
INSTITUT FÜR INFORMATIK

A simple OPT + 1 algorithm for cutting
stock under the modified integer
round-up property assumption

Klaus Jansen
Roberto Solis-Oba

Bericht Nr. 1009
September 2010

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL



A simple OPT + 1 algorithm for cutting stock under
the modified integer round-up property assumption

Klaus Jansen
Institut für Informatik

Universität zu Kiel, Kiel, Germany

kj@informatik.uni-kiel.de

Roberto Solis-Oba
Department of Computer Science

University of Western Ontario, London, Canada

solis@csd.uwo.ca

Abstract

We present a simple algorithm for the cutting stock problem with a constant number
d of object sizes that produces solutions of value at most OPT +1 in time dO(d) log7 n,
where OPT is the value of an optimum solution. This algorithm works under the
assumption that the modified integer round-up property of Scheithauer and Terno
for the cutting stock problem holds.

1 Introduction

In the cutting stock problem we are given a set T = {T1, T2, . . . , Td} of object types, where
objects of type Ti have positive integer length si ≤ 1. Given an infinite set of unit capacity
bins and a set I of n objects containing ni objects of type Ti, for each i = 1, . . . , d, the
problem is to pack I into the minimum possible number of bins. In this paper we consider
the version of the problem in which the number d of different object types is constant.

This problem is related to the bin packing problem, where we are also given a set
S of n objects of positive lengths and the goal is to pack S into the minimum possible
number of unit capacity bins. In principle the cutting stock problem and the bin packing
problem are equivalent; however, the size of the input for the stock cutting problem might
be exponentially smaller than the size of the input for the bin packing problem, as in the
bin packing problem we need to specify the length of each individual object, while in the
cutting stock problem we only need to specify the length of each object type. This is a
critical distinction because a polynomial time algorithm for the bin packing problem is not
necessarily a polynomial time algorithm for the cutting stock problem.

Bin packing and cutting stock are classical problems in combinatorial optimization and
they have been extensively studied. Both problems are known to be strongly NP-hard and
no approximation algorithm for them can have approximation ratio smaller than 3/2 unless
P=NP [6].

The cutting stock problem was introduced by Eisemann [4] in 1957 under the name of
the “Trim Problem”. In 1985 Marcotte [10] showed that an integer program formulation
for the cutting stock problem proposed by Gilmore and Gomory in 1961 [7] has the so
called integer round-up property when the number d of different object types is 2. Baum

1



and Trotter [1] defined an integer programming problem as having the integer round-up
property if its optimum value is equal to the least integer greater than or equal to the
optimum value of its linear programming relaxation. In 1982, Orlin proposed a polynomial
time algorithm for solving integer programming covering problems satisfying the integer
round-up property, thus, showing that the cutting stock problem with 2 different object
types is solvable in polynomial time.

In 1976 Berge and Johnson [2] observed that the integer programming formulation of
the cutting stock problem of Gilmore and Gomory has a very strong linear programming
relaxation, as many instances of the problem satisfy the integer round-up property. Similar
observations were made by Diegel and Wäscher and Gau [3, 16]. However, Marcotte [10],
Fieldhouse [5] and Scheithauer and Terno [13] proved that the cutting stock problem does
not have the integer round-up property. In 1995, Scheithauer and Terno [14] conjectured
that the formulation of Gilmore and Gomory for the cutting stock problem satisfies the
modified integer round-up property (MIRUP): a linear integer minimization problem has
the modified integer round-up property if its optimum value is no larger than the least
integer greater than or equal to the optimum value of its linear programming relaxation
plus 1. The conjecture has been proven to be true for all instances of the cutting stock
problem with d ≤ 6 [11] and d = 7 [15]. Furthermore, there is extensive experimental
evidence supporting the conjecture [14].

The best known algorithm for the cutting stock problem with a constant number of
object types is presented in [9] and it produces solutions of value at most OPT + 1 in time
dO(d2d)2O(8d) log11 n, where OPT is the value of an optimum solution. In this note we show
a simpler and faster algorithm than that presented in [9] that works under the assumption
that the modified integer round-up property for cutting stock holds; this algorithm also
produces solutions using at most OPT + 1 bins.

