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Abstract

We introduce QAPI (quantified ATL with probabilism and incomplete
information), an extension of ATL [AHKO02] that provides a flexible mecha-
nism to reason about strategies that can be identified and followed by agents
that do not have complete information about the state of the system. QAPI
allows reasoning about strategies directly in the object language, which al-
lows to express complex strategic properties as equilibria. We show how
several other logics can be expressed in QAPI, and provide suitable bisimu-
lation relations, as well as complexity and decidability results for the model
checking problem.

Introduction

ATL [AHKO02] is the standard logic to reason about strategic properties of temporal
systems, naturally modelled as games. The main strategic feature of the language
is the operator ((.)), where ((A)) ¢ expresses “the coalition A has a strategy to
achieve the goal ¢.” In the standard semantics, it is assumed that the players in A
have complete information about the current state of the system, hence they are
able to follow any strategy (a strategy is a function from the state set into the sets
of possible moves for a player). Moreover, the existential quantifier is unrestricted
and allows strategies that cannot possibly be identified by the coalition A.

There are several extensions of ATL that address these issues, see, e.g., [Jam04,
JvdHO04, HT06, Sch04, Sch10]. There are also extensions of ATL that allow rea-
soning about strategies directly in the object language [CHPO07], which allows
expressing complex properties of strategies directly in the formulas (as for ex-
ample, equilibria conditions). Additionally, there are extensions of ATL to treat
probabilistic games [CLO7, BJ09].



We introduce the logic QAPI (quantified ATL with probabilism and incomplete
information'), which combines all of the above advantages and more:

1. QAPI allows restriction to strategies that can be identified and followed with
the knowledge available to the players,

2. we allow reasoning about strategies in the object language, and quantification
over these,

3. we cover probabilistic game structures as well as probabilistic statements.

To treat the subtle interplay between identifying and following a strategy, we
use strategy choices as introduced in [Sch10]. We show that even in our more
general setting, this leads to strictly stronger expressiveness than reasoning about
strategies alone.

In addition to combining the above-listed advantages, a key feature of QAP is
the flexibility in the treatment of the “counter-coalition:” Usually in ATL, ((A)) ¢
“frees” the coalition A from any commitment, i.e., they abandon any strategies
they may currently be following. This is undesirable in several natural scenarios.
To address this, several approaches have been suggested which express binding
“commitment” of a coalition to a strategy, even when another coalition changes
its strategy [WvdHWO07, AGJ07]. In QAPI, the behavior of A is treated very
flexibly: It allows formulas to specify whether the coalition A

— Continues to follow a strategy they are currently implementing—this models
that A are unaware of what A is attempting to do, or,

— may follow a strategy which is tailor-made to counteract A’s efforts to achieve
the goal ¢—this models A being able to react to A’s strategy, while still
bound to a strategy (possibly with restricted information) themselves, or,

— performs an arbitrary sequence of actions, which may be completely non-
uniform and does not need to correspond to any implementable strategy—
this expresses the traditional “pessimistic” view of ATI by requiring that the

players in A must be successful against every possible behavior of the players
in A.

Integration of all the above features leads to a very powerful logic. In particu-
lar, QAPI properly includes previously-suggested logics as strategy logic, ATLES,
(M)IATL, ATEL-R*, and ATOL as examples (see Section 2 for details on these log-
ics). Additionally, the flexible approach of QAPI allows to reason about complete-
information strategies and incomplete-information strategies in the same formula,
and, using concepts from epistemic logic, can express statements as a coalition

In this paper we adopt the notation that incomplete information refers to player’s uncertainty
about the current state of the game, in contrast to imperfect information which is often used to
express uncertainty about the past.



knowing that their strategy will be successful. This is an often-useful require-
ment (and is, for example, hard-coded into the definition of admissible strategies
in [Sch04]).

Our epistemic operators can be used to treat three notions of knowlegde, which
express concepts as “everybody knows,” “distributed knowledge,” and “common
knowledge.”

We show that QAPI has a natural notion of a bisimulation, which is a significant
relaxation of the one suggested in [Sch10]. In particular, our new definition can
establish equivalence of finite and infinite structures, which is impossible with
the definition from [Sch10]. We also provide decidability results for the model
checking problem of QAPI: The problem is decidable for memoryless strategies,
but undecidable in the history-aware case, even for very strong restrictions of both
the syntax of QAPI and the games under consideration.

We defer the discussion of related literature to Section 2, where we explain how
to express previous extensions of ATL in QAPL.

Organization of the paper. In Section 1, we introduce syntax and semantics
of QAPI, and discuss some of its aspects. Section 2 contains examples for the
expressiveness of QAPI, including comparison to other extensions of ATL. In Sec-
tion 3, we introduce bisimulations and prove their relevant properties. Section 4
contains our results on complexity and decidability of the model checking problem,
we conclude in Section 4.

1 Semantics of QAPI

1.1 Concurrent game structures

Our definition of a concurrent game structure extends the one from [AHKO02]
with probabilism (see also [CLO7]) and treats incomplete information (see
also [JvdHO04)):

Definition A concurrent game structure (CGS) is a tuple C = (X, Q, P, m, A, 4,
eq), where

— X is a finite set of players,

— () is a set of states,

— P is a finite set of propositional variables,

— m: P — 29 is a propositional assignment,

— A is a move function such that A(q,a) is the set of moves available at state
q € Q to player a € ¥.. For A C ¥ and ¢ € @, an (A, ¢)-move is a function
¢ such that c(a) € A(g,a) for all a € A.
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— ¢ is a probabilistic transition function which for each state ¢ and (X, ¢)-move
¢, returns a discrete? probability distribution §(g, ¢) on @ (the state obtained
when in ¢, all players perform their move as specified by ¢),

— eq is an information function eq: {1,...,n} x X — P(Q x Q), where n € N
and for each i € {1,...,n} and a € 3, eq(i, a) is an equivalence relation on
Q). We also call each i € {1,...,n} a degree of information.

A subset A C X is a coalition of C. We omit “of C” when C is clear from
the context, omit set brackets for singletons, etc. The coalition X\ A is denoted
with A. We often write Pr (§(q,c) = ¢') for (§(q,¢)) (¢'), i.e., we consider 6(q, c)
as a random variable on ). The function eq expresses incomplete information:
For each player it defines an equivalence relation specifying states that a cannot
distinguish. By specifying several relations eq(1,a),...,eq(n,a) for each player,
we can reason over different degrees of information required for goals. We write
@1 ~eq,(4) @2 for (q1,¢2) € Nacaeq(i,a) (no member of A can distinguish ¢; and ¢z).
C is deterministic if the distributions returned by § assign 1 to a single state and
0 to all others. A CGS has complete information if eq(i, a) is the equality relation
for all 7 and a.

1.2 Strategies, strategy choices, and formulas

We now introduce the syntax and semantics for QAPI, which is based on ATL*.
Informally, ((A:S;, B:S))7" ¢ expresses “if coalition A follows S; and coalition
B follows Sy, where both coalitions base their decisions only on information avail-
able to them in information degree i, then the run of the game satisfies ¢ with
probability > «.” This operator is called strategy operator, S; and S, are variables
for so-called strategy choices that generalize strategies, see below. We say that an

A-strategy choice variable is a symbol S representing strategy choices for A.

Definition Let C be a CGS with n degrees of information. Then the set of
strategqy formulas for C is defined as follows:

— A propositional variable of C is a state formula,

— conjunctions and negations of state formulas are state formulas,

— if A and B are coalitions, 1 <i<n, 0 <a <1, and «is one of <, <, >,>,
and 1 is a path formula, and S; (Ss) is an A- (B-) strategy choice variable,
then ((A: Sy, B:Ss)) ¥4 is a state formula,

2A probability distribution P on @ is discrete, if there is a countable set Q' C @ such that
ZqGQ’ P(Q) =1



— if A is a coalition, 1 < i < n, and ¢ is a state formula, then K1 is a state
formula,

— every state formula is a path formula,

— conjunctions and negations of path formulas are path formulas,

— If ¢ and ¢, are path formulas, then Xy, Py, X~1p;, and ¢;Uyp, are path
formulas.

