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Abstract

Data flow diagrams are successfully applied in the area of model-based design
of complex embedded systems. However, their creation and maintenance can
be very time-consuming, because many tools offer little support for the edit-
ing and visualization of graphical models. The KIELER project explores new
concepts for the pragmatics of graphical modeling and develops algorithms
for automatic layout of specific classes of diagrams. These concepts and algo-
rithms are implemented as extensions of the Eclipse framework, which offers
generic approaches to create IDEs for graphical modeling.

We have developed a specialized layout algorithm for data flow dia-
grams. In addition to the embedding in KIELER, we applied this algorithm
to Ptolemy, a framework for research on models of computation for use in
embedded systems. The results show that our algorithm is well suited for the
actor oriented diagrams of Ptolemy, and it can serve as a basis to facilitate
the editing of Ptolemy diagrams.

Key words: Automatic layout, graphical modeling, Eclipse, Ptolemy, hier-
archical layout, data flow
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Chapter 1

Introduction

Graphical modeling languages have evolved to appealing and convenient in-
struments for the development and documentation of systems, both in hard-
ware and in software. There are various examples for graphical modeling
frameworks that have become an important part of modern development
processes. An important class of modeling diagrams are data flow diagrams,
which are graphical representations of data flow models for the design of com-
plex systems. Applications of data flow diagrams can be found in modern
software and hardware development tools. Some of these, such as Simulink
(The MathWorks, Inc.), LabVIEW (National Instruments Corporation), and
ASCET (ETAS Inc.), are mainly used for model-based design and simulation
of embedded systems and digital or analog hardware, while others, such as
SCADE (Esterel Technologies, Inc.), are optimized for automatic code gener-
ation from high-level system models. The Ptolemy project [7] features data
flow diagrams for actor-oriented design, where actors exchange data and pro-
cess it under different models of computation. All these examples feature a
graphical editor for data flow diagrams, so that users can create diagrams in
drag-and-drop manner. Example diagrams are presented in Figure 1.1.

A data flow model is described by a directed graph where the vertices
represent operators that compute data and the edges represent data paths [4].
Such a data path has a specified source port where data is created and a target
port where data is consumed. A source port may be connected with multiple
target ports, thus forming a hyperedge. Furthermore, the data flow paths are
required to be drawn orthogonally. These properties of data flow diagrams
can be defined as a set of constraints for the drawing of the corresponding
directed graph.

While most of the research on modeling languages has its focus on the
semantics of these languages, the pragmatics of graphical modeling have re-
ceived relatively little attention so far [11]. The latter includes the aspects
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of editing, visualization, and simulation of graphical models, and is the prin-
cipal topic of the KIELER project. The ability to automatically layout a
graphical model is a key issue in this context, because it relieves the user
of the burden of manually adapting the arrangement of objects after each
structural change in the model, or after switching to a different view of the
model. In this report we present the basic concepts of how automatic layout
is handled in KIELER. We describe our interface to Eclipse, which is the fun-
damental platform for our implementation, and point out how we enable the
embedding of layout algorithms in a large class of graphical editors in Eclipse.
Furthermore, we present our integration of a specific layout algorithm into
the graphical editor of Ptolemy and show results of the integration. We have
implemented this algorithm following the layered approach for graph draw-
ing proposed by Sugiyama et al. [33], and have extended it for the special
requirements of data flow diagrams.

We will proceed as follows. Chapter 2 introduces KIELER and its interface
for automatic layout. The layered approach for graph drawing and our ex-
tensions for layout of data flow diagrams are described in Chapter 3. Readers
who are not interested in the details of the layout algorithm may skip this
and proceed to Chapter 4, where we describe how we apply our algorithm to
Ptolemy and show some results. We conclude in Chapter 5.

Find a concentrated description in the corresponding paper in cooperation
with Mutzel [31].
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Chapter 2

KIELER

The pragmatics of model-based design refers to the practical aspects of han-
dling graphical system models. This encompasses a range of activities, such
as editing, browsing, or simulating models. We believe that the pragmatics
of modeling deserves more attention than it has received so far. We also
believe that there is the potential for significant productivity enhancements,
using technology that is largely already available. A key enabler here is the
capability to automatically and quickly compute the layout of a graphical
model, which frees the designer from the burden of manual drawing. This
capability also allows to compute customized views of a model on the fly,
which offers new possibilities for interactive browsing and for simulation.

2.1 Aims and Project Vision

The project Kiel Integrated Environment for Layout for the Eclipse Rich-
ClientPlatform (KIELER)1 focuses on enhancing pragmatics of graphical model-
based system design. By that we comprise all practical aspects of handling a
model in a model-based design flow, including the traditional aspect of how
a model should be constructed to effectively communicate its meaning.

The goal is to free the user of many mechanical efforts such as manual
placing of graphical items on the canvas. This would help the developer
to focus on the topology and semantics of the system he or she intends to
design, and not to waste too much effort in enabling steps such as making
space on the canvas for new graphical elements.

On top of that, new methodologies for user interaction are explored to
increase modeling productivity and the degree of ability to analyze complex
graphical models. The basic technologies will be applied by certain use cases

1http://www.informatik.uni-kiel.de/rtsys/kieler
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that directly help the developer in the interaction with graphical models.
More in-depth information about the vision and goals of the KIELER project
can be found elsewhere [11].

2.1.1 Subprojects of KIELER

The KIELER project investigates and evaluates the enabling technologies for
graphical modeling and tries to fill gaps where necessary. Its main focus is at
investigating new interaction mechanisms with graphical models by different
aspects.

View Management and Meta Layout

View Management describes ways how to play with different graphical repre-
sentations for models. Following the Model-View-Controller (MVC) paradigm
it creates different views for different purposes or under different circum-
stances of a model. It accesses a set of different functions to manipulate a
graphical view, such as reducing levels of detail of certain diagram elements
(e. g. folding and unfolding of composite elements or filtering out complete
items) or highlighting graphical objects. It tries to show the user the “inter-
esting” parts of a model and hide the others, while the user specifies what
“interesting” means in a specific context.

Meta Layout uses different automatic layout approaches—possibly on dif-
ferent parts in the same diagram—to select optimal layouts for given criteria.

Model Editing and Synthesis

Creation and modification of graphical models is an issue, because the what-
you-see-is-what-you-get (WYSIWYG) drag-and-drop (DnD) style editing, which
is still state-of-the-practice, involves many effort-prone manual editing steps.

With automatic layout, the user can focus on what items have to be
added or changed where in the topology of the model and does not need to
care about the locations on the two-dimensional canvas.

Structural Editing is the idea to employ this systematically by only offer-
ing structural editing operations, e. g. “add a new following state for state
B” instead of “add a new state at coordinates x and y and connect it to B.”
As a fast automatic layout algorithm can result in an immediate graphical
feedback of such an operation, the WYSIWYG experience is still available.

Automatic layout opens complete new possibilities with the synthesis of
graphical models. Any—possibly textual—source could be used to generate
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a graphical model automatically in order to better visualize the concepts of
the system.

Dynamic Behavior Analysis

Simulation of graphical models allows to execute a system and to analyze
its properties and behavior. Dynamical behavior models, e. g. for embedded
system design or modeling of physical environments, usually change their
properties over simulation time. For any simulation step it helps the de-
veloper to understand the system if the current system state is visualized
directly within the graphical model that describes the system behavior. Pos-
sible visualizations could be to highlight items representing states, to show
variable values, or to display animations of physical system parts.

However, for complex systems and with a limited screen size, it is not
possible to cover both goals at the same time: to see the system’s overview
and to see the components’ details. It is a matter of screen real estate to
arrange different windows to see during runtime what seem to be interesting
parts of the model.

Here view management comes into play and tries to identify foci of the
model that have to be presented with full levels of detail, while others go
into the context and might be displayed with less detail or not at all. This
likely creates multiple views that are dynamically changed during simula-
tion time—most suitably morphed/animated between to preserve the user’s
mental map of the system. This has been explored in the KIEL system for
Statecharts [22], and is aimed more generally for other graphical syntaxes
and execution semantics in KIELER.

Automatic Layout

The basic technology to build upon is a sound automatic layout of the graph-
ical diagrams. There are different approaches to the layout problem, with
quite different results, where some algorithms—like the one presented in this
paper—focus on aspects of special properties of some graphical languages.
Hence for different graphical languages, even for different diagrams in the
same language, and for different means of the diagrams, also different layout
algorithms might result in optimal views. Therefore KIELER tries to build
interfaces to gather different layout algorithms and to unify the API to access
them on the one hand, and to create new algorithms on the other hand.

6



Figure 2.1: Class Diagram for the KGraph data structure

2.2 Implementation Structure

2.2.1 Interface for automatic layout

Input and output for automatic layout is stored using a data structure called
KGraph, which is an Eclipse Modeling Framework (EMF) model that describes
the basic structure of the graph. As seen in the class diagram in Figure 2.1,
each node in this model may contain other nodes in a parent-child relation-
ship, thus allowing structural hierarchy. The KGraphData interface is used
as generic extension for each element of the graph. In the context of graph
layout each element has an attached instance of KLayoutData, which is an
extension of KGraphData for storage of layout information. This layout infor-
mation consists of layout options that are passed to the layout algorithm to
control its behavior, and of concrete layout data such as position and size for
nodes, ports, and labels, or a list of bend points for edges. A class diagram
for the KLayoutData extension is shown in Figure 2.2.

Layout algorithms must be implemented as subclasses of AbstractLay-
outProvider in the KIELER Infrastructure for Meta Layout (KIML). Such a
subclass has a method doLayout, which takes a KNode and an IKielerProgress-
Monitor as arguments. The first argument is the parent node of the graph
for which layout shall be performed, and the second argument is an instance
of a progress monitor, that is a class used to track progress and execution
time of an algorithm.

7



Figure 2.2: Class Diagram for the KLayoutData data structure

Automatic layout in KIELER is done with the following steps.

