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Abstract

The pragmatics of model-based design refers to the practical aspects of han-
dling graphical system models. This encompasses a range of activities, such
as editing, browsing or simulating models. We believe that the pragmatics of
modeling deserves more attention than it has received so far. We also believe
that there is the potential for significant productivity enhancements, using
technology that is largely already available. A key enabler here is the capa-
bility to automatically and quickly compute the layout of a graphical model,
which frees the designer from the burden of manual drawing. This capability
also allows to compute customized view of a model on the fly, which offers
new possibilities for interactive browsing and for simulation.



Contents

1 Introduction 1

2 The View—Representing the Model 4
2.1 Automatic Layout . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Dynamic Visible Hierarchy . . . . . . . . . . . . . . . . 7
2.3 Label Management . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Focus and Context . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Focus and Context in KIEL . . . . . . . . . . . . . . . . 10
2.4.2 Alternatives for Focus and Context . . . . . . . . . . . 10

2.5 View Management . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Meta Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Layouter Choosing Strategies . . . . . . . . . . . . . . 14

3 The Model—Synthesis and Editing 16
3.1 Structure-Based Editing . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Structure-Based Editing for Graph-Based Models . . . 17
3.1.2 Structure-Based Editing for Port-Based Models . . . . 18

3.2 Modification and Deletion . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Error Handling . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Textual Modeling . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Scalable Models . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Pattern-Based Modeling . . . . . . . . . . . . . . . . . 22
3.3.4 Product Lines . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Multi-View Modeling . . . . . . . . . . . . . . . . . . . . . . . 23

4 The Controller—Interpreting the Model 25
4.1 Dual Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Dynamic Behavior Analysis . . . . . . . . . . . . . . . . . . . 27

4.2.1 Simulation Management . . . . . . . . . . . . . . . . . 27

iv



4.2.2 Visual Breakpoints . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Simulation Tracking and Control . . . . . . . . . . . . 28

5 Conclusions 29

v



List of Figures

1.1 Model-View-Controller in model-based system design . . . . . 3

2.1 Different graphical syntaxes . . . . . . . . . . . . . . . . . . . 5
2.2 Filtering in E-Studio . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Example for dynamic visible hierarchy . . . . . . . . . . . . . 8
2.4 Long Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Lacking View Management . . . . . . . . . . . . . . . . . . . . 9
2.6 Semantical graphical focus and context in KIEL . . . . . . . . 11
2.7 Aspects of view management. . . . . . . . . . . . . . . . . . . 12
2.8 Meta Layout: Multiple algorithms in one diagram . . . . . . . 14

3.1 Example for structure-based editing of a Statechart. . . . . . . 17
3.2 Possible structure-based editing steps in a port-based language. 19
3.3 From Statecharts to Ptolemy . . . . . . . . . . . . . . . . . . . 23

4.1 Dual Model for Statecharts . . . . . . . . . . . . . . . . . . . . 26
4.2 View Management in a dataflow language . . . . . . . . . . . 28

vi



Chapter 1

Introduction

Linguists distinguish the syntax, semantics and pragmatics of languages. To-
gether these three categories are referred to as semiotics—the study of how
meaning is constructed and understood. All three categories can be applied
to programming languages as well as natural languages. In the context of
programming languages, syntax is determined by formal rules saying how
to construct expressions of the language, semantics determines the meaning
of syntactic constructs, and the pragmatics of a language refers to practi-
cal aspects of how constructs and features of a language may be used to
achieve various objectives [18]. In this paper, we argue that the pragmatics
of modeling languages deserves more attention than it has received so far.
Specifically, it appears that the practical issues of how to create, maintain,
browse and visualize effective graphical models have been neglected in the
past. This largely offsets the inherent advantages of visual languages, makes
it difficult to design complex systems, and unduly limits designers’ produc-
tivity. Petre [31] quotes a professional developer as follows: “I quite often
spend an hour or two just moving boxes and wires around, with no change in
functionality, to make it that much more comprehensible when I come back
to it.”

Traditionally, “pragmatics” refers to how elements of a language should
be used, e. g., for what purposes an assignment statement should be used,
or under what circumstances a level of hierarchy should be introduced in a
model. It is usually not considered how the practical design activities them-
selves (editing, browsing, etc.) are performed—simply because this is usually
not much of an issue when textual languages are concerned. There may be
differences in convenience of use in different text editors, and integrated de-
sign environments (IDEs) can provide various levels of support in building and
maintaining large software artifacts. However, the basic mechanics of writing
or changing a line of code is rather standard and efficient. In comparison,
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the mechanics of editing a graphical model are much more involved, and it
appears that there is much to be gained in this area. Hence by “pragmatics
of modeling languages” we here slightly extend the traditional interpretation
of “pragmatics” to encompass all practical aspects of handling a model in
a model-based design flow, including the traditional aspect of how a model
should be constructed to effectively communicate its meaning.

There are several established fields that can provide valuable input here,
such as the area of human computer interaction, cognitive psychology, and
the graphical layout community. For example, there are fundamental prac-
tical differences in using textual or graphical languages [18], and freeing the
modeler from the burden of manually drawing a graphical model opens the
door to a number of productivity-enhancing techniques that allow to com-
bine the best of both worlds [35]. Furthermore, there are already a number of
paradigms well established in software engineering that could be put to use
for model-based design processes, including the design of the modeling infras-
tructure itself. For example, the state of the practice in creating a graphical
model, say, a dataflow diagram or a Statechart, is to directly construct its
visual representation with a drag-and-drop (DND) What-You-See-Is-What-
You-Get (WYSIWYG) editor, and henceforth rely on this one representa-
tion. We here propose instead to apply the Model-View-Controller (MVC)
paradigm [37] to separate a model from its representation (view). Together
with a modeling environment (the controller/editor) capable of automatic
model layout, one can thus provide flexible representations. These views can
be adapted according to specific design activities, balancing useful informa-
tion with cognitive complexity [24].