Strategy formulas contain placeholders (strategy choice variables) to be in-
stantiated with strategy choices. We use standard abbreviations like ¢ V ¢ =
—(—p A ), Op = trueUp, and Oy = =0—¢p. A ((.))-formula is one whose
outmost operator is the strategy operator. In a CGS with only one degree of in-
formation, we often omit the ¢ subscript of the strategy operator, similarly in a
deterministic CGS we usually omit the probability bound 4 « (and understand
it to be read as > 1 in deterministic structures). When quantifying the appear-
ing strategy choice variables in strategy formulas, one obtains quantified strategy
formulas:

Definition Let C be a CGS, let ¢ be a strategy formula for C such that every
strategy choice variable appearing in ¢ is one of Sy, ..., S,, for an even n. Then

¥S13S0VSs ... 3Snp

is a quantified strategy formula for C. We call ¢ the kernel of the formula.

Note that the above definition does not require that every one of Sy, ..., S,
actually appears in . In the following, we will omit quantification for symbols
that do not appear in ¢, hence the above also allows formulas that start with
existentially quantification, have an odd number of quantifiers, no strict alterna-
tion, etc. For the definition of the semantics of quantified formulas, we follow a
“constructive” approach, where the values for existentially-quantified variables are
given by a function which may depend on the values for the universally quantified
formulas. This is technically convenient in our setting, also note that using the
Axiom of Choice, this is equivalent to a non-constructive definition.

We allow quantification only in a quantifier prefix of the formula, and not inside
the kernel. See Section 1.5.2 for comments on this restriction. We introduce some
notation for our semantics definition: A path in a CGS C is a sequence A of states
of C. With A[i] we denote the ith state in A, with A[Z, k] the sequence A[i], ..., \[k],
and with A[i, co| the (possibly infinite) sequence A[i], A[i 4+ 1],.... A strategy fixes
a move for a player in each state, it is uniform if the moves in indistinguishable
states are identical (i.e., the player can follow the strategy given his knowledge).
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Definition Let C be a CGS with state set (), move function A. For a player a,
an a-strategy in C is a function s, such that s,(q) € A(g,a) for each ¢ € Q. For
a degree of information i, s, is i-uniform, if q1 ~eq,.(a) g2 implies s,(q1) = 54(q2)-
For a coalition A, an A-strategy is a family (s,)qca, where each s, is an a-strategy.

Our strategies are memoryless: A move may only depend on the current state
and not on the history of the game. History-aware strategies can be handled in
the canonical way embedding histories directly into the states, see Section 1.5.1.
For technical reasons, we assume that there is some move which every player can
play in every situation—since moves can be “renamed” without any consequence,
this is not a strong restriction, note that of course the consequences of this move
can be very different in every state. However, existence of such a move ensures
that i-uniform strategies always exists.

In addition to follow a strategy, a player needs to identify the correct one. To
do this, a player usually only knows the equivalence class of the current state of the
game, the goal, and the coalition he is working with, as well as a potential adversial
coalition trying to achieve a contrasting goal. In QAPI, this information is directly
encoded into formulas, hence the choice of a strategy by a player is based on the
current state and the formula representing the goal. Similar uniformity conditions
as in the application of a strategy of course also apply when choosing one: In states
that a player cannot distinguish, he has to choose the same strategy. The following
notion of a strategy choice, introduced in [Sch10], is the natural formalization of
this idea:

Definition Let C be a CGS with state set (), and let A be a coalition. A
strategqy choice for A in C is a function S such that for each a € A, ¢ € @, each
((.));-formula ¢ for C, S(a, ¢, ¢) is an i-uniform a-strategy in C, and if ¢ ~eq, (a) G2,
then S(a, q1,¢) = S(a, g2, ).

For a coalition A, and a strategy choice S for A, the strategy chosen for A by
S in a state ¢ to reach the goal ¢ is the A-strategy (sq),., With s, = S(a,q, )
for each a. We denote this strategy with S(A, ¢, ). Specifying the information-
degree 7 in the formula allows to specify different amounts of knowledge available
to different coalition, or for different goals. Strategy choices are useful for several
reasons: In Section 1.7.1 we show they are essential already to correctly handle
situations with a single player. For coalitions A containing several players, they
have an additional application: Here they model a set of strategies that A agreed
upon before the game for a set of possible goals. This allows to express situations
where players can rely on shared information to predict the behavior of other
members of the coalition without requiring in-game communication.
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In our semantics, we are concerned with the case where two (not necessarily
disjoint) coalitions A and B are each following their own strategy choice, S4 and
Sp, respectively. The “joint strategy choice” they are following is denoted by
S4 0 Sp, which is a strategy choice for A U B and defined as

SA o SB(CL7 q, 90) =

SA(G/, g, @)7 if a € A7
Sg(a,q,¢), otherwise, i.e., ifa € B\ A.

While players in the scope of a strategy operator follow the corresponding
strategy, the remaining players (often called the “counter-coalition”), have two
possibilities: They can follow a (possibly uniform) strategy on their own, or can
behave in an arbitrary way that cannot be defined using a strategy. For example,
they may perform different moves when encountering the same state twice in the
run of a game. For the second case, we use the following notion: A response to a
coalition A is a function r such that (¢, ) is a (A, ¢)-move for each ¢t € N and each
q € Q. Hence a response is an arbitrary reaction to the (probabilistic) outcomes
of a possible strategy chosen by A. It models that in the ¢-th step of a run, the
coalition A performs the move r(i, ), if the current state is ¢. A third possibility
is to require that not only does the counter-coalition have to follow a (uniform)
strategy, but more strongly require that they keep following a strategy that they
are currently implementing due to a previous application of a strategy operator,
see Section 2.2.

When coalition A follows the strategy s4, and the behavior of A is defined by
the response r, the moves of all players are fixed; the game is a Markov process.
This allows us to define the “success probability” of strategies in a natural way:

Definition Let C be a CGS, let s4 be an A-strategy, let r be a response to A.
For a set M of paths over C, and a state g € @,

Pr(qg— M| sa+r)

is the probability that in the Markov process resulting from C, s, and r with
initial state ¢, the resulting path is an element of M.

1.3 Evaluating Formulas

We now define the semantics for QAPI. We proceed in two stages: We first define
truth for strategy formulas, where interpretations for the appearing strategy choice
variables are given. In a second step, we then define truth for formulas where
variables are quantified. The definition is the natural one: Propositional variables



and operators are handled as usual, temporal operators behave as in linear-time
temporal logic, and ({4, : Sy, B: 52)> “ 1) expresses that when coalitions A; and
Ay follow the strategy choices S; and Sy, with information degree i available, the
probability that the run of the game satisfies ¢ is at least . The semantics of the
knowledge operator K is standard. In the following, the strategy choice variables
S1, ..., S, are instantiated with strategy choices Sy, ..., S,,.

Definition Let C = (X,Q,P,7,A,d,eq) be a CGS, let Ay, ..., A, be coalitions,
and for each 7 let S; be an A;-strategy choice variable, and let S; be a strategy
choice for A;. Let ¢1, o be state formulas, let 11, 15 be path formulas, let A be
a path over @, let t € N. We use S as abbreviation for (Sy,...,S,). We define
- C, 'S q#pu‘fqéw(_))forpe]P’
~C,S,qF e iff C, S, q o1,
- C, S,CLEwlA@zlﬁ_g* S gk and S g k=g,
Eoiff C, S )\[_])): 1,
=~ iff (A1), S 4,
):1/)1/\¢Q iff ()\ t) Sf)@[)l and (/\ t) S ):’ng,
= Xy iff At 4+ 1,00], S = 9y, N
= P4y iff there is some t' <=t and_>()\,t’), S 1,
):Xilﬁ)l iff t >=1 and (/\,t-l), S ):¢1, N
, Sf Y Uthy iff there is some i > t such that A[i,o0], S | 1y and

[, 00], S = fora£t<j<z
_Caiy q K ifC, S, ¢ = ¢ for all ¢ € Q with ¢ ~eq,(A) s
-C S.qF <<A S1, A 52>><a¢ iff for every response r to A; U A;, we have

Pr <q—> {/\ | (A,O),? ):1/11} 1S:05,(A; U Ay q,01) +r) <o,

The availabe knowledge is relevant in the above definition in three ways: The
semantics of the KC-operator uses the indistinguishability relations directly, and
the application of the strategy choices results in the mentioned requirements that
strategies can be identified and followed with the knowledge available to the play-
ers. The above can be generalized to mention more than 2 coalitions in the natural
way, i.e., a formula ((A; : Sy, Az :Ss, Ajz:Ss)); ¢ can be used to let coalitions A,
Ag, and Ajg play the strategies for ¢ chosen by strategy choices Sy, S, and S3 for
information degree, which is defined using the strategy choice S; o Sy 0 Sz de-
fined in the obvious way as S; o (Sg 0 S3). Similarly, we write ((A:S))** ¢ for
((A:S, 000
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Given the above definition covering the case where “instantiations” of all ap-
pearing variables are known, the semantics definition for quantified strategy for-
mulas is the natural one:

Definition Let C be a CGS, let ¢» = VS;3S,VS;5 ... 35,0 be a quantified strategy
formula for C, let ¢ be a state of C. Then v is satisfied in C at q, C,q |= 1, if for
each i € {2,4,...n}, there is a function s; such that for all strategy choices Sy,
Ss, ..., Sn_1,if S; is defined as s;(Sy,...,S;_1) foreven ¢, then C,Sy,...,S,,q = ¢.

