
INSTITUT FÜR INFORMATIK

A (2 + ε)-approximation for scheduling

parallel jobs in platforms

Pierre-Francois Dutot, Klaus Jansen, Christina
Robenek, Denis Trystram

Bericht Nr. 1217

February 2013

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

A (2 + ε)-approximation for scheduling parallel

jobs in platforms

Pierre-Francois Dutot, Klaus Jansen, Christina Robenek, Denis
Trystram

Bericht Nr. 1217

February 2013

ISSN 2192-6247

e-mail: {kj, cot}@informatik.uni-kiel.de,
{dutot, trystram}@imag.fr

Research supported by German Research Foundation (DFG) project
JA612/12-2.

Dieser Technische Bericht enthält Teile der Dissertation von Christina
Robenek

A (2 + ε)-approximation for scheduling parallel

jobs in platforms

Pierre-Francois Dutot Klaus Jansen Christina Robenek

Denis Trystram

February 6, 2013

Abstract

We consider the problem of SCHEDULING PARALLEL JOBS IN HETEROGENEOUS

PLATFORMS: We are given a set J = {1, . . . , n} of n jobs, where a job j ∈ J

is described by a pair (pj, qj) of a processing time pj ∈ Q>0 and the number of

processors qj ∈ N that are required to execute j. We are also given a set B of

N heterogeneous platforms P1, . . . , PN , where each Pi contains mi processors for

i ∈ {1, . . . , N}. The objective is to find a schedule for the jobs in the platforms

minimizing the makespan, i.e. the latest finishing time of a job. Unless P = NP

there is no approximation algorithm with absolute ratio strictly better than 2 for

the problem. We give a (2 + ε)-approximation for the problem improving the pre-

viously best known absolute approximation ratio 3.

1 Introduction

This paper considers the problem of SCHEDULING PARALLEL JOBS IN HETEROGE-

NEOUS PLATFORMS (SPP): We are given a set J = {1, . . . , n} of n jobs, where a job

j ∈ J is described by a pair (pj, qj) of a processing time pj ∈ Q>0 and the number

of processors qj ∈ N that are required to execute j. We are also given a set B of N

platforms P1, . . . , PN , where each Pi contains a set Mi of |Mi| = mi processors for

i ∈ [N] := {1, . . . , N}. In general we assume that the numbers mi may be different,

that are heterogeneous platforms. If all values mi are equal we have identical platforms.

For heterogeneous platforms we may assume m1 ≥ . . . ≥ mN . A schedule is an as-

signment a : J →
⋃N

i=1 2Mi × Q≥0, that assigns every job j to a starting time tj and

to a subset Aj ⊂ Mi of the processors of a platform Pi with |Aj| = qj. Obviously,

a job j can only be scheduled in platform Pi if mi ≥ qj. A schedule is feasible if

1

every processor in every platform executes at most one job at any time. The objec-

tive is to find a feasible schedule with minimum makespan maxi∈[N] C
(i)
max, where

C
(i)
max = max{j|Aj⊂Mi} tj + pj denotes the local makespan for platform Pi. We denote

with OPTSPP(J ,B) the optimum value for the makespan of a schedule for the jobs

in J into the platforms in B.

By reduction from 3-Partition it follows that SPP is strongly NP-hard even

for identical platforms. Moreover, there exists no approximation algorithm with

absolute ratio strictly better than 2, unless P = NP .

For N = 1 the problem is equal to SCHEDULING PARALLEL JOBS, in the rele-

vant literature denoted with P|sizej|Cmax. This problem is strongly NP-hard even

for a constant number of processors m ≥ 5 [8]. By reduction from PARTITION it

can be shown that there is no approximation algorithm for P|sizej|Cmax with ra-

tio strictly less than 1.5, unless P = NP . If we constrain the co-domain of the

assignment a further and assume identical platforms the problem is equivalent to

STRIP PACKING (for N = 1) and MULTIPLE STRIP PACKING(N ≥ 2): In addition

to Aj ∈
⋃N

i=1 2Mℓ we postulate that Aj is equal to a set of consecutively numbered

processors for every job j ∈ J . Every job then corresponds to a rectangle of width

qj and height pj. Keep in mind here, that in general because of this contiguity con-

straint, algorithms for SPP cannot be directly applied to MULTIPLE STRIP PACK-

ING, since rectangles may be cut. But the optimal value for MULTIPLE STRIP PACK-

ING is an upper bound for the optimal value for the corresponding SPP problem

with identical platforms. Interestingly, fractional versions of both problems coin-

cide and therefore a solution of FRACTIONAL (MULTIPLE) STRIP PACKING gives a

fractional solution for SPP with identical platforms.

1.1 Related Work

There are several approximation algorithms for SCHEDULING PARALLEL JOBS. To

name a few, the best known is List Schedule by Garey and Graham [10]. It was

shown by Feldmann et al. that List Schedule has absolute approximation ratio

(2 − 1/m) [9] using a dynamic and slightly different model. If the number of

processors is bounded by a constant the problem admits a PTAS [1, 15]. In case

that the number of machines is polynomially bounded in the number of jobs a

(1.5 + ε)-approximation for the contiguous case (where a job has to be executed

on processors with consecutive adresses) and a (1 + ε)-approximation for the non-

contiguous problem were given in [17]. Recently, for an arbitrary number of pro-

cessors Jansen gave a tight approximation algorithm with absolute ratio 1.5 + ε in

[14]. Also for an arbitrary number of processors the contiguous case of P|sizej|Cmax

is closely related to STRIP PACKING as described above. A vast number of ap-

2

proximation algorithms for STRIP PACKING have been developed during the last

decades. [7, 27, 24, 12, 16] One of the most powerful results for STRIP PACKING is

an asymptotic fully polynomial time approximation scheme given by Kenyon and

Rémila based on a linear program relaxation for BIN PACKING [18]. For any accu-

racy ε > 0 their algorithm produces a (1 + ε)-approximative packing plus an addi-

tive height of O(1/ε2)hmax, where hmax denotes the height of the tallest rectangle.

Recently, we showed that the additive term can be reduced to O(1/ε log(1/ε))hmax

using a more sensitive rounding technique [5]. We will use the algorithm in [18] as

a subroutine and refer to it as the KR algorithm.

A similar problem is SCHEDULING MALLEABLE JOBS. Here the processing time

of a job j depends on the number of allotted machines and can be described by

a function pj : [mN] −→ Q+ ∪ ∞, where pj(k) is the length of job j running on

k parallel processors of a platform. The PTAS in [15] does also apply for mal-

leable jobs if the number of processors is constant. Interestingly, in [17] it can be

derived from the paper that the algorithms can also be applied to malleable jobs

without using the assumption m ≤ poly(n). In [22] Mounié et al. presented a

(1.5+ ε)-approximation for scheduling malleable jobs with processing times given

by monotone functions where the jobs are assigned to processors of consecutive ad-

dresses. The running time of this algorithm depends on the number of processors.

An AFPTAS for scheduling malleable jobs on an arbitrary number of processors is

given in [13].

For SCHEDULING PARALLEL JOBS IN PLATFORMS (SPP) Tchernykh et al. pre-

sented in [28] an algorithm with absolute ratio 10. Earlier Remy claimed in [23]

that the approximation ratio 2 of List Schedule is preserved when applied to SPP

WITH IDENTICAL PLATFORMS while in [28] and again later in [25] it is shown that

List Schedule cannot even guarantee a constant approximation ratio for this prob-

lem. Schwiegelshohn et al. [25] achieved absolute approximation ratio 3 for SPP,

and ratio 5 for the SPP WITH RELEASE TIMES.

For SPP WITH IDENTICAL PLATFORMS, we proposed a low cost approxima-

tion algorithm with absolute ratio 5/2 in [3]. Recently, we presented a low-cost

tight 2-approximation for this problem in case that no job does require more than

half of the processors [6]. We were also able to extend our result in [3] to a fast
5/2-approximation to SPP for HETEROGENEOUS PLATFORMS under the additional

constraint that every job can be scheduled in each platform [4].

1.2 New Result

As the platforms may have different numbers of processors the 2-approximation

given in [5] for MULTIPLE STRIP PACKING and the (2+ ε)-approximation given by

3

Ye et al. in [29] cannot be applied to heterogeneous platforms they work only for

identical platforms. For the same reason the algorithm in [6] does not work. Note

that the 2-approximation for MSP given in [5] cannot even be applied to schedule

parallel jobs: In case of a constant number of platforms, a subroutine for rectangle

packing with area maximization is used that cannot be applied to select jobs. So

currently, the best known absolute ratio for an approximation algorithm for SPP

without any additional constraints is 3 given in [25]. This ratio is achieved by a

clever combination of several list procedures. In this article we present a polyno-

mial time algorithm with absolute ratio (2 + ε) for SPP improving the previously

best known absolute ratio 3 for an approximation algorithm for SPP. Moreover, we

nearly close the gap between the inapproximability bound of 2 and the currently

best absolute ratio.

Theorem 1.1. For any accuracy ε > 0 there is an algorithm that for a set J of n parallel

jobs and a set B of heterogeneous platform generates a schedule for J into the platforms in

B with makespan at most (2+ ε)OPTSPP(J ,B). The algorithm has running time g(1/ε) ·

nO(f (1/ε)) for some functions g, f with g(1/ε), f (1/ε) = 2O(1/ε log(1/ε)).

