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Abstract

In this paper we propose an approximation algorithm for scheduling malleable tasks
with precedence constraints. Based on an interesting model for malleable tasks with
continuous processor allotments by Prasanna and Musicus [22–24], we define two
natural assumptions for malleable tasks: the processing time of any malleable task
is non-increasing in the number of processors allotted, and the speedup is concave in
the number of processors. We show that under these assumptions the work function
of any malleable task is non-decreasing in the number of processors and is convex
in the processing time.

Furthermore, we propose a two-phase approximation algorithm for the schedul-
ing problem. In the first phase we solve a linear program to obtain a fractional
allotment for all tasks. By rounding the fractional solution, each malleable task is
assigned a number of processors. In the second phase a variant of the list schedul-
ing algorithm is employed. By choosing appropriate values of the parameters, we
show (via a nonlinear program) that the approximation ratio of our algorithm is at
most 100/63 + 100(

√
6469 + 13)/5481 ≈ 3.291919. We also show that our result is

asymptotically tight.
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1 Introduction

Large requirement of high performance computing arises with the significant
development of information technology and its application in many areas in
science and engineering. Parallel computer systems with large number of stan-
dard units play a key role in current high performance computing and have
gradually replaced traditional super computers. In these systems, all units have
some similar structure with a certain processing ability [4]. Algorithms with
satisfactory performance guarantee are desired to coordinate the resources in
such kind of complex systems. However, in general classical scheduling algo-
rithms are not applicable in this case, mainly due to the large amount of com-
munications between units. Many models have been proposed for this problem
[3,9,14,27]. In this category scheduling malleable tasks proposed in [27] is an
important and promising model. The processing time of a malleable task de-
pends on the number of processors allotted to it. The communications between
processors allotted to the same task, synchronization and other overhead are
implicitly included in the processing time.

We assume that the malleable tasks are linked by precedence constraints, which
are determined in advance by the data flow among tasks. Let G = (V, E) be
a directed acyclic graph, where V = {1, . . . , n} represents the set of malleable
tasks, and E ⊆ V × V represents the set of precedence constraints among the
tasks. If there is an arc (i, j) ∈ E, then task Jj cannot be processed before
the completion of processing of task Ji. Task Ji is called a predecessor of Jj ,
while Jj a successor of Ji. We denote by Γ−(j) and by Γ+(j) the sets of the
predecessors and of the successors of Jj , respectively. In addition, each task
Jj can be executed on any integer number l ∈ {1, . . . , m} of homogeneous
(identical) processors, and the corresponding discrete positive processing time
is pj(l). The goal of the problem is to find a feasible schedule minimizing the
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by an MITACS grant of Canada; by the NSERC Discovery Grant DG 5-48923; and
by the NSERC Industrial Research and Development Fellowship.
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makespan Cmax (maximum completion time).

In our model we do not allow preemption. There is also no release dates or
due dates of the jobs, though the precedence constraints define the sequence of
jobs linked by data flow. Furthermore, we define by a critical path in a schedule
a path in G that has the largest total processing time of vertices along it.

Prasanna et al. [22–24] proposed a model of the malleable tasks. In their model,
for each malleable task, the processing time is non-increasing in the number
of processors allotted. In addition, a speedup function sj(l) for a malleable
task Jj that is defined as the processing time pj(1) on one processor divided
by the processing time pj(l) on l processors is concave in l. Their model has
already been applied to the very massively parallel MIT Alewife machine
[1,21]. However, their model allows non-integral numbers of processors. We use
their model to obtain two natural assumptions for malleable tasks to obtain an
approximation algorithm with a ratio 3.291919. The best know approximation
ratio was 5.236 by Lepère et al. [17] and is recently improved to 4.730598 [13].
In our model we use a stronger assumption on the processing times than in
[17,13].

In this paper, we consider the discrete model based on [22–24]. We assume
that pj(0) = ∞ as any task Jj cannot be executed if there is no processor
available. For the processing time, we have the following assumptions:

Assumption 1 The processing time pj(l) of a malleable task Jj is non-increasing
in the number l of the processors allotted to it, i.e.,

pj(l) ≤ pj(l
′), for l ≥ l′; (1)

Assumption 2 The speedup function sj(l) = pj(1)/pj(l) of a malleable task
Jj is concave in the number l of the processors allotted to it, i.e., for any
0 ≤ l′′ ≤ l ≤ l′ ≤ m,

pj(1)

pj(l)
= sj(l) ≥

1

l′ − l′′
[(l − l′′)sj(l

′) − (l − l′)sj(l
′′)] =

pj(1)

l′ − l′′

[

l − l′′

pj(l′)
− l − l′

pj(l′′)

]

.(2)

It is worth noting that our model is realistic and practical. Assumption 1 in-
dicates that more processing power results from more processors allotted such
that the malleable task cannot be executed longer. Furthermore, Assumption
2 implies that the increase of processors allotted leads to increasing amount
of communication, synchronization and scheduling overhead, such that the
speedup effect cannot be linear. A typical example is that the processing time
p(l) = p(1)l−dj , where l is the number of processors and 0 < dj < 1 (similar
to the continuous case in [22–24]).

Another discrete model of malleable tasks was addressed in [2]. In their model,
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there are also two assumptions for the malleable tasks. The first one is same
as our Assumption 1, and their second assumption is as follows:

Assumption 2′ The work function Wj(l) = lpj(l) of a malleable task Jj is
non-decreasing in the number l of processors allotted to it, i.e.,

Wj(l) ≤ Wj(l
′), for l ≤ l′. (3)

In Section 2 we show that our Assumption 2 implies Assumption 2′ for the
work function. Furthermore, we also show that under our Assumption 2 the
work function is convex in processing time.

A task Jj in any schedule is characterized by two values: the starting time
τj and the number of processors lj allotted to task Jj. A task Jj is called
active during the time interval from its starting time τj to its completion time
Cj = τj + pj(lj). A schedule is feasible if at any time t, the number of active
processors does not exceed the total number of processors

∑

j:t∈[τj ,Cj) lj ≤ m,
and if the precedence constraints τi + pi(li) ≤ τj , are fulfilled for all i ∈ Γ−(j),
where Γ−(j) is the set of predecessors of task Jj .

Related work: The problem of scheduling independent malleable tasks (with-
out precedence constraints) is strongly NP-hard even for only 5 processors
[5]. Approximation algorithms for the problem of scheduling independent mal-
leable tasks with a ratio 2 was addressed in [7,18]. This was improved to

√
3+ε

by Mounié et al. [19], and further to 3/2+ε [20]. For the case of fixed m, Jansen
and Porkolab proposed a PTAS [11]. If all p(l) ≤ 1, for arbitrary m an AF-
PTAS was given by Jansen [10]. If the number of processors is polynomially
bounded, recently Jansen and Thöle [12] presented a (1 + ε)-approximation
algorithm without monotonic assumption. If all processors assigned to a job
must have contiguous addresses, the best-known approximation ratio is 3/2+ε
[12].

Du and Leung [5] showed that scheduling malleable tasks with precedence con-
straints is strongly NP-hard for m = 3. Furthermore, there is no polynomial
time algorithm with approximation ratio less than 4/3, unless P=NP[15]. If
the precedence graph is a tree, a (4 + ε)-approximation algorithm was devel-
oped in [16]. The idea of the two-phase algorithms was proposed initially in
[16] and further used in [17] to obtain an improved approximation algorithm
for general precedence constraints with a ratio 3 +

√
5 ≈ 5.236. In [17] the

ratio was improved to (3 +
√

5)/2 ≈ 2.618 when the precedence graph is a
tree. Recently Jansen and Zhang [13] obtained the best known approximation
ratio 4.730598 for general precedence constraints. The ratio 2.618 (4.730598,
respectively) for tree precedence constraints (general precedence constraints,
respectively) was shown tight in [26]. All above results are based on the model
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under Assumption 1 and 2′. There is no result with our model under Assump-
tion 1 and 2 yet. More details on the problem of scheduling independent or
precedence constrained malleable tasks can be found in [6].

