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Abstract

We present a two-level approach to extend the abstract syntax of domain-specific
models with concrete semantics in order to execute such models. First, a light-weight
execution infrastructure for executable models with a generic user interface allows the
tool smith to provide arbitrary execution and visualisation engine implementations for
a DSL. Second, as a concrete but nevertheless generic implementation of a simulation
engine for behaviour models, we present semantic model specifications and a runtime
interfacing to the Ptolemy II tool suite as a formally founded backbone for model ex-
ecution. We present our approach as an open source extension to Eclipse modelling
projects.

Key words: Semantics, Eclipse, Modeling, EMF, KlePto, KIELER,
Execution Manager



1 Introduction

Computer simulations are an established means to analyse the behaviour of a system.
On the one hand one wants to be able to predict and better understand physical systems
and train humans to better interact with them, for example weather forecasts or flight
simulators. On the other hand one wishes to emulate computer systems—often embed-
ded ones—themselves prior to their physical integration in order to increase safety and
cost effectiveness. The basis for such a simulation is usually a model, an abstraction of
the real world, carrying sufficient information to specify the relevant system parameters
necessary for the semantic analysis and execution. The notation of a model instance is
a concrete textual or graphical syntax.

Traditionally, all model editing, parsing, and processing facilities were manually im-
plemented with little generic abstractions that inhibit interchangeability. Standardised
languages, e. g., the Unified Modelling Language (UML), try to alleviate this, but they
are sometimes too general and complex to be widely accepted.

As a recent development, Domain-Specific Languages (DSL) target only a specific
range of applications, offering tailored abstractions and complying to the exact needs of
developers within certain domains. On the one hand, there are already well established
tool kits like the Eclipse Modeling Framework (EMF) or Microsoft’s DSL tool kit to
define an abstract syntax of a DSL in a model-based way. They provide much infras-
tructure, such as a meta-model backbone, synthesis of textual and graphical editors,
and post-processing capabilities like model transformations, validation, persistence, and
versioning. The designer of tools for such a DSL, the tool smith, faces less efforts in
developing a modelling environment. This is achieved by sophisticated tool assistance
and possibly a generative approach. The latter provides, e. g., generated implementa-
tions for simple model interactions automatically and in a common and interchangeable
way. On the other hand there is the semantics of such a DSL. This additionally has to
be defined in order to let a computer execute such models. For the specification of the

Execution Manager Runtime
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Data Producer/Observer

Generic Simulator

Data Producer/Observer
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Visualisation

Data Observer

Model Feedback
Visualisation
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Figure 1.1: Schematic overview of the Execution Manager infrastructure with various
kinds of interacting DataComponents (from Motika et al. [16]).
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latter no common mechanism exists yet. But as such a semantics often exists at least
implicitly in the mind of the constructor of a new DSL, there is a need to provide a way
for making it explicit.

Contribution The contribution of this paper is a proposal on how DSL semantics can be
defined by using existing semantic domains and existing model transformation mech-
anisms, without introducing any new kind of language or notation. The focus is on
iterative models. We show how simulations of such models can easily be integrated into
the Eclipse Modeling Framework using the KIELER Execution Manager (KIEM) archi-
tecture which is illustrated in the example setup in Fig. 1.1.

Outline In Sec. 1.1, a survey about the KIELER framework, which is the context of the
work presented in this paper, is given. Fundamental concepts are introduced in Sec. 1.2.
A short overview about existing technologies in the area of simulations and semantic
specifications is given in Sec. 2. In Sec. 3 we present how we define semantics for an
example DSL with the Ptolemy II suite. In this context a case study about simulating
SyncCharts by leveraging Ptolemy is presented. An implementation overview about our
general approach of integrating simulations in the Eclipse platform is given in Sec. 4—
the Execution Manager Runtime shown in Fig. 1.1. Additionally, we show that this
solution is extendable and has open support for, e. g., model analysis and validation or
co-simulations. Sec. 5 concludes and gives an outline of future work.

