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Probabilistic ATL With Incomplete Information

Henning Schnoor

Abstract

Alternating-time Temporal Logic (ATL) [AHKO02] is widely used to rea-
son about strategic abilities of players. Aiming at strategies that can realis-
tically be implemented in software, many variants of ATL [Jam04a] study a
setting with incomplete information, where strategies may only take avail-
able information into account. Another generalization of ATL is Probabilis-
tic ATL (see e.g., [CLOT]), where strategies are required to achieve their goal
with a certain probability.

We introduce a semantics of ATL that takes into account both of these
aspects. We prove that our semantics allows simulation relations similar in
spirit to usual bisimulations, and has a decidable model checking problem
(in the case of memoryless strategies, with memory-dependent strategies the
problem is undecidable).

1 Introduction

Alternating-time Temporal Logic (ATL) [AHKO02] is widely recognized as a suitable
logic to reason about strategic abilities. Using an operator ((A)) ¢, it allows to
formalize that a coalition (i.e., a set of players) A has a strategy to achieve the goal
specified by the formula ¢. In practice, requiring only the existence of a strategy
is not sufficient: A player also needs to have enough information to implement the
strategy. In a realistic environment, each player will only have partial information
about the current state of the system. This leads to a restriction of the available
strategies to so-called uniform ones [JamO4a|, where strategies may only take
into account information that is available to the player. A further important
generalization is probabilistic ATL, where strategies are required to achieve a goal
with a certain minimal probability [CLO7].

We introduce a new semantics for ATL that takes both incomplete information
and probabilism into account. In order to lead to reliable strategies in software
implementations, our treatment of incomplete information states rather strict re-
quirements for the admissible strategies: We demand that there is a deterministic
way for the players to identify their strategies for each goal they want to achieve,



given only the (potentially incomplete) knowledge about the current state of the
system available to them. Our semantics also allows to require the players to know
that their strategy is successful. However, we allow coalitions who will work to-
gether to agree on a joint set of strategies before the start of the game. To see
why this is useful, consider a situation in which players are successful if both of
them choose the same number (out of several available), and unsuccessful other-
wise. Then—without communication—the coalition of these players does not have
a success strategy; however if they anticipate this situation and agree on a number
before the game is started, obviously they can be successful.

Prior agreement models coalitions where each player trusts each other and can
rely on information about the behavior of others. In particular, the setting applies
when the players are software programs that are developed together.

During the game, we assume that players may only communicate with each
other using explicit moves. This allows to apply our semantics to situations where
communication is an integral part of the problems the players want to solve, as the
study of cryptographic protocols (see [KR03] and [KKTO07] for studies of strategic
properties of cryptographic protocols in a game-theoretic setting). Similarly, we
treat storing of information as an explicit move and therefore focus on memoryless
strategies: To determine their move, players only have access to the information
they can currently observe, and not to the entire history of the game. In order to
be able to model storing of information, we allow infinite game structures. The
three main contributions of this paper are the following:

(i) We propose a new semantics for ATL that takes into account incomplete
information and probabilism at the same time. We allow players to reach
prior agreement about the strategies they will use during the game. We
show that when requiring a natural “maximality” condition of the previously
agreed strategies, then in the classical deterministic, complete-information
setting, our our semantics is equivalent to standard ATL.

(ii) For our setting, we define a notion of simulation similar to the bisimulation
obtained for standard ATL in [AHKV98]. These simulations allow to specify
strategies on a finite “core” of an infinite structure, and then apply them
in the original infinite one (if such a finite core exists). This result paves
the way for software implementations of strategies for infinite systems. Our
simulation notions may be of independent interest, as they can also be applied
to standard (complete-information) semantics of probabilistic ATL. We are
not aware of prior result on simulations or bisimulations for ATL in the
probabilistic or incomplete-information setting; our definition covers both
simultaneously.

(iii)) We study the complexity of the model checking problem for our seman-
tics. We prove that the problem is decidable for finite structures, which
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strengthens the above point of using simulations and small structures to
represent infinite systems. The model checking problem is in 3EXPTIME
and is 2EXPTIME-hard, but the complexity drops to PSPACE-complete in
the case of deterministic game structures. The problem is undecidable for
history-dependent strategies.

Related Work There is a rich literature on ATL with incomplete information, go-
ing back to the initial ATL introduction in [AHK97], where a variant of incomplete
information is already introduced. The notion of uniform strategies that we use
was first used in combination with ATL in [Jam04a] (there called incomplete in-
formation strategies), and later extended in [JvdHO04]. They also discuss methods
for a coalition to identify a correct strategy, and allow to separate the roles of the
coalitions executing and identifying the strategy. In [Sch04], the model checking
complexity of ATL with incomplete information and both history-dependent and
memoryless strategies is studied. Further [HT06] discusses an extension of ATL
where it is required that players know that they have a strategy, and can identify
the corresponding strategy.

The goal of the above-mentioned works is different from ours: We do not
consider planning and identifying strategies during the run of a game, but study
what can be achieved by coalitions with help of an additional planning phase where
coalitions may reach prior agreement (modeled in the form of a so-called strategy
choice) on strategies for joint goals. This leads to a truth definition that cannot be
specified in a purely local way (i.e., as a function of the game structure, the state,
and the formula alone). To the best of our knowledge, prior agreement has not
been addressed in combination with ATL before (note that in the usual semantics
with complete information, prior agreement does not lead to a strategic advantage,
see Proposition 2.1).

Probabilistic ATL has been studied in [BJ09], where the success of a coalition’s
strategy is measured depending on a probability measure describing the (likely)
actions of the remainder of the players. In the current paper, we use the pessimistic
worst-case assumption about the actions performed by the opponents of a coalition
(see the conclusion for a discussion on alternatives). In [CLO7], a model checking
algorithm for history-dependent strategies for probabilistic ATL is introduced.

To the best of our knowledge our work is the first that studies ATL with
incomplete information in a probabilistic setting.

The structure of the paper is as follows: In Section 2, we introduce our seman-
tics for ATL and discuss various aspects of it. We also state the above-mentioned
requirement of “maximal” prior agreements, which form a consistency condition
for the chosen strategies. We prove that strategies satisfying this condition exist
in a large class of game structures. Section 3 introduces our notion of simulation,



and proves that it indeed allows to transfer previously agreed strategies. Section 4
contains our results on decidability and complexity of the model checking prob-
lem for our semantics. We conclude in Section 5 with a brief discussion of open
questions.

2 Semantics for Probabilistic ATL* With Incom-
plete Information

We now introduce concurrent game structures, strategies, strategy choices (which
model prior agreement) ATL*-formulas, and state our semantics definition (Sec-
tion 2.1). In Section 2.2 we point out some simplifications for deterministic (i.e.,
not randomized) structures. Section 2.3 then discusses the motivation behind our
semantics by way of an example, Section 2.4 shows how to model history-dependent
strategies in our (essentially memoryless) setting in a straight-forward way that
allows for a later decidability analysis. In Section 2.5 we discuss a subtle point
of our semantics concerning “unsuitable” sets of previously-agreed strategies, and
show that a natural condition on these strategies avoids the issue while at the
same time embedding the standard semantics of ATL* into our framework.

2.1 Concurrent game structures, strategies, and ATL* with
incomplete information

The following definition of a concurrent game structure is based on the one
from [AHKO02]. It extends the latter to infinite structures (see also [KKTO07]),
a probabilistic setting (see also [CL07]) and a mechanism to deal with incomplete
information (see also [JvdHO04]):

Definition A concurrent game structure (CGS) is a tuple C = (X, Q, P, m, A, 0,
eq), where

— Y is a non-empty, finite set of players,

— () is a non-empty set of states,

— P is a finite set of propositional variables,

— m: P — P(Q) is a propositional assignment (assigning each propositional
variable the set of states in which it is true),

— A is a move function assigning to each state ¢ € () and player a € ¥ a
nonempty set A(q, a) of moves available at state ¢ to player a. For A C X
and ¢ € @, an (A, ¢)-move is a function ¢ which maps each a € A to a move
c(a) € Ag,a). A (3, q)-move is a total move.
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— ¢ is a probabilistic transition function which for each state ¢ and total (X, q)-
move ¢, returns a probability distribution §(q,c) on @ (the state obtained
when in ¢, all players perform their move as specified by ¢),

— eq is an information function eq: {1,...,n} x ¥ — P(Q x Q), where n
is a natural number, and for each i € {1,...,n} and a € %, eq(i,a) is
an equivalence relation on ). We also call each i € {1,...,n} a degree of
information.

A subset A C ¥ is also called a coalition of C. We often omit “of C” when the
game structure is clear from the context. The coalition ¥\ A is denoted with A.
We often write Pr (6(q, c) = ¢') for (6(q,c)) (¢'). We only allow discrete probability
distributions returned by 9, i.e., we require that for each ¢ € @ and total (3, q)-
move ¢, there is a countable set @)’ C () such that quQ, Pr(6(q,c) =q) = 1. The
information function eq allows to reason about incomplete information: Often
a player a will not have complete information about the current state. Hence
for each player there is an associated “indistinguishability” relation which is an
equivalence relation specifying the states between which a cannot distinguish. To
be able to evaluate strategies with different degrees of information for the same
player, we specify several relations eq(1, a), ..., eq(n, a) for each player a. We often
write q1 ~eq,(4) @2 for (q1,q2) € Nacaeq(i,a) (i.e., no member of the coalition A
can distinguish between ¢; and ¢), and write ¢; ~eq,(a) G2 TOr 1 ~eq,({a}) G2- C
is deterministic if its transition function ¢ is (i.e., the probability distributions
returned by ¢ assigns 1 to a single state and 0 to all others). We say that a player
a in C has complete information if eq(i, a) is the equality relation on the state set
for all € N. A CGS has complete information if every player has.

To shorten forthcoming examples, we will often assume that for each state ¢
there is a propositional variable with the same name, which is true only in the
state q.

We now define the set of formulas used to describe properties and strategic goals
in a CGS. The syntax of our formulas is identical to the one of ATL* ([AHK02]),
except for the addition of degrees of information and probabilities (the latter are
handled as in [CL07]).

Definition Let C be a CGS with n degrees of information. Then the set of
ATL"-formulas for C is defined as follows:

— A propositional variable of C is a state formula for C,

— conjunctions and negations of state formulas for C are state formulas for C,

— if A is a coalition, 1 <i<n, 0 < a <1, and «is one of <, <,>,>, and 1
is a path formula for C, then ((A))** 1 is a state formula for C,
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— if A is a coalition, 1 < i < n, and 1 is a state formula for C, then K2 is a
state formula for C,

— every state formula for C is a path formula for C,

— conjunctions and negations of path formulas for C are path formulas for C,

— If ¢ and @9 are path formulas for C, then Xy, and Uy, are path formulas
for C.

Again, we often omit the “for C” when the structure is clear from the context.
The operator ((.)) is called strategy operator. An ATL*-formula is a state formula
unless specified otherwise. We define the usual abbreviations, i.e., p Vi) = =(—p A
—), Op = trueUp, and Oy = =O0—p. We also simply write ((a)) instead of
(({a})), etc. We say that a ((.)),-formula is one whose outmost operator is ({A))*
for some coalition A, and some <« «, etc. The set pls(p) is the set of players
mentioned in the formula ¢, i.e., it contains the player a € ¥ if and only if a € A
for some coalition A such that ({A)) or K4 appears in . In a CGS with only
one degree of information, we often omit the ¢ subscript of the strategy operator,
similarly in a deterministic CGS we usually omit the probability bound « « (and
understand it to be read as > 1 in deterministic structures).

Note that for technical reasons, we do not allow equality in the formulas: For a
coalition to ensure that the probability of achieving a goal ¢ is exactly o requires
to either lower or raise the probability of ¢ in an execution of the game, depending
on what an adversial coalition does in parallel paths.

A path in a CGS C is a (possible infinite) sequence A of states in C. With
Ali] we denote the ith state in A, with A[4, k] the sequence A[i], ..., A[k], and with
Ali, 0] the (possibly infinite) sequence A[i], A\[i + 1],.... A strategy is a set of
instructions for a player how to proceed in each state. A wuniform strategy (see
also, e.g., [Sch04]) requires these instructions to be identical in states which the
player cannot distinguish—this ensures that a player has enough information to
determine the move instructed by the strategy in the current state, given the
information available to him.