Our contribution: In this paper, we first analyze our model. We show that
under Assumption 1 and 2, the work function is non-decreasing in the number
of processors and is convex in the processing time. The first property is indeed
the Assumption 2′ on work function in [17,13,28], which also shows that our
model is a special case of the model in [17,13,28]. Then we develop an approx-
imation algorithm for scheduling malleable tasks with precedence constraints
for our model. Similar to [17,13,28], our algorithm is also a two-phase algo-
rithm. In the first phase we solve an allotment problem approximately. For a
given set of malleable tasks, the goal of the allotment problem is to find an
allotment α : V → {1, . . . , m} deciding the numbers of processors allotted to
execute the tasks such that the maximum between both opposite criteria of
the critical path is minimized. In [17,13,28] the allotment problem is formu-
lated as a bicriteria version of the discrete time-cost tradeoff problem, and the
approximation algorithm in [25] is employed with a binary search procedure.
In [17] a parameter ρ = 1/2 is fixed for the rounding strategy applied for the
fractional solution, while in [13] ρ is not set as 1/2 to obtain an improved result.
However, here we do not apply their strategy of reducing the allotment prob-
lem to the discrete time-cost tradeoff problem. We just construct a piecewise
linear work function according to the discrete values of work and processing
times. With respect to the precedence constraints we are able to develop a
piecewise linear program. Furthermore, since the work function is convex in
the processing time, we are able to formulate the piecewise linear program as
a linear program. We include also some additional constraints to avoid the
binary search. Next we apply a new rounding technique for the (fractional)
optimal solution to the linear program. The rounding procedure yields a feasi-
ble solution of the allotment problem with an approximation ratio depending
on our rounding parameter ρ ∈ [0, 1]. In the second phase a variant of the list
scheduling algorithm is employed to generate a new allotment and to schedule
all tasks according to the precedence constraints. By studying the structure of
the resulting schedule, we show that the approximation ratio is bounded by the
optimal objective value of a min-max nonlinear program. Exploiting the solu-
tion to the min-max nonlinear program, we prove that the approximation ratio
of our algorithm is not more than 100/63+100(

√
6469+13)/5481 ≈ 3.291919.

This ratio is much better than all previous results for the general model in
[17,13,28]. We also study the asymptotic behaviour of the solution to the min-
max nonlinear program and show that the asymptotic best ratio is 3.291913.

The paper is organized as follows: The properties of the work function are
studied in Section 2. In Section 3 our algorithm is presented, which is analyzed
in Section 4.
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2 Properties of the work function

In this section, we shall study the properties of work functions of the malleable
task system according to the two assumptions in Section 1. We show that
the assumptions lead to the second monotonic penalty assumption on work
functions in [2,17,13,28]. Furthermore, we also show that the work functions
are convex in the processing time.

Theorem 2.1 For any malleable task Jj and m identical processors, if As-
sumption 2 for the processing time pj(l) of Jj holds for all l = 0, . . . , m,
then the work function Wj(l) = lpj(l) for task Jj is non-decreasing in l, i.e.,
Wj(l

′) ≥ Wj(l), for any integers 1 ≤ l ≤ l′ ≤ m.

Proof: We prove the theorem by induction. First, from the Assumption 2, we
have that

1

pj(1)
≥ 1

2

[

1

pj(2)
+

1

pj(0)

]

.

Because pj(0) = ∞, it holds that

1

pj(1)
≥ 1

2pj(2)
,

i.e., 2pj(2) ≥ pj(1). Now we assume that the claimed inequality holds for l−1,
i.e., (l − 1)pj(l − 1) ≤ lpj(l). Again, from Assumption 2, we have

1

pj(l)
≥ 1

2

[

1

pj(l + 1)
+

1

pj(l − 1)

]

≥ 1

2

[

1

pj(l + 1)
+

l − 1

lpj(l)

]

,

i.e.,

l + 1

lpj(l)
≥ 1

pj(l + 1)
,

which is equivalent to lpj(l) ≤ (l + 1)pj(l + 1). Then we conclude that for any
l = 1, . . . , m− 1, Wj(l) = lpj(l) ≤ (l + 1)pj(l + 1) = Wj(l + 1), which leads to
a non-decreasing sequence Wj(1), . . . , Wj(m), and the proof is complete. 2

Theorem 2.1 in fact implies Assumption 2′ on work functions in [2,17,13,28].
It also indicates that the communication overhead increases if more processors
are allotted to one malleable task. The monotonic penalty assumption on work
functions in [2,17,13,28] is only a sequel of our Assumption 2. However, it is

6



worth noting that Assumption 2 is only a sufficient condition of Assumption
2′. There exist instances that Assumption 1 and Assumption 2′ hold for the
processing time, but Assumption 2 does not. For example, let processing time
pj(l) = 1/(1−δ+δl2) for some δ ∈ (0, 1/(m2+1)). It can be verified that in this
case the work Wj(l) is still increasing in l, while the speedup function s(l) is
convex in l. In fact, if for any (fractional) l ∈ [1, m], the speedup function s(l)
satisfies s′(l) ≥ 0, s′′(l) ≥ 0, s(l) ≥ ls′(l) and s(1) = 1, then the corresponding
processing time leads to Assumption 2′ but not Assumption 2. In addition,
there are also many instances such that the speedup function is locally convex
in l.

Furthermore, if we regard the work functions as functions in the corresponding
processing time, i.e., wj(pj(l)) = Wj(l), the following theorem shows that
Assumption 1 and 2 leads to a nice property of the work functions:

Theorem 2.2 If Assumptions 1 and 2 hold for any malleable task Jj for any
l = 1, . . . , m, then the work function wj(pj(l)) is convex in the processing time
pj(l).

Proof: According to Assumption 2, the speedup function sj(l) is concave in
the number l of processors. Therefore in the diagram of the speed function sj(l)
versus l, sj(l) ≥ s̄j(l), where s̄j(l) is the vertical coordinate of the intersection
point of the straight line connecting points (l′′, sj(l

′′)) and (l′, sj(l
′)) and the

vertical straight line passing through point (l, sj(l)), where 1 ≤ l′′ ≤ l ≤ l′ ≤
m. Then we obtain the following inequality by calculating the value of s̄j(l)
and also (2):

fpj(1)pj(l) = sj(l) ≥ s̄j(l) =
pj(1)

l′ − l′′

[

l − l′′

pj(l′)
− l − l′

pj(l′′)

]

.

This is equivalent to

l

pj(l′′)
− l

pj(l′)
≥ l′

pj(l′′)
− l′′

pj(l′)
− l′ − l′′

pj(l)
.

Multiplying both sides by the positive factor pj(l)pj(l
′)pj(l

′′) yields

lpj(l)[pj(l
′) − pj(l

′′)] ≥ pj(l)[l
′pj(l

′) − l′′pj(l
′′)] − (l′ − l′′)pj(l

′)pj(l
′′). (4)

We now consider the diagram of the work function wj(pj(l)) versus process-
ing time pj(l). The straight line connecting points (pj(l

′′), wj(pj(l
′′))) and

(pj(l
′), wj(pj(l

′))) and the vertical straight line passing through point (pj(l), wj(pj(l)))
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Fig. 1. The diagrams of the speedup function sj(l) and the work function wj(pj(l)).

intersect at one point which has the vertical coordinate w̄j(pj(l)) as follows:

w̄j(pj(l)) = wj(pj(l
′′)) +

pj(l) − pj(l
′′)

pj(l′) − pj(l′′)
[wj(pj(l

′)) − wj(pj(l
′′))]

= l′′pj(l
′′) +

pj(l) − pj(l
′′)

pj(l′) − pj(l′′)
[l′pj(l

′) − l′′pj(l
′′)]

=
1

pj(l′) − pj(l′′)
{pj(l)[l

′pj(l
′) − l′′pj(l

′′)] − (l′ − l′′)pj(l
′)pj(l

′′)}

≥ lpj(l) = wj(pj(l)),

(5)

where (4) is applied to obtain the inequality. The inequality (5) shows that
the work function Wj(l) = wj(pj(l)) is convex in processing time pj(l). 2

A typical example of such a malleable task system is an instance with n
malleable tasks as follows. Their processing times are pj(l) = pj(1)l−dj for
j = 1, . . . , n, where 0 < dj < 1. This is similar to the example in [22–24].
However, it is worth noting that in their model the number of processors
can be any real in [0, m] and they only explored the fractional case. On the
contrary, we study the different model with integral numbers of processors
and discrete processing times.

3 Approximation algorithm

Different from the algorithms in [22–24], we here propose a two-phase approx-
imation algorithm for scheduling malleable tasks with precedence constraints.
Our algorithm is similar to those in [17,13]. But in the first phase, instead of
solving a discrete time-cost tradeoff problem approximately, we solve a linear
program. The fractional solution is then rounded to a feasible solution to the

8



LIST (J,m,α′, µ) /*µ defined in (24)*/

initialization: allot lj = min{l′j , µ} processors to task Jj , for j ∈ {1, . . . , n};
SCHEDULED = ∅;
if SCHEDULED 6= J then

READY = {Jj |Γ−(j) ⊆ SCHEDULED};
compute the earliest possible starting time under α for all tasks in READY ;

schedule the task Jj ∈ READY with the smallest earliest starting time;

SCHEDULED = SCHEDULED ∪ {Jj};
end

Table 1
Algorithm LIST

allotment problem. In the second phase, we apply a variant of list scheduling
algorithm to generate a feasible schedule. The algorithm is outlined as follows.

