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Aggressive Space Mapping for the Optimization of a
Marine Ecosystem Model

Malte PrieB* Thomas Slawig!

Abstract

In this paper we apply the Aggressive Space Mapping (ASM) algorithm by Ban-
dler et. al. (cf. [1]) to the parameter optimization of a one-dimensional marine
ecosystem model of NPZD type. We show that this approach leads to a very satis-
factory solution while yielding a significant reduction in the total optimization cost.
The ecosystem model, developed by Oschlies and Garcon [8], simulates the distri-
bution of nitrogen, phytoplankton, zooplankton and detritus in a water column and
is driven by ocean circulation data. A key issue is to optimize model parameters
in order to minimize the misfit between the model output and given observational
data. In the ASM approach, reducing the overall optimization cost by avoiding ex-
pensive function and derivative evaluations is achieved by using a surrogate model
that replaces the original one. Furthermore the ASM algorithm solves a nonlinear
system of equations which is conditionally equivalent to use this surrogate in the
optimization run. We use a coarser time discretization for obtaining a suitable low-
fidelity model. This is then corrected to create a physically-based surrogate, where
the correction is obtained through a parameter mapping which provides the mini-
mizer of the distance between the fine and the coarse model output. We show that
this surrogate provides a good approximation of the fine model. The applicability
of the ASM technique to the problem at hand is verified by using synthetic target
data. Results are compared to those of the direct fine model optimization. We
show that a very reasonable fit of the target data can be obtained with an average
reduction in the computational cost of about 65%.

Key words: Marine ecosystem models, surrogate-based optimization, low-fidelity
model, Aggressive Space Mapping, coarse discretization, Globalized Quasi-Newton method.

1 Introduction

Understanding the oceanic CO5 uptake is of central importance for projections of climate
change and oceanic ecosystems. Simulating ocean circulation and biogeochemistry has
become a key tool for understanding the ocean carbon cycle and its variability. The
underlying models are governed by coupled systems of parabolic partial differential equa-
tions for ocean circulation (ocean models) and transport of biogeochemical tracers (marine
ecosystem models). The coupling relations between the tracers are more or less empirical,
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i.e. it is not very clear how the coupling terms look like mathematically, and, moreover,
how many tracers have to be taken into account. In ecosystem models many parameters
are used which are chosen such that given measurement data are matched, and that the
model output remains feasible (i.e. non-negative).

For this purpose the aim is to minimize
a least-squares type cost functional, mea-
suring this misfit (cf. Figure 1), and op-
tionally constrained by inequalities for pa-
rameters and/or state variables, i.e. trac-
ers. The optimization variables are un-
known physical /biological parameters in
the nonlinear coupling terms in the tracer
transport equations. This optimization
o 2000 20006000 8000 10000 process req.uires a lotlof — mayb.e expen-

time [ hours ] sive — function and optionally sensitivity or
gradient evaluations. If the latter are com-
puted by finite difference approximations,
the critical quantity regarding the compu-
tational cost of the optimization is the one
needed for one function evaluation, which is basically one model run. Hence a big issue
in order to reduce the overall optimization cost is to decrease the effort for the func-
tion evaluations. This in particular becomes significant for computationally expensive
three-dimensional coupled models.

The idea of surrogate optimization is to replace the original model in focus (also called
high-fidelity or fine model) by a computationally cheaper so-called surrogate. To create
this surrogate a low-fidelity or coarse model, which is usually less accurate, is introduced
and iteratively corrected by suitable methods. For this correction or alignment, only a
few evaluations of the high-fidelity model and possibly also its derivatives are necessary.
Apart from this alignment, the whole optimization process is performed in the surrogate’s
model space which could dramatically reduce the overall cost.

In this paper we particularly analyze the application of the so-called Aggressive Space
Mapping (ASM) technique (firstly developed by Bandler et. al [1, 2]) to the optimization
of a one-dimensional ecosystem model which is introduced in Section 2. In Section 3
we describe the corresponding optimization problem. The basic idea of surrogate-based
optimization is recalled in Section 4. We use a coarsening in the temporal mesh to create
the basis of our surrogate, the low-fidelity model, which we briefly present in Section 5.
This low-fidelity model is then corrected by a so-called parameter mapping (cf. [2]) to
obtain our surrogate model which we describe in Section 6. The basic idea of the ASM
algorithm and the globalized Quasi-Newton procedure [6] we use to compute the ASM
solution are then presented in the Section 7. To verify the approach we test the algorithm
by using synthetic target data and compare the results with those obtained from direct
fine model optimization. Corresponding results are given in Section 8. We draw some
conclusions in Section 9.
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Detritus [ mmol N m™ ]

Figure 1: Model output yP) (detritus) and

target data yéD) for one year at depth z =~ 25 m.

