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ZU KIEL



Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Evaluation of Impact of Data Quality on

Clustering with Syntactic Cluster Validity

Methods

Elena Sivogolovko

Bericht Nr. 1107

August 2011

ISSN 2192-6247

e-mail: efecca@gmail.com

Dieser Bericht ist als persönliche Mitteilung aufzufassen.



Abstract

Relationship between Clustering and Data Quality is not com-
pletely studied. It is usually assumed that input dataset does not con-
tain any errors or contains some ”noise”, and this concept of ”noise”
is not related to any Data Quality concept. In this research we fo-
cus on the four most commonly used data quality dimensions, namely
accuracy, completeness, consistency and timeliness. Using definitions
and constructs of these data quality dimensions, we evaluate the im-
pact of data quality on clustering outcomes. Four different clustering
algorithms and five real datasets were selected to show the interaction
between data quality and cluster validity.

1 Introduction

The purpose of this research is to evaluate the impact of data quality on
the outcomes of clustering. To do so, metrics for data quality and different
data quality levels are defined based on prior work and applied to analyze
the effects and interactions of this factor on the outcomes of clustering for a
real-world datasets.

The main goal of clustering is to organize a collection of data items into
clusters, such that items within a cluster are more ”similar” to each other
than they are to items in the other clusters. This notion of similarity can be
expressed in very different ways, according to the purpose of the study, to
domain-specific assumptions and to prior knowledge of the problem. Clus-
tering is considered as unsupervised learning. because it is usually performed
when no information is available concerning the membership of data items
to predefined classes. Clustering is widely used in computer vision, pattern
recognition, information retrieval, economics, bioinformatics and many other
areas. A lot of different methods were developed in different communities for
different clustering tasks.

The procedure of evaluating clustering results is called cluster validity.
Three different approach are defined for cluster quality estimation: external,
internal and relative. First of them uses some predefined knowledge, such
as class labels, for structure quality evaluation. Second approach evaluates
clustering results in terms or quantities that involve the vectors of dataset
themselves. The main idea of third approach is the evaluation of clustering
structure by comparing it to other clustering structures,resulting by the same
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algorithms but with different input parameters or by the different algorithms.
All these approaches uses syntactic quality definition. In internal cluster
validity approach good cluster structure should be the same as predefined
class structure. In external and relative approaches good cluster structure
should have compact and separate clusters. Therefore there is no approach
that consider semantic quality of a cluster structure. We can define four
different aspect, which can influence the quality of obtained cluster structure
quality: 1) input data structure 2) input data quality 3) clustering algorithm
and 4) cluster validity measure. In our work we focused mostly on the second
factor. While there are no universally agreed-upon definitions of data quality,
there is no dispute about the importance it has and that the consequences
when it is poor can be large. Data quality is often conceptualized in terms
of dimensions, our study we considered four of these dimensions: accuracy,
completeness, consistency, and timeliness, which are the most commonly
used.

In clustering (and in Data Mining in general) all data quality errors are
described by general term ”noise”. Misspelling attribute values, incomplete
data, data in the wrong format, data with broken referral integrity, etc. —
all of them are defined as ”noise”. Therefore the data quality dimensions do
not have direct analogs among particular noise types. Data Mining and Data
Quality areas are somewhat separated in this position. If data analyst has
a dataset and some assumptions about its quality in terms of Data Quality
what should he takes into account to choose a clustering algorithm? We
suppose that low quality of the input data leads low cluster quality, so we
formulate our general hypothesis, which should be use for each dataset and
clustering algorithms as

Hypothesis: Each level of data quality has significant influence on the
outcomes of clustering.

This can be illustrated by cluster validity indecies. In our research we
tried to estimate the correlation between input data quality and clustering
quality and give some recommendations on the choice of clustering algorithm.
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2 Background

2.1 Data Quality

Data Quality is a complex multidimensional concept. Most commonly it
is considered as the measure how well the data fits to their intended use.
Different numbers of data quality dimensions were suggested by previous
research[4], in this research we considered four frequently used dimensions:
accuracy, completeness, consistency and timeliness. Three quality levels are
usually defined for each data quality dimension: low, medium and high. In
this case the main question is: What does it means ”low” or ”high” quality
for a given dimension? In general, the answer depends on the data area.
For example, for social network database completeness or accuracy are not
very important: almost all attributes can be missed or misspelled. But for a
financial database accuracy and completeness are extremely important: even
a small percentage of wrong or missing values is unacceptable. In this work
we focused on medium level of data quality importance.

2.1.1 Accuracy

Accuracy has a particularly wide range of definitions with similar semantics.
These definitions include the following: ”the recorded value is in conformity
with the actual value” [5], ”agreement with either an attribute of a real-world
entity, a value stored in another database, or the results of an arithmetic
computation” [6] and ”the closeness of the value in our database to the true
value” [7]. Accuracy has also been defined to encompass groups of other
dimensions such as completeness, consistency, or timeliness. Accuracy is
difficult to measure since very often the real-world value is not known [8],
[9], but with predefined data, where the ”true” value is known, one can use
some external metric for accuracy as for example

FA = 1− VT
N

where VT is the number of elements in a dataset having incorrect values and
N is the total number of elements. According to previous research, a high
level of accuracy can be defined as 92-100% of correct values, a medium level
as 88-92% and a low level as 80-88% [27],[28], [29].
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2.1.2 Completeness

Completeness can be defined in two different ways.