In the initialization step, we compute the values of the rounding parameter ρ
and the allotment parameter µ depending on the input m (See Section 4 for
the formulae).

In the first phase, we develop a linear program. By rounding its fractional
solution with the parameter ρ ∈ [0, 1] we are able to obtain a feasible allotment
α′ such that each task Jj is allotted l′j number of processors (See Subsection
3.1 for details).

In the second phase, with the resulting allotment α′ and the pre-computed
allotment parameter µ, the algorithm generates a new allotment α and runs
LIST, a variant of the list scheduling algorithm, in Table 1 (as proposed in
[8,17]) and a feasible scheduling is delivered for the instance.

3.1 The first phase of the algorithm

In this subsection, we describe the linear program formulation and the round-
ing technique in the first phase of our algorithm.

Denote by xj the (fractional) processing time of task Jj. For the discrete work
function wj(pj(l)) = Wj(l) = lpj(l) in processing time, we define a continuous

9



piecewise linear work function wj(xj) as follows:

wj(xj) =







































wj(pj(l)), if x = pj(l), l = 1, . . . , m;

wj(pj(l + 1)) − wj(pj(l))

pj(l + 1) − pj(l)
xj if x ∈ (pj(l + 1), pj(l)),

+
wj(pj(l))pj(l + 1) − wj(pj(l + 1))pj(l)

pj(l + 1) − pj(l)
, and l = 1, . . . , m − 1.

(6)

In addition, in any schedule, we know that the makespan (maximum com-
pletion time) is an upper bound of the critical path length L and the total
work W divided by m, i.e., max{L, W/m} ≤ Cmax. In the first phase of our
algorithm, we solve the following piecewise linear program:

min C

s.t. Ci + xj ≤ Cj , for all i ∈ Γ−(j) and all j;

0 ≤ Cj ≤ L, for all j;

L ≤ C;

W/m =
∑n

j=1 wj(xj)/m ≤ C;

xj ∈ [pj(m), pj(1)], for all j.

(7)

In (7) the first set of constraints come from the precedence constraints, while
the second set of constraints indicate that all tasks finish by the length L of a
critical path. The goal is to minimize the makespan C.

We notice that the functions wj(xj) are piecewise linear and it is a crucial
issue to replace them by linear functions. According to Theorem 2.2, the dis-
crete work function wj(pj(l)) is convex in processing time pj(l). Therefore the
continuous work function wj(xj) is also convex in the fractional processing
time xj . Since wj(xj) is piecewise linear, it can be written as follows:

wj(xj) = maxl∈{1,...,m−1}

{

wj(pj(l + 1)) − wj(pj(l))

pj(l + 1) − pj(l)
xj

+
wj(pj(l))pj(l + 1) − wj(pj(l + 1))pj(l)

pj(l + 1) − pj(l)

}

= maxl∈{1,...,m−1}

{

(l + 1)pj(l + 1) − lpj(l)

pj(l + 1) − pj(l)
xj −

pj(l)pj(l + 1)

pj(l + 1) − pj(l)

}

,

(8)

for any xj ∈ [pj(m), pj(1)]. Thus we are able to modify the piecewise linear
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program (7) to following linear program:

min C

s.t. Ci + xj ≤ Cj , for all i ∈ Γ−(j) and all j;

0 ≤ Cj ≤ L, for all j;

(l + 1)pj(l + 1) − lpj(l)

pj(l + 1) − pj(l)
xj −

pj(l)pj(l + 1)

pj(l + 1) − pj(l)
≤ w̄j, for l = 1, . . . , m − 1 and all j;

L ≤ C;

W/m =
∑n

j=1 w̄j/m ≤ C;

xj ∈ [pj(m), pj(1)], for all j.

(9)

The size of (9) is polynomial in m and n. Thus it is polynomial time solvable.

Remark: Here the linear programs (7) and (9) are not of the most straight-
forward form in scheduling, which contains assignment variable xj,l indicating
that task Jj is allotted with l processors. In this way, a linear programming
relaxation of the scheduling problem is as follows:

min C

s.t. Ci +
∑m

l=1 xj,lpj(l) ≤ Cj, for all i ∈ Γ−(j) and all j;

Cj ≤ C, for all j;
∑n

j=1

∑m
l=1 xj,l(lpj(l)) ≤ mC;

∑m
l=1 xj,l = 1, for all j;

xj,l ≥ 0, for all j and all l.

(10)

For every task Jj , the optimal solution x∗
j to (7) will have the form ξpj(l)+(1−

ξ)pj(l+1) for some ξ ∈ [0, 1]. Setting xj,l = ξ and xj,l+1 = 1−ξ yields a feasible
solution to (10). Now consider an optimal solution to (10). We claim that for
every job Jj, at most two xj,l are non-zero, and they are adjacent (i.e. some l
and l + 1). Otherwise, we first consider the case there are only two non-zero
non-adjacent elements in an optimal solution for some jobs. Assume for task
Jj there exist k < l−1 such that xj,k > 0 and xj,l > 0. Then there is a ξ ∈ [0, 1]
such that pj(k+1) = ξpj(k)+(1−ξ)pj(l) because of Assumption 1. In addition,
according to Theorem 2.2, (k + 1)pj(k + 1) ≤ ξkpj(k) + (1 − ξ)lpj(l). On the
other hand, there is a δ > 0 such that one of xj,k−δξ and xj,l−δ(1−ξ) becomes
0 and the other one remains non-negative. We also increase xj,k+1 by δ, and
denote by x′

j,k = xj,k − δξ, by x′
j,k+1 = xj,k+1 + δ, and by x′

j,l = xj,l − δ(1− ξ).
Keeping all other assignment variables unchanged as in the optimal solution,

11



we have obtained a new solution fulfilling the last two constraints of (10). As
for the processing time, we have

xj,kpj(k) + xj,k+1pj(k + 1) + xj,lpj(l)

= (xj,k − δξ)pj(k) + δξpj(k) + xj,k+1pj(k + 1) + (xj,l − δ(1 − ξ))pj(l) + δ(1 − ξ)pj(l)

= x′
j,kpj(k) + x′

j,k+1pj(k) + x′
j,lpj(l),

which shows that the total processing time for task Jj is the same as the
original solution. As for the work of Jj , we have

xj,kkpj(k) + xj,k+1(k + 1)pj(k + 1) + xj,llpj(l)

= x′
j,kkpj(k) + xj,k+1(k + 1)pj(k + 1) + x′

j,lpj(l) + δ(ξkpj(k) + (1 − ξ)lpj(l))

≥ x′
j,kkpj(k) + x′

j,k+1(k + 1)pj(k + 1) + x′
j,lpj(l),

which shows that the total work will not increase in the new solution. If the
total work of the original solution is greater than that of the new solution and
the constraint that the total work is bounded by mC is tight, then this is a
contradiction that the original solution is optimal. Otherwise, we consider the
case that the total work does not change. If x′

j,l = 0 we are done because we
have only x′

j,k ≥ 0 and x′
j,k+1 ≥ 0. If x′

j,k = 0, we repeat the above procedure
for x′

j,k+1 and x′
j,l until we reach some solution y such that only yj,k′ ≥ 0 and

yj,k′+1 ≥ 0 for some k′. Finally, if there are more than two non-zero elements in
an optimal solution, we sort the indices of non-zero elements in the increasing
order such that k1 < . . . < kα where only xj,k1

, . . . , xj,kα
are non-zero. Then

we perform the above construction procedure for the pair of elements xj,k1

and xj,kα
. Repeating this procedure we will again obtain at most two adjacent

non-zero elements in an optimal solution. It is worth noting that the above
construction just needs at most mn iterations, each visit a group of three
variables. Combining all cases completes the proof of our claim that for every
job Jj , there are at most two non-zero xj,l and xj,l+1 in an optimal solution to
(10). Denote by x∗

j = xj,lpj(l) + xj,l+1pj(l + 1), which is a feasible solution to
(7). Therefore, the new linear program (10) is equivalent to our linear program
(7).