1. Create a KNode representing the graph that shall be layouted.

2. Add layout options to each element of the graph.

3. Create an instance of IKielerProgressMonitor, possibly with a connection
to the User Interface (UI) to display progress of the algorithm.

4. Create an instance of the selected layout provider. This instance may
be kept in memory for multiple executions of the algorithm.

5. Call the doLayout method of the layout provider instance, passing the
KNode instance and the progress monitor.

6. Read layout data from each graph element and apply it to the original
graph.

Layout options are managed by the class LayoutOptions in KIML, which con-
tains utility methods to access the current values of layout options for KLay-
outData instances of a graph element. The currently available layout options
are the following.

• Options for parent nodes

Layout Direction: Choose whether edges are aligned left to right
(horizontal layout) or top down (vertical layout).
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Minimal Spacing: If possible, the distance between all nodes and
edges in the drawing should be at least this value.

Insets: Distance between the border of the parent node and the draw-
ing of the contained diagram on the left, right, top, and bottom
side.

Layout Hint: Indication on which layout algorithm should be used for
the contained diagram, e. g. the identification string of a specific
layout provider.

• Options for all nodes

Port Constraints: Determine how the layout algorithm should han-
dle port positions (see Section 3.3).

Fixed Size: Choose whether the size of the node is fixed.

• Options for ports

Port Side: Side of the node on which the port is placed: North, East,
South, or West.

Port Rank: Ranks are used to order the ports in clockwise direction
beginning from the top left corner of the node.

• Options for labels

Edge Label Placement: Choose whether the label is placed at the
head, tail, or in the middle of the edge.

Further layout options can be easily defined if they are needed for specific
layout problems, e. g. different edge types that need special handling.

2.2.2 Layout of Compound Diagrams

If a node in a diagram contains other nodes, we call this a compound dia-
gram, or a diagram with structural hierarchy. Since most layout algorithms
are designed to handle only flat diagrams, we need a mechanism to extend
layout algorithms for hierarchy. In KIML this is done using layouter engines,
which handle selection of appropriate layout algorithms and mapping of flat
diagram layout to hierarchical diagrams. The basic implementation is done
in the class RecursiveLayouterEngine, which first performs layout on the most
inner diagrams, then on the containing diagram (see Algorithm 2.1). After
executing a layout algorithm on an inner diagram, its size is known and can
be used as fixed size for the corresponding parent node. This is shown in

9



Figure 2.3: Layout of compound diagrams

Figure 2.3, where the diagram in Box A is arranged first, then it is treated
as a normal node of fixed size for layout of the surrounding diagram.

Algorithm 2.1: RecursiveLayouterEngine

1 procedure recursiveLayout(N : KNode)
2 if N has any children then
3 for each child Ni of N do
4 recursiveLayout(Ni)
5 select a layout provider P for N
6 execute P on N
7 end

The recursive layouter engine is only appropriate for diagrams without
edges that connect nodes from different levels of the hierarchy. If the dia-
grams allow these cases, a more complex layout algorithm should be used
that directly handles all levels of hierarchy [26, 32]. As an example for such
diagrams, some variants of Statecharts allow inter-level transitions between
states of different hierarchy levels.

If multiple layout providers are available, KIML offers a class KimlLayout-
Services to organize them, where layout providers are stored using a hash
map with their identifiers as keys. The Layout Hint layout option, which can
be attached to the layout data of any node, can be used to specify which
layout provider to use for each parent node. This enables the user to choose
different layouts for multiple levels of hierarchy in the diagram. An example
for a diagram for which automatic layout with different layout providers was
performed is shown in Figure 2.4.

2.3 Integration into Eclipse

The implementation of KIELER is built upon a Rich Client Platform (RCP).
This was done in order to reach a broad community with the tools, and to

10



Figure 2.4: A diagram with mixed layouts: force-directed approach in the
left region, layered approach in the right region
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build upon a wide set of existing frameworks in that platform to get most
synergies of existing tools and software solutions.

We settled for the Eclipse platform because it provides simple mecha-
nisms to modularize an application, so-called plug-ins, but also to specify
extension points where future plug-ins may extend your own application.
These mechanisms have been accepted and leveraged by a big user commu-
nity which evolves many sophisticated software solutions of a wide diversifica-
tion. The KIELER project uses standardized structural backbones of Eclipse
in order to concentrate on the implementation of the main KIELER focus. On
the other hand, Eclipse has originated not only an Integrated Development
Environment (IDE) for many different textual programming languages, but
also environments for graphical languages.

If you are not interested in Eclipse and how KIELER works and integrates
with it, you can proceed to Chapter 4 and read about Ptolemy and the
stand-alone algorithm integration.

2.3.1 Graphical Modeling Framework

Due to the big user community, quite a few graphical editors have been
created for different graphical syntaxes and with different features within
Eclipse.

To reduce the manual implementation efforts for each and every new
graphical editor, the eclipse community has evolved architecture projects2 to
consolidate the similarities of such graphical editors.

First, the Eclipse Modeling Framework (EMF) standardizes the way how
to create a semantic model that underlies a graphical representation, also
called a domain or business model. It can be used to comfortably create
abstract data structures with standardized and machine accessible interfaces
and convenient built-in features such as persistence support (XML serializa-
tion or database binding), comparison, transformation, etc.

Next to this the Graphical Editing Framework (GEF) provides extensive
libraries for low level two-dimensional drawing and high level graphical editor
functionality. This comprises a controller framework to control user interac-
tion with the model (DnD style editing) and standard widgets such as toolbars
and a palette with standard functions.

Still, a graphical editor is manually programmed with the use of these
libraries. Especially the graphical part has to be linked to some custom
model representation that the developer has to provide.

The Graphical Modeling Framework (GMF) extends the GEF libraries

2http://www.eclipse.org/projects/
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Figure 2.5: Overview of the Eclipse modeling architecture with GMF

and bridges EMF and GEF. It provides a fixed way how to map GEF editors
onto EMF models. Additionally it offers a powerful generative approach to
automatically generate the required Java code of a GEF editor from high-level
editor specifications as depicted in Figure 2.5.

With this integrated approach for rapid prototyping of graphical editors
the community has created a wide variety of graphical editors; either for
standard graphical syntaxes such as the Unified Modeling Language (UML)3

or for Domain Specific Modeling Languages (DSMLs). An example editor for
Statecharts created in the KIELER project is shown in Figure 2.6.

This puts GMF into an interesting light regarding the goals of KIELER.
Any improvements that are fed into any of the modeling projects, EMF, GEF
or GMF, will provide the benefits for all graphical editors that are created
with the frameworks. If the improvements are implemented into the code
generation parts, then all foreign editors will benefit from the new technology
after they have regenerated their editor code. If the changes were made to
the runtime libraries, then all editors would benefit from it immediately after
they updated the libraries. Hence by this means the new methodologies can
reach broad new audiences easily.

3http://www.eclipse.org/modeling/mdt/
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Figure 2.6: A Statechart Editor in Eclipse GMF

2.3.2 Integration with GMF

With the KGraph described in Section 2.2.1, KIELER has an interface to ex-
change graph data with layout algorithms on the one hand and with actual
modeling tools on the other hand. This interface can be directly used to
connect an algorithm to some graphical editor like we did for Ptolemy II as
described in Chapter 4. This is especially necessary if the modeling tool does
not build upon Eclipse but is a pure Java application in order to avoid any
dependencies to Eclipse. For other programming languages one could use the
KGraph as a file interface, because the KGraph is based on EMF and therefore
provides standard mechanisms to serialize and parse a graph to and from
XML files.

However, for graphical editors created with Eclipse GMF we can unify
the interface even further such that the graphical tool designer (the so-called
toolsmith) only cares as little as possible about that interface.

Additionally all higher level KIELER services—an overview of the ideas is
given in Section 2.1—can access the layout functionality through this inter-
face. Hence these services are yet only available for GMF based editors and
not for the stand-alone algorithm.

The interfaces are located in the KIELER Infrastructure for Meta Layout

14



(KIML) component. In the Eclipse world an interface consists of an extension
point, schematically shown in Figure 2.7 and explained in the following.

A plug-in consists of Java code and additional textual (and XML) meta
information. Eclipse can use this to avoid loading Java classes of a plug-in
that is not requested at runtime. Basic information about the plug-in is
provided to the platform by this meta information and allows lazy loading
of the Java classes.

Eclipse manages fine grain modularity by providing a separate class loader
for every plug-in. Hence each plug-in’s Java code is contained in the class
loaders sand-box and generally has no access to other code. This way code
of one plug-in does not interfere with other versions of that plug-in that are
present in the platform.

The simplest way to access some code from another plug-in is to set
an explicit dependency on that plug-in, which is a simple statement in the
dependent plug-in’s meta information. That enables to access all published
Java code (interfaces as well as functionality).

Hence this enables an extending plug-in to use code of some a priori known
base plug-in. However, the other way round is not that simple. Imagine a
base plug-in allows to be extended by some other plug-in but the base plug-
in does not yet know about any particular extending plug-ins yet. Still,
the base plug-in might need a way to instantiate a class from the extending
plug-in. Say a base plug-in A offers a way to display a visualization widget
in an Eclipse view. Then an extending plug-in, say B, will implement such
a widget, let’s say by drawing an oscilloscope. B needs to hand over the
implementation class to A such that A can use it for placing it on its view (A
cannot instantiate B’s class by itself, because it cannot know a priori what
class that will be, as we assume that A and B will not be published at the
same time, especially B is not available at A’s compile time).

In Eclipse this is solved by the mechanism of extension points. For an ex-
tension point a base plug-in (A) provides a textual meta description of what
data the extending plug-in (B) will have to provide. This usually includes a
Java Interface that is defined by the base plug-in and will have to be imple-
mented by the extending plugin. Additionally, A can request specific data
in the extension point that A needs to work with before it instantiates the
class of B. The data is transmitted via an XML document and may comprise
unique identifiers, display names etc.. As XML is involved, the specification
what data is required is done with an XML Schema Definition (XSD), hence
the extending plug-in gets a formal description of what data is required to
extend a specific extension point. However, this formal description usually
is abstracted by a human friendly GUI front-end.