In this paper, we survey the different aspects of the pragmatics of graphi-
cal modeling languages. This covers a broad range of existing work, as well as
a number of observations and proposals that to our knowledge have not been
reported on before. As space is limited, we do not attempt to investigate any
of these aspects in much detail here, but rather try to cover as much ground
as possible. A non-trivial question at the onset was how to organize the
subject matter. There exist extensive surveys in the area of model-based de-
sign, see for example Estefan’s overview of model-based systems engineering
methodologies [14], or the overview of hybrid system design given by Carloni
et al. [6]. An annotated bibliography by Prochnow et al. [33] inspects the
visualization of complex reactive systems. There exist numerous surveys on
automatic graph drawing, which we consider an essential enabler for efficient
modeling [9, 1]. However, we are not aware of an existing taxonomy that fo-
cuses on the aspect of pragmatics. We here opt for the aforementioned MVC
concept as a guiding principle. For a first overview, see Fig. 1.1. In some
cases, it may be arguable how a certain aspect should be classified; e. g., we
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Figure 1.1: The MVC paradigm applied to the pragmatics of graphical model-
based system design.

here consider editing to be part of the model, but it could also be classified as
part of the controller. However, we still find the MVC classification helpful.

This structure is also reflected in the organization of this paper, except
that we start with the view (Sec. 2), followed by the model (Sec. 3) and the
controller (Sec. 4). We conclude in Sec. 5.
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Chapter 2

The View—Representing the
Model

We believe that a key enabler for efficient model handling is the capability to
automatically compute the layout of a graphical model. If one frees the user
from the burden of manually setting the coordinates of nodes and bendpoints,
sizes of boxes and positions of connection anchor points, this can open up
enormous potentials. The following section explores this further.

2.1 Automatic Layout

The correct use of pragmatic features, such as layout in graph-based nota-
tions, is a significant contributory factor to the effectiveness of these repre-
sentations [31]. Automatic layout has to be appealing to the user such that
he or she is willing to replace optimized manual layout with an automatically
created one. Additionally this layout capability would have to be deeply in-
tegrated into the modeling tool and optimized for the respective graphical
language syntaxes.

One must recognize that at this point, the automatic layouting capabil-
ities offered by modeling tools, if they do offer any capabilities at all, tend
to be not very satisfying. A major obstacle is the complexity and unclar-
ity of this task. What are adequate aesthetic criteria for “appealing” dia-
grams [8, 42, 41]? Are there optimal solution algorithms or heuristics with
acceptable results that adhere to the desired aesthetic criteria? An important
aspect is the usage of secondary notation, which is specific to the modeling
language used [17]. Used properly, an automatic layout does not only pro-
vide aesthetically pleasing diagrams, but can also give the viewer valuable
cues on the structure of a model. For example, a standardized way of plac-
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Figure 2.1: Different graphical syntaxes with different properties for their
layout.

ing transition labels (e. g., “to the left in direction of flow”) can solve the
often difficult label/transition matching problem. Similarly a standardized
direction of flow (e. g., “clock wise”) can give a quick overview of the flow of
information, without having to trace the direction of individual connections.

Fig. 2.1 shows three examples of different graphical formalisms that pose
different layout challenges. Unified Modeling Language (UML) Class Dia-
grams look quite close to the standard graph layout problem, although some-
times hierarchy might be added by displaying packages in the diagram. While
usual relations can be regarded as any graph edges, inheritance relations as
shown in Fig. 2.1(a) have a special role. They are typically drawn from top
to bottom, which is a strong constraint for the layout algorithm. So even
here one needs a specialized layout algorithm for this diagram type [19].

Statemachines fit pretty well to graph layout, but introducing hierarchy
requires special handling. In a diagram with hierarchy and without any
inter-level connections crossing hierarchy boundaries, the layout algorithm
for a flat layout can be called recursively. This was employed for State-
charts as shown in Fig. 2.1(b) using the layered based Sugiyama layouter of
the GraphViz library in the KIEL project [35]. Small enhancements of the
graphical syntax might have severe consequences for the layout. Inter-level
transitions, which are possible in some Statechart dialects as UML State Ma-
chine Diagrams or Stateflow of Matlab/Simulink, cannot be layouted with
this approach and would require a special handling again.

Another special class are actor oriented dataflow languages [27]. The no-
tion dataflow sometimes is used in different contexts resulting in different
diagram syntaxes. We here consider languages usually used in the control
engineering domain such as Ptolemy, the Safety Critical Application Devel-
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opment Environment (SCADE), or Matlab/Simulink (Fig. 2.1(c)). The con-
nections denote flows of data and two distinct connections will likely carry
different data and possibly different data types. Data are consumed by opera-
tors, and to distinguish the different incoming and outgoing data sources and
sinks, an operator has special input and output ports. For many operators it
is very important to specify explicitly which data flow is connected to which
port because an alternation would also alternate the semantics. The example
shows subtraction, division and switch operators which are not commutative
and hence need their incoming flows exactly at the right input ports. The
graphical representation also reflects this issue by presenting specific anchor
points for the connections at the border of the operators. For the mentioned
languages these ports have fixed positions relative to the operator, usually
showing the data flow from left to right by positioning inputs left and out-
puts right. However, some special purpose ports may also be positioned on
top or bottom of the operator, in general at pre-defined and static locations.
These port constraints induce a great complexity to the problem and require
special care such as by the approaches of Eiglsperger et al. [13] or a modified
Sugiyama layout as implemented in the KIELER project1.