1. as data having all values recorded. [11]

2. as measure of how completely the target domain is represented in our
database. [7]

In first case completeness can be measured as the ratio of the number of
tuples with null values to the total number of tuples. In second case some
special proxies should be used for completeness measurement. Also there is
a flip side of completeness – the dataset should not contain entries for things
which do not exist. Commonly used completeness metric is

FC = 1− MT

N

where MT is the number of elements having null values in fields. Prior
research provides wide range of discussed completeness rates: 80-100% [29],
75-95% [30], 40-100% [32]. We used 84-100% complete instances as high
completeness level, 67-84% as medium level and 50-67% as low level.

2.1.3 Consistency

As accuracy, consistency has a large variety of definitions, most of them refer
to uniformity. Consistency can be considered as ”the representation of the
data value is the same in all cases” and as ”format and definitional uniformity
within and across all comparable datasets.” [10] Consistency ”ensures that
the there no conflicts within or between data sets” [7]. Also consistency can
be defined with respect to referential integrity [12], [13], [14]. The simplest
consistency metric can be defined as follows

FCon = 1− RT

N

where RT is the number of tuples with violations of referential integrity.
Previous research does not clarify what ”high” or ”low” consistency is. Blake
at al. used the same values as for accuracy in order to represent consistency
levels [29]. We suggest that in our case it is more appropriate to use the
same values as for completeness.
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2.1.4 Timeliness

Timeliness is extremely different from other data quality dimensions. It is
critical for attributes that change over time, while it is irrelevant for at-
tributes that are fixed and do not change. Two different notions are usually
used for timeliness definition: volatility and currency. Volatility refers to the
time period between real-world change and next change which makes origi-
nal data invalid [15], [16]. Currency ”refers to the age of data units used to
produce the information products” [9]. The recommended timeliness metric
is

FT = max(0, 1− Currency

V olatility
)

As for consistency, there is only one prior work, where values for different
timeliness levels was suggested [29]. We used the following ranges: 80-100%
actual instances for high level, 60-80% for medium level and 40 - 60% for low
level.

2.2 Cluster validity

In our work we used external cluster validity metrics for clustering quality
estimation. In external approach results of clustering algorithm are evaluated
according to some predefined knowledge about the cluster structure in the
data set. In our case we used labeled real datasets for experiments, so we
could use external approach as well. The following four validity indecies were
used for experiments evaluation: Rand statistic, Jaccard coefficient, Folkes
and Mallows index and F-measure. For the first three indicies the following
concepts should be considered with respect to every pair of elements (xj, xi)
in the dataset :

1. SS: if both elements belong to the same cluster and to the same class
in predefined dataset structure.

2. SD: if elements belong to the same cluster and to different classes

3. DS: if elements belong to different classes and to the same class.

4. DD: if both points belong to different clusters and to different groups.

We defined SS,SD,DS and DD as the numbers of SS, SD, DS and DD pairs
respectively and M = N(N−1)

2
is the number of all pairs in the data set.
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Validity indicies formulas are

Rand =
SS +DD

M

Jaccard =
SS

SS + SD +DS

FM =

√
SS

SS + SD
∗ SS

SS +DS

High values of these indicies indicate the high similarity between obtained
cluster structure and predefined classes.

There are several approaches for generalizing F-measure to the clustering
case. We used the following one: for cluster ci and class gj let’s consider
Precision(i, j) =

nij

ni
and Recall(i, j) =

nij

nj
where nij is the number of objects

of cluster ci which belong to class gj, ni is the number of objects in ci, and
nj is the number of objects in gj. The F-measure of ci and gj is defined as

F1(i, j) =
2 ∗ Precision(i, j) ∗Recall(i, j)
Precision(i, j) +Recall(i, j)

Overall F-measure value is computed as the weighted average F-measures for
each class

F1 =
∑
j

nj
N

max
i
F1(i, j)

The better the clustering quality, the higher the F-measure.

3 Data Quality Model

For our experiments we generated 100 different variants of each dataset for
each data quality level. For data quality level modeling we first calculated

M = M(dataset, quality dimension, level)

the number of elements, which ”should be” wrong in given dataset. Percent-
age of correct and incorrect data for each data quality dimension and quality
level are defined in 2.1. After that we constructed the wrong elements subset
W by randomly choosing M elements from original dataset.
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3.1 Accuracy modeling

According to 2.1.1, we considered the number of elements with correct val-
ues as the measure of accuracy. To model different accuracy levels, for each
element x ∈ W we changed random number of element attributes 0 ≤ d′ ≤ d

to random values from the range
[
x[i]− 3σ(i), x[i] + 3σ(i)

]
, where x[i] is

the grand mean of i-th attribute and σ(i) is the standard deviation of i-th
attribute correspondingly. This range was constructed according to Cheby-
shev’s inequality: P (|X − x| ≥ kσ) ≤ 1

k2
with assumption that all attributes

are independent random variables. So probability that attributes value do
not lay in the constructed range is less than 11.2%.

3.2 Completeness modeling

We considered completeness as data having all values recorded 2.1.2 and
to model this data quality dimension for each element x ∈ W we replaced
random number of its attributes with NULL value. It should be noted, that
Weka [] clustering implementation replaced all such values with grand mean
of corresponding attribute.