2 The Algorithm

A configuration or pattern Ci is a set of objects of total length at most 1, so all objects
in a configuration can be packed in a bin. A configuration Ci can be specified with a
d-dimensional vector Ci = (Ci1, Ci2, . . . , Cid) in which the j-th entry, Cij, specifies the
number of objects of length sj in Ci. Let C be the set of all configurations. The cutting
stock problem can be formulated as the following integer program, first proposed by Gilmore
and Gomory [7].

IP : min
∑

Ci∈C
xCi

s.t.
∑

Ci∈C
CijxCi

≥ nj, for j = 1, . . . , d (1)

xCi
∈ Z≥0, for all Ci ∈ C

In this integer program, nj is the total number of objects of length sj, and for each con-
figuration Ci, variable xCi

indicates the number of bins storing objects according to Ci.
Constraint (1) ensures that all objects are placed in the bins. For any instance I of the

2



cutting stock problem, we let IP(I) and LP(I) be the value of an optimum solution of IP
and its linear programming relaxation LP, respectively.

Our algorithm first computes a basic feasible solution for the linear program relaxation
LP of IP. Let x∗ = (xC1 , xC2 , . . . , xCC) be this solution. Let x̄∗ = bx∗c and x̃∗ = x∗ − x̄∗.
We then pack objects into bins according to the integral solution x̄∗; this leaves a set Ĩ
of objects still unpacked. We let Ī denote the set of objects packed so far. We note that
LP(Ī) = OPT(Ī) and LP(I) = LP(Ī) + LP(Ĩ).

Since linear program LP has d constraints, then basic feasible solution x∗ has at most
d variables x∗Cj

with positive value and, thus, LP(Ĩ) =
∑

Cj∈C x̃
∗
Cj

< d. In other words,

the objects in Ĩ fit fractionally in a constant number, at most d, of bins. This implies
that OPT(Ĩ) is also constant. We assume that LP(Ĩ) ≥ 1 as otherwise x∗ would be an
optimum integer solution for the problem. We can compute a packing for Ĩ into OPT(Ĩ)+1
bins using a recent algorithm by Jansen et al. [8] in time 2O(d log2 d) +O(n), this algorithm
yields a solution for the cutting stock problem using OPT (I) + 2 bins. Below we show
a simple algorithm to compute a packing for Ĩ in dLP(Ĩ)e + 1 bins in time 2O(d log d).
Combining this with a packing for x̄ as described above gives a solution that uses at most
LP(Ī) + dLP(Ĩ)e+ 1 = dLP(Ī) + LP(Ĩ)e+ 1 = dLP(I)e+ 1 ≤ OPT (I) + 1.

2.1 Packing the Objects in Ĩ

An object is called large, if its length is at least δ = /(2dLP (Ĩ)e); if the length is smaller
than δ, the object is called small. Let s1 > . . . > sd be the lengths of the objects, let
s1, . . . , sα be the lengths of the large objects, and let sα+1, . . . , sd be lengths of the small
objects. Notice that there are at most LP (Ĩ)/δ = 2(dLP (Ĩ)e)2 < 2d2 large objects in
instance Ĩ. Furthermore, since every large object has size at least δ, then each bin can
store at most 1/δ = 2dLP(Ĩ)e ≤ 2d large objects. Note also that if the MIRUP assumption
holds, then there must exist an assignment of large objects to dLP(Ĩ)e + 1 ≤ d + 1 bins.
We can find such an assignment by using the following dynamic programming algorithm.

Every assignment of large objects to a bin can be represented as a vector (a1, a2, . . . , aα),
where ai is the number of large objects of size si assigned to the bin. An assignment of
large objects to a set of bins is feasible if the large objects fit in the bins. Let us number the
bins from 1 to dLP(Ĩ)e + 1. Let A1 = {A1

1, A
1
2, . . . , A

1
r1
} be the set of vectors representing

all feasible assignments of large objects to bin 1. The number of these assignments is at
most (2d)α ≤ (2d)d.