Figure 1.2: The GUI of KIELER and the KIEM Eclipse plug-in during a simulation run ex-
ecuting the synchronous ABRO program implemented as a SyncChart (from
Motika et al. [16]).
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Figure 1.3: MVC in KIELER: The Execution Manager and the Ptolemy-based DSL sim-
ulation in this paper belong to the controller part (adapted from Fuhrmann
et al. [8]).

1.1 The KIELER Framework

The execution and semantics approach presented in this paper is implemented and in-
tegrated in the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)1

framework. It is a test-bed for enhancing the pragmatics, i. e., the user interaction, of
model-based system design as described by Fuhrman et al. [9].

The KIELER framework is a set of open source Eclipse plug-ins that integrate with
common Eclipse modelling projects, such as the Graphical Modeling Framework (GMF),
the Textual Modeling Framework (TMF), and especially the modelling backbone EMF.

While Eclipse handles model syntax in a common and generic way, this is not yet
done for semantics. Hence, before handling pragmatics of simulations for models in a
generic way, we need to find generic interfaces and specification possibilities for semantics
themselves. This is the purpose of the KIEM, the execution approach presented in this
paper.

Fig. 1.2 shows a simulation run with KIEM in KIELER which provides a user interface,
shown in the left bottom Eclipse View in Fig. 1.2, and visual feedback about simulation
details, both in the graphical model itself and in a separate Data Table Eclipse View.

1http://www.informatik.uni-kiel.de/rtsys/kieler/
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1.2 Basic Concepts

A basic prerequisite for Model Driven Engineering (MDE) are models that base on meta-
models. The latter define the abstract syntax of models and hence allow the specification
of languages as object-oriented structure models. The Meta Object Facility (MOF) is
such a meta-modelling framework defined by the Object Management Group (OMG)2,
which has taken shape for the Eclipse world as the Eclipse Modeling Framework (EMF)
with its Ecore meta-model language that we use in the context of this project.

Model transformations play a key role in generative software development. These
describe the transformation of models (i. e., meta-model instances) that conform to one
meta-model into other models which conform to another or even the same meta-model.
There are several model transformation systems available today that are well integrated
into the Eclipse platform. Xpand3 realises a model to text template-based approach,
Xtend is a functional meta-model extension and transformation language-based on Java
with a syntax borrowed from Java and OCL, and there exist other transformation frame-
works such as QVT or ATL.

In our implementation we will use the Xtend language, as it is widely used and was
refactored for a seamless integration into the Eclipse IDE. Additionally, its extensibility
features allow to escape to Java for sequential or complex transformation code fragments.
Nevertheless our approach is conceptually open to use any transformation language
which supports EMF meta models.

2http://www.omg.org/spec/MOF/2.0/PDF
3http://wiki.eclipse.org/Xpand
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2 Related Work

As outlined by Scheidgen and Fischer [17] two fundamentally different concepts can be
distinguished for the specification of model semantics: (1) Model-Transformation into
a semantic domain (denotational), or (2) provision of a new action language (opera-
tional). In the first case semantics is applied to a meta-model by a simple mapping
or a more complex transformation into a domain for which there already exists an ex-
plicit semantic meaning—the semantic domain. The second concept applies semantics
by extending the meta-model with semantic operations on the same abstraction level.
For this, additionally a meaning has to be defined, e.g., in writing generic model sim-
ulators that interpret this information based on formal or informal specifications. The
M3Action framework for defining operational semantics is illustrated by Eichler et al. [5]
or Scheidgen and Fischer [17]. Chen et al. [3] presents a compositional approach for spec-
ification of model behaviour. We follow the denotational approach by utilising existing
languages and describing transformations. Such an approach is explained in more detail
by Motika [15].

