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Abstra
tPeople working with relations and graphs very often use a greater or smaller exampleand manipulate it with pen
il and paper in order to prove or disprove some property orto obtain an impression how a 
ertain algorithm works. For supporting su
h a task byma
hine, the RELVIEW system has been 
onstru
ted. This report is intended as a user'sand programmer's guide for RELVIEW. But it informs also about relational algebra, thetheoreti
al ba
kground behind the system.�WWW: http://www.informatik.uni-kiel.de/eprogsys/relview.html1
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1 Introdu
tionThe 
al
ulus of binary relations has its roots in the se
ond half of the 19th 
entury withthe pioneering work of A. deMorgan, C.S. Peir
e, and E. S
hr�oder. The modern algebrai
development of binary relations starts with to A. Tarski and his 
o-workers, see [22, 8, 16℄.In the last two de
ades relational algebra has been a

epted by many mathemati
ians and
omputer s
ientists as a 
onvenient formalism for des
ribing fundamental 
on
epts of, e.g.,graphs, 
ombinatori
s, latti
es, games, and Computer S
ien
e (like relational semanti
s,program 
orre
tness, and data bases).Relational algebra has a �xed and surprisingly small set of operations. On �nite 
ar-riers, all operations easily 
an be implemented, and, thus, a 
omputer system supportingrelational 
omputations easily 
an be implemented, too. Su
h 
omputations may be usedfor 
onstru
ting examples and 
ounter examples to prove resp. disprove a property, orfor obtaining an impression how a 
ertain relation-algorithmi
 algorithm works. In thispaper we des
ribe su
h a relation-based 
omputer system for visualization, analysis, andmanipulation of dis
rete stru
tures, 
alled RELVIEW. Written in the C programminglanguage, it runs under X windows and makes full use of the graphi
al user interfa
e.Currently the system is used in about 30 installations all over the world.In RELVIEW all data are represented as binary relations, whi
h the system visualizesin two di�erent ways. For homogeneous relations, RELVIEW o�ers a representation asdire
ted graphs, in
luding several di�erent algorithms for pretty-printing. As an alterna-tive, an arbitrary relation may be displayed on the s
reen as a Boolean matrix. This isoften very useful for visual editing and also for dis
overing various stru
tural propertiesthat are not evident from the graph representation. The RELVIEW system 
an man-age as many graphs and matri
es simultaneously as memory allows and the user maymanipulate and analyse the relations behind these obje
ts by 
ombining them with theoperators of relational algebra. The elementary operations 
an be a

essed through sim-ple mouse-
li
k, but they 
an also be 
ombined into relational expressions, mappings, andimperative programs. Relations and graphs 
an be stored. Fun
tions and programs 
anbe stored as well and applied to many sets of input data. Frequently, RELVIEW is usedfor prototyping. Then the system often works on large obje
ts, e.g., if a membershiprelation or another higher-order obje
t appears during a 
omputation (see [5, 6℄). Forthat reason, it uses a very eÆ
ient and sophisti
ated internal representation of relationsas well as very eÆ
ient implementations of the relational basi
 operations.The �rst versions of RELVIEW have been written at the University of the GermanFor
es Muni
h from 1988 until 1992; see [1, 3, 4℄. Based on the experien
es with theMuni
h system, in the last three years RELVIEW was redesigned and extended at KielUniversity, and now Kiel University is responsible for the further development. This do
-ument gives a des
ription of the present RELVIEW version 6.2, in
lusive a user's manualand some implementation details, and informs also about the theoreti
al ba
kground.Con
retely, it is organized as follows. In Se
tion 2, we present the basi
 
on
epts of rela-tional algebra whi
h are ne
essary for advan
ed working with RELVIEW. Se
tion 3 dealswith the system. Firstly, we give an overview. Then we des
ribe the system's graphi
aluser interfa
e, i.e., the windows and 
ommand buttons, in detail. Next, we fo
us ourattention to 
omputations using relational expressions and programs. After that, we de-3



s
ribe the labelingme
hanism of RELVIEW. And, �nally, we deal with some mis
ellaneoustopi
s like the 
on�guration of the system, the use of a start-up �le, and the installationof RELVIEW on a host system. Se
tion 4 demonstrates the use of RELVIEW by meansof some examples. We 
onsider a latti
e-theoreti
 appli
ation, solve some problems onPetri nets, and deal also with graph-theoreti
 algorithms. We 
on
lude the do
umentwith some remarks on future work on RELVIEW.

4



2 Relation-Algebrai
 PreliminariesRELVIEW is a 
omputer system for the manipulation of relations, more general, forrelational programming. Therefore, it is ne
essary to know about the basi
 
on
epts ofthis �eld to be able to work with. In this se
tion we give a short introdu
tion to relationalalgebra. For more details 
on
erning the algebrai
 theory of relations, see e.g., [8, 16, 21℄.2.1 Axiomati
 Relational AlgebraA typed relation R : X $ Y 
onsists of a domain X, a range Y and a set R � X � Y . Xand Y are also 
alled the 
arrier sets of R. The set of all (typed) relations with domain Xand range Y is denoted by [X $ Y ℄. When the type of a relation is 
lear, we abbreviateR : X $ Y to R. If the sets X and Y are �nite and of 
ardinality m and n, respe
tively,then we may 
onsider R as a Boolean matrix with m rows and n 
olumns. Sin
e thisBoolean matrix interpretation is well suited for a graphi
al representation, and also usedin RELVIEW, we use matrix notation and write Rxy instead of (x; y) 2 R.We assume the reader to be familiar with the basi
 operations on relations, viz. RT(transposition, 
onversion), R (negation, 
omplement), R[S (join, union), R\S (meet,interse
tion), R �S (
omposition, multipli
ation; often abbreviated by RS), R � S (in
lu-sion), and the spe
ial relations O (empty relation), L (universal relation), and I (identityrelation). The set-theoreti
 operations , [, \, the ordering �, and the 
onstants Oand L form a Boolean latti
e. Some further well-known rules 
on
erning relations are, forinstan
e, RTT = R R � S =) RT � ST(RS)T = STRT RT = R TR � S =) QR � QS R � S =) RQ � S QQ (R \ S) � QR \QS Q (R [ S) = QR [QS(R \ S)T = RT \ ST (R [ S)T = RT [ ST ;where the last two lines also hold if binary meet and join are repla
ed by arbitrary meet(greatest lower bound, denoted by TiRi) and join (least upper bound, denoted by SiRi).The theoreti
al framework for all these rules to hold is that of an (axiomati
) relationalalgebra. As 
onstants and operations of this abstra
t algebrai
 stru
ture we have thoseof 
on
rete (i.e., set-theoreti
) relations. The axioms of relational algebra are1. the axioms of a 
omplete Boolean latti
e for negation, join, meet, the ordering, andthe empty and universal relation,2. the axioms of a monoid for 
omposition and the identity relation,3. the so-
alled Dedekind ruleQR \ S � (Q \ S RT) (R \QT S) ;4. and the so-
alled Tarski rule R 6= O () LR L = L :5



Usually, in the latter rule only the \=)" dire
tion is demanded. As an immediate 
on-sequen
e of our version of the Tarski rule, we avoid the degenerate 
ase O = L like [22℄does. The inequation O 6= L implies that in our approa
h domain X and range Y of a
on
rete relation R : X $ Y are non-empty. This is very helpful for de�ning propertieson relations in a 
omponent-free manner (see below) and also agrees exa
tly with thepra
ti
al use of relations.From the Dedekind rule we obtain the so-
alled S
hr�oder equivalen
es (also known as\Theorem K" of A. de Morgan), viz.QR � S () QT S � R () S RT � Qwhi
h are in fa
t equivalent with the Dedekind rule.2.2 Some Spe
i�
 Classes of RelationsThe basi
 operations and 
onstants mentioned in Se
tion 2.1 are very helpful for de�ningsimple properties on relations. In the following, we 
onsider some well-known 
lassesof relations and de�ne them in a 
omponent-free manner. Corresponding tests are alsoimplemented in the RELVIEW system.2.2.1 Orderings and Equivalen
esA relation R : X $ X, i.e., a relation for whi
h domain and range 
oin
ide, is 
alledhomogeneous. Without referen
e to domain and range we have that R is homogeneousif and only if the produ
t RR is de�ned. In the Boolean matrix model of relations, ahomogeneous relation is quadrati
.Two important 
lasses of homogeneous relations are the following: A relation R is saidto be re
exive if I � R, transitive if RR � R, and antisymmetri
 if R \ RT � I. Bya partial ordering we mean a re
exive, antisymmetri
, and transitive relation. Anotherimportant 
lass of homogeneous relations are equivalen
e relations whi
h are re
exive,transitive and symmetri
, where the latter property holds for R if R � RT.2.2.2 Mappings, Homomorphisms, and IsomorphismsAn arbitrary (also 
alled heterogeneous) relationR : X $ Y is said to be a partial mappingor, brie
y, to be univalent if RTR � I, and R is said to be total if R L = L, whi
h is, inturn, equivalent to I � RRT. For a univalent relation Q we have the distributivity lawQ (R \ S) = QR \ QS ; where we are also allowed to repla
e binary meet by arbitrarymeet. As usual, a univalent and total relation is said to be a (total) mapping . A relationR is 
alled inje
tive if RT is univalent and surje
tive if RT is total. An inje
tive andsurje
tive relation is said to be bije
tive.Let R : X1 $ Y1 and S : X2 $ Y2 be two relations and 
onsider a pair H = (�;	) ofmappings � : X1 $ X2 and 	 : Y1 $ Y2. The pair H is 
alled a homomorphism from Rto S if R � �S	T holds. If, in addition, the pair HT = (�T;	T) is a homomorphismfrom S to R, then H is said to be an isomorphism between R and S. Therefore, anisomorphism I = (�;	) between R and S is a pair of bije
tive mappings � : X1 $ X2 and6