Definition Let C be a CGS with state set () and move function A, and n
degrees of information. For a player a, an a-strategy in C is a function s, assigning
a move to each state such that s,(q) € A(q,a) for each g € Q. For 1 <i < n, s, is
i-uniform, if qi ~eq,(a) g2 implies s,(q1) = sq(q2). For a coalition A, an A-strategy
is a family (s,)sea, where each s, is an a-strategy.

As mentioned in the introduction, we only consider memoryless strategies: The
action of a player may only depend on the current state. Usually, ATL* allows
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history-dependent strategies. Since we allow CGSs to be infinite, our semantics
canonically allows the treatment of history-dependent strategies (see Sections 2.4
and 3.3), however we will see (Theorems 4.1 and 4.2) that model checking is
decidable only for memoryless strategies.

Note that for i-uniform strategies to exists, it is required that for each state
q, and player a, there is a move m € ﬂqfweqi(a)qA(q’ ,a). We will even assume
that for each player a, there is a move m, € NyeA(g,a), i.e., some move that
can be performed in every state. This assumption can be made without loss of
generality, and can be ensured by simple renaming of moves. Similarly, a “natural”
information function should ensure that in two “indistinguishable” states, a player
has the same number of possible moves (this could always be satisfied by adding
“dummy moves,” we do not require this for our results).

A response to a coalition A is a function r such that for each ¢t € N and each
q € Q, r(t,q) is a (A, g)-move. Hence a response is an arbitrary reaction to the
(probabilistic) outcomes of a possible strategy chosen by A. Given a strategy
S4 = (Sa)aca and a response 1 to A, the resulting “game” is a Markov process,
where the transition probabilities are determined by the probabilistic transition
function of the CGS (the moves of the players in A are fixed by s4, those by A are
fixed by r: When in the i-th step, the game is in the state ¢, then a player a € A
perform the move s,(q), and a player b € A performs the move r(i, q)). Note that
players in ¥\ A are not bound by any strategy; they are not restricted to any
uniformity conditions and also may act differently when the same state is reached
twice during a run of the game. Since the resulting “game” is free of any strategic
choices, we can state the following definition:

Definition Let C be a CGS, let s4 be an A-strategy, let r be a response to A.
For a set M of paths over C, and a state g € @,

Pr(g— M |sa+r)

is the probability that in the Markov process resulting from C, s, and r with
initial state ¢, the resulting path is an element of M.

Strategies allow players to choose a move in a state. Uniform strategies ensure
that a player has sufficient information to determine the correct move. Similarly,
players also have to decide on a strategy for a given goal ¢; we formalize this using
strategy choices, that are required to fulfill an analogous uniformity requirement.

Definition Let C be a CGS with state set ), and let A be a coalition. A
strategy choice for A in C is a function S such that for each a € A, ¢ € @, each
((.));-formula ¢ for C, S(a, ¢, ¢) is an i-uniform a-strategy in C, and if ¢ ~eq, (a) G2,
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then S(a, g1, ((A)); ¥) = S(a, g2, ((A")), ) for all A’ C A.

A strategy choice S for a coalition A models “prior agreement:” Before the
game starts, the coalition may agree on a set of suitable strategies to achieve
strategic goals specified by ATL*-formulas. These sets of strategies are collected
in a strategy choice S. The intended intuition is the following: When in the
state ¢, the coalition A decides (or is instructed to) achieve the goal specified by
¢, each player chooses the strategy S(a,q, ¢). Hence the resulting A’-strategy is
the family (S(a,q,¥)),ca» Which (somewhat abusing notation) we denote with
S(A’,q,¢). The uniformity conditions for strategy choices and strategies ensure
that players have “enough knowledge to identify and execute” the correct strategy
([JA06)).

The information-degree 7 specified in ¢ determines the amount of information
that the coalition may use to achieve its goal (see the semantics definition below).
This allows (by nesting operators) to express statements like “Coalition A does not
even have a high-knowledge strategy to reach a state where coalition B has a low-
knowledge strategy to achieve ¢,” even when A and B are not disjoint. We now
give the definition of semantics of ATL*-formulas. We will discuss the definition
briefly below, and give examples highlighting the main points in the forthcoming
Section 2.3

Definition Let C = (3,Q,P,m, A, d,eq) be a CGS, and let S be a strategy choice
for a coalition A in C, let ¢, w9 be state formulas for C, let 11, 15 be path formulas
for C, such that pls(¢1), pls(p2), pls(11), pls(is) C A, let ¢ € @, and let A be a
path over ). We define

- C,S,qE=piff g € w(p) for p € P,

— C,S,q =~ iff C,S,q [~ o1,

~C,S,qFE o1 N iff C\S,q = ¢y and C,S, q = s,

- AS ): ¢ iff CvSv)‘[O] ): 1,

NS b iy A, S e oy,
AS ):¢1A1/12 1ff)\,5 ):% and /\75 ):7702,

- A5 ): Xy iff )‘[1700]78 ): Y1,
A S E Uty iff there is some ¢ > 0 such that A[i,0],S E 9 and
Alj, 0], S | 4y for all j < i,

— If oy = ((A")) ¥4y, then C, S, q |= ¢y iff for every response r to A, we have
Prig—>{AASEW} [SA, q,¢1)+7) €a,

— C,S,q KA1 if C,S,q = ¢ for all ¢ € Q with ¢ ~eq;(A) G-
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The fact that players may only have limited information about the current
state is reflected in the above definition in three ways: First, by only considering
uniform strategies, we ensure that players have enough information to follow the
relevant strategy. Using strategy choices guarantees that players can identify their
strategy. Finally, the knowledge operator K- allows to express further requirements
about the available strategies: Consider the formula KA ((A”))** ¢, for which we
introduce the shorthand ((KA’))**. By the above semantics, this formula is true
in a state ¢ with respect to a strategy choice S if and only if the strategies chosen
for the formula ¢ by S are successful in every state ¢’ such that ¢’ ~eq.(ay ¢. We
believe that in “pessimistic” settings, this composed operator is in fact more useful
than using ((A))** without the knowledge-prefix: The intuition behind using this
operator is that in the state ¢, the coalition A’ cannot rule out that the actual state
is ¢/, hence if their chosen strategy is unsuccessful in ¢/, the coalition A’ cannot
be sure about its success in ¢ either. A similar requirement was made in [Sch04].
Essentially, ((A'))** expresses that the coalition A’ has a strategy to ensure that
¥ is true with probability € «, and with information degree 7, the coalition can
agree on the correct strategy, each player can execute the strategy, and the coalition
has sufficient (distributed) knowledge to “know” that the strategy is successful.

2.2 Deterministic Game Structures

If C is a deterministic structure, several of the above definitions can be simpli-
fied. This increases readability for the deterministic case, and simplifies proofs of
later results that are specific for deterministic structures (see the stronger sim-
ulation results that we obtain in this case). In the deterministic setting, the
notion of a “response” of A to a strategy of a coalition A can be omitted, as
for each total move there is exactly one possible follow-up state. Hence in this
case the possible follow-up states of an (A,¢g)-move c is the set next(q,c) =
{0(q,c) | ¢ is a (3, g)-move with ¢(a) = c¢(a) for all a € A}. The possible paths
resulting from the application of an A-strategy sa = (Sa)aca in a state ¢ is the
set out(q,sa) containing all paths A such that A[0] = ¢, and for each i, if ¢;
is the (A, A[i])-move defined by c¢;(a) = s4.(A[i]) for all @ € A, we have that
At + 1] € next(A[i],c;). The set of formulas is defined in the same way as in
the probabilistic setting, except that we omit probabilities from the formulas.
The modified semantics of the strategy operator is as follows: For a formula
o = ((A)); ¢, we have that C,S,q = ((A")), ¢ if and only if \,S |= ¢ for all
A € out(q,S(A', q,¥)).
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2.3 Discussion of Semantics

The intention of our semantics for the ((XC.))-operator is the following: For a CGS
C, a strategy choice S, and a state ¢ of C, the statement C,S,q | ((KA))* ¢

—_———
is true if and only if in the state ¢, the members of A can identify and follow a
strategy that achieves ¢ with probability p « «, and know that the strategy is
correct.

This intuitive requirement is captured by our formal definition in the following
way: Since in states ¢ ~eq,(a) ¢'s we know that S(a,q,v) = S(a, ¢, v), a player a is
able to identify the strategy intended for the goal 1) by the strategy choice S. Since
the strategy returned for ¢ by S is ¢-uniform, a has enough information to follow
the strategy. Finally, since we require that for every state ¢’ such that ¢’ ~eq.(4) ¢,
the strategy S(A, ¢/, 1) (recall that this is the A-strategy chosen by S to reach the
goal ¢ in the state ¢’) will achieve the goal, the coalition A also knows that the
strategy will be successful-—note that this does not imply that every single player
knows this fact (this however can also be expressed in our semantics, by requiring
Poca K2 ({A) 2 instead of ((KA))*).

As an example, consider the CGS C shown in Figure 1, which revisits the
classical “blind and lame agent” example: There is a blind player a who can turn
a switch for a light bulb, but does not know whether the light is on or off. There
is a second player b who can see, but cannot influence the switch. Formally, the
moves of player a are 0 (do nothing), which does not change state, and 1 (turn
the switch), which changes state from “On” to “Off” and vice versa. Player b has
complete information, while for player a, both states are indistinguishable (there
only is a single degree of information).

We now want to evaluate the available strategies for the for-
mula XOn, i.e., the strategies of the players to turn on the light. a:0
Obviously, player b alone does not have a strategy to achieve
XOn, as b cannot perform any relevant action. Since both states
are indistinguishable for player a, any uniform strategy has to
perform the same move 3 € {0,1} in both the On and the Off _; acl
state. We first consider the strategy s!, which always performs
the move 1 (i.e., toggles the switch). Let S; be the strategy @
choice that for the formula XOn returns this strategy.

Obviously, the strategy will be successful in the state Off,
and will fail in the state On. Since On ~eq(q) Off, this implies
that C, Sy, Off £ ((Ka)), XOn, even though the selected strat- Figure 1: Exam-
egy would be successtul in the state - a does not have sufficient ple “Blind and
information to know that he will be successfully in turning on [,ame Agent”
the light.

a:0
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Now consider the coalition A = {a,b}. Since the moves of b are irrelevant, we
use the same strategy choice as above (formally, add a dummy move for b). Ob-
viously, this strategy choice is still unsuccessful in the state On, since the selected
move does not result in the light being turned on. On the other hand, since the
only state ¢ with ¢’ ~eq,(4) Off is the state Off itself - hence (since the move is
successful in Off), it follows that C,S;, Off = ((ICA)) XOn. This expresses that
together, the coalition A has enough information to know that their strategy is
successful: When asked by an external environment whether they have a strategy
to turn on the light, in the state Off, they would reply as follows (when S; is the
previously agreed set of strategies):

Player a: “We have a strategy if and only if player b says so.”
Player b: “Yes.”

When asked the same question in the state On, player a would have to give the
same answer (since he does not know whether the current state is On or Off), and
player b would reply with “No.” Hence the coalition possesses sufficient knowledge
to determine whether the strategy is successful in both states.

Also note that when considering the strategy choice Sy, that always chooses
the move 0 for a instead, the formula ((a)) XOn is satisfied in On, but not in Off.
In particular this establishes the claim made in the introduction: Our semantics
cannot be defined “locally,” without fixing the set of previously agreed strategies
in a strategy choice (also note that of these two strategy choices, none is strictly
“better” than the other, both are equally valid).

Finally note that strategy choices are free to (somewhat counter-intuitively)
define different strategies for the formula ¢ and the formula ¢ A . Similarly
one can define a strategy choice S such that for a C and a state ¢, and formulas
@ A, we have that C,S,q = ()™ (¢ A ), but C,S,q K ((A)* (0 A o).
Although unintuitive, this behavior can be useful: Consider the “blind and lame
agent” example (see Figure 1). As argued there, there is a strategy choice S;
allowing the coalition to turn on the light in the state Off. There is a different
strategy choice achieving the same goal in the state On. By defining two formulas
v1 = XOn and ¢y = X(On A On), we can construct a strategy choice S such
that C,S,0n = ((a,b)) ¢1 and C,S, Off = ((a, b)) 2. This can be used to model
the situation where an external “environment” decides which strategic choices
the players should attempt to reach, and which uses formulas as commands. By
sending the formula ¢; or ¢y in the states On or Off, the environment can pass
additional information about the state to the players, allowing them to reach
the goal “turn on the light” on both states —although not in a “uniform” way:
the command to turn on the light is different in each state. This reflects that the
command needs to contain additional information in order for the players to follow
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it. Although such a construction might be useful in some situations, we do not
study the resulting possibilities in the present paper.