Summing this up, we cannot hope for one ultimate layout algorithm that
is applicable for all languages and applications. Instead, we need a set of
different layouters to cover a wide range of language syntaxes and layout
styles.

2.2 Filtering

Card et al. [5] define approaches for reducing information in a diagram: Fil-
tering, Selective Aggregation, Highlighting and Distortion. A filter simply
hides a set of objects in the diagram, to reduce the complexity of a dia-
gram. For technical scalability issues it is often not feasible to construct and
inspect models with many objects—hundreds or thousands of nodes—but
consistently working with filters it can be. Only a small set of objects should
be visible while all others are hidden and do not consume graphical system
resources. By navigating through the model, a user reveals some parts and
hides others. In order to properly work, we need strategies to apply this
automatically to free the user of the burden to manually selecting the items
to show and to hide. (This also leads to the focus and context paradigm, see
Sec. 2.4.)

Simple filters can already be found in some tools that hide objects on
the canvas while the canvas size resp. the bounding box stays the same size.

1http://www.informatik.uni-kiel.de/rtsys/kieler/
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(a) Top-level state (b) Inner state

Figure 2.2: Filtering in E-Studio, showing a part from a processor design [39]:
The composite state in the lower right corner of (a) displays only a very small
part of its inner life (b).

Hence only the number of elements is reduced but not the size and therefore
the same zoom level or paper size is required to display the model and there
is hardly any chance to see more of the surrounding context as before. A
rather unusual way of filtering can be used in Esterel Studio, see Fig. 2.2.
The hierarchy mechanism in E-Studio allows to create the relatively clearly
arranged top-level diagram Fig. 2.2(a). However, the macrostate Watcher

Kernel in the lower right reveals only a very small part of its contents, the
rest is hidden. One has to manually open the Watcher Kernel state in a new
canvas in order to see its whole extend shown in Fig. 2.2(b) where a complex
inner life is revealed compared to what small part of it is shown in the parent.
This feature becomes more useful in combination with automatic layout that
uses the free space gained from the filters.

2.2.1 Dynamic Visible Hierarchy

Dynamic hierarchy is a special case of a filter where all children of some parent
object are filtered. For filters one might select to hide items regardless of the
hierarchy level to reduce the complexity, see Fig. 2.3 for a simple example.
This corresponds to the folding features of text or XML editors [28].

2.3 Label Management

Working with real-world applications quickly leads to the question of how to
handle long labels. Label placement is a big issue in graph drawing [10] and
geography with map feature labeling [40]. The problem is computationally
intensive, for bended edges it is NP-hard [22]. In map labeling labels are
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(a) Composite Box A
folded

↔
(b) Composite Box A unfolded

Figure 2.3: Example for dynamic visible hierarchy, here for an actor ori-
ented data-flow language implemented in KIELER. This utilizes collapsible
compartments and a layer-based automatic layout algorithm supporting port
constraints.

Figure 2.4: Long labels prevent good layout. Here a small part of Harel’s
wristwatch example [20], converted from Esterel to Statecharts [32].

rather short—city, street or river names—but in arbitrary Domain Specific
Modeling Languages (DSMLs) they do not need to be, as Fig. 2.2(a) shows.
We assume to have an automatic layout algorithm that takes care of the label
positioning, taking the label as is and not changing it. There are innovative
approaches changing the diagram syntax, e. g. to replace an edge by the label
itself [43] by optical scaled down distortion. However, we do not consider such
invasive changes as universal option.

Instead, we try to dynamically reduce the complexity of the label to give
the layouter better chances to find appealing layouts and to avoid difficulties
as illustrated in Fig. 2.4. A label filter might use different strategies, see also
Table 2.1. Wrapping aims to compact the label by wrapping the text while
abbreviation hides part of the text to actually shorten the length of the string.
Syntactically arbitrary labels might be handled with possibly suboptimal
results. Even soft wrapping respecting identifiers will wrap compound labels
inappropriately by not keeping related identifiers on one line. With a label
manager in charge, the labels can be dynamically displayed with different
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Table 2.1: Ways to reduce label complexity temporarily. Here for a State-
chart transition label.

Original (not SignalA) and (not SignalB) / SignalC(counter)

hard
(not SignalA) and (n
ot SignalB) / Signal
C(counter)

Wrapped
syntactical

soft
(not SignalA) and (
not SignalB) / SignalC(
counter)

semantical
(not SignalA) and
(not SignalB) /
SignalC(counter)

syntactical (not SignalA) and (not Si...Abbreviated
semantical SignalA, SignalB / SignalC

Figure 2.5: Illustration for the lack of proper view management: showing the
whole system entails loosing details, windows get to small to be usable.

levels of detail.
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2.4 Focus and Context

In classical modeling environments, the user typically has the alternatives of
either seeing the whole model without any detail, or seeing just selected parts
of the model. Fig. 2.5, from an avionics application, shows what may happen
if one does try to see the whole system. To find a way out of this dilemma, we
note that when working with a model, it is common that there are parts of
the model of particular interest for the current operation or analysis, which
we refer to as the focus. Other objects next to it comprise the context, which
might be important information to understand the focus objects but may be
displayed with less details. This leads to a focus and context approach where
filters are employed to hide irrelevant objects [26].