2 Model Description

A one-dimensional marine ecosystem model that simulates the interaction of dissolved
inorganic nitrogen, phytoplankton, zooplankton and detritus (thus also called NPZD
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model) was developed by Oschlies and Garcon [8], with the aim of simultaneously repro-
ducing observations at three North Atlantic locations by the optimization of free param-
eters within credible limits. The model uses the ocean circulation and temperature field
in an off-line modus, i.e. no feedback on them is modeled. The model simulates one water
column at a given horizontal position which is motivated by the fact that there have been
special time series studies at fixed locations. Marine ecosystem models are coupled PDE
systems consisting of time-dependent advection-diffusion-reaction equations with nonlin-
ear coupling terms. The velocity and temperature and sometimes also salinity data are
either computed simultaneously or in advance by an ocean model. Clearly, the second
variant, that is used in this paper, is computationally cheaper but neglects the feedback
effects from the biogeochemistry to the ocean circulation and temperature distribution
etc.

In the model, the concentrations (in mmol N m™*) of dissolved inorganic nitrogen
(DIN), phytoplankton (PHY), zooplankton (ZOO), and detritus (DET) are summarized
in the vector y := (y"),—n.pzp and described by the following coupled PDE system

oy 0 oy
_gt = 3, (Kp gz ) + QU(y,t, T ug, ..., uy), l=N,P,Z
(1)
oy ) dyD) dy(P
ot G (Kp BP ) + Q (y,t,T, U9, ... ,U,n) 0z U1, l D

in (0, H) x (0,t.)

with additional appropriate initial values. Here z denotes the vertical spatial coordinate,
H the depth of the water column, and ¢, the total integration time. The Q" are the
biogeochemical coupling (or ”source-minus-sink”) terms for the four tracers, and u =
(u1,...,uy,) is the vector of unknown physical and biological parameters. The sinking
term is only apparent in the equation for detritus. In the one-dimensional model no
advection term is used, since a reduction to vertical advection only would make no sense.
Thus the circulation data (taken from an ocean model) are the turbulent mixing coefficient
K, = K,(z,t) and the temperature T' = T'(2, t).

3 Optimization Problem

The aim is to minimize a least-squares type cost function measuring the misfit between
the model output y = y(u) and given observational data y; (cf. Figure (1)). The
optimization variables are summarized in the vector u of unknown parameters. Thus the
problem can be written as

min J (y(w),u) = ||y (w) —vally +allull;

U={ueR":b<u<b,} , J: Y xU—=R (2)

Note that the optimization variables are real numbers. Since most of the parameters are
growth or dying rates, component-wise lower and upper bounds described by the vectors
b;, b, € R" are imposed on them.

The above formulation of the optimization problem is valid if the state or vector of
tracers y is regarded



e cither in a continuous setting as an element of an appropriately chosen function
space Y,

e or after discretization (cf. Section 5) as a discrete vector y € R¥M =Y with K
and M denoting the total number of spatial and temporal grid points, respectively.

We will consider the latter formulation from now on.

Constraints on the state variable y are not treated explicitly in our formulation (2).
However, by using appropriate parameter bounds b; and b,, the desired non-negativity
of the state/tracer vector can be ensured in the model. This was already observed and
used in [9].

4 Surrogate-Based Optimization

For many nonlinear optimization problems high computational cost of accurate simula-
tions and derivatives or even the lack of sensitivity information are major drawbacks. The
need for a decrease in the computational cost is especially important in the case of the
optimization of complex three-dimensional models.

In surrogate-based optimization, the original high-fidelity model output y is replaced
by a surrogate which is based on the output y of a coarse model and subsequently aligned
or updated. In the kth step of an optimization algorithm, arrived at optimization variable
iterate u; € U, we thus perform a step generally written as

y(ue), y(ug) = s (3)

The surrogate s; should satisfy so-called 0-order and ideally also 1st-order consistency
with the high-fidelity model in the current iterate uy, i.e.

sp(up) = y(ue) 5 sp(ug) = y'(w), (4)

and maybe also in a neighborhood.

Key points for a well performing surrogate algorithm are a cheap function and sen-
sitivity evaluation of its basis, the low-fidelity model, a low cost for the alignment of
this low-fidelity model, and a low number of necessary iterations in the surrogate-based
optimization process, since this results in only few evaluations of the high-fidelity model.