3.3 Consistency modeling

As it is shown in 2.1.3 consistency is often defined with reference to uni-
formity or referential integrity. In general, in dataset with some relation-
ships, different consistency levels can be simulated by random switching of
references between dataset elements, but in our case all datasets do not
have any relationships, therefore we used the following consistency modeling
method: for each x ∈ W,x ∈ Ci we replaced values of random number of at-
tributes with values of the same attributes of element from some other class:
x[i] = y[i], y ∈ Cj, j 6= i.

3.4 Timeliness modeling

The following notions, volatility and currency, are used to define timeliness
2.1.4. If you do not have different snapshots of the same dataset, you can
not create the different levels of timeliness as it is: with different volatility
and currency. If only one dataset snapshot is given, it means that currency
is fixed, but volatility can be simulated by generating ”new” data. To model
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timeliness for each x ∈ W we replaced all element attributes values with new

ones from range
[
x[i]c − 3σ(i)c, x[i]c + 3σ(i)c

]
, where x[i]c and σ(i)c is mean

and standard deviation of i-th attribute in class c correspondingly.

4 Experimental design

4.1 Datasets

In our work we used five real datasets from UCI repository. General informa-
tion about size, dimensions and number of classes in each dataset is listed in
table 1. Cardiotocography dataset consists of 2126 fetal cardiotocograms

Table 1: Datasets information
Name Instances Attributes Classes

Cardiotocography 2126 34 3 or 10
Image Segmentation 2310 19 7
Page Blocks Classification 5473 10 5
Pen-Based Rec. of Handw. Digits 10992 16 10
Wall-Following Robot Navigation 5456 24 4

(CTGs), which were automatically processed and the respective diagnostic
features er measured. The CTGs were also classified by three expert obste-
tricians and a consensus classification label assigned to each of them. The
dataset can be used either for 10-class or 3-class experiments and in our work
we used 10 as the correct number of clusters.

Image segmentation dataset consists of 7 classes. Each class contains
330 elements. The instances were selected randomly from a database of 7
outdoor images. The images were hand-segmented to create a classification
for every pixel. Classes labels are brickface, sky, foliage, cement, window,
path, grass.

Page Blocks Classification dataset contains information about blocks
of the page layout of a document that has been detected by a segmentation
process. This is an essential step in document analysis in order to separate
text from graphic areas. Indeed, the five dataset classes are: text, horizontal
line, picture, vertical line and graphics. In contrast to previous two datasets
page blocks data is biased. Text class contains 4913 elements that is 89.8%
of all dataset. Other classes contain 329, 28, 88, 115 elements respectively.
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Pen-Based Recognition of Handwritten Digits dataset consists of
10 classes. Each class contains ≈ 1100 elements. It was created by collecting
250 handwriting digit samples from 44 writers. These writers was asked
to write 250 digits in random order inside boxes of 500 by 500 tablet pixel
resolution. The spatial re-sampled digits was represented as a sequence of
T points (xt, yt)

T
t=1, regularly spaced in arc length, as opposed to the input

sequence, which is regularly spaced in time. Dataset authors said that T = 8
gave the best trade-off between accuracy and complexity.

Wall-Following Robot Navigation dataset were collected as the SC-
ITOS G5 robot navigates through the room following the wall in a clock-
wise direction, for 4 rounds, using 24 ultrasound sensors arranged circu-
larly around its ”waist”. The classes are: Move-Forward – 2205 elements
(40.41%), Slight-Right-Turn – 826 elements (15.13%), Sharp-Right-Turn –
2097 elements (38.43%), Slight-Left-Turn – 328 elements (6.01%).

4.2 Clustering algorithms

For our experiments we chose Weka implementation of following algorithms.

1. K-Means [18], [19] is one of the most known clustering algorithms. It
is successfully used in many scientific and industrial applications. It
starts with random initial partition and keeps reassigning the dataset
elements to clusters based on the similarity between the element and
the cluster centroid. It stops when stable cluster structure is found or
some condition (for example, maximum number of iteration) is reached.
In Weka library, the following parameters are required for K-Means run:
1) suggested number of clusters 2) maximum number of iterations.

2. Farthest First [22], [23]. The fast simple approximate clustering al-
gorithm. It constructs the centroid set according to farthest-first ap-
proach and after that assigns elements to the nearest centroid. The
only parameter the algorithm requires is the number of clusters.

3. DBScan [24] requires two parameters: neighborhood radius — ε and
the minimum number of points required to form a cluster – minPts.
Its main notions can be listed as follows 1) An ε -neighborhood of el-
ement x is Nε(x) = {y ∈ X|d(x, y) ≤ ε} 2) x is a core object if its
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ε -neighborhood contains more that minPts points. 3) y is density-
reachable from a core object x if a finite sequence of core objects be-
tween x and y exists such that each next belongs to ε-neighborhood
of its predecessor. 4) y is density-connective to x if both of them are
density-reachable from a common core object. DBScan cluster is a
density-connective component, which grows in any direction that den-
sity spreads.

4. XMeans [25] can be considered as K-Means extension which does not
require the pre-defined number of clusters. X-Means starts with K-
Means partition to user-defined minimum number of clusters and after
that algorithm tries to split each obtained cluster into two parts. It
measures special index for the whole cluster and for its parts and makes
a decision about splitting in order to improve this index. The algorithm
stops when either maximum number of clusters or the maximum num-
ber of iterations is reached. X-means requires the following parameters:
1)minimum number of clusters 2)maximum number of clusters 3)max-
imum number of iterations 4) maximum number of K-Means iterations
(all splitting operations are performed by K-Means).

