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1 Introduction

The Hilbert transform on the real line is a standard tool in one dimensional signal pro-
cessing. It is the fundamental part of the analytic signal invented by Dennis Gabor [15].
With the analytic signal the instantaneous amplitude and phase of a one dimensional
signal can be determined. Ever since the analytic signal has been invented, there have
been numerous attempts to construct a generalization in higher dimensions. On the
one hand the signal and image processing community tried to generalize the analytic
signal in order to obtain the instantaneous phase, amplitude and orientation of certain
higher dimensional signals [6], [11]. On the other hand the Clifford analysis community
proposed several generalizations of the Hilbert transform which arise as boundary val-
ues of the Cauchy transform [27], [8], [4], [5]. In image processing the monogenic signal
introduced in [11], which is a generalization of the analytic signal to two dimensional
input signals, is widely used [16], [20], [24], [22]. It is able to determine the instanta-
neous phase, amplitude and orientation of intrinsically one dimensional signals, that is
the real part of a two dimensional plane wave. A further generalization extending the
monogenic signal has been derived in [32]. It projects the two dimensional input signal
to the unit sphere in R3 and applies the three dimensional Riesz transform, the analogue
of the Hilbert transform in n-dimensional Euclidean space, to obtain the instantaneous
phase, amplitude and isophote curvature of the signal. Nonetheless the purpose of both
generalizations, the monogenic and the conformal monogenic signal, is to analyze signals
defined in the Euclidean plane R2. Scientific disciplines like geophysics, astrophysics and
computer vision have to deal with input signals which are naturally defined on the unit
sphere. These signals are for instance seismic or gravitational data captured around
the earth [7], satellite data [14], cosmic microwave background [19] or omnidirectional
images captured by a catadioptric camera [3], [18]. One seeks for local operators acting
on functions naturally defined on the sphere for feature detection. Classical low-level
feature detectors are based on derivatives. Since derivatives act as high pass filters they
are embedded in a scale space framework, traditionally the Gaussian scale space, to
select certain frequency bands. The Hilbert and Riesz transform in the Euclidean space
can be thought of as derivative filters without the high pass characteristic, therefore
only acting on angular portions of a given function. This property justifies them as use-
ful operators for phase based feature analysis and enables an illumination and rotation
invariant detection of low-level features including edges and corners. If we switch to
the sphere instead of the Euclidean plane and work in a spherical coordinate system,
we would like to be able to use derivatives with respect the azimuthal and longitudal
angles. Furthermore we want to use a local derivative-like operator, according to the
Riesz transform in the plane. Therefore we seek for an analogue of the Riesz transform
in the plane on the sphere.
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1 Introduction

We will construct a generalization of the analytic signal on the unit sphere S2 with the
help of the Hilbert and the Cauchy transform on S2. We proceed as follows: In Section
2 we introduce the mathematic preliminaries for our analysis on S2 to keep this paper
self contained. In section 4 we identify the Cauchy transform as our new generalization
of the Hilbert transform in a Poisson scale space concept. We derive and discuss the
filter kernels for our new signal model and give an important characterization in the
spherical harmonic domain in terms of their spherical harmonic coefficients. While the
scalar zonal Poisson or Abel-Poisson kernel is a standard tool in multiscale and texture
analysis on S2 and SO(3) (see e.g. [13], [25], [26], [2]), we investigate its harmonic
conjugate function arising in the Clifford algebra embedding. The key to the spherical
harmonic expansion is the identification of the Cauchy transform on S2 with a directional
correlation introduced in [31]. With the spectral characterization and the resulting
interpretation we demonstrate the obtained scale space in Section 5 and analyze the
results of the obtained kernels acting on the real part of a plane wave in R3 restricted
to the sphere.
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2 Preliminaries

Throughout this paper we work in the universal Clifford algebra R0,n over the vector
space R0,n which is the real vector space Rn equipped with a non-degenerate quadratic
signature (0, n). For an orthonormal basis (e1, ..., en) of R0,n the following multiplication
rules arise in R0,n:

eiej + ejei = −2δij, ∀i, j ∈ {1, .., n} (2.1)

In the following the notation eiej = eij is used. Now for sets A = {i1, ..., ih} ⊆ {1, ..., n}
with 1 ≤ i1 ≤ ... ≤ ih ≤ n and eA = ei1ei2 ...eih the basis (eA : A ⊆ {1...n}) forms a basis
for the Clifford algebra R0,n. Therefore an element a ∈ R0,n allows the representation
a =

∑n
k=0[a]k where [a]k =

∑
|A|=k aAeA is called k-vector. Vectors x = (x1, ..., xn) ∈ Rn

are identified with one-vectors x =
∑n

j=1 xjej. The product of two vectors x, y ∈ R0,n is
then defined by

xy = −〈x, y〉 + x ∧ y (2.2)

where the inner product

x • y = 〈x, y〉 =
n∑

i=1

xiyi = −
1

2
(xy + yx) (2.3)

results in a scalar and the wedge product or outer product

x ∧ y =
∑

i<j

eiej(xiyj − xjyi) = −
1

2
(xy + yx). (2.4)

results in a two-vector which is also known as a bivector. The conjugation in R0,n is
given by ei = −ei and therefore the conjugation of a vector x results in x = −x.
In the following S2 denotes the unit sphere in R3 and B2 the unit ball respectively.
ξ, ω, will be elements of S2 described by the angles (θ, φ) and (α, β) where θ, α are
zenithal angles and ϕ, β are azimuthal angles. In Cartesian coordinates they are writ-
ten as ξ = [sin θ cos ϕ, sin θ sin ϕ, cos θ]T and ω = [sin α cos β, sin α sin β, cos α]T . El-
ements in B2 are denoted by x, y with x = rξ, y = rω and 0 < r < 1 such that
x = [r sin θ cos ϕ, r sin θ sin ϕ, r cos θ]T and y = [r sin α cos β, r sin α sin β, r cos α]T . We
identify the north pole η with [0, 0, 1]T . Furthermore dS will denote the surface measure
on S2 and A3 denotes the surface area of S2.
In order to expand a function in L2(S2) into a series we introduce an orthonormal basis
for functions in L2(S2).
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2 Preliminaries