5 The Low-Fidelity Model

Surrogates can be either based upon a functional or a physical low-fidelity model. Those
obtained from a functional low-fidelity model are constructed without any particular
knowledge of the system on the basis of sampled data of the fine-model only and will
not be addressed further in this paper. In contrast, surrogates based upon a physical
low-fidelity model (also known as physical surrogates) inherit more characteristics of the
fine model in focus. Possible ways to create such a physical low-fidelity model are by a
coarser discretization, by using simplified physics or different ways of describing the same
physical phenomenon or even by using analytical formulas if available. In this paper we
use a low-fidelity model which has a coarser time discretization. For this purpose, we now
present the original discretization scheme of the N PZ D model.



Discretization Scheme

The original or high-fidelity model described by (1) is solved using an operator splitting
method: Given a time-step 7, the discretized scheme reads

[[ — TA?iﬂj Vit1 = [[—1—7’ . Asmk} oBJC?2 ijQ OBJQ oBJQ(yj), j=1,...,M. (5)
diff Bsink
::le .—Bsin

Here we denote by y; ~ (y(2,t;)),_,

the number of discrete spatial points.’ ’
At first, the nonlinear coupling operators (); are computed at every spatial grid point

and integrated by four explicit Euler steps, each of which is described by the operator

BP(y;) = [[+ in(Yj)] : (6)

Here we omitted the additional arguments of the @); for simplicity.

Then, an explicit Euler step with full step-size 7 is performed for the sinking term
which is spatially discretized by an upstream scheme. This step is summarized in the
matrix B, Since the sinking velocity is temporal constant, this matrix does not depend
on the time step j.

Finally, an implicit Euler step for the diffusion operator, discretized with second order
central differences, is applied. Due to K, = K,(z,t) the resulting matrix B depends
on j and is non-symmetric, cf. [5, Section 5]. Tt is tridiagonal, and the system is solved
directly. Note that AJ, A"k are 4 x 4 block-diagonal matrices.

- the discrete solution in time step j, where K is

Coarser Time Discretization

The low-fidelity model is obtained by using a coarser time discretization with
T =0T

with a coarsening factor [ in the range [10,60], while keeping the spatial discretization
fixed. The state variable for this coarser discretized model will be denoted by y, the
corresponding number of discrete time steps by M=M /3. The parameters u for this
coarse model are the same as for the fine model. Figure 2 shows the fine and coarse model
output yP), P for the state detritus, for different values of 3 and at the same randomly
chosen parameter vector u.

It is important to keep in mind that choosing (3 too big could lead to a numerically
unstable scheme. The condition on stability is determined by the ratio h/u; where h

denotes the size of the discrete spatial step. All computations in this paper were performed
with parameters that guarantee stability.

6 The Surrogate Model

The surrogate model we use is obtained by a space mapping approach introduced by
Bandler et al. [1]. The physical low-fidelity model with output y (cf. Section 5) is corrected
in the kth optimization step by a so-called parameter mapping p, to obtain a surrogate
s for the fine model, in detail

sp(u) ==y [pr(u)] , pr(u)=p(up) +p'(up) (u—uy)
i, = p(ug) == argmin,; ||¥(w) — y(w) [f5 . (7)
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Figure 2: High- and low-fidelity model output y™), (V)| respectively, for the state dissolved

inorganic nitrogen DIN at depth z ~ 2.68m for different values of the coarsening factor § and
the same randomly chosen parameter vector u. For simplicity we skip super- and subscripts in
the legends of all figures.

The usually non-linear mapping p is aligning the high- and low-fidelity model and is
approximated in the point u, using a first-order Taylor expansion.

0O-order Consistency

Assuming that the minimization in Equation (7) actually yields perfect alignment

y () = y(u),

the surrogate exactly satisfies 0-order consistency, i.e. sg(ug) = y(ux) (cf. Section 4).
If this is not the case, i.e. the minimization (7) yields a local minimum for which we
would have obtained an approximate alignment only, i.e.

y () ~ y(ug)
then obviously the surrogate’s consistency is only satisfied approximately, i.e. sg(ug) ~
y(ug).
The 0-order consistency is therefore dependent on how close the alignment of the
low-fidelity model can be achieved by p. However, using the definition of the surrogate

and the mapping from Equation (7), the surrogate obviously is at least as close to the
high-fidelity model as the low-fidelity model itself, i.e.