15



Figure 2.7: Extension Points in Eclipse
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KIELER Extension Points

In KIELER the extension point mechanism is used to interface and extend
the infrastructure with layout algorithms on the one hand and with actual
graphical editors on the other hand. We will discuss these two aspects in the
following.

KIELER embeds into Eclipse the functionality to apply any layout algo-
rithm—given by a Layout Provider—to an arbitrary GMF editor diagram.
To have a clean, standardized interface for all steps, we use the KGraph
datastructure as described in Section 2.2.1 as an exchange format.

The steps of a layout run are

1. Build a layout graph. From the original GMF diagram a graph structure
of the KGraph type is constructed. A diagram can be quite complex and
contain information that is not relevant for layout, while the KGraph is
designed for layout and comprises only data relevant for that purpose.
Specific options for layout can be noted in the KGraph.

2. Execute layout algorithm. A selected layout provider gets instantiated
and its layout method is run on the KGraph. It will augment the graph
structure by the layout information—locations and sizes of nodes and
locations of edge bend points.

3. Apply layout to original diagram. The layout information gets read
from the KGraph and is reapplied to the original diagram.

Extension Point layoutProviders The KIELER Infrastructure for Meta
Layout (KIML) subproject takes care about multiple different layout algo-
rithms and contains an extension point to extend the framework by new
layout algorithms. All current algorithms are interfaced this way.

The extension point requires to extend the abstract class AbstractLay-
outProvider as described in Section 2.2.1. This demands a method doLay-
out(KNode,IKielerProgressMonitor) that passes a graph in the KGraph repre-
sentation and expects the implementation to layout the graph by setting the
graph’s layout attributes. Hence the KGraph datastructure explained above
is a main part of the interface and available in the public section of the layout
plug-in.

Furthermore, this extension point can be used to define new layout op-
tions that can be passed to the algorithms. These options can then be config-
ured for each individual diagram to optimize the result of automatic layout.
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Extension Point layoutInfo One goal of KIML is to provide its functional-
ity for all GMF diagrams. However, not all layout algorithms may be suitable
for a specific kind of diagram. The extension point layoutInfo can be used to
define diagram types and to map specific parts of GMF diagrams to diagram
types, so the user is free to choose which algorithms should be applied to
each type. For example, each level of hierarchy in a Statecharts diagram can
be mapped to the state machine diagram type, for which the Graphviz dot
layouter is a suitable algorithm.
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Chapter 3

The Layered Approach for
Graph Layout

The layered approach, which is also called hierarchical layout method, works
only for directed graphs and aims at emphasizing the direction of flow,
thus expressing the hierarchy of vertices in the graph. It was proposed by
Sugiyama, Tagawa and Toda [33], and is often called Sugiyama layout.

This chapter provides basic definitions for graphs and drawings of graphs,
an overview of the hierarchical layout algorithm, some details on our imple-
mentation in KIELER, and experimental results. Readers who are not in-
terested in the details of the algorithm may proceed to Chapter 4, which
describes our integration into Ptolemy.

3.1 Related Work

As data flow diagrams can be structurally mapped to graphs, basic algo-
rithms for layout of such diagrams can be taken from the area of graph
drawing. There are several approaches to the general problem of graph draw-
ing [2, 5, 18,20,35], of which a selection is presented in this section.

Layered approach: The layered or hierarchical layout method first elimi-
nates directed cycles in the graph, then determines a layering of vertices
and optimizes this layering with respect to vertex positions. We used
this approach for our implementation, therefore it is covered with more
detail in Section 3.4.

Force-directed approach: This approach creates a model of physical forces
and minimizes the energy of the model [6]. One variant consists in as-
signing springs with appropriate forces to each pair of adjacent vertices;
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such methods are called spring embedders.

As planarity of graphs is a topic which is well studied in graph theory, many
drawing methods expect a planar embedding as input. If the graph to be
drawn is not planar, it is first processed in a planarization phase. Methods
which build on planarization are the following.

Topology-shape-metrics approach: This method computes a bend-minimal
orthogonal representation of the graph in an orthogonalization phase,
and determines final coordinates for vertices and bend points during
compaction [34, 35].

Visibility approach: A visibility representation is constructed, which maps
vertices and edges to horizontal and vertical segments; these are in turn
replaced by drawings of their corresponding elements [2, 36].

Augmentation approach: The graph is augmented by vertices, edges, or
both, to get a graph with specific properties, e. g. one in which all faces
have exactly three edges [10, 29], or a biconnected graph [3]. In their
basic variants, these algorithms usually yield a straight-line drawing.

Mixed model approach: This approach extends methods of straight-line
drawing from the augmentation approach to construct orthogonal or
quasi-orthogonal drawings [16,19].

The main specialties that make layout of data flow diagrams more difficult
than layout of general graphs are ports and hyperedges. Previous work on
layout with port constraints includes that of Gansner et al. [13] and Sander
[24], who gave extensions of the hierarchical approach to consider attachment
points of edges. These methods are mainly designed for the special case of
displaying data structures and are not suited for the more general constraints
of data flow diagrams. A more flexible approach is chosen in the commercial
graph layout library yFiles (yWorks GmbH), which supports two models of
port constraints and hyperedge routing for the hierarchical approach1, but
no details on the algorithm have been published [37]. Other unpublished
solutions to drawing with port constraints include ILOG JViews [28] and
Tom Sawyer Visualization2. Handling of hyperedges in hierarchical layout
has been covered by Eschbach et al. [9] and Sander [27]. Sugiyama et al. [32]
and Sander [26] have shown how to draw general compound graphs, but
due to the presence of external ports (see Section 3.3), our requirements for
structural hierarchy are different.

1yFiles Developer’s Guide, http://www.yworks.com/
2Tom Sawyer Software, http://www.tomsawyer.com/
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The topic of visualization of hardware schematics is quite related to the
drawing of data flow diagrams. While traditional approaches for the lay-
out of schematic diagrams follow the general place and route technique from
VLSI design [1,21], more recent work includes some concepts from the area of
graph drawing [8]. However, these concepts are not sufficient for the needs of
our application, since they do not address our scenarios for port constraints,
but concentrate on partitioning and placement for large schematics and hy-
peredge routing.

3.2 Graph Drawing

A directed graph G = (V, E) consists of a finite set V and a multiset E ⊆
V × V . The elements of V are called vertices or nodes, and the elements of
E are called edges or connections. An edge e ∈ E with e = (v, v) is called
a self-loop. An edge whose multiplicity in E is greater than one is called a
multiple edge. The vertices u, v of an edge e = (u, v) are called its endpoints.
If there exists an edge e = (u, v) ∈ E, we call u and v adjacent to each
other and e incident to u and v. The neighbors of a vertex v are its adjacent
vertices. The degree of v is the number of edges which are incident to v.
An edge e = (u, v) ∈ E is an outgoing edge of u and an incoming edge of v.
vs(e) := u is called the source of e, and vt(e) := v is called the target of e.
The indegree of a vertex v is the number |Ei(v)| of its incoming edges Ei(v),
and its outdegree is the number |Eo(v)| of outgoing edges Eo(v). A vertex
with no outgoing edges is called a sink of the graph, and a vertex with no
incoming edges is called a source of the graph. A subgraph of G = (V, E) is
a graph G′ = (V ′, E ′) for which V ′ ⊆ V and E ′ ⊆ {(u, v) ∈ E : u, v ∈ V ′}.

A path of a graph is a sequence (v1, . . . , vk) of vertices such that (vi, vi+1) ∈
E for i ∈ {1, . . . , k − 1}. A path p = (v1, . . . , vk) is called simple if vi 6= vj

for all i 6= j. p is a cycle if v1 = vk. A cycle (v1, . . . , vk) is called simple if
(v1, . . . , vk−1) is a simple path. A graph G is acyclic if it contains no cycles. It
is connected if for each pair (u, v) of vertices there is a path between u and v
in G. The connected components of G are the maximal connected subgraphs
of G.

A drawing of a graph G is a mapping Γ of the vertices and edges of G
to subsets of the plane R2. A drawing is called polyline if the drawing Γ(e)
of each edge e can be decomposed into a sequence of straight lines, and it
is orthogonal, or rectilinear, if all line segments are aligned horizontally or
vertically.

Algorithms for automatic layout are programs that compute drawings of
the related graphs. These drawings are represented by abstract values such
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as the position and size of each vertex, and the list of bend points of each
edge. Aside from general restrictions and drawing conventions, algorithms
for automatic layout are subject to the goal of optimizing a set of aesthetics
criteria [2, 23]. The most important to mention are the following:

Crossings Minimize the total number of crossings between edges.

Direction Maximize the number of edges pointing to a specific direction,
e. g. to the right.

Bends Minimize the total number of bends along the edges.

Area Minimize the total area of the drawing while preserving a minimal
distance between all objects.

AspectRatio Keep the aspect ratio low, that is the width of the drawing
divided by its height for landscape format drawings, and the inverse
for portrait format.

3.3 Port Constraints

A port based graph is a directed graph G = (V, E) together with a finite set
P of ports. For each v ∈ V we write P (v) for the subset of ports that belong
to v, and we require P (u) ∩ P (v) = ∅ for u 6= v. Each edge e = (u, v) ∈ E
has a specified source port ps(e) ∈ P (u) and a target port pt(e) ∈ P (v). We
write v(p) for the vertex u for which p ∈ P (u).

In general graph drawing it is sufficient that the drawing of each edge
e = (u, v) touches the drawings of u and v anywhere on their border. For
port based graphs the drawing of each port p ∈ P (v) has a specific position
on the border of Γ(v), and the edges that have p as source or target port
may touch Γ(v) only at that position.