It is often convenient to be able to restrict quantification to a smaller set of
strategy choices. In particular, constant strategy choices (which may only depend
on the player, not on the state or the formula) are essentially strategies. We in-
troduce quantifiers 4. and V. quantifying over constant strategy choices, with the
obvious semantics. This allows us to express equality of probabilities in formulas:
({A))7* 1 can be expressed as ((A))7% 1 A ((A))=*9 and requiring the strategy
choice to be constant in the quantifier block. Additionally, with 4,, and V,, we de-
note quantification restricted to so-called “maximal” strategy choices that proved
useful in [Sch10].

See Section 2.2 for an application of restricted quantification.

1.4 Different notions of knowledge

In the above definition of the semantics of the knowledge operator I, we have
adopted the notion of distributed knowledge—a fact is known by a group of agents
if it is derivable from their combined knowledge. There are several other ways to
define knowledge of a coalition, see e.g., [JvdHO4]: One can define “Coalition A
knows ¢ in ¢” to be true if C,S, ¢’ = ¢ for all ¢’ such that

“Everybody knows” ¢ ~% ¢, where ~% is the union of all ~, for a € 4 (i.e.,
every agent has to know ¢ individually),

“Common knowledge” ¢ ~9, where ~§ is the reflexive, transitive closure of

~% (i.e., every agent has to know that every agent knows, etc.),
“Distributed knowledge” ¢ ~%, where ~f is the intersection of all ~, for

a € A (i.e., as in the definition of our KC-operator).

We briefly explain how “Everybody knows” and “Common knowledge” can be
expressed in our formalism:

a

— FEverybody knows ¢ (wrt. information degree i) can be expressed as /\ Ko,

a€A
—  is common knowledge (wrt. information degree i) can be expressed as: For
every n € N, for every ay, as, ..., a, € A, it holds that I/ IC;? ... K™
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Note that the translation for common knowledge into our semantics leads to an
infinite conjunction of formulas, and hence enriching the language with a special
operator for common knowlegde is sensible to keep formulas finite. However, we
use the above translation to demonstrate that all three notions of knowledge can
be expressed in our semantics, which allows us to consider only a single case when
proving the correctness results for simulations in Section 3.

It is thus possible to introduce operators KF and K¢ to denote the above
versions of knowledge (renaming the standard operator to K), and all the results
in the paper are also true for the richer language—it is clear that the algorithms
in Section 4 can easily be modified to handle these operators.

1.5 Discussion of Semantics
1.5.1 History-Dependence

History-dependent strategies allow a player to determine his current move based on
the entire history of the game, not merely the current state. Formally, QAPI only
treats memoryless strategies, however history-dependence can be treated canoni-
cally: For a CGS C, C" is obtained from C by encoding histories into states in
the canonical way (see also [AGJ07, Sch10]).

The following formal definition uses the obvious treatment of incomplete infor-
mation, where a player a can distinguish histories if they have different length of
if he can distinguish between individual points in time.

Definition Let C = (3,Q,P,11,A,d,eq) be a C with n degrees of informa-
tion. Then C"!, the history-dependent version of C, is defined as C'* =
(3, QT, P, 11", A, ¢, eq’), where

— @7 is the set of non-empty, finite sequences over @),

—forpeP, W(p)={q.-.-qq | ¢ €UD),q1,-..,q, € Q},

- A/(ql -« Qn, CL) = A(qna CL),

— For a state ¢ ...¢, € Q" and a (X, ¢)-move ¢, 0'(q1 ... qn,c) is defined as
q1--- QH(s(%u C)a

eq/(i,a) is defined as follows: For sequences ¢* = ¢q;...q, and ¢* =¢|...¢,
we have ¢! ~eq! (a) ¢? if and only if n = m and ¢; ~eqs(a) ¢; for all j < n.

1.5.2 In-line quantification

Our definition restricts quantification over strategy choices to a quantifier block at
the beginning of a formula. This is natural since the purpose of strategy choices
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as introduced in [Sch10] is to express “global behavior” of coalitions, allowing a
maximal amount of pre-agreement among a coalition, but only using available
information during the game. In particular, quantification over strategy choices
inside formulas represents performing “prior agreement” during the run of the
game, which defeats its purpose.

1.5.3 Mixing Uniformity Requirements

In QAPI, players have the same information when identifying and when following
a strategy. This is consistent with the intuitive notion of basing decisions on
available information. Nonetheless, one could also consider strategy choices where
this is not the case, and allow a certain non-uniformity in the choice of strategies.
As an example this allows to move quantifiers over strategies appearing inside
formulas to the quantifier block at the beginning of the formula: Consider the
formula

03:S, ((@ : Sa))s ¢,

expressing that at every future state, player a has a strategy (note that S,
must reference a constant strategy choice, i.e., a strategy) to achieve ¢. This
formula cannot be equivalently rewritten by moving the quantifier to the front:
In this case, the strategy may not depend on the state anymore, but must choose
its actions based on the information that a has about the state. Using strategy
choices allowing to use complete knowledge to identify a strategy, but still requiring
strategies to be 2-uniform, we can rewrite the formula as

3"Sa ((a: Sa))y 9,

where the quantification 3*S, is interpreted as quantifying over strategy choices
as explained above (note that the dual case, where the application of a strategy
has more information available than its choice is not interesting—the “missing”
information for choosing the strategy can be hard-coded into the strategy itself.
However, obviously the case of incomparable degrees of information is relevant).

This construction is very unnatural: Allowing, at the same state of the game,
for the same player, different information for identifying and for following a strat-
egy is unlikely to capture realistic situations. In particular, one loses the intended
purpose of strategy choices to identify correct strategies with the available in-
formation. One ostensible advantage of the above construction is to embed the
semantics of strategy logic [CHP07| into QAPI (strategy logic uses quantification
over strategies inside the formulas). However, strategy logic is concerned only with
the complete-information, history-dependent setting, hence the above-mentioned
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issues to not appear, and rewriting can be performed with the standard QAPI
semantics.

1.6 Possible Generalizations

There are several ways in which QAPI can be extended to gain additional expres-
sivity. An obvious possibility is to generalize the temporal operators allowed to
construct path formulas. In stochastic game logic [BBGKO07], Rabin automata are
used to describe path properties. QAPI can be generalized in this direction in the
straight-forward way. Our results on simulation (see Section 3) remain true for
this generalization, since simulations ensure that corresponding paths have the ex-
act same atomic and strategic properties. Such a generalization of QAPI properly
contains stochastic game logic.

Another possible generalization is to combine history-dependent and mem-
oryless strategies in a single model, and allow formulas to specify (via special
quantification) whether strategies may use history. A way to express this feature
directly in the semantics of QAPI is to introduce degrees of information in C*** that
model bounded memory (see also Section 2.9). Again, our simulation result still
holds for this case, as the question whether a strategy uses history to determine
a move is invariant under our construction. However, Theorem 4.2 implies that
the model checking problem remains undecidable even when only a single quan-
tifier ranging over history-dependent strategy choices may appear in the formula,
even when the game structure is deterministic or has complete information—in the
case where both constraints are met simultaneously, we are in the case of strategy
logic [CHPO07], and thus decidable.