1.3 Methods and Overview

To obtain a simpler structure for the set of platforms B we use a new technique to

group and round the platforms by the number of processors: Initially, we partition

the platforms into a set B0 containing a constant number of the largest platforms,

and a set B1 containing the remaining smaller platforms with less processors. For

a certain number L the platforms in B1 are grouped and rounded obtaining a set

B̃1 that contains L groups B̃1, . . . , B̃L of equal constant cardinality, so that that the

platforms in each group B̃ℓ are identical, see Section 2.1. Later we convert a solution

for the rounded platforms B0 ∪ B̃1 into one for the original ones in B = B0 ∪ B1,

see Figure 6.

Using gap creation [16] we simplify the structure of an optimum solution in B0,

see Section 2.2 and Figure 3. Then we allocate a subset of jobs with large processing

time jobs in B0. The main difficulty here is to place the correct subset of large

narrow jobs, that have large processing time and require only few processors, since

we cannot enumerate an assignment for them in polynomial time. Instead we

guess an approximate gap structure for them.

With a skillful linear program relaxation (refer to Section 2.3) we fractionally

assign a subset of large narrow jobs to the guessed gaps in B0, subsets of jobs with

small and medium processing time to B0, and the remaining jobs to B̃1. In this

new approach we have both, horizontal and vertical fractions of large narrow jobs,

which are related by a nice covering constraint. Interestingly, we can apply a result

4

for scheduling unrelated machines [21] to round those fractions to integral jobs

producing only a small error even though there are different kinds of fractions.

The LP in 2.3 also produces a fractional schedule for B̃1. Here, the crucial part

is to round the fractional schedule to an integral one without loosing too much.

Therefore, the jobs involved in that fractional schedule have harmonically rounded

processing times, see Section 2.3.1. That is, relatively large processing times are

rounded up to the next value of the form 1/q, q ∈ N. We use the harmonically

rounded processing times for rounding the fractional schedule in B̃1 to an integral

one using an idea by Bansal et al. [2] based on the fact that any integer can be

represented as an integral multiple of 1/q, see Lemma 2.5. Again the large narrow

jobs are difficult as for one large narrow job we may produce fractions referring

to different processing times in B0 and B̃1. This problem is also cleverly modelled

and solved in our LP-relaxation.

1.4 Principles and Notations

First we define some notations and recall some well-known packing and schedul-

ing principles. For j ∈ J we define the size of a jobs as qj pj and SIZE(J) :=

∑j∈J qj pj for a set of jobs. With pmax := maxj∈J pj we denote the largest process-

ing time of a job. A rectangle is a pair r = (wr, hr) of a width wr ∈ Q>0 and

height hr ∈ Q>0. The size of r is defined as wrhr. The size of a set of rectangles R

is SIZE(R) := ∑r∈R wrhr. A two-dimensional bin of width x and height y will be

denoted with b(x, y). In this context a strip is a bin of width 1 and infinite height

b(1, ∞). We also use the notation b(x, ∞) for a strip of width x. If x ∈ N a strip

b(x, ∞) corresponds to a platform with x processors.

Geometric rounding: For a set Rwide of rectangles r = (wr, hr) we obtain the ge-

ometrically rounded set Rsup with only M different width in the following way:

Order the rectangles by non-increasing width and stack them left aligned on top

of each other, starting with the widest rectangles. Let H denote the height of the

stack. Then draw horizontal lines at heights (iH)/M for i = 0, 1, . . . , M through

the stack. For i = 0, 1, . . . , M − 1 group together those rectangles that lie com-

pletely with their interior between the ith and (i + 1)th line or intersect with their

interior the (i + 1)th line. In every group round up the width of every rectangle to

the width of the widest rectangles contained in this group.

Fractional strip packing: For a set of rectangles R with wr ∈ (0, w] for r ∈ R a frac-

tional strip packing of height h > 0 into a strip b(w, ∞) corresponds to a feasible

solution of a linear program of the form

min

{

∑
i

xi| ∑
i:Ci(r)=1

xi ≥ hr r ∈ R, xi ≥ 0

}
(1)

5

with cost at most h. The variable xi denotes the height (or length) of a configuration

Ci : R → {0, 1}, that is a function that represents a subset of rectangles that can be

placed next to each into the strip b(w, ∞), i.e. ∑{r∈R|Ci(r)=1} wr ≤ w. If xi > 0, for

every rectangle with Ci(r) = 1 a fraction of height xi and width wr is placed into

the strip. If for R there exists a fractional strip packing of height h, we say R fits

fractionally into b(w, h). The content of the following Lemma is given in [18].
Lemma 1.2. Let R be a set of rectangles r = (wr, hr) with width wr ∈ (0, w] and

heights hr ∈ (0, 1]. Let ε′ > 0 and M := 1/ε′2 and let Rwide := {r ∈ R|wr > ε′w}

and Rnarrow := R \ Rwide. If Rwide fits fractionally into a bin b(w, h), then Rsup fits

fractionally into bin b(w, h(1 + ε′)). Moreover, R can be packed integrally into a strip

b(w, ∞) with height at most (1+ε′)h
1−ε′ + (4M + 1)maxr∈R hr.

The above result uses the fact that for Rsup the rank of the constraint matrix of

(1) is bounded by the number of different width M. Because of this, there exists a

solution x of (1) with input Rsup with at most M non-zero entries. According to the

solution x we can construct a fractional solution with at most 2M different confi-

gurations. An integral packing for Rsup is achieved by adding additional space of

height maxr∈Rsup
hr to each configuration and filling the rectangles integrally into

them. The rectangles in Rnarrow are placed next to the configurations and on top of

the solution using NFDH policy.

Our algorithm considers two main scenarios for the shape of the platforms

given by the input. For ε > 0 with 3/18 ≥ ε and γ = 8
3 N1, where N1 = O(1/ε4)

(specified in Lemma 2.6) we distinguish:
1. For all i ∈ [N] we have m1

mi
≤ γ.

2. There is a number K ∈ [N] with m1
mi

≤ γ for all i ≤ K and m1
mi

> γ for all i > K.

2 Case 1: Similar Platforms

2.1 Platform Rounding

For N0 = 2(2N1 + 1) we partition the set of platforms B into L+ 1 groups B0, B1, . . . , BL

by L−times collecting the N1 smallest platforms where L := max
{

0, ⌊N−N0
N1

⌋
}

. Let

B0 = B0 := {P1, . . . , PN−LN1}

and for ℓ ∈ [L] define

Bℓ := {PN−(L−(ℓ−1))N1+1, . . . , PN−(L−ℓ)N1
}

and B1 =
⋃L

ℓ=1 Bℓ. Therefore, group B1 is further partitioned into several groups

Bℓ of equal constant cardinality. Each group Bℓ ⊆ B1 contains exactly N1 platforms.

6

Group B0 contains a constant number of platforms, moreover we have 5N1 + 2 =

N0 + N1 > |B0| ≥ N0.

B0 B̃1 B̃L

B̃1

Figure 1: Grouping and rounding platforms in case 1.

In each group Bℓ, ℓ ∈ [L] we round the number of processors of each plat-

form up to the number of processors m̃ℓ := mN−(L−(ℓ−1))N1+1 of the largest plat-

form PN−(L−(ℓ−1))N1+1 contained in this group and denote with B̃ℓ the group of

rounded platforms, see also Figure 1. We will compute a schedule for B0 ∪ B̃1,

where B̃1 =
⋃

ℓ B̃ℓ, and convert this solution into a solution for B0 ∪ B1 using a

shifting argument, see Figure 6.

It might be possible that the number of platforms is bounded by a constant

N < N0 + N1. In this case we have only one group B0 and do not round the

platforms. The algorithm simplifies at some points as it only performs the steps

concerning B0.

2.2 Simplifying the Structure of an Optimum Solution in

B0

Consider an optimum solution with makespan equal to 1 and denote with J ⋆(B0)

the set of jobs that are scheduled in B0 by the optimum solution. Using the gap

creation technique [16] we find a subset of jobs with medium processing time

J ⋆
medium(B0) ⊆ J ⋆(B0)

and small total load. We can remove these medium jobs from the instance and

schedule them later on top of the solution constructed for the reduced instance

only slightly increasing the makespan.

Define σ0 = ε
9 and σk+1 = σ5

k and sets Jk = {j ∈ J |pj ∈ (σk, σk−1]} for k ≥ 1.

Let J ⋆
k (B0) and J ⋆

k (B1) denote those jobs in Jk that are scheduled by an optimum

7

Algorithm 1 (2 + ε)-Algorithm
Input: J , ε > 0
Output: A schedule of length (2 +O(ε))OPTSPP(J)

1: For a certain constant N1 = O(1/ε3 log(1/ε)) partition the set of platforms into
L + 1 groups B0, B1 . . . , BL and let B1 :=

⋃L
ℓ=1 Bℓ.

2: Round the number of processors of the platforms in each group Bℓ and obtain B̃1

containing groups B̃ℓ of N1 similar platforms

3: for a candidate value for the makespan T ∈

[
SIZE(J)

∑
N
i=1 mi

, npmax

]
do

4: for k ∈ {1, . . . , |B0|
ε } do

5: Let δ := σk−1 where σ0 = ε/20, σk+1 = σ5
k for k ≥ 1.