2.4.1 Focus and Context in KIEL

The Kiel Integrated Environment for Layout (KIEL) project [35] uses a se-
mantical graphical focus and context technique to hide details in the context
while highlighting the focus. It is semantical, because the decision of objects
to be filtered is made automatically from semantic background information
from the model [26]. The concept is used during simulation of a Statechart
diagram where the focus seems to be quite natural to state machines: the
currently active states. Hence all active simple states are displayed together
with their whole hierarchy, i. e. all ancestor states (which actually are also
active). Dynamic visible hierarchy, as presented in Sec. 2.2.1, is used to show
all sibling states but hide their contents. Hence, tidy diagrams are presented
always with reduced complexity as shown in Fig. 2.6.

During simulation the user never sees the whole diagram but only either
one of the focused views. Smooth animated morphs between the views guide
the mind of the user from one view to the other so he or she can keep the
mental map of the whole application [3].

2.4.2 Alternatives for Focus and Context

Experience showed that KIEL’s specific interpretation of what objects com-
prise the focus and which the context is not always optimal. Sometimes it is
difficult to follow the reasons of the view change, i. e. the switch from state
normal to error. Signals emitted in the collapsed state can cause this change
but are immediately hidden and hence the user cannot follow the causal event
chain. This calls for a more general approach for applying focus and context
techniques. Even for this specific DSML one can come up with various other
schemes to select the focus objects.
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(a) View with focus on state normal

↔

(b) View with focus on state error

Figure 2.6: Semantical graphical focus and context in KIEL: The two large
composite states normal (a) and error (b) are only displayed in full detail
when the respective state is active. The inactive state is filtered by dynamic
hierarchy and forms the context.

• One could show an intermediate step between the transition where the
former active and the new active states are focused both.

• One might decide the focus by active transitions instead of states—this
could also filter parallel regions that do not change configuration.

• The context does not necessarily must go up to the top level, but might
be limited to some number of hierarchy levels.

• Meta focus: one could specify a more abstract focus, e. g. “focus on
signal S,” which would set the concrete focus on transitions/states that
reference S

2.5 View Management

Considering diagram types other than Statecharts, it is not that obvious how
to select the focus of the diagram, because there might be no such thing as an
active state—e. g. in dataflow diagrams sometimes all operators are active in
every step—or there is no visible step-wise simulation at all—e. g. structural
diagrams such as UML class diagrams. To broaden applicability, it appears
natural to upgrade layout information and directives to “first-class-citizens.”
By this we mean that the view of a model becomes part of the state of a
model, which can be controlled by the user, the modeling tool, or the model
itself. An engine for view management could for example categorize graphical
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Figure 2.7: Aspects of view management.

entities in focus and context, maybe even multiple levels of context by setting
different levels of detail as denoted by Musial for UML [29]. These and other
aspects of view management are depicted in Fig. 2.7.

The view manager needs to listen to triggers, or events, at which it might
change between the dynamic views, showing the user some objects in the
focus and others in the context. These triggers might be user triggers, in-
duced manually by the user, e. g. manually clicking on fold/unfold buttons
at parent nodes or manually changing the focus by selecting a different node.
They could also be system triggers, produced by the machine by some au-
tomatic analysis, semantical information, progress of time (real or logical),
etc. Memorized triggers can for example be trigger annotations stored per-
sistently with a model.

Obviously, this view manager can hardly be one monolithic application
that carries all information and is applicable for all types of DSMLs and appli-
cation environments. We need a way to efficiently specify both the triggers
to listen to and the effects that shall be performed. This view management
scheme (VMS) needs to be provided by the developer, either by the appli-
cation developer for application specific schemes or by the tool creator for
more general schemes applicable for a whole DSML. For a practical user inter-
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face this VMS should be expressed by a simple syntax, maybe close to some
general purpose scripting language. It would require expressions to

1. address different user triggers (mouse clicking, keyboard events),

2. specify custom system triggers,

3. address different system triggers,

4. address different visualization effects (folding, unfolding, filtering, lay-
out triggering, choose layout algorithms), and

5. address graphical diagram objects or their properties, either specific
objects (e. g. “State A”) or classes of objects (e. g. “a node of type
state”) or specific patterns of such objects.

Some of the items can be implemented using standard techniques, such as
addressing model elements. A set of predefined user triggers and visualization
effects could be provided. It is not that obvious how to specify custom
system triggers. Most of them will be very semantic-specific for a certain
DSML. For example the trigger “a state has become active” in a Statechart
would require interaction with the simulation engine and hence cannot be
implemented only with the knowledge about the certain DSML meta-model
and the modeling and visualization framework. Therefore an interface to the
“outside” is required, the respective lower level programing environment of
the modeling tool.

Such a view management engine could be employed to handle the ideas of
semantical focus and context in a general way. It should also allow, via user
triggers, to quickly navigate manually through a model, using for example
semantic zooming and panning where one considers the structure of a model
to navigate through it. For example, one would not just change the zoom on
a linear percentage scale as is commonly the case, but could also change the
zoom by hierarchy level.

2.6 Meta Layout

For a given graphical DSML there might be different layouts for the graph-
ical representation conceivable. There may be different automatic layout
schemes available, either the same algorithm but with different parametriza-
tion options, or completely different layout algorithms. Each layout algo-
rithm results in a different layout style. We denote the process of selecting
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Figure 2.8: Meta Layout: Multiple different automatic layout algorithms
applied in one diagram, here from left to right GraphViz layered based
Sugiyama Layout, the Zest Spring Embedder, a layered layout with radial
layouter in child and GraphViz Circo [38].

and combining different already existent layout algorithms as meta layout.
This should be integrated into the view management.