5 Experiments

5.1 Clustering parameters tuning

We used predefined number of clusters where it was required. We tuned
other important parameters in the naive way: we run algorithms with dif-
ferent parameter values, measured the validity indecies and chose the best
parameters set for each algorithm. The OPTICS algorithm was used for DB-
Scan minPts value estimation. Final parameters are listed in table 2. As
we have mentioned above, we used weka implementation for all algorithms.
If parameter is not mentioned in the table, that means that we used default
Weka value for it. (Except the maximum number of clusters in XMeans
algorithm, which was set to 100)
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Table 2: Clustering parameters
K-Means Farthest First DBScan XMeans

(num. of clst.) (num. of clst.) (ε, minPts) (num. of iter.)

Cardiotocography 10 10 0.72688, 6 2
Image Segmentation 7 7 0.16735, 6 3
Page Blocks 5 5 0.18681, 6 2
Handw. Digits 10 10 0.35917, 6 2
Wall-Following 4 4 0.78, 6 1

5.2 ”Ideal” case

In first stage of our experiments we considered all our datasets as datasets
without any errors. We run clustering on them (with parameters defined in
previous section) and measured the clustering quality. We performed 100
runs with different random seed for algorithms which use random initial-
ization (namely KMeans, XMeans and Farthest First) and single run for
DBScan. As it shown in table 3 two datasets - Cardiotocography and Page
Blocks - have good cluster structure, Image Segmentation and Pen Digits
can be clustered with difficulties and Wall Following data has bad cluster
structure or the algorithms we used can not find it.

5.3 Results

After that we performed clustering on datasets with errors (they were gen-
erated according to the model described in 3) and calculated cluster validity
values for each obtained cluster structure. An Unpaired Wilcoxon test was
used to evaluate the influence of data quality on each clustering algorithm
outcome. We considered each data quality dimension independently. We
compared the cluster validity of structure obtained from the data with high
quality level with the validity of structures obtained from medium quality
level and low quality level correspondingly. We chose Wilcoxon test because
we did not know real quality values distribution, therefore we could not use
ANOVA or t-test, which require Normal date distribution. We also used
the difference between samples means as the measure of quality changes, in
order to distinguish the case when changes are statistically significant and
have great absolute value and the case when changes are statistically signif-
icant but their absolute value is small. We consider changes as small if the
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Table 3: ”ideal” results
Rand Jaccard Folkes-Mallows F1

Cardiotocography K-Means 0.937 0.651 0.786 0.805
Farthest First 0.901 0.522 0.685 0.755

DBScan 0.997 0.977 0.989 0.988
XMeans 0.923 0.612 0.757 0.758

Image Segmentation K-Means 0.862 0.388 0.561 0.643
Farthest First 0.705 0.274 0.470 0.538

DBScan 0.81 0.288 0.454 0.581
XMeans 0.869 0.331 0.500 0.600

Page Blocks K-Means 0.440 0.331 0.558 0.593
Farthest First 0.828 0.824 0.908 0.870

DBScan 0.833 0.828 0.909 0.866
XMeans 0.356 0.219 0.454 0.473

Pen Digits K-Means 0.913 0.432 0.605 0.715
Farthest First 0.834 0.243 0.404 0.449

DBScan 0.776 0.258 0.465 0.566
XMeans 0.880 0.361 0.541 0.646

Wall-Following K-Means 0.600 0.207 0.345 0.423
Farthest First 0.530 0.260 0.422 0.462

DBScan 0.45 0.266 0.439 0.445
XMeans 0.599 0.208 0.347 0.423

difference between sample means is less than 0.04. (In general this approach
is uninformative, but we supposed that in most cases it should provide some
additional information)

Detailed experiments results are shown in the Appendix. Generalized re-
sults are presented in table 4. We used the following generalization method:
for each algorithm, data quality dimension and quality level the most fre-
quently obtained statistical value was shown. Our first observation is that
data quality influence depends on dataset properties. If input dataset has
bad cluster structure, low data quality will have small influence on cluster
quality. If dataset has good cluster structure, low data quality will have sig-
nificant negative effect. Nevertheless we can formulate the following recom-
mendations for clustering algorithms usage in different situations. Accuracy
highly depends on data structure. DBScan is usually considered as stable
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Table 4: Statictical results. Legend: � — significant negative impact, H
— significant but small negative impact, � — unsignificant changes,N —
significant but small positive impact, � — significant positive impact

Algorithm Quality Level Accuracy Completeness Consistency Timeliness

K-Means Meduim H � H H
Low H � H �

FarthestFirst Meduim � � - H � H
Low � H � �

DBScan Meduim H � � H
Low H � � �

XMeans Meduim H H � H - N
Low H � � �

for accuracy changes, but we should say that in some cases accuracy errors
can cause extra-”merge” situation when two classes merge because an error
element becomes a ”bridge” between them. That’s why DBScan has some
benefits only if clear outliers are considered as accuracy errors. In most cases
difference between DBScan validity on data with high accuracy and on data
with low accuracy is not very big, but difference between validities on high
and ideal data accuracy sometimes is huge. KMeans and XMeans algorithms
with accepted accuracy quality levels in most cases produce small significant
error. Completeness depends on data structure too, but for datasets with
bad structure FarthestFirst and XMeans can be mentioned as the most sta-
ble. Consistency in most cases has the most negative effect. According to
results presented in table 4 KMeans seems to work better with inconsistent
data, but this idea is supported only by Rand metric, according to other
three validity indicies low data consistency also has big and significant neg-
ative effect on KMeans results. Therefore we should say that all algorithms
work badly with inconsistent data. Partitioning algorithms work better with
timeliness changes than DBScan. If significant data changes are expected,
the minPts parameter should be re-estimated before DBScan run. In case
of timeliness changes the most stable algorithm is XMeans, but we should
mention, that in some situations even the worst DBScan partition can be
better than XMeans one.