I (ur) =y ()l = Iy P(ue)] = y(ue)ll < |y (w) =y (), (8)

where the second relation is ensured by the minimization (7). Figure 3 illustrates this
property showing the high- and low-fidelity model output as well as the surrogate model
output for the state detritus at a randomly chosen parameter vector ug. This supports the
argumentation above: In the point u; the surrogate obviously provides a reasonable ap-
proximation for the high-fidelity model while being closer to it than the low-fidelity model
itself. We will see in the next section that this property is also given in a neighborhood.

7 Aggressive Space Mapping

The Aggressive Space Mapping (ASM) algorithm we use in this paper was developed by
Bandler et al. [1, 2]. It firstly solves for the coarse model optimum

*

" = argmin oy J (§(w), ) (9)
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Figure 3: High- and low-fidelity model output y®),3(P) as well as the aligned surrogate
s,(fD)(uk) = §(O) [pi(uy)] for the state detritus, at the same randomly chosen parameter vec-
tor ug, at depths z ~ 25m (top) and z ~ 60m. The surrogate model provides a reasonable

approximation of the high-fidelity model while lying closer than the low-fidelity model itself.

and then iteratively computes a solution u of the nonlinear system
F(u) = p(u)—ua* = 0. (10)

For this purpose, a Quasi-Newton iteration [6, 7] with a Broyden rank-one approximation

[3] for the Jacobian By ~ p’(uy) is used, i.e. the following steps are performed for
k=0,1,...:

Solve Bpd, = —F(u;)=—(p(u;) —u*)
U1 = Ug + dk (11)
(yr — Bpdy) d]f
B = B .
k+1 kT dg dk

The idea behind this approach (as was illustrated e.g. in [4]) is the following: If either the
fine model nearly matches the data in an optimum u* (i.e. y(u*) = y4) or both models
are similar near their respective optima (y(u*) ~ y(u*)), we have

y [p(u’)] = y(u") = ya.
Then we expect the mapping to satisfy
* . ~ *\ (2 : ~ 2 ok
p(u’) = argmin, [|y(u) —y(u)[ly = argmin, |[y(u) —yqlly =07, (12)

which is also referred to as a perfect mapping. Solving the nonlinear system (10) is also
referred to as the original SM approach (cf. [4]).



It was also shown in [4] that, if the mapping is injective and the coarse model optimum
a* is unique, then the solution of the ASM approach coincides with the solution u,
obtained by directly optimizing the surrogate defined in Equation (7), i.e.

U, = argminer J (¥ [p(u)],u). (13)

In general one cannot expect the ASM solution u and uy from (13) to coincide with the
fine model optimum u* unless the mapping is perfect and injective. However, in general
one expects fine and coarse model to show important similarities and hence to satisfy
consistency at their respective optima, i.e. y(u*) ~ y(a*), leading to an almost perfect
mapping p(u*) ~ u* and hence u ~ u; ~ u*. For a more detailed analysis we refer to [4].

Globalized Quasi-Newton Method

Since the standard Quasi-Newton Algorithm, as given in the iteration (11), may suffer
from local convergence one can additional use a classical line search strategy introducing
a merit function A : U — R given as

pw) = SIIF)IF = Jlpw) — o]

We then have
Vh(u) = F'(u) ' F(u)

(with the Jacobian F'(u)). If F'(u;,)B; ' is positive-definite, then
Vh(w,) 'dp = F(up) F'(u)B,'F(u) < 0,

i.e. dj is a descent direction for h at the point uy.

Obviously the Newton direction (where By is replaced by F’(uy)) is always a descent
direction for h in uy, satisfying Vh(ug)"d, = —2h(ug). Assuming that By is a ”"good”
approximation of F'(uy), we use the last relation also in a line search in the Quasi-Newton
method. The iteration step then takes the following form:

Find 0 €]0,1] s.t. h(uy+ody) < (1 —200)h(uy) (14)
~ h(uk) + ol (Vh(uk)Tdk)
Update wui1 = ug+ odg
(yk — O'Bkdk) Ud;—
B = B
BT T e d ) (ody)

Here ¢ €]0, 1] is a parameter that defines the rate of decrease in the merit function that
is desired in the current step, similar as in Armijo’s rule, cf. for example [7]. Since we
are using an approximation in (14) anyway, we may write it in a simpler form with 204
replaced by C' €]0, 1] (cf. [6]). The resulting pseudo code can be found in Algorithm 1 at
the end of this section.

In general, the Broyden update does not guarantee to provide a descent direction, and
thus the line search might fail (cf. line 5,6 in Algorithm 1). In this case one could use
the Newton or steepest descent direction (cf. lines 7-17 in Algorithm 1) and apply one of
them directly to the merit function, following the idea that minimizing h will lead closer
to a zero of F.