Now we consider the rounding strategy. For a task Jj , denote by x∗
j the corre-

sponding optimal solution. Suppose that x∗
j ∈ (pj(l +1), pj(l)). In the interval

[pj(l + 1), pj(l)], we define a critical point lc such that lc = l + 1 − ρ for
the rounding parameter ρ ∈ [0, 1]. The processing time pj(lc) is defined as
pj(lc) = pj(l + 1 − ρ) = ρpj(l) + (1 − ρ)pj(l + 1), and its work is defined as
wj(pj(lc)) = (1−ρ)wj(pj(l+1))+ρwj(pj(l)) = (1−ρ)(l+1)pj(l+1)+ρlpj(l).

We apply the following rounding technique for the fractional solution to (9): If

12



x∗
j ≥ pj(lc) it will be rounded up to pj(l), and otherwise rounded down to pj(l+

1). With the rounded solution of the processing time in {pj(m), . . . , pj(1)} we
are able to identify an l′j such that pj(l

′
j) equals the rounded solution. Then

we develop an allotment α′ for all jobs where each job Jj is allotted a number
l′j of processors.

Remark: In the first phase of the algorithms in [17,13], the allotment problem
is approximately solved by employing the approximation algorithm for the
discrete time-cost tradeoff problem in [25]. Here we avoid the complicated
procedure to reduce the problem to a large number of instances of linear time-
cost tradeoff problem with only two durations in [25]. Furthermore, we here
directly embed the critical path length L and the total work W into (9) to
avoid the binary search procedure in [17].

4 Analysis of the algorithm

We shall show the approximation ratio of our algorithm. Denote by L, W ,
Cmax and by L′, W ′, C ′

max the critical path lengths, the total works and the
makespans of the final schedule delivered by our algorithm and the schedule
corresponding to the allotment α′ generated in the first phase, respectively.
Furthermore, we denote by C∗

max the optimal objective value of (9), and L∗,
W ∗ the (fractional) optimal critical path length and the (fractional) optimal
total work in (9). It is worth noting that here W ′ =

∑n
j=1 l′jpj(l

′
j). Denote by

OPT the overall optimal makespan (over all feasible schedules with integral
number of processors allotted to all tasks). It is obvious that

max{L∗, W ∗/m} ≤ C∗
max ≤ OPT. (11)

In allotments α and α′, a task Jj is allotted lj and l′j processors, and their
processing times are pj(lj) and pj(l

′
j), respectively. In the optimal (fractional)

solution to (9), each task Jj has a fractional processing time x∗
j . We define the

fractional number of processors allotted as follows:

l∗j = wj(x
∗
j )/x

∗
j . (12)

According to this definition, l∗j has the following property:

Lemma 4.1 For any malleable task Jj, if pj(l + 1) ≤ x∗
j ≤ pj(l) for some

l ∈ {1, . . . , m − 1}, then l ≤ l∗j ≤ l + 1.
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Proof: Suppose that pj(l + 1) ≤ x∗
j ≤ pj(l), according to (6) or (8), we can

calculate the value of l∗j as follows:

l∗j =
wj(x

∗
j )

x∗
j

=
(l + 1)pj(l + 1) − lpj(l)

pj(l + 1) − pj(l)
− pj(l)pj(l + 1)

pj(l + 1) − pj(l)

1

x∗
j

= l +
pj(l + 1)

pj(l) − pj(l + 1)

[

pj(l)

x∗
j

− 1

]

.
(13)

Since pj(l) ≥ x∗
j , we have pj(l)/x

∗
j ≥ 1 and l∗j ≥ l. From pj(l + 1) ≤ x∗

j , by
multiplying both sides by pj(l) and subtracting x∗

jpj(l + 1) from both sides,
we obtain that [pj(l) − x∗

j ]pj(l + 1) ≤ x∗
j [pj(l) − pj(l + 1)], i.e.,

pj(l + 1)

pj(l) − pj(l + 1)

[

pj(l)

x∗
j

− 1

]

≤ 1.

Thus l∗j ≤ l + 1 and the lemma is proved. 2

Lemma 4.1 shows that l∗j is well defined. It is worth noting that the rounded
integral number of processors l′j ∈ [l, l + 1] = [⌊l∗j ⌋, ⌈l∗j ⌉] according to the
rounding approach in our algorithm.

We now consider the influence of the rounding procedure in the first phase to
the change of the duration and the work of any malleable task.

Lemma 4.2 For any job Jj, in the allotment α′ its processing time pj(l
′
j) ≤

2x∗
j/(1+ρ) and the its work wj(pj(l

′
j)) = l′jpj(l

′
j) ≤ 2l∗jx

∗
j/(2−ρ) = 2wj(x

∗
j )/(2−

ρ).

Proof: Suppose x∗
j ∈ (pj(k + 1), pj(k)). In the interval [pj(k + 1), pj(k)], the

critical point is kc = k + 1− ρ. Its processing time is pj(kc) = pj(k + 1− ρ) =
ρpj(k) + (1 − ρ)pj(k + 1) and its work is wj(pj(kc)) = wj(pj(k + 1 − ρ)) =
(1 − ρ)(k + 1)pj(k + 1) + ρkpj(k). We consider the following two cases.

In the first case, x∗
j ≥ pj(kc). In the rounding procedure the processing time

is rounded up to pj(k), and the fractional number of processors is reduced to
l′j = k. Therefore the work is also reduced due to Theorem 2.1. However, the
increase of the processing time is

pj(l
′
j)

x∗
j

≤ pj(k)

pj(kc)
=

pj(k)

ρpj(k) + (1 − ρ)pj(k + 1)

≤ pj(k)

ρpj(k) + (1 − ρ)kpk(k)/(k + 1)
=

k + 1

k + ρ
.
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Fig. 2. An example of the “heavy” path.

The second inequality holds also from Theorem 2.1, kpj(k) ≤ (k+1)pj(k +1).
In the second case, x∗

j < pj(kc). In the rounding the processing time is rounded
down to pj(k + 1), and the fractional number of processors is increased to
l′j = k + 1. In addition, it is also easy to verify that wj(x) is non-increasing
in x. So wj(x

∗
j ) ≥ wj(pj(kc)). Since more processors are allotted, according to

Theorem 2.1 the work increases by the following factor:

wj(pj(l
′
j))

wj(x∗
j )

≤ (k + 1)pj(k + 1)

wj(pj(kc))
=

(k + 1)pj(k + 1)

(1 − ρ)(k + 1)pj(k + 1) + ρkpj(k)

≤ (k + 1)pj(k + 1)

(1 − ρ)(k + 1)pj(k + 1) + ρkpj(k + 1)
=

k + 1

k + 1 − ρ
.

Since k is an integer, the above two factors can be further bounded by (k +
1)/(k + 1 − ρ) ≤ 2/(2 − ρ) and (k + 1)/(k + ρ) ≤ 2/(1 + ρ). This means that
after the first phase, for each task Jj , the processing time increases by at most
a factor of 2/(1 + ρ) and the work increases by at most 2/(2 − ρ). 2

Same as [17,13,28], in the final schedule, the time interval [0, Cmax] consists
of three types of time slots. In the first type of time slots, at most µ − 1
processors are busy. In the second type of time slots, at least µ and at most
m− µ processors are busy. In the third type at least m−µ + 1 processors are
busy. Denote the sets of the three types time slots by T1, T2 and T3, and |Ti|
the overall lengths for i ∈ {1, 2, 3}. In the case that µ = (m + 1)/2 for m odd,
T2 = ∅. In other cases all three types of time slots may exist. Then we have
the following bound on |T1| and |T2|:

Lemma 4.3 (1 + ρ)|T1|/2 + min {µ/m, (1 + ρ)/2} |T2| ≤ C∗
max.

Proof: We construct a “heavy” directed path P in the final schedule, similar
to [17,13,28]. The last task in the path P is any multiprocessor task Jj1 that
completes at time Cmax (the makespan of the final schedule). After we have
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defined the last i ≥ 1 tasks Jji
→ Jji−1

→ · · · → Jj2 → Jj1 on the path P,
we can determine the next task Jji+1

as follows: Consider the latest time slot
t in T1 ∪ T2 that is before the starting time of task Jji

in the final schedule.
Let V ′ be the set of task Jji

and its predecessor tasks that start after time t
in the schedule. Since during time slot t at most m − µ processors are busy,
and since at most µ processors are allotted to any task in V ′, no task in V ′

is ready for execution during the time slot t. Therefore for every task in V ′

some predecessor is being executed during the time slot t. Then we select any
predecessor of task Jji

that is running during slot t as the next task Jji+1
on

the path P. This search procedure stops when P contains a task that starts
before any time slot in T1 ∪ T2. An example of the “heavy” path is illustrated
in Figure 2. Now we examine the stretch of processing time for all jobs in P
in the rounding procedure of the first phase and in the new allotment α of the
second phase.