We also should mention that our observations depend on Weka clustering
algorithms implementation and our data quality modeling process. That’s
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why it can be considered as recommendations only.

6 Conclusion

In this research we studied the influence of different data quality dimen-
sions on clustering outcomes. We considered four data quality dimensions:
accuracy, completeness, consistency and timeliness. We demonstrated that
first three of them have significant negative effect on clustering algorithms
results and the last one, timeliness, has significant negative impact if algo-
rithm uses some knowledge which was obtained from ”ideal” data and can be
easily changed when new elements are added in a dataset(like minPts in DB-
Scan). We constructed the relationship between Data Quality concepts and
clustering concepts and made some recommendations on usage of different
clustering algorithms with respect to expected data quality level.

We considered data quality dimensions independently from each other,
studying the impact of several dimensions simultaneously can be a good point
for future work, because in real-word application there are many datasets
with different data quality errors at the same time. Also we used only four
clustering algorithms and some other widely-used clustering approaches, for
example, hierarchical one, were not considered in our work and impact of
the data quality to these approaches can be studied in the future. Also there
is no research about influence the data quality on fuzzy clustering, which is
important in different scientific and industrial areas.
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Appendix A: Detailed Experimental results

In tables 5, 6, 7, 8 and 9 average cluster validity values for each dataset and
different data quality levels and algorithms are presented. We used them for
define the absolute changes value.

∆M = |fQ(SDataset(A,Q Dim,High))− fQ(SDataset(A,Q Dim,Medium))|

∆L = |fQ(SDataset(A,Q Dim,High))− fQ(SDataset(A,Q Dim,Low))|

where A is the clustering algorithm, Q Dim is the data quality dimension, S
is the obtained cluster structure and fQ is the cluster validity index. For all
used validity indecies fQ(S) ∈ [0, 1] and we considered the quality changes as
high if ∆ ≥ 0.04. According to absolute changes value and Wilcoxon statis-
tical test results we constructed four tables (one table for each data quality
dimension), which described data quality influence to clustering results. Ta-
ble symbols legend looks like following:
� — significant negative impact
H — significant but small negative impact
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� — unsignificant changes
N — significant but small positive impact
� — significant positive impact

Table 5: Cardiotocography: averages

Rand Jaccard FM F1

Accuracy K-Means High 0.91 0.53 0.69 0.76
Medium 0.9 0.49 0.66 0.75

Low 0.9 0.47 0.64 0.74
Farthest First High 0.58 0.23 0.41 0.44

Medium 0.55 0.19 0.37 0.39
Low 0.44 0.18 0.38 0.36

DBScan High 0.47 0.3 0.51 0.47
Meduim 0.38 0.19 0.42 0.36

Low 0.38 0.18 0.39 0.34
XMeans High 0.89 0.49 0.65 0.71

Medium 0.88 0.45 0.62 0.7
Low 0.88 0.43 0.6 0.69

Completeness K-Means High 0.93 0.6 0.75 0.78
Medium 0.89 0.48 0.65 0.73

Low 0.87 0.41 0.58 0.7
Farthest First High 0.89 0.49 0.66 0.74

Medium 0.84 0.42 0.59 0.69
Low 0.79 0.35 0.52 0.63

DBScan High 0.98 0.9 0.95 0.96
Medium 0.95 0.73 0.84 0.91

Low 0.92 0.6 0.75 0.87
XMeans High 0.91 0.57 0.72 0.74

Medium 0.87 0.43 0.6 0.68
Low 0.84 0.38 0.55 0.66

Consistency K-Means High 0.92 0.57 0.73 0.77
Medium 0.9 0.47 0.64 0.72

Low 0.87 0.39 0.56 0.68
Farthest First High 0.87 0.43 0.6 0.68

Medium 0.79 0.31 0.48 0.58
Low 0.76 0.25 0.4 0.52

DBScan High 0.98 0.87 0.93 0.96
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Medium 0.94 0.66 0.79 0.89
Low 0.9 0.5 0.67 0.82

XMeans High 0.91 0.58 0.73 0.74
Medium 0.87 0.43 0.6 0.67

Low 0.85 0.38 0.55 0.65
Timeliness K-Means High 0.92 0.59 0.74 0.75

Medium 0.9 0.56 0.71 0.73
Low 0.91 0.57 0.72 0.73

Farthest First High 0.92 0.65 0.78 0.8
Medium 0.95 0.73 0.84 0.85

Low 0.93 0.66 0.79 0.82
DBScan High 0.98 0.88 0.94 0.97

Medium 0.95 0.74 0.85 0.93
Low 0.92 0.6 0.75 0.89

XMeans High 0.9 0.54 0.7 0.7
Medium 0.92 0.63 0.76 0.74

Low 0.91 0.61 0.75 0.74
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Table 6: Image Segmentation: averages