Some new aspects must be considered when extending a graph layout
algorithm to handle ports. Firstly, edges that are incident at the same port
are considered as hyperedges, i. e. edges that may connect more than two
vertices. This aspect is handled by merging some line segments of edges that
share the same port, as seen in Figure 3.1, and is mainly a matter of proper
edge routing. A second aspect concerns port positions, for which we consider
four different scenarios:

FreePorts All ports may be drawn at arbitrary positions on the border of
their corresponding vertex.

22



Figure 3.1: A hyperedge that connects four vertices

Figure 3.2: The diagram contained in Composite has connections to external
ports.

FixedSides The side of the vertex is prescribed for each port, i. e. the top,
bottom, left, or right border, but the order of ports is free on each side.

FixedPortOrder The side is fixed for each port, and the order of ports
is fixed for each side.

FixedPorts The exact position is fixed for each port.

When structural hierarchy is applied we use compound graphs, where a
vertex v is allowed to contain a nested graph Gv. In this case, the ports of v
are treated as external ports of Gv, and may be connected to the vertices of
Gv (see Figure 3.2). As opposed to the ordinary vertices of Gv, the external
ports cannot be assigned arbitrary positions, but must stay on the border of
v. Additional edge routing mechanisms must be applied to properly connect
the external ports with inner vertices.

3.4 The Algorithm

The main phases of our hierarchical layout algorithm with port constraints
are the following.

1. Cycle removal: Break directed cycles by reversing some edges, while
keeping the number of reversed edges as low as possible. In the fi-
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nal drawing the reversed edges are restored again, so that they point
against the predominant direction of flow.

2. Layer assignment: Create a minimal set of layers L1, . . . , Lk and
assign a layer to each vertex such that for all edges (u, v) the assigned
layers Li of u and Lj of v satisfy i < j. This is possible because after
the first phase the graph is acyclic.

3. Crossing reduction: Find an ordering of the vertices of each layer
that minimizes the number of edge crossings. If the order of ports is
not fixed for any vertex, it must also be properly chosen.

4. Edge routing A: Depending on port positions, some edges need to
be routed around vertices (see Figure 3.3). The number and order of
edges that need to be routed on each side of a vertex is determined in
this phase.

5. Node placement: Determine exact positions of all vertices inside
their corresponding layers. The vertices must not overlap each other,
the ordering from phase 3 must be respected and the position of each
vertex must be well-balanced with respect to its neighbors. We will
call this crosswise placement.

6. Edge routing B: Determine bend points for each edge and the ex-
act distance between subsequent layers, which we will call lengthwise
placement. Routing to external ports is also handled in this phase.

There are numerous alternative algorithms that can be used for each
phase [2, 20, 30], but this report focuses on our current implementation of
each phase and on the realization of port constraints.

Figure 3.3: Routing of edges around vertices due to prescribed port positions

24



3.4.1 Implementation

The main class of our layout algorithm is a subclass of AbstractLayoutProvider
to match the interface for automatic layout described in Section 2.2.1. There-
fore, the input of the algorithm is an instance of KNode (see Figure 2.1),
whose direct children represent the graph for which layout is performed.

The phases of the algorithm are modularized using the Strategy design
pattern [12]: an interface that describes the functionality of the module is
created for each phase, and at least one implementation is given for each
phase. If there is more than one implementation for an interface, the user
may choose from different alternatives for the corresponding phase of the al-
gorithm, possibly leading to differing layout results. With this design pattern
it is also possible to experiment with new implementations while keeping the
original implementation, and to directly compare their outputs. Figure 3.4
shows a class diagram with all modules of the layout algorithm and their
currently available implementations.

Each implementation of a module is a subclass of AbstractAlgorithm, which
handles the usage of progress monitors (see Section 2.2.1). These progress
monitors cannot only be used to give feedback of the progress of the algorithm
during its execution, but can also measure execution times. As seen in Figure
3.5, execution times are tracked for the whole algorithm as well as for each
module.

Since for the layered approach the vertices of the input graph are orga-
nized in layers (see Section 3.4.3), a graph structure that directly expresses
this layering is used internally by our layout algorithm. A class diagram for
this data structure is shown in Figure 3.6.

The class LayeredGraph, of which there always exists exactly one instance
for each run of the algorithm, contains a list of layers, represented by the
class Layer. A layer contains a list of layer elements, and each layer element
is assigned to exactly one linear segment (see Section 3.4.3). A layer element
may have incoming and outgoing connections as well as self-loops, which are
represented by the classes LayerConnection and ElementLoop, respectively.

3.4.2 Cycle removal

The goal of this phase is to find a minimal set of edges of a given graph G for
which the graph obtained by reversing these edges is acyclic. This problem is
equivalent to the feedback arc set problem, which is NP-complete [14]. A good
heuristic is the algorithm Greedy-Cycle-Removal from Di Battista et al. [2],
which determines an ordering v1, . . . , vn of the vertices in G. By reversing all
edges (vi, vj) for which i > j, all cycles are eliminated.
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<<realize>>

<<interface>>
de::cau::cs::kieler::core::alg::IAlgorithm

reset() : void
reset(monitor : IKielerProgressMonitor) : void
setProgressMonitor(monitor : IKielerProgressMonitor) : void

de::cau::cs::kieler::core::alg::AbstractAlgorithm

reset() : void
reset(monitor : IKielerProgressMonitor) : void
setProgressMonitor(monitor : IKielerProgressMonitor) : void
getMonitor() : IKielerProgressMonitor

progressMonitor : IKielerProgressMonitor

<<realize>>

<<interface>>
de::cau::cs::kieler::core::slimgraph::alg::ICycleRemover

removeCycles(graph : KSlimGraph) : void
restoreGraph() : void
getReversedEdges() : List

de::cau::cs::kieler::core::slimgraph::alg::AbstractCycleRemover

reset() : void
restoreGraph() : void
getReversedEdges() : List
reverseEdges() : void

reversedEdges : LinkedList

<<realize>>

de::cau::cs::kieler::core::slimgraph::alg::DFSCycleRemover

removeCycles(graph : KSlimGraph) : void
dfsVisit(node : KSlimNode) : void

nextDfs : int

de::cau::cs::kieler::core::slimgraph::alg::GreedyCycleRemover

reset() : void
removeCycles(graph : KSlimGraph) : void
updateNeighbors(node : KSlimNode) : void

indeg : int[]
outdeg : int[]
sources : LinkedList
sinks : LinkedList

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ILayerAssigner

assignLayers(slimGraph : KSlimGraph,parentNode : KNode) : LayeredGraph

<<realize>>

de::cau::cs::kieler::klodd::hierarchical::impl::BalancingLayerAssigner

<<create>> BalancingLayerAssigner(basicLayerAssigner : ILayerAssigner)
assignLayers(slimGraph : KSlimGraph,parentNode : KNode) : LayeredGraph
balanceElement(layeredGraph : LayeredGraph,elemIter : ListIterator) : void

basicLayerAssigner : ILayerAssigner

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ISingleLayerCrossingReducer

reduceCrossings(layer : Layer,forward : boolean) : void
reduceCrossings(layer : Layer) : void

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ICrossingReducer

reduceCrossings(layeredGraph : LayeredGraph) : void

de::cau::cs::kieler::klodd::hierarchical::impl::BarycenterCrossingReducer

reduceCrossings(layer : Layer,forward : boolean) : void
reduceCrossings(layer : Layer) : void
calcBarycenter(ranks : List) : double
calcBarycenter(forwardRanks : List,backwardsRanks : List) : double

de::cau::cs::kieler::klodd::hierarchical::impl::LayerSweepCrossingReducer

<<create>> LayerSweepCrossingReducer(layerReducer : ISingleLayerCrossingReducer)
reduceCrossings(layeredGraph : LayeredGraph) : void

layerReducer : ISingleLayerCrossingReducer

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::INodewiseEdgePlacer

placeEdges(layeredGraph : LayeredGraph) : void

de::cau::cs::kieler::klodd::hierarchical::impl::SortingNodewiseEdgePlacer

placeEdges(layeredGraph : LayeredGraph) : void
placeEdges(element : LayerElement) : void
addToSlot(node : KNode,port : KPort,slotList : List,slotMap : Map,fromPos : float,toPos : float) : void
addToSlot(port1 : KPort,port2 : KPort,slotList : List,slotMap : Map,fromPos : float,toPos : float) : void
hasOutgoing(element : LayerElement,port : KLayoutPort) : boolean
hasIncoming(element : LayerElement,port : KLayoutPort) : boolean
assignRanks(slotList : List,size : float) : int
getRankFor(port : KPort,slotList : List,ranks : int) : int

layoutDirection : KLayoutOption

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::INodePlacer

placeNodes(layeredGraph : LayeredGraph,minDist : float) : void

de::cau::cs::kieler::klodd::hierarchical::impl::BasicNodePlacer

reset() : void
placeNodes(layeredGraph : LayeredGraph,minDist : float) : void
getMovableSegments() : LinearSegment[]
sortLinearSegments(layeredGraph : LayeredGraph) : LinearSegment[]
createUnbalancedPlacement(sortedSegments : LinearSegment[]) : void
processExternalLayer(layer : Layer) : void

DIST_FACTOR : float
minDist : float
layoutDirection : KLayoutOption
sortedSegments : LinearSegment[]

de::cau::cs::kieler::klodd::hierarchical::impl::BalancingNodePlacer

<<create>> BalancingNodePlacer(basicNodePlacer : BasicNodePlacer)
placeNodes(layeredGraph : LayeredGraph,minDist : float) : void
createRequests(layer : Layer,forward : boolean) : void
validateRequests(layer : Layer) : void
calcPosDelta(connection : LayerConnection,forward : boolean) : float
isMovable(layer : Layer) : boolean

basicNodePlacer : BasicNodePlacer
minDist : float
maxWidth : float
layoutDirection : KLayoutOption
moveRequests : float[]