Note that this is somewhat contradictory with the concept of having
a normal form [34], where models with the same domain model will have
the same graphical representation. The motivation for normalization is to
limit ambiguity and subjectiveness when creating or analyzing diagrams.
However, it may be hard to find one layout algorithm that provides optimal
layout results for all possible applications—even within one DSML. So we
may soften the idea of normalization by varying degrees. One could apply
different layouters (1) to different models, (2) within one model, in different
hierarchy levels and (3) within one model, in different regions of the same
hierarchy level (see Fig. 2.8).

2.6.1 Layouter Choosing Strategies

Having multiple layouters and different regions in the diagram, a question
arises: When to apply where what layout? This is answered by layout choos-
ing strategies.

The simplest strategy could be to let the user decide. The user manu-
ally annotates each part of the model with the specification of which lay-
outer should be used. This way the user would be able to select the best
layouters according to his or her personal subjective aesthetic criteria. Ad-
ditionally, the user could consider application and system specific properties
when choosing the layouters.

For a larger benefit, the modeling tool could assist in choosing the right
layouter settings by trying to optimize the layout result. The optimization
criteria should be provided by the user while the machine should be able to
work with them. Possible criteria are syntactic aesthetic criteria such as link
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crossings, link lengths, diagram area, aspect ratio; semantic aesthetic crite-
ria such as alignment, symmetry or zoning [25, 36]; prescribed development
patterns ; or model element types, e. g. graph-based vs. port-based.

15



Chapter 3

The Model—Synthesis and
Editing

A graphical model is nice to look at, but can be effort-prone to create or
change. Common editors have the paradigm of WYSIWYG DND interaction.
In general it is desirable to immediately get visualized effects of editing steps
in WYSIWYG. However, the way of interaction—DND—is the source of plenty
of additional manual editing efforts. Strictly speaking, the term drag-and-
drop (DND) denotes a specific sequence of steps including the dragging of
elements. However, we will refer to DND for all DND style editing in current
modeling tools. This includes all manual layout positioning of objects on
the graphical canvas such as the placement of nodes and edge bendpoints,
moving and resizing. Even moving an object by selecting it first and using
the arrow keys on the keyboard falls into this category.

We advocate to try to avoid the tedium induced by DND editing as much
as possible, to put back into the focus the system instead of its graphical rep-
resentation. The basic enabler is the aforementioned capability for automatic
layout (Sec. 2.1). One issue here again is the preservation of the mental map
of the modeler. In the context of model editing, there exist different schools
of thought. One direction argues that the appearance of a model after an
edit should be changed only minimally, to preserve the mental map [7]. The
other approach is to try to give models a uniform appearance, that “the same
should look the same,” proposing a normal form that is independent of the
modeler and the history of the model (see also Sec. 2.6). There the issue of
mental map preservation is addressed during the editing step by a morphing
animation of the model.
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(a) Simple state
is selected

→

(b) New successor
state added

→

(c) New state is
upgraded

→

(d) After another
upgrade

Figure 3.1: Example for structure-based editing of a Statechart.

3.1 Structure-Based Editing

The idea of structure-based editing comprises only structural decisions of the
developer, which are (1) to select a position in the model topology and (2) to
select an operation to apply to the model. This changes only the structure
of the model, i. e. its topology, sometimes also referred to as the domain or
semantic model.

The graphical representation also can be updated immediately. The au-
tomatic layout has to be applied to create a fresh view of the new structure
of the model after the user operation. The complexity of the model and the
performance of the layout algorithms determine whether it is feasible to apply
the layouter after every small editing step in order to get immediate visual
feedback. Therefore we eliminate the DND style editing but possibly keep
the WYSIWYG nature of the editor. We believe that this immediate visual
feedback is valuable enough to put a premium on fast layouting algorithms,
even if this might give slightly sub-optimal results.

3.1.1 Structure-Based Editing for Graph-Based Mod-
els

For DSMLs that are based on graphs we gained some experience from the
KIEL project, which applies this paradigm to Statecharts. Graphically they
consist of states (nodes), transitions (edges), hierarchy and parallel regions.
In this case only a small set of different structural operations are required
to create or modify the charts. For a selected state these are only (1) create
a new following state and (2) upgrade the state, as shown in Fig. 3.1. For
transitions the operations are only (1) transition creation and (2) to reverse
a transition. Some other “syntactic sugar” can be provided, but nevertheless
the operation set is relatively small. Other changes to the model are done
afterwards, e. g. changes of labels by filling out form fields.

This paradigm would also apply for other graph-based DSMLs because the
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set of affected model elements in every step is small—up to two. For node
operations one node needs to be selected, for edges there are two nodes,
source and target.

3.1.2 Structure-Based Editing for Port-Based Models

For dataflow models with ports (cf. Sec. 2.1) the case is a bit more complex.
Especially adding new nodes requires more specification than a simple oper-
ation like “add a successor node” can provide. In a graph-based model this
operation will generally transform one valid model to another valid model,
because it can add a new state and simply connect old and new state with
a transition. Port-based models have stricter connection requirements. In
general there is an arbitrary set of different kinds of operator nodes; usually
this node library is also extensible by the user. Each node has a certain
interface, i. e. the set of input and output ports that specifies how the node
must be connected to other nodes. Hence a new node in the model likely
requires not only one but multiple connections which have to be specified not
only between the nodes but between specific ports. There are different ways
possible for the user interface in this case.