2.1 Spherical Harmonics

The standard spherical harmonics are defined as

Yl,m(θ, ϕ) =

[
2l + 1

4π

(l − m)!

(l + m)!

]1/2

Pm
l (cos θ)eimϕ (2.5)

where Pm
l (x) are the associated Legendre functions

P
(m)
l (x) = (−1)m (1 − x2)m/2 dm

dxm
(Pl(x)) (2.6)

and Pl(x) are the Legendre polynomials given by the Rodrigues’ formula

Pl(x) =
1

2ll!

dl

dxl

[
(x2 − 1)l

]
. (2.7)

The spherical harmonics form an orthonormal basis for the functions in L2(S2). Every
function f ∈ L2(S2) can be expanded into a Fourier series as

f(ω) =
∑

l∈N

l∑

m=−l

f̂l,mYl,m(θ, ϕ) (2.8)

where the Fourier coefficients f̂l,m are obtained as

f̂l,m =

2π∫

0

π∫

0

f(θ, ϕ)Yl,m(θ, ϕ) sin θdθdϕ (2.9)

We will call the index l the frequency of a spherical harmonic and the index m the order
respectively.
In the Euclidean plane the convolution operation is based on the multiplication of a
translated filter kernel with the target function. On the sphere a translation corresponds
to a rotation described by two angles. To expand convolution operations on the sphere
into a series, we need an orthonormal basis for rotations which are representations of
the group SO(3).

2.2 Wigner-D Functions

According to the spherical harmonics, the Wigner-D functions

Dl
m,n(ρ) = Dl

m,n(θ, ϕ, ψ) = e−imψdl
m,n(cos θ)e−inϕ (2.10)

form an orthonormal basis for L2(SO(3)) with respect to standard Haar measure. Hence
the Fourier series expansion of a function f ∈ L2(SO(3)) with ρ ∈ SO(3) reads

f(ρ) =
∑

l∈N

2l + 1

8π2

l∑

m=−l

l∑

n=−l

f̂ l
m,nDl

m,n(ρ) (2.11)
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3 Hilbert transform in Rn

The classical Hilbert transform on the real line for functions f ∈ L2(R) given by the
convolution with the Hilbert kernel

H[f ](x) = (f ∗
1

π
)(x) =

1

π
P.V.

∫

R

f(y)

x − y
dy (3.1)

has a well known interpretation in the Fourier domain:

F [H[f ]](u) = −i sgn(u)F [f ](u). (3.2)

It therefore justifies the interpretation as a π
2

phase shift for negative frequencies and
a −π

2
phase shift for positive frequencies. Assuming a sinusoid signal model f(x) =

A(x) cos(φ(x)), where φ(x) denotes the local phase and A(x) the local amplitude of f ,
its Hilbert transform is obtained as H[f ](x) = A(x) sin(φ(x)). The sinusoid signal model
together with its Hilbert transform constitutes the analytic signal [15]

fa(x) = f(x) + iH[f ](x) = A(x)eiφ(x) (3.3)

consisting of strictly positive frequencies in the Fourier domain. The analytic signal is
a standard tool in signal processing used to obtain the local phase and local amplitude
of sinusoid signals. It arises as the non-tangential boundary value of the Cauchy trans-
form. The classical Cauchy integral formula is well known from complex analysis. Its
generalization in the sense of Clifford analysis working in the real Clifford algebra R0,n

is given by [9]

Definition 3.0.1 (Cauchy transform in Rn [8]). Let G ⊆ Rn with smooth boundary
∂G, x ∈ G and f ∈ L2(∂G). Then the Cauchy transform of f in Rn is defined as

C[f ](x) =
2

An

∫

∂G

E(x − y)n(y)f(y)dS(y) (3.4)

=
2

An

∫

∂G

x − y

|x − y|(n+1)/2
n(y)f(y)dS(y) (3.5)

with dS as the surface element of ∂G, An the surface area of ∂G and n(y) the outward
pointing unit normal at y. The Cauchy transform generates a monogenic function in
Gwhich solves the differential equation ∂C[f ](x) = 0, where ∂ is the Dirac operator. Ad-
ditionally the Cauchy transform splits into the Poisson transform and conjugate Poisson
transform of f [5]:
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3 Hilbert transform in Rn

C[f ](x) =
1

2
P [f ](x) +

1

2
Q[f ](x) (3.6)

=
1

2A3

∫

S2

1 − |x|2

|x − ω|3
f(ω)dS(ω) (3.7)

+
1

2A3

∫

S2

1 + |x|2 + 2xω

|x − ω|3
f(ω)dS(ω) (3.8)

with non-tangential boundaries values of P [f ](x) and Q[f ](x) given by

lim
n.t. x→ξ

P [f ](x) = f(ξ), lim
n.t. x→ξ

Q[f ](x) = H[f ](ξ). (3.9)

