequently, the z-

stacks were processed using the excellence rt software (Olympus, version 1.2) using intensity voxel 

projection. They were resulting in measurable 3D representations. Here, tip and base of the channels 

were investigated. While the tip is the smallest diameter of the channel, the base is the maximum 

width at the origin of the tetrapod arms. 

6.6 THE ROUTINE OF THE ALGINATE HYDROGEL PREPARATION 

A 2 wt.% sodium alginate is prepared the day before and stored at 4°C overnight with the buffer MES 

or MOPS. Next, the AAD solution is prepared. For this, the preferred molarity, 0.094M 0.15M or 

0.2M, is prepared directly with the alginate solution. Then, an EDC solution of 0.104M is prepared 

within the buffer solution. For the precursor mixture, the alginate-AAD solution and the EDC-buffer 

solution are mixed 1:1 and vortex for 10 seconds on the vortex at the highest power. Thereafter the 

precursor solution is transferred to a PTFE mold. The polymerization is done after 2h at room 

temperature under a beaker glass. After that, the samples are washed in sterile bi. dest. water at 

least twice. The dehydration of the samples is explained in chapter 4.4.2, Figure 32. 
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6.7 DEGRADATION OF COVALENTLY CROSSLINKED ALGINATE 

The degradation of the covalent crosslinked and with RTX infiltrated samples were visually observed 

all 24h at the exchange of the release medium. It was checked whether the samples still are inside 

the aliquor. The samples were incubated at cell culture condition and agitated at 80rpm (IKA®KS 130 

basic, EIMECKE). The table below shows for two independent experiments the time at which no 

sample was observed inside the aliquor. The infiltrated ETX is indicated by colors, it indicates the 

sample. For each crosslinker concentration, three technical repetitions were investigated. 

AADlow=AAD1= 0.094M; AADmedium= AAD2= 0.15M and AADhigh= AAD3= 0.2M in 2wt.% alginate 

solution. 

Table 4 Days of visual control of complete hydrogel matrix degradation immersed in aliquor. The 
colors indicate the experiment as well as the concentration of the infiltrated ETX solution. i indicates 
the sample replicates. 

 

6.8 DELAYED SUBSTANCE RELEASE FROM ALGINATE MATRICES OBTAINED WITH PHEMA LAYER 

Initial experiments for a delayed substance release were investigated additionally using covalently 

crosslinked alginate filled with methylene blue (Sigma Aldrich, Germany) and covered with a pHEMA 
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layer. The synthesis of the alginate matrices was conducted as described earlier, all three AAD 

concentrations were used. For the infiltration of the methylene blue, the samples were dried as 

explained in Figure 32 on page 96 and immersed for 24h into a methylene blue solution with a 

concentration of 1mg/ml. Subsequently, the samples were dried again. The dried alginate samples 

containing methylene blue were covered with a pHEMA layer using initial chemical vapor deposition 

(iCVD). For each sample, a layer of 800nm pHEMA with different was deposited. Different crosslinker 

concentrations of EGDMA were used (25mol.%, 50mol.%, and 75mol.%). These samples were placed 

into a glass container with 20 ml bi.dest. water at cell culture conditions. Samples were taken at 

different times and measured via UV-vis at 660nm. As expected, the first hours after the immersion 

shows no release since the samples were dry and needed to swell (Figure 35). Later, a clear trend for 

the release is visible: The lowest release rate is obtained from the samples with the highest amount 

of crosslinker (green), followed by a mix of medium and the lowest amount of crosslinker. However, 

these first data points indicate an influence of the pHEMA layer, as the slopes are the highest without 

the pHEMA layer. Despite this, more investigations need to be done for this approach, especially with 

a degradable layer that matches its degradation to the covalently crosslinked alginate. Furthermore, 

the substances released should be similar to those for the planned application or, in an optimal case, 

the drugs used for the planned clinical animal studies as these drugs will most probably interact 

entirely differently with the hydrogel matrices as model drugs or substances. 

 

Figure 35 Delayed release of methylene blue from covalent crosslinked alginate with pHEMA layer. 
Blue lines indicate the experiments with the smallest amount of crosslinker inside the alginate, pink 
indicates the medium amount of crosslinker, and green indicates the highest amount of crosslinker.  
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6.9 ARTIFICIAL BRAIN LIQUOR FOR RELEASE EXPERIMENTS 

The recipe for the artificial brain liquor (aliquor) was provided by Christina Schmitt. For each 

experiment, a new batch of sterilized via filtration was prepared and stored at 4°C. The chemicals 

below were added together and dissolved in bi. dest. water. 

124mM NaCl      

1,3mM MgCl2               

5mM KCl       

2mM CaCl2     

26mM NaHCO3     

10mM D-Glucose      

Sterile bi. dest. water 

 

6.10 CALIBRATION OF THE CANTILEVER 

The calibration of the cantilever (µMesh HQ:NSC 36, always the right one) used for the AFM 

measurements is vital due to its meaning for the measured results. The calibration provides the 

spring constant of the cantilever. For the measurements done, the cantilevers were calibrated via 

thermal noise analysis. This is a function already installed into the used AFM set-up from Olympus. 

Initially, the cantilever is installed into the AFM, the laser aligned to the center of the cantilever tip 

and the sensitivity of it was calculated. For this, the cantilever was approached towards a glass 

surfaced for several spectroscopy curves, and the slope of these has been calculated. From the slope, 

the sensitivity was determined as: 

 

 

 

(28) 

 

Following, the spring constant k was determined. For this and the cantilever oscillate close to the 

resonance frequency of the cantilever. This results in a peak from the resonance against the 

frequency. By determining the energy of the resonance by measuring the area under the peak, the 

spring constant can be determined. As described from Hutter et al. [250] Furthermore, for the 

application of the Hertz-model, a spherical indention body is required. Therefore, a bead of the size 

from 21.82 μm ± 0.87 μm (glass, microparticles GmbH, Berlin, Germany) was glued to the tip of the 
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cantilever, followed by the second determination of the cantilever’s sensitivity. This has to be done 

as each change of mass of the cantilever changes also the behavior. Each measurement of the 

sensitivity has to be done before every measurement when newly installed the medium, e.g., water 

or cell culture medium, was changed. 
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