In the first approach the goal is to still provide the diagram itself as the
user interface. To support incremental editing, the operation to be performed
can be divided in small incremental steps where each does not necessarily lead
to a valid dataflow model because it might be not sufficiently connected. Af-
ter every step the view manager can update the layout and some meaningful
graphical representation of the intermediate step is created. An example
sequence of such operations is shown in Fig. 3.2.

In this scenario, the set of operations to connect ports determines the
efficiency of creating or editing models. Shortcut operations to connect mul-
tiple ports can help to reduce the manual steps. For example the SCADE
editor provides the operations connect by rank and connect by name which
will interconnect all inputs of one with the outputs of another selected node
either by name of the ports or successively by their rank. In SCADE this
is not post-processed with the view management, but this can give a first
inspiration for the type of connection operations that are helpful.

The operations can be hard-coded for each language or language class.
Additionally, the paradigm can be used in conjunction with model transfor-
mation frameworks. Especially in-place transformations change the underly-
ing domain model by pattern matching where source and target meta-model
are the same. Hence the original model is only changed instead of trans-
formed into another DSML. Therefore an in-place transformation framework
such as from Taentzer et al. [2] can be used to specify the transformations
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(a) Original situa-
tion

→

(b) After adding a node with
one initial connection

→

(c) Inputs are fully con-
nected

→

(d) After adding another
node

→

(e) Connections complete

Figure 3.2: Possible structure-based editing steps in a port-based language.

while the view management with automatic layout adds the graphical feed-
back to get the full WYSIWYG experience.

3.2 Modification and Deletion

For all possibilities of model changes, the set of model operations must be
augmented by operations for removing nodes and connections. Additionally
a set of syntactic sugar operations should be provided to manipulate the
models efficiently, e. g.

• replace a node by another node of another type,

• replace a connection by a different connection type,

• redirect a connection, or

• insert a new node into one or multiple connections if the port rank
fits—i. e. break up the connection into two parts, insert the new node
and connect the input and output to the connection endpoints.

This can reduce manual steps especially by keeping attributes of the objects
that were manually set after the object creation.
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3.2.1 Error Handling

Proper error handling influences the efficiency of the modeling process, es-
pecially for beginners and intermediates, where small modeling errors are
quite common. Here we should learn from best practices in textual program-
ming IDEs and try to adopt features to graphical modeling. For example the
Quick Fix feature of Eclipse allows beginners to learn textual programming—
e. g. Java—in an interactive tutorial-like way. Errors are displayed immedi-
ately with the help of incremental continuous compiling. Additionally the UI
presents a list of possible solution operations which can be triggered by the
user.

Features like this can be incorporated into graphical modeling by or-
chestration of different building blocks. There are generic modeling frame-
works that support model validation such as the Eclipse Modeling Framework
(EMF) with its Validation Framework1. Hence it is possible to consequently
feedback the information about the model consistency to the user. For spe-
cific DSMLs there should be a set of standard error cases provided together
with a set of possible solution operations. Then the editor could state an er-
ror and could suggest operations to solve it. Together with a view manager
with automatic layout, the operations would simply specify domain model
transformations while the view manager handles all cases where an operation
would require a layout update.

3.3 Synthesis

With an automatic layout capability, it is not only possible to change models
interactively with the developer. One can also synthesize completely new
graphical models, including the domain model and its graphical represen-
tation. There are multiple scenarios where this model synthesis can be of
significant benefits and lead to innovative modeling environments.

3.3.1 Textual Modeling

An alternative to the graphical representation of a model still is text. Having
information in a textual representation can have many advantages [18, 32].
There are already well accepted approaches for textual modeling available
such as the Textual Concrete Syntax (TCS) [21] or XText [12], both frame-
works for Eclipse. The developer specifies the meta-model of the DSML and
the textual syntax and the framework generates parsers and textual editors.

1http://www.eclipse.org/modeling/emf/
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The latter are equipped with convenient features like syntax highlighting,
auto-completion, static analysis, structure outline view, source code naviga-
tion and folding. Textual models will be parsed into the actual domain model
data structures so they can be processed like all other domain models.

The missing link is the one to a graphical model. Here, automatic layout
and view management can be used to synthesize the graphical representations
from the textual ones. This can be done in different levels of integration:

1. A graphical model is only once initialized from the text. Afterwards
the graphical model is worked on. Usually there is no way back into
the textual model; an exception here is Eclipse.

2. There is a transformation between textual model and graphical model
in both directions. This is usually denoted as round-trip engineering.
Some dedicated commercial tools support this for special DSMLs, usu-
ally class diagrams, but this is still uncommon.

3. The tightest integration perfectly synchronizes textual and graphical
representation. Hence the user sees two different views and every
change in either of the views automatically updates the other view.
So working in the views is interchangeable even for small steps. This
paradigm has been explored in KIEL for Statecharts and is applicable
for other DSMLs as well.

To increase the integration further, text and graphics could be mixed in
one view. If there is a textual representation for single graphical objects,
there could be two different views of the graphical model. One view displays
all graphical entities while the other exchanges one of the objects with a text
box containing the textual representation of only this model part.