We can therefore define monogenic signals for any closed subset G ⊆ Rn with smooth
boundary in Rn as the non-tangential boundary value of the Cauchy transform on that
surface. Furthermore the Cauchy transform provides a natural embedding in a scale-
space concept, the Poisson scale space. To emphasize the relationship between the
Cauchy transform and the analytic and monogenic signal representations we give some
examples:

Example 3.0.2 (G = R2
+, ∂G = R). In this case we obtained the classical analytic

signal on the real line [15] with x = (x0, x1), x0 > 0:

lim
n.t. x→(0,x1)

C[f ](x) = f(x) + iH[f ](x) = fa(x). (3.10)

Example 3.0.3 (G = R3
+, ∂G = R2). This case represents the monogenic signal [11]

with x = (x0, x) = (x0, x1, x2), x0 > 0 and the classical Riesz transforms (see e.g. [29])
Rxi

:

lim
n.t. x→(0,x)

C[f ](x) = f(x) + Rx1
[f ](x)e1 + Rx2

[f ](x)e2 = fm(x). (3.11)
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4 Hilbert transform on the sphere

We have seen that the Cauchy transform is well defined for subsets G ⊆ Rn with smooth
boundary ∂G. The unit sphere S2 in R3 is one of these surfaces and therefore allows the
construction of a monogenic signal with the help of the Cauchy transform.
In the following we consider functions f ∈ L2(S2). We call such functions signals, which
are band-limited such that there exists a maximum frequency L ∈ N with f̂l,m = 0
for l ≥ L. In order to construct an analogue to the analytic and monogenic signal on
S2, we proceed in accordance to (3.6). Using the Cauchy transform on S2 we obtain
a splitting into the Poisson and the conjugate Poisson transform, which is the natural
embedding of a monogenic signal on S2 in the Poisson scale-space. Taking the non-
tangential boundary values of the Cauchy transform and therefore of the Poisson and
conjugate Poisson transform, we obtain the original function f and its Hilbert transform
H[f ] on S2.

Definition 4.0.4 (Cauchy transform on S2 [8]). Let x ∈ B2 \S2 with x = rξ, ξ ∈ S2, 0 <
r < 1 and f ∈ L2(S2). Then the Cauchy transform of f on S2 is defined as

C[f ](x) =
2

A3

∫

S2

E(x − ω)ωf(ω)dS(ω) (4.1)

=
2

A3

∫

S2

x − ω

|x − ω|3
ωf(ω)dS(ω) (4.2)

where E(x − ω) is the Cauchy kernel on S2.

In our analysis we want to able to select certain frequency bands in the spectral spherical
harmonic domain. Therefore we consider lowpass filtered versions of our signal in a
linear scale space in B2. Given two lowpass filters we construct a bandpass filter as the
difference of the two lowpass filters. In the case of the monogenic signal the scale space
concept which arises naturally is the Poisson scale space in the upper half space R3

+ [12].
Analogously the scale space in this context is the Poisson scale space in B2 which arises
naturally from the definition of the Hilbert transform being the non tangential boundary
value of the Cauchy transform [9]. Therefore the Cauchy transform encompasses the
Hilbert transform in the light of the Poisson scale space in the unit ball. The parameter
r acts as the scale parameter. The more r tends towards the origin the more blurred or
smoothed versions of the original signal are obtained. As r moves towards 1 the original
signal and its Hilbert transform are obtained. This leads to the following definition of a
Hilbert transform on S2:
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4 Hilbert transform on the sphere

Definition 4.0.5 (Hilbert transform on S2 [8]). Let ξ ∈ S2 and f ∈ L2(S2). Then the
Hilbert transform of f on S2 is defined as the Cauchy Principal Value integral

H[f ](ξ) =
2

A3

P.V.

∫

S2

ξ − ω

|ξ − ω|3
ωf(ω)dS(ω). (4.3)

Due to (3.6) we can analyze the Cauchy transform in two steps by analyzing the Poisson
and the conjugate Poisson transform separately. Since the Cauchy transform generates
a monogenic function, its component functions are harmonic in S2 with

∆P [f ](x) = 0, ∆Q[f ](x) = 0 (4.4)

where ∆ is the Laplace operator in B2.

4.1 The Cauchy transform on S2 as a directional

correlation

It is desirable from a signal processing viewpoint to interpret the Cauchy transform as
a filtering operation. In R3 linear filters are applied to signals by convolution. The
convolution on the sphere is the integration over the group SO(3) of the input signal
and the filter, as proposed for example by [10]. Since the Cauchy transform integrates
over S2 it can not immediately be identified with a spherical convolution operation.
Nonetheless there exists an operation called directional correlation introduced in [31]:

Definition 4.1.1 (Directional correlation). Let ρ ∈ SO(3), R(ρ) the rotation operator
associated with ρ and h ∈ L2(S2), f ∈ L2(S2). The directional correlation of h and f in
the direction ρ is given by

R(ρ)[h] ⋆ f =

∫

S2

h(R−1(ρ) ω)f(ω)dS(w). (4.5)