For any job Jj in T1 ∩ P, the processing time of the fractional solution to (9)
increases by at most a factor 2/(1 + ρ). The processing time does not change
in the second phase as in α′ the job Jj is only allotted a number l′j ≤ µ of
processors such that it can be in the time slot of T1. Therefore for such kind
of jobs we have pj(lj) = pj(l

′
j) ≤ 2x∗

j/(1 + ρ).

For any job Jj in T2 ∩ P, there are two cases. In the first case, in α′ a job
Jj is allotted l′j ≤ µ processors. This is same as the case before and we also
have pj(lj) ≤ 2x∗

j/(1 + ρ). In the second case, in α′ a job Jj is allotted l′j > µ
processors, and lj = µ. Then there are two subcases according to the solution
to (9). In the first subcase, in the fractional solution to (9) there are l∗j ≥ µ
processors allotted. Since µ is an integer, we have l∗j ≥ ⌊l∗j ⌋ ≥ µ ≥ lj . Then
ljpj(lj) = Wj(lj) ≤ Wj(µ) ≤ Wj(⌊l∗j ⌋) ≤ wj(x

∗
j) = l∗jx

∗
j ≤ Wj(⌈l∗j ⌉) due to

Theorem 2.1 and (12). Because l∗j ≤ m, and wj(x
∗
j ) = x∗

j l
∗
j ≥ pj(lj)lj = Wj(lj),

it holds that pj(lj) ≤ x∗
j l

∗
j/lj ≤ x∗

jm/µ. In the second subcase, in the fractional
solution there are l∗j < µ processors allotted to Jj. Then in the rounding
procedure of the first phase the processing time must be rounded down from
x∗

j to pj(l
′
j) as only in this way the assumption that l′j > µ of this case can

be satisfied. Then in the second phase, Jj is allotted µ processors and from
Theorem 2.1, pj(lj)lj ≤ pj(l

′
j)l

′
j. Since there are at most m processors allotted

to Jj in α′, we have pj(lj) ≤ pj(l
′
j)l

′
j/lj ≤ pj(l

′
j)m/µ ≤ x∗

jm/µ. Therefore for
any job Jj in T2 ∩ P, pj(lj) ≤ x∗

j max{2/(1 + ρ), m/µ}.

With the construction of the direct path P, it covers all time slots in T1∪T2 in
the final schedule. In addition, because of Lemma 4.2, in the schedule resulted
from the fractional solution to (9), the jobs processed in T1 in the final schedule
contribute a total length of at least (1 + ρ)|T1|/2 to L∗(P), the length of the
critical path P in the optimal solution. In addition, the tasks processed in T2

contribute a total length of at least |T2|min{(1 + ρ)/2, µ/m} to L∗(P). Since
the critical path L∗(P) is not more than the makespan C∗

max according to (11),
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we have proved the claimed inequality. 2

In addition, we have the following bound on the makespan of the final schedule:

Lemma 4.4 The makespan of the schedule delivered by our algorithm is bounded
as follows:

(m − µ + 1)Cmax ≤ 2mC∗
max/(2 − ρ) + (m − µ)|T1| + (m − 2µ + 1)|T2|.

Proof: According to the definitions, all time slots in T1, T2 and T3 in the final
schedule cover the whole interval [0, Cmax]. Therefore

Cmax = |T1| + |T2| + |T3|. (14)

In addition, as during the time slots of the first (respectively the second and
the third) type at least one (respectively µ and m−µ+1) processors are busy,
a lower bound on the total work in the final schedule is:

W ≥ |T1| + µ|T2| + (m − µ + 1)|T3|. (15)

Multiplying (14) by m − µ + 1 and subtracting (15) from it yield

(m − µ + 1)Cmax ≤ W + (m − µ)|T1| + (m − 2µ + 1)|T2|. (16)

In the second phase, for any job Jj, the allotted number of processors lj is not
more than l′j , the number of processors in the first phase. Therefore according
to Theorem 2.1 the total work is non-increasing, i.e., W ′ ≥ W . According to
Lemma 4.2, in the rounding procedure of the first phase, the total work only
increases by at most a factor of 2/(2−ρ) from the total work of the fractional
solution to (9). In this case we have that W ′ ≤ 2W ∗/(2 − ρ). Furthermore,
from (11), W ≤ 2W ∗/(2− ρ) ≤ 2mC∗

max/(2− ρ). Substituting it to the bound
on Cmax in (16) we obtain the claimed inequality. 2

Define the normalized overall length of the i-th type of time slots by xi =
|Ti|/C∗

max for i = 1, 2, 3. Thus we are able to obtain a min-max nonlinear
program as follows where its optimal value is an upper bound on the approx-
imation ratio r:

Lemma 4.5 The approximation ratio of our algorithm is bounded by the op-
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timal objective value of the following min-max nonlinear program

minµ,ρ maxx1,x2

2m/(2 − ρ) + (m − µ)x1 + (m − 2µ + 1)x2

m − µ + 1

s.t. (1 + ρ)x1/2 + min{µ/m, (1 + ρ)/2}x2 ≤ 1;

x1, x2 ≥ 0;

ρ ∈ [0, 1];

µ ∈ {1, . . . , ⌊(m + 1)/2⌋}.

(17)

Proof: Dividing the inequalities in Lemma 4.3 and Lemma 4.4 by C∗
max, to-

gether with inequality (11), the definitions of xi and the definition of the
approximation ratio r, we have the first constraint in (17) and the following
inequality:

r = sup
Cmax

OPT
≤ sup

Cmax

C∗
max

= max
x1,x2

2m/(2 − ρ) + (m − µ)x1 + (m − 2µ + 1)x2

m − µ + 1
.

On the other hand, we can select appropriate µ and ρ to minimize the ratio r.
Hence, by combining them together with the other constraints for the variables
according to their definitions, the approximation ratio is the objective value
of (17). 2

In the following we shall solve the min-max nonlinear program (17) to get the
best approximation ratio of our algorithm.

4.1 Analysis of the min-max nonlinear program (17)

In order to solve (17), we need to consider two cases that either ρ ≤ 2µ/m−1
or ρ > 2µ/m− 1 to simplify the first constraint.

For the analysis we need the following properties of polynomials:

Proposition 4.1 Suppose that x1 is the largest real root to the equation f(x) =
∑n

i=1 aix
i = 0 (an 6= 0). If an > 0, then f(x) > 0 for x ∈ (x1,∞). If an < 0,

then f(x) < 0 for x ∈ (x1,∞).

Recall that the notation Cd means the class of all d-th order continuously
differentiable functions. We need the following lemma for our analysis:

Lemma 4.6 For two functions f : IR → IR and g : IR → IR defined on [a, b]
and f(x), g(x) ∈ C1, if one of the following two properties holds:
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a b x

g(x)

f(x)

Fig. 3. An example of functions with property
Ω1 in Lemma 4.6.

a b

g(x)

x

f(x)

Fig. 4. An example of functions with property
Ω2 in Lemma 4.6.

Ω1: f ′(x) · g′(x) < 0 for all x ∈ [a, b];
Ω2: f ′(x) = 0 and g′(x) 6= 0 for all x ∈ [a, b],

and the equation f(x) = g(x) has a solution in interval [a, b], then the root x0

is unique and it minimizes the function h(x) = max{f(x), g(x)}.

The proof of Lemma 4.6 is straightforward and is omitted here. Examples for
properties Ω1 and Ω2 are illustrated in Figure 3 and 4, respectively.

4.1.1 Solve (17) for the case ρ ≤ 2µ/m − 1

In this case, to guarantee that ρ ≥ 0 it is required that m/2 ≤ µ ≤ (m+1)/2.
Because µ is an integer, we have µ = m/2 for m even and µ = (m + 1)/2 for
m odd. In addition, as (1 + ρ)/2 ≤ µ/m, it holds that ρ = 0 for m even and
ρ ≤ 1/m for m odd. Therefore, we need to consider two cases depending on
m.

• CASE 1: m even.

In this case, we need to solve the following linear program to determine the
approximation ratio:

maxx1,x2

2m + mx1 + 2x2

m + 2

s.t. x1 + x2 ≤ 2;

x1, x2 ≥ 0.

(18)

It is easy to see the following bound

2m + mx1 + 2x2

m + 2
≤ 2m + (m − 2)x1 + 4

m + 2
≤ 4m

m + 2
.

19



So the approximation ratio in this case is bounded by 4m/(m + 2).

• CASE 2: m odd.

Thus we need to solve the following min-max nonlinear program:

minρ maxx1,x2

4m + (2 − ρ)(m − 1)x1

(2 − ρ)(m + 1)

s.t. (1 + ρ)x1/2 + (1 + ρ)x2/2 ≤ 1;

x1, x2 ≥ 0;

ρ ∈ [0, 1/m].