Additionally, to further increase the ability of formulas to rea-
son about strategies, one could allow atomic formulas of the form
strategychoice wvariablei(ay,p1) = strategychoice wvariables(as, vs), which
evaluate to true if the strategy choices instantiating the strategy choice variables
strategychoice variable; and strategychoice variables return the same strategies
for players a; and as for the goals ¢; and ¢, in the current state. Such formulas
would be “atomic” even though ¢; and ¢, may be arbitrarily complicated, since
1 and 9 are not evaluated, but only used as input to the strategy choices. This
would allow to let formulas “force” players to use the same strategies for different
formulas, etc. Such a generalization is straight-forward, and clearly both our
simulation and complexity results are unchanged for this addition.

Finally, we introduced restricted quantification over constant strategy choices.
In other settings, quantification over strategy choices that return the same strategy
in the same state, but not necessarily for different formulas may be convenient.
However, such a notation essentially is “syntactic sugar,” since one can rewrite
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QAPI-formulas such that different strategy choices are used for a different subfor-
mula.

As for notation, there are many standard constructs for which “syntactic sugar”
may be introduced: For example one may use a notation that expresses a binding
commitment of a coalition to a strategy choice which is also propagated to sub-
formulas (which can be expressed in QAPI by repeating the relevant coalition and
strategy choice in every appearing strategy operator of a subformula), etc.

1.7 Strategies vs. Strategy Choices

In many situations, considering strategies instead of strategy choices is sufficient
in the quantified setting: Using quantification one can force coalitions to use the
same strategy in different states, for example in 3.SO((A : S)), p. This avoids
the non-uniformity in the choice of strategies in classical ATL* as in the formula
O((A)) . In particular, our translations from Section 2 only uses quantifica-
tion over constant strategy choices to express previously-introduced extensions of
ATL* into QAPI. However, it turns out that it is not possible to restrict QAPI
to strategies only without losing expressivity. In this section, we show that there
are natural situations that cannot be expressed when using only strategies, but
require the more general setting of strategy choices. Since, however, restriction to
strategies is sufficient in many settings, we then introduce simplified notation for
this case.

1.7.1 Strategy choices are more expressive than strategies

Consider the CGS in Figure 1. The players are a and b, the game starts in qq.
In every state, a has two moves m; and m,; however their only influence is in the
final step. The first move is by b, and controls whether the next state is ¢{* or
qP. For every possible move, ¢i* is followed by ¢ for X € {A, B}. Played in
¢, the move m; leads to a state satisfying the propositional variable ok if and
only if X = A, conversely m; is successful only if X = B. Player a has complete
information except that he cannot distinguish between ¢5' and ¢Z. This expresses
a situation where a has insufficient memory to remember all of the information
learned during the run of the game.

We now ask whether a has a strategy to achieve the goal Qok starting from ¢
or ¢P. Using only strategies, the situation is expressed with the formula

3.8 X ({a : S)) XQok,

using quantification over constant strategy choices to simulate quantification
over strategies. Clearly, there is no suitable uniform strategy for a: Such a strategy
needs to play the same move in ¢5' and in ¢2, and thus is unsuccessful in one of
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Figure 1: Strategy choices are necessary

these—the above formula is not satisfied in ¢o. However, if we allow using a strategy
choice, the corresponding formula

38 X ({a : S)) XOok

is true in ¢o: For instantiating S, we use a strategy choice that in qf‘ returns a
strategy playing m; in every state, and in ¢ returns one always playing ms. Both
strategies are trivially uniform and clearly, this strategy choice achieves the goal.

The crucial point here is the distinction between states where a strategy is
identified and where it is evecuted: In state ¢;' or ¢P, player a uses the available
information to choose the strategy to play from then on. When using only strate-
gies, the knowledge has to be present at the time of performing a move. The use of
strategy choices allows a player to “remember” decisions made in previous states.

If “information loss” does not appear, strategies are sufficient: The decision
which strategy to use made by the strategy choice can be encoded in the strategies
themselves, as the relevant information is still available later. Informally, the
strategy can be defined as in state ¢, to “look back” to the state ¢’ where a
strategy choice S would be applied, evaluate S at ¢, and return the move intended
for the state g. In particular, in structures C"*!, strategies can be used instead of
strategy choices, as long as different strategies are used for different goals (another
feature of a strategy choice is that the strategy may depend on the goal; however
this easily can be ensured by using different strategy-symbols for subformulas
describing different goals).

The example above also shows that strategy choices are not only relevant when
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considering coalitions of size at least 2—in which case they can be used to express
prior agreement—but are also essential for reasoning about the strategic possibil-
ities of a single player.

1.7.2 Simplifying QAPI: Considering Strategies Only

Despite the above-mentioned shortcomings, a restriction of QAPI to only strategies
is useful in some applications. We define simplified notation for this case. We define
formulas etc. as before, the only difference is that quantifiers explicitly mention the
information degree of the strategy: 3;S means “there exists an ¢-uniform strategy.”
Since the information degree is handled in the quantification, it is not repeated in
the strategy operator; this operator (for coalitions A, ..., A, and variables S;,
..., S, representing strategies) is now

<<A1 : Sl;- ey An . Sn>><a.

The semantics are the obvious ones inherited from the more general setting.
Note that here it is possible to mix strategies of different degrees of information in
a single coalition operator. Hence a translation into the standard setting needs to
add new information degrees constructed from Cartesian products of the original
information degrees. Note, however, that the application of our simulation results
(see Section 3) is still possible without any further requirements: Since mixing of
different degrees only appears in the choice (and thus translation) of strategies,
and not in the knowledge operator, the knowledge transfer property does not
need to hold for the new information degrees obtained by Cartesian products—for
translating strategies, only move uniformity is required, and this property is only
concerned with the knowledge of a single player.

2 Examples

We now give applications of QAPI. We first note that trivially, QAPI is a general-
ization® of both ATL* and the semantics introduced in [Sch10]. We will see below
that other interesting extensions of ATL/ATL" can be expressed in QAPT as well.
The logics that we “simulate” only talk about single strategies. In our translation,
we will still use strategy choices, since in many cases, the strategy in question may
depend on the state—for example, in standard ATL, the formula ((A)) O ((B)) ¢

3Note that when “translating” ATL* into QAPI, the implicit existential quantification over
strategies in ATL" is moved to the quantifier block at the beginning of the formula; depending
on the parity of nested negations, the quantifier remains existential or becomes universal. We
also note that the same construction addresses the problematic behaviour of negation in [Sch10],
which in that paper was addressed with the introduction of so-called maximal strategy choices.
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expresses that the coalition A has a way to ensure that in every future state, the
coalition B has a strategy to enforce ¢. The strategy for B may be different for ev-
ery state. Hence the most natural way to express this situation is to use a strategy
choice for B, which may choose a different strategy in every state.* Also, some of
the logics we mention below do not treat incomplete information, hence whenever
in the following we do not mention the information degree, we assume that the
involved CGSs only have a single degree of information, which is complete infor-
mation for all players. Similarly, previous logics do not treat probabilism, hence
we omit probabilities in the following discussion, and understand them to all be
> 1.

2.1 An adversary with incomplete information

An obvious application is modeling situations where a coalition A plays against
A, and the latter also is assumed to follow a strategy that can be implemented
using incomplete information. To express “A can achieve ¢ against every possible
strategy of B,” we use the formula

39,8, ((A: Sy, B:S:))7%¢,

which expresses the informal statement. Note that this is strictly weaker than
saying 3S; ((4: S1))L, ¢, since in the latter formula, the coalition A is not re-
stricted to following any (uniform or otherwise) strategy, whether in the first one,
A’s behavior has to follow a uniform strategy.

2.2 Sub-coalitions changing their strategy

In many natural scenarios, when a sub-coalition A" of a coalition A changes their
strategy, they can rely on the players in the remainder of the coalition to continue
following their previously-agreed strategies. In standard ATL*, as well as in the
semantics from [Sch10], this cannot be expressed: The operator ((A’)) considers
every possible behavior of players not in A’. In other words, the binding of the
operator ((.)) does not propagate to ((.))-subformulas.