2.4 History Dependence

As mentioned before, ATL* usually allows so-called history-dependent strategies,
where the action of a player in a state may depend on the entire previous history of
the game. Although formally, our framework only considers memoryless strategies,
history-dependence can be expressed in a straightforward way: We now define a
“history-dependent version” C"! of a given CGS C, by simply encoding history
into the states themselves. Note that if C is finite, then it also serves as a finite
description of C"$*, which allows us to algorithmically reason about the latter
(see Section 4). The following definition uses the obvious treatment of incomplete
information, where a player a can distinguish histories of they have different length
of if he can distinguish between individual points in time.

Definition Let C = (3,Q,P,11,A,d,eq) be a C with n degrees of informa-
tion. Then C"!, the history-dependent version of C, is defined as C"* =
(3, QT, P, 11", A, ¢, eq’), where

— @7 is the set of non-empty, finite sequences over (),

—forpeP, IW'(p) ={ar-. . qua [ ¢ € Mp),q1;- .., € Q},

— Aqr-- - qn,a) = Algn, a),

— For a state ¢;...¢, € Q1 and a total move ¢, §'(q1 ... qn,c) is defined as
Q- a0 (Gn; ©),

— eq'(i,a) is defined as follows: For sequences ¢' = ¢;...¢q, and ¢* = ¢} ...q,,
we have ¢! ~eq](a) ¢* if and only if n = m and g¢; ~eq,(a) q; for all j < n.

We comment on the relationship between C and C"** when we discuss simulation
properties in Section 3.3.

2.5 Maximal Strategy Choices

We show that our semantics for ATL" admits strategy choices satisfying formulas
which intuitively should be “unsatisfiable.” This observation leads to a definition
of a very natural subclass of “maximal” strategy choices avoiding this problem.
Additionally, for maximal strategy choices our semantics of ATL"* agrees with the
standard semantics in the deterministic, complete-information case.

14



Consider the CGS C shown in Figure 2. C is a de-
terministic, complete-information CGS with a single
player a. In qq, there is a single move leading to ¢y, in
q1, there are 2 moves leading to ¢y or g3 respectively.
Define ¢ as ({a)) X—((a)) Xg3. Intuitively (and in
standard ATL" semantics), ¢ expresses that there is
a move by a such that in the resulting state, a cannot
reach ¢3. Intuitively (and in standard ATL"), ¢ is
not satisfied in ¢g, since the only available move for
a leads to the state ¢p, from which the state g3 can
be reached by the move 1. However, for the strategy
choice S always returning the strategy that chooses
the move 0 in every state, it follows that C,S, ¢ = ¢.

Figure 2: Example

Obviously, S is not very interesting, as it fails to achieve the goal Xgs3 (and
hence succeeds in achieving ) deliberately, by choosing an unsuccessful strategy
although a successful one is available. In particular, the satisfaction of ¢ does
not allow us to conclude that there is a move for a in ¢y such that in the next
state, a cannot reach g3 anymore even when trying (note that the example of
a coalition A trying to achieve a situation where it is unable to reach a certain
goal is not at all contrived: A might want to commit to, let’s say, a secret value.
Then a selection of strategies that could—but does not—violate the commitment
is clearly unsatisfying: It is required that the commitment cannot be violated
anymore, without the assumption of the good-will of A.)

In many situations, the above behavior is not natural: Often we want strategy
choices to not deliberately choose “bad” strategies in “innermost” formulas in order
to make “outermost” operators true; it should prioritize “innermost” formulas. To
formalize this intuition, let sd () (the strategic depth of a formula ¢) be the
maximal nesting degree of strategic operators in ¢. For a strategy choice S for
a coalition A in a CGS C and a formula ¢ with pls(¢) C A, with sat, (S, j) we
denote the set of pairs (g,%) such that v is a ({.))-subformula of ¢, sd (¢) = j,
and C, S, q |= . Using this notation, we can define an order on strategy choices,
where S; < S, should mean that Sy does a a better job of prioritizing formulas
with small depth than S; does.

Definition Let S; and Sy be strategy choices for a coalition A in a CGS
C, let ¢ be an ATL*-formula for C with pls(p) € A. Then S; <, Sy if
1. sat, (S1,7) = saty, (Sq,i) for all i < sd(p), or 2. for the minimal ¢ such that
saty, (S1,1) # saty, (S2,17), we have sat,, (S1,7) C sat, (Se, 1)

As an example, in the above-described C from Figure 2, consider the strategy
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choice S’ which always returns the strategy that in ¢y chooses the move 0 and in
¢1, chooses the move 1. It can easily be verified that S <, S’. The order <, can
easily seen to be a preorder.

As usual, a strategy choice S is <,-maximal if S <, §’ implies §' <, S. In
many situations, a restriction to maximal strategy choices is natural. In particular,
for the deterministic, complete-information setting, our semantics restricted to
maximal strategy choices is equivalent to the usual semantics of ATL* [AHKO02].
In the following with C, ¢ F=aTL.m1 ¢, we mean that the formula ¢ (with all indices
i of an ((A)),-operator removed) is satisfied at the state ¢ of the CGS C in the
standard ATL* semantics restricted to memoryless strategies.! The following is
very easy to show:

Proposition 2.1 Let C be a deterministic CGS with complete information, let o
be a formula for C, and let S be a <,-mazimal strategy choice for pls(y) in C.
Then for all subformulas 1 of ¢, the following are equivalent:

1' C’ S’q |: ¢7
2. C,q Earr-m V.

Proof. First now that in the complete-information setting, the knowledge operator
can be disregarded: In this setting, a formula K1) is obviously equivalent to 1.
Hence we only consider formulas in which this operator does not appear. We show
the claim by induction on 1. We also prove that if A is a path in C, then A\, S |= 9
if and only if A FarLm ¢ (where Farrm for paths is defined as the formula
Y, stripped of all its information-degree indices, being satisfied by the path A in
standard ATL" semantics). The case where 1 is a propositional variable is trivial,
as is the induction step for propositional operators. When the result is true for
sub-formulas 11,1 of ¢, the claim for paths and the formulas ¢, U, as well as
Xy follows trivially (since inductively, 11, 1o, and ¢ are satisfied at the exact
same indices of any path). Hence the only interesting case in the induction is
when ¢ = ((A)), x for some formula x (note that we only have a single degree of
information).

First assume that C,S,q = ¢, and let s4 = S(A,q,1) be the joint strategy
for A chosen by S. By definition, for all paths A € out(q,sa), we have that
A, S | x. Hence due to induction, for all A € out(q, s4), we have A\ EarLml X-
Hence, C, q FEaTL-m1 ¥, as the strategy s, is also a valid strategy in standard ATL"
semantics.

For the converse, assume that C, ¢ F=arp.m ¥. By definition of standard ATL*-
semantics, there is an A-strategy sq = {s, | @ € A} such that A\ Earpm x for

'We do not define standard ATL* semantics here, for the remainder of the paper the charac-
terization given by Proposition 2.1 suffices.
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all A € out(q,s4). By induction, it follows that for all A € out(q,Sa), \,S E x.
Assume that C,S, ¢ [~ ¥. Then for the modified strategy choice S’ which behaves
as S except that in ¢, on input ¢, for a € A returns the strategy s,, it holds
that S <, S and S’ £, S (note that since the only appearing equivalence relation
is equality, the uniformity requirements on S’ are trivially satisfied, hence S’ is a
strategy choice). This is a contradiction to the <,-maximality of S. 0

Note that the same proof also gives the analogous result when considering prob-
abilistic CGSs and the semantics as defined in [CLO7], restricted to pure memory-
less strategies.

Although maximal strategy choices are often the
most natural ones to consider, they do not always
exist. As an example consider the CGS C shown in
Figure 3, where we have two players a and b, and
all states ¢; are indistinguishable for the player a.

Player b has complete information. In each state ¢;, A

a has a move j for every j € N. The resulting state . \@
when performing move j in ¢; is r if j < 4, and v tarj<i

if j > i (the moves of b are irrelevant and there-

fore not shown). Consider the formula ((Ka, b)) Xuv. @ @

Since all states ¢; are indistinguishable for a, a uni-
form a-strategy s, has to pick the same move j in all
states ¢;. Obviously, a strategy choice choosing such
a strategy cannot be maximal, as the strategy choice
choosing the strategy always returning j + 1 ensures
the success of Xv in one additional state (note that
the player b is required here; in his absence the for-
mula would not be satisfied in any state since a alone
does not know whether the strategy is successful,
only the observer b has that knowledge).

However, at least for countable structures the above situation of infinitely many
indistinguishable states is the only one where maximal strategy choices may fail
to exist. We say that a CGS has finite indez, if for every equivalence relation
eq(i, a), every equivalence class has finitely many elements. This criterion is clearly
satisfied by finite CGSs, further if C has finite index, then C*** has finite index as
well. Trivially a CGS with complete information has finite index. In such CGSs,
every strategy choice can be “enhanced” to obtain a maximal one:

Figure 3: No maximal strat-
egy choice

Theorem 2.2 Let C be a CGS with a countable state set and finite index, let ¢ be
a formula for C with pls(p) C A, and let S be a strateqy choice for A in C. Then
there is a <,-mazimal strategy choice Sy,ap for A in C such that S <, Sz
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Proof. Let () denote the set of states of C. Without loss of generality, assume
that () is infinite (otherwise, the theorem is trivial: With a finite state set, we
can without loss of generality assume that there is only a finite set of moves, and
thus there are only finitely many strategies and strategy choices, hence maximal
strategy choices trivially exist). Let m denote the number of degrees of information
in C. For a strategy choice S and a subformula x of ¢, with sat(S, x), we denote
the set {g€ @ |C,S,q = x}. Let ¢i1,¢o,... be an enumeration of Q. Since C
has finite index, for all £ € N, there is a number dj, such that for all £, if there
is some a € ¥ and some ¢ € {1,...,m} with gy ~eq,(a) G, then k' < di. Let
X1, - - -, Xn be an enumeration of all ({.))-subformulas of ¢ such that if i < j, then
sd (x;) < sd(x;). We construct S,,,, inductively, where we use (finite) induction
on the formulas x1,..., X», and (infinite) induction over the sequence of states.
For the partial constructions involved, we define a “partial” version of <, which
only considers subformulas up to a specific index, and only a prefix of ¢1,qs, . ...
For i <n, k € NU {co} and strategy choices Sy, Sy for A, we write Sy Sf;k So if
forall j, lwith j <i—1lor (j=7¢and ! <k),if C,Si,q = x; and C,Ss, q; [~ X,
then there is some j' with sd (x;) < sd (x;) and sat(Sy, x;/) € sat(Sa, x;7). This
expresses that “up to formula y; and state ¢;, the strategy choices S; and S, are
comparable in a way compatible with S; <, So.” We define ngk—maximality and
Egk in the obvious way. We state a number of straight-forward facts about this
order:

Fact 1 Ifi<id or (i=14 and k < k'), then' S; Sf;’k' S, implies Sy gff S,.

Proof. Directly by definition. O
Fact 2 Sy < S, if and only if Sy <F S, for all k € N.

Proof. This also follows directly from the definition. O
Fact 3 Fori<mn, Sy <™ Sy holds if and only if Sy <UF0'S,.

Proof. First assume S; <4 Sy. To show Sy <IF'0 Sy, let j, I be such that j <
or (j=i¢+1land ! =0)andC,Sy,q = xj, C,S2, ¢ = x;- Since gp does not exist,
it follows that j < i. Since ¢ is a valid state, it follows that [ € N. Due to Fact 2,
we know S; Sfp’l S,. Since j <1, [ <, there is some j" with sd (y;/) < sd (xj) and
sat(S1, xj7) € sat(Sg, x;7) as required. For the converse, assume that S; Sfjl’o Ss.
Due to Fact 1, it follows that for all £ € N, S; §i;k Ss. By Fact 2, this implies
S <~ S, as required. O

The following shows that Sf,gk is a “partial version” of < :

Fact 4 S, <, Ss if and only if Sq <5 S,.
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Proof. Let S <, Sy, we show S; <5 So. Hence let 7 < n, let | € N,
let C,S1,¢4 = x; and C,Ss,qi = Xx;. Let d be minimal with sat, (S1,d) #
sat, (S2,d). Obviously, d < sd(y;). Since S; <, Sy, we know sat, (S1,d) €
sat, (S2,d). Since sat(Si,x;) € sat(Se, x;), we know d < sd(y;). Since
sat,, (S1,d) € sat, (Se,d), there is some j with sd (y;;) = d < sd(x;), and
sat(Sy, x;) € sat(Sq, xj7) as required.