Given the set of vectors Ai = {Ai1, Ai2, . . . , Airi} representing all feasible assignments of
large objects to the first i bins, we can find the feasible assignments Ai+1 of large objects
to the first i + 1 bins as follows. First, initialize Ai+1 to the empty set. Then, for each
vector A1

j = (a1j1, a
1
j2, . . . , a

1
jα) ∈ A1 and Aik = (aik1, a

i
k2, . . . , a

i
kα) ∈ Ai, add A1

j + Aik =
(a1j1 + aik1, a

1
j2 + aik2, . . . , a

1
jα + aikα) to Ai+1 if a1jh + aikh ≤ ñh for each h = 1, 2, . . . , α, where

ñh is the number of objects of size sh in Ĩ.
Since the number of bins needed to pack Ĩ is at most d + 1 and each bin can store

at most 2d large objects, then ñh ≤ 2d(d + 1). Therefore, every set Ai has at most
(2d(d+1))α ≤ (2d(d+1))d = dO(d) vectors. Therefore, set Ai+1 can be obtained from set Ai
in time dd× dO(d) = dO(d). From the above discussion, all sets Ai, i = 1, 2, . . . , dLP(Ĩ)e+ 1,

3



can be computed in time (dLP(Ĩ)e+ 1)× dO(d) = dO(d). If we take any feasible assignment
A ∈ AdLP(Ĩ)e+1 of large objects to the dLP(Ĩ)e+1 bins, it is not hard to find the assignment
A′ ∈ AdLP(Ĩ)e from which A was computed. Applying this process recursively we can get

an assignment of large objects to each one of the bins in dO(d) time.

Lemma 2.1 A feasible assignment of the large objects in Ĩ to dLP(Ĩ)e + 1 bins can be
computed in dO(d) time.

Once an assignment of large objects to bins has been computed, the next step is to place
the small objects in the bins. To do this we first calculate the total number of objects of
length sα+1 that can be placed in the first bin along with the large jobs assigned to this bin
by the above dynamic programming algorithm; to do this we compute the total length `1
of the large objects in the first bin and we let x = b(1− `1)/sα+1c. Therefore, min(x, ñα+1)
objects of length sα+1 can be placed into the first bin, where ñα+1 is the number of objects
of size sα+1 in Ĩ. If x ≥ ñα+1 then we try to place objects of the next length, sα+2 into
this bin; otherwise we consider the second bin and proceed in a similar fashion. The time
needed to place all the small objects is O(d).

Lemma 2.2 The above algorithm packs all the small objects in Ĩ in the empty space left
in the dLPe+ 1 bins by the large objects.

Proof: To show that all the small objects can be packed, let us assume for sake of con-
tradiction that the algorithm cannot pack the small objects into dLP(Ĩ)e + 1 bins. This
means that at least one small object oi is left unpacked by the above algorithm. Since oi
does not fit into any bin, that means that each bin has objects of total length larger than
1 − δ. Using the definition of δ, the total length of the objects in the dLP(Ĩ)e + 1 bins is
then larger than

(1− 1/(2dLP (Ĩ)e))(dLP (Ĩ)e+ 1) =
(2dLP (Ĩ)e − 1)

(2dLP (Ĩ)e)
(dLP (Ĩ)e+ 1) ≥ LP (Ĩ),

a contradiction. The last inequality follows from

(2dLP (Ĩ)e − 1)(dLP (Ĩ)e+ 1) ≥ 2dLP (Ĩ)eLP (Ĩ),

which is true since

2dLP (Ĩ)edLP (Ĩ)e+ dLP (Ĩ)e − 1 ≥ 2dLP (Ĩ)eLP (Ĩ),

as dLP (Ĩ)e ≥ 1.

2.2 The Complete Algorithm

A description of the complete algorithm is given below.

