
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

Semantic Issues in UML 2.0 State

Machines

Harald Fecher, Marcel Kyas, Jens Schönborn

Bericht Nr. 0507

June 2, 2005

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Semantic Issues in UML 2.0 State

Machines⋆

Harald Fecher, Marcel Kyas, and Jens Schönborn

Christian-Albrechts-Universität zu Kiel, Germany
{hf,mky,jes}@informatik.uni-kiel.de

Abstract. A precise semantics for the modeling language UML 2.0 is
necessary for code generation and for formal verification of models dur-
ing the early stages of design. We present a formal semantics of the firing
of transitions in UML 2.0 state machines. In particular, we handle shal-
low/deep history pseudostates, final states, join/fork pseudostates, en-
try/exit actions and the different kinds of transition. Furthermore, our
semantics captures all orderings of actions in a run-to-completion step.
We point out ambiguities and uncertainties in the UML 2.0 standard,
especially in the meaning of history pseudostates and priority between
transitions. We discuss different attempts in resolving these.

1 Introduction

UML has become the standard modeling language for object-oriented
programs. But in the UML 2.0 standard [12] its semantics is only
informally defined. It is, however, necessary to develop a precise for-
mal semantics in order to rule out ambiguities and to develop tool
support for UML, e.g., simulators, verifiers, or code generators.

Here, we present a formal syntax and a formal semantics of UML
2.0 (behavioral) state machines, which are widely used for model-
ing the reactive behavior of object-oriented systems. State machines
have evolved from Harel’s statecharts [5] and their object-oriented
version [6]. The main difference between Harel’s statecharts and
UML state machines is that in statecharts steps are triggered by
a “time tick” and the reaction is supposed to occur in zero time,
whereas in state machines steps triggered by events, i.e., messages
the object receives, and that the execution of actions is assumed to

⋆ Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2)

take time1. Hence, the existing semantics for statecharts cannot be
used for state machines.

In this paper, we focus on determining the set of transitions that
are fired as a result of a given event and to which configurations
the firing of the transitions will lead. The order in which transitions
fire is deliberately left unspecified in the standard. Our semantics
captures all orderings of actions of a run-to-completion step. The
validity of our semantics is argued on the basis of explicit citations
of the relevant parts of the UML standard. Our language of UML
state machines includes the most important features. In particular,
our language includes history pseudostates, final states, join and fork
pseudostates, and transition kind.

We point out ambiguities and uncertainties in the UML 2.0 stan-
dard [12], especially in the case of history pseudostates and priority
between transitions. We discuss different attempts of resolving these.
We do not consider the formal definition of event selection mecha-
nisms and a global step semantics, i.e., the semantics of a system
containing many communicating state machines. In future work, a
semantics based on transition system will be the foundation of the
global semantics.

The paper is structured as follows: In the next section, we present
the syntax, where we also justify the syntactical simplification we
make. The semantics is given in Sec. 3 and related work is discussed
in Sec. 4.

2 Syntax of UML State Machines

For simplicity, we do not consider:

– The concept of redefinition, which is not a behavioral issue.
– Parameters on signal events, which can be straightforwardly added.
– Events of stereo type create [12, p. 499,471], since we do not con-

sider creation of new objects.
An initial transition at the topmost level (region of a state
machine) either has no trigger or it has a trigger with the
stereotype create. [12, p. 499]

1 That time is needed is a consequence of the fact that sending a synchronous message
to another object blocks the sender until a response is received, but the receiver may
delay this message in preference of other actions.

2

[. . .] the transition from an initial pseudostate may be la-
beled with the trigger event that creates the object; oth-
erwise, it must be unlabeled. [12, p. 471]

– Termination pseudostates [12, p. 471], since we could not find
out when exactly the state machines vanish. Do all transitions
of a firing set of transitions fire, or are the remaining transitions
dropped as soon as a transition to a termination pseudostates is
completed? Do all active states have to be exited before a state
machine vanishes?

Entering a terminate pseudostate implies that the execu-
tion of this state machine by means of its context object
is terminated. [12, p. 471]

– Completion event/transition [12, p. 500], since the UML standard
does not precisely say in which cases and which completion events
are generated. Moreover, do completion events trigger transitions
without trigger or do they trigger completion transitions corre-
sponding to other completions (that already took place)?

A completion transition is a transition where the source
is a composite state, [. . .] without an explicit trigger, al-
though it may have a guard defined. When all transitions
and entry activities and state (do) activities in the cur-
rently active state are completed, a completion event is
generated. This event is the implicit trigger for a comple-
tion transition. The completion event is dispatched before
any other events in the pool and has no associated param-
eters. [12, p. 500]

In order to give our formal presentation, we use the following
notations: M ⇀ M ′ denotes the set of all partial functions from
M into M ′ and the cardinality of M is given by |M |. The operator
· denotes concatenation of words (and is sometimes omitted to in-
crease readability), ǫ denotes the empty word, ∗ denotes the Kleene
star operation, last the function returning the last symbol of a word,
and start the word without its last symbol. We write w ≺ w′ if w is
proper prefix of w′ and we write w � w′ if w ≺ w′ ∨ w = w′.

Definition 1. Let {Ncomp, Nreg, Nfinal, {D}, {H}, {H⋆}}} be a parti-
tion of a set N of state names. Set Ncomp represents the names of
composite states, set Nreg the names of regions, set Nfinal the names

3

of final states, symbol D an initial state, symbol H a shallow history
state, and symbol H⋆ a deep history state2.

A region collects states and transitions and is like a sub-statemachine.
The transitions of a region do not necessarily originate from a state
of that region or target a state of this region. In this case we speak
of inter-level transitions.

In the following, the states and also the pseudostates of a state
machine will be sequences of elements from N , i.e., the states are
identified with the path of names to s, as is also done in OCL [1].
In particular, the region and the composite state identification will
alternate in a sequence encoding a state. Before we present the formal
definition, we introduce some further notation: For any set of words

W ⊆ N∗ define its down-set ↓ W
def
= {w′ ∈ N∗ | ∃w ∈ W : w′ � w}

and its up-set ↑ W
def
= {w′ ∈ N∗ | ∃w ∈ W : w � w′}. Furthermore,

the longest common prefix of all words from a non-empty set of words
W is denoted by LCP(W).