Although defining a new high-level action language for transforming a runtime model
during execution retains a stricter separation between the different abstraction levels,
we decided to follow the more natural approach. This approach is to leverage a semantic
domain and to specify model transformations with necessary inter-abstraction-level map-
ping links to the DSL model in question. This has the following advantages: (1) There is
no need to define any new language to express semantics on the meta model abstraction
level. (2) There is a quite direct connection for meta model elements and their counter-
parts in the semantic domain, which allows easy traceability. (3) Abstraction levels can
be retained by carefully choosing an abstract semantic domain and advanced techniques
for model transformation, e. g., a generative approach for the transformations as well.

There exists a range of modelling tools that also provide simulation for their domain
models. To just mention some of the popular ones: Ptolemy II is a framework that
supports heterogeneous modelling, simulation, and design of concurrent systems. For
integrated simulation purposes Ptolemy provides the Vergil graphical editor. But there
also exists the possibility to embed the execution of Ptolemy models into arbitrary Java
applications as described by Eker et al. [6]. With Simulink/Stateflow1 and SCADE2 the
user is able to integrate control-flow and data-flow model parts in a dedicated State-
charts dialect and data-flow language. The Topcased3 project is based on the Eclipse
framework and targets the MDE with simulation as the key feature in validating mod-

1http://www.mathworks.de
2http://www.esterel-technologies.com
3http://www.topcased.org
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els Combemale et al.( [4]). Other simulation supporting frameworks are Scilab/Scicos4,
the Hyperformix Workbench5, or StateMate( [12]). Most of these tools are specific and
follow a clear semantics. This allows such tools to provide a tailored simulation engine
that can execute the models according to this concrete semantics. Ptolemy supports
heterogeneous modelling and different semantics for and within the same model. How-
ever, Ptolemy has fixed concrete and abstract syntax and hence cannot be used directly
to express arbitrary DSLs, where one reason to create them is to get a very specific
language notation. Hence, we investigated it further as a generic semantic backend in
combination with the Eclipse modelling projects as elaborated in Sec. 3.3.1.

Our architecture is related to the IEEE standard for modelling and simulation high-
level architecture( [13]). The execution manager presented in Sec. 4 follows the ideas of
the runtime infrastructure (RTI). However, our approach does not follow the standard
in detail, but is meant to be a light-weight approximation.

Motika et al. [16] also presented an approach to augment the abstract syntax of models
with concrete semantics in order to execute such models. We extend that work in
several areas, including extensions to Ptolemy using the case of immediate transitions
to show Ptolemy’s general extensibility features, optimisations in the semantic domain
that improve traceability, and a detailed description of an execution infrastructure.

4http://www.scilab.org
5http://www.mmsolutions.com
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3 Semantic Specification

As introduced above, there are two possible ways to specify semantics of a DSL, where
we follow the second denotational approach to leverage Ptolemy II as a flexible and ex-
tensible simulation backend. Therefore, in the following we will give a short introduction
into Ptolemy, which we use as an example semantic domain, and afterwards give some
brief overview of a concrete case study.

3.1 Ptolemy

The Ptolemy II project studies heterogeneous modelling, simulation, and design of con-
current systems with a focus on systems that mix computational domains Eker et al.( [6]).

The behaviour of reactive systems, i.e., systems that respond to some input and a given
configuration with an output in a real-time scenario, is modelled in Java with executable
models. The latter consists of interacting components called actors, hence this approach
is referred to as Actor-Oriented Design. These actors can be interconnected at their
ports. Ptolemy actors can be encapsulated into composed actors introducing a notion of
hierarchy. Ptolemy models strictly try to separate the syntax and the semantics on one
modelling layer. The first is given by the structural interconnection of all used actors.
The second, the model of computation (MoC), is encapsulated in a special and mandatory
director actor that specifies the way of actor interaction and scheduling. Ptolemy allows
models to mix different MoCs on different hierarchy layers. Actors consist of

1. pure Java code that may produce output for some input during execution, or

2. other Ptolemy actors composed together under a possibly different MoC that defines
the overall in- and output behaviour.