	 : Y1 $ Y2, whi
h satis�es the 
ondition R	 = �S. If R and S are homogeneous, then� is brie
y 
alled a homomorphism (isomorphism) if the pair (�;�) is a homomorphism(isomorphism).2.2.3 Des
ription of SetsRelational algebra o�ers di�erent ways of des
ribing the subsets of a given set. In thefollowing, we 
onsider two representations.The �rst representation uses ve
tors, i.e., relations v : X $ Y with v = v L. This
ondition means: Whatever set Z and universal relation L : Y $ Z we 
hoose, anelement x from X is either in relation v L to none of the elements of Z or to all elementsof Z. As for a ve
tor v : X $ Y the range Y is irrelevant, we 
onsider in the followingalmost only ve
tors v : X $ 1 with a spe
i�
 singleton set 1 as range and omit the se
ondsubs
ript. Su
h a ve
tor 
an be 
onsidered as a Boolean matrix with exa
tly one 
olumn,i.e., as a Boolean 
olumn ve
tor, and des
ribes the subset fx 2 X : vxg of X. In theliterature, for R : X $ Y also the ve
tor R L : X $ 1 is 
alled the domain of R.A ve
tor v is said to be a point if it is inje
tive and surje
tive. For v : X $ 1 theseproperties mean that it des
ribes a singleton set, i.e., an element of X. In the Booleanmatrix model, hen
e a point is a Boolean 
olumn ve
tor in whi
h exa
tly one 
omponentis true.Instead of ve
tors, we 
an use inje
tive embedding mappings as a se
ond way for rep-resenting subsets of a given set. Given an inje
tive mapping { : Y $ X, we 
all Y asubset of X given by {. If Y is a subset of X given by {, then the ve
tor {T L : X $ 1,where L : Y $ 1, des
ribes Y in the above sense. Clearly, the transition in the otherdire
tion, i.e., the 
onstru
tion of an inje
tive mapping inj(v) : Y $ X from a givenve
tor v : X $ 1 des
ribing Y , is also possible. In this 
ase we have(I1) inj(v) is inje
tive mapping (I2) v = inj(v)T L :It 
an easily be shown that these laws determine inj(v) up to isomorphism. Namely, ifv1 : X1 $ 1 and v2 : X2 $ 1 are ve
tors des
ribing a subset Y1 of X1 resp. Y2 ofX2 and, furthermore, 	 : X1 $ X2 is a bije
tive mapping, then I = (�;	), where� = inj(v1)	 inj(v2)T de�nes a bije
tive mapping � : Y1 $ Y2, is an isomorphism betweeninj(v1) and inj(v2).In 
ombination with the set-theoreti
 membership relation (the relation-level equivalentof the meta-level symbol \2") " : X $ 2X , de�ned by "xs if and only if x 2 s, inje
tivemappings 
an be used to enumerate sets of sets. More spe
i�
ally, if the ve
tor v : 2X $ 1des
ribes a subset S of the powerset 2X , then it is straightforward to 
ompute an inje
tioninj(v) : S $ 2X , from whi
h we obtain the elements of S as the 
olumns of the relation" inj(v)T : X $ S: If X is �nite, this leads to an e
onomi
 representation of S by aBoolean matrix with jXj rows and jSj 
olumns.2.3 Some Spe
i�
 Fun
tions on RelationsIn this subse
tion, we 
onsider some spe
ial fun
tions (in the everyday's sense) fromrelations to relations. Sometimes, they are also 
alled operations. The fun
tions we will7



present in the following are introdu
ed in terms of the basi
 operations and, thus, in most
ases they are only partially de�ned. As we will see later on, all fun
tions easily 
an be
omputed using the RELVIEW system.2.3.1 ClosuresLet R : X $ X be a homogeneous relation. The re
exive 
losure of R, i.e., the leastre
exive relation 
ontaining R, simply 
omputes to R [ I. The least transitive rela-tion 
ontaining R is 
alled the transitive 
losure of R and denoted by R+, while theleast re
exive and transitive relation 
ontaining R is 
alled the re
exive-transitive 
lo-sure of R and denoted by R�. Using the �xed point theorems for monotone resp. [-
ontinuous fun
tions on 
omplete latti
es, we obtain the representations R+ = Si�1Riand R� = Si�0Ri : The transitive and re
exive-transitive 
losure are linked together bythe equations R+ = RR� = R�R and R� = I [ R+.2.3.2 Residuals and Symmetri
 QuotientsResiduals are the greatest solutions of 
ertain in
lusions. The left residual of S over R (insymbols S =R) is the greatest relation X su
h that X R � S and the right residual of Sover R (in symbols RnS) is the greatest relation X su
h that RX � S. We will also needrelations whi
h are left and right residuals simultaneously, viz. symmetri
 quotients. Thesymmetri
 quotient syq(R; S) of two relations R and S is de�ned as the greatest relationX su
h that RX � S and X ST � RT. In terms of the basi
 operations we haveS =R = S RT R n S = RT Sas representations for the left residual resp. right residual andsyq(R; S) = (R n S) \ (RT = ST)as representation for the symmetri
 quotient. The left residual is only de�ned if bothrelations have the same range and the right residual and the symmetri
 quotient are onlyde�ned if both relations have the same domain. Translating the two equations for theresiduals into 
omponent-wise predi
ate logi
 notation yields(S =R)yx () 8 z Rxz ! Syz (R n S)xy () 8 z Rzx ! Szy :In parti
ular, for S : Y $ Z and R : Z $ X, a universal relation L : 1 $ Z, and anempty ve
tor O : Z $ 1 we obtain the two 
orresponden
es(S = L)y () 8 z Syz (R n O)x () 8 z Rzxfor single �rst-order universal quanti�
ation. And, �nally, in 
omponent-wise notationthe symmetri
 quotient satis�es the equivalen
esyq(R; S)xy () 8 z Rzx $ Szy :If we 
onsider this for the spe
ial 
ase where R is a membership relation " : X $ 2X andS is a ve
tor v : X $ 1, then the type of syq("; v) is [2X $ 1℄ and for ea
h set Y from2X we have syq("; v)Y if and only if 8 z z 2 Y $ vz: Hen
e, syq("; v) : 2X $ 1 is exa
tlythe point in the powerset 
orresponding to the ve
tor v.8



2.3.3 Choi
e OperationsIn the Boolean matrix model of relations underlying the RELVIEW system the so-
alledpoint axiom [21℄ holds, saying that for every non-empty relation R there exist two pointsp and q su
h that p qT � R. In the spe
ial 
ase of a non-empty ve
tor v : X $ 1 fromthe point axiom we obtain the existen
e of a point p : X $ 1 
ontained in v. The
hoi
e of an element (expressed by a point p) from a non-empty ve
tor (set) or of anordered pair (expressed by the 
omposition p qT of points p, q) from a non-empty relationis fundamental for programming relational algorithms and, therefore, also in
luded in thelanguage of the RELVIEW system.Our axiomatization of the 
hoi
e point(v) whi
h sele
ts an element from a non-emptyve
tor v is given by (E1) point(v) � v (E2) point(v) is point :In the Boolean matrix model of relations, every relation 
ontaining exa
tly one orderedpair (x; y) is an atom in the latti
e-theoreti
 sense. Therefore, we have de
ided to denotethe 
hoi
e of an ordered pair from a non-empty relation R by atom(R). The axioms whi
h
hara
terize this 
hoi
e operation are(A1) atom(R) � R (A2) atom(R) L is point (A3) atom(R)T L is point :In the Boolean matrix model of relations, the appli
ation atom(R) yields a Boolean matrixin whi
h exa
tly one entry is true. Note that the types of v and point(v) as well as of Rand atom(R) 
oin
ide.2.3.4 Generation of Finite Carrier SetsThe RELVIEW system deals only with relations with �nite domain and range. Hen
e,we are allowed to assume that every 
arrier set X = fx1; : : : ; xng of a relation of theworkspa
e of RELVIEW is �nitely generated by the spe
i�
 (initial) element x1 and apartial su

essor fun
tion mapping xi to xi+1 for all i, 1 � i � n�1. Like the 
hoi
e of anelement from a non-empty ve
tor respe
tively an ordered pair from a non-empty relation,also the exhaustion of �nitely generated 
arrier sets using an initial element and a partialsu

essor operation is fundamental for programming relational algorithms. Therefore,
orresponding 
onstru
tions are in
luded in the language of RELVIEW.If we des
ribe the initial element of X and the partial su

essor fun
tion on X inrelation-algebrai
 terms, then this means that we have a point init : X $ 1 and a relationsu

 : X $ X su
h that the properties(G1) su

 is univalent, inje
tive (G2) su

TL � init (G3) (su

T)� init = Lhold. The se
ond formula says that the point init is not a su

essor. If we de�ne a partial\next point fun
tion" by next(x) = su

T x, then the third axiom expresses the fa
t thatevery point p : X $ 1 
an be obtained from init by �nitely many appli
ations of next. Ouraxiomatization of the pair (init; su