10



Practical Issues

For a given optimization problem one has to carefully consider how many iterations and
hence evaluations of the function F are affordable. The alignment of the low-fidelity
model through the parameter mapping p and hence the evaluation of the function F is
quite expensive due to the minimization required to obtain p(u). One evaluation of the
function p requires one expensive evaluation of the high-fidelity model plus the minimiza-
tion which — depending on the chosen method — might additionally include derivatives or
their approximations by more function evaluations of the low-fidelity model.

In order to keep the number of fine model evaluations as low as possible we did not
use optional and expensive Newton or steepest descent steps but only the cheaper Quasi-
Newton direction. For the results provided in the next section we furthermore used a
line search with three iterations at maximum (corresponding to a minimal step length of
||d|| = 1.25e — 1). If the line search failed to find a suitable step length, the algorithm
was terminated. In this case it either got stuck in a local minimum of h or the Broyden
matrix provided an inaccurate approximation resulting in a non-descent direction.

Note that a successful line search in the ASM algorithm also indirectly confirms that
the Taylor approximation we use to approximate the mapping p (cf. Eq. (7)) is reasonable
in the current point u; and also in some neighborhood uy + ¢, i.e.

pr(ug +¢€) = p(ug +¢)

for sufficiently small perturbation vectors e. Hence the surrogate sy = ¥ [px(u)] will be a
reasonable approximation also in a neighborhood around uy (cf. Eq. (8)), i.e.

13 pr(ue+ &)l —y(we+ )| < |3 +e) —y(u+e)

This is also interesting when directly optimizing the surrogate (cf. Eq. (13) and end of
Section (7)).
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Algorithm 1 Globalized Quasi-Newton algorithm to solve for the root of F(u).

1
2
3
4:
5
6

3

12:
13:
14:
15:
16:
17:
18:

19:
20:
21:

22:

23:
24:
25:

26:
27:
28:

29

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41
4

N

: function [uy ] = GLOB_QUASI_NEWTON > Main program
By=1, wp=u* , k=0, e,=1le—8 , es=125e—-1 , d=1le—4 , kpas =10
Fo=F(up) , ho=h(ug) > Initialization

while h, > ¢, and k < k4. do
Bydy=-F; , pp=2-6 hy (orp,=0C) > Calculate Quasi-Newton step
[ Ftriala htriala Uirial, flag ] = line search(uk, dkv hk:pk)

if flag =0 then > If line search failed ...

Error( ’Quasi-Newton step failed: Step length o below given threshold ey s.
Broyden matrix might be inaccurate, i.e. By # F’A or local minimum of h reached.’)
B, =F, > Approximate Jacobian

if F), regular then

Birdy=-F; , pp.=2-0-hg > Newton step
else

dp,=-B Fr , pp=96-]d HZ > Steepest Descent step
end if

[ FTI'/(1/~ hfz'm/- Uirials /]”(/ } = line S(‘ﬂ'r(i’]‘l(u/{? d}-", h/l‘f[)/»')

end if

if flag=1 then > Step successful
Fii1=Foria 5 hita :Thtm'al s Ukl = Ugrial 5, dip = U1 — Ug
—Bid,)d
Bis1 = By + Yempegulae
k=k+1

else

Error( ’Also Newton,/ Steepest Descent step failed: Step length below given threshold ey .
Local minimum assumed.”)
k= kmaz

end if
end while

end function

: function [ Firiar, Mirial, Utrial, flag ] = LINE SEARCH(u, d, h, py) > line search procedure
, 0= %a , flag=0 > Initialization
while (o > epsand flag=0) do
Wit =u+0-d , Fiia =Fria) 5 heria = M(Qrial)
if hipigt < h—o-p; then
flag=1 > flag indicates success/ failure of line search
else
a=a+1 , o= %a
end if
end while
end function

: Definitions:
: F(ug) :=p(ug) —0* , h(ug) :=1/2-||F(ug) ||2

43: p(uy) = minuer [|§(w) —y(w) |y . Fe=F(w) . he=h(w) , yi:=Fi—Fr
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Figure 4: Comparison of the full (i.e. not sampled) fine model output yP)(z;,¢;,u) for the
state detritus, the corresponding sampled output y(” )(zi,tgj, u) and the coarse model output

y(D )(zi, tj,u) at the same randomly chosen parameter vector u, in the 10th vertical layer, using
a coarsening factor of g = 20. Curves for original and sampled fine model output are very close.