Definition 2. A set of states S is a non-empty finite subset of

Nstate
def
= (Ncomp · Nreg)

∗ · (Ncomp ∪ Nfinal) that is prefix closed with
respect to Nstate, i.e., S = ↓ S ∩ Nstate. Furthermore, the set of all

regions of S is Sreg
def
= (Ncomp · Nreg)

∗ ∩ ↓ S and the set of all final

states of S is Sfinal
def
= ((Ncomp · Nreg)

∗ · Nfinal) ∩ S.

Example 1. Suppose Ncomp = {0, 1, 2, . . .}, Nreg = {a, b, c, . . .} and
Nfinal = {0̄, 1̄, 2̄, . . .}. Then the states of the state machine of Fig. 1
can be encoded, e.g., as 2=̂0a2, 9=̂0a3a9, 11=̂0a3b11, and the final
state as 0a1a0̄.

For readability, we also use the state name instead of the path
when we identify the states of the state machine of Fig. 1, e.g., we
use 1 instead of 0a1.

Later, we will sometimes use pseudostates. Pseudostates are like
states in that they may be sources or targets of transitions, but
never part of a state configuration (see below). To represent them,
we extend an element of Nreg with an additional symbol, like D, H or

2 Please note that the star is only a notational index and has nothing to do with the
Kleene star operation.

4

t5

t4

H*

H*

t15

t6

t7

t8

0

1

3

2 45

6 7 8

9 10

11 12

t16t17
t19

t20

t9

H

t12

t13

t18t2

t21

t22

t10

t3

t24

t1

t14

t26

t23

t11

t25

t27

Let t(j) = (e(j), ϕ(j), α(j)). The events and guards are omitted from transitions from
pseudostates and also from transition t6 and t7.

Fig. 1. Example state machine.

H⋆. Note that initial pseudostates and history pseudostates are not
allowed in S, since they are only pseudostates. We call a set of states
orthogonal if its pairwise distinct states belong to different regions
of an orthogonal state [12, p. 478].

A composite state either contains one region or is decom-
posed into two or more orthogonal regions. Each region has
a set of mutually exclusive disjoint subvertices and a set of
transitions. [. . .] An orthogonal composite state contains two
or more regions. [12, p. 478]

Formally:

Orthogonal
def
= {W ⊆ N∗ | ∀w, w′ ∈ W : last(LCP({w, w′})) /∈ Nreg∧¬(w ≺ w′)}.

In the following definition we introduce some given sets.

Definition 3. An action is a sequence of atomic actions (like chang-
ing value of attributes, sending signals, and creating new objects). In
the following, we will use symbol A to denote the set of all actions.
Let skip ∈ A denote the neutral element, i.e., the do-nothing action.
Set E denotes the set of all possible events and set G denotes a set
of boolean expressions, which depend on global information like the
attribute values of the objects.

For example OCL [1] can be used as a description language for
G.

5

Next we define the allowed transition of a state machine (see [12,
p. 498,470,499]). Here the transitions are presented through com-
pound transitions [12, pp. 500].

A compound transition is a derived semantic concept, repre-
senting a “semantically complete” path made of one or more
transitions, originating from a set of states [. . .] and targeting
a set of states. [12, p. 500]

– trigger: Trigger[0..*] Specifies the triggers that may fire the
transition.

– guard: Constraint[0..1] A guard is a constraint that pro-
vides a fine-grained control over the firing of the transition.
The guard is evaluated when an event is dispatched by the
state machine. If the guard is true at that time, the tran-
sition may be enabled, otherwise, it is disabled. Guards
should be pure expressions without side effects. Guard ex-
pressions with side effects are ill formed.

– effect: Activity[0..1] Specifies an optional activity to be
performed when the transition fires.

– source: Vertex[1] Designates the originating vertex (state
or pseudostate) of the transition.

– target: Vertex[1] Designates the target vertex that is reached
when the transition is taken.

[12, p. 498]

[3] In a complete state machine, a join vertex must have at
least two incoming transitions and exactly one outgoing tran-
sition.
[4] All transitions incoming a join vertex must originate in
different regions of an orthogonal state.
[5] In a complete state machine, a fork [sic] vertex must have
at least two outgoing transitions and exactly one incoming
transition.
[6] All transitions outgoing a fork vertex must target states in
different regions of an orthogonal state. [12, p. 470]

Transitions outgoing pseudostates may not have a trigger. [12,
p. 499]

6

Definition 4. A transition t with respect to a set of states S is a
tuple (Ŝ1, e, ϕ, α, α̃1, α̃2, Ŝ2, ℓ) such that:

– Ŝ1 denotes the set of source states where final states have no
outgoing transitions, i.e., Ŝ1 6= ∅ ∧ Ŝ1 ⊆ S \ Sfinal,

– Ŝ2 denotes the set of target states where transitions from a fork
pseudostate may not target pseudostates, i.e., Ŝ2 6= ∅ ∧ (Ŝ2 ⊆
S ∨ ∃r ∈ Sreg : (Ŝ2 = {r · H} ∨ Ŝ2 = {r · H⋆})),

– the source states (the target states) of the transition belong to
orthogonal regions, i.e., Ŝ1 ∈ Orthogonal and Ŝ2 ∈ Orthogonal,

– e ∈ E is the event by which the transition is triggered,
– ϕ ∈ G is its guard constraining when the transition can be trig-

gered,
– α̃1 : Ŝ1 → A provides actions to the transitions into a join pseu-

dostate,
– α̃2 : Ŝ2 → A provides actions to the transitions leaving a fork

pseudostate,
– α is its action (sequence), which has to be executed between the

actions from α̃1 and α̃2,
– ℓ ∈ S∪Sreg, called scope, determines which states are exited/entered

(those states which are proper substates of ℓ) when the transition
is fired. Furthermore, all substates of the source state(s) have to
be exited and all substates of the target state(s) have to be entered,
i.e., Ŝ1 ⊆ ↑ {ℓ} ∧ Ŝ2 ⊆ ↑ {ℓ}.

Note that some transitions, e.g., those involved in a join or fork
pseudostates of an UML state machines are represented by a single
transition in our definition. For example, the transition correspond-
ing to the fork of the state machine presented in Fig. 1 is represented
by

({2}, e, ϕ(9), α(9), {2, skip}, {(9, α(5)), (11, α(4))}, {9, 11}, 0a)

The scope of a transition is determined by the outermost region
(state) that contains the whole drawing of the transition. For ex-
ample, transition t23 has scope 0a, whereas transition t25 has scope
0a3.