Now assume that Sy <™ Sy. To prove S <, S,, assume there is a minimal ¢
with sat,, (S1,7) # sat, (S2,4). We need to show sat,, (S1,4) C sat,, (Se, ). Indirectly
assume there is some j with sd (y;) =7 and a state ¢; such that C,Sy, ¢ = x;, and
C,Sa,q1 F xj. Since Sy <> Sy, there is some j" with ' := sd (x;1) < sd(x;) =1
and sat(Sy, x;7) € sat(Sq, x;7). This a contradiction, since i" < ¢, and 4 is minimal

with sat,, (S1,7) # sat, (Sa, 7). O

We now construct the maximal strategy choice S, inductively: For 0 < i < n,
we construct S; such that

1. S SZC’)OO Si, and
2. S, is maximal with respect to gffo.

We choose Sy = S (note that S; Sg;oo S, is true for all S1, S, hence our choice
of Sy satisfies the required conditions). Assume that S; has been defined. For S;,4,
we again use an inductive construction, where induction is over the sequence of
states: For all k € N, we define S; ;1 such that 1. S <ZFb° Sy, and 2. Siyy is
gfjl’k—maximal among those S’ with S gfjlvoo g.

We define S;41 as follows: For a player a € A, a number 1 < j < n, and a
state q, let

; a” , L) = 3
+1,00@, 4, X S(a,q,x;), otherwise.

Obviously, S;i1,0 satisfies the uniformity requirements of strategy choices (as
for different formulas, different existing strategy choices are used). We claim that
Sit1,0 satisfies the required conditions:

1. We show S <iFb>'S;; o. For this, let j <i+1, let I € N such that C,S,q =
Xj, and C,Sit10,q & xj- Let j be minimal such that a corresponding !
exists.

Case 1: j < i. Then for the formula y; and its subformulas (with must
appear before x; in the enumeration xi,...,Xn), Si+1,0 behaves as S; does.
Hence C,S;,q; = x;. Since inductively, we know S §i;°° S;, there is some
g with sd (x;/) < sd(x;), and sat(S, x;/) € sat(S;, x;7) = sat(Si+1,0,xj) as
required.
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Case 2: j =i+ 1. Due to the minimality of j, we know that sat(S, x;/) C
sat(S;y1,0, xj) for all j < 4. If there is some j' with sd (x;/) < sd(x+1)
and sat(S, x;/) € sat(Si+10,X;7), the claim follows. Hence assume that
sat(S, x;7) = sat(Sit1,0, xj) for all j" with sd (x;/) < sd (xi+1). In particular,
for all proper ((.))-subformulas of x;, the strategy choices S and S;;; lead to
the exact same set of satisfying states. Since S;;1 uses the same strategy
as S, the strategy of S;11 is successful as well, which is a contradiction to
C,S,q = xj and C,Siy10,q1 = X;-

2. We show that S;yq is </F'*-maximal (even unconditionally). For this, as-
sume that S;119 <00 S". We need to show S <10 S, . Due to Fact 3,
it suffices to show S’ Si;oo Si+1,0- By construction, for formulas x; with 7 <1,
the strategy choices S;119 and S; behave identically. Hence S; = S;410.
Since by induction,.Si is §Z°°—maximal, and (by the above and Fact 3), we
know that S;y19 =35> S; <™ S’, it follows that S’ <u> S =0 Siip, as
required.

Now assume that for some k > 0, S;1; , has been defined satisfying the above.
We define S; 1 ;41 as follows: Let

Qit1 k1 = {q € Q | there is some a € ¥, ¢ such that g ~eq, () qu} )

Since C has finite index, it follows that ;i1 x+1 is finite. Q41441 is the set
of states that may be relevant for the strategies chosen in the state gy; (as a
player must choose the same strategy in indistinguishable states). Let M; ;1 x+1 be
maximal such that there is a strategy choice S; 11 41 such that 1. S Sfjl’oo Sitik+1s
2. Sitak <O Siikt1s 3. CoSitakr1s ¢ b= Xiga for all ¢ € Mgy pyq. If possible
with the first two points, choose S;i1 k1 such that C,S; 1 k41,11 F Xiz1- A
strategy choice satisfying the first two obviously exists, as S;y1 satisfies both
points by induction. Since ;4141 is finite, a maximal subset M; ;11 exists
and thus S;;; 441 can be chosen satisfying the above. We require an additional
condition of S; 41 x4+1—this is important, as it ensures that the strategy chosen for
Xi+1 reaches a “stable” point in the construction (note that S; ;1 41 and S; 41 may
result in different strategies even for states ¢; with [ < k, as the state g1 might
be equivalent to ¢; for some of the involved players, and the previous strategy may
not be “optimal” in the state gyy1).

Fact 5 S;i1+1 can be chosen such that S;1k1(a, X5, @) = Siv1.6(a, X5, @) for all
Gyl with j <ior (j=iandl <k and q # Qit1k+1)-

Proof. Since Sy Sfjl’k Sit1k+1 and the inductive maximality of the former
among those strategy choices that are gfjl’o"—above S (which the latter also is),

we know that S;i 14 Efjl”“ Sit1k+1. Hence for j < 4, we have sat(Sit1x,X;j) =
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sat(Sit1,k+1, X;). For those formulas, we can thus let S;;1 541 choose the same
strategies as S;41 x without changing any relevant property. Further, it is obviously
irrelevant how S;;1 41 is defined for the formula y;;, at states that are no elements
of Qit1,k+1 for the above maximality condition. Hence S;1; ;41 can be chosen to
behave in the same way as S;;1 for these arguments. O

We now show that S;i; ;41 satisfies the claimed conditions. The first condi-
tion (S gff S;) is trivial by choice of S;11x+1. The second condition requires
that Sip1 k41 18 SijkH—maximal among all §' with S <> S/ Hence let
S <orbee §and let Siyq g1 Sfpﬂ’k*l S’. We show S’ §fp+1’k“ Sit1k+1- Since
Sivie <O St <UTVF S and S <KUY Sy g4, S/, and Sy is (by induc-
tion) <ZF* maximal among all strategy choices that are </'*°-above S, it follows
that Si1x Efjl’k Sit1kt1 Efjl’k S’. Indirectly assume that S’ gijk“ Sitihst-
Due to the =/"*-equivalence above, it then follows that C,S',gr41 = Xi+1, and
C,Sit1h+1, Qhr1 & Xigr. Since S <ZFL S and Sipyy =0 Sipy g =00 S
in the choice of S;i1 k41, we are in the “if possible” case, and thus have chosen
Sit1k+1 such that C,S;41 k41, @et1 = Xiv1- This is a contradiction, hence S;iq 41
satisfies the required conditions.

We now define S;1; as follows: Let a € A, let x; be one of the subformulas of
@, and let ¢, € Q. If j <, simply define S;11(a, x;, ) = Si(a, Xj, qx). Otherwise,
let d, be maximal such that gg, ~eq,(a) @ for some ¢, and let S;ii(a,x;,qr) =
Sit1.4, (@, X5, qx). Since the choice of dj depends only on the equivalence class of
qx, and S; 41 g, is a strategy choice, the thus-constructed S;;; obviously is a strategy
choice as well. We show that S;,; satisfies the necessary conditions.

1. We show S §fp“’°° Sit1. Let j <i+4 1,1 € Nsuch that C,S,q = x;, and
C,Sit1,q [~ x;. It follows that C,S;41.4,, ¢ [~ x;j. Since by choice of S;41 4,
we know that S <UFH° S;1 4, there is some j' with sd (x;) < sd(x;) and
sat(S, x;) € sat(Sit1.4,, Xj7) = sat(Sit1, Xj7) as required.

2. We show that S, is </f"**-maximal. Hence let S;;; <if'> S'. We show
S" <UFh*° Sy Obviously, S; <4 Sipp <™ S'. Due to the former’s maxi-
mality (by induction), we have S; =5 S;1 =4 S'. Assume S" 57 S, .
Since Si1 =5 S and Sy <IN S, we know sat(Siy1, Xir1) € sat(S’, xir1)-
Hence there is some k such that C, S, gx = xit1, and C, Sii1, g & Xit1- Let
dr be minimal such that ¢ € Q41 implies [ < dj. By construction, for all
players a € Aand all ¢ € Q;41,4,, we have S;11(a, Xi+1,¢) = Sit1.4, (@, Xit1,q)-
Recall that M4, is defined as {¢ € Qit14, | C,Sit1.4,,9 F Xi+1}. Let
M = {q € Qit14, | C.,S,q = xit1}. Since Sitq4, Sffl’d’“ Siti Sfjl’d"' S,
we know that M; 4, € M, and ¢ € @114, implies | < dj,. Further, we
know that ¢ € M \ M;414,. This is a contradiction to the maximality of
M; 1 4, (note that since S;1; gjjlm S’, S satisfies both conditions necessary
for the choice of S;114,). Hence S;44 is gfjl’“—maximal as required.
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We now choose S0 = S, It follows that S <P S0, and Sy, is <°°-
maximal. By Fact 4, this implies that S <, Sz, and Sy4, is < -maximal, as
required. 0

3 Simulation relations

Simulations and Bisimulations are often used to relate structures to one another
in a way preserving “interesting” features: A bisimulation between structures S;
and Sy with state sets )1 and @)y is usually a relation Z C ()7 x Q2 such that
when (q1,q2) € Z, then ¢; and ¢o satisfy the same properties (e.g., the same logical
formulas). In our case, a simulation allows to “translate” a strategy choice from
one (potentially “easy”) CGS to another (potentially “complicated”) one. This
allows players to construct their joint strategy choice on an “easy” structure and
apply it in the “complicated” one (when the description of the simulation relation
itself is of manageable size). This feature is particularly attractive since model
checking for finite structures is decidable, see Section 4.

Bisimulations for ATL* were originally defined in [AHKV98] (see also [LMO0S]
for a definition which is closer to our adaption). The additional requirements that
we make of our simulations are required to deal with incomplete information,
probabilism, and explicit strategies:

1. We require certain uniformity conditions similar to the ones required for
strategies and strategy choices,

2. we demand that moves between related states can be transferred in a deter-
ministic (and uniform) way,

3. we handle probabilities in the natural way,

4. since we want to transfer strategy choices, our simulations only need to work
for a particular coalition (and then allows to transfer strategy choices for
that coalition).

We only state definitions for (unidirectional) simulations; a bisimulation anal-
ogously can be defined as a relation that is a simulation in both directions. A
bisimulation then allows to translate strategy choices in both directions, hence
essentially establishing “strategic equivalence” of the structures for the coalition
in question.

In Section 3.1 we give the formal definition of our simulation relations and state
the mentioned result allowing to use simulations as a way to transfer strategies.
This result is then proven in Section 3.2. Section 3.3 then discusses properties of
simulations.
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3.1 Definitions and Basic Properties

We give two separate definitions for the deterministic and the probabilistic case,
since the first one allows a somewhat relaxed set of conditions. The basic properties
are the same in both cases: As mentioned above, we need to require that principals
can “transfer” their moves from one CGS to the other with only the information
available to them. We first give the definition for the more involved probabilistic
case. In the following, when Z is a binary relation and A, Ay are paths of the
same length, we write A; ~z A to indicate that (A[i], \2[i]) € Z for all relevant
i. Also, for a state ¢, we write Z(q) to denote the set {¢' | (¢,¢') € Z}.