6: For δ distinguish small, medium, and large jobs
7: Round the processing times and possible starting times of large jobs to inte-

gral multiples δ2.
8: For α = δ4/16 distinguish wide and narrow large jobs.
9: Enumerate an assignment vector V of large wide jobs to B0 and let

Jla−wi(B0) denote the selected jobs.
10: for an assignment vector V of large wide jobs do
11: Approximately guess the total load Π of large narrow jobs for each start-

ing time and height in every platform of B0 and block gaps corresponding to Π.
12: for a guess Π do
13: Compute free layers of height δ2 in B0.
14: Round the processing times pj of the jobs J ′ = J \ Jla−wi(B0) har-

monically.
15: Compute a solution of LP (2)
16: if There is no feasible solution for (2) then
17: Discard the guess Π and take another one and go back to Step 13.

If all guesses have failed discard V, take another and go back to Step 11. If all pairs
(V, Π) have failed, increase k and go to Step 5.

18: end if
19: Round the solution of (2) using a result of Lenstra et al. [21] and ob-

tain an almost integral assignment of
• a subset of the small jobs to the free layers in B0

• a subset of the large narrow jobs to the gaps Π in B0

• the remaining jobs to the groups B̃ℓ in B̃1.
20: Pack small jobs with STRIP PACKING subroutine into the layers.
21: for ℓ = 1, . . . , L do
22: Pack the jobs assigned to B̃ℓ with 2D-BIN PACKING subroutine

into at most 2N1 bins of size [0, m̃ℓ]× [0, 1].
23: end for
24: end for
25: end for
26: end for
27: end for
28: Convert the schedule for B0 ∪ B̃1 into a schedule for B0 ∪ B1
29: Schedule medium jobs in Jτ(B0) in P1.

8

P1 P2 P|B0|

1 + 2δ

δ2

Figure 2: Simplified structure of an optimum solution in B0.

algorithm in B0 and B1, respectively. Using T = 1 we have

∑
k≥1

∑
j∈Jk(B0)

pjqj ≤
|B0|

∑
i=1

mi ≤ |B0|m1.

Using the pigeonhole principle we proof the existence of a set J ⋆
τ (B0) with

τ ∈ {1, . . . , |B0|
ε } so that ∑j∈Jτ(B0) pjqj ≤ εm1: If not, we have

|B0|/ε

∑
k≥1

∑
j∈Jk(B0)

pjqj > |B0|m1

which is a contradiction. Then we choose δ = στ−1 and may assume that ε−1 is

integral and thus

δ−1 =
(ε

20

)−(5τ−1)
=

(
20
ε

)5τ−1

is integral (if not we choose the next smaller value for ε). Furthermore, note that in

the worst case

δ−1 =

(
20
ε

) |B0 |
ε −1

.

We partition the jobs into

• small jobs Jsmall := {j ∈ J |pj ≤ δ5},

• medium jobs Jmedium := Jτ = {j ∈ J |pj ∈ (δ5, δ]},

• large jobs with Jlarge := {j ∈ J |pj ∈ (δ, 1]}.

Scheduling the medium jobs in J ⋆
τ (B0) in the end on top of the largest platform

P1 using List Schedule [10] increases the makespan by at most

2 max



(1/m1) ∑

j∈Jτ(B0)

pjqj, max
j∈Jτ

pj





= 2 max
{

εm1

m1
, δ

}
≤ 2 max{ε, δ} ≤ 2ε.

9

For B0 we can now simplify the structure of the starting times and different

processing times of large jobs. We round up the processing time of each job with

processing time pj > δ to p̄j = hδ2, the next integral multiple of δ2 with (h− 1)δ2 <

pj ≤ hδ2 = p̄j, for h ∈ { 1
δ + 1, . . . , 1

δ2 }. Since there can be at most 1/δ jobs with

height > δ on each processor within each platform this increases the makespan in

B0 by only δ2/δ = δ. The number of different large jobs sizes H is bounded by

H =
1
δ2 − (

1
δ
+ 1) + 1 ≤

1
δ2 .

In a similar way we round the starting time of each large job in B0 to aδ2, the

next integral multiple of δ2. This increases the makespan again by at most δ to

1+ 2δ. Therefore the large jobs have starting times aδ2 with a ∈ {0, 1, . . . , 1+2δ
δ2 − 1}

and the number of different starting times is A = 1+2δ
δ2 .

An optimum schedule for J ⋆(B0) \ J ⋆
τ (B0) in B0 with rounded processing

times p̄j and rounded starting times for the large jobs has length at most 1 + 2δ.

The schedule with simplified structure in B0 is illustrated in Figure 2.

Let τ ∈ {1, . . . , |B0|
ε } be the current iteration step for finding Jτ with the desired

properties and δ = στ−1. We enumerate the set of large wide jobs and approxi-

mately guess the structure of large narrow jobs in B0 that correspond to a good

solution for the jobs with rounded processing times p̄j. We distinguish between

wide and narrow large jobs and as follows. We may assume that mN ≥ 32/δ4.

Otherwise the number of processors in P1 and (since m1 ≥ . . . ≥ mN) in every

platforms is bounded by a constant

m1 ≤ mNγ ≤
32γ

δ4 .

Thus, in every platform also the number of jobs that fit next to each other is bounded

by 32γ
δ4 , moreover, the total number of large jobs in each platform is bounded by

32γ
δ4 · A. Then we do not distinguish between large and narrow jobs and can enu-

merate the entire subset of large jobs that has to be scheduled in B0 as it is done for

the large wide jobs in Section 2.2.1.

We choose α = δ4/16. Then α satisfies αmN ≥ 2, implying ⌊αmN⌋ ≥ αmN −

1 ≥ αmN/2. A job j ∈ J is called wide if qj ≥ ⌊αmN⌋ and narrow otherwise.

Furthermore distinguish

• large narrow jobs Jla−na := {j ∈ Jlarge|qj ≤ ⌊αmN⌋},

• large wide jobs Jla−wi := {j ∈ Jlarge|qj > ⌊αmN⌋}.

10

2.2.1 Assignment of Large Wide Jobs in B0

The number of large wide jobs that fit next to each other within one platform is

bounded by m1
⌊αmN⌋

≤ m1
αmN−1 ≤ m1

(αmN)/2 ≤ (2γ)/α. Since large jobs have processing

times > δ, at most 1+2δ
δ rounded large jobs can be finished on one processor before

time 1 + 2δ. Therefore, the number of large wide jobs that have to be placed in

one platform in B0 is bounded by 2γ
α · 1+2δ

δ . Furthermore, in every platform a large

jobs can have A different starting times. Each possible assignment of large wide

jobs to platform and starting time can be represented by a tuple of vectors V =

(v1, . . . , v|B0|) ∈
(
([n] ∪ {0})A· 2γ

α · 1+2δ
δ

)|B0|
. The running time of a dynamic program

to compute such an assignment is equal to the number of possible vectors which

is bounded by (n + 1)|B0|·A· 2γ
α · 1+2δ

δ . Let Jla−wi(B0) denote the set of large wide jobs

selected and let J ′ := J \ Jla−wi(B0).

2.2.2 Gaps for Large Narrow Jobs in B0

In every platform Pi ∈ B0 we approximately guess the total load Π⋆
i,a,h of jobs with

height hδ2 starting at time aδ2. Note that we only need to consider those triples

(i, a, h) with hδ2 + aδ2 ≤ (1+ 2δ). Therefore we compute a vector Π = (Πi,a,h) with

Πi,a,h = b · ⌊αmN⌋, b ∈ {0, 1, . . . , 2γ
α } and Πi,a,h ≤ Π⋆

i,a,h ≤ Πi,a,h + ⌊αmN⌋. Here the

condition αmN − 1 ≥ αmN/2 guarantees that 2γ
α · ⌊αmN⌋ ≥ 2γ

α · (αmN − 1) ≥ m1.

There is only a constant number (1 + 2γ
α)|B0|·A·H of different vectors Π. For every

triple (i, a, h) we block a gap of Πi,a,h + ⌊αmN⌋ (not necessary contiguous) proces-

sors for large narrow jobs with p̄j = hδ2. Later we will place large narrow jobs with

p̄j = hδ2 total width ≥ Π⋆
i,a,h into them. This will be done using linear program-

ming and the subsequent rounding. Let G denote the total number of gaps, clearly

G ≤ |B0| · A · H.

Since γ, |B0| = O(N1) = O(1/ε4) we have

δ−1 ≤ O(
1
ε

|B0|/ε

) = 2O(ε−5 log(1/ε)).

With α = Θ(δ4) and A = O(δ−2) we have

|B0| · A ·
2γ

α
·

1 + 2δ

δ
= O(δ−7ε−8) = 2O(ε−5 log(1/ε)).

Therefore, the steps described above take time g(1/ε) · nO(f (1/ε)) for some function

g and f (1/ε) = 2O(ε−5 log(1/ε)).

11

2.2.3 Layers for Small Jobs

We can now compute the free layers of height δ2 between the large wide jobs allo-

cated by the dynamic program and the gaps designated for the large narrow jobs.