It is not clear to us whether the UML state machines are sen-
sitive to the way they are drawn. The concept of ℓ is also used to

7

model transitions with transition kind local [12, p. 506]. A transition
with transition kind local can only have a single source state, since
otherwise the firing of this transition will in general contradict the
invariant that the complete firing of transitions results in configura-
tions. A transitions with transition kind local, which we also call a
local transition, has as its scope its source state. This is one reason
why we also allow states as the scope of transitions. Note that we
do not need the restriction that the source states of transition with
transition kind local or external have to be composite states.

[1] The source state of a transition with transition kind local
must be a composite state.
[2] The source state of a transition with transition kind exter-
nal must be a composite state. [12, p. 506]

Note that a transition resulting from a join pseudostate, i.e., with
|Ŝ1| > 1, may not have a trigger [12, p. 499,471]

Transitions outgoing pseudostates may not have a trigger. [12,
p. 499]

A join segment must not have guards or triggers. [12, p. 499]

The transitions entering a join vertex cannot have guards or
triggers. [12, p. 471]

Therefore, join transitions are triggered by a completion event.
In UML 2.0, sets of events are allowed as trigger. But those tran-

sitions can be equivalently represented by a set of transitions that
have only a single events as their trigger.

In the following, we introduce internal transitions [12, p. 506],
i.e., those transition that do not leave states. They can only has a
single source state and the target state have to coincide with the
source state.

kind=internal implies that the transition, if triggered, occurs
without exiting or entering the source state. Thus, it does
not cause a state change. This means that the entry or exit
condition of the source state will not be invoked. [12, p.506]

Definition 5. An internal transition tint with respect to a set of
states S is a tuple (Ŝ1, e, ϕ, α) such that

8

– Ŝ1 is a single set of the source state, where final states have no
internal transitions, i.e., ∃s ∈ S \ Sfinal : Ŝ1 = {s},

– e ∈ E is its event on which the transition is triggered,
– ϕ ∈ G is its guard constraining when the transition can be trig-

gered,
– α is its action (sequence), which will be executed.

Now we are ready to present our UML 2.0 state machine syntax:

Definition 6. A UML state machine M is a tuple
(S, ρD, ρH, ρH⋆ , entry, exit, doActivity, defer,→,→int), where:

– S is a set of states,
– ρD : Sreg ⇀ S × A, where ρS

D and ρA
D denote their corresponding

projections, assigns to a region s one of its direct substates as its
initial state ρS

D(s) initial transition ρA
D(s).

– ρH : Sreg ⇀ S × A, where ρS
H and ρA

H denote their corresponding
projections, assigns to a region one of its direct substates, which
is the default state for a shallow history state and the action of
its corresponding transition.

– ρH⋆ : Sreg ⇀ S ×A, where ρS
H and ρA

H denote their corresponding
projections, assigns to a region one of its direct substates, which
is the default state for a deep history state and the action of its
corresponding transition.

– entry : (S \ Sfinal) → A assigns to each state the action that has
to be executed when the state is entered.

– exit : (S \ Sfinal) → A assigns to each state the action that has to
be executed when the state is exited.

– doActivity : (S \ Sfinal) → A assigns to each state the action that
can be executed when the state is active.

– defer : S → 2E assigns to each state those events that will be
deferred.

– → is a set of transitions with respect to S.
– →int is a set of internal transitions with respect to S.

Note that the UML standard does not enforce an initial transition
in each region or default transition on history states3. Therefore, we

3 UML states that the state machine is ill defined if the semantics needs some of these
non present transitions. This will also be discussed later.

9

use partial function on the corresponding positions in the above def-
initions. For example, the history default transition t(13) is encoded
by ρH⋆(0a1) = (0a1a6, α(13)).

Our syntax does not contain an explicit correspondence for sub-
machine states (and therefore also no entry and exit pseudostates),
junction pseudostates, and transition to initial pseudostates, since
they can be compiled away [12, pp. 478,471].

A submachine state is semantically equivalent to a composite
state. [12, pp. 478]

junction vertexes are semantic-free vertexes that are used to
chain together multiple transitions. [12, pp. 471]

In the remainder of this paper, assume a fixed state machine

M = (S, ρD, ρH, ρH⋆ , entry, exit, doActivity, defer,→,→int).

3 Semantics of UML State Machines

We define configurations of a state machine, where we also introduce
the concepts of history configurations. Then a run-to-completion step
of a state machine is carried out as follows: The selection mechanism
of an event is out of scope of this paper. Therefore, we assume that
event e is given for transition triggering, where already the deferring
of events is taken into account. In Section 3.2, we determine which
sets of transitions may fire. The obtained configuration after firing
a set of transitions is determined in Section 3.3 and the collection of
the actions that have to be executed is determined in Sect. 3.4. The
execution of actions (including the do-activity actions), which can
modify the global information, is again out of scope of this paper.

3.1 Configuration

In a hierarchical state machine more than one state can be active.
The set of all current active states are called the active state config-
uration, or configuration for short [12, p. 481].

Except during transition execution, the following invariants
always apply to state configurations:

10

– If a composite state is active and not orthogonal, exactly
one of its substates is active.

– If the composite state is active and orthogonal, all of its
regions are active, one substate in each region.

[12, p. 481]

Definition 7. The set of all configurations C is

C
def
=

{
Ŝ ⊆ S | (∀s ∈ Ŝ : S ∩ ↓ {s} ⊆ Ŝ) ∧

∀r ∈ Sreg : (r = ǫ ∨ start(r) ∈ Ŝ) ⇒ |{n ∈ N | rn ∈ Ŝ}| = 1
}

Configurations of the state machine of Fig. 1 are, e.g., {0, 1, 5},
{0, 4}, and {0, 3, 9, 12}. On the other hand, {2}, {0, 3, 9} and {0, 2, 4}
are no configurations.

The information which states are currently active is not enough,
since we have history pseudostates. Unfortunately, the semantical
behavior of transitions that point to a history pseudostate from in-
side the region is not clear in UML 2.0. Here, we take the approach
that the last active states are activated and not, e.g., the states that
were active at the moment the corresponding region was last exited
(different interpretations are possible). Therefore, history configu-
rations, which remember the last (respectively, the current) active
direct substate of a region, are introduced as follows:

Definition 8. Function: collect : (Sreg ⇀ N) ⇀ (S → 2S), where
collect(χ)(s) collects substates of s, where function χ indicates which
direct substate of a region should be collected. Formally:

collect(χ)(s)
def
= {s} ∪

⋃

{r∈dom(χ)|start(r)=s∧r·χ(r)∈S}

collect(χ)(r · χ(r)).