Definition Let C; and Cy be CGSs with state sets ()1 and ()2, the same set of
players, the same set of propositional variables, and n degrees of information. Then
a relation Z C ()1 X ()2 is a probabilistic uniform strong alternating simulation for
a coalition A from Cy to Cy if for all (¢1,q2) € Z, all i € {1,...,n}, and all players

a € A, there is a function A%ﬁfql ) such that for all A’ C A we have

— propositional equivalence: ¢, and ¢y satisfy the same propositional variables,
- flor atdlll1 (A’; q1)-moves c1, the (A’ gz)-move c; with cx(a) = A2 (ci(a))
as the

1. Forward Move Property: for each (A’ g;)-move c?, there is a (A’, g)-

move ¢ such that for all ¢ € Q;, we have

Pr (8(a2, 2 Uc') € Z(a})) = Pr (3(ar, 1 Ue) = q7)

2. Backward Move Property: for each (A’, g;)-move ch', there is a (A, q1)-

move ci such that for all ¢ € Q;, we have

Pr (8(a2, 2 Ucyy) € Z(a})) = Pr (3(aw, 1 Ue) = 1)

— Move Uniformity: If (q1,q2), (q1,¢5) € Z with ¢ ~eqi (a) ¢y and g9 ~eqi (a) 0,

then A%._’Q =Al=2
Zﬂ#]l#ﬁ) (27a7q17QQ)
— Uniformity: for all a € A, and all (¢}, ¢5) € Z, if g2 ~eqi(a) 92, then g1 ~eqi(q)
q-

— Knowledge Transfer: if q; ~eql(ar) 1, then there is some ¢y € @y such that
G ~eq2(a) 42 and (g1, q5) € Z.

— Uniqueness: For all g5 € @, there is exactly one ¢; € Q1 with (¢1,¢) € Z
(i.e., Z71: Qy — @y is a function).

Note that even though if Z is a probabilistic uniform strong alternating simu-
lation then Z~! is a function, we still write Z as a relation in order to be able to
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treat the probabilistic and deterministic cases in a uniform way (see Theorem 3.1
and its proof in Section 3.2). We comment a bit on the requirements in the above
definition:

— Propositional equivalence is obviously necessary if Z-related states should
have the same properties.

— The requirement of the existence of A2 ensures that in states related via
7, players have a method to transfer their moves from C; to C, that does not
depend on how other players act in the same state, and (due to the move
uniformity requirement) only depends on the equivalence class of the current
state; this ensures that a player has enough information to determine the
move suggested by applying the simulation. The existence of this function,
together with the forward and backward move properties forms the “core”
of the simulation: These requirements ensure that every move in one of the
structures can be “mirrored” in the other such that for a potential follow-up
state ¢ € QQ1, the probability of reaching ¢} in C; is the same as the one for
reaching a state Z-related to ¢} in Cs.

— Uniformity is a basic “compatibility” requirement between the involved
equivalence relations and the relation Z. It implies that the function Z~1
can be “computed” by the players in question given their local information:
Given a state go of Cy, a player a can determine the equivalence class of
Z1(qo) with respect to its own indistinguishability relation.

— Knowledge transfer ensures that if (¢1,¢2) € Z, and a group of principals
cannot distinguish between ¢; and ¢}, then in the “simulated world,” there
also is a pair of states (related in the same way by Z) that the principals
cannot distinguish. This implies that in Cy, the players have the same amount
of information as in C;. It is necessary to be able to transform truth of
formulas using the knowledge operator, from the later proofs it is obvious
that for a restricted language omitting this operator, requiring knowledge
transfer is unnecessary.

— Z tisrequired to be a function in order to be able to make precise statements
about the involved probabilities—see the proof of the later Lemma 3.3, where
this property is used crucially to relate sums of probabilities in CGSs related
by a probabilistic uniform strong alternating simulation.

In the deterministic case, we can relax the conditions: Since we do not have
to take care of exactly-matching probabilities, we do not have to require Z~! to
be a function. In order to increase readability, we give the full definition of the
deterministic case instead of merely pointing out the differences. We refer to the
simplified definitions for the deterministic case introduced in Section 2.2.
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Definition Let C; and Cy be CGSs with state sets ()1 and ()5, the same set of
players and the same set of propositional variables, and n degrees of information.
Then a relation 0 # Z C Q X Qs is a uniform strong alternating simulation for
a coalition A from Cy to Cy if for all (¢q1,q2) € Z, all i € {1,...,n}, and and all

players a € A, there is a function A%;fql o) Such that for all A" C A,

— 7 satisfies propositional equivalence, move uniformity, uniformity, and
knowledge transfer.
— for all (A, q1)-moves ¢, the (A', go)-move ¢ with cy(a) = A%ﬁ?qh%)(cl(a))
has the
1. Forward Move Property: for all q| € next(qi,c1), there is some ¢, €
next (qa, ¢2) with (¢}, ¢b) € Z.
2. Backward Move Property: for all ¢ € next(qq,cs), there is some ¢; €
next(qi,c1) with (¢, 4¢5) € Z.
— Surjectivity: For all g5 € @, there is some ¢; € Q1 with (¢1,¢2) € Z.

A probabilistic uniform strong alternating simulation trivially also is a uni-
form strong alternating simulation. Simulations allow to transfer strategies in the
canonical way; a natural application is when C; is a “small representation” of Cs,
for example C; may be the “finite core” of C;. We show the following theorem
(note that for uncountable deterministic structures, the proof relies on the Axiom
of Choice):

Theorem 3.1 Let C; and Cy be (deterministic) CGSs, let A be a coalition, and Z
a probabilistic uniform strong alternating simulation (uniform strong alternating
simulation) for A from Cy to Co. Then for all strategy choices Sy for A in Cy,
there is a strategy choice Sy for A in Cy such that for all formulas ¢ for Ci/Co
with pls(p) € A, and for all pairs (q1,q2) € Z, it holds that C1,S1,q1 E ¢ iff
Cs,S2,q2 ): ©.

The above theorem should not be read as stating that C; and Cy are “strategi-
cally equivalent:” this is only the case when there are simulations in both directions.
We will discuss some properties of our notion of simulation in Section 3.3 with an
example. In the following section, we prove Theorem 3.1.

Finally note the existential statement proven by Theorem 3.1 does not imme-
diately yield a practical way to construct Sy from S;. However the proof gives an
explicit construction, where the complexity of the description of S, is essentially
the sum of the complexities of the descriptions of S; and the simulation Z, together
with its associated move transfer function A=
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3.2 Proof of Theorem 3.1

For the proof of the theorem, it is useful to study the following variant of a sim-
ulation relation. In the following, for a set M of paths, we write Z(M) for the
set containing all paths Ay such that there is some Ay € M and A\ ~z Ay. The
following definition will only be used in the proof of Theorem 3.1.

Definition Let C; and Cy be CGSs with state sets ()7 and ()5, the same player
set and the same set of propositional variables. Then Z C )1 X Q5 is a probabilistic
strategqy simulation for a coalition A from C; to Cs if the following holds:

1. For all (¢1,q2) € Z, ¢1 and ¢y satisfy the same propositional variables,

2. For every strategy choice Sy for A in Cy, there is a strategy choice Sy for A
in C, such that for all ((A’)).-formulas ¢ with pls(¢) C A for C;/Cs, and all
(q1,92) € Z, we have

(a) For all responses r; to A, and € € {<, >}, there is some response ry
to A’ such that for all sets M of paths over C;, we have

Pr(gi — M | S1(A,q1, ) +11) 4Pr (g — Z(M) | So(A', g2, ) +172) .

(b) For all responses 5 to A’, and € € {<,>}, there is some response 7,
to A’ such that for all sets M of paths over C;, we have

Pr (qQ - Z(M) ‘ SZ(A/7Q27 gp) + 7”2)11:)1' (Q1 — M | Sl<A/7QI7 QO) + 7’1) :

3. Z satisfies uniformity, surjectivity, and knowledge transfer.

Note that it is enough to consider the reflexive operators < and > here, the
result for their irreflexive variants < and > in Theorem 3.1 also follows. Again,
the deterministic case allows a slightly simpler definition:

Definition Let C; and Cy be CGSs with state sets ()7 and (),, the same player
set and the same set of propositional variables. Then Z C ()1 X Qs is a strategy
simulation for a coalition A from C; to Cy if the following holds:

1. For all (¢1,q2) € Z, ¢1 and ¢y satisfy the same propositional variables,

2. For every strategy choice Sy for A in Cy, there is a strategy choice Sy for A
in Cy such that for all ((A")).-formulas ¢ with pls(p) C A for C;/Cs, and all
(q1,92) € Z, we have

(a) Forall A\; € out(q1,S1(A’, q1,¢)), there is some Ay € out(qq, S2(A’, g2, ¢))
with A\ ~z Ao,
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(b) Forall Ay € out(q2, S2(A’, g2, )), there is some Ay € out(q1,S1(A4’, ¢1,¢))
with )\1 ~z /\2.
3. Z satisfies uniformity, surjectivity, and knowledge transfer.

It is easy to see that a strategy simulation or a probabilistic strategy simulation
allows to transfer strategy choices:

Lemma 3.2 Let C; and Cy be (deterministic) CGSs, let A be a coalition, and Z
a probabilistic strateqy simulation (strategy simulation) for A from Cy to Co. Then
for all strategy choices Sy for A in Cy, there is a strategy choice So for A in Cy such
that for all formulas ¢ for Ci/Cy with pls(p) C A, and for all pairs (q1,q2) € Z, it
holds that C1,S1,q1 = ¢ iff C2,S2,q2 E .

Proof. We first cover the deterministic case: Let So be the strategy choice that
exists for S; and has the properties due to the definition of a strategy simulation.
We show that for every path A\; over C; and Ay over Cy with A\ ~z Ay and every
subformula ¢ of ¢ that A\;,S; | ¢ if and only if Ay, Ss |= 9. This in particular
proves the result. We proceed inductively. The case where 1) is a propositional
variable is trivial, as is the induction step for propositional operators. In the
case that ¢ = Xy or ¢ = Uy the claim follows, since due to induction the
formulas ¢ and x are satisfied at the exact same indices of \; and ;. Now
consider the case ¢ = ((A’)).¢. First assume that Ci,51,¢1 = ¢, we show that
Cs,S2,q2 = ¢. Hence let Ay € out(qe, S2(A’, g2, ). We show A2, Sy = 1. Due
to the choice of Sy, there is some \; € out(q1,S1(A’, q1,¢)) such that Ay ~z Xo.
Since C1, Sy, 1 = ¢, we know that A1, S; = ¢, and due to induction it follows that
A2, So = 9 as required. The other direction follows symmetrically. Finally assume
that ¢ = ICZA'gD for some A’ C A and i. First assume that C;,S1, ¢ IC;-A/@D. To
prove that Ca, Sy, qo = K9, let ¢ ~eq, A G2, We need to show that Cs,Sa, g5 = 1.
Due to the surjectivity of a strategy simulation, there is a state ¢} of C; such that
(¢1,45) € Z. Due to the uniformity condition, it follows that qj ~eq,(a/y ¢1. Since
C1,S1,q1 = KX, it follows that Cy,Sy,q, = 4. Since (¢},¢,) € Z, induction
implies that Cy,Ss, ¢} = ¢ as required. Now assume that Cy,Ss, g0 = K. To
prove that Cy,S1, q1 = KX, let ¢} ~eq;(A) q1, We need to show that C1, Sy, q; = 1.
Due to knowledge transfer, there is some state gy of Cy such that ¢y ~eq, (4 @2,
and (¢}, ¢) € Z. Since Co,S2,q2 = K29, it follows that Cy,Ss, ¢, = . Due to
induction, this implies that C;,S1,¢] = ¢ as required. This concludes the proof
for the deterministic case.

The probabilistic case is very similar: Let Sy be the strategy choice for A in
Cy obtained from Z. We proceed in the same way as for the deterministic case,
and all cases are identical to that one, except for the following: It remains to
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show that if ¢ = ((4"))** ¢ for some A’ C A, then Cy,S;, M[0] | ¢ if and only
if Co,S2, A2[0] = ¢. Let <« denote the reflexive closure of «. First assume that
C1,51, M[0] E . To prove that Cq,Sa, \2[0] = ¢, let so = So(A’, A\2[0], ¢), and let
r9 be a response to A’. We need to show that

PI‘(QQ%{)\Q ‘ )\2,52 ):w} ‘824—7“2) « «.