The directional correlation turns out to be a function in L2(SO(3)). We want to analyze
signals on the sphere locally. Therefore we are not interested in the global Cauchy
transform of a certain signal. Instead every time we evaluate the Cauchy transform at
some point on the sphere, we treat this point as the north pole η of a sphere, rotated to
the evaluation point. The spherical coordinates (θ, ϕ) at which we evaluate the Cauchy
transform describe a rotation ρ = (θ, ϕ, 0). So with respect to original coordinate system
we always evaluate the Cauchy transform at the north pole of a sphere in a rotated
coordinate system. In that sense we obtain a local analysis of our signal for every
point. Furthermore this is the key to the expression of the Cauchy transform as a
directional correlation. Suppose we want to evaluate the Cauchy transform at some
fixed point x = rξ. Now we choose this point x as the north pole η of some rotated
coordinate system. Then the Cauchy kernel E(x − ω) is just a rotated version of the
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4.2 Fourier series expansion

kernel E(rη − ω) centered at the north pole η. The evaluation of the Cauchy transform
at a point x = rξ ∈ B2 with spherical coordinates (r, θ, ϕ) reduces to the evaluation of
the Cauchy transform at η rotated by ρ = (θ, ϕ, 0). Thinking of the Cauchy kernel as a
filter mask we always use the same filter mask centered at the north pole, but at every
point we apply it to a rotated version of the original function. So for every point x = rξ
we do not actually evaluate the transform with the kernel E(rξ − ω) but we evaluate
the transform as

C[f ](r, θ, ϕ) =

∫

S2

E(rη − ω)ωf(R−1(θ, ϕ, 0)ω)dS(ω) (4.6)

= R(θ, ϕ, 0)[h] ⋆ f. (4.7)

4.2 Fourier series expansion

The next step towards an intuitive interpretation of the Hilbert transform of the sphere
is the series expansion of the directional correlation. As we have noticed, the directional
correlation is a function in L2(SO(3)). The Cauchy transform has been interpreted
as a directional correlation evaluated for rotations corresponding to the Euler angle
representations (θ, ϕ, 0). In this case the directional correlation is also known as a
standard correlation on S2 according to [31]. We introduced the Wigner-D functions
as an orthonormal basis for L2(SO(3)). As a consequence, the directional correlation
admits an expansion into a Fourier series on SO(3) in terms of the Wigner-D basis
functions. For a series expansion of the Cauchy transform we are in the need of the series
expansion coefficients. It has been shown in [31] that the coefficients of the directional
correlation can be evaluated in terms of the spherical harmonic coefficients of the function
and the filter respectively as

̂[R[h] ⋆ f ]
l

m,n = ĥl,nf̂l,m (4.8)

such that the series expansion of the directional correlation reads

R(ρ)[h] ⋆ f =
∑

l∈N

l∑

m=−l

l∑

n=−l

̂[R[h] ⋆ f ]
l

m,nDl
m,n(ρ). (4.9)

Since we want to provide a spectral characterization of the Poisson and conjugate Poisson
filter kernels, we have to expand them into a spherical harmonic series. The directional
correlation in terms of the spherical harmonic coefficients is now used to evaluate the
Cauchy transform. We seek for the spherical harmonic coefficients of the Cauchy kernel.
Since the Cauchy transform splits into the Poisson and conjugate Poisson transform
we evaluate the coefficients of the Poisson and conjugate Poisson kernel in (3.7), (3.8)
separately. The Poisson kernel belongs to the set of zonal functions which are constant
for all ξ ∈ S2 with 〈ω, ξ〉 = c, c ∈ [−1, 1]. The spectral characterization of these zonal
functions is obtained by the Funk-Heck theorem:

11



4 Hilbert transform on the sphere

 

 

 

 

 

 

Figure 4.1: From left to right: The Poisson kernel Pr and the bivector parts of the

conjugate Poisson kernel Q
(1)
r and Q

(2)
r for r = 0.9.

Theorem 4.2.1 (Funk-Hecke formula on S2 [13]). Let f be a zonal function on Sn and
ξ ∈ Sn. Then

∫

Sn

f(〈ξ, ω〉)Yl,m(ω)dS(ω) = λlYl,m(ξ) (4.10)

with the eigenvalue

λl = An−1
1

C
(n−1)/2
l (1)

1∫

−1

f(t)C
(n−1)/2
l (t)(1 − t2)(n−2)/2dt (4.11)

where C
(n−1)/2
n is the l-th Gegenbauer polynomial of order (n − 1)/2. For n = 2 the

Gegenbauer Polynomials reduce to the Legendre polynomials. In that case the above
transform used to obtain the eigenvalues λl reduces to the Legendre transform. Using
the Funk-Hecke theorem, the zonal Poisson kernel in B2, also known as the Abel-Poisson
kernel, results in the series expansion (see e.g. [13])

Pr(x, ω) =
1 − |x|2

|x − ω|3
=

1 − r2

(1 − 2r cos θ + r2)(3/2)

∞∑

k=0

(2k + 1)rkPn(〈ξ, ω〉). (4.12)

Remembering that we always evaluate the transforms at the north pole η with x =
x3e3 = rη = re3, 0 < r < 1 the above series leads to the spherical harmonic coefficients

[̂Pr]l,m =

∫

S2

Pr(rη, ω)Yl,m(ω)dS(ω) =

{
rl for m = 0
0 else

(4.13)