) of initial point and univalent and inje
tive su

essorrelation by (G1) through (G3) is a variant of the relational version of the well-knownPeano axioms for natural numbers given in [2℄.9



2.3.5 Truth Values and TestsUsing the only two relations O : 1$ 1 and L : 1$ 1 on the singleton set 1 as the truthvalues (Booleans), it is even possible to test properties of relations. The most importanttest is relational in
lusion R � S whi
h is, for R : X $ Y and S : X $ Y of thesame type, de�ned by the �rst-order formula 8 x; y Rxy ! Sxy. By the rules of universalquanti�
ation and the propositional fa
t that p ! q is equivalent to :p _ q we get thatR � S if and only if ((R \ S ) L) n O = L with ve
tors O : X $ 1 and L : Y $ 1. Seealso [5℄.Therefore, we 
an integrate the test on in
lusion as an operation in
l, where the truthvalue in
l(R; S) : 1$ 1 is de�ned byin
l(R; S) = ((R \ S ) L) n O :Further relational properties 
onsisting of in
lusions, su
h as equality, univalen
ity, total-ity, surje
tivity, inje
tivity, transitivity, re
exivity, antisymmetry, and many others, 
anthen easily be reformulated in terms of in
l sin
e, 
learly, the propositional 
onne
tivesdire
tly 
orrespond to the Boolean operations on relations.2.4 Relational Domain Constru
tionsDomains are used, for instan
e, in denotational semanti
s or mathemati
al logi
 to inter-pret types, and usually 
onstru
ted step be step starting from primitive domains. Su
h
onstru
tions 
an also be des
ribed with relational means. In the following, we des
ribesome important domain 
onstru
tions whi
h also are implemented in the RELVIEW sys-tem. Note that these 
onstru
tions may or may not exist in an arbitrary model of abstra
trelational algebra. However, this problem does not o

ur in the 
ase of the Boolean matrixmodel of 
on
rete relations underlying RELVIEW.2.4.1 Binary Dire
t Produ
tWithin the framework of abstra
t relational algebra it is natural to 
hara
terize dire
tprodu
ts by means of the natural proje
tions, see [21, 28℄. Then one obtains the followingspe
i�
ation: We 
all a pair �i : PX $ Xi, 1 � i � 2, a (binary) dire
t produ
t if(P1) �1T �1 = I (P2) �2T �2 = I(P3) �1 �1T \ �2 �2T = I (P4) �1T �2 = L :It is easy to verify that the natural proje
tions from a Cartesian produ
t X1 �X2 to the
omponents Xi are a model of (P1) through (P4) if the pla
eholder PX is repla
ed byX1 �X2. By purely relation-algebrai
 reasoning, furthermore, it 
an be shown that thedire
t produ
t is uniquely 
hara
terized up to isomorphism: Let �i : PY $ Yi, 1 � i � 2,be another model of the above axioms and assume a pair 	i : Xi $ Yi, 1 � i � 2, ofbije
tive mappings. Then, for ea
h i; 1 � i � 2, we 
an establish an isomorphism between�i and �i by the pair Ii = (�;	i), where � = �1	1 �1T \ �2	2 �2T de�nes a bije
tivemapping � : PX $ PY . 10



Based on two �tting binary dire
t produ
ts (�1; �2) and (�1; �2) we de�ne the followingtwo operations, 
alled tupling (or fork) resp. parallel 
omposition:[R; S℄ = R�1T \ S �2T R jjS = �1R�1T \ �2 S �2T :If R and S are partial orderings, then also their parallel 
omposition R jjS is a partialordering, 
alled produ
t ordering .2.4.2 Binary Dire
t SumThe dire
t sum (or disjoint union) 
an be de�ned in largely the same fashion as the dire
tprodu
t. Dually to the natural proje
tions the natural inje
tions are used, see [28℄. Thenone obtains the following spe
i�
ation: We 
all a pair {i : Xi $ SX, 1 � i � 2, a (binary)dire
t sum if (S1) {1 {1T = I (S2) {2 {2T = I(S3) {1T {1 [ {2T {2 = I (S4) {1 {2T = O :Given sets Xi, 1 � i � 2, it is easy to verify that the inje
tions from these sets to thedire
t sum X1 + X2 (repla
ing the pla
eholder SX ) are a model of (S1) through (S4).Again by purely relation-algebrai
 reasoning it 
an be shown that by the laws the dire
tsum is uniquely 
hara
terized up to isomorphism. Namely, if �i : Yi $ SY , 1 � i � 2,is another dire
t sum and we have two bije
tive mappings �i : Xi $ Yi, 1 � i � 2, thenfor ea
h i; 1 � i � 2, the pair Ii = (�i;	) is an isomorphism between {i and �i, where	 = {1T�1 �1 [ {2T �2 �2 de�nes again a bije
tive mapping 	 : SX $ SY :Dually to tupling and parallel 
omposition, we have in the 
ase of two dire
t sums({1; {2) and (�1; �2) the following operations:R + S = {1TR [ {2T S B(R; S) = {1TR�1 [ {2T S �2 :Sin
e dire
t sums are not used as mu
h as dire
t produ
ts, in the literature one �ndsnot �xed names for these operations. We 
all R + S the relational sum of R and S.If R and S are partial orderings, then also B(R; S) is a partial ordering, whi
h we 
allsum ordering . Our notation using B 
omes from the fa
t, that for a bipartite graphB = (X; Y;R; S) with relations R : X $ Y and S : Y $ X an appli
ation of B yields the
orresponding \ordinary" graph G = (V;B) with node set V = X + Y and homogeneousrelation B = B(R; S) on V .2.4.3 Membership and PowersetsA relation-algebrai
 
hara
terization of the powerset 2X of a set X 
an 
onveniently bedone using the set-theoreti
 membership relation indu
ed in the se
tion on the des
riptionof sets. Formally, we 
all a relation " : X $ PX a powerset relation if(M1) syq("; ") � I (M2) 8R (L syq("; R) = L) :In the 
on
rete 
ase of a membership relation " : X $ 2X the �rst axiom 
orrespondsto the extensionality axiom saying that sets are equal if and only if they 
ontain thesame elements, whereas the se
ond axiom 
orresponds to the set 
omprehension prin
iple11



sin
e it says that every ve
tor v : X $ 1 (representing a subset of X) has a 
orrespond-ing point syq("; v) : 2X $ 1 (i.e., an element) in the powerset. This shows that theusual membership relation is a powerset relation. The fun
tion v 7! syq("; v) is inje
tiveand its left-inverse on points is p 7! " p. Hen
e, these fun
tions establish some kind ofisomorphism between subsets of X and elements of 2X .Sin
e every relation-algebrai
 equation using " is translated into a formula with higher-order quanti�
ation, in axiom (M2) the higher-order quanti�
ation (over relations) doesnot surprise. Again it 
an be shown by purely relation-algebrai
 reasoning that thepowerset relation is uniquely 
hara
terized up to isomorphism. Indeed, if "0 : Y $ PY isanother powerset relation, � : X $ Y is a bije
tive mapping, and one de�nes the bije
tivemapping 	 : PX $ PY by 	 = syq(";� "0) ; then I = (�;	) is an isomorphism between" and "0.2.4.4 Domains of Partial and Total MappingsWe 
onsider the set Y X of the partial mappings fromX to Y to be a subset of the set 2X�Yof all relations fromX to Y . Let �1 : X � Y $ X and �2 : X � Y $ Y be the proje
tionsfrom X � Y to X and Y , respe
tively. We demand the point syq("; v) : 2X�Y $ 1 to be
ontained in Y X if and only if the ve
tor v : X � Y $ 1 des
ribes a partial mapping assubset of X � Y in the usual set-theoreti
 sense.Using a relation-algebrai
 notation, the usual set-theoreti
 de�nition that (x1; y1) 2 vand (x2; y2) 2 v and �1(x1; y1) = �1(x2; y2) implies �2(x1; y1) = �2(x2; y2) for all pairs(x1; y1) and (x2; y2) be
omes the in
lusion v vT \ �1 �1T � �2 �2T. This leads to thefollowing axiomatization of the domain (�1; �2; "F ) of the partial mappings whi
h is are�nement of the above axioms of the powerset.(F1) (�1; �2) is dire
t produ
t in the sense of 2.4.1(F2) syq("F ; "F ) � I(F3) 8R (L syq("F ; R) = L$ RRT \ �1 �1T � �2 �2T) :Note that in the set-theoreti
 standard model of partial mappings "F : X � Y $ Y X is amembership relation.The equation vT �1 = L expresses the fa
t that the ve
tor v : X � Y $ 1 des
ribes asubset of X�Y whi
h is a total relation in the set-theoreti
 sense. Hen
e, to 
hara
terizethe domain of total mappings by a triple (�1; �2; "F ) only the right-hand side of theequivalen
e in (F3) must be 
ompleted by \^ RT �1 = L". For details, see [1, 28℄.
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3 The RELVIEW SystemAfter giving a short overview of the stru
ture of the system, we des
ribe the graphi
aluser interfa
e in the Se
tions 3.2 to 3.11. The syntax of relational identi�ers, expressions,fun
tions, and programs is presented in the Se
tions 3.12 to 3.17. Se
tion 3.18 deals withthe labeling me
hanism and Se
tion 3.19 gives some 
on�guration and installation hints.3.1 General Stru
ture of the SystemThe general stru
ture of the RELVIEW system 
an be illustrated as follows:
Workspace