<<realize>>

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::ILayerwiseEdgePlacer

placeEdges(layer : Layer,minDist : float) : int
getSlotMap() : Map

de::cau::cs::kieler::klodd::hierarchical::impl::SortingLayerwiseEdgePlacer

reset() : void
placeEdges(layer : Layer,minDist : float) : int
getSlotMap() : Map

EDGE_DIST : float
slotMap : Map

<<interface>>
de::cau::cs::kieler::klodd::hierarchical::modules::IEdgeRouter

routeEdges(layeredGraph : LayeredGraph,minDist : float) : void

de::cau::cs::kieler::klodd::hierarchical::impl::RectilinearEdgeRouter

<<create>> RectilinearEdgeRouter(layerwiseEdgePlacer : ILayerwiseEdgePlacer)
routeEdges(layeredGraph : LayeredGraph,minDist : float) : void
processOutgoing(layer : Layer) : void
processLoops(layer : Layer) : void
processExternalPorts(layeredGraph : LayeredGraph) : void
processExternalLayer(layeredGraph : LayeredGraph,layer : Layer) : void
createPointFor(port : KPort,element : LayerElement,loop : ElementLoop) : KPoint

layerwiseEdgePlacer : ILayerwiseEdgePlacer
minDist : float
layerPos : float
maxCrosswisePos : float
maxLengthwiseAddPos : float

de::cau::cs::kieler::klodd::hierarchical::impl::LongestPathLayerAssigner

reset() : void
assignLayers(slimGraph : KSlimGraph,parentNode : KNode) : LayeredGraph
visit(node : KSlimNode) : int

layeredGraph : LayeredGraph

1

1

1

1

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

Figure 3.4: Modules for the hierarchical layout algorithm
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Figure 3.5: Execution time of each module of the algorithm, shown in an
Eclipse view after layout was applied to a data flow diagram
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Figure 3.6: Central data structure for the hierarchical layout algorithm, rep-
resenting a layered graph
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Figure 3.7: A layered graph with two dummy vertices for the long edge (1,4)
and one for the edge (2,4)

Since we want to avoid changing the KGraph structure given as input, the
graph is first transformed to a much simpler graph structure called SlimGraph,
which is not implemented in EMF, but as a set of plain Java classes. Edges
are only reversed in the SlimGraph instance for cycle removal.

3.4.3 Layer assignment

In this step we want to find layers L1, . . . , Lk for the vertices of the acyclic
graph G. A layering is called proper if all edges e connect only vertices from
subsequent layers. A proper layering is constructed from a general layering
by splitting long edges: given an edge e = (vi, vj), vi ∈ Li, vj ∈ Lj, for
which j − i > 1, we add new dummy vertices vi+1, . . . , vj−1 to the layers
Li+1, . . . , Lj−1 and split e into a series of edges ei, . . . , ej−1 such that eh =
(vh, vh+1) for all h ∈ {i, . . . , j − 1} (see Figure 3.7). The rank of a layer Li is
r(Li) := i, and its height is h(Li) := k − i + 1.

A simple and linear running time heuristic consists in determining the
longest path to a sink: all sinks s are put into the last layer, and all other
vertices are assigned a layer of height h(Li) equal to the number of edges on
a longest path to a sink plus one. If there are many sinks in the graph, the
last layer can become very wide with this layering. Therefore we improve
the longest path layering using Algorithm 3.1, which decides locally for each
vertex whether moving it to a preceding layer could improve the layering,
thus greedily computing a local optimum.

The input of this phase is the SlimGraph instance created for cycle re-
moval together with the original KNode instance. The layering algorithm cre-
ates and returns a layered graph, which then requires some post-processing
through the method createConnections. This method traverses the layered
graph and creates layer connections for all edges that are found in the orig-
inal graph. This is done by Algorithm 3.2, which also splits connections
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Algorithm 3.1: balanceLayering

1 procedure balanceLayering(G: directed graph)
2 determine layers L1, . . . , Lk for G using longest path layering
3 foreach layer Lj , j ≥ 3, do
4 foreach v ∈ Lj , indegree of v ≥ outdegree of v, do
5 r := max{i : (u, v) ∈ E, u ∈ Li} + 1
6 foreach layer Li, r ≤ i < j with increasing i, until a fitting layer is found,

do
7 if |Li| ≤ |Lj | then
8 move v to the fitting layer Li

9 end

Figure 3.8: The long edges (1, 3) and (1, 4) share the dummy vertex b in
layer 2.

that span over multiple layers using dummy vertices, for which new layer
elements are created. If two long edges share a common port, thus forming a
hyperedge, they must be assigned common dummy vertices, as seen in Figure
3.8.

If the original diagram contains external ports, they are also added as
layer elements: input ports, which have only outgoing connections, are as-
signed the layer with rank 0, while output ports, which have only incoming
connections, are assigned the layer with height 0. By this we achieve that
external ports can be treated as normal vertices in the following phases of
the algorithm, and they are assigned dedicated layers.

3.4.4 Crossing reduction

The problem of crossing reduction for layered graphs, which consists in set-
ting an order of vertices that minimizes the number of crossings for each
layer, is NP-complete, even if there are only two layers [15]. Nevertheless
it is easier to find heuristics to set the order of vertices for two layers than
to optimize the whole graph at once. For this reason this phase is usually
solved with a layer-by-layer sweep: choose an arbitrary order for layer L1,
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Algorithm 3.2: createLayerConnection

1 procedure createLayerConnection(L1, . . . , Lk: layers, e: edge)
2 let Ls be the layer for which vs(e) ∈ Ls

3 let Lt be the layer for which vt(e) ∈ Lt

4 if t− s = 1 then
5 directly connect vs(e) and vt(e)
6 else
7 // Associations between ports and existing linear segments are created in line 27
8 get the linear segment S associated with the source port ps(e)
9 if S =⊥ then

10 get the linear segment S associated with the target port pt(e)
11 if S =⊥ then
12 create a new dummy node d in Li, i := s + 1
13 create a linear segment S for d
14 connect vs(e) and d
15 else
16 // Another edge with the same source or target port exists
17 connect vs(e) and the dummy node in S whose layer is Ls+1

18 find the dummy node d in S whose layer Li has maximal i < t

20 while i < t− 1 do
21 create a new dummy node d′ in Li+1

22 add d′ to S
23 connect d and d′

24 d := d′, i := i + 1

26 connect d and vt(e)
27 associate S with ps(e) and pt(e)
28 end
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then for each i ∈ {1, . . . , k− 1} optimize the order for layer Li+1 while keep-
ing the vertices of layer Li fixed. Afterwards the same procedure is applied
backwards, and it can then be repeated for a specified number of iterations.
We will only cover the forward sweep here, because the backwards case is
symmetric.

When ports are used to determine the source and target point of each
edge, the number of crossings does not depend only on the order of vertices,
but also on the order of ports for each vertex. This order is implied by the
port ranks which are assigned to the ports using layout options (see Section
2.2.1) and are based on clockwise order. The port ranks must be translated
depending on the side of the node, the overall layout direction, and whether
a forward or backwards layer-by-layer sweep is performed. For example, if
horizontal layout is performed, we must consider clockwise port ranks for a
forward sweep, but counter-clockwise port ranks for a backwards sweep.

Based on the translated port ranks we define extended vertex ranks so
that for each v ∈ Li and p ∈ P (v) the sum of the rank of v and the rank
of p is unique. The rank width of a layer element v ∈ Li is w(v) := |P (v)|
if v originates from a vertex, and w(v) := 1 if v was created for a dummy
vertex of a long edge or for an external port. The extended vertex ranks of
the ordered vertices v1, . . . , vh in the layer Li are defined as

r(vj) :=
∑
g<j

w(vg)

for all j ≤ h.
We implemented the Barycenter method for the two-layer crossing prob-

lem: first calculate values a(v) ∈ R for each v ∈ Li+1, then sort the vertices
in Li+1 according to these values. The a(v) values are determined as the av-
erage of the combined vertex and port ranks for all source ports of incoming
edges of v:

a(v) :=
1

|Ei(v)|
∑

(u,v)∈Ei(v)

(r(u) + r(ps(u, v)))

Vertices vj that have no incoming edges should be assigned values a(v) that
respect the previous order of vertices, thus we define a(vj) := 1

2
(a(vj−1) +

a(vj+1)) if Ei(vj+1) 6= ∅ and a(vj) := a(vj−1) otherwise. By setting a(v0) := 0
and calculating the missing a(vj) values with increasing j we can assure that
a(vj−1) is always defined.

For vertices with FixedSides or FreePorts port constraints we have
the additional task of finding an order of ports for each vertex that minimizes
the number of crossings. The extension of the method described above is
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quite straightforward: instead of calculating values a(v) to order the vertices,
calculate values a(p) to order the ports first, then calculate

a(v) :=
1

|P (v)|
∑

p∈P (v)

a(p).

For each port p let Ei(p) be the set of edges which are incoming at that port.
Then we define

a(p) :=
1

|Ei(p)|
∑

(u,v)∈Ei(p)

(r(u) + r(ps(u, v))) .

If there are long hyperedges that share common dummy vertices, as de-
scribed in Section 3.4.3, crossing reduction must be adapted to avoid in-
consistencies in the following phases. If, for example, backwards crossing
reduction is performed for the second layer of the graph in Figure 3.8 while
keeping the vertices of the third layer fixed as (3, c, d), it can happen that
the dummy vertex b is placed above a because of its outgoing connection to
vertex 3. This would lead to a crossing of the edges (a, c) and (b, d), which
is not allowed for proper vertex placement.

To resolve this problem, two new rules must be added for each long edge
that is split into dummy vertices v1, . . . , vk:

1. For each dummy vertex vi, i ∈ {2, . . . , k}, only one incoming connection
may be considered for crossing reduction, namely (vi−1, vi).

2. For each dummy vertex vi, i ∈ {1, . . . , k − 1}, only one outgoing con-
nection may be considered for crossing reduction, namely (vi, vi+1).