For the expansion of conjugate Poisson kernel we first rewrite the kernel as

Qr(x, ω) =
1 + |x|2 + 2xω

|x − ω|3
=

1 + |x|2 − 2rω3

|x − ω|3
−

2rω1e13

|x − ω|3
−

2rω2e23

|x − ω|3
. (4.14)
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4.2 Fourier series expansion

with ω = [sin θ cos ϕ, sin θ sin ϕ, cos θ]T and x = rη such that 〈x, ω〉 = 〈rη, ω〉 = r cos θ.
Since x = rη = [0, 0, r]T we have

|x − ω|3 =
(
(−ω1)

2 + (−ω2)
2 + (r − ω3)

2
)3/2

=
(
1 + r2 − 2rω3

)3/2
(4.15)

=
(
1 + |x|2 − 2rω3

) (
1 + |x|2 − 2rω3

)1/2
(4.16)

such that

1 + |x|2 − 2rω3

|x − ω|3
=

1

(1 + r2 − 2rω3)
1/2

. (4.17)

The generating function 1

(1+r2−2rω3)1/2
has the series expansion in terms of the Legendre

polynomials [17]

1

(1 + r2 − 2rω3)
1/2

=
∞∑

k=0

rkPn(〈ξ, ω〉) =
∞∑

k=0

rkPn(cos θ). (4.18)

Accordingly the generating function 1

(1+|x|2−2rω3)3/2
expands into a series of the Gegen-

bauer polynomials [17]

1

(1 + |x|2 − 2rω3)
3/2

=
∞∑

k=0

rkC3/2
n (〈ξ, ω〉) =

∞∑

k=0

rkC3/2
n (cos θ). (4.19)

Therefore we obtain a series expansion of the conjugate Poisson kernel in terms of Leg-
endre and Gegenbauer polynomials as

Qr(x, ω) =
∞∑

k=0

rkPn(cos θ) (4.20)

− 2rω1

∞∑

k=0

rkC
3/2
k (cos θ)e13 − 2rω2

∞∑

k=0

rkC
3/2
k (cos θ)e23 (4.21)

= Q(0)
r (x, ω) − 2rQ(1)

r (x, ω)e13 − 2rQ(2)
r (x, ω)e23 (4.22)

While the Poisson kernel only consists of a scalar part, the conjugate Poisson kernel
splits into a scalar and two bivector parts. The scalar part of the conjugate Poisson
kernel is equal to the ordinary Poisson kernel. Figure 4.1 shows the Poisson kernel and
the two bivector parts of the conjugate kernel at a certain scale. We treat the scalar and
bivector parts of the conjugate Poisson kernel as three single kernels. For every single
kernel the Fourier coefficients are supposed to be determined. In order to obtain the
Fourier coefficients of the kernels, we express all parts of the kernels as series depending
on the standard spherical harmonics. We introduce the addition theorem for Gegenbauer
polynomials with spherical coordinates (r1, θ, φ) and (r2, α, β), subtended by the angle
γ at the origin, as [28]:

13



4 Hilbert transform on the sphere

Cλ
n(cos γ) = 4π

⌊n/2⌋∑

m=0

〈Yn,m(θ, φ),Yn,m(α, β) 〉 (4.23)

with the vector of scalar spherical harmonics

Yn,m(x, y) =




Yl,−l

Yl,−l+1

...
Yl,l


 (4.24)

where l = n − 2m resulting in

Cλ
n(cos γ) = 4π

⌊n/2⌋∑

m=0

l∑

j=−l

Yl,j(θ, φ)Yl,j(α, β) (4.25)

In addition we expand ω1 and ω2 into a Fourier series with the Fourier coefficients

[̂ω1]l,m =

2π∫

ϕ=0

π∫

θ=0

sin θ cos ϕYl,m(θ, ϕ)dθdϕ =

{
±

√
2π
3

for m = ∓1

0 else
(4.26)

[̂ω2]l,m =

2π∫

ϕ=0

π∫

θ=0

sin θ sin ϕYl,m(θ, ϕ)dθdϕ =

{
i
√

2π
3

for m = ±1

0 else
(4.27)

such that

ω1 =
∞∑

l=0

l∑

m=−l

[̂ω1]l,mYl,m(θ, ϕ) =

√
2π

3
Y1,−1(θ, ϕ) −

√
2π

3
Y1,1(θ, ϕ) (4.28)

ω2 =
∞∑

l=0

l∑

m=−l

[̂ω1]l,mYl,m(θ, ϕ) = i

√
2π

3
Y1,−1(θ, ϕ) + i

√
2π

3
Y1,1(θ, ϕ). (4.29)

We determine the Fourier coefficients of the conjugate Poisson kernel bivector parts as:
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4.2 Fourier series expansion

̂
[Q

(1)
r ]l,m =

∫

S2

Q(1)
r (ω)Yl,m(ω)dS(ω) (4.30)

=

∫

S2

ω1

∞∑

k=0

rkC
3/2
k (cos θ)Yl,m(ω)dS(ω) (4.31)

l′=k−2m′

= 4π
∞∑

k=0

rk

∫

S2

ω1

⌊k/2⌋∑

m′=0

l′∑

j=−l′

Yl′,j(ω)Yl′,j(0)Yl,m(ω)dS(ω) (4.32)

= 4π

√
2π

3

∞∑

k=0

rk (4.33)

×




∫

S2

Y1,−1(ω)

⌊k/2⌋∑

m′=0

l′∑

j=−l′

Yl′,j(ω)Yl′,j(0)Yl,m(ω)dS(ω) (4.34)

−

∫

S2

Y1,1(ω)