There exist several built-in directors that come along with Ptolemy II, such as
Continuous Time (CT), Discrete Events (DE), Process Networks (PN), Synchronous
Dataflow (SDF), Synchronous Reactive (SR) and Finite-State-Machine (FSM). When-
ever this seems to limit the developer, one may adapt or define new Ptolemy II directors
in Java that implement their own more specialised semantic rules of component inter-
action and scheduling. The combination of these various, extendable domains allows to
model complex systems with a conceptually high abstraction leading to coherent and
comprehensible models. An example Ptolemy II model is presented in Fig. 3.2.

For the sake of brevity we cannot discuss the technical details here and refer to the
Ptolemy documentation, in particular about the *charts (pronounced starcharts) prin-
ciple as described by Girault et al. [10]. It illustrates how hierarchical Finite-State-
Machines can be composed using various concurrency models leading to arbitrarily

7



nested and heterogeneous model semantics. We employed this technique to emulate
a Statecharts dialect, thus specifying the semantics and producing executable model
representations.

3.2 Concept

Fig. 3.1 shows the underlying concept where the description of the transformation is de-
fined in the file dsl2pto.xtend using the Xtend language (Sec. 1.2). The latter operates on
EMF meta-model instances, hence the transformation itself must be defined referencing
two meta-models. The source meta-model dsl.ecore stems from the EMF tool chain that
already exists after defining the DSL’s abstract syntax. The target meta-model pto.ecore
describes the language of all possible Ptolemy models and is common for all DSLs.

The transformation of the source model model.dsl into the target Ptolemy model
model.pto is done by the Xtend transformation framework. Instrumentation code is
injected during the Ptolemy model composition that allows to easily map Ptolemy actors
back to their corresponding original model elements. The Ptolemy Simulator itself is part
of the execution runtime interface and can load and run Ptolemy models and interact
with the Execution Manager as described in Sec. 4.

3.3 SyncCharts

The Statecharts formalism of Harel [11], which extends Mealy machines with hierar-
chy, parallelism, and signal broadcast, is a well known approach for modelling control-
intensive tasks. SyncCharts as evolving from ARGOS( [14]) are the natural adoption
of Statecharts to the synchronous world and were introduced almost ten years later by
Andr [1]. They serve as a graphical representation of the Esterel( [2]) language following
the same execution semantics.

SyncCharts simplify the modelling of complex reactive systems because they allow to
model deterministic concurrency and preemption. However, they are more difficult to
execute compared to other state machine models. As a challenging example we defined

pto.ecore

dsl.ecore model.dsl

Xtend M2M Enginedsl2pto.xtend model.pto

Ex
ec

ut
io

n 
M

an
ag

er
Ec

lip
se

 P
lu

gi
n

M2M description produce

load & 
execute

commands

simulation data

metamodels model to 
simulate

Ptolemy Simulator

Data Observer

Data Producer

Figure 3.1: The transformation and execution scheme of a Ptolemy-based DSL model
simulation (from Motika et al. [16]).
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SYNCCHART

R1 R2

Figure 3.2: A SyncChart model (left) and the generated Ptolemy model (right) (adapted
from Motika et al. [16]).

the semantics of SyncCharts EMF models in a model-to-model (M2M) transformation,
mapping each element to Ptolemy actors utilising the combination of the Synchronous
Reactive and Finite-State-Machine domains. More specifically we took the modal model
domain as the successor of the FSM domain also allowing nested arbitrary Ptolemy
models as state refinements. For the sake of simplicity in the following we will refer to
both FSMs and modal models as FSMs.

3.3.1 Transformation

The main idea is to represent the hierarchical layers by Ptolemy composite actors. These
are connected via ports by links with channels incorporating the signal broadcast mech-
anism.