3.4.5 Node placement

From this phase on we will cover only horizontal layout direction, but the
concepts for vertical layout are symmetric.

For crosswise vertex placement in horizontal layout the vertices of each
layer are arranged vertically. Sander proposes a two-phase method [25]: de-
termine a correct initial placement, then balance vertex positions. For this
purpose the concept of linear segments is introduced; here a linear segment
is a set which contains either a single regular vertex or all dummy vertices
introduced to split a single long edge (see Figure 3.9). It is important to put
multiple dummy vertices of a linear segment at the same vertical position,
so that the associated long edge does not receive too many bend points. For
each vertex v we write S(v) for the linear segment for which v ∈ S(v).
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(a) A layered graph with its linear segments (b) The segment ordering graph with a
possible numbering and topmost align-
ment

Figure 3.9: Linear segments and their ordering graph

The segment ordering graph describes the required order of linear seg-
ments. It contains an edge (S1, S2) if and only if the linear segments S1 and
S2 contain vertices v1 ∈ S1 and v2 ∈ S2 which are located in the same layer
Li and are ordered subsequently, thus their ranks satisfy r(v2) = r(v1) + 1.
Sander’s algorithm sets the vertical position of all vertices by performing a
topological sort on the segment ordering graph GS, which is possible because
GS is acyclic, and then finding the topmost position of each linear segment.
Afterwards a pendulum method is applied to balance the drawing by moving
vertices according to the positions of their neighbors [25,30]. The exact port
positions must be taken into account here to achieve proper vertex placement.

3.4.6 Edge routing

In order to achieve rectilinear edge routing, each edge that cannot be rep-
resented by a single horizontal line needs a vertical line segment (see Figure
3.10). A proper order of vertical line segments is important to avoid addi-
tional edge crossings. To accomplish this, each edge e connecting vertices
from layers Li and Li+1 is assigned a routing slot of rank r(e), which is then
drawn at the horizontal position x := x(Li) + b(Li) + r(e) · d, where x(Li)
is the horizontal position at which layer Li is drawn, b(Li) is the amount of
horizontal space needed by layer Li, and d is the minimal distance to be left
blank between any two line segments. Two bend points are inserted to cre-
ate the vertical line segment: (x, ys(e)) and (x, yt(e)), where ys(e) and yt(e)
are the fixed vertical positions of the source and target port of e, respec-
tively. The amount of horizontal space needed for routing slots depends on
the maximal assigned rank ri,max, and the position of Li+1 can be determined
as x(Li+1) = x(Li)+b(Li)+(ri,max +1) ·d. The set of vertical positions occu-
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Figure 3.10: Rectilinear edge routing between layers using vertical line seg-
ments

pied by an edge e is Y (e) := [min{ys(e), yt(e)}, max{ys(e), yt(e)}]; the basic
rule for rank assignment is r(e) 6= r(e′) for edges e, e′ with Y (e)∩ Y (e′) 6= ∅.

An additional difficulty comes up when the source port of an edge is not
on the right side of the source vertex, or the target port is not on the left side
of the target vertex. In these cases additional bend points are needed to route
the edge around the vertex, as seen in Figure 3.3. For this purpose routing
slots of different ranks must be assigned on each side of a vertex, similarly to
layer-to-layer edge routing. This is done in an additional phase after crossing
reduction; all edges which need additional bend points are processed here, as
well as self-loops.

For example, the self-loop (4, 4) in Figure 3.3 is assigned routing slots of
rank 1 on the left, bottom and right side of vertex 4, while the edge (2, 4) is
assigned a routing slot of rank 2 on the bottom side of vertex 4.

As an output of this additional routing phase, the number of routing
slots for the top and the bottom side of each vertex v, together with the
given height of v, determines the amount of space that is needed to place
v inside its layer. This information is passed to the node placement phase,
so that the free space that is left around each vertex suffices for its assigned
routing slots.

3.5 Experimental Results

Here we will look at some direct outputs of our hierarchical layout algorithm.
A more detailed analysis of the algorithm is presented elsewhere [30], and
more results are shown in Chapter 4, where the algorithm is embedded into
Ptolemy.

Figure 3.11 shows how the overall layout direction changes the output
of automatic layout. In Figure 3.12 we see a hand-made layout from an
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(a) Horizontal layout (b) Vertical layout

Figure 3.11: Output of hierarchical layout with different layout options

official demonstration of SCADE, and the outcome of automatic layout for
the same diagram, which models calculation of the speed of a vehicle for the
environment simulation of a cruise control system. This example shows that
the quality of our automatic layout is at least comparable with the carefully
prepared manual layout. Layout of a compound diagram with connections
to external ports is shown in Figure 3.13. Here we see that our algorithm is
able to handle edge routing to external ports, even if they are located on the
top or bottom side of the parent node.

Measurement data for the execution time of the hierarchical layout method
is shown in Figure 3.14. Execution times were determined on an Intel Xeon
3 GHz processor for different randomly generated graphs. Each value was
calculated as the average of the values for five random graphs of equal size,
where for each graph the lowest execution time of five consecutive runs was
taken.

Figure 3.14a presents measurements for generated graphs G = (V, E) with
varying |V | and |E| = |V | in logarithmic scale. The curve is roughly linear
with an approximate slope of 1.16, hence the overall runtime behavior is
nearly linear3 in the number of vertices. For graphs with about 25 000 or less
vertices the algorithm takes less than a second, which proves its suitability
for automatic layout in a user interface environment.

The runtime behavior for generated graphs with a fixed number of 100
vertices and varying number of edges is shown in linear scale in Figure 3.14b.

3Real linear runtime behavior would yield a linear curve of slope 1 in logarithmic scale.
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(a) Original SCADE diagram

(b) Hierarchical layout

Figure 3.12: Comparison of hand-made layout with automatic layout
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Figure 3.13: Edge routing to external ports
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(a) Varying number of vertices, with one
outgoing edge per vertex
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(b) Varying number of outgoing edges per
vertex for 100 vertices

Figure 3.14: Execution times of hierarchical layout
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Here we see that the execution time highly depends on the average vertex
degree, since layout for a graph with 2 000 vertices and 2 000 edges is 8 times
faster than layout for 100 vertices and 2 000 edges. One reason for this is
that for vertices with a lot of incident edges the number of long edges that
stretch over multiple layers is likely to be high, so that dummy vertices must
be inserted to obtain a proper layering. The consequence is that the problem
size rises with regard to the total number of vertices.
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Chapter 4

Automatic Layout in Ptolemy

Ptolemy is a graphical modeling suite developed by the Center for Hybrid
and Embedded Software Systems (CHESS) of the University of California,
Berkeley, USA, under the lead of Edward A. Lee [7].

Ptolemy supports actor oriented system design, where the building blocks
of a system are actors—small software components that consume data tokens
and produce new data tokens like functions. Actors can be interconnected
to form a whole network of data flow. A director is a software component
that is responsible to organize the execution orders of the actors. Ptolemy
provides a wide variety of director implementations that execute actor models
in different ways, usually following specific formal semantics, which are also
known as models of computation in the Ptolemy notion. Directors have to
follow only a few rules and implement a certain interface and hence a model
developer is able to create custom directors that execute actor models in any
way.

Actors can be implemented directly in some host language, most likely
Java, or be composed of another Ptolemy model, i. e. another actor network.
Each composite actor has its own director to control the model execution
of this single actor contents. So a key concept in Ptolemy is to use differ-
ent composite actors, each using a different director in one model yielding
heterogeneous models that comprise multiple models of computation.

One use case could be to model a software controller, with discrete events
semantics, and a simulation plant model of the mechanical parts of the sys-
tem or its environment, with a continuous time semantics that reflects its
nonlinearity. This way a whole system can be simulated in Ptolemy prior to
its physical integration in the target.
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Figure 4.1: A graphical representation of a Ptolemy actor model

4.1 The Ptolemy Layout Problem

Ptolemy models can be created either programmatically by its Java API,
manually by writing the model specification in an XML language called Model
Markup Language (MoML) or by drawing a graphical representation of a
Ptolemy model in a diagram editor called Vergil.

A typical graphical Ptolemy representation is shown in Fig. 4.1. Actors
are represented as rectangles with some actor-specific icon. Actors produce
or consume data on ports, either inputs or outputs or both, represented as a
small triangle at the border of an actor icon. Rectilinear polylines connect
ports with each other where usually a simple port may only be connected to
exactly one connection, semantically called a relation. A connection can be
branched by introducing an explicit relation vertex, a small black diamond
icon, to which multiple connections may be attached.

As Fig. 4.1 also shows, there can be other components in a Ptolemy model
that do not need to be explicitly connected to some other components. The
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most prominent one is the director, represented by an unconnected labeled
box. Documentation blocks or more generally text attributes can be placed
in a model at arbitrary positions. There are quite a few others like these in
the Ptolemy libraries available.

4.1.1 Node Placing

In Ptolemy all aforementioned nodes can be placed manually, e. g. actors,
directors, relation vertices and text attributes. The horizontal and vertical
coordinates of all nodes are persistently stored and are part of the Ptolemy
model. These locations can be adapted programatically and hence can be
used by the layout algorithm.

Most iconed boxes such actors, vertices, and directors have a fixed size,
which can be changed neither manually nor programmatically. The size is set
once for the node by its specification from its icon and settings which might
be stored in the Ptolemy node library. The size of text attributes is variable
by the length and wrapping of the text. The user can influence the shape of
text boxes by the text’s length, its wrapping (which must be manually set)
and font size and style. Automatic wrapping to a given text box width is
not intended. Actors also have a label, its name, which can be arbitrarily
customized by the user. It can be arbitrarily wide and high by using line
breaks. An outer bounding box for nodes is given by Ptolemy including all
elements of the node, e. g. an actor’s ports and its label. Therefore in general
the size of an actor is variable but given by a specific model.