⌊k/2⌋∑

m′=0

l′∑

j=−l′

Yl′,j(ω)Yl′,j(0)Yl,m(ω)dS(ω)


 (4.35)

= 4π

√
2π

3

∞∑

k=0

rk (4.36)

×




⌊k/2⌋∑

m′=0

Yl′,0(0)

∫

S2

Y1,−1(ω)Yl′,0(ω)Yl,m(ω)dS(ω) (4.37)

−

⌊k/2⌋∑

m′=0

Yl′,0(0)

∫

S2

Y1,1(ω)Yl′,0(ω)Yl,m(ω)dS(ω)


 (4.38)

Since Yl,m(ω) = (−1)mYl,−m(ω) the triple integrals evaluate to [30]

∫

S2

Y1,1(ω)Yl′,0(ω)Yl,m(ω)dS(ω) (4.39)

= (−1)m

√
(2 + 1)(2l′ + 1)(2l + 1)

4π

(
1 l′ l
0 0 0

)(
1 l′ l
1 0 (−m)

)
(4.40)

and

∫

S2

Y1,−1(ω)Yl′,0(ω)Yl,m(ω)dS(ω) (4.41)

= (−1)m

√
(2 + 1)(2l′ + 1)(2l + 1)

4π

(
1 l′ l
0 0 0

)(
1 l′ l
−1 0 (−m)

)
(4.42)
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4 Hilbert transform on the sphere

where

(
l1 l2 l3

m1 m2 m3

)
are the Wigner 3j-symbols. The Wigner 3j-symbols evaluate to 0

unless they satisfy

(i) |l1 − l3| ≤ l2 ≤ l1 + l2 (4.43)

(ii) m1 + m2 = −m3 (4.44)

Therefore it holds that

(
1 l′ l
0 0 0

)
=





(
1 l′ l
0 0 0

)
if l′ = l − 1 ∨ l′ = l ∨ l′ = l + 1

0 else

(4.45)

(
1 l′ l
±1 0 (−m)

)
=





(
1 l′ l
±1 0 ±1

)
if m = ∓1

0 else

(4.46)

Closed expressions for the Wigner 3j-symbols used here are given in [1]:

(
k k 1
q −q 0

)
= (−)k−q q

[k(k + 1)(2k + 1)]1/2
(4.47)

(
k k + 1 1
q −q − 1 1

)
= (−)k−q

[
(k + q + 1)(k + q + 2)

2(k + 1)(2k + 1)(2k + 3)

]1/2

(4.48)

(
k k + 1 1
q −q 0

)
= (−)k−q

[
(k − q − 1)(k + q + 1)

(k + 1)(2k + 1)(2k + 3)

]1/2

(4.49)

With (4.47) it follows that that

(
1 l l

0 0 0

)
= 0 such that l′ = l− 1∨ l +1. For l′ = l− 1

we use (4.49) with k = l − 1, q = 0 and (4.48) with k = l − 1, q = 0 to obtain

(−1)mYl−1,0(0)

√
(2 + 1)(2(l − 1) + 1)(2l + 1)

4π

(
1 l − 1 l
0 0 0

) (
1 l − 1 l
1 0 −1

)
(4.50)

= (−)l−1

√
2l − 1

4π

√
3(2l − 1)(2l + 1)

4π
(4.51)

×

√
l2

l(2l − 1)(2l + 1)

√
l(l + 1)

2l(2l − 1)(2l + 1)
(4.52)

= (−)l−1 1

4π

√
3l(l + 1)

2(2l + 1)
(4.53)
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4.2 Fourier series expansion

(−1)mYl+1,0(0)

√
(2 + 1)(2(l + 1) + 1)(2l + 1)

4π

(
1 l + 1 l
0 0 0

)(
1 l + 1 l
1 0 −1

)
(4.54)

= (−)l

√
2l + 3

4π

√
3(2l + 3)(2l + 1)

4π
(4.55)

×

√
(l + 1)2

(l + 1)(2l + 1)(2l + 3)

√
l(l + 1)

2(l + 1)(2l + 1)(2l + 3)
(4.56)

= (−)l 1

4π

√
3l(l + 1)

2(2l + 1)
(4.57)

The only contributing terms in the sums are the expressions with l′ = l−1∨ l+1. Since
l′ = k − 2m, this is only the case for k = (l − 1) + 2n, n ≥ 0. For k = l − 1 this is only
true for n = 0. For all other k there are always two solutions but as we have seen, they
only differ in their sign. Therefore the sum for all k > l − 1 evaluates to zero such that

̂
[Q

(1)
r ]l,±1 = ∓2r4π

√
2π

3

1

4π

√
3l(l + 1)

2(2l + 1)
rl−1 = ∓

√
4π l(l + 1)

(2l + 1)
rl (4.58)

̂
[Q

(2)
r ]l,±1 = ∓2r4π

√
2π

3

1

4π

√
3l(l + 1)

2(2l + 1)
rl−1 = i

√
4π l(l + 1)

(2l + 1)
rl (4.59)

The spherical harmonic coefficients characterize the filter kernels in the frequency do-
main. As one notices the coefficients of the scalar part is zero for m 6= 0 whereas the
coefficients of the bivector parts are zero for m 6= ±1. The factor rl indicates the lowpass
behaviour of all filter parts since 0 < r < 1. Using the spherical harmonic coefficients,
the Poisson and conjugate Poisson transforms can now be expressed as a directional
correlation in the spherical harmonic domain according to (4.9) as