A history configuration χ is a partial function χ : Sreg ⇀ N such
that:

– It may assign to a region one of its direct substates (which is/was
last active), i.e., ∀r ∈ dom(χ) : r · χ(r) ∈ S.

– An outermost state was visited, i.e., χ(ǫ) defined.
– If a state was visited then all its ancestors were visited, i.e.,

∀r, r′ ∈ Sreg : (χ(r) defined ∧ r′ � r) ⇒ χ(r′) defined.

11

– Every defined position corresponds to a partial configuration, i.e.,
∀r ∈ Sreg : χ(r) defined ⇒ ∃κ ∈ C : collect(χ)(r · χ(r)) = κ ∩
↑ {r}.

The configuration κ is compatible with the history configuration χ if
collect(χ)(χ(ǫ)) = κ. The configuration that is compatible with the
history configuration χ is denoted by κχ.

Example 2. {(ǫ, 0), (0a, 2), (0a1a, 0̄)} is a history configuration (of
the state machine of Fig. 1) that is compatible to the configuration
{0, 2}, where the state encoding of Example 1 is used.

3.2 Fireable Transitions

Fireable transitions are determined through the concepts of enabled,
conflict and priority of transitions [12, p. 493].

The set of transitions that will fire is a maximal set of transi-
tions that satisfies the following conditions:
– All transitions in the set are enabled.
– There are no conflicting transitions within the set.
– There is no transition outside the set that has higher prior-

ity than a transition in the set (that is, enabled transitions
with highest priorities are in the set while conflicting tran-
sitions with lower priorities are left out).

See [12, p. 493]

Enabled transitions. They are specified in [12, p. 500].

A transition is enabled if and only if:
– All of its source states are in the active state configuration.
– One of the triggers of the transition is satisfied by the

current event. An event satisfies a trigger if it matches
the event specified by the trigger. In case of signal events,
since signals are generalized concepts, a signal event sat-
isfies a signal event associated with the same signal or a
generalization thereof.

– If there exists at least one full path from the source state
configuration to [. . .] the target state configuration [. . .]
in which all guard conditions are true (transitions without
guards are treated as if their guards are always true).

12

See [12, p. 500]

In order to determine enabled transitions, we postulate a predicate
G[[ϕ]] ⊆ C that determines all configurations for which the guard ϕ ∈
G evaluates to true, where we abstract from the global information.
To model generalized signals and events we assume that the set of
events is partially ordered by ≤ with the largest element any.

Definition 9. The set of all enabled transition with respect to con-
figuration κ and event e is given by

enabled (κ, e)
def
= {(Ŝ1, e

′, ϕ, . . .) ∈ →∪ →int| Ŝ1 ⊆ κ∧κ ∈ G[[ϕ]]∧e ≤ e′}.

Conflicting transitions. These are specified in [12, p. 492].

Two transitions are said to conflict if [. . .] the intersection of
the set of states they exit is non-empty. Only transitions that
occur in mutually orthogonal regions may be fired simultane-
ously. [12, p. 492]

Each orthogonal region in the active state configuration that
is not decomposed into orthogonal regions (i.e., bottomlevel
region) can fire at most one transition as a result of the current
event. [12, p. 492]

An internal transition in a state conflicts only with transitions
that cause an exit from that state. [12, p. 492]

Definition 10. The conflict relation between two transitions t, t′ ∈→
∪ →int is given by

conflict (t, t′) ⇐⇒ t1 6= t2 ∧((
t = (. . . , ℓ), t′ = (. . . , ℓ′) ∈→ ∧(↑ {ℓ}) ∩ (↑ {ℓ′}) 6= ∅

)
∨

(
t = (. . . , ℓ) ∈→ ∧t′ = ({s′}, . . .) ∈→int ∧ℓ ≺ s′

)
∨

(
t = ({s}, . . .) ∈→int ∧t′ = (. . . , ℓ′) ∈→ ∧ℓ′ ≺ s

))

The states that will be left when they are active and the local or
external transition t fires is determined by (↑ {ℓ}) \ {ℓ}, compare
Def. 13. In the above definition, we use (↑ {ℓ}) instead. This is done
to model that any local transition with a simple state as its source
state is in conflict with any external transition that leaves this simple
state.

13

Priority between transitions. Unfortunately, it is not clear to us
how priority between transitions is defined. A description is given
in the section concerning ‘Firing priorities’ [12, p. 493] and in the
description of the Greedy algorithm that determines the set of tran-
sitions that will fire [12, p. 493].

In situations where there are conflicting transitions, the selec-
tion of which transitions will fire is based in part on an implicit
priority. These priorities resolve some transition conflicts, but
not all of them. The priorities of conflicting transitions are
based on their relative position in the state hierarchy. By def-
inition, a transition originating from a substate has higher
priority than a conflicting transition originating from any of
its containing states.
The priority of a transition is defined based on its source state.
The priority of joined transitions is based on the priority of
the transition with the most transitively nested source state.
In general, if t1 is a transition whose source state is s1, and
t2 has source s2, then:
– If s1 is a direct or transitively nested substate of s2, then

t1 has higher priority than t2.
– If s1 and s2 are not in the same state configuration, then

there is no priority difference between t1 and t2.
[12, p. 493]

This can be easily implemented by a greedy selection algo-
rithm, with a straightforward traversal of the active state
configuration. States in the active state configuration are tra-
versed starting with the innermost nested simple states and
working outwards. For each state at a given level, all originat-
ing transitions are evaluated to determine if they are enabled.
This traversal guarantees that the priority principle is not vi-
olated. The only non-trivial issue is resolving transition con-
flicts across orthogonal states on all levels. This is resolved by
terminating the search in each orthogonal state once a tran-
sition inside any one of its components is fired. [12, p. 493]

It is not even clear if priority exists between single source tran-
sitions from orthogonal regions, since a statement about this is not

14

made. To define priority through a “most transitively nested sub-
state” does not make sense, since this state cannot be uniquely deter-
mined in general. Hence, the priority is nondeterministic and cycles
in the priority relation are possible, which leads to contradictions.
In the following we suggest how priority can be defined:

Definition 11. That t = (Ŝ1, . . .) has priority over t′ = (Ŝ ′
1, . . .),

written priority (t, t′), can be, e.g., formally defined by:

– t has priority over t′ if there exists a source state of t that is a
proper substate of a source state of t′:

∃s ∈ Ŝ1, s
′ ∈ Ŝ ′

1 : s′ ≺ s (1)

– (Motivated by the given greedy algorithm)
• If level is interpreted as distance to simple states:

conflict (t, t′) ∧ max
s∈Ŝ1

(max{|w| | s · w ∈ S})

< max
s′∈Ŝ′

1

(max{|w| | s′ · w ∈ S}) (2)

• If level is interpreted as distance to the outermost region:

conflict (t, t′) ∧ min{|s| | s ∈ Ŝ1} > min{|s′| | s′ ∈ Ŝ ′
1} (3)

• If level is ignored: t has priority over t′ when every source
state of t is a substate of a source state of t′ where one of
which is at a proper substate:

(∀s ∈ Ŝ1 : ∃s′ ∈ Ŝ ′
1 : s′ � s) ∧ (∃s ∈ Ŝ1, s

′ ∈ Ŝ ′
1 : s′ ≺ s) (4)

The consequence of the different definitions are illustrated using
the partial state machines of Fig. 2:

(1): The priority order is problematic, because it contains cycles: t3
has priority over t2, t2 over t1, and t1 over t3, hence no transi-
tion can fire [12, p. 493]. It has the additional disadvantage that
adding a transition generally increases interdependencies, e.g., t5
or t4 cannot fire, but if t5 is removed t4 can fire independently
from t6.

15

t3

t1 t2

t7

t8

t5

t4

t6

Fig. 2. Priority illustration

(2): Here t4 has priority over t5 and over t6, and t6 has priority over
t5.

(3): Here t6 has priority over t4 and over t5, and no priority between
t4 and t5 exists.

(4): Here t6 has priority over t5 and no further priorities exists be-
tween t4, t5 and t6.

In the cases (2), (3) and (4), t8 has always priority over t7 and no
priorities exist between t1, t2 and t3.

The ambiguity obtained from priority can be avoided if no join
transitions are used. Instead single source transitions can be used,
where guards encode which states have to be active. Furthermore,
the priority can be encoded in the guards by taking the original
guard conjuncted with the negation of the guards corresponding to
the transitions that have higher priority. The disadvantage of this
encoding is, that, on the one hand, the guard expression language
must be expressive enough and, on the other, complex guards are
generated. Note that fork transitions can usually not be avoided,
since fork transitions are the only way to enforce to activate certain
states of orthogonal regions. It is possible to encode the activation
of certain states through initial transition, but then this is fixed for
all transition. Hence, it would not be possible to activate different
states of orthogonal regions in different situations, which would be
a strong restriction.

Fireable Transitions. As already mentioned [12, p. 493]:

The set of transitions that will fire is a maximal set of transi-
tions that satisfies the following conditions:

16

– All transitions in the set are enabled.
– There are no conflicting transitions within the set.
– There is no transition outside the set that has higher prior-

ity than a transition in the set (that is, enabled transitions
with highest priorities are in the set while conflicting tran-
sitions with lower priorities are left out).

[12, p. 493]

Definition 12. The set of transitions T ⊆ →∪ →int can be fired
with respect to configuration κ and event e if:

– T ⊆ enabled (κ, e),
– ∀t1, t2 ∈ T : ¬ conflict (t1, t2),
– ∀t′ ∈ enabled (κ, e) \ T : ∃t ∈ T : conflict (t, t′), and
– ∀t′ ∈ enabled (κ, e) \ T : ∀t ∈ T : ¬ priority (t′, t).

Note that in our case the set of transitions that can be fired is
nonempty, since, otherwise, the event is deferred or dropped, which
we assume is already handled by the event selecting mechanism.

Consider Fig. 1: In case transitions t(1) and t(22) have the same
event, then the set {t(22)} is the only set of transitions that will fire
in the configuration {0, 1, 6, 8} with respect to all presented priority
variations.

3.3 Successor Configuration

First we determine the states that are left by the firing of a transition:

Definition 13. The states from a configuration κ that are left by a
transition are defined by

leave(κ, t)
def
=

{
κ ∩

(
(↑ {ℓ}) \ {ℓ}

)
if t = (. . . , ℓ) ∈→

∅ if t ∈→int

For example in Fig. 1, if t(22) fires and t(22) is external, then states
8, 6, and 1 are left but not state 0. In the case that t(23) fires in the
configuration {0, 3, 9, 11}, then states 9, 11, and 3 are left. On the
other hand, if t(25) fires in this configuration, then only states 9 and
11 are left.

17

In order to determine the states that are entered, we introduce
function activateχ(s, Ŝ), which collects all substates of state s that

have to be entered when a transition to Ŝ is taken. In particular,
we have to ensure that all states from Ŝ will be entered. Depending
on whether s′′ ∈ Ŝ is a history state, we have to take the history
configuration into account. In particular, the default values are used
instead of the history when it is the first time the state is entered or
if the last active substate of the state was a final state. Therefore,
we introduce the following predicate stating this circumstance:

nonVisited(r)
def
⇐⇒ (undefined(χ(r)) ∨ χ(r) ∈ Nfinal)

and, for the opposite case, we use Visited(r)
def
⇐⇒ ¬nonVisited(r).

In the definition of activateχ, we also collect the initial pseudostates
that are entered in order to easily collect later the initial transition
actions.

Definition 14. Let χ be a history configuration. Define activateχ :
N∗ × Orthogonal ⇀ 2N∗

by:

activateχ(w, Ŝ)
def
=






{w} ∪
⋃

{r∈Sreg|start(r)=w}

activateχ(r, Ŝ) if w ∈ S,

activateχ(ρS
h(w), Ŝ) if wh ∈ Ŝ ∧ h ∈ {H, H⋆} ∧ nonVisited(w),

activateχ(wχ(w), Ŝ) if wH ∈ Ŝ ∧ Visited(w),

(collect(χ)(wχ(w)) \ Sfinal) ∪
⋃

s′∈Sfinal∩collect(χ)(wχ(w))

activateχ(ρS
D(start(s′)), Ŝ)

if wH⋆ ∈ Ŝ ∧ Visited(w),

activateχ(s′, Ŝ) if start(s′) = w ∈ Sreg ∧ last(s′) /∈ {H, H⋆} ∧

∃s′′ ∈ Ŝ : s′ � s′′

{wD} ∪ activateχ(ρS
D(w), Ŝ) otherwise.