Let L1, . . . , LF denote the free layers, each having m f processors for f ∈ [F]. In Fig-

ure 3 an allocation of the enumerated large wide jobs and a guess Π for the gaps

reserved for the large narrow jobs in B0 is illustrated. The empty spaces of height

δ2 between and next to the large narrow and large wide jobs represent the layers

for small jobs.

gaps for large narrow jobs

large wide jobs

free layers

P1 P2 P|B0|

1 + 2δ

δ2

Figure 3: Simplified structure of large jobs in B0.

2.3 Linear Program for the Remaining Jobs J ′

In this section we give a linear programming relaxation for the following problem:

• place a set of small jobs Jsmall(B0) ⊂ Jsmall into the layers L1, . . . , LF

• select large narrow jobs Jla−na(B0) ⊂ Jla−na to be placed into the gaps Π,

• fractionally place the remaining jobs into B̃1.

We then round the solution of the LP and obtain an approximate and almost inte-

gral solution for the problem. For integrally scheduling the large jobs in the plat-

forms of B̃1 we round their processing times in advance harmonically as described

in the next section.

2.3.1 Harmonic Rounding

The harmonic transformation was first introduced by Lee and Lee [20]. For k ∈ N

it is described by a function fk : [0, 1] −→ [0, 1] with fk(x) = 1/q for x ∈ (1/(q +

1), 1/q] for q = 1, . . . , k − 1 and fk(x) = kx/(k − 1) if x ∈ (0, 1/k]. The harmonic

transformation has the following property:

Lemma 2.1. [20] For a sequence x1, . . . , xn with xi ∈ (0, 1] for i ∈ [n] and ∑
n
i=1 xi ≤ 1

we have ∑
n
i=1 fk(xi) ≤ Tk, where Tk ≤ T∞ + 1/(k − 1) and T∞ ≈ 1.691 is the Harmonic

constant.

12

We use a slightly modified function hk : [0, 1] −→ [0, 1], hk(x) = fk(x) for

x > 1/k and hk(x) = x for x ≤ 1/k. According to [2] for a sequence of numbers

x1, . . . , xn with values in (0, 1] and ∑
n
i=1 xi ≤ 1 we have ∑

n
i=1 hk(xi) ≤ T∞. For

k = ⌊ 20
ε ⌋ we round the processing times of the jobs in J ′ via hk. Since ε ≤ 3/18,

we have k = 20
ε ≥ 120.

For each job j ∈ J ′ let p̃j := hk(pj) ∈ (0, 1] denote its harmonically rounded

processing time. In fact, we only modify the processing times of large jobs in J ′,

because the small and medium jobs have processing times pj ≤ δ ≤ ε/20 = 1/k.

Consequently, for all small and medium jobs we have p̃j = pj. It might also be

possible that there are large jobs with processing time 1/k ≥ pj > δ for which we

have pj = p̃j.

Lemma 2.2. Assume that the choice of Jla−wi(B0) was correct and let J ⋆(B1) ⊂ J ′ be

the subset of jobs scheduled in B1 in an optimum solution. If the processing times of the

jobs in J ⋆(B1) are rounded harmonically, an optimum schedule of the rounded jobs into

B1 (and therefore in B̃1) has makespan at most T∞.

Proof. The Lemma follows from the fact that for a sequence of numbers x1, . . . , xn

with values in (0, 1] and ∑
n
i=1 xi ≤ 1 we have ∑

n
i=1 hk(xi) ≤ T∞ [2, 20] and using a

result of Seiden and van Stee [26].

aδ2

aδ2 + hδ2

Πi,a,h

qj · y
i,a,h
j

Figure 4: Slice of job j with p̄j = hδ2 in
gap Πi,a,h in Pi ∈ B0.

N1T∞

qj

Cℓ
i xℓ

i

m̃ℓ

Figure 5: Job j in configuration Cℓ
i in B̃ℓ ⊆

B̃1.

2.3.2 LP-Formulation.

For every group B̃ℓ we introduce a set Cℓ of feasible configurations Cℓ : J ′ →

{0, 1} representing a subset of jobs in J ′ that fit next to each other in a platform

with m̃ℓ processors, i.e. ∑{j∈J ′|Cℓ(j)=1} qj ≤ m̃ℓ. Let q(ℓ) denote the number of

different configurations for B̃ℓ. In the LP below the variable xℓi indicates the length

of configuration Cℓ
i for i ∈ [q(ℓ)] (compare to Figure 5). That means each job in

13

{j ∈ J ′|Cℓ(j) = 1} is executed in B̃ℓ during time xℓi . In a similar way, for each

layer L f in B0 we introduce a set C f of feasible configurations C f : Jsmall → {0, 1}

of small jobs that fit next to each other on m f processors and denote with q(f) the

number of different configurations for L f . The variable x
f
i indicates the length of

configuration C
f
i for i ∈ [q(f)]. Furthermore, for every job j ∈ Jla−na we introduce

variables yi,a,h
j ∈ [0, 1], each yi,a,h

j indicates the vertical slice of job j (with p̄j = hδ2)

that is assigned to a gap Πi,a,h in B0 (compare to Figure 4) .

q(ℓ)

∑
i=1

xℓi ≤ N1T∞ ℓ ∈ [L]

q(f)

∑
i=1

x
f
i ≤ δ2 f ∈ [F]

∑
{j∈Jla−na| p̄j=hδ2}

yi,a,h
j · qj ≤ Πi,a,h + ⌊αmN⌋ i ∈ [|B0|], a ∈ [A], h ∈ [H]

F

∑
f=1

∑
{i∈[q(f)]|C

f
i (j)=1}

x
f
i +

L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi ≥ p̃j = pj j ∈ Jsmall

L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi ≥ p̃j j ∈ Jla−wi \ Jla−wi(B0)

L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi · qj + p̃j · ∑
i,a,h

p̄j=hδ2

yi,a,h
j · qj ≥ p̃j · qj j ∈ Jla−na

∑
j∈Jτ

pjqj − ∑
j∈Jτ

L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi qj ≤ εm1

x
f
i , xℓi ≥ 0

yi,a,h
j ∈ [0, 1]

(2)

In the LP above we have one constraint for every group B̃ℓ that guarantees that

the makespan of the fractional schedule corresponding to a feasible LP-solution

does not exceed length T∞ for any Pi ∈ B̃ℓ . In a similar way we have one constraint

for every layer L f . For each gap Πi,a,h a constraint guarantees that the total load of

large narrow jobs (fractionally) assigned to the gap does not exceed Πi,a,h + ⌊αmN⌋.

For every small job we have a covering constraint combined from heights of con-

figurations in L f and in Bℓ. Furthermore, we have a covering constraint for each

large wide job that is not placed in B0, i.e. j ∈ Jla−wi \ Jla−wi(B0) . Every large

narrow job j ∈ Jla−na is covered by an area constraint: The total width of job j

assigned to B0 multiplied with its height p̃j in B̃1 plus the area covered by confi-

gurations in B̃1 should be at least p̃jqj. For the medium jobs Jτ the last constraint

14

ensures that the total area of uncovered medium jobs is small, i.e. less than εm1.

If the LP has no feasible solution either the enumerated set of large wide jobs was

not correct, the choice of Π does not fit or the choice of δ, moreover the choice of τ,

was not correct.

2.3.3 Solving the LP

We can compute an approximate solution of the linear program above by solving

approximately a MAX-MIN RESOURCE SHARING problem.

For n′ := |J ′| and nτ = |Jτ| the linear program (2) is a feasibility problem with

an exponential number of variables and L + F + G + n′ − nτ + 1 ≤ L + F + G +

n + 1 constraints (not counting non-negativity constraints). We can formulate the

problem as a fractional covering problem with convex set K and at most n′ − nτ + 1

covering constraints. The system of inequalities (defined by concave functions) is

given as

1
p̃j




F

∑
f=1

∑
{i∈[q(f)]|C

f
i (j)=1}

x
f
i +

L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi


 ≥ 1 j ∈ Jsmall

1
p̃j

L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi ≥ 1 j ∈ Jla−wi \ Jla−wi(B0)

1
p̃j




L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi + ∑
i,a,h

p̄j=hδ2

p̃jy
i,a,h
j


 ≥ 1 j ∈ Jla−na

1
∑j∈Jτ

p̃jqj − εm1


 ∑

j∈Jτ

L

∑
ℓ=1

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi qj


 ≥ 1

(3)

for a column vector (x, y) ∈ K where

K :=




L

×
ℓ=1

Kℓ ×
F

×
f=1

K f


××

i,a,h

Ki,a,h

is given by the cartesian product of L + F simplices

Kℓ :=

{
xℓ = (xℓi)i∈[q(ℓ)]|

q(ℓ)

∑
i=1

xℓi = N1T∞, xℓi ≥ 0

}
,

K f :=

{
x f = (x

f
i)i∈[q(f)]|

q(f)

∑
i=1

x
f
i = δ2, x

f
i ≥ 0

}

15

and for J h
la−na := {j ∈ Jla−na| p̄j = hδ2} we have F sets of the form

Ki,a,h :=



yi,a,h = (yi,a,h

j)j∈J h
la−na

|
|J h

la−na|

∑
j=1

yi,a,h
j qj = Πi,a,h + ⌊αmN⌋, yi,a,h

j ∈ [0, 1]



 .