QAPT allows to express this situation. Consider a coalition A working together
to reach a state from which on A" C A has a strategy to achieve a goal ¢; and a
strategy to achieve goal o, if they can rely on players in A\ A’ to continue their
earlier strategy. We can express this as

4Since a strategy itself may also depend on the state, it may be possible to work with a
single strategy—i.e., a constant strategy choice— instead, however we feel that the existential
quantification in each state is more naturally expressed using existential quantification of strategy
choices. See Section 1.7.1 for a formal example why it is not always possible to only consider
strategies instead of strategy choices.
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HCSAHSA/ <<A . SA>> <> (<<A/ . SA/, A . SA>> <>(,01 A <<A/ . SA’, A : SA>> 0902) )

recall that d. quantifies over constant strategy choices. This expresses that
A sticks to a fixed strategy and does not change their behavior depending on
whether the subcoalition A’ attempts to achieve the goal ¢ or 5. Recall that in
((A": Sy, A:Sa)), the members of A" are bound to Su/, even if AN A" # .

2.3 Knowing whether a strategy is successful

In QAPI, it is possible to reason about a coalition’s knowledge about the success
probability of their own strategies. For example, the following formula expresses
“there is a strategy for A such that there is no strategy for B such that the coalition
C can know that its application successfully achieves ¢:”

3SAVSE-KS ((A:Sa, B:Sp)); .

Note that this is very different from expressing that A has a strategy preventing
@, e, IS4 ((A: SA>)221 -, since (i) There may be a successful strategy for B,
but not enough information for C' to determine that it is successful, (ii) the goal
¢ may still be reachable if B does not follow a (uniform) strategy.

2.4 Winning Secure Equilibria

A winning secure equilibrium, defined in [CHJ06], is a special case of a Nash
equilibrium: In a game with two players a and b, where a (b) wants to achieve the
goal p, (pp), a winning secure equilibrium is a pair of strategies (s,, $p) such that
both goals are achieved when both a and b stick to the strategies, and as soon as
b plays a strategy s, such that the joint strategy obtained from s, and s; does not
satisfy ¢, anymore, then b’s goal ¢, is not satisfied anymore either, symmetrically
for player a. In QAPI, this can easily be expressed with

3eSaFeSe ({@ 1 Sa, b:Sg)) (wa A wp) A({a:Sa)) (wb = wa) A{(b:SB)) (Pa = ©b) -

The formula expresses that both goals are reached if both players stick to their
strategies, and (from player a’s point of view), b cannot achieve ¢, without a
achieving ., as long as player a follows S4. Note that we again use quantification
over constant strategy choices here, since none of the players is likely to know
whether the other one continues playing the strategy from the equilibrium.
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2.5 Expressing Strategy logic

Strategy logic, introduced in [CHP07], is very similar to our semantics. Essentially,
strategy logic extends ATL* with explicit quantification over strategies, and then
express statements as “if player a plays strategy x, player b plays strategy y, the
resulting game satisfies the formula W.” Since strategy logic covers games with
complete information and history-awareness only, quantification can be moved to
the start of the formula (see Section 1.5). Therefore, our semantics strictly contains
strategy logic (containment is strict since we also model incomplete information
and probabilistic games). Note that since strategy logic contains many other logics
as for example game logic, this holds true for our semantics as well.

2.6 Expressing ATLES

ATLES, ATL with explicit strategies, was introduced by Walther, van der Hoek,
and Wooldridge in [WvdHWO07]. The focus of their extension of ATL is to model
that players can commit to a given strategy. They use a commitment function p,

fixing strategies for players in its domain. The formula ((A)) ¢ is interpreted as
(for the natural formal definition, see [WvdHWO07]):

“Given the commitments of the agents b € dom(p) to use strategy p(b),
the agents a € A\ dom(p) have a strategy such that, no matter what
the agents ¢ € ¥\ (dom(p) U A) will do, ¢ will result.” [WvdHWOT7]

In QAPI, the role of p is played by a constant strategy choice for the coalition
B = dom(p), which we denote with S,. S, is obtained by returning, for each
player a € B, the strategy fixed for a by p. The formula ({(A)) ¢ can be written
as ((B:S,, A:S4)) ¢, where S, is (existentially or universally, depending on even
or odd number of negations) quantified to a constant strategy choice, and appears
only once in the kernel. This mirrors the semantics of [WvdHWO07] exactly: The
players in B follow the strategy fixed by p, the players in A follow an existentially
quantified strategy, and the remaining players act arbitrarily.

The above treatment leaves out some details from [WvdHWO07], they especially
address the question of how to represent commitment functions in formulas using
strategy terms. It is clear that an analogous representation can be used in our
setting. Additionally, their paper contains a complete axiomatization of ATLES,
and complexity results which give more efficient algorithms than the ones obtained
by our translation. Finally, they have decidability results for the history-dependent
case, which is undecidable in the more general QAPI.
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2.7 Expressing (M)IATL

These variants of ATL were introduced by Agotnes, Goranko, and Jamroga
in [AGJ07]. Their key feature here is to treat strategies as irrevocable: Once
a coalition A follows a strategy after an application of the ({A))-operator, it does
not change this strategy when the nested formula is evaluated. Formally, when ap-
plying ((A)) o, a strategy for A is chosen (existentially quantified as usual) and the
CGS is modified to essentially hard-code this chosen strategy into the structure.

To translate IATL into our semantics, replace every formula ((A))p with
((A:S)) ¢, and in ¢, recursively replace every ((A; :Sy, As:Sq, ...)) ¢ with
((A:S, A1:Sy, As: Sy, ...)) 1, where S is existentially /universally (again de-
pending on the parity of negation) quantified at the beginning of the formula.

The variant MIATL extends IATL with history-aware strategies (IATL with
memory). To model hard-coding of strategies into the CGS, the authors use an
“unfolding” of the CGS C in the same way as in the definition of C"**. The authors
also observe that IATL and MIATL are not invariant under a standard notion
of bisimulation, showing that IATL can express things which ATL cannot. More
generally they prove that the expressiveness of ATL and IATL (MIATL) is not
comparable. Additionally, they provide complexity results for model checking.
Note that our results in Section 3 imply that IATL and MIATL are invariant
under our notion of bisimulations, as they are contained in QAPI.

2.8 Expressing ATEL-R*

The logic ATEL-R* was introduced by Jamroga and van der Hoek in [JvdH04], and
is (among other things) concerned with the same issues that lead to our definition
of strategy choices, i.e., the observation that it is not sufficient to require strategies
to be uniform, but that the act of identifying a strategy also should be consistent
with the knowledge of the agent(s) in question. The semantics of the key operator
of ATEL-R* are defined as follows (right-hand side is in our notation)—in the
following, both A and I" are coalitions, where A is the coalition playing, and I' is
the coalition identifying the strategy:

— Chst g k= ((A)) x(r) ¢ 1ff there is a constant strategy choice S4 such that for
all ¢ € C"! with ¢’ ~r ¢, we have that C"*' ¢’ = ({A: S4)) ¢.

The above can be translated into QAPI by writing

C™ g Ky ((A:Sa)) e,
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where again the quantification of S depends on the parity of negation and is
restricted to constant strategy choices.” We note that in [JvdHO04], it is explicitly
mentioned that requiring that I' knows that A has a strategy to achieve ¢ is not
sufficient to express their definition of ((A)) . ¢. It works in our case due to the
difference in quantification: In QAPI, S, is quantified before the application of
the knowledge-operator for I', and thus I' knows that a fized A-strategy will be
successful. In their semantics, quantification of the A-strategy would happen after
the application of the knowledge-operator in a formula like K ((A)) ¢, hence the
coalition A would be allowed to choose a different strategy in each relevant state.
We note that the authors of [JvdH04] also considered explicit quantification over
strategies in their setting, but did not pursue the idea, since they are concerned
with obtaining a logic that is still propositional—a feature that our notion of
quantified strategy choices gives up. Also, they obtain decidability results where
our translation of course leads to an undecidable logic.

2.9 Expressing ATOL

ATOL (where O stands for observation) was also introduced by Jamroga and van
der Hoek in [JvdHO04], and is essentially “ATEL-R* with bounded recall,” i.e., the
semantics are the same as for ATEL-R*, but (in our notation) evaluated over C
and not over C"!. Hence the translation is obtained in an analogous way as for
ATEL-R* in Section 2.8 above.

Further, the authors of [JvdHO04] discuss “mixing” of ATEL-R* and ATOL,
i.e., to talk about memoryless and history-aware strategies simultaneously. This
feature can be simulated in our logic by considering models of the form C"**, and
defining, for every agent, two degrees of information, one which may take the
history into account, and another one that does not (this can be formalized in a
straight-forward way, given the construction of C"st).