Rand Jaccard FM F1

Accuracy K-Means High 0.86 0.38 0.56 0.65
Medium 0.85 0.37 0.54 0.64

Low 0.84 0.34 0.52 0.61
Farthest First High 0.5 0.2 0.42 0.41

Medium 0.47 0.19 0.4 0.38
Low 0.39 0.17 0.39 0.35

DBScan High 0.71 0.23 0.4 0.48
Medium 0.7 0.22 0.39 0.46

Low 0.7 0.21 0.37 0.46
XMeans High 0.87 0.33 0.5 0.6

Medium 0.86 0.31 0.47 0.59
Low 0.85 0.3 0.46 0.58

Completeness K-Means High 0.86 0.38 0.55 0.65
Medium 0.84 0.33 0.5 0.62

Low 0.83 0.3 0.46 0.6
Farthest First High 0.73 0.27 0.45 0.52

Medium 0.64 0.22 0.42 0.48
Low 0.66 0.23 0.42 0.5

DBScan High 0.79 0.26 0.42 0.56
Medium 0.77 0.22 0.36 0.53

Low 0.74 0.17 0.3 0.47
XMeans High 0.86 0.29 0.45 0.57

Medium 0.85 0.26 0.42 0.54
Low 0.84 0.24 0.39 0.52

Consistency K-Means High 0.86 0.37 0.54 0.64
Medium 0.84 0.31 0.47 0.59

Low 0.82 0.26 0.42 0.55
Farthest First High 0.65 0.24 0.44 0.49

Medium 0.52 0.19 0.4 0.41
Low 0.53 0.18 0.38 0.39

DBScan High 0.79 0.26 0.43 0.56
Medium 0.77 0.21 0.35 0.52

Low 0.73 0.17 0.3 0.47
XMeans High 0.86 0.3 0.47 0.59
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Medium 0.84 0.25 0.41 0.53
Low 0.83 0.22 0.37 0.5

Timeliness K-Means High 0.86 0.39 0.56 0.65
Medium 0.87 0.4 0.58 0.66

Low 0.87 0.4 0.57 0.65
Farthest First High 0.74 0.3 0.5 0.58

Medium 0.72 0.29 0.48 0.54
Low 0.71 0.27 0.47 0.54

DBScan High 0.71 0.21 0.38 0.46
Medium 0.69 0.18 0.32 0.42

Low 0.66 0.15 0.29 0.38
XMeans High 0.86 0.3 0.47 0.56

Medium 0.87 0.29 0.46 0.56
Low 0.86 0.32 0.49 0.58
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Table 7: Page Blocks: averages

Rand Jaccard FM F1

Accuracy K-Means High 0.43 0.32 0.55 0.57
Medium 0.43 0.32 0.54 0.57

Low 0.42 0.31 0.53 0.55
Farthest First High 0.82 0.81 0.9 0.86

Medium 0.82 0.82 0.91 0.87
Low 0.82 0.82 0.9 0.87

DBScan High 0.82 0.81 0.9 0.86
Medium 0.81 0.8 0.89 0.86

Low 0.81 0.8 0.89 0.85
XMeans High 0.35 0.22 0.45 0.47

Medium 0.35 0.21 0.44 0.46
Low 0.34 0.21 0.44 0.44

Completeness K-Means High 0.43 0.32 0.55 0.57
Medium 0.44 0.33 0.55 0.59

Low 0.45 0.34 0.57 0.62
Farthest First High 0.8 0.8 0.89 0.86

Medium 0.77 0.76 0.86 0.84
Low 0.82 0.82 0.9 0.86

DBScan High 0.83 0.83 0.91 0.87
Medium 0.83 0.83 0.91 0.86

Low 0.83 0.83 0.91 0.86
XMeans High 0.36 0.22 0.45 0.48

Medium 0.36 0.22 0.46 0.49
Low 0.37 0.24 0.47 0.49

Consistency K-Means High 0.44 0.33 0.56 0.6
Medium 0.42 0.31 0.54 0.58

Low 0.41 0.3 0.52 0.56
Farthest First High 0.82 0.81 0.9 0.87

Medium 0.81 0.81 0.9 0.86
Low 0.76 0.75 0.85 0.83

DBScan High 0.82 0.81 0.9 0.86
Medium 0.8 0.79 0.89 0.85

Low 0.79 0.78 0.88 0.85
XMeans High 0.35 0.21 0.44 0.46
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Medium 0.34 0.2 0.43 0.45
Low 0.33 0.2 0.42 0.43

Timeliness K-Means High 0.43 0.32 0.55 0.6
Medium 0.41 0.3 0.52 0.58

Low 0.39 0.28 0.5 0.56
Farthest First High 0.82 0.82 0.9 0.87

Medium 0.77 0.76 0.86 0.83
Low 0.8 0.8 0.89 0.85

DBScan High 0.83 0.83 0.91 0.86
Medium 0.86 0.85 0.92 0.87

Low 0.88 0.87 0.93 0.87
XMeans High 0.36 0.22 0.45 0.47

Medium 0.39 0.28 0.5 0.55
Low 0.37 0.25 0.48 0.51
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Table 8: Pen Digits: averages