The SR fixed-point semantics guarantees finding a fixed-point for the signal status
assignment w.r.t. the signal coherence rule. The latter means that each SyncCharts
signal can either be present or absent in a synchronous tick instant but not both at
once. For each tick, the fixed-point computation in SR starts with unknown signal
statuses on all data links.

The SyncCharts example of Fig. 3.2 shows a broadcast communication between two
parallel regions R1 and R2. R1 emits the signal L by taking an enabled transition from
initial state S0 to state S1 guarded by an implicit true trigger. R2 waits in its initial
state S2 for the signal L to be present in order to take the transition to state S3.

The structural transformation ensures that for each parallel region, every signal is
represented as an input and output port (e.g., Li and Lo) because conceptually each
region can emit a signal or may react to a present signal, or even both. The latter
implies the requirement of a feedback structure for each signal using a special combine
actor. In the Ptolemy model, the presence of a signal is represented by a data token
travelling across the dedicated link. The absence of a signal is equivalent to a special

9



clear operation on a channel. If the combine actor receives a token of any parallel region,
it immediately outputs a token to the feedback loop. If the combine actor on the other
hand notices a clear on each connected incoming channel, it also clears its output. This
reflects that a signal is present iff it is emitted in a tick instance and a signal is absent
iff it is not emitted anywhere.

In the generated Ptolemy model of Fig. 3.2, the concurrent actor R1 will produce
an output token when taking the transitions from S0 to S1 that will be received and
forwarded by the Combine actor. Finally, a duplicate of this token reaches the actor R2

triggering a state transition from S2 to S3.
Further concepts of the transformation description consider the aspect of hierarchy:

Concurrent Ptolemy actors that represent parallel regions contain FSM nodes that are
either refined in case of original SyncCharts macro states or not refined in case of original
SyncCharts simple states. The refinements can again contain concurrent actors repre-
senting regions within such a macro state. Because signals within a SyncCharts state can
be emitted in any inner state, their dedicated ports are replicated in the transformation
process for all lower hierarchy layers. The Ptolemy expression language allows evalua-
tion of complex triggers that for example are a boolean combination of signal presence
values. This makes it straightforward to support the SyncCharts concept of compound
events in Ptolemy models.

The mapping takes place during the model transformation process as we link the
EMF model elements with attributes of the generated Ptolemy model elements. This
simulation engine is interfaced with the Execution Manager presented in Sec. 4, as
depicted in Fig. 3.1. It will process input and output signals and also collect additional
output information such as the current active states. The information and the signal
status data are used to visualise the simulation and feed a Data Table, as shown in
Fig. 1.2.

(a) Visualised simulation (Sync-
Chart)

IMMEDIATE Region_1

(b) Ptolemy immediate transitions

Figure 3.3: New immediate transitions in Ptolemy for simulating SyncCharts immediate
transitions and conditional states. The visualisation shows that both transi-
tions are taken in the same synchronous tick when the input signal I becomes
present. Hence the output signal O is emitted instantaneously.
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3.3.2 Extending Ptolemy

The transformation is already implemented for the main SyncCharts concepts. However,
we further investigated on some special SyncCharts features initially not supported by
Ptolemy FSMs like immediate transitions. Immediate transitions are outgoing transitions
possibly immediately, i. e., in the same synchronous tick, taken when the trigger is true
and their source state is entered. In SyncCharts such transitions are denoted by a hash
mark in the transition trigger label.

As explained in Sec. 3.3.1, whenever predefined Ptolemy domains, i. e., Ptolemy’s
predefined directors, seem to limit the expressiveness of the DSL in question one can
freely choose to (1) add special actors to the Ptolemy framework as done for IO purposes
by Motika [15], (2) combine existing Ptolemy domains and actors as we did in this
approach, or (3) design a derived or even completely different director.