3 Simulations

In [Sch10], simulation relations were introduces that allow to transfer strategy
choices from one game structure to another. Since the translation is unidirectional,
it does not preserve truth of quantified formulas. A notion of bisimulation was
hinted at as well, which was defined as a relation Z which is a simulation in
both directions—essentially, an isomorphism. In particular, bisimulations in this
sense only exists between structures where the state set has the same cardinality.

5Tt is not sufficient to rely on the uniformity of strategy choices here (which require the same
strategy to be chosen in A-indistinguishable states), since there must be a single strategy that
is successful in all I'-indistinguishable states, and I" might have less information than A.
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We show that the goal of a bisimulation—preserving truth of formulas in both
directions—can be obtained with a much more relaxed definition that in particular
allows bisimulations between finite and infinite structures. Our definition extends
the one given in [Sch10] in a natural way. We first recall the definition of a
simulation from [Sch10].

In the following, when Z is a binary relation on state sets, then for a state g,
we write Z(q) to denote the set {¢' | (¢,¢') € Z}.

Definition Let C; and C; be CGSs with state sets (21 and ()2, the same set of
players, the same set of propositional variables, and n degrees of information. Then
a relation Z C Q)1 X ()2 is a probabilistic uniform strong alternating simulation for
a coalition A from Cy to Cy if for all (q1,q2) € Z, all i € {1,...,n}, and all players
a € A, there is a function A%_ﬂ such that for all A’ C A we have

1,a,q1,q2)

— propositional equivalence: ¢, and ¢y satisfy the same propositional variables,

— for all (A, q1)-moves ¢, the (A', go)-move ¢ with cz(a) = A%ﬁ?qh%)(cl(a))
has the o - o

1. Forward Move Property: for each (A’ q;)-move ci', there is a (A’, g)-

move ¢4 such that for all ¢} € Q,, we have

Pr (8(g2, 2 Ue3') € Z(a})) = Pr (3(ar, 1 Ue) = q7)

2. Backward Move Property: for each (A’, g;)-move ¢, there is a (A7, q,)-

move i’ such that for all ¢ € Q;, we have

Pr (8(g2, 2 Ucyy) € Z(a})) = Pr (3(aw, 1 Ue) = 1)

— Move Uniformity: If (q1,q2), (qy,¢) € Z with ¢ ~eqi (a) ¢y and g9 ~eqi (a) 0,

hen A2 = AL22
t ¢ (7’7047(11’(12) (Zvavq/17Qé)’

— Uniformity: for all a € A, and all (¢}, ) € Z, if g2 ~eqi(a) 42, then g1 ~eqi(q)
qi-

— Knowledge Transfer: if ¢} ~eql(
qh ~eq2(Ar) q2 and (91,45 € Z.

— Uniqueness: For all g5 € @9, there is exactly one ¢; € Q1 with (¢1,q2) € Z
(i.e., Z71: Q2 — Qq is a function).

A7) q1, then there is some g5 € Q3 such that

Note that even though if Z is a probabilistic uniform strong alternating simu-
lation then Z~! is a function, we still write Z as a relation as is usually done with
bisimulation-like concepts. The conditions in the above definition are natural, and
(in addition to standard definitions of bisimulations) ensure that moves for players
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can be transferred from one CGS to the other in a way that leads to the same
“effect” and can be “computed” by the players with the information available to
them. Uniformity and Knowledge Transfer ensure that the degrees of information
in the different structures are “compatible.”

The results on simulation proven in [Sch10], about simulations can be stated
in our notation as follows: If there is a probabilistic uniform strong alternating
simulation from C; to Cy, then truth of a quantified strategy formula with a single
existential quantifier is transferred from C; to C5. As mentioned above, this result
does not extend to formulas that also use universal quantification, or to transfer
truth of formulas from Cy to C;. In particular, as mentioned in [Sch10], a proba-
bilistic uniform strong alternating simulation does not imply that the structures
are “strategically invariant.” The statement in [Sch10] can be generalized as fol-
lows: A probabilistic uniform strong alternating simulation allows to transfer the
truth value of a formula in which only existentially quantified variables appear,
from C; to Cy. Analogously, if only universally quantified variables appear than
the truth of formulas is transferred in the other direction.

3.1 Bisimulation Definition

To handle formulas in which both types of quantification appear, we need sim-
ulations in both directions. Obviously, these simulations cannot be completely
unrelated to each other, they need to “agree” on the relationship between the
states in a certain way.

Definition Let C; and Cy be concurrent game structures. Then a probabilistic
bisimulation for a coalition A between C; and C, is a pair of relations (Z;, Z3) such
that

— 7, is a probabilistic strategy simulation for A from C; to Cy,
— 7 is a probabilistic strategy simulation for A from Cs to Cy,
— Z;7 o Zy and Zyt o Z7! are idempotent.

Idempotence ensures that if we apply both simulations simultaneously (one
for “transferring” existentially quantified strategy choices, and the other one to
transfer universally quantified strategy choices), then the transferred strategies
“talk about the same states.” This definition of a bisimulation is significantly less
strict than the one from [Sch10]. The following theorem shows that our notion of
a bisimulation allows to transfer truth of quantified formulas in the obvious way:
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Theorem 3.1 Let C; and Cy be concurrent game structures, let A be a set of
coalitions such that (Z1, Zs) is a probabilistic bisimulation for every A € A between
C1 and Co, let g1 be a state of Cq, let qo be a state of Cy such that (q1,q2) € Z1 and
(g2, q1) € Zs. Let @ be a quantified strateqy formula for Cy (and thus for Cy) such
that every coalition appearing in ¢ is an element of A. Then Ci,q1 = ¢ if and

only if Ca, q2 ): P-

Note that in particular, if (Z;, Z3) is a probabilistic bisimulation for the set of
all players X, then truth of every formula is maintained between the two structures.
The introduction of the set A in Theorem 3.1 allows to use relations Z that satisfy
some of the conditions (usually, the knowledge-related ones) only for a subset of ¥,
to still transfer truth of formulas in which only a subset of the possible coalitions
appears.

Also note that results from [Sch10] carry over in a natural way, for example we
mention:

Proposition 3.2 Let C; and Cy be concurrent game structures such that there is
a probabilistic bisimulation between C; and Cy. Then there also is a probabilistic
bisimulation between Cy"*t and Cy"*.

Proof. The result follows directly from the proof of [Sch10, Proposition 4.3] and
the observation that the construction in that proof also implies that the “lifted”
simulation relations satisfy idempotence. O

Note, however, that clearly [Sch10, Proposition 4.2] does not apply to bisim-
ulations, i.e., usually the structures C and C"*' are not bisimilar. As mentioned
in [Sch10], this already holds for (unidirectional) probabilistic strategy simulations.

3.2 An example

We now give a very simple example for a bisimulation, which shows that a “large”
CGS can be represented using a small “core.” Consider the CGSs C; and Cyin
Figure 3.2. The games presented here are turn-based, i.e., only the moves of one
of the two players a or b influence the successor state. In both games, player a
makes the first move, where he has 4 choices, leading to 4 different follow-up states
in Cy, and only a single choice in Cy. The next (and final) move is by player b, and
determines whether in the final state, the variable x is true or false. In the states
q1, g2, and ¢3 of Cy, as well as in state r; of Cs, a needs to play move 1 to ensure
that x is true in the next state, in state g4 of C;, the move 2 leads to x being true.
Additionally, the states ¢o and ¢3 are indistinguishable for b in C;, whereas in Cs,
both players have complete information (which is also true for player a in Cy).

The structures C; with state set ()1 and Cy with state set () are bisimilar, via
(Z1, Z5), where the function Z;': Q) — Qs is defined as follows:
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— Z1{ (q0) = 7o,

— Zi @) = Z7 (@) = Z7 Has) = 27 @) =,
— ZiNas) = Zy Har) = Z7 M (a9) = 25 H(qua) = 72,
— Z7Nqe) = Zy N(qs) = Zy quo) = Zy Hquz) = 7.