We represent the system of inequalities (3) as A(x, y) ≥ e where e is the vector

of all ones and A consists of the row vectors a1, . . . , an′−nτ+1. We can get a fea-

sible (approximate) solution of the covering problem computing an approximate

solution of the following MAX-MIN RESOURCE SHARING problem

λ⋆ = max{λ|A(x, y) ≥ λe, (x, y) ∈ K}. (4)

According to [11] we can compute a (1− ρ)-approximate solution for (4) in O(n(ρ−2 +

log n)) iterations: We start the iteration with an initial solution (x̄, ȳ) ∈ K and com-

pute a price vector b = (b(x̄, ȳ)) ∈ Qn′−nτ+1 depending on (x̄, ȳ). Then we compute

a (1− ρ′)-approximate solution (x̂, ŷ) ∈ K for the block problem max{b⊤A(x, y)|(x, y) ∈

K} for ρ′ = ρ/6 and reset (x̄, ȳ) := (1 − τ)(x̄, ȳ) + τ(x̂, ŷ) for a certain step width

τ ∈ (0, 1). After O(n(ρ−2 + log n)) the algorithm stops at a vector (x̄, ȳ) ∈ K so

that A(x̄, ȳ) ≥ (1 − ρ)λ⋆e. For (x, y) ∈ K we define λ(x, y) := min{aj · (x, y)|1 ≤

j ≤ n′ − nτ + 1} and proceed by case distinction.

If λ(x̄, ȳ) < 1 − ρ we conclude that there is no solution (x, y) ∈ K satisfying

A(x, y) ≥ e and so for (2). We discard the vector Π and the assignment V of large

wide jobs and compute another pair (V, Π). If all possible pairs (V, Π) fail we in-

crease the value for τ.

In case of λ(x̄, ȳ) ≥ (1 − ρ) we have λ⋆ ≥ 1 and can therefore compute a

fractional schedule from (x̄, ȳ) as follows.

We slightly extend the length of each configuration setting (x, y) := (1+ ρ
1−ρ)(x̄, ȳ)

to achieve

aj(x, y) = (1 +
ρ

1 − ρ
)aj(x̄, ȳ) ≥ (1 +

ρ

1 − ρ
)(1 − ρ) ≥ 1

for j ∈ [n′ − nτ + 1]. Consequently, for every ℓ ∈ [L] we have ∑
q(ℓ)
i=1 xℓi = (1 +

ρ
1−ρ)∑

q(ℓ)
i=1 x̄ℓi = (1+ ρ

1−ρ)N1T∞. The fractional schedule in each Layer L f and there-

fore in each of the platforms in group B0 is also increased by factor (1 + ρ
1−ρ). The

same holds for the total width of large narrow jobs assigned to a gap in B0. So the

width of a gap is also increased by the same factor . For ρ sufficient small, namely
ρ

1−ρ ≤ α
2γ ≤ 1/2, using Πi,a,h ≤ m1 and m1α

2γ ≤ ⌊αmN⌋ the increased width can be

16

bounded by

(1 +
α

2γ
)(Πi,a,h + ⌊αmN⌋) ≤ Πi,a,h + 3⌊αmN⌋. (5)

For ρ
1−ρ = α

2γ we have

ρ

1 − ρ
=

α

2γ

α=δ4/16,δ≤ε,γ≥1
≤ δ4/16 ≤ ε4.

and ρ = α
2γ+α = Θ(α/γ) = Θ(δ4ε3 log−1(1/ε)) if N1 = Θ(1/ε3 log(1/ε)) since

γ = 8
3 N1.

Solving the Block Problem. The block problem max{b⊤A(x, y)|(x, y) ∈ K}

can be decomposed into L + F + G independent smaller block problems. We intro-

duce a weighting w ∈ Qn′
with

wj :=





bj

p̃j
if j ∈ J ′ \ Jτ

qjbn′−nτ+1
∑k∈Jτ pkqk−εm1

if j ∈ Jτ.

Then for (x, y) ∈ K we obtain after some rearrangement

b⊤A(x, y) =

L

∑
ℓ=1

∑
j∈J ′

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

wjx
ℓ
i +

F

∑
f=1

∑
j∈Jsmall

∑
{i∈[q(f)]|C

f
i (j)=1}

wjx
f
i + ∑

i,a,h
∑

j∈J h
la−na

wj p̃jy
i,a,h
j .

So the block problem can be rewritten as

max
L

∑
ℓ=1

∑
j∈J ′

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

wjx
ℓ
i

+
F

∑
f=1

∑
j∈Jsmall

∑
{i∈[q(f)]|C

f
i (j)=1}

wjx
f
i

+ ∑
i,a,h

∑
j∈J h

la−na

bjy
i,a,h
j

xℓ ∈ Kℓ for ℓ ∈ [L]

x f ∈ K f for f ∈ [F]

yi,a,h ∈ Ki,a,h for all (i, a, h).

(6)

17

For solving (6) it is sufficient to compute a solution for L problems of the kind

max ∑
j∈J ′

∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

wjx
ℓ
i

xℓ ∈ Kℓ

(7)

and F problems

max ∑
j∈Jsmall

∑
{i∈[q(f)]|C

f
i (j)=1}

wjx
f
i

x f ∈ K f

(8)

and G problems of the form

max ∑
j∈J h

la−na

bjy
i,a,h
j

yi,a,h ∈ Ki,a,h

(9)

Each of the last G problems corresponds to a fractional 0-1 knapsack problem of

the following form

max ∑
j

bjxj

s.t. ∑
j

qjxj ≤ Πi,a,h + ⌊αmN⌋

xj ∈ [0, 1] j ∈ J h
la−na.

(10)

Which can be solved in time O(n log n). As Kℓ and K f are simplices we find the

optimum of (7) and (8) at a vertex x̃ℓ ∈ Kℓ and x̄ f ∈ K f , respectively. For Kℓ such

a vertex corresponds to a configuration Cℓ
ĩ

with x̃ℓ
ĩ
= N1T∞ and x̃ℓi = 0 for Cℓ

i 6=

Cℓ
ĩ
. That means for solving (7) we have to find a configuration Cℓ

ĩ
with maximum

weight ∑{j∈J ′|Cℓ
i (j)=1} wj . This can be formulated as a knapsack problem:

max ∑
j∈J ′

wjxj

s.t. ∑
j∈J ′

qjxj ≤ m̃ℓ

xj ∈ {0, 1}

(11)

18

Finding an optimum solution of (8) corresponds to

max ∑
j∈Jsmall

wjxj

s.t. ∑
j∈Jsmall

qjxj ≤ m f

xj ∈ {0, 1},

(12)

where the value m f denotes the number of processors of the free layer L f of height

δ2 in B0. Using the algorithm by Lawler [19] we compute a (1− ρ′) approximate so-

lution for each of the knapsack problems in time O(n log(1/ρ′)+ 1/ρ′4). Summing

up all near optimal solutions for (7) and (8) gives a (1 − ρ′)-approximate solution

for (6).

This implies that the MAX-MIN RESOURCE SHARING problem can be solved ap-

proximately with accuracy ρ ≤ α
2γ+α in time poly(n, 1/ρ) where ρ = O(αγ−1) =

O(δ4γ−1).

2.4 Rounding the LP-solution

A solution ((x f), (xℓ), (yi,a,h
j)) of (2) can be transformed into a fractional solution of

a general assignment problem. The fractional assignment can be rounded using a

result of Lenstra et al. [21] for scheduling unrelated machines similar as in Section

2.3.1. The main difficulty and difference here is to handle the large narrow narrow

jobs as they are placed fractionally in B0 and B̃0.

For all jobs j ∈ J ′ we introduce new variables xℓ(j), x f (j) ≥ 0 that indicate the

length of the fraction of job j that is scheduled in B̃ℓ, ℓ ≥ 1, and in L f , respectively.

Formally this is

xℓ(j) = ∑
{i∈[q(ℓ)]|Cℓ

i (j)=1}

xℓi

the sum of the length of all configurations in B̃ℓ in which job j appears, and

x f (j) = ∑
{i∈[q(f)]|C

f
i (j)=1}

x
f
i .

Additionally, for medium jobs j ∈ Jτ (here again p̃j = pj) we define

x0(j) := pj −
L

∑
ℓ=1

xℓ(j) ∈ [0, p̃j],

the fraction of the job that should be placed in B0 = B0. For the medium jobs

19

assigned to B0 we therefore have the inequality

εm1 ≥ ∑
j∈Jτ

x0(j)qj.

Then the following covering constraints hold for the jobs:

L

∑
ℓ=1

xℓ(j) +
F

∑
f=1

x f (j) ≥ p̃j = pj, j ∈ Jsmall

x0(j) +
L

∑
ℓ=1

xℓ(j) = p̃j = pj j ∈ Jτ

L

∑
ℓ=1

xℓ(j) ≥ p̃j, j ∈ Jla−wi \ Jla−wi(B0)

L

∑
ℓ=1

xℓ(j)qj + p̃j · ∑
i,a,h

p̄j=hδ2

yi,a,h
j · qj ≥ p̃j · qj j ∈ Jla−na

(13)

By deleting job j from appropriate configurations or replace a configuration by two

“shorter” configurations (one with job j and one without, their total length is the

same as the one of the original configuration) we may assume equality in each of

the inequalities above. For the same reason we may also assume that x f (j), xℓ(j) ∈

[0, p̃j] now.