8 Results and Discussion

We tested the ASM approach by using synthetic target data y; = y(u") at a randomly
chosen parameter vector u”® within admissible bounds b,,b;. We used the globalized
Quasi-Newton method described in the last section. For the optimization of the low- and
high-fidelity model and for the minimization required to obtain the parameter mapping
p (7) we used the MATLAB* function fmincon, taking the option for the active-set
algorithm. The cost function (using a weighted Euclidean vector norm) is given as follows
(here considering the high-fidelity model output y)

K

Ty = 3 3 Y (Wt - ) 09)

I=N,P,Z,D i=1 j=1

where Nipqcers = 4 denotes the number of tracers.

Data Sampling

For the low-fidelity model we accordingly use a sum over M discrete time steps (cf. Section
5) in the cost function J and take into account only every fth time step of the target
data yg4, hence replacing yc(ll)(zi, t;) by the sampled output yc(ll)(zi, tgj). For obtaining the
parameter mapping p we analogously sum over the discrete time steps of the low-fidelity

model output y, hence considering in this case the sampled high-fidelity model output y:

] K
p(uy) = argmin,ey | ———— Z Z Z (59 (21,5, ) _y(l)(zi7tﬁjauk))2

Niracers K M I=N,P,Z,D i=1 j=1

Figure 4 shows a comparison of the full (i.e. not sampled) fine model output y(z;, t;, u),
the corresponding sampled output y(z;,%s;, u) and the coarse model output y(z;,t;, u)
using a coarsening factor of 5 = 20 (as in the following results).

*MATLAB is a registered trademark of The MathWorks, Inc., http://www.mathworks.com
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ASM vs. Direct Fine Model Optimization

We now compare the results and the computational cost of the ASM approach with the
direct optimization of the high-fidelity model using the cost function given in Equation
(15). To give a profound illustration of the behavior of the algorithm, we below consider
the following parameter values, model outputs, and respective cost function values:

(i) The target yq4, i.e. the fine model output at a randomly chosen parameter vector
uopt,

(ii) the fine model output at another randomly chosen parameter vector uy, serving as
initial value of the optimization runs,

(iii) the model output at the result a* of a pure coarse model optimization,
(iv) the fine model output at the result u of the ASM algorithm, and
(v) the output of a (rather expensive) pure fine model optimization yielding u*.

Using different optimization routines might yield different results in (iii-v), but this will
probably not influence the relative reduction in the total optimization cost using the ASM
algorithm (see below). For example, in [9] better cost function values were obtained by
direct fine model optimization using a different optimization method (not MATLAB’s
fmincon) for the same problem and the same model.

A good agreement between the results of (i) and (v) would indicate a high quality of
the used optimization method itself, whereas a good agreement between those from (iv)
and (v) would mean that the ASM works fine.

We experienced that results for different initial parameter vectors ug are comparable.
For illustration we here present the results of two exemplary test runs, considering the
same target data set yq (i), but different initial parameters ug (ii). In both cases we
used K = 20,M = 8760 -5 and = 20. Hence for the low-fidelity model we obtain
M = M/ = 2190 discrete time steps per spatial grid point z;.

In Figures 5 and 6 below we only show some tracers for a part of the whole time
interval (one year) at some distinct depth layers. Moreover the output of the fine model
was sampled as described in the last subsection. The qualitative behavior of the other
tracers and at different times and spatial layers is similar. Table 1 shows the resulting
values of the parameters, the cost function and the reduction in computational time.

Test Results for Model Output and Computational Cost

Figure 5 illustrates the results of the ASM and the high and low-fidelity model for a first
choice of the initial guess uy. Corresponding parameters and values of the cost function J
are given in the upper part of Table 1. Furthermore the table shows the total cost of the
high-fidelity (C,ptn) and the low-fidelity optimization (Cyp;) and of the Quasi-Newton
iterations of the ASM algorithm (Cgy) in terms of the total number of equivalent fine
model evaluations, which were required to reach the given value of the cost function J.
Note that the total cost in the ASM approach consists of the cost for the low-fidelity
model optimization C,,; and those for solving the nonlinear system of equations by the
Quasi-Newton method, i.e. Cgy. For details see also the next subsection.