Rand Jaccard FM F1

Accuracy K-Means High 0.91 0.42 0.6 0.71
Medium 0.91 0.39 0.56 0.69

Low 0.9 0.37 0.55 0.68
Farthest First High 0.56 0.14 0.31 0.33

Medium 0.51 0.12 0.3 0.3
Low 0.46 0.12 0.29 0.28

DBScan High 0.26 0.12 0.33 0.24
Medium 0.23 0.1 0.29 0.18

Low 0.28 0.1 0.28 0.18
XMeans High 0.89 0.38 0.56 0.67

Medium 0.89 0.37 0.54 0.66
Low 0.89 0.34 0.52 0.64

Completeness K-Means High 0.91 0.42 0.59 0.71
Medium 0.9 0.38 0.55 0.68

Low 0.89 0.32 0.49 0.64
Farthest First High 0.82 0.22 0.38 0.48

medium 0.81 0.21 0.37 0.47
Low 0.79 0.2 0.35 0.46

DBScan High 0.78 0.25 0.44 0.55
Medium 0.79 0.21 0.38 0.52

Low 0.78 0.18 0.33 0.49
XMeans High 0.88 0.36 0.54 0.64

Medium 0.87 0.33 0.51 0.62
Low 0.86 0.3 0.47 0.6

Consistency K-Means High 0.91 0.4 0.57 0.69
Medium 0.89 0.33 0.5 0.65

Low 0.88 0.27 0.43 0.6
Farthest First High 0.82 0.22 0.37 0.47

Medium 0.8 0.18 0.33 0.43
Low 0.79 0.16 0.29 0.39

DBScan High 0.78 0.24 0.43 0.55
Medium 0.77 0.2 0.36 0.51

Low 0.76 0.17 0.31 0.5
XMeans High 0.87 0.34 0.51 0.63
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Medium 0.86 0.28 0.45 0.58
Low 0.84 0.23 0.39 0.52

Timeliness K-Means High 0.91 0.41 0.58 0.7
Medium 0.91 0.4 0.57 0.69

Low 0.91 0.39 0.56 0.69
Farthest First High 0.51 0.14 0.32 0.33

Medium 0.48 0.12 0.3 0.3
Low 0.47 0.12 0.3 0.29

DBScan High 0.23 0.11 0.3 0.2
Medium 0.34 0.1 0.27 0.18

Low 0.43 0.1 0.26 0.18
XMeans High 0.89 0.39 0.56 0.67

Medium 0.87 0.35 0.53 0.63
Low 0.87 0.33 0.51 0.6
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Table 9: Wall Following: averages

Rand Jaccard FM F1

Accuracy K-Means High 0.59 0.21 0.35 0.43
Medium 0.59 0.21 0.35 0.43

Low 0.59 0.21 0.35 0.43
Farthest First High 0.44 0.3 0.5 0.48

Medium 0.41 0.31 0.52 0.48
Low 0.39 0.32 0.54 0.49

DBScan High 0.36 0.32 0.55 0.48
Medium 0.36 0.33 0.56 0.49

Low 0.38 0.32 0.54 0.48
XMeans High 0.63 0.14 0.27 0.34

Medium 0.62 0.16 0.29 0.36
Low 0.61 0.17 0.3 0.37

Completeness K-Means High 0.6 0.21 0.35 0.43
Medium 0.6 0.21 0.35 0.43

Low 0.6 0.21 0.34 0.42
Farthest First High 0.52 0.26 0.42 0.45

Medium 0.51 0.26 0.43 0.46
Low 0.47 0.28 0.46 0.47

DBScan High 0.44 0.27 0.45 0.45
Medium 0.44 0.28 0.46 0.45

Low 0.43 0.29 0.47 0.46
XMeans High 0.6 0.21 0.35 0.42

Medium 0.6 0.21 0.34 0.42
Low 0.6 0.21 0.34 0.42

Consistency K-Means High 0.6 0.21 0.34 0.42
Medium 0.59 0.2 0.34 0.41

Low 0.59 0.19 0.33 0.39
Farthest First High 0.52 0.26 0.43 0.46

Medium 0.52 0.26 0.42 0.45
Low 0.52 0.26 0.42 0.45

DBScan High 0.46 0.26 0.43 0.44
Medium 0.48 0.25 0.41 0.43

Low 0.5 0.24 0.4 0.42
XMeans High 0.6 0.21 0.34 0.42
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Medium 0.6 0.2 0.33 0.4
Low 0.59 0.19 0.33 0.39

Timeliness K-Means High 0.59 0.21 0.35 0.43
Medium 0.6 0.2 0.34 0.42

Low 0.6 0.2 0.34 0.41
Farthest First High 0.37 0.32 0.55 0.48

Medium 0.39 0.31 0.53 0.48
Low 0.43 0.29 0.48 0.46

DBScan High 0.38 0.31 0.53 0.48
Medium 0.44 0.28 0.46 0.45

Low 0.47 0.26 0.43 0.42
XMeans High 0.59 0.21 0.35 0.43

Medium 0.59 0.21 0.35 0.42
Low 0.56 0.26 0.41 0.48
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As it shown in the table with accuracy influence 10, in most cases accepted
accuracy levels produce small negative impact on clustering quality. In case of
KMeans an FarthestFirst algorithms and medium accuracy level the changes
are even insignificant. Therefore we supposed that percentage of incorrect
data for medium and low accuracy levels can be increased.