For all fractions xℓ(j),x f (j),x0(j) we build rectangles of width qj and height

xℓ(j), x f (j) and x0(j), respectively.

The rectangles belonging to fractions of medium jobs for B0 we simply collect

in a set

R0 := {(x0(j), qj)|j ∈ Jτ}.

For ε′ := ε/9 we partition the rectangles of every group B̃ℓ, ℓ ≥ 1, and Layer L f

into wide rectangles

Rℓ
wide := {(xℓ(j), qj)|qj > (ε′/2)m̃ℓ}

R
f
wide

:= {(x f (j), qj)|qj > (ε′/2)m f }

and narrow rectangles

Rℓ
narrow := {(xℓ(j), qj)|qj ≤ (ε′/2)m̃ℓ}

R
f
narrow := {(x f (j), qj)|qj ≤ (ε′/2)m f }.

The wide rectangles in Rℓ
wide, R

f
wide are partitioned further (by width) into M =

O(1/ε′2) groups Gℓ
k using geometric rounding. For each set Rℓ

wide and group k =

1, . . . , M of Rℓ
wide we introduce a variable xℓk(j) ∈ [0, p̃j] that indicates the frac-

20

tion of Job j = 1, . . . , n that is contained in this group. In a similar way we in-

troduce variables x
f
k (j). For the fraction of job j in Rℓ

narrow and R
f
narrow we intro-

duce variables xℓ0(j), x
f
0(j) ∈ [0, 1], respectively. Note that ∑

M
k=0 x

f
k (j) = x f (j) and

∑
M
k=0 xℓk(j) = xℓ(j) holds by construction. We scale all variables x

f
k (j), xℓk(j), x0(j)

by 1/ p̃j and introduce the corresponding variables z
f
k (j), zℓk(j), z0(j) ∈ [0, 1]. Then

we can rewrite (13) (dividing every equation by its right hand side):

L

∑
ℓ=1

M

∑
k=0

zℓk(j) +
F

∑
f=1

M

∑
k=0

z
f
k (j) = 1, j ∈ Jsmall

x0(j) +
L

∑
ℓ=1

M

∑
k=0

zℓk(j) = 1 j ∈ Jτ

L

∑
ℓ=1

M

∑
k=0

zℓk(j) = 1, j ∈ Jla−wi \ Jla−wi(B0)

L

∑
ℓ=1

M

∑
k=0

zℓk(j) + ∑
i,a,h

p̄j=hδ2

yi,a,h
j = 1 j ∈ Jla−na

(14)

We compute SIZE(R0)(≤ εm1), SIZE(Rℓ
narrow) and SIZE(R

f
narrow) and observe

that the following capacity constraints hold:

∑
j∈Jsmall

z
f
0(j) · p̃j · qj ≤ SIZE(R

f
narrow) f ∈ [F]

∑
j∈Jsmall

z
f
k (j) · p̃j ≤ H(G

f
k) k ∈ [M], f ∈ [F]

∑
j∈Jτ

z0(j) · p̃j · qj ≤ SIZE(R0)

n

∑
j=1

zℓ0(j) · p̃j · qj ≤ SIZE(Rℓ
narrow) ℓ ∈ [L]

n

∑
j=1

zℓk(j) · p̃j ≤ H(Gℓ
k) k ∈ [M], ℓ ∈ [L]

∑
{j∈Jla−na| p̄j=hδ2}

yi,a,h
j · qj ≤ Πi,a,h + ⌊αmN⌋ i ∈ [|B0|], a ∈ [A], h ∈ [H]

(15)

Now we observe that (z
f
k (j), zℓk(j), z0(j), yi,a,h

j) is a fractional solution of a gen-

eral assignment problem formulated by (14) and (15). This assignment problem

corresponds to scheduling n jobs on |B0| · A · H + (F + L)(M + 1) + 1 unrelated

machines. Using a result by Lenstra et al. [21] a fractional solution of this problem

can be rounded to an almost integral one with only one fractionally assigned job

per machine.

21

Let (z̃ f
k (j), z̃ℓk(j), z̃0(j), ỹi,a,h

j) be such a rounded solution. Define

R̃ℓ
wide := {(z̃ℓk(j) p̃j, qj)|z̃

ℓ
k(j) = 1, k > 0},

R̃ℓ
narrow := {(z̃ℓk(j) p̃j, qj)|z̃

ℓ
k(j) = 1, k = 0},

Fracℓ := {(z̃ℓk(j) p̃j, qj)|z̃
ℓ
k(j) < 1},

R̃
f
wide

:= {(z̃
f
k (j) p̃j, qj)|z̃

f
k (j) = 1, k > 0},

R̃
f
narrow := {(z̃ℓk(j) p̃j, qj)|z̃

f
k (j) = 1, k = 0},

Frac f := {(z̃
f
k (j) p̃j, qj)|z̃

f
k (j) < 1},

R̃0 := {(z0(j) p̃j, qj)|j ∈ Jτ, z0(j) = 1},

f rac0 := (z0(j) p̃j, qj) with j ∈ Jτ and z0(j) < 1.

For every group B̃ℓ we obtain a set of integrally assigned wide R̃ℓ
wide and nar-

row rectangles R̃ℓ
narrow and M fractionally assigned wide rectangles plus one frac-

tional narrow job which we collect in Fracℓ. For every layer L f we obtain in a

similar way sets of integral rectangles corresponding to small jobs R̃
f
wide, R̃

f
narrow

and M + 1 fractional small jobs (M wide and one narrow rectangles) collected in

Frac f .

In addition, we have a set of integral rectangles R̃0 corresponding to a set of

medium jobs to be scheduled in B0 with total load SIZE(R̃0) ≤ SIZE(R0) ≤ εm1

plus one fractional medium job f rac0 with processing time < δ. We schedule the

jobs in R̃0 ∪{ f rac0}(= Jτ(B0)) using list schedule on top of the largest platform P1

in the end. This will increase the length of the schedule in P1 by at most 2ε+ δ ≤ 3ε.

2.5 Packing into the Gaps

For every gap with width Πi,a,h we have rounded variables ỹi,a,h
j . Except for one

value with ỹi,a,h
j < 1 all of them are integral ỹi,a,h

j = 1 and the widths of the

corresponding jobs (completely including the fractional one) sum up to at most

Πi,a,h + 2⌊αmN⌋. Since Πi,a,h ≤ Π⋆
i,a,h ≤ Πi,a,h + ⌊αmN⌋ we need to remove large

narrow jobs of total width at most 3⌊αmN⌋ for every gap that cannot be finished

before 1 + 2δ and schedule them on top of the solution. For all gaps their total

width sums up to

|B0| · 3⌊αmN⌋ · A · H ≤ |B0|
3(1 + 2δ)⌊αmN⌋

δ4 ≤ |B0| ·
4⌊αmN⌋

δ4 .

As those additional large narrow jobs have small width, placing some of them next

to each other in a platform Pi ∈ B0, we use at least mi − ⌊αmN⌋ ≥ mN − αmN =

22

(1 − α)mN processors of this platform. Since |B0|·4⌊αmN⌋
δ4(1−α)mN

α≤1/2
≤ |B0|·8α

δ4 we need at

most
⌈
|B0|·8α

δ4

⌉
platforms to schedule those jobs. In those platforms the schedule is

increased by 1.

2.6 Packing into the Layers

The rectangles in R̃
f
wide, R̃

f
narrow can be packed integrally into a layer L f with the

KR algorithm increasing the total height of the layer only slightly. We can show

that if we then add the rectangles in Frac f greedily in the end we increase the

total length of the schedule in every platform only by 3ε: According to Lemma

1.2 for Layer L f we get an integral packing of height (1+ε′)2

1−ε′ δ2 + (4M + 1)δ5 where

the additional (1 + ε′)-factor is due to the rounding via the general assignment

problem (for details see [5]). Since ε′ = ε/9 this is less than (1 + ε)δ2 + (4M + 1)δ5

Adding the rectangles in Frac f greedily in the end increases the length to (1 +

ε)δ2 + (5M + 2)δ5. Since there can be at most (1 + 2δ)/δ2 layers on top of each

other the makespan in every platform is increased by at most

(1+ 2δ)/δ2(εδ2 +(5/ε′2 + 2)δ5)
δ≤ε/5≤ε′

≤ (1+ 2δ)(ε+ 5δ+ 2δ3)
δ≤ε/9
≤ (1+ 2δ)2ε

δ≤1/4
≤ 3ε.

So far we have scheduled a subset of the jobs into B0 so that almost all jobs can

be finished before 1 + 2δ + 6ε ≤ 1 + 7ε except for some large narrow jobs that can

be distributed within
⌈
|B0|·8α

δ4

⌉
extra platforms in B0. In those platforms the length

of the schedule is at most 2 + 7ε.

2.7 2D-Bin Packing Subroutine for B̃1

We introduce here a subroutine for 2D-BIN PACKING that packs the rectangles in

R̃ℓ
wide ∪ R̃ℓ

narrow ∪ Fracℓ into B̃ℓ, ℓ ∈ [L]. Remember that we assume an optimum

makepsan equal to 1, pmax ≤ 1 and |B̃ℓ| = N1. We define similar as in [2] the

following property for integral packings.