Editors

Relation Graph
1

2
3

Term

Evaluation/Execution

Row_3

Row_5

Node_1

*.xrv *.prog

Domains

&

Select/Change

Relations

Graphs

Load

Result

Load/Save

Global

Load

*.eps*.label

Print

Definitions

Relational 

Functions Programs
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Roughly spoken, the system 
onsists of three 
omponents: The \workspa
e" holds rela-tions and graphs, de�nitions of relational domains, global fun
tions, and relational pro-grams. The se
ond 
omponent is the evaluation resp. exe
ution unit. A relational termentered by the user is evaluated based on the obje
ts 
ontained in the workspa
e. Theresult, a relation, is written ba
k to the workspa
e again. Here we want to remark thatthe workspa
e always 
ontains a relation with name \$" whi
h not only 
an a
t as anargument in 
al
ulations but also denotes the result of an evaluation if no other relationname is given. Evaluation results, i.e., relations, are also handed over to the relation edi-tor whi
h is part of the third 
omponent of the system. The two editors of this 
omponentare not only used to display relations and graphs but also form the base for entering thesetwo kind of obje
ts into the system. At this point we want to mention that in the 
ontextof RELVIEW a \relation" is always a Boolean matrix. Therefore, in the following we willspeak of rows, 
olumns, and dimension of a relation.As the pi
ture shows, four di�erent types of �les are supported by the system. Fileswith the extension \.xrv" or xrv-�les for short 
an hold relations, graphs, and de�nitionsof relational domains and global fun
tions. These �les are not human-readable and 
re-ated by the system itself. The se
ond type of �les have the extension \.prog" and are
alled program �les or prog-�les for short. Program �les 
an hold de�nitions of relationaldomains, global fun
tions, and relational programs. These �les are human-readable, i.e.,they 
an be 
reated using a text-editor. Note that program �les 
an be loaded into thesystem but not written ba
k to disk. The third kind of �les involved are �les with theextension \.label", label �les for short. Label �les 
ontain de�nitions of label sets whi
h
an be used for labeling rows and/or 
olumns of relations and nodes of graphs for illus-tration purposes. As in the 
ase of program �les, label �les are ordinary text �les, i.e.,they are human-readable, and 
an only be loaded into the system. The last type of �lesare en
apsulated posts
ript-�les whi
h are 
reated by the system and 
ontain relationsand graphs in a printable format. These exported drawings 
an be, e.g., in
luded inLATEX-do
uments.Please note that beside the des
ribed user intera
tions { entering relations and graphsand entering relational terms for evaluation and loading and saving various kinds of �les{ de�nitions of relational domains and global fun
tions 
an be put into the system usingspe
ial dialog windows whi
h are not expli
itly shown in the above pi
ture.In the following se
tions we will des
ribe the various windows of the graphi
al userinterfa
e of RELVIEW in greater detail.3.2 The Menu WindowAfter starting the system the menu window is presented to the user. Con
eptually themenu window 
an be devided into three parts. The �rst three button rows deal withsystem administration tasks like opening the �le-
hooser, the information window, thetwo dire
tory windows and the windows of the two editors, and quitting the system. Thedetailed appearean
e of this window strongly depends on various resour
es de�ned in the
on�guration �le, see Se
tion 3.19.1. Typi
ally it looks as follows:
14



System administration

Function definition

and evaluation

domain definitions

Base functions

and

In detail the following a
tions are invoked by the di�erent buttons in the �rst three rowsof the menu window:FILES : Opens the �le-
hooser window (see Se
tion 3.11).INFO : Pops up an information window, presently showing the versionnumber and a 
opyright noti
e only.QUIT : Quits the system.RELATION : Opens the window of the relation editor (see Se
tion 3.4).GRAPH : Pops up the window of the graph editor (see Se
tion 3.5).XRV/PROG : Displays the dire
tory window showing the state of the workspa
e(see Se
tion 3.3).LABEL : Opens the label dire
tory listing label sets whi
h are loadedinto the system (see Se
tion 3.18).The buttons in the se
ond part of the menu window 
over these kind of a
tions whi
h aremostly needed while working with the system:
15



DEFINE : Opens a dialog window for entering a de�nition of a global fun
tion(see Se
tion 3.6).EVAL : Pops up the evaluation window for entering a relational term.Relational terms are des
ribed in Se
tion 3.15.ITER : Opens a window for iterated appli
ation of a fun
tion to a relation.TESTS : Pops up a window for invoking relational tests (see Se
tion 3.10).Finally, in the third and last part of the menu window, a number of relational operationsare dire
tly a

essible via push buttons. Additionally, in the part \Domains" a button\DEF" 
an be found whi
h allows to enter de�nitions of relational domains into the system.3.3 The Dire
tory WindowThe dire
tory window presents the a
tual state of the workspa
e to the user. It 
ontainsfour s
roll lists showing the names and dimensions of relations and possibly existinggraphs, the globally de�ned fun
tions, loaded relational programs, and, �nally, de�nedrelational domains. Although the detailed appearean
e depends on resour
es de�ned inthe 
on�guration �le, typi
ally the dire
tory window looks as follows:
Selected relation

Selected function

Dimension
Scroll list

Relation name

Button for
pop-up menu

Information about

available graphs

Name of relational

program

Selected

domain definitionOn the right hand side of ea
h s
roll list there is a button \DEL ALL" whi
h allows todelete all relations/graphs, global fun
tions, relational programs, and domain de�nitions,respe
tively, from the workspa
e. Please note that the relation \$" 
annot be deleted from16



the workspa
e. The button below the text \SHOW NOW" pops up a menu 
ontaining thetwo entries \NORMAL" and \HIDDEN". Relations, graphs, global fun
tions, and domainde�nitions 
an be de
lared as hidden with the e�e
t that these obje
ts are not listed inthe \normal" s
roll lists but are shown in the \hidden" ones. Normally only relations,graphs, fun
tion and domain de�nitions 
ontained in the startup-�le are loaded with theattribute hidden into the system at startup-time. See Se
tion 3.19.2 for a des
ription ofstartup-�les.The �rst s
roll list shows all names of relations and graphs stored in the workspa
e.An entry in this list 
an be of one of three following forms:1. �Name� - - - - - - �Rows� X �Columns�An entry of this form means that in the workspa
e there exists a relation withname \Name" and dimension \Rows" � \Columns", i.e., with \Rows" rows and\Columns" 
olumns.2. �Name� =graph �Rows� X �Columns�As in the previous 
ase there exists a relation with name \Name" with dimension\Rows" � \Columns" in the workspa
e. In addition, there exists a graph withname \Name" whi
h is in a set-theoreti
 sense equal to the relation, i.e., the graphand the relation des
ribe the same mathemati
al obje
t. Note that in this 
ase therelation is a homogeneous one and the numbers of rows and 
olumns 
oin
ide withthe number of nodes in the graph.3. �Name� graph �Rows� X �Columns�There exists a relation with name \Name" with the given dimension and a graphwith the same name \Name". In 
ontrast to the previous 
ase, it is not guaranteedthat the relation and the graph des
ribe the same mathemati
al obje
t,i.e., the relation and the graph may di�er. This 
ould have been happenedby modifying the relation or the graph with one of the editors, 
reating the relationand the graph separately, renaming the relation, or by evaluating a relational termusing the name \Name" for the resulting relation.Cli
king onto a list item with the left mouse button, sele
ts the 
orresponding relationand/or graph. The sele
ted relation is \loaded" into the relation editor and the possiblyexisting graph is drawn into the window of the graph editor. Refer to Se
tions 3.4 and3.5 for a des
ription of the two editors available in the system.The se
ond s
roll list shows all global fun
tions existing in the workspa
e. Beside thename and the parameters the de�ning term is also displayed. Cli
king onto a list item withthe left mouse button sele
ts a fun
tion with the e�e
t that the de�nition of that fun
tionis shown in the FUNCTION-DEFINITION window whi
h allows editing and deleting. SeeSe
tion 3.6 for a des
ription of that dialog window and Se
tion 3.16 for an introdu
tioninto global fun
tions.The third s
roll list lists all loaded relational programs. It only presents the name andthe formal parameters. Note that the body of a program is not shown. The program17



text 
an only be inspe
ted and modi�ed by editing the 
orresponding program �le usinga text-editor and subsequent reloading.The last s
roll list presents all de�ned relational domains with their names and de�-nitions. Cli
king onto a list item with the left mouse button sele
ts a domain de�nitionand displays it in the DOMAIN-DEFINITION window allowing editing and deleting. SeeSe
tion 3.9 for a des
ription of that window.3.4 The Relation EditorThis se
tion gives an introdu
tion into the relation editor of RELVIEW. For simpli
itywe will make use of the following abbreviations:LMB : left mouse buttonMMB : middle mouse buttonRMB : right mouse buttonThe window of the relation editor 
an be opened by 
li
king onto the button \RELATION"in the menu window. Sele
ting a relation in the �rst s
roll list of the dire
tory windowloads this relation into the editor (see Se
tion 3.3). Evaluation of relational terms performsa load 
ommand impli
itly, i.e., the result of the evaluation, a relation, is automati
allydisplayed in the relation editor window.Please note that there is no expli
it save 
ommand. Modifying the relation a
tuallyshown in the relation editor dire
tly 
hanges the relation stored in the workspa
e.Typi
ally the window of the relation editor looks as follows:

Column number
Row number

"set" item

Name of relation

Mouse pointer

Dimension

"cleared" item
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In the following by an \item" we mean a single entry of a relation unequivo
al de�nedby a row and a 
olumn of a relation. In the relation editor su
h an item is graphi
allyrepresented by a square as shown in the above pi
ture.An item is \set" if it des
ribes a \true-entry" of a relation. The 
orresponding squareof the graphi
 representation is a grey one. A \false-entry" of a relation is represented bya white square. In this 
ase we speek of a \
leared" item.A \line" 
an be a 
omplete row or 
olumn or diagonal of a relation. The kind ofline modi�able with the editor 
an be determined by sele
ting a menu entry; for detailssee below. We speek of a \
ompletely set" line, if all items of a line are set and of a\
ompletely 
leared" or \empty" line, if all items are 
leared.3.4.1 A
tions Invoked by Mouse ButtonsIf the mouse pointer is lo
ated on an item of a relation, the mouse buttons invoke thefollowing di�erent a
tions:LMB : If the item is 
leared, it will be setIf the item is set, it will be 
leared.MMB : Set the line determined by the mouse position 
ompletely,if it is not set 
ompletely (e.g. empty).If the line 
hoosen by the mouse pointer is set 
ompletely,the line is 
leared 
ompletely.RMB : Pops up a menu. All a
tions within the menu are sele
tedwith the same, i.e, right mouse button.3.4.2 Pop Up Menu of the Relation EditorBy pressing the RMB in the relation editor the following menus are rea
hable:

Sele
ting the various menu entries with the RMB invoke the following a
tions:� NEW:
19



Opens the following dialog window whi
h allows to de�ne a new relation. The nameand the number of rows and 
olumns have to be entered into the di�erent input�elds:
The 
reation of the new relation 
an be invoked by pressing the button \NEW" or,alternatively, by pressing the \RETURN"-key on the keyboard. The \RETURN"or \TAB"-key 
an be used to swit
h over to the respe
tive next input �eld. If thereexists a relation with the newly 
hoosen name in the workspa
e, the system deletesit after asking the user for 
on�rmation. An existing graph with that name is boundto the newly 
reated relation.� DELETE:Deletes the relation displayed in the relation editor window from the workspa
e. Ifthere exists a graph with the same name as the relation, the graph is alsodeleted. Before deleting the relation and a possibly existing graph, the system asksfor 
on�rmation by presenting a noti
e prompt to the user. In the 
ase that thegraph is displayed in the graph editor window, it 
an be restored by 
hoosing themenu entry \GRAPH ! RELATION" in the graph editor pop-up menu. See Se
tion3.5 for details. Note that the spe
ial relation \$" 
annot be deleted.� RENAME:Pops up a window for entering a new name for the relation visible in the relationeditor window. Let R be the name of the relation in the editor window and let Q bethe newly 
hoosen name. Two 
ases 
an be distinguished.1. There exists a graph R: A relation Q and a graph Q possibly 
ontained in theworkspa
e are deleted. Here the system asks the user for 
on�rmation. Therelation R and the graph R are both renamed into Q.2. There exists no graph R: A relation Q 
ontained in the workspa
e is deletedafter asking the user for agreement. The relation R is renamed into Q and apossibly existing graph Q is bound to the \new" relation Q.In both 
ases, the renamed relation is displayed in the relation editor window. Agraph whi
h belongs to the renamed relation is shown in the graph editor window,see Se
tion 3.5. Note that the spe
ial relation \$" 
annot be renamed.� CLEAR:Clears the whole relation, i.e., all items are 
leared.� RANDOM FILL:Opens the following window for entering a fa
tor for �lling the relation randomly:20



Before �lling the relation it is 
leared 
ompletely.� RELATION ! GRAPH:Creates a graph from a homogeneous relation with the same name as the relation.The graph is displayed in the graph editor window; see Se
tion 3.5. If no graph withthe name of the relation exists in the workspa
e yet, then the nodes of the new graphare automati
ally pla
ed on a 
ir
le and the ar
s are drawn as lines. Otherwise, theRELVIEW system asks for 
on�rmation before overwriting the existing graph. Inthe 
ase that the number of rows and 
olumns 
oin
ide with the number of nodes ofthe graph, the positions of the nodes are not 
hanged. In the other 
ase, the abovementioned standard pla
ement is used again. The entry in the dire
tory windowbelonging to the relation is updated, i.e., it shows the text \=graph" in the middlese
tion.� PRINT:Outputs the relation as an en
apsulated posts
ript-�le. As �lename the name of therelation extended by \.rel.eps" is used. The �le is 
reated in the dire
tory wherethe system has been started from.� LABEL:Pops up a submenu as it is shown in the above pi
ture whi
h allows to add/removelabels to the rows and/or 
olumns of the relation. Refer to Se
tion 3.18 for ades
ription of the labeling me
hanisms of RELVIEW.� DRAW MODE:Opens a submenu as presented above for sele
ting a draw mode for lines. Then fourdi�erent modes 
an be 
hoosen, viz. horizontal, verti
al and two types of diagonallines.3.5 The Graph EditorThis se
tion des
ribes the graph editor of RELVIEW. The window of the graph editor
an be opened by pressing the button \GRAPH" in the menu window. A typi
al view ofthe graph editor window 
an look as follows:
21



Position of mouse pointerIn the graph editor various kinds of nodes and edges are used:
Selected resp. Marked Edge:

Marked Node:

810 24

Selected Node:Unselected Node:

Unselected Edge:As the pi
ture illustrates, we speek of sele
ted, unsele
ted, and marked nodes and edges.Sele
ting a node allows moving and deleting it. In a similar way, a sele
ted edge 
an be22



deleted. At one time, only one node or one edge 
an be sele
ted. Marking nodes andedges 
an be used to illustrate 
omputation results. All nodes of the graph are numeratedby the system automati
ally. If there exists a relation whi
h 
oin
ides with the graph,the numbering of the nodes 
orresponds to the numbering of the rows resp. 
olumns ofthat relation. The allo
ated numbers always form an intervall.Ea
h node is surrounded by a \sele
tion area". Cli
king with the mouse into this areasele
ts the 
orresponding node and performs a spe
ial a
tion with this node. In this 
asewe use the term that the mouse pointer is \nearby" a node. If the mouse pointer doesnot point into a sele
tion area, we say that the mouse is \not nearby" a node.As in the previous se
tion, we make use of the abbreviations LMB, MMB, and RMBdenoting the left, middle, and right mouse button, respe
tively.3.5.1 A
tions Invoked by Mouse ButtonsThe di�erent mouse buttons invoke the following a
tions depending on the state of nodesand egdes and the mouse position:� A
tions initiated by pressing the LMB:If the mouse pointer is not nearby a node:{ If no node is sele
ted, then a new node will be pla
ed at the pointer position.The new node gets the smallest number whi
h has not been assigned to an othernode yet.{ If a node is sele
ted, then the sele
ted node will be moved to the positionof the pointer.If the mouse pointer is nearby a node N:{ If no node is sele
ted, then the node N nearby the pointer is sele
ted.{ If a node M is sele
ted:� If no egde exists from the sele
ted node M to the node N nearby thepointer position, then a new egde is 
reated from the sele
ted node Mto the node N nearby the pointer.� If there exists an edge from the sele
ted node M to the node N nearbythe pointer, then the egde will be sele
ted.� Pressing the MMB deletes a sele
ted node together with all edges 
onne
ted tothat node, a sele
ted edge or the last 
reated edge. In 
ase of deleting a node, theremaining nodes are in general renumbered so that all numbers form an intervallagain.Please be 
areful: There is no undo-fun
tion!� The RMB pops up a menu. All a
tions within the menu are sele
ted with thesame, i.e., right mouse button. 23



3.5.2 Pop Up Menu of the Graph EditorBy pressing the RMB in the graph editor the following menus are rea
hable:

Sele
ting the various menu entries with the RMB invoke the following a
tions:� NEW:Opens a dialog window whi
h allows to enter a name for a new graph. Initially thenew graph has no nodes. Let R be the name for the new graph. Three 
ases 
an bedistinguished.1. There exists no relation R in the workspa
e: After drawing a graph with atleast one node, a relation with the same name R 
an be 
reated from this graphby 
hoosing the menu entry GRAPH ! RELATION as des
ribed below.Please note: If no relation is 
reated, the newly drawn graphgets lost if an other graph 
ontained in the workspa
e isloaded into the graph editor.2. The workspa
e 
ontains a relation R but no graph R: After drawing a graphwith at least one node, the new graph is bound to the relation R.3. There exists a relation R and a graph R: The existing graph is deleted. Beforedeleting the graph, the system asks the user for 
on�rmation. After drawing agraph with at least one node, this new graph is bound to the relation R.� DELETE:After asking the user for 
on�rmation, all nodes of the graph are deleted.� Copy:Opens a dialog window for entering a new name. Let R be the name of the graph inthe editor window and let Q be the newly 
hoosen name. If there exists a relationR, a 
opy with name Q of the graph R is 
reated. Otherwise the graph R is renamedinto Q. The \new" graph Q is displayed in the graph editor window. Depending onthe 
ontents of the workspa
e, several further a
tions are performed:24