Structural hierarchy is an important concept in Ptolemy but is not ex-
pressed directly in the graphical representation like in Sec. 2.2.2. Contents
of composite actors like the Sampler in Fig. 4.1 is not shown in the same di-
agram but can be opened in a completely new canvas. So layout of hierarchy
is not in the scope of layout in the Ptolemy Vergil editor.

4.1.2 Connection Bend Point Placing

Placing of bend points is an issue in Vergil, because bend points are not part
of the Ptolemy model and hence are not persistently stored, and for a user it
is not possible to directly influence the locations of connection bend points,
neither manually nor programmatically.

Ptolemy uses an internal connection router that dynamically computes
bend points for a connection between two endpoints. This router is a recti-
linear style Manhattan router without obstruction avoidance. Hence given
an arbitrary node placing, it is likely to have an arbitrary number of over-
lappings of connections with nodes and also with other connections.
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(a) Arbitrary model with node and connection
overlappings

(b) Optimized layout by introducing an addi-
tional relation vertex and moving nodes

(c) Inserting one relation vertex per
bend point results in full control over
connection routing

Figure 4.2: Connection Routing in Ptolemy

However, there are some options for influencing the routing shown in
Fig. 4.2. Depicted in Fig. 4.2a is a placement of nodes for which the Ptolemy
router results in two overlappings of nodes and one overlapping of connec-
tions. The latter results in an ambiguous diagram, where it cannot be decided
which connection enters the AddSubtract actor and which enters the Display
actor.

Node Moving Routing is usually influenced manually by moving nodes.
If this is not sufficient, new nodes can be inserted, which then can be
placed according to the desired layout. Relation vertices are nodes that
can be added within a connection without changing the semantics of
the model. Hence insertion of a few relation vertices and optimizing the
placement of all nodes is the usual way of manually creating collision-
free connection routings as shown in Fig. 4.2b.

This has also been used by the original author of the Ptolemy model
in Fig. 4.1, where the actor instances of the Sampler in the center are
slightly offset in order to get an unambiguous connection routing to
the HistogramPlotter. Additionally there are two routing slots created
for the two inputs of all of the Sampler instances by adding a relation
vertex and placing them also with a little distance at the horizontal
coordinate.
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Vertex Insertion To get full control over the connection routing, the
Ptolemy Manhattan router can be handed trivial routing tasks by cre-
ating only straight connection pieces. This can be achieved by insertion
of relation vertices for every bend point in the diagram. An example
is shown in Fig. 4.2c.

The advantage is that one gets full control over the bend point place-
ment as there are no real bend points but only vertices which can be
placed. In spite of that the drawbacks are obvious. The most visible is
that the diagram gets less appealing by this crowded view. The other
is that only for the goals of layout the underlying semantic model gets
heavily changed by insertion of new semantic objects. Even while this
has no semantic implications, the semantic model gets crowded.

One way to make the graphical representation more appealing would
be to simply hide the helper vertices such they do not get drawn at all.
However, this would lead to an odd state of the diagram where following
manual user interaction—like manually moving things—would be very
difficult and unintuitive.

Improved Manhattan Router Another idea is to improve the function-
ality of the built-in Manhattan router of Ptolemy to also avoid obstacles
and minimize edge crossings like the results of the algorithm presented
in Sec. 3.4.6.

However, the problems compared here are totally different. The routing
algorithm presented in this paper is highly interweaved with the placing
problem of nodes and therefore can exploit the already prepared routing
slots of the earlier layout phases. This way the routing problem can
be coped with well, while a general connection router that is separated
from the node placing steps is much more complex: Given an arbitrary
node placement, the calculation of bend points has to take into account
all other nodes, while space everywhere between the nodes is limited.
Hence the general routing problem is much more complex than the
combined routing problem.

Developing a general stand-alone router is out of the scope of this work
and might be approached in the future in another context.

Bend Point Router The last alternative would be to replace or upgrade
the Ptolemy Manhattan router in order to graphically apply a given
precomputed set of bend points to the connections. Then the calculated
bend points of the algorithm presented here could also be applied to
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the Ptolemy diagram. This would be the simplest and most appealing
way to get the desired result.

Technically, however, this would imply a few basic changes in the
Ptolemy infrastructure. First, this would require means to persistently
store bend points related to a connection. For example the MoML would
have to save the bendpoints related to connection pieces, which them-
selves are also not really explicit parts of the Ptolemy model and would
need to be introduced there.

Then, after a layout run of the auto layouter, the automatically gener-
ated bend points should be used while there would need to be a fallback
to the old Manhattan router whenever the user manually starts to drag
single items around again, unless manual changes in an auto-layouted
diagram should be prohibited at all.

We have implemented a two-level approach for the KIELER and Ptolemy
interface. The first simple and non-invasive mode simply places nodes and
does not touch connections. Hence the internal Ptolemy router is used to
route the edges which is likely to produce overlappings. The second mode
also routes edges by the Vertex Insertion method to showcase the routing
capabilities. This involves a lot of hard-coded model transformations that
introduce new relations and removes others while trying to keep the semantics
as before. Methods to remove or hide unnecessary relation vertices help to
avoid a cluttered mess of relation vertices.

4.2 Mapping the KIELER Layout Problem to

Ptolemy

Employing the KIELER layout algorithms to Ptolemy seems to be a straight-
forward mapping. Unfortunately it is not due to some subtle differences in
the two layout problems. These will be discussed in the following.

4.2.1 Abstraction

An issue in modeling tools like Ptolemy is that in their implementation they
try to follow some abstraction rules to separate concerns and to hide imple-
mentation details of lower levels in the higher ones. In general this is a good
idea as long as the intended application on higher levels does not demand
any information or API of lower levels.
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In graphical modeling the main user interaction mechanism still is WYSIWYG
drag-and-drop editing and so most tools are designed only for this purpose.
There are high-level interfaces to manually move graphical items one by one
and the feedback is given by the graphical representation to the developers
eyes directly. Usually—and this also holds for Ptolemy—the details are not
available in the public APIs. For example it is not always trivial to obtain
the actual structure and layout of a diagram programmatically in actual
coordinates, because some location functions are not stated public.

In Ptolemy there is such abstraction between the underlying graphical
drawing framework called Diva1 and the more specific Ptolemy II Vergil
editor. Some information was originally hidden in protected APIs, such as
the orientation of ports, and had to be made public for this work. Other
information is not consistent and needs many special case handling in the
implementation for reading and reapplying the layout to the diagram. For
example locations in horizontal and vertical coordinates are handled differ-
ently in Diva and Ptolemy and even within Ptolemy differently for actors
and text attributes. So bounds in Diva give the location by their top left
corner (just like in KIELER) while Ptolemy uses the center point for most
items, except for text attributes where it is again the top left corner.

Usually in a drag-and-drop editor the user does not need to care about
such issues because movements are done relative to current coordinates. But
for automatic layout this makes the interface code more verbose and error-
prone.

4.2.2 Nodes

Nodes in Ptolemy can comprise multiple elements like an icon, text, and
ports, where the icon usually does not fill the whole bounds of the actor. Its
text, e. g. the actor name, and the ports extend the bounds, sometimes by a
significant amount. Hence to reserve enough space in the layout for placing
the nodes, the overall outer bounds are used for the sizes of nodes in the
KIELER KGraph. This results in a KGraph where the ports are always fully
covered by the KIELER node’s bounds. This is no problem for the layout
algorithm as long as it knows to which side of the port—North, East, South,
or West—the port belongs. This information must be read from the Ptolemy
diagram.

Next to actors with ports there are other nodes which are connected but
have no ports at all. These are for example internal ports of composite actors.

It can be argued how to treat relation vertices. Following the Vertex

1http://embedded.eecs.berkeley.edu/diva/
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(a) Internally computed layout

(b) Ptolemy diagram

Figure 4.3: Ptolemy hierarchical layout including unconnected nodes results
in unappealing stacked views.

Insertion strategy of above would regard relation vertices as connection
bend points and not as nodes. For the first approach to Ptolemy, no con-
nection routing is applied at all and the internal Ptolemy Manhattan router
does the job. Here, relation vertices are treated as usual nodes with a size of
zero for simplicity.

4.2.3 Block Layout

A Ptolemy diagram not only consists of connected nodes but also comprises
unconnected decorating nodes such as text boxes for documentation, at-
tributes like a director, and other such items.

Especially text boxes for documentation tend to get quite large as Fig. 4.1
shows. Processing them in the presented hierarchical layouter places all
unconnected items in the last layer in a large pile. If the texts are quite
wide, the whole layer is stretched to the size of the largest item. This leads
to unpleasing results like shown in Fig. 4.3.

We improved the situation by employing the structural hierarchy (com-
posite nodes) mechanism of KIELER, which allows for every node in the graph
to contain subgraphs. The feature that each subgraph can be laid out with
a different layout algorithm allows us to handle connected and unconnected
nodes differently.
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(a) Internally computed layout (b) Ptolemy diagram

Figure 4.4: Separated hierarchichal layout for connected nodes and a simple
block layout for others.

All connected nodes are put in one composite node, which is layouted with
the hierarchical layout algorithm. All other nodes are layouted together with
the composite node by a simple block layout heuristic. The result is shown
in Fig. 4.4. The block layouter assumes that the composite node containing
the connected nodes is the largest node and then arranges all other nodes on
top of that next to each other and wrapping at the composite node in size
increasing order. It allows to set priorities to nodes which is used to always
position the director of the node in the top left corner. For many diagrams
this simple heuristic reveals acceptable and especially much more appealing
results than the hierarchical layouter alone.

The simple block layouter could be improved to solve the block layout
problem more generally, i. e. place a set of unconnected nodes with fixed sizes
optimally. To some extent this relates to Harel’s Blob layout [17]; however,
Harel assumes that the sizes of the nodes are variable, which is not the case
here.

A drawback arises when modelers use secondary notation by expressing
something with semanticless means. In textual languages different ways of
indentation are secondary notation which in that case can show block scopes
while it is ignored by a compiler. In Ptolemy it is common to use text
attributes to give a short documentation to specific graphical parts on the
canvas. Therefore the text attribute is usually placed close to the nodes that
are to be explained by the text; this placement is also a form of secondary
notation. There is no semantic link that can be made between the text
and the node and hence no automatic means can take this relationship into
account.