Immediate transitions can also be attractive to a modelling tool like Ptolemy because
they allow to structure combinatorial chains of transitions following the write-things-
once (WTO) principle. We applied this feature to the modal model domain with the
advantage of having it available for expressing SyncCharts immediate transitions in most
cases. Fig 3.3 shows both a SyncChart during simulation with an immediate transition
that is taken immediately when the state B is entered and a corresponding Ptolemy
model visualising the fact that the transition is marked to be immediate by the red
diamond.

SYNCCHART

R1 R2

Figure 3.4: An optimised Ptolemy model.

3.3.3 Transformation Tracing and Optimisation

Considering Fig. 3.2 it may seem relatively easy to trace elements of a generated Ptolemy
model back to their corresponding elements of the SyncChart source. Unfortunately for
larger SyncCharts this becomes problematic.

To improve tracing possibilities we adapted the transformation to consider labels of
SyncCharts elements.

11



Input and Output Signals To allow the emission of input signals or the test of output
signals within transition triggers, a transformation layer is used that adds regions for
each signal to the top level Ptolemy model in order to support this in the general case.
But if there are no emitted input signals or tested output signals, then these regions
are superfluous and can be eliminated. We extended the transformation to handle both
cases.

Actor Signature and Feedback Loop Optimisation In Fig. 3.2 the input Li is present
in the actor R1 although this actor does not do anything with this input. In general
this input must be available to the actor that implements the SyncChart region R1.
However in case inputs are not needed, unnecessarily they add complexity to the gener-
ated Ptolemy model. We extended the transformation to optimise the Ptolemy model in
such way that superfluous inputs are removed. We also did this optimisation for output
signals.

This results in a generally clearer actor structure with minimal actor interfaces and
data-flow channels. Also unnecessary feedback loops are removed automatically by this
procedure. In Fig. 3.2 an unoptimised Ptolemy model is shown where the feedback of
L is clearly superfluous because the signal L is only emitted in region or actor R1 and
tested in region or actor R2. An optimised version of this Ptolemy model is shown in
Fig. 3.4.

Error.CarLight

Error.PedestrianLightNormal.PedestrianLight

TRAFFIC_LIGHT

TrafficLight

Normal.CarLight

Normal

Error

Figure 3.5: The traffic light example generated Ptolemy model using traceable actor
labels. Inputs and outputs of an actor are optimised according to their
internal usage.
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Consider a more sophisticated SyncChart, the traffic light example shown in Fig. 3.6
together with its generated corresponding Ptolemy model shown in Fig. 3.5. The signals
Pgo and Pstop are used to communicate from the Car controller region to the Pedestrian
controller region. Because they are defined on the top level in the Ptolemy model there
are necessary feedback loops for both signals within the TRAFFIC LIGHT actor. But
the inputs and outputs of each modal model implementing the region, i. e.,CarLight and
PedestrianLight, are optimised and restricted to only used/referred signals.

Figure 3.6: The traffic light example SyncCharts model.
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4 Execution Integration

As a subproject of KIELER, the Execution Manager (KIEM) implements an infrastruc-
ture for the simulation and execution of domain-specific models and possibly graphical
visualisations. It does not do any simulation computation by itself but links together
simulation components, visualisation components and a user interface to control exe-
cution within the KIELER application, as indicated in Fig. 1.1. These components can
simply be constructed using the Java language.

Sec. 4 presented an approach on how to implement such simulator components them-
selves using model transformations and Ptolemy as a simulation backend. The simulator
component depicted in Fig. 3.1 loads Ptolemy models using Ptolemy internal loading
mechanisms. Ptolemy models are instances of Java classes. Thus they can easily be
accessed by the simulator component for example to inject input values coming from
KIEM or to extract output values and current state information to send them to KIEM.

4.1 DataComponents

DataComponents are the building blocks of executions in the KIEM framework. They
use data in order to interact with each other. Hence they may produce data addressed
for other DataComponents or observe data from other components or even both at once.
See again Fig. 1.1 for an example setup. It shows several example data components like
a basic Java simulator or a more abstract Ptolemy simulator and also components that
only visualise data either in the model itself or in a separate Eclipse View. Additionally,
a trace recorder may record and later play back simulation data in order to analyse a
simulation run in detail.