1. If the workspa
e 
ontains a relation Q but no graph Q, the \new" graph Q isbound to the relation Q.2. If there exist a relation Q and a graph Q, the graph Q is deleted after asking theuser for agreement and the \new" graph Q is bound to the relation Q.3. In the 
ase that the workspa
e does not 
ontain a relation with name Q, nothingmore is done. By 
hoosing the menu entry GRAPH ! RELATION, a relation
an be 
reated from the \new" graph Q.� GRAPH ! RELATION:Creates a relation from the graph with the same name or updates an existing relationwith the same name like the graph. In the �rst s
roll list of the dire
tory window,an appropriate list entry is 
reated resp. updated. In parti
ular, it shows the entry\=graph" to indi
ate that the graph and the relation 
oin
ide.Before overwriting an existing graph, the system asks the user for 
on�rmation. Therelation is displayed in the relation editor window; see Se
tion 3.4.� PRINT:Outputs the graph as an en
apsulated posts
ript-�le. The system uses as �lenamethe name of the graph extended by \.gr.eps". The �le is 
reated in the dire
torywhere the system has been started from.� MARK NODES:Opens a pop up window whi
h allows to enter a relational term. If the value of theterm evaluates to a ve
tor with the same number of rows as the number of nodes inthe graph, then all nodes belonging to \true-entries" in the ve
tor are \marked", i.e.,are drawn as in the above pi
ture indi
ated. This fa
ility 
an be used to illustrate
omputation results, espe
ially subsets of the nodes of the graph. See Se
tion 3.15for a des
ription of relational terms.� MARK EDGES:Like in the previous 
ase, a pop up window is opened for entering a relational term.If the term evaluates to a homogeneous relation with the same row- and 
olumn-number like the number of nodes in the graph and this relation is in
luded in thegraph's relation, then all edges in the graph 
orresponding to \true-entries" in the
al
ulated relation are \marked", i.e., are drawn like shown in the above pi
ture.This fa
ility 
an be used to illustrate 
omputation results, espe
ially emphasizingsubsets of all edges of the graph.� UNMARK GRAPH:Removes all markings of nodes and edges whi
h were added using the two previousmenu entries.� FIT IN WINDOW:Adjusts the size of the graph to the size of the window of the graph editor, so thatthe image of the graph 
ompletely �ts onto the 
anvas.25



� TOGGLE GRID:Swit
hes on or o� a grid in the graph editor window. If the grid is displayed,all positions of subsequently pla
ed nodes are aligned to grid positions, i.e., aresnapped. Grid positions are the 
rossings of the grid lines.� GRAPH{DRAWING:Opens a submenu from whi
h di�erent graph drawing algorithms and a spe
ialre
e
tion operation 
an be 
hoosen. At the time of writing this manual the submenuhas the following entries; in the future some other algorithms should be added.{ SWAP UPPER LOWER: Re
e
ts the graph, i.e., swaps the verti
al dire
tion.{ SPRING (fast): A fast spring embedder.{ SPRING (slow): A slower spring embedder.{ LAYER: A layer algorithm whi
h tries to pla
e the edges verti
ally. It addsspe
ial nodes to the graph whi
h are not drawn but allow edges with bends.{ CORRESPONDENCE: Ea
h node of the graph is drawn twi
e, i.e., the node setis doubled. Edges are drawn from one node set to the other only.{ FOREST: This algorithm is only a

essible if the graph is a dire
ted forest.The roots of the single dire
ted trees are pla
ed on top of the window.3.6 The Fun
tion-De�nition WindowPressing the button \DEFINE" in the fourth row of the menu window opens a dialogwindow for de�ning, editing, and deleting global fun
tions:
Several a
tions 
an be invoked:1. Entering a de�nition of a fun
tion in the input �eld and pressing the button \STORE"adds this new fun
tion to resp. modi�es an existing fun
tion in the workspa
e. Thesyntax of fun
tion de�nitions is des
ribed in Se
tion 3.16.2. A fun
tion 
an be deleted by entering its name in the input �eld and pressingthe button \DEL". The systems asks the user for 
on�rmation before deleting thefun
tion de�nition from the workspa
e.3. Sele
ting a global fun
tion from the workspa
e by 
li
king onto a list entry in these
ond s
roll list of the dire
tory window, i.e., the list of all global fun
tions, 
opiesthe de�nition of that fun
tion into the input �eld. The fun
tion de�nition 
an beedited and restored or deleted.
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It is important to note that the system only 
he
ks the syntax of the entered fun
tion butdoes not validate whether the identi�ers 
ontained in the de�nition denote existing rela-tions, fun
tions, or programs in the workspa
e. These tests are performed at evaluationtime only. Here we want to remark that the de
ision for implementing this parti
ular be-haviour is motivated by the intera
tive nature of RELVIEW whi
h allows to add obje
tsto or delete them from the workspa
e at every time.Please note: Fun
tion names 
onsist of an identi�er plus the leftparenthesis. As a 
onsequen
e, between the proper name of thefun
tion, i.e., the identi�er, and the opening parenthesis there mustbe no whitespa
e.This property takes e�e
t on deleting a fun
tion from the workspa
e. If a global fun
tionshould be erased from the workspa
e, a name of the form�identi�er�(has to be given to the system.3.7 The Evaluation WindowBy pressing the button \EVAL" in the menu window, the term-evaluation window 
an beopened. Typi
ally it looks as follows:
Entering a relational term into the input �eld \TERM" and a name for the result relationinto the �eld \RESULT" and then pressing the button \EVAL" invokes the evaluation of thegiven term. Alternatively, the \RETURN"-key on the keyboard starts the 
omputation.This key and the \TAB"-key 
an be used to swit
h from the �rst input �eld \RESULT"to the se
ond one \TERM". The result, a relation, is stored into the workspa
e with theentered name. If no result name is given, the default name \$" is used.In the 
ase of an error, the evaluation stops, a noti
e prompt is popped up, and anerror message is written to the standard output.3.8 The Iteration WindowThe button \ITER" of the menu window allows to pop up the iteration window whi
hlooks as follows:
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This window allows the iterated appli
ation of a fun
tion f to a relation R, i.e., it 
omputesthe sequen
e R, f(R), f(f(R)), : : :. This pro
ess stops if the sequen
e be
omes stationaryor the maximum number of iteration steps is rea
hed. As the names of the input �eldsindi
ate, the fun
tion name and the relation name have to be entered into the �elds\FUNCTION" resp. \RELATION". In the �eld \RESULT" a name for the result relation
an be entered. If it is omitted, the default name \$" is used. The limit for the numberof iteration steps 
an be set with the slider. The iteration 
an be invoked by pressing thebutton \ITER" or the \RETURN"-key on the keyboard. As in the evaluation window,the \RETURN" or the \TAB"-key 
an be used to swit
h over from one to the next input�eld.3.9 The Domain-De�nition WindowPressing the button \DEF" in the \Domains"-part of the menu window opens the followingdialog window whi
h allows to enter a domain de�nition into the system:
Several a
tions 
an be invoked:1. After entering a name for a relational domain into the �eld \DOMAIN-NAME" andentering two relational terms des
ribing two relations R : X $ X and Q : Y $ Yon sets X and Y into the input �elds \1. COMP" and \2. COMP", respe
tively,and after 
hoosing the domain type by �lling in a \+" (dire
t sum) or \X"-sign(dire
t produ
t) into the \TYPE"-�eld, a press on the button \STORE" puts the
orresponding domain de�nition into the workspa
e. The de�ned domain is eitherthe dire
t sum (�; �) with the natural inje
tions � : X ! X +Y and � : Y ! X +Yor the dire
t produ
t (�; �) with the natural proje
tions � : X � Y ! X and� : X � Y ! Y .2. Sele
ting a list entry in the \Domains"-list of the dire
tory window 
opies the 
or-responding domain de�nition into the input-�elds of the \DOMAIN-DEFINITION"for editing and restoring or deleting. The domain 
an be deleted by pressing thebutton \DEL".3. Entering a name of a domain 
ontained in the workspa
e into the \DOMAIN-NAME"-�eld and pressing the button \DEL" deletes the domain from the workspa
e.We note that store a
tions 
an also be invoked by pressing the \RETURN"-key on thekeyboard. This key and the \TAB"-key allow to swit
h over to the respe
tive nextinput �eld. Before deleting a domain de�nition from the workspa
e, the system asks theuser for 
on�rmation. As usual, the validity of a domain de�niton { the two relationalterms des
ribing the di�erent 
omponents of the domain have to be denote homogeneousrelations { is 
he
ked at evaluation time only.28



3.10 The Tests WindowPressing the button \TESTS" in the menu window opens an equally named window whi
hallows performing various kinds of tests on a relation or two relations:
Property holds