We give some comments on the definition of activateχ(s, Ŝ). If a com-
posite state has to be activated, then all its direct subregions have
to be activated. If a history state of a region has to be activated and
the region was not visited before, the history default state will be
activated. If a shallow history of a visited region has to be activated
then the last visited state has to be activated if it was not a final

18

state, in which case the history default state is activated. In both
cases the activation of the substates will be done by the default tran-
sitions. If a deep history of a visited region has to be activated then
all substates determined by the history configuration are collected
except that the substates will be activated by default in the case that
a final state was last active. This is also for nested regions the case,
since UML states that the rule will be applied recursively (see cita-
tion below), i.e., the possibility that the nested final states become
active does not occur. If a substate of a region has to be activated
(∃s′′ ∈ Ŝ : s′ � s′′), then the region activates its direct substate
containing s′′. If a region does not contain a substate that has to be
activated, the substates are activated by the default transitions.

The standard does not explicitly state whether the default ac-
tivation of nested states is determined by the initial pseudostates
or by the deep history pseudostates when a deep history state is
activated [12, pp. 481].

Shallow history entry: If the transition terminates on a shal-
low history pseudostate, the active substate becomes the most
recently active substate prior to this entry, unless the most re-
cently active substate is the final state or if this is the first
entry into this state. In the latter two cases, the default his-
tory state is entered. This is the substate that is target of
the transition originating from the history pseudostate. (If no
such transition is specified, the situation is ill defined and its
handling is not defined.) If the active substate determined by
history is a composite state, then it proceeds with its default
entry.
Deep history entry: The rule here is the same as for shallow
history except that the rule is applied recursively to all levels
in the active state configuration below this one. [12, pp. 481]

We decided to determine the state that is entered by the initial
pseudostates, e.g., in Fig. 1 state 7 rather than state 8 becomes active
after firing transition t18 in the history configuration of Example 2.

Note that activateχ(s, Ŝ) is not always defined. This occurs if
ρS

D(s), ρS
H(s) or ρS

H⋆(s) is not defined. The UML standard states that
such a situation is ill defined [12, pp. 481].

19

If no such transition is specified, the situation is ill defined
and its handling is not defined. [12, p. 481]

Definition 15. The states (including initial pseudostates) that are
entered through a transition t with respect to a history configuration
χ are defined by

enter(χ, t)
def
=

{
activateχ(ℓ, Ŝ2) \ {ℓ} if t = (. . . , Ŝ2, ℓ) ∈→

∅ if t ∈→int.

For example, the states (different from pseudostates) that are en-
tered by firing t(17) in Fig. 1 with respect to the history configuration
given in Example 2 are 1 and 5.

Definition 16. Let χ be a history configuration. The successor con-
figuration and the successor history configuration with respect to a
set of transition T that is fired is determined by

succConf(χ, T)
def
= (κχ \

⋃

t∈T

leave(κχ, t)) ∪ (
⋃

t∈T

enter(χ, t) \ (N∗ · {D}))

succHistConf(χ, T)(r)
def
=





n if rn ∈ succConf(χ, T),

undefined if ∃s ∈ succConf(χ, T) ∩ Sfinal : start(s) ≺ r,

χ(r) otherwise.

Note that it is not clear if nested history information is reset to
default, as is done in our definition, as soon as a final state of an
upper region becomes active [12, pp. 481]. That this makes a differ-
ence is illustrated as follows: consider in Fig. 1 the firing sequence
(t(18), t(1), t(24), t(17), t(26)). In the case that it is not reset then state 7
will be entered. In the case that it is reset, as is done in our definition,
state 8 instead of 7 will be entered.

Proposition 1. The successor configuration (the successor history
configuration) yields, if existent, a configuration (respectively, a his-
tory configuration). Furthermore, the successor configuration is com-
patible with the successor history configuration.

20

3.4 Collecting Actions

The action execution corresponding to a transition is performed by
exiting the source state, executing the actions of the transition, and
entering the target states [12, p. 501].

Once a transition is enabled and is selected to fire, the follow-
ing steps are carried out in order:

– The main source state is properly exited.

– Activities are executed in sequence following their linear
order along the segments of the transition: The closer the
activity to the source state, the earlier it is executed.

– [. . .]

– The main target state is properly entered.

[12, p. 501]

Before we collect the corresponding actions, we investigate a mech-
anism that allows to specify more flexible action sequence execution
and we introduce special actions corresponding to entering/exiting
a state.

Non-deterministic action sequence. In order to order the col-
lected actions of a firing set of transitions, we introduce non-deterministic
action sequences, denoted by β, which are either an action sequence,
a sequence of non-deterministic action sequences or a finite collec-
tion of ordered non-deterministic action sequences, where the later
is denoted by

⊕(I,≤)(βi)
i∈I , with (I,≤) a partially ordered set and I

a finite subset of I. The interpretation of a non-deterministic action
sequence yields a set of possible action sequences such that the order
≤ is respected. For example,

(⊕(S,�−1)(αi)
i∈{r,rn,rn̂}

)
;
(⊕(S,�)(α̃i)

i∈{r,rn,rn̂}
)

=
{
αrn; αrn̂; αr; α̃r; α̃rn; α̃rn̂ ,

αrn; αrn̂; αr; α̃r; α̃rn̂; α̃rn , αrn̂; αrn; αr; α̃r; α̃rn; α̃rn̂ , αrn̂; αrn; αr; α̃r; α̃rn̂; α̃rn

}
.

In the special case that I is the empty set,
⊕(I,≤)(βi)

i∈I yields the
do-nothing action.

21

Actions for entering and exiting states. We introduce special
actions indicating the entering and exiting of a state. Such actions
update the state configurations, because conditions and actions may
test whether an intermediate state is active, if OCL is used as an
expression language [1].

Definition 17. Let αenter
s be the action indicating that state s is

entered and let αexit
s be the action indicating that state s is exited.