1 public interface IDataComponent {

2
3 void initialize () throws KiemInitializationException;

4 void wrapup () throws KiemInitializationException;

5
6 boolean isProducer ();

7 boolean isObserver ();

8
9 JSONObject step(JSONObject jSONObject) throws KiemExecutionException;

10
11 }

Figure 4.1: The KIEM DataComponent Interface: In the step() method a component
specifies its step-wise behaviour and may react to input data with some
output data.
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DataComponents can be classified according to their type of interaction into multiple
categories: Pure observer DataComponents do not produce any data which for example
is the case for simulation visualisations. Pure producer DataComponents like user input
facilities do not observe any data. Hence they are data independent of others. Often
there are observing and producing DataComponents like simulation engines that react
to input with some output.

Fig. 4.1 shows the fairly self-explanatory simple interface for DataComponents. A
component needs to declare whether it is an observer or a producer of data. It should
declare some initialisation and wrap-up code. The step method is most significant in
this interface. It should implement the execution behaviour of the DataComponent.
The parameter value holds all input data in case of an observer component. The return
value should hold all output data in case of a producer component.

4.2 User Interface

Fig. 1.2 shows the Graphical User Interface (GUI) of the Execution Manager. Listed are
all DataComponents that take part in the execution. The order of the DataComponents
in the list is the one in which they are scheduled. Together with (optional) property
settings the list of DataComponents forms a saveable execution setting. The execution
can be triggered by the user by pressing one of the active control buttons (e. g., step,
play, or pause). The step button allows a step-wise, incremental execution while in each
step all DataComponents are executed at most once (see below). The lower bound on
a step duration can be set in the UI, while the upper bound depends on the set of all
producer DataComponents.

4.3 Data Pool

Data are exchanged by DataComponents in order to communicate with each other. The
Execution Manager collects and distributes sets of data from and to each registered
(w.r.t. the Eclipse plug-in concept) DataComponent. Therefore it needs some kind of
memory for intermediate storage to reduce the overhead of a broadcast, and to restrict
and decouple the communication providing a better and more specific service to each
single DataComponent.

This storage is organised in a Data Pool where all data are collected for later us-
age. The Execution Manager only collects data from components that are producers of
data. Whenever it needs to serve an observer DataComponent, it extracts the needed
information from its Data Pool, transparently to the component itself.

As denoted by Fishwick [7] internal and external events of a model are distinguished,
where with the internal events the inputs come from a lower (abstraction) level of the
model and not from outside with respect to the model itself as for the external events.
In the case of the Data Pool, external input events can be considered the data changes
observed by an observer DataComponent. External output events can be considered the
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Figure 4.2: Mobile Data Table application visualising the synchronous ABRO program
(see Fig. 1.2) simulation results (from Motika [15]).

modifications of data values in the Data Pool as the effect of the returned data by a
producer DataComponent.

4.4 Linear Scheduling

All components are called by the Execution Manager in a linear order that can be defined
by the user in an execution setting. Because the execution is an iterative process—so far
only iterative simulation executions are supported—all components (e.g., a simulation
or visualisation engine) should also preserve this iterative characteristic. During an
execution, KIEM will step-wise activate all components that take part in the current
execution run and trigger them to produce new data or to react to current data. As
KIEM is meant also to be an interactive debugging facility, the user may choose to
synchronise the iteration step times to real-time. However, this might cause difficulties
for slow DataComponents as discussed below.

All components are executed concurrently. This means that they are executed in their
own threads. For this reason, DataComponents should communicate (e. g., synchronise)
with each other via the data exchange mechanism provided by the Execution Manager
only to ensure thread safety. There are also additional scheduling differences between
the types of DataComponents listed above. These concern two facts: First, DataCom-
ponents that only produce data do not have to wait for any other DataComponent and
can start their computation immediately. Second, DataComponents that only observe
data often do not need to be called in a synchronous blocking scheme since no other
DataComponents depend on their (non-existent) output.
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4.5 Further Concepts

Besides the described basic concepts of the Execution Manager, there are some facilities
and improvements that are summarised in the following.