Property does

not hold

Entering a relational term in the input �eld \Relation" and pressing the left button \TEST"
arries out the following tests on the relation R des
ribed by the term:Test Relational formulaEMPTY R = OUNIVAL RTR � ITOTAL R L = LINJECTIVE RRT � ISURJECTIVE L = LRANTISYMMETRIC R \RT � IREFLEXIVE I � RTRANSITIVE RR � RFilling in two relational terms des
ribing to relations R1 and R2 into the input �elds \1.Relation" and \2. Relation" and pressing the right button \TEST" performs an equalityand an in
lusion test on R1 and R2, i.e., evaluates R1 = R2 and R1 � R2, respe
tively.The results of the tests are indi
ated by drawing hooks into the boxes 
orrespondingto the di�erent tests. Printing a hook means that the spe
i�
 property holds. An emptybox indi
ates failure of the 
orresponding test. If an entered relational term 
annot beevaluated, an error is indi
ated by drawing a hook into the 
orresponding \ERROR"-box.Swit
hing between the three input �elds 
an be done by pressing the \RETURN"-keyon the keyboard. For a more detailed des
ription of the di�erent testable properties seeSe
tion 2.2.
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3.11 The File-ChooserThe �le-
hooser is used to load various kinds of �les into the system:� Xrv-�les 
ontaining relations, graphs, global fun
tions and domain de�nitions.� Program �les with the �lename extension \.prog" whi
h 
an hold global fun
tionde�nitions, domain de�nitions and relational programs.� Label �les with name extension \.label" 
ontaining label sets.In addition, the �le-
hooser is used to 
reate xrv-�les on the disk. The format of program�les is des
ribed in Se
tion 3.17. A des
ription of the labeling me
hanism 
an be foundin Se
tion 3.18.After pressing the button \FILES" in the menu window, the window of the �le-
hooseris popped up. The exa
t appearean
e depends on various resour
es stored in the 
on�g-uration �le, see Se
tion 3.19.1. Typi
ally the window looks as follows:
Buttons for 

choosing 

predefined 

filter values

Buttons for

invoking

load/save actions

Current filename Directory list File list

Button for closing window

Selected fileCurrent directory

Filter inputfieldThe title line of the window and the headline of the left s
roll list, the dire
tory list forshort, show the name of the 
urrent dire
tory. The dire
tories 
ontained in the 
urrentdire
tory are listed in that s
roll list. The list of �les whi
h are stored in the a
tualdire
tory 
an be found in the right s
roll list, the so 
alled �le list. Here in generalthe value of the �lter as shown in the \Filter:" input �eld is 
onsidered sele
ting only asubset of all �les 
ontained in the 
urrent dire
tory. Depending on the �le types, di�erentpi
tograms are used:Pi
togram File typexrv-�le with relations, graphs, fun
tions, and domainsprogram �le with fun
tions, domains, and programslabel �le 
ontaining label setsunknown, i.e., all other �les30



A double 
li
k onto a list entry in the dire
tory list sele
ts the 
orresponding dire
tory asthe new 
urrent dire
tory. The headlines and the �le list are updated. Alternatively, a new
urrent dire
tory 
an be 
hoosen by entering its name into the input �eld \Name:" andpressing the \RETURN"-key on the keyboard or the button \LOAD �.�" in the window.Cli
king onto a list entry in the �le list 
opies the name of the 
hoosen �le into theinput �eld \Name:". As in 
ase of the dire
tories, a �le name 
an be entered into thatinput �eld dire
tly.Load and save 
ommands on �les are invoked by 
li
king onto the buttons \LOAD �.�"and \SAVE �.xrv", respe
tively. As short
uts for the load 
ommand the \RETURN"-keyon the keyboard 
an be pressed or a double 
li
k onto a �le entry in the �le list 
an beperformed. The sele
ted �le operation always uses the �lename whi
h is displayed in theinput �eld \Name:". Please note, that only xrv-�les 
an be saved on disk. If a �le issaved, the �lename is automati
ally extended by \.xrv", if the �lename extension is notequal to \.xrv".The button \CANCEL" allows to pop down the �le-
hooser.The buttons \�.xrv", \�.prog", and \�.label" 
hooses prede�ned �lter values. A �l-ter sele
ts a subset of �les 
ontained in the a
tual dire
tory. As �lter values regularexpressions as used on shell level 
ontaining wild
ards \?" and \�" are admissible.3.12 Identi�ers and KeywordsA RELVIEW identi�er 
an 
onsist of up to 16 
hara
ters. A 
hara
ter 
an be� a letter a; : : : ; z; A; : : : ; Z or� a digit 0; : : : ; 9 or� an unders
ore \ ".The �rst 
hara
ter of an identi�er has to be a letter as des
ribed above.Not all sequen
es of 
hara
ters form legal identi�ers. Names of base fun
tions ofRELVIEW are not allowed. The list of all base fun
tions 
an be found in the nextse
tion. Additionally, some words, in the following 
alled \keywords", are reserved by thesystem. Keywords of RELVIEW are:BEG, DECL, DO, ELSE, END, FI, IF, OD, PROD, RETURN, SUM, THEN, WHILE3.13 Base Fun
tionsSome identi�ers whi
h are not keywords as listed in the previous se
tion and some spe
ialsymbols denote prede�ned fun
tions, the so 
alled base fun
tions of RELVIEW. A subsetof all base fun
tions 
an be a

essed by pressing parti
ular buttons in the menu window;see Se
tion 3.2. For example, the window for applying the base fun
tion \|" whi
h
omputes the union of two relations looks as follows (
ompare with Se
tion 3.7):
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The base fun
tions 
an be divided into several parts:1. Base fun
tions for 
al
ulating 
onstant relations (Se
tion 2.1) and domains:Syntax MeaningL(R) Universal relation of the same size dimension than RO(R) Empty relation of the same size dimension than RI(R) Identity relation of the same size dimension than RLn1(R) Universal 
olumn ve
tor of the same row number than ROn1(R) Empty 
olumn ve
tor of the same row number than RL1n(R) Universal row ve
tor of the same 
olumn number than RO1n(R) Empty row ve
tor of the same 
olumn number than Rdom(R) Domain R * Ln1(R^) of relation R as 
olumn ve
tor2. Boolean operations (refer to Se
tion 2.1):Syntax Button Meaning{R { Negation (
omplement) of relation RR|S j Union (join) of R and SR&S & Interse
tion (meet) of R and S3. Relationalgebrai
 operations (see Se
tion 2.1):Syntax Button MeaningR^ b Transposition of relation RR*S � Composition (produ
t) of R and S4. Residuals and symmetri
 quotients (refer to Se
tion 2.3.2):Syntax Button MeaningS/R S/R Left residual of R and S.R\S RnS Right residual of R and S.syq(R,S) SYQ Symmetri
 quotient of R and S.5. Closures (see Se
tion 2.3.1):Syntax Button Meaningtrans(R) TRANS Transitive 
losure of Rrefl(R) REFL Re
exive 
losure of Rsymm(R) SYMM Symmetri
 
losure of R6. Various operations 
on
erning ve
tors and points without 
hoi
e operations (Se
-tions 2.2.3 and 2.4.3):Syntax Button Meaninginj(v) INJ Inje
tion indu
ed by the non-empty ve
tor vepsi(v) EPSI Powerset relation with row number given by therow number of the ve
tor vinit(v) Initial point of the same dimension than the ve
tor vsu

(v) Homogeneous su

essor relation with a dimension givenby the number of rows of the ve
tor vnext(p) Su

essor of the point p with the same dimension than p32



7. Choi
e operations (refer to Se
tion 2.3.3):Syntax Meaningpoint(v) A point 
ontained in the non-empty 
olumn ve
tor vatom(R) An atom (a pair) 
ontained in the non-empty relation R8. Relational tests on relations (Se
tion 2.3.5):Syntax Meaningempty(R) Test, whether R is emptyunival(R) Test, whether R is univalenteq(R,S) Test, whether R and S are equalin
l(R,S) Test, whether R is 
ontained in S9. Fun
tions 
on
erning relational domains (Se
tion 2.4). Most of these base fun
tionstake a domain de�nition as argument, the result however is always a relation.Syntax Button Meaning1-st(DD) 1st 1st 
omponent (DD domain)2-nd(DD) 2nd 2nd 
omponent (DD domain)p-1(PP) P-1 Proje
tion on the 1st 
omponent (PP produ
t domain)p-2(PP) P-2 Proje
tion on the 2nd 
omponent (PP produ
t domain)p-ord(PP) ORD Produ
t order (PP produ
t domain)[R,S℄ TUP Tupling of relationsi-1(SS) I-1 Inje
tion into 1st 
omponent (SS sum domain)i-2(SS) I-2 Inje
tion into 2nd 
omponent (SS sum domain)s-ord(SS) ORD Sum order (SS sum domain)R+S SUM Sum of relations10. Base fun
tions 
on
erning fun
tion domains (see Se
tion 2.4.4):Syntax Button Meaningpart-f(R,S) PARTF Columnwise representation of partial fun
tions.tot-f(R,S) TOTF Columnwise representation of total fun
tions.3.14 Operator Pre
eden
e and Asso
iativityThe pre
eden
e of the unary operators \{" and \^" and the binary in�x operators ofRELVIEW is as follows (from highest to lowest priority):Priority Operators1 {, ^2 *, +3 |, &4 /, \All binary operators and the transposition \^" are left asso
iative. The negation \{" isright asso
iative. Note, that the evaluation order 
an be 
hanged by using parenthesis.Sin
e evaluation of expressions is done from left to right, in the 
ase of equal priorities ofoperators sometimes even parenthesis have be used.33