Collecting exit actions. States are exited from the innermost to
the outermost [12, p. 479,482,480,506] and the state is immediately
left after the execution of the exit actions [12, p. 480]:

exit: Activity[0..1] An optional activity that is executed when-
ever this state is exited regardless of which transition was
taken out of the state. If defined, exit actions are always exe-
cuted to completion only after all internal activities and tran-
sition actions have completed execution. [12, p. 479]

Exiting non-orthogonal states: When exiting from a composite
state, the active substate is exited recursively. This means that
the exit activities are executed in sequence starting with the
innermost active state in the current state configuration.
Exiting an orthogonal states When exiting from an orthogonal
state, each of its regions is exited. After that, the exit activities
of the state are executed. [12, p. 482]

[. . .] whenever a state is exited, it executes its exit activity as
the final step prior to leaving the state. [12, p. 480]

kind=internal implies that the transition, if triggered, occur
without exiting or entering the source state. Thus, it does
not cause a state change. This means that the entry or exit
condition of the source state will not be invoked. An internal
transition can be taken even if the state machine is in one or
more regions nested within this state. [12, p.506]

Definition 18. The non-deterministic action sequence correspond-
ing to the exiting of the firing transition t in configuration κ is

actExit(κ, t) =

(N∗,�−1)⊕
(exit(s); αexit

s)s∈leave(κ,t),

22

where exit(s) denotes the do-nothing action if s ∈ Sfinal.

Note that in case t is an internal transition, actExit(κ, t) yields
the do-nothing action.

Collecting transition actions. Actions of transitions are executed
along the transition [12, p. 501].

Activities are executed in sequence following their linear order
along the segments of the transition: The closer the activity
to the source state, the earlier it is executed. [12, p. 501]

Furthermore, “A transition to the enclosing state represents a tran-
sition to the initial pseudostate in each region.” [12, p. 478]4

Definition 19. The non-deterministic action sequence correspond-
ing to transition t with respect to a history configuration χ is given
by

actTrans(χ, t)
def
=

{(⊕(N∗,id)(α̃1(s1))
s1∈Ŝ1

)
; α; α̂ if t = (Ŝ1, . . . , α, α̃1, α̃2, Ŝ2, ℓ) ∈→

α if t = (. . . , α) ∈→int

where α̂ is given by

α̂
def
=





α̃2(rh); ρA
h (r); β̂ρS

h
(r) if {rh} = Ŝ2 ∧ h ∈ {H, H⋆} ∧ nonVisited(r),

α̃2(rH); β̂χ(r) if {rH} = Ŝ2 ∧ Visited(r),

α̃2(rH
⋆) if {rH⋆} = Ŝ2 ∧ Visited(r),

⊕(N∗,�)(α̂s)
s∈Ŝ2∪

“

(Sreg·{D})∩
S

s2∈Ŝ2
activateχ(s2,∅)

”

if Ŝ2 ⊆ S

with β̂s
def
=

⊕(N∗,�) (ρA
D(start(s′))

)s′∈((Sreg·{D})∩activateχ(s,∅))
and

α̂s
def
=

{
α̃2(s) if s ∈ Ŝ2,

ρA
D(r̂) if s = r̂ · D.

4 This actually contradicts “The entry activity of the composite state is executed
before the activity associated with the initial transition [12, p. 481]”. In this paper,
we chose to have the transitions target the initial pseudostate.

23

In the following, we give some comments on this definition.The
execution of an internal transition is clear. In the case of a com-
pound transition: First the actions corresponding to the transition
into the join pseudostates are executed in no specific order. Then
the actions of the transition followed by the actions corresponding
to the transition ‘after the fork pseudostate’ are executed. In case
the transition does not point to a history pseudostate (it points to
a set of real states) the action of the transition leaving the fork
states executed together with the implicit triggered initial transition
is executed, where an initial transition can only be executed when
its outermost initial transitions (respectively, the corresponding fork
transition) have been executed. It is not clear to us what the UML
standard mean with closest in the case of the firing of the initial pseu-
dostates (“The closer the activity to the source state, the earlier it is
executed.”[12, p. 501]). More precisely, does the transition of a fork
execute, e.g., each branch (with respect to the initial transition of
orthogonal regions) completely before another branch is considered
(depth-first strategy), or do, e.g., all outermost triggered initial tran-
sition execute before the initial transitions that are one step deeper
are executed (branching-first strategy)? In order to be more general,
we do not enforce any further ordering on these executions.

In case the target is a history pseudostate and its corresponding
region was not visited before (or a final state was last active) then
the actions of the default transition is executed; and thereafter the
implicit triggered initial transition is executed as described before.
If the target is a deep history state and its region was visited before,
then no further action is executed during that phase. On the other
hand, if the target is a shallow history state and its region was visited
before, then the implicit triggered initial transition of the last active
direct substate has to be executed, since “A transition coming into
the shallow history vertex is equivalent to a transition coming into
the most recent active substate of a state” [12, p. 470].

The collected actions corresponding to the fork transition in
Fig. 1 is α(9);

⊕(N∗,id)(βi)
i∈{0a3a9,0a3b11} with β0a3a9 = α(5) and β0a3b11 =

α(4).

24

Collecting entry actions. States are entered from the outermost
to the innermost [12, p. 479,481] and the state is immediately entered
before the execution of the entry actions [12, p. 480].

entry: Activity[0..1] An optional activity that is executed when-
ever this state is entered regardless of the transition taken to
reach the state. If defined, entry actions are always executed
to completion prior to any internal activity or transitions per-
formed within the state. [12, p. 479]

Entering a non-orthogonal composite state
[. . .]
Explicit entry: If the transition goes to a substate of the com-
posite state, then that substate becomes active and its entry
code is executed after the execution of the entry code of the
composite state. This rule applies recursively if the transition
terminates on a transitively nested substate.
[. . .]
Entering an orthogonal composite state
Whenever an orthogonal composite state is entered, each one
of its orthogonal regions is also entered, either by default or
explicitly. If the transition terminates on the edge of the com-
posite state, then all the regions are entered using default
entry. If the transition explicitly enters one or more regions
(in case of a fork), these regions are entered explicitly and the
others by default. [12, p. 481]

Whenever a state is entered, it executes its entry activity be-
fore any other action is executed. [12, p. 480]

Furthermore, all initial transition executed in the collecting transi-
tion part have to be ruled out.