AlgorithmCuttingStock(S,N)
Input: Sets S = {s1, s2, . . . , sd} of object sizes and N = {n1, n2, . . . , nd} of numbers of
objects of each type.

4



1. Compute a basic feasible solution x of LP.

2. Set x̄∗ = bx∗c and x̃∗ = x∗ = x̄∗.

3. Consider a packing of the objects into bins according to the integer solution x̄∗. Let
Ĩ be the set of objects that remain unpacked.

4. Use dynamic programming to pack the large objects in Ĩ in dLPe+ 1 bins.

5. Pack the small objects in Ĩ greedily in the dLPe+ 1 bins using the empty space left
by the large objects.

Theorem 2.1 There is an algorithm for the cutting stock problem with a constant number
d of object types that produces solutions of value at most OPT + 1, where OPT is the
value of an optimum solution, if the MIRUP conjecture holds. The algorithm runs in time
dO(d) log7 n.

Proof: We have shown above an algorithm that produces solutions of value at most OPT+
1 assuming the MIRUP conjecture for the cutting stock problem is true. Since a basic
feasible solution for LP can be computed in time dO(d) log7 n (for details see Theorem 1.1
and Lemma 4.3 in [9]), then by Lemma 2.1 the algorithm runs in time dO(d) +dO(d) log7 n =
dO(d) log7 n.

References

[1] S. Baum and L.E. Trotter Jr., Integer rounding for polymatroid and branching op-
timization problems, SIAM Journal on Algorithms and Discrete Methods, 2(4), 416–
425, 1981.

[2] C. Berge and E.L. Johnson, Coloring the edges of a hypergraph and linear program-
ming techniques, Research Report CORR 76/4, Department of Combinatorics and
Optimization, University of Waterloo, 1976.

[3] A. Diegel, Integer LP solution for large trim problem, Working Paper, University of
Natal, 1988,

[4] K. Eisemann, The trim problem, Management Science, 3 (3), 1957, 279–284.

[5] M. Fieldhouse, The duality gap in trim problems, SICUP Bulletin (newsletter of the
Special Interest Group on Cutting and Packing, 5, 1990.

[6] M.R. Garey and D.S. Johnson, Computers and intractability. A guide to the theory
of NP-completeness, W.H. Freeman and Company, 1979.

[7] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock
problem, Operations Research, 9, 1961, 849–859.

5



[8] K. Jansen, S. Kratsch, D. Marx, and I. Schlotter, Bin packing with fixed number of
bins revisited, Proceedings of the 12th Scandinavian Symposium and Workshops on
Algorithm Theory, LNCS 6139, 260-272, 2010.

[9] K. Jansen and R. Solis-Oba, An OPT + 1 algorithm for the cutting stock problem
with a constant number of object lengths, Proceedings of the 14th International
Conference on Integer Programming and Combinatorial Optimization, LNCS 6080,
438-449, 2010.

[10] O. Marcotte, The cutting stock problem and integer rounding, Mathematical Pro-
gramming, 33, 1985, 82–92.

[11] C. Nitsche, G. Scheithauser, and J. Terno, New cases of the cutting stock problem
having mirup, Mathematical Methods of Operations Research, 48 (1), 105–116, 1998.

[12] J.B. Orlin, A polynomial algorithm for integer programming covering problems satis-
fying the integer round-up property, Mathematical Programming, 22, 1982, 231–235.

[13] G. Scheithauer and J. Terno, About the gap between the optimal values of the in-
teger and continuous relaxation one-dimensional cutting stick problem, Operations
Research Proceedings 1991, Springer Verlag, 1992.

[14] G. Scheithauer and J. Terno, The modified integer round-up property of the one-
dimensional cutting stock problem, European Journal of Operational research, 84,
562–571, 1995.

[15] G. Shmonin and A. Sebo, personal communication.

[16] G. Wäscher and T. Gau, Two approaches to the cutting stock problem, IFORS 93,
XIII World Conference on Operations Research, 1993.

6