3.3.2 Scalable Models

Model synthesis can be applied together with scripting techniques to create
complex and large models according to predefined and parametrizable pat-
terns. Scripts of different flavors could be applied just like scripts, macros
or templates in textual languages. This leads to scalable models, as inves-
tigated in Ptolemy [15]. In this case the scripts that configured the model
creation process are in the same graphical syntax as the models themselves.
More sophisticated automatic layout techniques could enhance the graphical
results. This approach could be applied more generally for arbitrary DSMLs
and combined with an appropriate user interface.
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3.3.3 Pattern-Based Modeling

Development patterns are a common technique in software engineering. When
creating behavior diagrams such as Statecharts or dataflow models, one
should model common tasks in a common way. This naturally leads to
patterns for graphical modeling [16, 11]. Examples are patterns for error
handling, sequencing or loops—depending on the DSMLs, many more can
be identified. Graphical modeling environments could support the usage of
pattern-based development in various ways.

• Design patterns can be highlighted in a model [30].

• A specific pattern can be chosen by the user and parametrized to be
added to a graphical model.

• The view management should support user defined automatic layout
schemes according to a given pattern. If in a state diagram a loop
should be modeled, this could correspond to a pre-defined graphical
positioning of the nodes, e. g. in a circle or in a sequence with one back
transition.

• Analysis of the model could detect certain patterns for standard oper-
ations such as graph transformations [2, 23]. Additionally it should be
able to layout existing patterns to given pattern layout schemes.

A simple user interface is necessary so even beginners and intermediates can
quickly start to employ patterns in their development.

3.3.4 Product Lines

Another use case for proper view management and/or model synthesis are
product lines. Here, a set of closely related products is offered, where each
product likely differs only by some specialization or configuration from the
others. For textual programs, the source code comprises all features, whereas
the build process configures different target products with different features
deactivated. This could be analogous to the use of pre-processor macros in
textual languages, where e. g. an #ifdef macro can hide parts of the program
source.

A graphical model can also serve as a master model for a product line.
To investigate one of the target products and further processing, the final
product model should be accessible as any other model. To avoid the main-
tenance of multiple models, the product model should be synthesized from
the master model and comprise only the elements necessary for the features
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of the product. This means omitting certain model objects of the master or
configuration of scalable model parts. In certain cases this can be augmented
by static analysis to identify the required model parts automatically, e. g., by
deactivating superfluous outputs.

3.4 Multi-View Modeling

So far we were considering multiple views only within the same DSML in order
to change the levels of detail in certain circumstances to get the best trade-off
between overview and details. One can drive the idea of multi-view modeling
further by defining completely different views instead of only manipulating
the focus and context configuration.

The term multimodeling is referred to employing multiple modeling se-
mantics in one single model [4]. For example mixing different semantics such
as synchronous data flow with state machines and discrete events or oth-
ers is a preeminent feature of the Ptolemy modeling framework. This still
keeps only one view on the same model, although the model itself is of very
heterogeneous character. However, one can for example establish semantical
equivalence between Statecharts and mixed synchronous reactive and state
machine models [4]. Hence for the same semantics, there exists a State-
chart and a Ptolemy model that implements that behavior. This means for

(a) Statechart model

TrafficLight

Normal
Error

Error.CarLight

Error.PedestrianLight

Normal.CarLight

Normal.PedestrianLight

(b) Ptolemy model

Figure 3.3: From Statecharts to Ptolemy: Both models implement the same
behavior [4].
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the same semantical behavior there exist multiple different graphical repre-
sentations, each with their advantages and disadvantages. Considering the
example in Fig. 3.3, one might argue that the Statechart model is more com-
pact, but the Ptolemy model makes further information explicit, notably
the information flow. We could exploit the equivalence by transforming a
Statechart into a Ptolemy model or vice versa—at least for suitable Ptolemy
subsets. The disadvantage would be that we still have two completely dif-
ferent models including two different domain models. Both models could be
transformed only as whole in a global transformation of all model parts.

An alternative could be to keep only one common domain model and on
top of that create two different graphical representations, one for Statecharts
and one for Ptolemy. This would be always applicable where one model
part can be expressed in multiple ways. Then the model part could have
multiple completely different views. The major benefit would be that the
different graphical representations could be interchanged in any hierarchy
level resulting in a mixed graphical model. The different views could be
handled by the view management just as the other views proposed above.
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Chapter 4

The Controller—Interpreting
the Model

Sophisticated static analyses can determine properties of a model, for exam-
ple causality issues for dataflow models [44]. If such an analysis determines
certain properties of a set of model elements, it can be used as a trigger for
the Meta Layouter in order to get a visual feedback of the analysis. Espe-
cially a categorization of model elements in two sets can be interpreted as
a categorization into focus and context objects. For example an analysis of
dynamic and static parts of a model under certain input values can visualize
only “active” parts of the model or the flow of control taken.

4.1 Dual Modeling

The graphical representation depicts the main model objects as nodes, where
the containment relations can be reflected by hierarchy in the model. Ex-
plicit connections display some other relations between the model objects.
However, there is typically a set of model attributes that is hidden in simple
property dialogs or simply represented by a label in the graphical represen-
tation. Relations between those attributes are usually not visible.

Take Statecharts as an example. The main elements are states and tran-
sitions, which get represented by nodes and edges. Transitions are guarded
by triggers, which can be conditions over variables or signals. The effect of
taking a transition can be an action that causes new events, e. g. signal emis-
sion. Other transitions in the model might listen to that signal, resulting a
signal broadcasting mechanism. This broadcasting is sometimes criticized,
because the flow of information is not visible in the graphical representation
(consider again Fig. 3.3). Transition guards and actions are simply textually
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Figure 4.1: Dual Model for Statecharts: Two parallel controllers communi-
cate via broadcast. The dataflow is displayed as an overlay of the original
control flow graphical representation.

specified, and the users have to track the links between different signal or
variable parts themselves.