Definition 20. The non-deterministic action sequences correspond-
ing to the entering of the firing transition t = (. . . , Ŝ2, ℓ) in the his-

25

tory configuration χ are

actEnter(χ, t)
def
=






⊕(N∗,�)(αenter
s ; entry(s))s∈enter(χ,t)\((Sreg·{D})∩activateχ(ρS

h
(r),∅))

if t = (. . . , Ŝ2, ℓ) ∈→ ∧{rh} = Ŝ2 ∧ h ∈ {H, H⋆} ∧ nonVisited(r),⊕(N∗,�)(αenter
s ; entry(s))s∈enter(χ,t)\((Sreg·{D})∩activateχ(χ(r),∅))

if t = (. . . , Ŝ2, ℓ) ∈→ ∧{rH} = Ŝ2 ∧ Visited(r),⊕(N∗,�)(αenter
s ; entry(s))s∈enter(χ,t)

if t = (. . . , Ŝ2, ℓ) ∈→ ∧{rH⋆} = Ŝ2 ∧ Visited(r),

⊕(N∗,�)(αenter
s ; entry(s))

s∈enter(χ,t)\
“

(Sreg·{D})∩
S

s2∈Ŝ2
activateχ(s2,∅)

”

if t = (. . . , Ŝ2, ℓ) ∈→ ∧Ŝ2 ⊆ S

∅ if t ∈→int

where entry(sD) is considered to be ρA
D(s), αenter

s′D denotes the do-
nothing action, and if s ∈ Sfinal then entry(s) denotes the do-nothing
action.

Note that when, e.g., t(16) fires in Fig. 1 the action of the initial
transition t(21) can be independently executed from the entry activity
execution of state 12. This seems strange, but we could not find a
comment that enforces an order on these executions.

Collecting all actions.

Definition 21. The possible action sequences obtained by firing an
allowed set of transitions T ⊆→ in the history configuration χ is

actCollect(χ, T) =

(2→,id)⊕ (
actExit(κχ, t); actTrans(χ, t); actEnter(χ, t)

)t∈T

.

Note that the set of states obtained by modifying the configura-
tion via the actions αexit

s and αenter
s in actCollect(χ, T) leads to the

configuration succConf(χ, T), as required.

4 Related Work

Operational semantics of state machines for the purpose of model
checking have been defined in, e.g., [9], based on the work presented

26

in [10]. As most of the following work it does not cover fork and join
states. Von der Beeck presents a semantics for a subset of UML state
machines in [13] using an approach similar to ours. While a semantics
for history states is defined in this paper, join and fork transitions are
not considered. Its semantics focuses on communication and control
and does not discuss history states, action execution, and activities.

Most language features have been formalized by Börger et al. [2,
3], who define a semantics for UML 1.x state machines using abstract
state machines. UML 2.0 state machines are different from UML 1.x
state machines; therefore, a semantics for UML 1.x state machines
cannot be easily adapted to our case.

The semantics defined in Damm et. al. [4] presents a semantics
for UML state machines which differs in many ways from the in-
formally defined semantics in UML 2.0. There, a run-to-completion
step is defined by selecting one enabled transition instead of a set
of transitions. In [4] a transition which does not specify a trigger
is taken immediately, whereas the standard requires such a transi-
tion requires a completion event to trigger. The notion of an activity
group introduced by Damm has no counterpart in UML 2.0 and in-
troduces additional synchronization and scheduling problems. This
semantics was used in [7, 8, 11], where state machines were formalized
for theorem proving or model checking.

All mentioned work is based on UML 1.x. We are not aware of
a paper that covers UML 2.0 state machines to the extent we do.
In particular, we cover the new semantics of history states and the
semantics implied by transition kinds. Except for the work of Börger,
none of the mentioned work covers fork and join transitions.

References

1. Boldsoft and Rational Software Corporation and IONA and Adaptive Ltd. UML
2.0 OCL Specification, Oct. 2003. Available for download at http://www.omg.

org/cgi-bin/doc?ptc/2003-10-14.
2. E. Börger, A. Cavarra, and E. Riccobene. Solving conflicts in UML state ma-

chines concurrent states. In Workshop on Concurrency Issues in UML (CIUML),
Toronto, October 2, 2001, 2001.

3. E. Börger, A. Cavarra, and E. Riccobene. Modeling the meaning of transitions
from and to concurrent states in UML state machines. In Proceedings of the 2003
ACM Symposium on Applied Computing (SAC), March 9–12, 2003, Melbourne,
FL, USA, pages 1086–1091. ACM Press, 2003.

27

4. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal
semantics of concurrency and communication in real-time uml. In F. S. de Boer,
M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods for Compo-
nents and Objects, number 2852 in Lecture Notes in Computer Science. Springer-
Verlag, 2003.

5. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, July 1987.

6. D. Harel and E. Gery. Executable object modeling with statecharts. Computer,
30(7):31–42, July 1997.

7. J. Hooman and M. van der Zwaag. A semantics of communicating reactive objects
with timing. In S. Graf, O. Haugen, I. Ober, and B. Selic, editors, 1st Workshop on
Specification and Validation of UML Models for Real Time and Embedded Systems,
SVERTS 2003, Verimag technical report 2003/10/22. Verimag, 2003. Available
online at http://www-verimag.imag.fr/EVENTS/2003/SVERTS/.

8. M. Kyas, H. Fecher, F. S. de Boer, M. van der Zwaag, J. Hooman, T. Arons, and
H. Kugler. Formalizing UML models and OCL constraints in PVS. In G. Lüttgen,
N. M. Madrid, and M. Mendler, editors, Proceedings of the Second Workshop on
Semantic Foundations of Engineering Design Languages (SFEDL 2004), volume
115 of Electronic Notes in Theoretical Computer Science, pages 39–47. Elsevier,
2005.

9. D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural
subset of UML statechart diagrams using the SPIN model-checker. Formal Aspects
of Computing, 11(6):637–664, 1999.

10. E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for stat-
echarts. In R. K. Shyamasundar and K. Ueda, editors, Advances in Computing
Science - ASIAN ’97, Third Asian Computing Science Conference, Kathmandu,
Nepal, December 9-11, 1997, Proceedings, number 1345 in Lecture Notes in Com-
puter Science, pages 181–196. Springer-Verlag, 1997.

11. I. Ober, S. Graf, and I. Ober. Validation of UML models via a mapping to com-
municating extended timed automata. In S. Graf and L. Mounier, editors, Model
Checking Software: 11th International SPIN Workshop, number 2989 in Lecture
Notes in Computer Science, pages 127–145. Springer-Verlag, 2004.

12. Object Management Group. UML 2.0 Superstructure Specification, Oct. 2004.
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

13. M. von der Beeck. A structured operational semantics for UML-statecharts. Soft-
ware and Systems Modeling, 1(2):130–141, Dec. 2002.

28