R(ρ)[Pr] ⋆ f =
∑

l∈N

l∑

m=−l

rlf̂l,mDl
m,0(ρ) =

∑

l∈N

l∑

m=−l

rlf̂l,mYl,m(θ, ϕ) (4.60)

R(ρ)[Q(1)
r ] ⋆ f =

∑

l∈N

l∑

m=−l

√
4π l(l + 1)

(2l + 1)
rlf̂l,m

(
Dl

m,−1(ρ) − Dl
m,1(ρ)

)
(4.61)

R(ρ)[Q(2)
r ] ⋆ f =

∑

l∈N

l∑

m=−l

i

√
4π l(l + 1)

(2l + 1)
rlf̂l,m

(
Dl

m,−1(ρ) + Dl
m,1(ρ)

)
(4.62)

Since we evaluate the correlation for rotations ρ = (θ, ϕ, 0) the Wigner-D functions
reduce to spin-weighted spherical harmonics [31]
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4 Hilbert transform on the sphere

nYl,m(θ, ϕ) = (−1)n

√
2l + 1

4π
Dl

m,n(θ, ϕ, 0) (4.63)

We define the spin raising and lowering operators as [21]

[ð nG] (θ, φ) =
[
− sinn θ

(
∂
∂θ

+ i
sin θ

∂
∂ϕ

)
sin−n θ nG

]
(θ, ϕ)

[
ð nG

]
(θ, φ) =

[
− sinn θ

(
∂
∂θ

− i
sin θ

∂
∂ϕ

)
sin−n θ nG

]
(θ, ϕ)

(4.64)

With these operators the spin-weighted spherical harmonics are constructed from the
scalar spherical harmonics as

nYl,m(θ, ϕ) =
[

(l−n)!
(l+n)!

]1/2

[ðnYl,m](θ, ϕ) for 0 ≤ n ≤ l

nYl,m(θ, ϕ) =
[

(l−n)!
(l+n)!

]1/2

(−1)n[ðnYl,m](θ, ϕ) for − l ≤ n ≤ 0
(4.65)

With ρ = (θ, ϕ, 0), ω = (θ, ϕ) ∈ S2 the correlations (4.61), (4.62) reduce to

R(ρ)[Q(1)
r ] ⋆ f =

∑

l∈N

l∑

m=−l

rlf̂l,m (−1Yl,m(ω) − 1Yl,m(ω)) (4.66)

= 2
∑

l∈N

l∑

m=−l

rlf̂l,m
∂

∂θ
Yl,m(ω) (4.67)

R(ρ)[Q(2)
r ] ⋆ f =

∑

l∈N

l∑

m=−l

i rlf̂l,m (−1Yl,m(ω) + 1Yl,m(ω)) (4.68)

= 2
∑

l∈N

l∑

m=−l

rlf̂l,m
1

sin θ

∂

∂ϕ
Yl,m(ω) (4.69)

The del operator in a spherical coordinate system, which coincides with the spherical
gradient operator in the case of a scalar valued function, with basis vectors er, eθ, eϕ is
defined as

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
. (4.70)

It acts on a function f ∈ L2(S
2) as

(∇f)(ω) =
∑

l∈N

l∑

m=−l

f̂l,m(∇Yl,m)(ω) (4.71)

= eθ

∑

l∈N

l∑

m=−l

f̂l,m
∂

∂θ
Yl,m(ω) + eϕ

∑

l∈N

l∑

m=−l

f̂l,m
1

sin θ

∂

∂ϕ
Yl,m(ω). (4.72)
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4.2 Fourier series expansion

Comparing (4.72) with (4.67) and (4.69) one notices that the conjugate Poisson trans-
forms acts like a gradient operator but instead of acting on the original function it acts
on the solution of the Laplace equation.
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4 Hilbert transform on the sphere
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5 Applications

5.1 Poisson scale space

The Poisson transform P [f ] acts as a lowpass filter in the spherical harmonic domain on
the frequencies l. Furthermore the Poisson transform generates a harmonic function and
solves the Laplace equation in B2 with boundary values on S2. It constitutes a linear
scale space in B2 with scale parameter r = e−p for p ∈ [0,∞) such that 0 < r < 1. With
this choice for r, for any p1, p2 ∈ [0,∞) and f ∈ L2(S2) we have

Pp2
[Pp1

[f ]] =
∞∑

l=0

l∑

m=−l

e−p1e−p2f̂l,mYl,m (5.1)

=
∞∑

l=0

l∑

m=−l

e−(p1+p2)f̂l,0Yl,m = Pp1+p2
[f ] (5.2)

since we can apply the spherical convolution theorem according to [10] to the convolution
with the zonal Poisson kernel. The Poisson transform therefore fulfills the semigroup
property. Furthermore it holds that P [f ] >= 0 for every f >= 0 due to the positivity
of the kernel. Since the Poisson transform solves the Laplace equation, which is the
diffusion equation with constant source term, it is an diffusion semigroup operator on
S2. The maximum and minimum values of harmonic functions in B2 lie on the boundary
S2. In addition it holds for a harmonic function that every function value at some x ∈ B2

is equal to the average over an arbitrary sphere around x in B2. It therefore generates
no additional local extrema. These properties suggest the Poisson kernel as a smoothing
filter. Figure 5.2 shows the Poisson transform at different scales on S2.