(19)

It is obvious that the objective function of (19) is bounded by the a function
A(ρ) as follows:

A(ρ) =
2[(m + 1)ρ + 4m + 2]

(m + 1)(1 + ρ)(2 − ρ)
.

Now we just need to minimize A(ρ) for all ρ ∈ [0, 1/m]. The first order partial
derivative of A(ρ) with respect to ρ is:

A(ρ)′ρ =
2

m + 1

(m + 1)ρ2 + 4(2m − 1)ρ − 2(m − 2)

(1 + ρ)2(2 − ρ)2
.

We shall examine whether A(ρ)′ρ is nonnegative or not. It is obvious that the
denominator is positive. The only positive root to equation A(ρ)′ρ = 0 is

ρ̄ =
3
√

2m2 − 2m − 2(2m − 1)

m + 1
.

When ρ < ρ̄, A(ρ) is decreasing in ρ. Otherwise A(ρ) is increasing in ρ.
Furthermore, it can be verified that when m = 3 and m = 5, ρ̄ < 1/m. In this
way we need to check two subcases as follows:

• SUBCASE 1: m = 3 or m = 5.

In this case, we set ρ∗ = ρ̄, and the corresponding minimum value minρ A(ρ) =
A(ρ∗). For m = 3, minρ A(ρ) = 2(2 +

√
3)/3, and for m = 5, minρ A(ρ) =

2(7 + 2
√

10)/9.

• SUBCASE 2: m ≥ 7.
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In this case, we set ρ∗ = 1/m. Then the corresponding minimum value minρ A(ρ) =
2m(4m2 − m + 1)/[(m + 1)2(2m − 1)].

Combining all above cases we have the following lemma:

Lemma 4.7 In the case that ρ ≤ 2µ/m − 1, the approximation ratio of our
algorithm has the following bound:

r ≤







































2(2 +
√

3)/3, if m = 3;

2(7 + 2
√

10)/9, if m = 5;

2m(4m2 − m + 1)/[(m + 1)2(2m − 1)], if m ≥ 7 and m odd;

4m/(m + 2), otherwise.

4.1.2 Solve (17) for the case ρ > 2µ/m − 1

In this case we need to solve the following min-max nonlinear program:

minµ,ρ maxx1,x2

2m/(2 − ρ) + (m − µ)x1 + (m − 2µ + 1)x2

m − µ + 1

s.t. (1 + ρ)x1/2 + µx2/m ≤ 1;

x1, x2 ≥ 0;

ρ ∈ (max{2µ/m− 1, 0}, 1];

µ ∈ {1, . . . , ⌊(m + 1)/2⌋}.

(20)

In this case we need to solve the following min-max nonlinear program:

minµ,ρ maxx1,x2

2m/(2 − ρ) + (m − µ)x1 + (m − 2µ + 1)x2

m − µ + 1

s.t. (1 + ρ)x1/2 + µx2/m ≤ 1;

x1, x2 ≥ 0;

ρ ∈ (max{2µ/m− 1, 0}, 1];

µ ∈ {1, . . . , ⌊(m + 1)/2⌋}.

(21)

We notice that the constraints on x1 and x2 in (21) form a triangle, and the
extreme points are E1 : (x1, x2) = (2/(1 + ρ), 0), E2 : (x1, x2) = (0, m/µ)),
and E3 : (x1, x2) = (0, 0). Since (21) is linear in x1 and x2, for a fixed pair
of ρ and µ, the maximum value of the objective function exists at one of
the extreme points. It is clear that the objective function cannot attain the
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maximum value at E3. So we just consider E1 and E2. Denote by A(µ, ρ) and
B(µ, ρ) the objective values at the E1 and E2, respectively. Then we have:

A(µ, ρ) =
2(1 + ρ)m + 2(2 − ρ)(m − µ)

(1 + ρ)(2 − ρ)(m − µ + 1)
;

B(µ, ρ) =
2mµ + (2 − ρ)m(m − 2µ + 1)

µ(2 − ρ)(m − µ + 1)
.

The first order partial derivative of A(µ, ρ) with respect to µ is

A(µ, ρ)′µ =
2((1 + ρ)m − (2 − ρ))

(1 + ρ)(2 − ρ)(m − µ + 1)2
.

It is obvious that the denominator is always positive. The numerator is non-
negative when (1+ρ)m−(2−ρ) ≥ 0, i.e., ρ ≥ (2−m)/(m+1). This inequality
is always true because ρ ≥ 0 and m ≥ 2. Thus A(ρ)′µ is always nonnegative.
So for any m ≥ 2, A(µ, ρ) is increasing in µ.

Furthermore, the first order partial derivative of B(µ, ρ) with respect to µ is

B(µ, ρ)′µ =
−2(1 − ρ)mµ2 + 2(2 − ρ)m(m + 1)µ − (2 − ρ)m(m + 1)2

(2 − ρ)µ2(m − µ + 1)2
.

When ρ = 1, B(µ, 1)′µ = m(m + 1)[2µ− (m + 1)]/µ2(m− µ + 1)2 ≤ 0 because
µ ≤ (m + 1)/2. So B(µ, ρ) is decreasing in µ. Now we consider the case
that ρ < 1. Solving the quadratic equation B(µ, ρ)′µ = 0 we obtain that

µ = (2 − ρ ±
√

ρ(2 − ρ))(m + 1)/2(1 − ρ). Since ρ < 1, we have 1 > ρ(2 − ρ).
Because both sides are positive, we can take the square roots of both sides to

obtain 1 >
√

ρ(2 − ρ). Thus 2 − ρ −
√

ρ(2 − ρ) > 1 − ρ. So we obtain that

(2− ρ +
√

ρ(2 − ρ))/(1− ρ) > (2− ρ−
√

ρ(2 − ρ))/(1− ρ) > 1. Therefore the

roots of the equation B(µ, ρ)′µ = 0 violate the constraint µ ≤ (m + 1)/2. So
there is no feasible root for this equation. Since in the numerator of B(µ, ρ)′µ
the coefficient of the term of µ2 is negative, we have B(µ, ρ)′µ < 0 for all
feasible pair ρ and µ from Proposition 4.1.

According to Lemma 4.6, if we find a solution to the equation A(µ, ρ) =
B(µ, ρ), the optimal value is attained. The equation A(µ, ρ) = B(µ, ρ) can
be simplified to 2µ2 − (4 + 2ρ)mµ + (1 + ρ)m(m + 1) = 0. The roots to this

equation are µ = ((2+ρ)m±
√

(ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m)/2. Since m ≥ 1,

we have (2 + ρ)m +
√

(ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m ≥ 2m + 2ρm > m + 1,

which violates the constraint that µ ≤ (m + 1)/2. So the only feasible root to
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the equation A(µ, ρ) = B(µ, ρ) is

µ∗ = ((2 + ρ)m −
√

(ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m)/2. (22)

Then we have the following lemma:

Lemma 4.8 For a fixed ρ > 2µ/m−1, the optimal objective value is attained

when µ = ((2 + ρ)m −
√

(ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m)/2.

4.2 Approximation ratio

According to the analysis in Subsubsection 4.1.1, when ρ ≤ 2µ/m−1, if m ≥ 6,
we just need to set ρ∗ = 0 and µ∗ = ⌈m/2⌉ to obtain the optimal value of
(17), i.e., the approximation ratio of our algorithm. For the special cases of
m = 2, 3, 4, 5, optimal ρ∗ and µ∗ can be chosen according to Subsubsection
4.1.1. The ratio is listed in Lemma 4.7.

Now we investigate the case ρ > 2µ/m − 1 based on Subsubsection 4.1.2.
Unfortunately, we shall show in Subsection 4.3 that we are not able to use the
technique in analysis for µ is Subsubsection 4.1.2 to obtain the optimal value
of (17) over ρ. Thus, in this case we still can fix the value of ρ to obtain an
improved approximation ratio. We also show that asymptotically it is almost
the optimal choice. The value of ρ in our algorithm is set as follows:

ρ̂∗ = 0.26. (23)

By substituting it to (4.8) we set

µ̂∗ =
113m −

√
6469m2 − 6300m

100
. (24)

We need to examine whether ρ̂∗ and µ̂∗ in (23) and (24) satisfy the assump-
tion that ρ̂∗ ≥ 2µ̂∗/m − 1. Since m ≥ 2 > 6300/3969, 2500 < 6469 −
6300/m. Because both sides are positive, taking the square root we have

50 <
√

6369 − 6300/m. Therefore ρ̂∗ = 13/50 > (63−
√

6369 − 6300/m)/50 =

2µ̂∗/m − 1.