We propose a dynamic extension of the graphical representation by its
dual model, i. e. a graphical representation of the relations between referenced
objects where this reference is not yet visualized. We again examine the
example of Statecharts. The dual model of a Statechart is a graph where the
transition labels are the nodes and the relations between guards and actions
form the connections. The graph shows which transition produce triggers
and which ones read those triggers. It makes explicit how the broadcast
communication is used by showing the flow of data and signals in the model.
By graphically overlaying the original graphical representation with its dual
model, we reuse the same graphical view in order to keep the mind map
within the user, as illustrated in Fig. 4.1.

The dual model methodology should not only be helpful for Statecharts,
but applies to very different types models. References to other model parts
are quite common where an explicit graphical representation is omitted for
the sake of clarity in the original model. In such cases the dual modeling
approach would be applicable. The dual model overlay views could be trig-
gered only temporarily so that the original model is not altered. This overlay
could also be filtered, e. g. during simulation one might show only depen-
dencies that are currently activated. This could be integrated into the view
management.
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4.2 Dynamic Behavior Analysis

We usually distinguish the structure and the behavior of a model. To vali-
date behavior, it is common practice to employ simulations prior to physical
deployment. Therefore we employ DSMLs with known specified semantics
such that the models can be executed.

4.2.1 Simulation Management

Employing the meta layouter during testing gives us the same benefits as
for simple manual browsing, as interesting parts can be put into the focus
while the context is still visible. Additionally, a simulation run gains a new
dimension: time. Hence there might be times where nothing of relevance
happens and other points in time with interesting events. The problem is to
determine “interesting” parts and times during simulation.

Therefore we propose to extend the meta layout view management by
simulation management. It defines an additional set of system events for
triggering view management effects and additional effects for manipulating
simulation time.

Both simulation triggers and effects are highly dependent on the language
semantics. Hence a simulation manager is usually only applicable for a small
set of DSMLs.

4.2.2 Visual Breakpoints

Simulation triggers are customizable conditions over internal states and vari-
ables of the simulation. Hence both the specification and the interpretation
of those triggers require access to the semantics of the model and the simula-
tion engine. The triggers cause effects, on the one hand usual view changing
effects, such as graphical focus change events, on the other hand simulation
effects that alter the behavior of simulation time, such as simulation pause
or stop.

A simulation manager should allow to specify visual breakpoints, the com-
bination of a specific target view with the condition under which this view
will be shown and possibly the suspension of the simulation to give time for
analysis of the situation. A properly configured simulation manager knows
what “interesting” items are, both in time and model objects. So during
simulation a user always gets to see the right parts of interest without any
manual user interaction; no manual navigation actions are required.

An example for dataflow diagrams is shown in Fig. 4.2. Here a focus is set
to one actuator and all components in the dataflow towards that actuator.
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(a) Original controller (b) All dependencies of Actuator A,
two sub-controllers and only Sensor
A

(c) Dependencies of Actuator B (d) Dependencies of Actuator C, which are all
prior inputs

Figure 4.2: View Management in a dataflow language for some embedded
controller with three sensors and three actuators.

Other components are filtered. This results in tidy diagrams that illustrate
specific aspects, e. g. for analyzing Actuator B. During a simulation run, the
respective view could be shown, whenever some specific value is received by
one of the actuators. The way of actually displaying the data is another
issue but could be integrated into the diagram. The dynamic focus and
context technique implemented in KIEL for Statecharts (cf. Sec. 2.4.1) could
be implemented in a straight forward fashion by adding simulation events
for every state change and setting the set of focus objects to the the active
states.

4.2.3 Simulation Tracking and Control

It is common practice to show (highlight) the current state of a system. In
some areas, it is also common to show the current change of state (e. g.,
a transition in a Statechart). There are natural extensions that one could
consider, such as showing the recent past (e. g., the last n states), or the
possible future (states that might be reachable in the next n steps, this would
require some kind of static/dynamic analysis).

A desirable feature is to be able to not just run a simulation and to stop
it at certain points, but also to step backwards again. This tape recorder
paradigm has already been integrated into some modeling tools, e. g., State-
mate [20].
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Chapter 5

Conclusions

We have presented an overview of different aspects of modeling pragmatics.
A guiding principle has been the model view controller paradigm, which has
been quite successful in software engineering and which we believe has much
to offer in the world of model based design as well.

We consider automatic layout of the graphical representation to be one
of the basic key enablers for good pragmatics. We build upon layouters by
dynamic filters that reduce the complexity of diagrams and focus and context
as a special case of such filters. A view management engine organizes different
dynamic views synthesized with filters in order to assist the user in seeing
the “interesting” parts of the model. We extend the view management by
meta layout, which plays with different layout styles even within different
parts of one graphical model in order to get optimal layout results.

With these building-blocks we support a set of use-cases in the modeling
process that will help us to cope with very large model instances. For cre-
ation and modification we propose structure-based editing to free the user
of many manual effort prone tasks. Auto-layout enables graphical model
synthesis and opens the door for perfectly synchronized textual and graphi-
cal representations, scalable models, pattern-based modeling and support for
product lines.

This survey cannot hope to be complete in any way. What we do hope to
achieve is to raise the level of awareness about the importance and possibil-
ities of modeling pragmatics in general. In a way, this paper might thus be
regarded as a (partial) road map for possible future developments in modeling
pragmatics.
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