From Figure 5 we see that by direct fine model optimization we yield a very reasonable
optimal fit y(u*) (grey dashed line) of the target data y, (black line). This is equivalent to
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Figure 5: Model output yN) (detritus, left) and y(%) (zooplankton, right) at depth z ~ 2.68m
(top) and z ~ 108.15m (bottom). Shown are, in the legend from top to bottom: (i) Target yg,
i.e. fine model output at randomly chosen parameters u”, (ii) fine model output at the initial
value uyg, (iii) coarse model output at its optimum a*, (iv) result of the ASM algorithm at its
optimum u, and (v) result of a direct fine model optimization yielding u*. On the top left, we
only show the interesting time interval. Curves corresponding to (i), (iv) and (v) are very close.

a cost function value of J(y(u*),u*) = 1.611e— 05 obtained after 281 function evaluations
(cf. Table 1). We furthermore see that by coarse model optimization we yield parameters
u* with a fit y(a*) (light grey line) which obviously provides only a rough approximation
of the target data, but in C,,; = 19.95 equivalent fine model evaluations only. Using the
ASM approach, we finally obtain a solution u with an optimal fit y(a*) (black dashed line)
and parameter match lying very close to that obtained by the fine model optimization.

The key point now is that the ASM solution @ is obtained in only Con = 80.25
equivalent fine model evaluations for the Quasi-Newton steps. Summarizing, using the
ASM approach, we hence obtained a very reasonable solution in totally

Casm = Copt,l + CQN ~ 100

equivalent fine model evaluations. The same cost function value by direct fine model
optimization was obtained after 236 model evaluations (cf. Table 1). This leads to a
reduction in the total optimization cost of about 57%.

Figure 6 and the lower part of Table 1 show the corresponding results of another run
with different initial parameters ug. Obviously results of the fine and coarse model opti-
mization look similar. Also a similar convenient fit was obtained by the ASM approach.
Here we required about 117 equivalent fine model evaluations to obtain the ASM solution
while here about 409 evaluations were necessary to yield the same cost function value by
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Figure 6: Same as Figure 5, but for a different initial guess ug for the optimization runs.
Again the curves corresponding to (i), (iv) and (v) described on page 8 are very close.

fine model optimization. This leads to an even better reduction in the total optimization
cost of about 71%.

Analysis of the Optimization Cost

In order to compare the total optimization cost Csgys of the ASM approach with the
one obtained from the fine model optimization (C,p ) we consider in both cases the cost
in terms of total number of equivalent fine model evaluations. We generally yield the
following

Casm = Copi+Con . Con = Nasu-Cp-Njs
C1p - Calign +1= Nopt,p . (Cgrad + Nzlg)/ﬁ +1 )
Oopt,l - Nfunc,l - Nopt,l : (Cgrad + NZI;>/5 )

Copt,h - Nfunc,h - Nopt,h . (Cgrad + NZ?) ) Cgrad =12 . (16)

Here Nyunehs Nfuney denote the number of fine model evaluations needed in the op-
timization procedures optimizing the fine respectively the coarse model. This is further
given as the number of iterations, denoted by Nyt p, Nopts, times the cost of the gradient
Cyraa plus the number of line search steps done per iteration, denoted by Nz’; . For the
cost for a gradient evaluation we use the number of optimization variables (i.e. 12 here),
which corresponds to the usual effort for a finite difference approximation and that for a
forward mode AD (Algorithmic/Automatic Differentiation) gradient.
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iterate || ug1  uk2 ... uk,12 || (y(u),u) C;

ug 0.4862 0.6442 0.0192 0.0101 0.0372 0.9333 1.9045 0.0063 0.1804 0.0170 0.4060 6.9374|5.885e-03

*

Fine model optimization: u* ;= argmin . J (y(u),u)

u* 0.7635 0.5989 0.0274 0.0102 0.0352 1.0182 1.9300 0.0104 0.2179 0.0196 0.4953 5.8663||1.611e-05 281
Coarse model optimization: u* = argmin .oy J (y(u),u)
a* 0.7594 0.3631 0.0254 0.0119 0.0291 1.1181 0.8639 0.0070 0.1941 0.0158 0.4905 5.4200(|1.751e-03 19.95
ASM: Solve F(a):=p(a)—ua*=0
a 0.7587 0.5865 0.0265 0.0109 0.0340 0.9440 1.5241 0.0102 0.1790 0.0198 0.4895 6.0725||5.003e-05 80.25

uert 0.7500 0.6000 0.0250 0.0100 0.0300 1.0000 2.0000 0.0100 0.2050 0.0200 0.5000 6.0000|| 57.54% reduction

iterate || ur1 Uk ... ugaz ||J(y(u),u) C;

ug 0.5648 0.6720 0.0153 0.0117 0.0362 1.0959 2.3349 0.0126 0.2089 0.0276 0.4524 5.2346||7.027e-02