Lemma 4.9 In the case that ρ ≥ 2µ/m − 1, our algorithm has an approxi-
mation ratio r at most

100

63
+

100

345303

(63m − 87)(
√

6469m2 − 6300m + 13m)

m2 − m
.
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Proof: It is worth noting that the µ̂∗ in (24) can be a fractional number.
Therefore we need to consider ⌈µ̂∗⌉ and ⌊µ̂∗⌋. Since we should minimize the
objective function over µ, the approximation ratio with integer value of µ is
bounded as follows:

r ≤ min{max{A(⌈µ̂∗⌉, ρ̂∗), B(⌈µ̂∗⌉, ρ̂∗)}, max{A(⌊µ̂∗⌋, ρ̂∗), B(⌊µ̂∗⌋, ρ̂∗)}}.

According to the analysis in Subsubsection 4.1.2, here A(µ, ρ) is increasing in µ
and B(µ, ρ) is decreasing in µ for a fixed ρ. Thus the bound on approximation
ratio is

r ≤ min{A(⌈µ̂∗⌉, ρ̂∗), B(⌊µ̂∗⌋, ρ̂∗)}

Furthermore, ⌈µ̂∗⌉ ≤ µ̂∗ + 1 and ⌊µ̂∗⌋ ≥ µ̂∗ − 1. Again, because A(µ, ρ) is
increasing and B(µ, ρ) is decreasing, we have

A(⌈µ̂∗⌉, ρ̂∗) ≤ A(µ̂∗ + 1, ρ̂∗); B(⌊µ̂∗⌋, ρ̂∗) ≤ B(µ̂∗ − 1, ρ̂∗).

Thus we have the following bound on the ratio r:

r ≤ min{A(⌈µ̂∗⌉, ρ̂∗), B(⌊µ̂∗⌋, ρ̂∗)} ≤ min{A(µ̂∗ + 1, ρ̂∗), B(µ̂∗ − 1, ρ̂∗)}
≤ A(µ̂∗ + 1, ρ̂∗).

Therefore here we shall find an upper bound on A(µ̂∗ + 1, ρ̂∗), which is also
an upper bound on the approximation ratio r. Substituting µ̂∗ in (24) and ρ̂∗

in (23) in A(µ̂∗ + 1, ρ̂∗) gives:

r ≤ A(µ̂∗ + 1, ρ̂∗) =
2

1 + ρ̂∗
+

2

1 + ρ̂∗

(1 + ρ̂∗)m − (2 − ρ̂∗)

(2 − ρ̂∗)(m − µ̂∗)

=
100

63
+

100

345303

(63m − 87)(
√

6469m2 − 6300m + 13m)

m2 − m
.

This is the claimed bound in the lemma. 2

Combine Lemma 4.7 and Lemma 4.9 we have the following theorem of the
approximation ratio of our algorithm:

Theorem 4.1 There exists an algorithm for the problem of scheduling mal-
leable tasks with precedence constraints under Assumption 1 and 2 with an
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approximation ratio

r ≤



























































2, if m = 2;

2(2 +
√

3)/3, if m = 3;

8/3, if m = 4;

2(7 + 2
√

10)/9, if m = 5;

100

63
+

100

345303

(63m − 87)(
√

6469m2 − 6300m + 13m)

m2 − m
, otherwise.

Proof: We need to compare the minimum objective values in both cases ρ ≤
2µ/m−1 and ρ > 2µ/m−1. Thus for m ≥ 6 we need to compare 4m/(m+2)
and the value in Lemma 4.9. Suppose that

4m

m + 2
≥ 100

63
+

100

5481

(63m − 87)(
√

6469m2 − 6300m + 13m − 100)

63m2 − 37m − 100
.

By moving the right hand side to the left hand side and simplification, we
obtain

62601m3 − 112501m2 + 142700m− 25(63m2 + 13m − 58)
√

6469m2 − 6300m

(m + 2)(m2 − m)
≥ 0.

Denote by NUM the numerator, and by DEN the denominator, of the left
hand side of the above inequality, respectively. It is obvious that DEN > 0 for
any m ≥ 2. Now we consider NUM . Solving equation NUM = 0 numerically
we obtain the following roots: m1 = 1.35285, m2,3 = 2.27502∓1.68612i, m4,5 =
−0.230259 ∓ 0.779709i. It means that when m ≥ 2 > m1, both NUM and
DEN are positive according to Proposition 4.1. Therefore for any integer m ≥
6 the ρ̂∗ and µ̂∗ should be taken by (23) and (24) to obtain the approximation
ratio bounded in Lemma 4.9. Then we need to compare the ratios according
to Lemma 4.7 and Lemma 4.9 for m = 2, 3, 4, 5. When m = 2, by Lemma 4.9,
r ≤ 2.384810, which is greater than the bound in Lemma 4.7. So we should
take ρ∗ = 3

√
2 − 4 and µ∗ = 1, with an approximation ratio r ≤ 1 + 2

√
2/3.

When m = 3, by Lemma 4.9, r ≤ 2.755556, which is greater than the bound
in Lemma 4.7. So we should take ρ∗ = (3

√
3 − 5)/2 and µ∗ = 2, with an

approximation ratio r ≤ 2(2 +
√

3)/3. When m = 4, by Lemma 4.9, r ≤
2.908646, which is greater than the bound in Lemma 4.7. So we should take
ρ∗ = 3

√
2 − 4 and µ∗ = 2, with an approximation ratio r ≤ 4(1 + 2

√
2)/3.

When m = 4, by Lemma 4.9, r ≤ 2.993280, which is greater than the bound in
Lemma 4.7. So we should take ρ∗ =

√
10−3 and µ∗ = 3, with an approximation

ratio r ≤ 2(7 + 2
√

10)/9. This complete the proof. 2
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Then the following corollary holds for the upper bound on the approximation
ratios:

Corollary 4.1 For all m ∈ IN and m ≥ 2, the approximation ratio

r ≤ 100

63
+

100(
√

6469 + 13)

5481
.

Furthermore, when m → ∞, the upper bound in Theorem 4.1 tends to

100

63
+

100(
√

6469 + 13)

5481
≈ 3.291919.

Proof: It is obvious that when m ≤ 6, the approximation ratios fulfils the
inequality. We now consider the case that m ≥ 6.

Now we need to show that

100

63
+

100

5481

(63m − 87)(
√

6469m2 − 6300m + 13m − 100)

m2 − m
≤ 100

63
+

100(
√

6469 + 13)

5481
,

which is equivalent to (63m − 87)(
√

6469m2 − 6300m + 13m)/63(m2 − m) ≤√
6469 + 13. Since m2 − m > 0 for all m ≥ 2, we can multiply both sides

by 63(m2 − m). Then simplification gives (21m − 29)
√

6469m2 − 6300m ≤
21
√

6469m2−21
√

6469m+104m. When m ≥ 2, 21m−29 > 0 and m2−m > 0,
so both sides are positive. We can take square of both sides and obtain the
following inequality:

(2475942 + 2184
√

6469)m2 + (315337− 2184
√

6469)m − 2649150 ≥ 0.(25)

It is easy to verify that 2475942 + 2184
√

6469 ≈ 2651601.325 > 2649150 and
315337−2184

√
6469 ≈ 139677.675 > 0. Therefore for any m ≥ 1 the inequality

(25) holds. So the bound in the corollary holds.

When m → ∞, the bound

100

63
+

100

5481

(63m − 87)(
√

6469m2 − 6300m + 13m − 100)

63m2 − 37m − 100

→ 100

63
+

100(
√

6469 + 13)

5481
≈ 3.291919.