For j € {1,2}, let M; := {X path over C; | A\,S; = ¢}. Since Z is a prob-
abilistic strategy simulation, and inductively we know that M, = Z(M;), and
(M[0],A2[0]) € Z, there is some response r; to A’ such that (when s; =

S1(A, M[0],¢))
Pr (A2[0] — My | so + 12) 4Pr (A\[0] — My | s1+71) .
Obviously,
Py i=Pr(N0] = {A XS =} | sj+15) =Pr(N[0] = M [ s;+75),

due to the above it follows that P,«P;. Since Ci,Si, \[0] = ¢, we know that
P, 4 a. Hence P, 4P, € «, and thus P, € « as required. The converse direction
is virtually identical. O

Theorem 3.1 now follows directly from the above and the following Lemma:

Lemma 3.3 Every probabilistic uniform strong alternating simulation (uniform
strong alternating simulation) Z for a coalition A from Cy to Cy is a probabilistic
strategy simulation (strategy simulation) for A from Cy to Cy for A.

Proof. The construction of the required strategy choice Ss is identical for the
deterministic and the probabilistic case, hence we first state it and prove a straight-
forward property of it, and then give separate correctness proofs for each case.
Hence let ()7 and )5 be the state sets for C; and Cs, let X be the player set
and P the set of propositional variables, and let n be the number of degrees of
information in C; and Cy. Let &; and & be the transition functions of C; and
Cs. Since Z is a uniform strong alternating simulation (or a probabilistic uniform
strong alternating simulation), the same propositional variables from P hold in
states ¢ and ¢s if (¢1,¢2) € Z. In order to show that Z is a strategy simulation (or
a probabilistic strategy simulation), we need to establish a correspondence between
strategy choices for C; and C,. We start with establishing a map between the states
of the CGSs, and use this (together with the maps A!'~? on moves implied by Z)
to define a map on strategies, which then allows us to transfer strategy choices
(note that we make a slight abuse of notation here in calling all of these functions
Z, this indicates that they are canonically obtained from the relation 7).
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Transferring States For a state ga € @, let Z7'(gs) be some state ¢ € Q
with (q1,q2) € Z. Since Z is surjective, such a state exists, and with the axiom
of choice, Z7! is a function. Note that the Axiom of Choice is not required for
countable structures, and in the probabilistic case Z~! is a function by definition
of a probabilistic uniform strong alternating simulation.

Transferring Strategies Let s, be an a-strategy for a player a € A in Cy, let
i€ {l,...,n}, We define the a-strategy Z;(s,) in Cy as follows:

(Zi(3))(2) = Aia2z-1(g2).4) (5a(Z7 (2))) for all g> € Q.

We claim that if s, is ¢-uniform, then so is Z;(s,). Hence let ¢} ~eq?(a) G2 WE
show (Zi(54))(¢5) = (Zi(s4))(q2). Let ¢; :== Z7'(q}), and let ¢, := Z~'(ga). Since
(91,92), (41, 4) € Z, and g5 ~eq2(q) G2, the uniformity of Z implies that q1 ~eqi(a) ¢4
and A%;fqm) = A%:a?q'l,q;)' Since s, is i-uniform, we also have s,(¢}) = s.(q1). It
now follows that

(Zs (@) = A Z7U@B) = A2, (su(a))
- A%L_)GI?Q17Q2)(Sa(q1>> - Ag‘l,_(;?zfl(qg),qz)(SQ(Z_1<q2)))

= (Zi(s4))(q2)-

Hence Z(s,) is i-uniform as required.

Transferring Strategy Choices Let Sy be a strategy choice for A in C;. We define
Z(Sy) as follows: For a ((.)),-formula ¢, let

(Z(S1))(a, a2, ) = Zi(S1(a, Z7*(g2), 9))-

To show that Z(S;) is a strategy choice, we prove that the uniformity condi-
tions are satisfied. By construction, for a ((.)),-formula ¢, a strategy of the form
Zi(sq) for an i-uniform strategy s, is returned (since S; is a strategy choice).
Due to the above, this implies that every strategy returned by Z(S;) for a ((.)),-
formula ¢ is i-uniform. Now let a € A, and let ¢ ~eq2(a) Q2. Since Z is uni-
form, it follows that Z~'(qa) ~eq Z7'(g5). Since Sy is a strategy choice, this
implies that Sy(a,Z ' (q2),») = Si(a, Z7(q}), ), and thus (Z(S1))(a,q, @) =
Zi(S1(a, Z7H @), ¢)) = Zi(S1(a, Z7H(q5), @) = (Z(51))(a, g3, @) as required.

Proving Strategy Simulation We now prove that Z is a strategy simulation (prob-
abilistic strategy simulation) for A from C; to Cy. Due to the above, we know that
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Z(S1) is a strategy choice. It remains to show that So := Z(S;) satisfies the simu-
lation requirements. We first show the following auxiliary claim, which we use in
the proof for both the deterministic and the probabilistic case (note that in the
latter case, the claim is trivial):

Claim Let (q1,q2) € Z, let (M[k], \o[k]) € Z, let ¢ be a ((A')),-formula, let
A" C A, and let ¢; and ¢ be moves in A[k] and Ag[k] such that ¢(a) =
(Si(a,q1,¢))(Ai[k]) and ca(a) = (S2(a, g2, ¢))(A2[k]) for all @ € A’. Then for all
a € A, we have that ca(a) = A;2% iy, (c1(a)).

Proof. Let ¢} := Z7'(q2). Then (q1,42), (¢},q2) € Z. Due to the uniformity of
Z, it follows that q1 ~eq1(q) ¢; for all @ € A. Also, let q¥ == Z7Y(\]k]). Then
(qF, A2lk]), (M1[k], A2[k]) € Z. The uniformity of Z now implies g} Neql(a) A1 [k] for
all a € A. We now have 1. (¢, \o[k]) € Z, 2. (M[K], Ao[K]) € Z, 3. ¢f ~eqi () M[H]
for all @ € A, 4. Aolk] ~eq2() A2[k] for all a € A'. Therefore, the move—umformlty
of Z implies that A1H2 2 Aalk]) = Al fa/\l[k] M) Since Sy is a strategy choice, and
Q1 ~eql(a) ¢1 for all a € A and ¢ is an ((.)),-formula, we know that Si(a, ¢, ¢) =
Si(a,q},»). We denote this strategy with s,. Since Sy is a strategy choice, it
follows that s; is i-uniform. Hence s,(q}) = s4(Ai[k]). It now follows that

ca(a) = (S2(a, g2, 0))(AafK])
((Z(S ))(a @,%))(alk]
i(S Hq2), ))%g

(Zi(S1(a,

(Zi(S1(a, g1, ) (Aelk
(Zi(sa))(A2[K])

Alfa?z L Oulk) e k) (5 o(Z7H(Na[R])))

)
Aa[k])

2
= Alat el (5ol
= A2 s
(

S1(a, q1,))(M[k])
),

as required. O

A(z a,\1[k], 2[k

_ 1—2
- A (i,a,\1[k], A2k

]
a(M[k]))
(a

[k

)
(i,a )q[k] Aa[k
1—

[

AN

i
(
(

Using this claim, we can now prove that Z is indeed a strategy simulation if Z
is a uniform strong alternating simulation, and that Z is a probabilistic strategy
simulation if Z is a probabilistic uniform strong alternating simulation. From now
on, the proofs of the probabilistic and deterministic cases differ, we start with the
deterministic one. Let ¢ = ((A’)), ¢ for some formula ¢, and let (¢1,¢2) € Z.

(a) Let Ay € out(q1,S1(A",q1,¢)). We need to show that there is some Ay €
O’LLt(QQ, SQ(A/, qo, (p)) with )\1 ~g )\2.
We construct the path Ay inductively. Choose A3[0] = g2, and assume that
for some k& > 0, we have constructed a path A[0...k| such that for all
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J <k, (M[j],\2[j]) € Z, and \3[0...k] is an initial segment of a path from
out(qa, S2(A’, g2, p)). We need to show that there is some A\o[k+1] € Q2 such
that

L. (M[E+1], ]k +1)) € Z,

2. Xolk + 1] € next(Ag[k], c2), where ¢y is the move played by coalition
A’ when following the strategy selected by Sy for the formula ¢ when
started in g9, i.e., ca(a) = (Sa(a, g2, ¢))(A2[k]) for all a € A'.

Similarly, let ¢; be the A’-move played by the coalition A’ in the state A [k],
ie., for a € A, ¢1(a) = (Si(a,q1,¢))(A]k]). Due to the above claim, we
know that for each a € A’, we have cy(a) = A%;f)\l[k}’/\ﬂk])(cl(a)). Since \; €
out(qi,S1(A', g1, ¢)), we know that A\ [k + 1] € next(A[k],c1). Hence, due
to the forward move property of Z, there is some Aok + 1] € next (A]k], ¢2)
such that (A [k + 1], Ao[k + 1]) € Z, as required.

(b) This direction is very similar. Let Ay € out(go, S2(A’, g2, ¢)). We need to
show that there is some A1 € out(q1,S1(A’, q1, ¢)) with A\; ~z As. Let A\1[0] :=
¢1, and inductively assume that A;[0... k] has been defined such that for all
Jj < k, we have (A\[j], A2[j]) € Z, and A\[0...k] is an initial segment of a
path in out(q1,S(A’, q1,¥)). Again, let ¢; and ¢y be the moves played by the
coalition A’ in the states A\i[k] and A\q[k], i.e., ¢j(a) = (S;(a,q;, ¢))(N;[k]).
Due to the claim above, it again follows that ca(a) = A%, py a.p (€1(a)) for
all a € A’. Hence due to the backward move property of Z, since A\y[k+ 1] €
out(Ao[k], c2) and (A1[k], Ao]k]) € Z, there is some A [k + 1] € next (A [k], ¢1)
with (A [k + 1], \2[k + 1]) € Z, as required.

Hence S, satisfies the conditions, and thus Z is a strategy simulation as claimed.
This completes the proof for the deterministic case.

The probabilistic case requires more care since we do not only need to show the
existence of a corresponding “result” of a game, but need to show that the involved
probabilities are related in the required manner. Since in a probabilistic uniform
strong alternating simulation we require that Z~! is a function, i.e., for every state
q2 in Cy, there is a unique state ¢ from C; such that (q1,q2) € Z, we can relate
the “successful” resulting plays in a one-to-one fashion that allows to transfer
probabilities. To show that Z is a probabilistic strategy simulation, let ¢ be a
((A")),-formula with pls(¢) C A, and let (g1, ¢2) € Z. We introduce some notation
required for both directions of the proof: For a set M of paths over C;, and states
q1 € Q1, @2 € Qo, we use the following: Let My = M, let My = Z(M,), let Z71())
for a path X be the path resulting from applying Z~! to each state in . Further, for
t € N, and j € {1,2}, let M} = {\] |\ =t+1, \is a prefix of a path in M;},
and let F} = {q € Q; | there is some ) € M/ with \[t] = q¢}. In the following we
need to construct the relevant responses ri, ro according to the definition of a
probabilistic strategy simulation. Note that it suffices to define 7;(¢, ¢) for states
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q € F}, since a path X over C; with A[t] ¢ F} does not contribute to the relevant
probabilities. In the following, let s; be the strategy played by the coalition A’ in
Cj, ie., s;:=S;(A,qj,p). Let s; = (8))sea. With slight abuse of notation, for a
state ¢ € Q; we write s;(q) for the (A, ¢)-move ¢ defined by c(a) = si(q) for all
a € A'. Also, with Pr; (.) we denote the probability measure in the involved CGSs
after ¢ steps of the game (the relevant CGS will always be clear from the context).

First let r; be a response to A’, let « be one of the reflexive operators <, >.
We need to show that there is some response ry to A’ such that for all sets M of
paths over C;, we have

Pl ;:Pr(q1—>M1 | sl+r1)1Pr(q2—>M2 | 82+T2) = PQ.