Table 10: Accuracy: statistical results

Rand Jaccard FM F1

K-Means Medium Cardio H � � �
Image H H H �

Page Blocks � � � H
Pen Digits H H � H

Wall Following H � � �
K-Means Low Cardio H � � H

Image H � � H
Page Blocks H H H H
Pen Digits H � � H

Wall Following H H H H
FarthestFirst Medium Cardio � � � �

Image � H H H
Page Blocks � � � �
Pen Digits � H H �

Wall Following H � N �
FarthestFirst Low Cardio � � � �

Image � H H �
Page Blocks H H H H
Pen Digits � H H �

Wall Following � N � �
DBScan Medium Cardio � � � �

Image H H H H
Page Blocks H H H H
Pen Digits N H H �

Wall Following N H H H
DBScan Low Cardio � � � �

Image N H H H
Page Blocks H H H H
Pen Digits N H � �
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Wall Following N H H H
XMeans Medium Cardio H H H �

Image H H H H
Page Blocks H H H H
Pen Digits H H H H

Wall Following H N N N
XMeans Low Cardio H H H H

Image H H � H
Page Blocks H H H H
Pen Digits H � � H

Wall Following H N N N
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According to table 11 we can observe that low completeness levels have
high negative impact on Cardiotocography and Image Segmentation datasets,
low negative impact on Pen Digits and Page Blocks data, and different vari-
ants of impact on Wall Following dataset, depending on the clustering algo-
rithm. In any case accepted completeness levels affect on clustering quality
more than accuracy ones.

Table 11: Completeness: statistical results

Rand Jaccard FM F1

K-Means Medium Cardio � � � �
Image H � � �

Page Blocks N N N N
Pen Digits H � � H

Wall Following H � � �
K-Means Low Cardio � � � �

Image H � � �
Page Blocks N N N N
Pen Digits H � � �

Wall Following H H H H
FarthestFirst Medium Cardio � � � �

Image � � H �
Page Blocks H H H H
Pen Digits � H H �

Wall Following � � � N
FarthestFirst Low Cardio � � � �

Image � � H H
Page Blocks H H H H
Pen Digits H H H H

Wall Following � N N N
DBScan Medium Cardio � � � �

Image H � � �
Page Blocks H H H H
Pen Digits N � � H

Wall Following H N N N
DBScan Low Cardio � � � �

Image H � � �
Page Blocks H H H H

32



Pen Digits H � � �
Wall Following H N N N

XMeans Medium Cardio � � � �
Image H H H H

Page Blocks N N N N
Pen Digits H H H H

Wall Following H H H H
XMeans Low Cardio � � � �

Image H � � H
Page Blocks N N N N
Pen Digits H � � �

Wall Following H � H �
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Consistency errors are dependent on dataset structure too 12. They pro-
duce low negative effect on Page Blocks data (because it is biased) and on
Wall Following data (because it has bad cluster structure) and high negative
effect on other datasets. Consistency has the most negative impact on cluster
validity. All used algorithms work badly with such kind of errors.

Table 12: Consistency: statistical results

Rand Jaccard FM F1

K-Means Medium Cardio H � � �
Image H � � �

Page Blocks H H H H
Pen Digits H � � �

Wall Following H H H H
K-Means Low Cardio H � � �

Image H � � �
Page Blocks H H H H
Pen Digits H � � �

Wall Following H H H H
FarthestFirst Medium Cardio � � � �

Image � � � �
Page Blocks H H H H
Pen Digits H � � �

Wall Following � � � �
FarthestFirst Low Cardio � � � �

Image � � � �
Page Blocks � � � �
Pen Digits H � � �

Wall Following � H � H
DBScan Medium Cardio � � � �

Image � � � �
Page Blocks H H H H
Pen Digits N � � �

Wall Following N H H H
DBScan Low Cardio � � � �

Image H � � �
Page Blocks H H H H
Pen Digits H � � �
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Wall Following � H H H
XMeans Medium Cardio � � � �

Image H � � �
Page Blocks H H H H
Pen Digits H � � �

Wall Following H H H H
XMeans Low Cardio � � � �

Image H � � �
Page Blocks H H H H
Pen Digits H � � �

Wall Following H H H �
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According to table 13 partitioning algorithms have unsignifficant qual-
ity changes (in case of KMeans and FarthestFirst algorithms) or even some
improvement (in case of XMeans algorithms) on different timeliness levels.
DBScan algorithm has low negative quality changes on medium timeliness
level and high negative changes on low timeliness level. But we should note
that for some datasets (for example Pen Digits) difference between DBScan
clustering on ideal data and DBScan clustering on high quality data is al-
ready very high.

Table 13: Timeliness: statistical results

Rand Jaccard FM F1

K-Means Medium Cardio � � � �
Image N N N �

Page Blocks H H H H
Pen Digits � H H H

Wall Following N H H H
K-Means Low Cardio � � � �

Image N � � �
Page Blocks � � � �
Pen Digits � H H H

Wall Following N H H H
FarthestFirst Medium Cardio N N N N

Image � H H H
Page Blocks � � � �
Pen Digits � H H H

Wall Following N H H H
FarthestFirst Low Cardio � � � �

Image H H H �
Page Blocks � � � �
Pen Digits � H H �

Wall Following � H � H
DBScan Medium Cardio H � � �

Image H H � �
Page Blocks N N N N
Pen Digits N H H H

Wall Following N H � H
DBScan Low Cardio � � � �
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Image � � � �
Page Blocks N N N N
Pen Digits � H � H

Wall Following � � � �
XMeans Medium Cardio N � � �

Image � � � �
Page Blocks N � � �
Pen Digits H � H H

Wall Following N H H H
XMeans Low Cardio N � � �

Image � N N N
Page Blocks N N N N
Pen Digits H � � �

Wall Following H � � �
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