Definition 2.3. A packing of a set of rectangles with heights ∈ [0, 1] and widths

at most w into a strip b(w, ∞) has the tall not sliced property for ε, if, when drawing

horizontal lines through the packing at heights i = 1, 2, 3, . . ., no rectangle with

height > ε intersects with its interior such a horizontal line.

For packings having the tall not sliced property one can provide "good cutting

properties":

Lemma 2.4. Let R be a set of rectangles with heights bounded by 1 and widths at most w

that can be integrally packed into a strip b(w, ∞) with height at most h. If the packing has

23

the tall not sliced property for some ε, it can be converted into a 2-dimensional bin packing

using at most (h + 1)(1 + ε) bins b(w, 1).

Proof. By drawing horizontal lines at height i = 1, . . . , ⌈h⌉ through the packing

we cut the packing into ⌈h⌉ slices. The rectangles that lie completely with their

interior between two consecutive horizontal lines can be packed into a bin b(w, 1).

This gives at most h + 1 bins. For every horizontal line we take out the rectangles

intersecting it and get a slice of height at most ε of cut rectangles (as the packing

has the tall not sliced property for ε). We can pack 1
ε of such slices together into a

bin b(w, 1). Since we have at most ⌊h⌋ ε-slices we get another ε(h + 1) bins.

The following lemma is derived using a rounding technique in [2].

Lemma 2.5. The rectangles in R̃ℓ
wide ∪ R̃ℓ

narrow can be packed integrally into a strip

b(m̃ℓ, ∞) obtaining a packing of height at most

(1 + ε′)2T∞N1 + (4M + (M + 1)k)

having the tall not sliced property for 1/k.

Proof. First we observe that according to the solution of the solution of (2), by con-

struction a fractional strip packing for Rℓ
wide ∪Rℓ

narrow into b(m̃ℓ, ∞) has height at

most N1T∞ (compare to the first L constraints of (2)). Thus, we also know that

the height of an optimal fractional packing for Rℓ
wide, denoted with FSP(Rℓ

wide), is

bounded by N1T∞.

Now we consider the rounded rectangles R̃ℓ
wide and round them geometrically

obtaining R̃ℓ
sup with only M = O(1/ε′2) (remember ε′ = ε/9) different width.

We compute an optimum solution of (1) for R̃ℓ
round (modulo scaling of rectangle

width by 1/m̃ℓ) and construct the corresponding fractional packing with at most

2M non-zero configurations. As proved earlyer in [5] (using Lemma 1.2 twice) for

the height of an optimal fractional packing for R̃ℓ
round, denoted with FSP(R̃ℓ

round),

we have the following bound:

FSP(R̃ℓ
round)

[5]
≤ (1 + ε′)2FSP(Rℓ

wide) ≤ (1 + ε′)2N1T∞

Thus, we obtain a fractional packing of R̃ℓ
round into b(m̃ℓ, ∞) with at most 2M non-

zero configurations and height at most (1+ ε′)2N1T∞. Using this fractional solution

for R̃ℓ
round we produce an integral packing of R̃ℓ

round ∪ R̃ℓ
narrow in the remainder of

the proof:

The rectangles in R̃ℓ
round ∪ R̃ℓ

narrow ∪ Fracℓ correspond to jobs that have harmoni-

cally rounded processing times. Thus, rectangles that correspond to jobs with pro-

cessing times > 1/k have heights in
{

1
q | q = 1, . . . , k − 1

}
. Using a rounding tech-

24

nique by Bansal et al. [2] the fractional packing of the wide rectangles R̃ℓ
round can be

converted into an integral packing with height (1 + ε′)2T∞N1 + (2M + Mk)pmax

having the tall not sliced property for 1/k: We first add an extra height of pmax(≤ 1)

to each configuration. For each non-zero configuration we generate columns of

different width according to the configuration, i.e. reserved space for the rectan-

gles of the corresponding width. The height of each column is equal to the height

of the corresponding configuration. This increases the height of the packing to

(1 + ε′)2T∞N1 + 2Mpmax. For each width wi in R̃ℓ
round we order the rectangles of

width wi and height > 1/k by height and fill the columns of width wi greedily

starting at height 0. Whenever the height changes we shift the (vertical) starting

position of the upcoming rectangle to the next integral. So it is guaranteed that

rectangles of height 1/q always start at integral multiples of 1/q. Since there are M

different width and k different heights for the rectangles, this may happen at most

Mk times. We do not care about the starting position of rectangles with height

≤ 1/k. In total this increases the height of the packing again by Mk.

We use NFDH to place the narrow rectangles in R̃ℓ
narrow in the empty space next

to the configurations in a similar way. If the height changes we open a new level

with baseline at the next integral. This increases the total height again by at most

(2M + k) since the configuration changes at most 2M times and the height changes

k times. The final packing has height less than

(1 + ε′)2T∞N1 + (4M + (M + 1)k).

Adding now the M + 1 fractional rectangles in Fracℓ preserving the tall not

sliced property for 1/k we get a strip packing for R̃ℓ
round ∪ R̃ℓ

narrow ∪ Fracℓ into

b(m̃ℓ, ∞) with height at most

(1 + ε′)2N1T∞ + (M + 1)k + 5M + 2
k≥6,ε′≤ε/9,M≥2

≤ (1 + ε)N1T∞ + 2Mk + Mk

= (1 + ε)N1T∞ + 3Mk.

For the appropriate choice of N1 we can now convert the strip packing into

a 2-dimensional bin packing using at most 2N1 bins b(m̃ℓ, 1). Stacking any two

bins on top of each other gives a packing into N1 strips b(m̃ℓ, ∞) of height 2 that

corresponds to a schedule of length 2 for the platforms in B̃ℓ.

Lemma 2.6. For N1 = (3M(k+1)+2)k
2k−(k+1)(1+ε)T∞

= O(Mk2) we can convert the strip packing for

R̃ℓ
round ∪ R̃ℓ

narrow ∪ Fracℓ into b(m̃ℓ, ∞) into a 2-dimensional bin packing using at most

2N1 bins b(m̃ℓ, 1).

25

Proof. Using the above Lemma 2.4 for h := (1 + ε)N1T∞ + 3Mk and 1/k we can

convert the strip packing into b(m̃ℓ, ∞) into a 2-dimensional bin packing using at

most (h + 1)(1 + 1/k) bins b(m̃ℓ, 1). To proof our claim we show that (h + 1)(1 +

1/k) ≤ 2N1.

First we show that k >
(1+ε)T∞

2−(1+ε)T∞
: Since ε ≤ 3

18 we have

2 − (1 + ε)T∞ ≥ 2 − (1 + ε)1.7
ε≤3/18
≥ 1/60 > 0

and therefore (1+ε)T∞

2−(1+ε)T∞
≤

1.7(1+ 3
18)

2−1.7(1+ 3
18)

= 119 ≤ k since k = 20
ε ≥ 120. Furthermore

we have

N1 =
(3M(k + 1) + 2)k

2k − (k + 1)(1 + ε)T∞

=
C · k2M

k(2 − (1 + ε)T∞)− (1 + ε)T∞

for a constant C > 0

≤
C · k2M

k/60 − (1 + 3/18)1.7
k≥120
≤ C · 60 · k2M.

And finally we can prove

(h + 1)(1 + 1/k) =
(k + 1)[(1 + ε)N1T∞ + 3Mk]

k
+

k + 1
k

≤
(k + 1)(1 + ε)N1T∞

k
+

k(3M(k + 1) + 2)
k

≤
(k + 1)(1 + ε)N1T∞

k
+

N1(2k − (k + 1)(1 + ε)T∞)

k

≤ 2N1.

2.8 Converting Process

So far we constructed a schedule for the rounded platforms B0 ∪ B̃1. It remains to

convert the schedule into one for B0 ∪ B1.

Lemma 2.7. The schedule can be converted into a schedule of length 2+O(ε) for B1 ∪B0.

Proof. Remember from Section 2.6 that for B0 the schedule produced so far has

length ≤ 1 + 7ε except for
⌈
|B0|·8α

δ4

⌉
platforms in which the schedule has length

≤ 2 + 7ε. If it is possible to distribute the jobs scheduled in group B̃1 ⊆ B̃1 among

the platforms in B0 we can apply a shifting argument (see Figure 6) and obtain a

schedule for B0 ∪ B1. Recall that the schedule in every platform in B̃1 is composed

26

B0

1 +O(ε)

B̃1 B̃2 B̃L

1

2

B1 BL−1 BL

2

Figure 6: Shifting technique.

by stacking at most two 2-dimensional bins b(m̃1, 1) (where m̃1 ≤ m|B0|) on top of

each other. Thus, we need to distribute 2N1 bins b(m̃1, 1) among the platforms in

B0.

In total, if |B0| satisfies the inequality

|B0| ≥ 2N1 +

⌈
|B0| · 8α

δ4

⌉
(16)

we can convert the schedule. Since |B0| ≥ N0 equation (16) holds, if

|B0|(1 −
8α

δ4) ≥ 2N1 + 1 (17)

Since α = δ4/16 this is fulfilled for |B0| ≥ N0 = 2(2N1 + 1).

3 Case 2: Using the Gap γ

We may now assume that there is a number K ∈ [N], so that m1/mK ≤ γ and

m1/mK+1 > γ, where γ = 8
3 N1.