For this case we implemented different versions of the layouter such that
it can either layout all nodes with the above described combination of hier-
archical and block layouter, or it can place only all nodes that are connected
and all other nodes (e. g. director, text attributes, or parameters) stay un-
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touched.
This way the developer can run the layout multiple times and manually

place unconnected items for documentation in whatever way. After following
layout runs these will stay at the respective locations.

4.2.4 Graph Direction

The hierarchical layout approach is designed for directed graphs only and
uses the direction information of edges to place the nodes onto the different
layers. This usually results in drawings with the major direction of data flow
from left to right for horizontal layout.

Although in general Ptolemy is a data flow language that transfers data
tokens between ports, the direction of flow is not necessarily unambiguous or
enduring.

First, the low level graphical representations of single links between ports
or relation vertices have directions not related at all to the Ptolemy flow of
data. As connection figures themselves show no arrow heads, this is of no
relevance but just implies that from the direction of a graphical edge the
flow direction cannot be deduced. Hence one needs more information about
a whole connected set of relations and what kind of ports—source or target—
their endpoints are. Then the direction of such a relation set resp. low level
edge set can be computed.

Second, the direction of dataflow can change in a Ptolemy diagram. Flow
of data is done in single steps by passing single data tokens between ports.
A port of an actor can be both, input and output port. While a port can-
not produce and consume data at one port at the same time, it can do it
interleaved. Hence connections between ports might be bidirectional.

As this is not a very typical way to model in Ptolemy, the direction in
a connected relation set is approximated by a simple heuristic that searches
for the first source port in the set and uses this to determine the direction
for the layout algorithm.

4.2.5 Multiports

Ports in Ptolemy can be of different kinds. Simple ports just take or pro-
duce up to one connection while multiports (carrying a white port icon) allow
multiple connections. The multiple connections get ordered and can be ac-
cessed by the owner actor by index of the so-called channels of the multiport.
Order of the channels is determined by the temporal order the edges were
connected to the port. Graphically the order is presented in Vergil as shown
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(a) Multiports in Ptolemy take multiple incoming connection in
a specific order.

(b) In the KIELER datastructure this gets mapped to a set of
small ports with a small offset each.

(c) Examples of routing with hidden vertices to all directions of
multiports

Figure 4.5: Multiports in Ptolemy get represented by sets of ports in KIELER
to help avoiding additional connection crossings.
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in Fig. 4.5a. Hence the order of the nodes in the layers might introduce
additional connection crossings for nodes connected to the same multiport.

Like shown in Fig. 4.5b each Ptolemy multiport gets mapped to a set of
multiple small ports in the KGraph datastructure. The small helper ports get
shifted a bit according to how the Ptolemy connections are fanned out. This
emulates the order of the connections, and the nature of the hierarchical
layout approach will try to avoid additional edge crossings in the crossing
reduction phase described in Sec. 3.4.4.

4.3 Experimental Results

In the following we depict some example layouts. The models are mainly
taken from the official list of Ptolemy demos accompanying the Ptolemy tool.
We show the original layout and different results of the layout algorithm.
This is the placing of all nodes (connected and unconnected but without
routing) and a version of the connected part where routing was done by
introducing helper vertices which get hidden afterwards. Sometimes we also
show the internal KGraph datastructure which is the direct output of the
layout algorithm.

In general the hand-made original output is expected to be the best,
because the official Ptolemy demos are showcases caringly designed to be
presented to public especially by expert Ptolemy users. So one can expect
that enough time was spent to make the layout sound. This might be the
biggest drawback that some developer has spent some considerable effort to
create that layout while with automatic layout, it is only one click away.

Unfortunately as discussed above, the routing of edges cannot be applied
directly to Ptolemy. Hence the applied placing of nodes to Ptolemy usually
looks much worse than the placed and routed images, because the internal
Ptolemy Manhattan Router does not avoid any overlappings of connections
with other connections or nodes. The routed images are transformed to
a considerable amount by inserting new relation vertices for the routing.
A developer has to decide whether this transformation is acceptable only
for layout purposes. However, it best showcases the power of the layout
algorithm itself.

Although the Ptolemy models have very different overall sizes, they use
composite nodes to reduce the amount of nodes on every single canvas. Hence
almost all models in the Ptolemy demos have about the same size on one hi-
erarchy level. As Ptolemy does not yet support to directly visualize nested
models, the compound graph feature of our algorithm cannot be used. There-
fore very big examples would be quite artificial. However, Section 3.5 presents
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experimental results not specific to Ptolemy where we also consider arbitrar-
ily large randomly generated diagrams.
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(a) Original

(b) Only placed all nodes

(c) Placed and routed connected nodes with helper vertices

(d) Placed and routed with hidden vertices

Figure 4.6: AssemblyLine: This is an acyclic, fairly sequential model that
results in a wide horizontal span.
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(a) Original

(b) Only placed all nodes

(c) Placed and routed connected nodes with helper vertices (director and notes
omitted)

(d) Placed and routed with hidden vertices (director and notes omitted

Figure 4.7: Router: A model where the manual layout is quite optimized and
packed. In the generated layout some rather small nodes have long labels and
hence use much space in their layer, e. g. the Record Assembler/Disassembler.
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(a) Original

(b) Only placed all nodes (c) Placed and routed with hidden vertices

Figure 4.8: TimingParadox: In the original layout the author slightly moved
all nodes to reveal a clean connection layout. Without setting bend points
explicitly in the auto-layouted version, the result shows many connection
overlaps. Setting bend points by relation vertices gives a clear routing. How-
ever, considering relation vertices as regular nodes results in a suboptimal
vertex placement, because junction points of hyperedges are not shown cor-
rectly
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(a) Original

(b) Only placed all nodes (c) Corresponding KGraph

(d) Placed and routed with hidden vertices

Figure 4.9: LongRuns: The box layout of the text annotations is suboptimal.
In the original the lower left text box is wrapped to get a specific shape of
the text to get a compact (overlapped) layout. Again, the explicit routing
helps to avoid overlaps.
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(a) Original

(b) Layouted (c) Placed and routed with hidden vertices

Figure 4.10: Barrier: The connected components are clearly laid out with-
out overlappings. While the text box layout looks alright, the author of the
original has placed text nodes next to connections, which give an informa-
tion about the corresponding relation. In the structure of the diagram this
implicit connection between the objects is not visible. Hence the layout al-
gorithm cannot take that information into account while laying out items.
Therefore, in the auto-layouted version the context sensitive text attributes
loose their context.
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(a) Original

(b) Layouted

(c) Placed and routed with hidden vertices with manually placed text annotations

Figure 4.11: CI-Router: While the node placing is good, the Ptolemy Man-
hattan Router produces bad connection-node overlappings. Here, again, the
text attributes placed next to graph items totally loose their context. Here
it helps to only place (and route) connected nodes while unconnected such
as text attributes are left untouched. This way the user can manually place
text attributes to document special parts of the model.
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(a) Original

(b) Only placed all nodes without removing unnecessary vertices

(c) Placed and routed with hidden vertices

Figure 4.12: HelicopterControl: This is a model with many parallel connec-
tions. They get routed around some nodes, which the Ptolemy Manhattan
router ignores and produces a tangled mess of wiring. Additionally, the orig-
inal author used relation vertices to enhance the original layout. A simple
placing without removing unnecessary relations keeps the vertices—although
it is clear that they loose their original intention—and regards them as usual
nodes. Relation vertices might become sinks when one of their incident edges
is reversed in the cycle removal phase of our algorithm, which is suboptimal.
Removing such vertices completely before layout and routing results in a
clear drawing.
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(a) Original

(b) Only placed all nodes

(c) Placed and routed with hidden vertices

Figure 4.13: Curriculum: This is a model with many small nodes. The
placing looks quite good, although we ourselves can hardly judge whether
the original is done following any semantic secondary notation. The diagram
becomes wider, but better reflects the order of the nodes. However, while
creating the KGraph took about 0.3 s, running the layout algorithm 0.06 s,
applying the layout for these 88 graphical items took about 12 minutes using
the official Ptolemy MoML change requests. This is likely some bug, as for
all other models, the time for applying layout was in the same range as the
time for creation of the KGraph.
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Chapter 5

Conclusion

We have presented KIELER, a project on the pragmatics of graphical model-
based design, with regard to its interface for automatic layout of diagrams.
Automatic layout can be applied to diagrams of Eclipse GMF editors, which
constitute a large set of graphical editors in Eclipse. Additionally, we im-
plemented an interface for automatic layout in Ptolemy, a project on the
design and simulation of embedded real-time systems with different models
of computation. We introduced the layered approach for graph drawing with
our extensions to handle the special constraints of data flow diagrams.

Experimental results show that our algorithm is able to yield well read-
able layouts of the data flow diagrams of Ptolemy and is very fast if the
average vertex degree is not too high. However, the graphical user interface
of Ptolemy does not allow the specification of bend points for edges, but
relies on a separate edge routing algorithm. For this reason the output of
our layout algorithm cannot be directly applied to Ptolemy diagrams yet. As
a work-around for this problem, we enforce the proper routing of edges by
using relation vertices.

To improve the layout functionality of KIELER, we plan to further opti-
mize the hierarchical layout algorithm and to investigate other approaches of
graph drawing. Furthermore, Ptolemy and its graphical editor Vergil could
be extended for better support of automatic layout. Specifically, it would be
desirable

1. to add direct support of bend points for edges, including their persistent
storage in MoML files, and

2. to be able to link textual comments to specific elements of the diagram
in order to place them near their corresponding element.

Alternatively, a new graphical editor for Ptolemy could be implemented in
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Eclipse using GMF. In this way the editor would directly benefit from all
available features of GMF, including automatic layout enabled by KIELER.
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