Note that this is the easier direction of the proof, since here we essentially
prove that every response in the (potentially “easy”) CGS C; can be mirrored in
the (potentially “more complicated”) CGS Cy. We construct 7o such that for all
t € N, we have

Pl :=Pr (g — M/ | s1+711) =Pri (g = M} | s2412) = P/

If this equality is satisfied for all ¢ € N, then P, = P, follows, which clearly
implies P, 4P, as required. Note that if ¢ ¢ F,, then (since Z7'(q) = ¢1)
it follows that ¢o ¢ F02, and both P, and P, are zero, in particular P, = P; as
required. Hence assume that q; € Fjj, then also ¢» € FZ2. Then for all responses rs,
we have that P? = Py = 1. Now assume inductively that ro(#', ¢) has been defined

for all ' < ¢ and all ¢ € F7 such that P2 = P}. We define ry(t,q) for all ¢ € F?
such that P? = P} (recall that values ro(t', q) for q ¢ F? are irrelevant). Hence let
q € F?, and let c{‘/ be the move played by A’ in Z~!(q), then by construction

¢ (@) = 5,(Z 71 (@) = (Sula, 01, ©))(Z ()
Similarly, let ;" be the move played by A’ in ¢, i.e.,

¢ (a) = s3(q) = (Sa(a, a2, 9)) ().
Since (Z71(q),q) € Z, the claim above implies (note that for the probabilistic
case, this can be shown easily without the claim)

A (a) = A%i:fz_l(q%q)(cf/(a)) for all a € A’

Since 71 (t, Z7(q)) is an (A’, Z~1(q))-move, the forward move property implies

that there is an (A’, ¢)-move r5(t, ) such that for all ¢ € @,

Pr(0(q, 52(q) Ura(t,q)) € Z(q{)) = Pr (8(Z7 (q),51(Z " (q)) Uri(t, Z7 (@) = qi) -
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For this choice of r9, P2 is obtained as

2
P

= Z Priy1 (g2 — { A2} | 52 +12)

)‘QGMt2+1

= > 3 Pr; (o — {Mo[0,2]} | 55+ 72)

MEML | AaeM2,Z-1(Xa)=\

Z Pr (0(A2[t], sa(Aa[t]) U ra(t, A2ft]) = ¢3))

ngZO\l [t-i-l])

= > ST (Prolge — {00, 8]} | 52+ 1)

MEML | AaeM2,Z-1(Xa)=\

- Pr(0(As[t], s2(Molt]) Ura(t, Aoft])) € Z ([t +1])))

(= > > (Pre (g2 — {A2[0, 2]} | 524 12)
MEMY 4 MaeMZ,Z—1(A2)=A1
Pr(o(Mt], s(Adft]) Uri(t, Mt]) = Mt + 1])

=A

= >4 S Prige — {04} 2t s2)

MEM], Ao€M2,Z=1(A2)=A\1

(xx) = Z A-Pry (g — { [0, 8]} | r1 + 1)

MEM 4

— Z Pr (d(A[t], s(Acft]) Uri(t, Acft])) = Mt + 1))

A1 GMt1+1

Pry (g — {M[0 8]} | s1+7m1)
= Z Prig (g0 — { A} | s1+71)

/\1€M,11+1

= Prt—l—l (Ch — Mtl_’_l | S1 + 7“1)

_ 1
- Pt—i—l

as required (to obtain the equality (x%) we use induction applied to the set
M = {\1}, note that the construction of r does not depend on the choice of M,
hence we can apply induction for this choice of M; the equality (x) follows from
the choice of 5). Note that since we allow only discrete probability distributions,
for each finite length there is only a countable number of paths with a non-zero
probability, hence the above sums are well-defined.
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The second case is more difficult, since here we have to show that every response
in the (potentially “complicated”) CGS Cy can be mirrored in the (potentially
“easier” one) C;. Also note that, contrary to the above case, we do not get equality
of the involved probabilities here. In the following, assume that « is <. The case
> is virtually identical. Let ro be a response to A’. We need to show that there is
some response 11 to A" such that for all sets M of paths over C;, we have

Pr (q2 - Z<M1) | SQ(‘A,anu 90) + 7”2) S Pr (ql — M | SI(A/7Q1a 80) + Tl) .

Note that we can exchange o with any response 74 such that

Pr(ge — {A2 | A\t ~z g for some Ay € M} | So(A', g, ) +15)
>

Pr (g — {2 | A ~z Ag for some Ay € M} | So(A', o, ) +72)

if we then construct a response r; such that

Pr(qu— M | Si(A,q1,0) +71) =Pr(qe — Z(M) | So(A', g2, ) +175) ,

then the original inequality is true as well. In particular, we may exchange rs for
a response 14 that achieves the highest possible probability of the game following a
path in Z(M), if one exists. For the construction of this 7, (which from now on we
denote by r3), note that the actions of the players in A" are completely determined
by the strategy choice Sy, which by construction has the following property: In
two states q, and g, with Z7(q,) = Z7(gs) = ¢, each member a of the coalition
A’ performs the move obtained by its move-transfer function applied to the move
selected by Sy in the state g. By construction of the move-transfer functions A!=2
the thus-obtained moves in ¢, and ¢, are equivalent with regard to the possible
probability distributions of Z71(g,), where g, is the follow-up state of ¢: For the
question whether the followed path is an element of Ms, only the Z-preimages of
the current and next states are relevant. Hence an optimal r, will use the same
probability distribution for the results on the Z-preimage of the follow-up state.
Since the response r, may be constructed with the full knowledge of the strategies
of A’, and is not bound by any uniformity- or memorylessness constraints, we thus
can assume that in an “optimal” response 79, and for states ¢, and ¢, as above,
for all states ¢f € @1, and all ¢t € N, we have

Pr (5((](17 S2(Qa> U T2<t7 Qa>> € Z(qlll)) = Pr (5(Qb7 52(Qb> U 7,2(757 Qb)) € Z(qlll)) .
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Even when no “optimal” response exists, we may still assume the equality above
and obtain a response with a probability at least as high as that of the original
ro. Hence without loss of generality, we can assume that the original response 7
satisfies this property, and now construct a response r; such that the obtained
probabilities for r and ry are the same (and hence the one for r; is bounded by
the one for the original 5 as explained above).

We again use the notation M7, Mtj , th , Ptj as introduced above, and with the
same arguments as above we can assume that ¢; € Fg , and hence for any choice
of 71, the initial probabilities Py and P¢ are identical. Again assume that (¢, q)
has been defined for all ¢ < t and all ¢ € F; such that P = P7. We now define
r1(t,q) for all ¢ € F}! (note that again, choices where q ¢ F}! are irrelevant).

Let s1(q) be the (A, g)-move played by coalition A’ in ¢, i.e., (s1(q))(a) =
(Si(a,q1,%))(q). For a state q¢. € Z(q), let s3(q.) be the (A’,¢.)-move played
by A" in ¢, ie., (s2(q.))(a) = (S(a,q2,¢))(g.). The claim above (again, the
probabilistic case can be shown easier without using the claim) implies that
(s2(0:)(a) = A2, ((51()) ().

Hence due to the backward move property, there is an (A’, ¢)-move 7 (¢, ¢) such
that for one ¢, € Z(q) and the (A’, ¢.)-move ry(t, ¢.), we have that for all ¢ € Q,

Pr (5(q,za SQ(QZ) U 7“2(15’ q,z)) S Z(qlll)) =Pr (5(q7 81(Q) U rl(ta Q)) - qg) :

Due to the choice of 75, we also know that for ¢., ¢, € Z(q), and ¢] € Q1, the
following equality holds:

Pr (5<Qza S2(Qz) U T2(t7 Qz)) S Z(qi’)) = Pr (5(q,/z> SQ(Q;) U Tz(t, q;)) S Z(qlll)) :

Hence the single move 7 (¢, ¢) in fact satisfies that simultaneously for all ¢, €
Z(q), we have that for all ¢f € @1,

Pr (6(qz, s2(q2) Ura(t, q.)) € Z(qy)) = Pr(d(q, s1(q) Uri(t,q)) = qf) -

Analogously to the direction above, we show that this choice of 7 (t, ¢) for all
g € F! ensures that PY, = P2 . The probability P?, is obtained exactly as
in the case above, the only difference is that the equation (x) is now true due to
the choice of r; rather than that of r5. As explained above, the equality of the
involved probabilities for the (modified) response ry leads to the originally required
inequality for the original r5. This concludes the proof of Lemma 3.3 and thus of
Theorem 3.1. 0
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3.3 Discussion of Simulation Properties

We show the following trivial result, which on first sight may be surprising;:

Proposition 3.4 For every CGS C and every coalition A, there is a probabilis-
tic uniform strong alternating simulation (and thus a uniform strong alternating
simulation) for A from C to C".

Proof. Let C = (,Q,P, 11, 6§, 0,eq), then C"t = (X, QT P, II', &', 0, eq’) as defined
earlier. We define the probabilistic uniform strong alternating simulation Z as
follows: (¢,q1...qn) € Z if and only if ¢ = g,,. All A'~?-functions are the identity.
One routinely checks that the required conditions are satisfied. 0

A (false) way of reading the above is that C and C"** are strategically equivalent.
However, this is completely incorrect: A probabilistic uniform strong alternating
simulation allows to transfer a strategy choice (see Theorem 3.1), but since the
translation is only in one direction, no equivalence is obtained. Hence Propo-
sition 3.4 merely states that if a group of players has agreed on a set of joint
strategies to achieve their respective goals in the basic CGS C, then they are free
to apply the same strategies even if they are given the additional ability to remem-
ber the history of the game, thereby ignoring this capability. Stated in this way,
Proposition 3.4 is entirely unsurprising (hence the trivial proof). In particular, it
does not state that with the additional capabilities, the players could not achieve
more in C"** than in the original CGS C.

As an example, consider the CGS C with three states
qo, q1, G2, where in qq, the player can freely choose whether
the successor state should be ¢; or ¢, and from the latter
two states, every move leads back to ¢o. Assume that the
only player a in the game has complete information. Now
consider the formula ¢ = ((a)), O(0q1 A Ogz). There is
no strategy (and hence no strategy choice) satisfying ¢ in
C, as a, when following a (memoryless) strategy, would
have to make the same move every time the game is in ¢,
and hence only one of the states ¢;, ¢ is visited infinitely
often. In the history-dependent version C"*!, the player
may remember which choice he made the last time that
the state gy was visited, and act accordingly. This not only shows that (as is well-
known) history-dependent strategies are strictly stronger than memoryless ones,
but also implies that a -maximal strategy choice in a C;, when transferred to some
CGS C; via simulation (Theorem 3.1), does not necessarily remain ¢-maximal:
In the above example, as ¢ is unsatisfiable and does not have any proper ((.))-
subformulas, any strategy choice is (-maximal. When transferred to C"*, it is not

Figure 4: Example
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maximal, as there it would be required to satisfy ¢, since this clearly is possible.
However, note that for any finite CGS C, and any formula ¢, its history-dependent
version C"** always allows <,-maximal strategy choices—this follows directly from
Theorem 2.2, as clearly, any such C"** has finite index.

The above example also clearly shows that in general, there is no probabilistic
uniform strong alternating simulation or uniform strong alternating simulation
from C" to C.

Note also that a simulation between CGSs canonically transfers to their history-
dependent versions—while trivial, this result is helpful as it allows to specify sim-
ulations on the (potentially finite) CGSs C; and Cs, and obtain the simulation
between the (infinite) CGSs C,"** and C,"*" in a generic manner:

Proposition 3.5 If there is a probabilistic uniform strong alternating simulation
(uniform strong alternating simulation) for a coalition A from Cy to Co, then there
also is one from Ct to Gt

Proof. Let Z be the simulation from C; to Cy, and let A'=2 be the corresponding
move transfer functions. For states ¢ = (¢} ...q}) of C,"" and ¢y = (¢?...¢2,) of
Cy"* et (qu,q2) € Z' if and only if (q},qf) € Z for all j < n, and n = m, and
in this case let A%i:fql,qg)/ = Apag gy~ for all i and a. It can easily be verified

that these choices satisfy the required conditions. 0

The converse of Proposition 3.5 does not hold: For every CGS C, the struc-
tures Ct and Ch*t"*" are essentially identical, in particular there is a probabilistic
uniform strong alternating simulation (and thus a uniform strong alternating sim-
ulation) from chsth to Chst but due to the above example there is not necessarily
a simulation from C"* to C.

4 Complexity and Decidability

Strategy choices represent agreement of a coalition prior to a game: The coalition
has to decide on a suitable strategy for every relevant goal, these strategies are then
pooled in the strategy choice. Hence the “planning” of suitable strategies consists
of determining a strategy choice achieving these goals for a given a CGS and a set of
goals. In this section, we study the computational complexity of this problem. This
situation is an example for the approach known as planning as model checking, see
also [Jam04b]. Formally, we consider the following decision problems—depending
on whether we allow all strategy choices or are only interested in maximal ones
(see Section 2.5). Note that the algorithms we provide not only determine whether
an appropriate strategy choice exists, but also compute one.
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Problem: JChoice

Input: A CGS C, a state g of C, a state-formula ¢
Question: Is there a strategy choice S for pls(y) in C such that
C,S,q = ¢?