If K ≥ N0 = O(1/ε4) a variant of the algorithm for the first scenario can be

applied achieving a (2 + O(ε))-approximation. In this variant we partition the

platforms in the same way as in Case 1 and consider jobs as wide if they satisfy

qj ≥ ⌊αm|B0|⌋ where α = δ4/16 as before. The rest of the algorithm can be directly

applied. Thus, throughout this section we assume K < N0.

27

3.1 Structural Simplifications

We define B0 := {P1, . . . , PK} and B1 := {PK+1, . . . , PN}. For

N1 = O(1/ε4) as in Lemma 2.6 we partition B1 into L :=
⌈

N−K
N1

⌉
groups

Bℓ = {PK+(ℓ−1)N1+1, . . . , PK+ℓN1} for ℓ ∈ [L − 1]

containing exactly N1 platforms and BL := {PK+(L−1)N1+1,...,PN
} containing maybe

less that N1 platforms. In each group Bℓ, ℓ ∈ [L] we round the number of pro-

cessors of each platform up to the number of processors m̃ℓ := mK+(ℓ−1)N1+1 of

the largest platform PK+(ℓ−1)N1+1 contained in this group. In group BL we add

N1 − |BL| dummy platforms with m̃L processors, so that every modified group,

denoted with B̃ℓ, ℓ ∈ [L], contains exactly N1 platforms of the same kind.

We first compute a schedule for B0 ∪ B̃1, where B̃1 =
⋃

ℓ B̃ℓ, and convert this

solution into a solution for B0 ∪ B1. With a similar argument as we assumed

mN ≥ 32/δ4 in the first case we may assume here that mK ≥ 32/δ4. (Otherwise the

number of processors in platform P1 and therefore in every platform is bounded

by a constant. This implies that also the number of jobs that fit next to each other

is bounded by a constant and we do not distinguish between wide and narrow

jobs to enumerate them.) We choose α = δ4/16. Then we have αmK ≥ 2 implying

αmK − 1 ≥ αmK/2 We call a job (pj, qj) wide if qj ≥ ⌊αmK⌋ and narrow otherwise.

3.2 Algorithm for Case 2

As in the first case we enumerate and assignment of large wide for B0 and approx-

imately guess the vector Π⋆ = (Π⋆
i,a,h) of loads of the large narrow jobs in B0. We

compute the free layers of height δ2 in B0 and use the techniques as described in

Sections 2.3-2.7.

It remains now to convert the schedule for B0 ∪ B̃1 into a schedule for B0 ∪ B1.

As in Case 1 we need to distribute the jobs scheduled in B̃1 and some extra large

narrow jobs among the platforms in B0.

3.3 Converting Process and Choice of γ

In the worst case K = 1 and we have to place the additional 2N1 2D-bins b(m̃1, 1)

of width at most mK+1 ≥ m̃1 plus additional large narrow jobs of total width

K ·
4⌊αmK⌋

δ4 =
4⌊αm1⌋

δ4

28

next to each other on P1. Thus, in the worst case the number of processors at least

needed in P1 can be bounded by

2N1 · mk+1 +
4⌊αm1⌋

δ4

α=δ4/16
≤ 2N1 · mK+1 +

m1

4
(18)

If we choose γ = 8
3 N1 we have m1 > 2N1 · mK+1 +

m1
4 .

Finally, we obtained a (2+O(ε))-approximation in both cases and proved The-

orem 1.1.

4 Conclusion

We have obtained an Algorithm that constructs a schedule of a set J of n paral-

lel jobs into a set B of N heterogeneous platforms with makespan at most (2 +

ε)OPT(J ,B). We assume that it is also possible to find an algorithm that packs a

set of n rectangles into N strips of different widths. Many of the techniques used

also apply to rectangles. The main difficulties will be the selection and packing pro-

cess of the large narrow rectangles for B0 as the gaps provided by our algorithm

might contain non-contiguous processors.

Furthermore, we can decrease the running time of the algorithm using a dif-

ferent rounding technique: Instead of geometric rounding we can apply the same

rounding technique as in our improved version of the KR algorithm in [5]. Using

this we obtain M = O(1/ε log(1/ε)) and therefore N1, N0 = O(1/ε3 log(1/ε)).

This improves the running time since in this case we have f (1/ε) = 2O(ε−4 log2(1/ε)).

References

[1] A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis. Scheduling inde-

pendent multiprocessor tasks. Algorithmica, 32(2):247–261, 2002.

[2] N. Bansal, X. Han, K. Iwama, M. Sviridenko, and G. Zhang. Harmonic algo-

rithm for 3-dimensional strip packing problem. In Proceedings of the eighteenth

annual ACM-SIAM symposium on Discrete algorithms (SODA 2007), pages 1197–

1206, 2007.

[3] M. Bougeret, P. F. Dutot, K. Jansen, C. Otte, and D. Trystram. Approximating

the non-contiguous multiple organization packing problem. In Proceedings of

the 6th IFIP International Conference on Theoretical Computer Science (TCS 2010),

pages 316–327, 2010.

[4] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram. A fast 5/2-

approximation algorithm for hierarchical scheduling. In Proceedings of the

29

16th International Euro-Par Conference- Parallel Processing Part I (Euro-Par 2010),

LNCS 6272, pages 157–167, 2010.

[5] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, and D. Trystram. Approx-

imation algorithms for multiple strip packing and scheduling parallel jobs

in platforms. Discrete Mathematics, Algorithms and Applications, 3(4):553–586,

2011.

[6] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, and D. Trystram. Tight ap-

proximation for scheduling parallel jobs on identical clusters. In 26th IEEE

International Parallel and Distributed Processing Symposium Workshops & PhD

Forum (IPDPS Workshops 2012), pages 878–885, 2012.

[7] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance

bounds for level-oriented two-dimensional packing algorithms. SIAM Journal

on Computing, 9(4):808–826, 1980.

[8] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems.

SIAM Journal of Discrete Mathematics, 2(4):473–487, 1989.

[9] A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel ma-

chines. Theoretical Computer Science, 130(1):49–72, 1994.

[10] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with

resource constraints. SIAM Journal on Computing, 4(2):187–200, 1975.

[11] M. D. Grigoriadis, L. G. Khachiyan, L. Porkolab, and J. Villavicencio. Approx-

imate max-min resource sharing for structured concave optimization. SIAM

Journal on Optimization, 11(4):1081–1091, 2001.

[12] R. Harren, K. Jansen, L. Prädel, and R. van Stee. A (5/3 + ǫ)-approximation

for strip packing. In Proceedings of the 12th International Symposium on Algo-

rithms and Data Structures (WADS 2011), pages 475–487, 2011.

[13] K. Jansen. Scheduling malleable parallel tasks: An asymptotic fully polyno-

mial time approximation scheme. Algorithmica, 39(1):59–81, 2004.

[14] K. Jansen. A (3/2 + ǫ)-approximation algorithm for scheduling moldable

and non-moldable parallel tasks. In 24th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA 2012), pages 224–235, 2012.

[15] K. Jansen and L. Porkolab. Linear-time approximation schemes for scheduling

malleable parallel tasks. Algorithmica, 32(3):507–520, 2002.

[16] K. Jansen and R. Solis-Oba. Rectangle packing with one-dimensional resource

augmentation. Discrete Optimization, 6(3):310–323, 2009.

[17] K. Jansen and R. Thöle. Approximation algorithms for scheduling parallel

jobs. SIAM Journal on Computing, 39(8):3571–3615, 2010.

30

[18] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cut-

ting stock problem. Mathematics of Operations Research, 25(4):645–656, 2000.

[19] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathe-

matics of Operations Research, 4(4):339–356, 1979.

[20] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. Journal of the

ACM, 32(3):562–572, 1985.

[21] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for

scheduling unrelated parallel machines. Mathematical Programming, 46:259–

271, 1990.

[22] G. Mounie, C. Rapine, and D. Trystram. A 3/2-approximation algorithm for

scheduling independent monotonic malleable tasks. SIAM Journal on Comput-

ing, 37(2):401–412, 2007.

[23] J. Remy. Resource constrained scheduling on multiple machines. Information

Processing Letters, 91(4):177–182, 2004.

[24] I. Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In

Proceedings of the 2nd European Symposium on Algorithms (ESA 1994), LNCS 855,

pages 290–299, 1994.

[25] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour. Online scheduling

in grids. In IEEE International Parallel and Distributed Processing Symposium

(IPDPS 2008), pages 1–10, 2008.

[26] S. S. Seiden and R. van Stee. New bounds for multidimensional packing.

Algorithmica, 36(3):261–293, 2003.

[27] A. Steinberg. A strip-packing algorithm with absolute performance bound 2.

SIAM Journal on Computing, 26(2):401–409, 1997.

[28] A. Tchernykh, J. Ramírez, A. Avetisyan, N. Kuzjurin, D. Grushin, and S. Zhuk.

Two level job-scheduling strategies for a computational grid. In Proceedings

of the 6th International Conference on Parallel Processing and Applied Mathematics

(PPAM 2005), LNCS 3911, pages 774–781, 2005.

[29] D. Ye, X. Han, and G. Zhang. Online multiple-strip packing. Theoretical Com-

puter Science, 412(3):233–239, 2011.

31