Figure 5.1: Outputs of the filters R(ρ)[Q
(1)
r ] and R(ρ)[Q

(1)
r ] at the scale r = 0.99.
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Figure 5.2: Top row: Poisson filtered images at decreasing scales

5.2 Plane wave analysis

We want to determine the orientation of a plane wave a(t)ei〈x,y〉 and the phase with
respect the θ − ϕ plane in our local spherical coordinate system (see Figure 5.3). The
direction of the plane wave is given by y = [k sin α cos β, k sin α sin β, k cos α]T where
k is the frequency. a(t) denotes the amplitude of the plane wave. Without loss of
generality we can always choose the point ξ at which we evaluate the filter operations
as the north pole ξ = (θ, ϕ) = (0, 0). It is well known (see e.g. [1]) that a plane wave in
R3 can be expanded in terms of spherical harmonics as

f(x) = a(t)ei〈x,y〉 = a(t)
∑

l∈N

l∑

m=−l

f̂l,mYl,m(θ, ϕ) (5.3)

with

f̂l,m = iljl(rk)Yl,m(α, β) (5.4)

where x = rξ, y = kω and jl is the spherical Bessel function of the first kind and order l.
The expansion splits the plane wave into and angular part represented by the spherical
harmonics and a part depending on the frequency of the wave described by the spherical
Bessel function. Due to the nature of our filter kernels these act only on the angular
portions of the plane wave. The frequency information k is encoded as the argument
of the Bessel function is left untouched by our filter set. Using (4.9) and the property
Dl

m,0 = ( 4π
2l+1

)1/2Yl,m in conjunction with the Wigner-D function addition theorem [23]

l∑

m=−l

Dl
m,0(α, β, 0)Dl

m,1(θ, ϕ, 0) (5.5)

= Dl
0,1(α

′, β′, 0) = Dl
1,0(α, β, 0) (5.6)

the conjugate Poisson transforms of f , assuming that they are evaluated at the north
pole, read
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5.2 Plane wave analysis

R(ρ)[Q(1)
r ] ⋆ f = a(t)

∑

l∈N

l∑

m=−l

rliljl(rk)P 1
l (cos α) cos β (5.7)

R(ρ)[Q(2)
r ] ⋆ f = a(t)

∑

l∈N

l∑

m=−l

rliljl(rk)P 1
l (cos α) sin β (5.8)

where Pm
l are the associated Legendre functions. The angle β is obtained as

β = arctan
R(ξ)[Q

(2)
r ] ⋆ f

R(ξ)[Q
(1)
r ] ⋆ f

. (5.9)

β φ

Figure 5.3: From left to right: Orientation angle β of the plane wave in the θ − ϕ plane
with respect to the local coordinate system. Phase φ of the plane wave with
respect to the local coordinate system.

Since

P 1
l (cos α) = − sin α

d

d cos α
Pl(cos α) (5.10)

we notice that the bivector parts of the conjugate Poisson transform both act as differ-
ential operators with respect to cosα. We obtain the phase φ

φ = arctan

√√√√(R(0)[Q
(1)
r ] ⋆ f)2 + (R(0)[Q

(2)
r ] ⋆ f)2

(R(0)[Q
(0)
r ] ⋆ f)2

(5.11)

Note that the determination of the orientation β and φ is invariant against the amplitude
a(t).
Figure 6.1 shows the filter outputs of the amplitude, the local orientation and the phase
obtained by our filter set. It acts as the analogue to the classical Riesz transform in
the plane which has been used to obtain local amplitude, orientation and phase of plane
waves in R2.
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6 Conclusion

We have given a spectral expression for the Hilbert transform on S2 in terms of spherical
harmonic coefficients which provides an intuitive way of interpretation. The result was
the important fact that the Hilbert transform on the sphere acts as a differential operator
on the solution of the Poisson equation with boundary data on the sphere. It provides the
partial derivatives with respect to the angles θ, ϕ. For functions which can be expanded
into the product of a radial and an angular part, with frequency information encoded in
the angular part, this results in differential operator without a high-pass characteristic.
This justifies the transform as the spherical analogue of the Riesz transform where the
partial derivatives in the Fourier domain of the Poisson equation solution are taken with
respect to the Cartesian coordinates. The Hilbert transform on the sphere naturally
arises from the Cauchy transform which defines a Poisson scale space in the unit ball.
This might be treated as the counterpart in R3. It can be used for smoothing operations
or singularity analysis for feature detection. Furthermore the orientation of plane waves
arising in R3

+ can be analyzed providing a mechanism for orientation analysis on S2

without steering. Due to its derivative character, feature detectors in the plane based
on derivatives might be transferred to the sphere to provide a robust feature detection
adapted to the geometry of the sphere.
As we have seen we can use the Hilbert transform for taking derivatives with respect
to the angles in the spherical harmonic domain. Using the integral formula (3.4), this
differentiation can be carried out in the spatial domain without using the spherical
harmonic transform on the sphere. A requirement is a proper sampling scheme on
the sphere and a suitable quadrature formula. This turns out to be more stable than
applying the operations in the spherical harmonic domain.

Figure 6.1: From left to right: Amplitude , orientation and phase output of the filters
with a filter mask size of 9 pixels and a scale of r = 0.99.
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6 Conclusion

Future work might include the derivation of higher order Hilbert transforms on S2 in
order to analyze features provided by higher order derivatives. Furthermore it is desirable
to obtain the instantaneous phase and amplitude of certain signals on the sphere and
study singularities arising in the Poisson scale space for feature detection in an intensity
invariant manner.
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