*

Fine model optimization: u* 1= argmin .y J (y(u),u)

* 0.8709 0.5933 0.0291 0.0121 0.0382 1.0478 0.9517 0.0112 0.2233 0.0192 0.4663 5.8359(|5.600e-05 418

*

Coarse model optimization: a* := argmin .y J (F(u),u)

a* 0.7588 0.3558 0.0294 0.0119 0.0365 1.1379 0.8479 0.0070 0.1881 0.0158 0.5023 5.4750(|1.832e-03 26.35
ASM: Solve F(u):=p(a)—a*=0
u 0.7607 0.5715 0.0313 0.0109 0.0429 0.9598 1.5285 0.0109 0.1740 0.0195 0.5115 5.9755||5.889e-05 91.15

urt 0.7500 0.6000 0.0250 0.0100 0.0300 1.0000 2.0000 0.0100 0.2050 0.0200 0.5000 6.0000|| 71.27% reduction

Table 1: Results of the high- and low-fidelity model optimization and of the ASM algorithm
from two illustrative test runs, corresponding to Figures 5 (top) and 6 (bottom), See the text for
details. Also shown are the corresponding values of the cost function J and the computational
cost C; in terms of the total number of equivalent fine model evaluations required to obtain the
given cost function value J, again for the three cases, i.e. C; € {Coptn, Copt1, Con}-

As we described in Section 7, the ASM algorithm involves firstly to solve for the coarse
model optimum 4" resulting in Ny, equivalent fine model evaluations. The second part
within the ASM algorithm involves the (globalized) Quasi-Newton iteration (cf. Section
7) which results in Cony = Nasu - Cp - Ni equivalent fine model evaluations. Here
N sy denotes the overall number of steps in the ASM, i.e. the number of Quasi-Newton
iterations, C, denotes the cost of calculating the mapping p and N7 denotes the number
of line search steps. The cost of the mapping, C,, is furthermore given by one fine model
evaluation plus the cost of the minimization required for the mapping, which we denote
by Oalign- _ _

In the numerical tests we obtained the following: At average Nyunc,n = 230, Niyne &
1.4 Npunen/ By Catign = 1.4+ Npynen/B, Nasur =~ 3.125, NFe ~ 1.2. With those averages
we obtain the following

CASM = 14- Nfunc,h/ﬁ + 3.125 - (1.4 . Nfunc,h/ﬁ + 1) - 1.2,
i.e. CASM/Copt,h = 14/ﬁ + 3.125 - (14/ﬂ + 1/Nfunc,h) -1.2 (17)
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Now, with a coarsening factor of 3 = 20 and N func,h =~ 230 this leads to an average
reduction of (1 — Cagnr/Coptn) = 0.65, hence at average about 65%.

With the calculation above we illustrated how the different parts of the ASM algorithm
contribute to the total cost Casps. In principle, values for Nygp and Njg are up to the
user and will be problem specific. Allowing for a greater number of ASM steps Nagps or
number of line search steps N/§ in the globalized Quasi-Newton algorithm increases the
total cost C s while not necessarily yielding a more accurate solution in the end. To
improve the results in terms of reduction in the total cost one might also decrease the
number Ny,n.; by stopping the optimization of the coarse model after a certain number
of iterations, as more iterations might not necessarily yield a significant better solution.
Concluding, as we already mentioned before (cf. Section 7), the setting for the algorithm
has to be carefully chosen to yield a reasonable solution at a sufficiently small number of
equivalent fine model evaluations.

9 Conclusions

The optimization of models that couple ocean circulation and a marine ecosystem model
can be very expensive in terms of model and gradient evaluations, especially for com-
plex 3-dimensional models. Hence methods reducing the total optimization cost, such as
surrogate-based optimization techniques, are highly desirable. In this paper we success-
fully applied the so-called ASM approach, firstly developed in [1], to the optimization of
a l-dimensional coupled marine ecosystem model. We used a coarser discretization in
time to create a reasonable low-fidelity model the ASM approach is based on. We also
showed that using the mapping definition from the ASM approach, one can obviously
yield a reasonable surrogate for the fine model. We recalled that the ASM approach is a
conditionally equivalent approach to use this surrogate in the optimization run, replacing
the fine model. Furthermore we used a globalized Quasi-Newton iteration to obtain the
ASM solution. We verified our approach by using synthetic target data comparing the
results to those of the direct fine model optimization. All in all we have shown that with
the ASM approach we could yield a very reasonable solution within a few number of fine
model evaluations only, resulting in a significant reduction in the total optimization cost
of about 65% at average.
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