Problem:  dmaxChoice

Input: A CGS C, a state g of C, a state-formula ¢

Question: Is there a <,-maximal strategy choice S for pis(y) in C
such that C, S, q = ¢?

For studying the complexity of these problems, we assume that the transition
function is specified as a complete table in the encoding of C. For finite structures,
the model checking problem is decidable, where the complexity in the deterministic
case is considerably lower than in the probabilistic setting:

Theorem 4.1 dmaxChoice and IChoice are

1. PSPACE-complete for deterministic structures,
2. solvable in SEXPTIME and 2EXPTIME-hard for probabilistic structures.

Proof. We first cover the deterministic case and start by showing that both deter-
ministic problems are in PSPACE. We present (almost identical) algorithms that
solve them in polynomial space. On input C, ¢, a state-formula ¢, and a state ¢ of
C, the algorithm proceeds as follows: Let () be the state set of C, let X be the set
of players. First, we guess a candidate S for a strategy choice for the coalition A.
Since a strategy is merely a function from the set of states into the set of moves
(and thus can be represented with size quadratic in C), and obviously only the
strategies specified for the subformulas of ¢ are relevant, a strategy choice is of
polynomial size (number of players in A multiplied by || multiplied by number of
subformulas of ¢ multiplied by the size of a single strategy) and thus can be rep-
resented (and hence guessed) polynomially. We can nondeterministically guess S,
since nondeterministic PSPACE is the same complexity class as PSPACE [Sav73].
Obviously, the uniformity conditions on S can be verified in polynomial time. It
remains to check that C,S, gy = ¢, and that S is <, -maximal.

To verify that C,S, qo = ¢, we proceed inductively: For each subformula ¢ =
((A"), 9" of v and each subformula x of ¢, and each pair (qi,¢2) of states in @,
we determine whether for all A € out(qe,S(A’, q1,)), we have that C,S, A = x. In
this case (slightly abusing notation) we write C,S(q1,%), g2 = x. This is true if,
when the players in A" keep following the strategies chosen by the strategy choice
S in the state ¢; on input 1, all possible outcomes from the state ¢» on satisfy y.

We determine whether this holds for all combinations inductively over ¢ and
x- First assume that x = ((4")), ¢’. By definition,
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C,S(Ch?@[’)a% }Z X
iff C,S, A x for all A € out(qo, S(A’, q1,v))
iff C.S,q = ((A"); ¢
ifft C,S,\E ¢ for all A € out(qa,S(A”, g2, X))
iff Cas(qQ)X)7q2 ’: SDI-

By induction, we know whether the latter is true. Hence we can determine
whether C,S(q1,%), g2 = x- If the outmost operator of x is the knowledge-operator
KCA', then the truth of x can easily be verified by checking all states that are ~eq, (A"
equivalent to ¢, for the latter we inductively have the required information. Now
assume that the outmost operator of y is neither a strategy- now a knowledge-
operator. Inductively, we know for every ((.))- or K-subformula x’ of x the set S,/
of states ¢ such that C,S(¢1,v),q = x’. Hence we can replace every such formula
X' in x with a new propositional variable that is exactly true in the states from S,,.
This modification of x results in a formula in which no strategy- or knowledge-
operator appears, hence the formula is an LTL-formula. From C, we further obtain
a CGS (', where in every state ¢, the moves of the coalition A" are hard-coded
to use the strategy S(A’,q1,1): For every state ¢/, the one-step reachable states
are exactly those in next (q¢',S(A’, q1,v)(q’)) (where again S(A’, ¢1,¢)(¢") denotes
the (A, ¢')-move according to the strategy S(A’,qi,%)). The question whether
C,S(q1,%), 2 = x now is the problem whether in C’, there is no path \ starting in
¢2 such that A = =y, where satisfaction here is defined as in standard LTL. This
problem can be solved in PSPACE due to [SC85, Theorem 4.1]. Since PSPACE
with a PSPACE-oracle is again PSPACE, this implies that we can fill the table
in polynomial space, and determine whether C,S(q1,%),q2 | x for all relevant
combinations. As shown in the ({(A"))-case above, this also allows us to decide
whether a ((.))-subformula of ¢ is satisfied at a state in C, and thus using Boolean
combinations we can determine whether C, S, ¢y = ¢.

It remains to verify that S is indeed <,-maximal. If this is not the case,
then there exists a strategy choice S’ such that S <, S, and ' £, S. This &
can be nondeterministically guessed, and then we can (in the same way as for S
above) determine for all subformulas 1) and states ¢ whether C,S’, ¢ = ¢, and thus
compare S and S’ with respect to <, according to the definition. This completes
the PSPACE-decision procedure for dmaxChoice. Note that when leaving out the
final step, we obtain a polynomial-space algorithm for 3Choice.

We now show PSPACE-hardness of both deterministic problems, and again
use [SC85, Theorem 4.1]. That theorem establishes PSPACE-completeness of the
following problem: Given a CGS C with one player, a state ¢, and an LTL-formula
¢, is there a path A starting in ¢ such that A = ¢? (Here again satisfaction is the
standard LTL notion of satisfaction which is equivalent to the one for ATL* for
formulas that do not contain strategy operators). This problem is a special case
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of both dChoice and of I3maxChoice, where we ask whether the empty coalition has
a strategy choice to ensure —p—the input instance to IChoice and ImaxChoice
this contains of C, the state ¢, and the formula ((())) ¢ (where C has complete
information). Note that since in this formula, no nested strategy operators appear,
the question whether a strategy choice or a maximal strategy choice exist are
equivalent. Since coPSPACE = PSPACE, this completes the proof of PSPACE-
completeness for both 9Choice and dmaxChoice for the deterministic case.

For the probabilistic case, we make use of the model checking algorithm pre-
sented in [CLO7]. In 3EXPTIME, we can replace the nondeterministic guessing
of the strategy choice S with a complete search over all possible strategy choices
which only adds a multiplicative factor of 2" t0 the overall complexity. It suffices
to show that each candidate can be verified in SEXPTIME. Similarly as in the
deterministic case, for each ((A’)),-subformula 1, each subformula x of 9, and
each pair (g1, ¢2) of states in @), we determine

maxProb (¢ — x | S(¥, ¢2)) = max {Pr (1 — {A [ \,S | x} | S(A, q2,¥) + 1)},

where r ranges over all responses to A’, as well as the analogously defined
minProb (g1 — X | S(¢, ¢2)).

More precisely, we determine for each (({.))* appearing in ¢ whether
maxProb (¢ — x | S(¢,¢2)) € a and whether minProb (¢ — x | S(¢,¢2)) < a.
For propositional variables, this is trivial. If y = ((A”))** x’ for some A” C A and
some path formula y’, it follows that

1 lf C7 S7 q1 ): X
0 otherwise.

maxProb (g1 — x | S(¥, ¢2)) = {

Also by definition, C,S, ¢ | x if and only if for all suitable responses r, we
have that Pr(qgs — {A | A,SE X} | S(A,q,x) +7) €a. If «is either < or <,
this is true if and only if maxProb (¢; — x’ | S(x,¢1)) < « (in the case that < is
> or >, we use minProb (¢ — X’ | S(x, ¢1)) analogously). By induction, we know
whether this is true. The knowledge-operator I is handled in the same obvious
way as in the deterministic case.

Hence assume that the outmost operator of x is neither a strategy- now a
knowledge operator. We transform y to an LTL-formula in a similar way as in
the deterministic case: Since due to induction we know for all states ¢ of C and
all strategy-subformulas y’ of x the exact of states in which Y’ is satisfied, we
can introduce new propositional variables that indicate the truth of each of these
formulas x’, and thus obtain a modifies game structure and formula where

— the moves of the coalition A’ are fixed by S(A4’, g2, ),
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— strategy operators are replaced with propositional variables,
— there is a single player who controls the moves of A’.

The thus-modified formula y is an LTL-formula (Note that the player control-
ling the moves of A’ cannot be replaced by a simple set of “next states” as in the
deterministic case, since this does not lead to a well-defined probability measure).
Following the construction in the full version of [CLO7], truth of this formula can
be determined in 3EXPTIME. Hence the entire verification can be performed in
P3EXPTIME — SEXPTIME.

The verification whether the thus-obtained S is indeed ¢-maximal can again be
carried out in the same way as in the deterministic case (this essentially squares
the time complexity of the algorithm, and still remains in 3BEXPTIME).

For the hardness result, note that already the problem to determine whether
an LTL-formula is satisfied by a probabilistic game structure with probability 1 is
hard for 2EXPTIME (see [CY88]). This clearly reduces to both ImaxChoice and
JChoice, by considering a CGS with a single player. For such a formula, obviously
the unique existing strategy choice is ¢-maximal. 0

The above, together with the result from Schobbens [Sch04] that model check-
ing for memoryless ATL* is PSPACE-complete, shows that the model checking
complexity of our semantics comes at no additional cost compared to that of stan-
dard ATL" with memoryless strategies in the deterministic setting (recall that due
to Proposition 2.1, our semantics are a generalization of memoryless ATL*). As
expected due to results from Courcoubetis and Yannakakis [CY88], model checking
for the probabilistic case is significantly more complex.

The situation is different for history-dependent strategies: While model check-
ing for standard ATL* (which as mentioned allows history-dependent strategies) is
2EXPTIME-complete (JAHKO02]), the problem becomes undecidable in the setting
with incomplete information. Formally, we define the following decision problems:

Problem:  3Choice”
Input: A CGS C, a state g of C, a state-formula ¢, a coalition A
Question: s there a strategy choice S for C"s* such that C"!, S, q = ¢?

Problem:  3Choice™?

Input: A CGS C, a state g of C, a state-formula ¢, a coalition A
Question: Is there a <,-maximal strategy choice S for C"** such that
CM*t, S q | ¢?

The undecidability result now easily follows from [AHKO02]:

Theorem 4.2 JChoice™! and IChoice™! are undecidable for the deterministic and
the probabilistic case.
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Proof. Obviously it suffices to prove the result for the deterministic case. In
[AHKO02, Theorem 7.1], it was shown that model checking of a basic version of
ATL* with incomplete information is already undecidable. Due to Proposition 2.1,
and since our semantics are a generalization of the restricted case considered there,
it follows that IChoice™’ is undecidable as well. The proof of the mentioned theo-
rem in [AHKO02] shows undecidability even for a fixed formula which has the very
simple form ((A)) Op. Since no nesting occurs, obviously every strategy choice
satisfying this formula is maximal already. Hence the undecidability result also
holds for IChoice”*". OJ

5 Conclusion and future research

We have considered the situation in which a coalition A agrees on a set of strategies
prior to the game, which are collected in a strategy choice. In the evaluation of
the success probability of such a set of strategies, we adopted the usual pessimistic
convention that the remaining players follow their best-possible strategy, which
is allowed to use information not available to the coalition A (including being
allowed to be history-dependent). It would be interesting to relax this worst-case
assumption and assume that the counter-coalition also has only bounded resources
available. In our setting, one might wish to consider statements like “there is a
strategy choice S for A such that for all strategy choices S’ for A, S achieves ...”
It is an interesting question to investigate whether this leads to a sound semantics
for reasoning about resource-bounded adversial coalitions. A further relaxation of
the “worst-case” assumption is the following: When a sub-coalition A’ C A tries
to achieve a goal, then the players in A\ A’ are treated as adversial. One could
also consider a relaxed semantics where the coalition A\ A’ continue to play their
previously-chosen strategies.

It also may be interesting to determine the complexity of the model checking
problem for basic ATL, where compared with the variant ATL* that we consider,
the nesting of strategic and temporal operators is restricted. It is likely that this
restriction leads to an easier model checking problem in the same way as it does
for standard ATL [AHKO02].

Finally, considering mixed strategies is obviously an interesting issue. Note that
a basic form of mixed strategies is possible in our semantics, when we introduce
intermediate states in which the next move by a player is chosen at random, where
the probability distribution may be different in each state, hence the players may
be given control over the distributions. However, a general treatment of mixed
strategies remains open.
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