The move transfer function for player A maps all of A’s possible moves in
qo to the move 1, the moves of B are mapped to themselves in the state ¢, go,
and ¢3, while in the state ¢4, B’s move 2 is mapped to the move 1 and vice
versa. It is obvious that this translation respects incomplete information (i.e.,
move uniformity), since the move transfer function for B is the same in the states
¢2 and ¢3 that B cannot distinguish.

The converse embedding, Z,': Q, — Q1 maps ¢ to qo, 71 to q1, 72 to g5 and
r3 t0 g6, the move transfer functions are the identity (alternatively, one could also
define Z;'(r;) = g4 and let the move transfer function reverse B’s moves).

It is straight-forward to check that (Z;, Z5) is indeed a bisimulation, note that
the forward- and backward move properties are very simple in these turn-based
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games.

Theorem 3.1 states that truth of any quantified strategy formula is transferred
between C; and Cs, in states that are related via both Z; and Z,. In the example,
this applies to the pairs (qo, 70), (¢1,71), (¢5,72), and (gg,73). It is clear that, for
example, the states ¢ and ry are “strategically equivalent” as well. This also can
be formally shown using bisimulations: Note that the choice of target states of Z, !
in the above definition was somewhat arbitrary, instead of choosing the “¢;-branch
of C;,” it is also possible to target the other branches, which then gives strategic
equivalence of the remaining state pairs.

While strategic equivalence in this small example is not surprising, it is worth
noting that the example shows that bisimulations can exist between structures
with state sets of different cardinality, and also between structures with complete
and with incomplete information. The above example is deterministic for easier
presentation, a probabilistic one can be obtained by, instead of letting the moves
reach a state where x is true or false, assign probabilities like 0.8/0.2 to these
events.

3.3 Proof of Theorem 3.1

The remainder of this section proves Theorem 3.1. In the following, we let Cy, Cs,
Z1, and Z; refer to the structures and relations from the statement of Theorem 3.1.
We first introduce some notation.

Definition Let C; and Cy be concurrent game structures, let Z be a probabilistic
strategy simulation from C; to Cy. For a strategy choice S; for Cy, we denote with
Z(S1) the strategy choice obtained by the construction of [Sch10, Theorem 4.1].

Note that for the probabilistic case, the construction of the strategy choice
in the proof of [Sch10, Theorem 4.1] is deterministic, hence the above definition
is well-defined. We introduce some abbreviations that will prove useful in the
remainder of the section. For a strategy choice S; (Sy) of C; (Cy), the application
of the simulation relation gives a strategy choice Z;(S1) (Z2(S2)) for C; (Cz). From
now on, we often regard Z; and Z, as functions on strategy choices. Since the
proof of Theorem 3.1 transfers strategy choices back and forth multiple times, we
introduce the abbreviation Z*1*2- for 7, o Z,, 0---0 Z,, for a; € {1,2} (note
that this is only meaningful if a; # ;41 for all applicable 7). For example, with
Z'212(S,) we denote the strategy choice Z1(Zy(Z1(Z5(S2)))).

In the following proposition, we list some simple properties of bisimulations:

Proposition 3.3 Let C; and Cy be concurrent game structures, let (Zy, Z3) be a
probabilistic bisimulation between C; and Co, let S1 and So be strateqy choices for
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Cy1. Then the following hold:

- Zl(Sl o Sg) = Zl(Sl) o Zl(SQ),
_ Z2121(51> _ Z21(Sl).

Proof. The first part is obvious, the second immediately follows from the idempo-
tence of the composition simulation relations and the fact that the construction of
the strategy choice in the proof of [Sch10, Theorem 4.1] is obtained by essentially
applying the simulation relations to transfer states from one CGS to the other. [

We now prove Theorem 3.1.

Proof. Tt is obviously sufficient to show one direction. Hence assume that Cy, ¢, =
, where ¢ = VS;dS,VS3...35,¢, where for each applicable ¢, S; is a symbol
for a strategy choice for a coalition A;. We show that Cs,¢2 = . To make the
instantiation of strategy choice variables with strategy choices more explicit, in

the following we write C,q = ©[S1/S1,...,S,/Sy,] instead of C,(Sq,...,S,), ¢ E ¥

Since C1,q1 = ¢, there are functions si, sj, ..., s. such that for all strategy

choices S}, St ..., SL |, the strategy choices Si, Si, ..., Sl defined as S} =
s1(S1,S%,...,S}|) have the property that Cy,q; = ¥[S1/S},...,S,/Sk].
To prove that Cy, 1 | ¢, we construct functions s3, s2, ..., s? with the required

properties. For each relevant i, and for strategy choices S?, S3, ..., S2_, for Cy, let
s7(51,S3, ... Si1) = Z'(s{(Z%(S1), Z*(S3). - .., Z*(S}.0)))-

Note that this is well-defined: If S?, S3, ..., S? | are strategy choices for Co,
then Z2(S%), Z2(S3), ..., Z*(S? ;) are strategy choices for C;, thus we can apply
the s! -functions, and use Z' to transfer the resulting strategy choices to Co.

We prove that the functions s* defined above indeed satisfy the requirements.
Hence let S?, S3, ..., S2_, be strategy choices for Cy (for coalitions Ay, As, ...,
A; 1), and for i € {2,4,...,n}, define S? = s?(52,S2,...,5% ;). We prove that
Ca, ¢z = Y[S1/S5%, .-, Sn/S7).

For i € {1,3,...,n — 1}, define S} = Z%(S?), and for i € {2,4,...,n}, define
S} =5/(51,S,...,S) ;). Then for all i € {2,4,...,n}, it follows that S? = Z,(S}).

Due to the choice of the s! -functions, we know that

Cl7q1 ): w[sl/siv . 7Sn/S711]

Since Z; is a probabilistic strategy simulation, we can apply® [Sch10, Theo-
rem 4.1] and conclude that

6Since [Sch10, Theorem 4.1] only considers the case of a single strategy choice, application of
the theorem here formally requires (straight-forward) induction.
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Co,q2 EY[81/Z1(S1), -, Su/Z1(S,))-

Since Z, is a probabilistic strategy simulation as well, we can also apply Zs,
and (using the abbreviations introduced above), conclude that

Croqr E¥[81/Z%(S1), -, 8u/Z7(S,)].
Since for odd values of i, we know that S} = Z5(S?), this implies that

Cio1 = 9[81/Z%2(S1), 82/ Z%(Sy), -, Sut /272 (S 1), Su/ Z71(S,))-

Applying the simulation Z; once more implies

Co, g2 = [81/2"12(SY), 82/ 2721 (S3), - - Sut /Z72(S, 1), Su /272 (S,)].

Now indirectly assume that the theorem does not hold, i.e., that Cy, ¢ [~
¥[S1/S%,...,S,/S2]. Tt then follows that

627 q2 ): _"l/J[Sl/S%, ER) Sn/Si]
Applying simulations Z;, Zs, Z1, and Zs, we obtain (again using [Sch10, The-
orem 4.1]) that
Co, 2 = —[S1/Z2(SY), ..., S/ Z12(S})).

Since for even values of i, we know that S? = Z;(S}), this implies that

Co, g2 = —[81/Z712(SY), 82/ Z*11(Sy), - .- Sut /Z72(S; 1), S0/ 2T (S,)-

An application of Proposition 3.3 to the even values of ¢ implies that

Co, 2 |2 —0[81/Z"12(S1), 82/ 271 (Sy), - - Su1 / ZT2(S] 1), Su/ 272 (S,)].

This is a contradiction to the above, hence the functions s* indeed satisfy the
requirements.

It remains to show that the truth of formulas using restricted quantification
(i.e., over constant or g-maximal strategies) is preserved as well. For the con-
stant case this is trivial, as it follows from the definition of Z;(S;) that if Sy is
constant, then Z;(S;) is constant as well. For the p-maximal case, we show that
we can express p-maximality using quantified formulas that only use standard
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quantification—hence the restricted quantifier is essentially “syntactic sugar,” and
the invariance of truth for formulas using this quantification follows from the above.
For the definition of maximality as well as the appearing notation, see [Sch10].