Analysis and Validation For analysis and validation purposes it is easy to include
validation DataComponents that observe special conditions related to a set of data values
within the Data Pool. These components may record events in which such conditions
hold or may even be able to pause the execution to notify the user.

Extensibility The data format chosen in the implementation relies on the Java Script
Object Notation (JSON). This is often referred to as a simplified and light-weight XML.
It is commonly used whenever a more efficient data exchange format is needed. Due to
its wide acceptance many implementations for various languages exist, thus aiding the
extensibility of the Execution Manager.

Although DataComponents need to be specified in Java, the data may originally stem
from almost any kind of software component, e. g., an online-debugging component of
an embedded target. With this approach the Java DataComponents do not need to
reformat the data and can simply act as gateways between the Execution Manager and
the embedded target.

As an example we have developed a mobile phone Java ME1 application (see Fig. 4.2)
that can fully interact with the Execution Manager.

Flexible Data Representation Synchronous signal data are easily represented within
the data model of KIEM. In a synchronous setting, a signal has not only a value, but
additionally a status, which denotes it to be present or absent. For this purpose one just
needs to find a common representation within the used JSON format. Because signal
presence is made explicit in the Data Pool of the Execution Manager, data components
need to make sure to reset signals to be absent for a next synchronous tick. This can
be done by introducing a separate DataComponent which resets all present signals in
the beginning of a step-computation. In special cases this may also be done by the
communicating DataComponents itself. We introduced such a specification as used in
the example of Section 4.1 and built several DataComponents that are able to interact
following the synchronous semantics of their external signals (see Sec. 4.3) within an
execution of KIEM.

Co-Simulation Co-operative simulation allows the execution of interacting components
run by different simulation tools. For each different simulation tool a specific interface
DataComponent just needs to be defined. This way Matlab/Simulink for example could
co-simulate with a SyncCharts model and an online-target debugging interface to get a
model- and hardware-in-the-loop setup, which is useful for designing embedded/cyber-
physical systems.

1Java Micro Edition Framework: http://java.sun.com/javame
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History Together with the Data Pool, the built-in history feature comes for free. This
enables the user to make steps backwards into the past. DataComponents need to
explicitly support this feature: For example one may not want a recording component
to observe/record any data again when the user clicks backwards. This feature may help
analysing situations better. For example, when a validation observer DataComponent
pauses the execution because a special condition holds, one may want to analyse how
the model evolved just before. This assists during interactive debugging sessions.
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5 Conclusions and Outlook

The usage of DSLs gains more and more importance when it comes to system specifica-
tions intended to be done by domain experts as opposed to computer experts. In this
paper we presented a two-level approach into the simulation and semantics of domain-
specific behaviour models. We gave a short introduction into used concepts and into the
Ptolemy suite as a multi-domain, highly flexible and extensible modelling environment
with formally founded semantics. In order not to reinvent the wheel, we propose to
utilise these existing features in an integrated way for the specification of denotational
DSL semantics w.r.t. an adequate simulation. As an example a case study discussed how
to conceptually leverage Ptolemy for simulating SyncCharts models. Further, it was
outlined how executions are seamlessly integrated into KIELER and therewith into the
Eclipse platform.

We plan to further evaluate the needs and requirements for a transformation language
used in the context of semantic definitions as described in this paper. Also we hope
to advance the generative model-based approach, e. g., to come up with a generated
transformation of some higher order mapping specifications in the future. Finally, there
are other ongoing efforts to integrate additional simulation engines, e. g., for the Esterel
synchronous language, into Eclipse using the presented KIEM infrastructure.
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