2

We give the list of values of approximation ratios for our algorithm for m =
2, . . . , 33 in Table 2. Here it is worth noting that we still take ρ̂∗ = 0.26 for
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m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)

2 1 0 2 10 4 0.260 3.0026 18 7 0.260 3.1792 26 9 0.260 3.1594

3 2 0.098 2.4880 11 4 0.260 2.9693 19 7 0.260 3.1451 27 9 0.260 3.2123

4 2 0 2.6667 12 5 0.260 3.1130 20 7 0.260 3.1160 28 10 0.260 3.1976

5 2 0.260 2.6868 13 5 0.260 3.0712 21 8 0.260 3.1981 29 10 0.260 3.1746

6 3 0.260 2.9146 14 5 0.260 3.0378 22 8 0.260 3.1673 30 10 0.260 3.2135

7 3 0.260 2.8790 15 6 0.260 3.1527 23 8 0.260 3.1404 31 11 0.260 3.2085

8 3 0.260 2.8659 16 6 0.260 3.1149 24 8 0.260 3.2110 32 11 0.260 3.1870

9 4 0.260 3.0469 17 6 0.260 3.0834 25 9 0.260 3.1843 33 11 0.260 3.2144

Table 2
Listing of bounds on approximation ratios for our algorithm.

m µ(m) r(m) m µ(m) r(m) m µ(m) r(m) m µ(m) r(m)

2 1 4.0000 10 4 5.0000 18 8 5.0908 26 10 5.1250

3 2 4.0000 11 5 4.8570 19 8 5.0000 27 11 5.0588

4 2 4.0000 12 5 4.8000 20 8 5.0000 28 11 5.0908

5 3 4.6667 13 6 5.0000 21 9 5.0768 29 12 5.1111

6 3 4.5000 14 6 4.8889 22 9 5.0000 30 12 5.0526

7 3 4.6667 15 6 5.0000 23 9 5.1111 31 13 5.1578

8 4 4.8000 16 7 5.0000 24 10 5.0667 32 13 5.1000

9 4 4.6667 17 7 4.9091 25 10 5.0000 33 13 5.0768

Table 3
Listing of bounds on approximation ratios for the algorithm in [17].

m = 5, because the bound in Lemma 4.9 is not a tight upper bound on the
objective value of (17) with ρ = ρ̂∗ = 0.26. In fact with the rounded value
of ⌊µ̂∗⌋ or ⌈µ̂∗⌉ the objective values are lower than the bound in Lemma 4.9
as listed above. The list is to be compared with the values of approximation
ratios for the algorithm in [17] (Table 3). Our algorithm leads to a visible
improvement for all m for our model (which is a special case of the model in
[17]).
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4.3 Asymptotic behaviour of approximation ratio

In our algorithm we set ρ̂∗ = 0.26. However, the bound of the approximation
ratio r can be improved by choosing the value of ρ∗ depending on m. In this
subsection we shall study it.

Recall that µ∗ in (4.8) is the minimizer of the objective function in (17). By
substituting µ∗ to A(µ, ρ) or B(µ, ρ) we can obtain two functions A(ρ) or B(ρ).
Since our goal is to find the minimum value of A(ρ) and B(ρ) over all ρ, we
need to solve the equation A(ρ)′ρ = 0 and B(ρ)′ρ = 0. Because A(ρ) = B(ρ), we
just need to consider one of them, say, A(ρ). The first order partial derivative
of A(ρ) with respect to ρ is

A(ρ)′ρ =
2m((m − µ∗ + 1) + (2 − ρ)(µ∗)′ρ)

(2 − ρ)2(m − µ∗ + 1)2
− 2

(1 + ρ)2
+

2((m − µ∗ + 1) − (1 + ρ)(µ∗)′ρ)

(1 + ρ)2(m − µ∗ + 1)2

Combine the two terms together and the denominator is positive. So the equa-
tion A(ρ)′ρ = 0 can be simplified as −(2 − ρ)2(µ∗)2 + [(ρ2 − 10ρ + 7)m + (2 −
ρ)2]µ∗ +(1+ρ)(2−ρ)[(1+ρ)m− (2−ρ)](µ∗)′ρ +3(2ρ−1)m(m+1) = 0, where

µ∗ =m(2 + ρ)/2 −
√

∆/2;

(µ∗)2 =((ρ2 + 3ρ + 3)m2 − (ρ + 1)m)/2 − (2 + ρ)m
√

∆/2;

(µ∗)′ρ =m/2 − ((ρ + 1)m2 − m)/2
√

∆,

and ∆ = (ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m. Substituting them to the equation, we
obtain the following equation: A1∆ + A2

√
∆ + A3 = 0, where the coefficients

are as follows:

A1 = mρ3 + (−3m − 1)ρ2 + (6m + 4)ρ + (m − 4);

A2 = m[−mρ4 + (m + 1)ρ3 + (−3m − 2)ρ2 + (2m + 8)ρ + (−2m + 2)];

A3 = m[(m2 + m)ρ4 + (m2 − 3m − 1)ρ3 + (−3m2 − 3m + 3)ρ2

+(−5m2 + 7m)ρ + (−2m2 + 6m − 4)].

To remove the square root, we can simplify the equation to an equivalent
equation (A1∆ + A3)

2 − A2
2∆ = 0. After simplification, it can be written as

the following form:

m2(1 + m)(1 + ρ)2
6

∑

i=0

ciρ
i = 0, (26)

28



where the coefficients are as follows:

c0 =−8(m − 1)2(m − 2);

c1 = 8(m − 1)(m − 2)(3m − 2);

c2 = 21m3 − 59m2 + 16m + 24;

c3 = 2(m + 1)(7m2 − 7m − 4);

c4 = 3m3 − 7m2 + 15m + 1;

c5 = 2m(3m2 − 4m − 1);

c6 = m2(m + 1).

Eliminating the common factor (ρ+1)2 we are able to obtain an equation with
degree of 6. Unfortunately in general there are no analytic roots for polynomial
with degree more than 4. So we are not able to solve (26) to obtain the optimal
ρ∗ depending on m like in Subsubsection 4.1.1.

However, we can estimate the asymptotic behaviour of the approximation
ratio. When m → ∞, equation (26) tends to: m3(ρ6 + 6ρ5 + 3ρ4 + 14ρ3 +
21ρ2 + 24ρ − 8) = 0. Thus we just need to consider the equation ρ6 + 6ρ5 +
3ρ4 +14ρ3 +21ρ2 +24ρ−8 = 0. Solving it by numerical methods, we have the
following roots: ρ1 = −5.8353, ρ2,3 = −0.949632 ± 0.89448i, ρ4 = 0.261917,
ρ5,6 = 0.72544±1.60027i. The only feasible root here in the interval ρ ∈ (0, 1)
is ρ∗ = 0.261917. Substituting it to (4.8) the optimal µ∗ → 0.325907m. With
these data, from either A or B one has that r → 3.291913.

In our algorithm we fix ρ̂∗ = 0.26 just because it is close to the asymptotic
optimal ρ∗. The ratio of our algorithm could be further improved by fix ρ̂∗ to
a better approximation to ρ∗. In this way we conjecture that there exists a
3.291913-approximation algorithm for scheduling malleable tasks with prece-
dence constraints. However, the analysis is too complicated and our algorithm
has a ratio 3.291919, which is already very close to this asymptotic ratio.

We can also use numerical method to solve the min-max nonlinear program
(21). We can construct a grid of ρ in the interval [0, 1], and µ in [1, ⌊(m+1)/2⌋].
The grid size for ρ is δρ and for µ is 1 as µ is an integer. We can compute the
values of A(µ, ρ) and B(µ, ρ) on each grid point, and search for the minimum
over all grid points to decide the optimal objective values depending on m. The
results by setting δρ = 0.0001 and m = 2, . . . , 33 are in Table 4. Compared
them with the results in Table 2 we can see that the solutions of our algorithm
are already very close to the optimum.
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m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)

2 1 0.000 2.0000 10 4 0.310 2.9992 18 6 0.143 3.1065 26 9 0.308 3.1515

3 2 0.098 2.4880 11 4 0.273 2.9671 19 7 0.328 3.1384 27 9 0.200 3.1579

4 2 0.243 2.5904 12 4 0.067 3.0460 20 7 0.300 3.1092 28 10 0.335 3.1895

5 2 0.200 2.6389 13 5 0.318 3.0664 21 7 0.167 3.1273 29 10 0.310 3.1663

6 3 0.243 2.9142 14 5 0.286 3.0333 22 8 0.331 3.1600 30 10 0.212 3.1695

7 3 0.292 2.8777 15 5 0.111 3.0802 23 8 0.304 3.1330 31 10 0.129 3.1972

8 3 0.250 2.8571 16 6 0.325 3.1090 24 8 0.185 3.1441 32 11 0.312 3.1785

9 3 0.000 3.0000 17 6 0.294 3.0776 25 9 0.333 3.1765 33 11 0.222 3.1794

Table 4
Numerical results of min-max nonlinear program (21).

5 Conclusion

We have presented a 3.291919-approximation algorithm for scheduling mal-
leable tasks with precedence constraints for the discrete version of the mal-
leable task model initiated by Prasanna et al. [22–24]. This improves the pre-
vious results for the scheduling problem. Since our model has already been
applied for real parallel computers, our algorithm has large potential for fur-
ther application in practice. It is also worth noting that we can generalize our
model to the case where the work function is convex in the processing times
and Assumption 1 holds. Our algorithm and analysis are both still valid in
this generalized model.

Acknowledgments: The authors thank the anonymous referees for their
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