Hence let ¢ be a fixed formula for which we want to express p-maximality.
First note that sat,(S1,7) C sat,(Ss,4) can be expressed by the formula

A {007 D (A S — ((A:52)¥)

(A 2 pesfi(p)

where sf;(¢) denotes the ((.))-subformulas of ¢ with strategic depth i. Note
that in the outmost strategy operator we omitted the information degree as this is
not relevant for the empty coalition. In the sequel, we use S; Sfp S, for the above
formula, and use S; =, Sy as shorthand for (S; <!, S1)A(S2 <!, S1). Now S; <, S,
can be expressed as

A Si=Ls)v| V ((/\ Si =, sz> A (St <5 8a) A(S2 <) sl)>

1<sd(¢p) 1<sd(p) Jj<i

Now a strategy choice is ¢-maximal if and only if it satisfies max,(S) defined as
VS (S <, S = 8" <, S). A formula 1 using the restricted 3,,,S; or V,,,S; quantifiers
can now be rewritten by consecutively replacing the kernel y of ¥ with

— max,(S;) A x if S; is existentially quantified, or with
— max,(S;) — x if S; is universally quantified.

Note that this only checks maximality on the reachable parts of the CGS. If the
entire formula is evaluated at, let’s say, a singleton and there is an unconnected
remainder of the graph that does not have a maximal strategy choice, then this
is not checked. However, by applying the bisimulation in other parts of the CGS,
it follows that in that case a maximal strategy choice does not exist in either of
the structures. Therefore, truth of formulas containing restricted quantification is
invariant under bisimulation as well, which proves the theorem. O

3.4 Bisimulations for Deterministic Game Structures

In [Sch10], a relaxed notion of simulation was introduced for deterministic struc-
tures and it was proved that for these structures, the simpler notion is sufficient
to transfer strategy choices. This notion, there called a uniform strong alternat-
ing simulation, can be used as the base of defining bisimulations in the same way
as probabilistic uniform strong alternating simulation: The proof of Theorem 3.1
uses the simulation result from [Sch10] essentially in a black-box fashion, and hence
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since the result from [Sch10] is true for the relaxed, deterministic version, this is
true for our Theorem 3.1 as well. There are two details of the proof in [Sch10] that
we used in our proof:

1. we references some details of the construction of the transfer of strategy
choices between the game structures, note that these are the same for deter-
ministic and probabilistic structures,

2. we stated that for probabilistic structures, the construction of Z(S) is
deterministic—this is since the definition of a probabilistic uniform strong
alternating simulation establishes a unique function Z~': C; — Cy. This is
not true for the deterministic case, since the definition of a uniform strong
alternating simulation does not have such a requirement. However, using the
Axiom of Choice, such a function can be constructed. It therefore should be
noted that for deterministic structures that are not countable, the analog of
Theorem 3.1, relaxed to uniform strong alternating simulation, requires the
Axion of Choice.

4 Model Checking: Complexity and Decidability

We now consider the model checking problem for QAPI. Model checking is the
question, given a game structure C and a quantified strategy formula ¢, whether
@ is satisfied in a given state of C. Our algorithms for the decidable cases are
constructive: They can be used to produce, for a given instantiation of universally-
quantified strategy choices, suitable instantiations for the existentially quantified
ones. As expected, the question whether strategies are allowed to base their de-
cisions on history or are required to be memoryless has a huge impact on the
questions of decidability. Formally, we define the problems QMC and QMC"**. In
both cases, the input consists of a CGS C, a state ¢q of C, and a quantified strategy
formula ¢. For QMC, the question is whether C, g |= ¢, in the case of QMC™ | we
ask whether C*! ¢ |= .

It turns out that there is no significant computational price to pay for the
additional expressiveness provided by quantifiers, compared to the semantics
from [Sch10]. In addition to showing that the (upper and lower) complexity bounds
from that paper still hold, we also show that the lower bounds can be made more
tight: We prove that in the history-aware case, even if we allow all players to have
complete information, the model checking problem is undecidable.

Theorem 4.1 The problem QMC 1is

1. PSPACE-complete for deterministic game structures,
2. solvable in SEXPTIME and 2EXPTIME-hard for probabilistic structures.
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Proof. The algorithm for both cases are very similar, and consist of two compo-
nents:

— Perform a complete search over all possible instantiations of the symbols for
strategy choices appearing in the given formula ¢,
— for each of these, check whether their combinations satisfies the kernel of ¢.

The first component can easily be done in polynomial space, since the represen-
tation of a strategy choice is quartic in the size of the input: For each player, and
each subformula of ¢, and each state ¢ of the given CGS C, it specifies a valid move
in that state. Since the number of strategy choices to be considered simultaneously
is exactly the number of quantifiers in the formula . only polynomial space is
required for going through all relevant combinations of strategy choices. Note that
the uniformity conditions, checking whether a given strategy choice is constant
or maximal can be performed in polynomial time (for the maximality condition,
see [Sch10]). Clearly, the necessary uniformity conditions for strategy choices can
be performed in polynomial time, given their representation and that of the game
structure. We can now use the algorithms of [Sch10, Theorem 5.1] to check, for
each of these combinations, whether the kernel of ¢ is satisfied. Since PSPACE
with a PSPACE-oracle still gives polynomial space complexity, this establishes the
PSPACE-result. To see that the SEXPTIME upper bound still holds, note that
the game structures used in the calls of the 3EXPTIME model checking algorithm
that the proof of [Sch10, Theorem 5.1] uses as oracle is always given an input that
is a substructure of C.

The lower bounds follow directly from [Sch10, Theorem 5.1], which is contained
in QAPI’s model checking problem as a special case. 0

For memory-dependent strategies, it is known that ATL* remains decid-
able [AHKO02]. Adding quantification to ATL* essentially leads to strategy
logic [CHP07], which is still decidable. However, when adding the capabilities
to reason about incomplete information, or probabilistic games, then the model-
checking problem of the resulting logic becomes undecidable:

Theorem 4.2 The problem QMC™" is undecidable, even when restricted to a sin-
gle existential quantifier and

1. game structures with complete information, or
2. deterministic game structures.

Restricted to game structures that have complete information and are deterministic
simultaneously, QMC"™? is decidable even with no restrictions on the quantifiers.

Proof. 1. The case with complete information, but a probabilistic transition
function follows directly from Theorem 3.4 in [BBFKO06]: Their result proves
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that the question whether in a randomized game with a single player, a
deterministic strategy to achieve a goal expressed by a PCTL-formula ex-
ists. Since equalities of a success probability and some value « can easily
be expressed in our semantics with requiring the same strategy has success
probability < « and > «, it follows that PCTL can be expressed with prob-
abilistic ATL; undecidability of QMC"™ for the complete-information case
follows. Since their result is only concerned with finding a single strategy,
the problem remains undecidable when restricted to formulas with a single
existential quantifier.

2. For deterministic structures, but incomplete information, the result follows

from [Sch10, Theorem 5.2].

Now consider game structures that are both deterministic and have complete
information. In this case, it is obvious that strategy choices can always assumed
to be constant: The fact that strategy choices may depend on the formula can be
handled by (in the case of non-constant strategy choices) using different strategy
choices for different subformulas. The fact that strategy choices allow the choice
of strategy to depend on possibly more information than the choice of moves
performed by the strategy later is obviously irrelevant in complete-information
games, formally the function choosing the strategy in the strategy choice and the
choices performed by the selected strategy can be combined into a (complete-
information) strategy. Hence in this case, QAPI is equivalent to strategy logic,
which is decidable due to [CHPO7]. O

Undecidability of model checking for QAPI in the history-aware case does not
come as a surprise, given that less expressive logics already have undecidable model
checking problems. Even though the obvious restrictions of QAPI covered by
Theorem 4.2 still have undecidable model checking problems, it is an interesting
question to identify sufficiently large subsets of QAPI that are still decidable even
with history-awareness. Since QAPI contains logics with decidable model check-
ing problems as special cases (see Section 2), it is likely that relevant decidable
fragments do in fact exist.

Conclusion

We have introduced QAPI, which compared to the semantics of ATL* introduced
in [Sch10] leads to a significant increase in expressivity:

1. Formulas can reason about strategies explicitly,
2. it is possible to force the “counter-coalition” to use restricted knowledge as
well,
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3. in re-using symbols for strategy choices, one can express knowledge that a
coalition has over another coalitions strategies.

The logic QAPI is expressive enough to include several previous extensions of

ATL™.

An interesting extension of QAPI would be to reason about mized strategies,
where the players themselves may randomize over their next current move. It is
likely that our simulation results still hold for a thus-generalized setting, however
the complexity of the model checking problem in this setting is an open question.
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