3.15 Relational TermsThe main purpose of RELVIEW is the evaluation of relational terms, also 
alled relationalexpressions. A relational term 
an be of one of the following synta
ti
al forms.1. It 
an be a RELVIEW identi�er, i.e., of the shape � ident�.The identi�er 
an denote a relation or a parameter of a global fun
tion de�ned inthe workspa
e. In the 
ontext of a relational program additionally it 
an be a formalparameter or a lo
al variable.2. It 
an be an appli
ation of a base fun
tion, i.e., it looks as follows:(a) {� term�(b) � term�^(
) � term� � in�x base operation� � term�(d) � relational base fun
tion� (� term�, : : :, � term�)(e) �domain base fun
tion� (�domain name�)Here a relational base fun
tion is a base fun
tion of RELVIEW taking relationalarguments. In 
ontrast, a domain base fun
tion takes a name of a relational domainde�ned in the workspa
e. The base fun
tions of RELVIEW are des
ribed in Se
tion3.13.3. It 
an be an appli
ation of a global fun
tion de�ned in the workspa
e or a lo
alfun
tion de
lared in a relational program, i.e., it is of the following form:� fun
tion name � (� term�,� term�, : : : ,� term�)We note that a fun
tion name simply is a RELVIEW identi�er as des
ribed inSe
tion 3.12.4. It 
an be a 
all of a relational program, i.e., it looks as follows:� program name � (� term�,� term�, : : : ,� term�)As in the 
ase of an appli
ation of a user-de�ned fun
tion, a program name is aRELVIEW identi�er.As usual, parenthesis \(", \)" 
an be used to for
e an evaluation order. Examples forrelational terms are:R {Q Relation 45|X f(R, S&g(xyz 1)) p-1(Prod) 
lear(R^)The evaluation of a relational term is based on a Call-by-value strategy. Please note thatthe evaluation of relational terms strongly depends on the 
ontents of the workspa
e. Forexample, if an identi�er 
ontained in a term denotes a relation, a global fun
tion or aprogram whi
h 
annot be found in the workspa
e at evaluation time, the 
omputationwill fail. The same is true for appli
ations of base fun
tions whi
h take a domain nameas an argument. Here additionally the domain de�nition has to be valid. In all theseerror 
ases, the system presents a noti
e prompt and writes an error message to standardoutput. 34



3.16 Relational Fun
tionsA de�nition of a relational fun
tion is of the following synta
ti
 form:� fun
tion name� (� ident�,� ident�, : : : ,� ident�) = � term�The fun
tion name and the formal parameters inside the bra
kets 
an be RELVIEWidenti�ers as des
ribed in Se
tion 3.12.Please note: The left parenthesis belongs to the fun
tion name. Asa 
onsequen
e between the proper name and the left parenthesisthere must be no whitespa
e.The relational term on the right hand side 
an not only 
ontain global relations, fun
tionappli
ations, and program 
alls, but formal parameters o

uring in the parameter list aswell. Examples for relational fun
tions are:f(X)=X|{X mult R(X)=X*R h23(X1,Q)=(
lear(Q)/R)&trans(X1)Relational fun
tions 
an be entered into the system using the \FUNCTION-DEFINITION"-window. Alternatively, a fun
tion de�nition 
an be written into a program �le and loadedinto the system using the �le-
hooser, see Se
tion 3.17.3. In the last 
ase, the de�nitionhas to be terminated by a dot \.".3.17 Relational ProgramsA relational program in the sense of the RELVIEW system essentially is a while-programbased on the datatype of binary relations. Su
h a program has many similarities with afun
tion pro
edure in the programming languages PASCAL or MODULA-2. The exe
u-tion is based on a Call-by-value, i.e., leftmost-innermost, strategy. The system uses stati
binding and the usual s
oping rules. Instead of presenting the RELVIEW programminglanguage in a strong formal manner, we follow a more pragmati
al point of view by intro-du
ing the syntax of the di�erent program 
onstru
ts in an intuitive way. At this pointwe want to remark that examples of relational programs 
an be found in Se
tion 4 below.The synta
ti
 form of a relational program 
an be sket
hed as follows:� ident�(� ident�, � ident�, : : :, � ident�)DECL �de
laration of lo
al domains��de
laration of lo
al fun
tions��de
laration of lo
al variables�BEG � statement� ;: : :� statement�RETURN � term�END .As it is shown, a relational program starts with a head line 
ontaining the program'sname and a list of formal parameters. After the keyword DECL then the de
laration part35



follows. It 
onsists of the de
larations of relational domains, followed by the de
larationsof the lo
al fun
tions, and, �nally, of the lo
al variables for relations. The third part ofa relational program is its body, the keyword BEG followed by a sequen
e of statementswhi
h are separated by semi
olons. Relational programs 
ompute values. Hen
e, thelast part of su
h a program is the RETURN-
lause, whi
h 
onsists of the keyword RETURNfollowed by a relational term. The keyword END and a dot behind END indi
ate the endof a relational program.The shape of admissible identi�ers, denoted by � ident� in the above pi
ture, isdes
ribed in Se
tion 3.12.3.17.1 Stru
ture of the De
laration PartThe single de
larations of lo
al domains and lo
al fun
tions are terminated by semi
olons.Lo
al variables are separated by 
ommas.� Domain de
larations introdu
e binary relational produ
ts and binary relational sumstogether with some natural relations like proje
tions and inje
tions as des
ribed inSe
tion 2.4. A de
laration of a binary relational dire
t produ
t is of the followingform: � ident� = PROD(� term�,� term�) ;A binary relational sum is de
lared as follows:� ident� = SUM(� term�,� term�) ;In the arguments of the domain formers PROD and SUM also parameters of the supe-rior relational program may o

ur. As in 
ase of domain de�nitions entered into theworkspa
e using the \DOMAIN-DEFINITION"-window, the admissibility of the ar-guments { both have to represent homogenous relations { are 
he
ked at evaluationresp. exe
ution time only.� A de
laration of a lo
al relational fun
tion is of a similar form as a de�nitionof a global fun
tion entered into the system with the help of the \FUNCTION-DEFINITION"-window. See Se
tions 3.6 and 3.16. However, ea
h de
laration has tobe terminated by a semi
olon:� ident�(� ident�, : : : ,� ident�) = � term� ;The de
laration 
onsists of a fun
tion name, a list of formal parameters, and arelational term. Please note that the term may not only refer to obje
ts stored inthe workspa
e but may also 
ontain parameters of the superior relational programand lo
ally de
lared domains and fun
tions. But on no a

ount does an identi�erwhi
h o

urs in the relational term refer to a lo
al variable of a program. As in 
aseof the lo
al domain de
larations, it is only 
he
ked at exe
ution time and not atload time, whether a 
all of a lo
al de
lared fun
tion 
an be evaluated, i.e., whetherall fun
tions and relations 
ontained in the term are de�ned.� De
larations of lo
al variables look as follows:36



� variable name 1� ,� variable name 2� ,: : :� variable name n�As sket
hed above, the variable names are separated by a 
omma. Ea
h variablename 
an be a RELVIEW identi�er as des
ribed in Se
tion 3.12. Lo
al variablesare not impli
itly initialized. Before using, i.e., reading, a variable, a value hasto be assigned to it. Assignment statements are des
ribed in the next se
tion.3.17.2 Syntax of StatementsEssentially, the body of a relational program is a sequen
e of statements as sket
hed aboveat the beginning of this se
tion. In the following we des
ribe the synta
ti
 stru
ture ofthe statements of the RELVIEW programming language.1. The simple statements of the language are the assignments of the form� ident� = � term�with a lo
al variable on the left-hand side and a relational term on the right-hand side. Note that the term may 
ontain 
alls of relational programs. In parti
-ular, re
ursion is allowed. Sin
e on the left-hand side of an assignment only lo
alvariables are allowed, the exe
ution of a program produ
es no side-e�e
ts with re-spe
t to relations stored in the workspa
e. As usual, it is 
he
ked at exe
ution timeonly whether all pie
es 
ontained in the term are available in the workspa
e resp.lo
ally de
lared.2. Sequential 
omposition is the �rst kind of 
ompound statements. It is denoted by asemi
olon: � statement� ; � statement�3. Like in PASCAL and MODULA-2, there are two di�erent kinds of 
onditional state-ments in the programming language of RELVIEW. Without an else part a 
ondi-tional looks like this: IF � term� THEN � statement� FIAn else part in a 
onditional is also allowed. This two-sided 
onditional then looksas follows: IF � term� THEN � statement�ELSE � statement� FIAt exe
ution time the value of the relational term in a 
onditional statement has tobe a relation of type [1$ 1℄, in RELVIEW represented by a 1�1-matrix. CompareSe
tion 2.3.5.
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4. The while-loop of the programming language of the RELVIEW system has the fol-lowing form: WHILE � term� DO� statement� ODAs in the 
ase of 
onditional statements at exe
ution time the value of the 
onditionof the loop has to be a relation of type [1$ 1℄, i.e., a 1� 1-matrix.Please note: \RETURN � term�" is not a statement. Furthermore,note that a skip statement is not part of the RELVIEW program-ming language. As a 
onsequen
e, before the key words ELSE, FI, ODand the RETURN-
lause there must not be a semi
olon.3.17.3 Program FilesRelational programs are stored in so 
alled program �les, or prog-�les for short. Program�les are human-readable text �les whi
h 
an be 
reated using a text-editor. They areloaded into the system with the help of the �le-
hooser, see Se
tion 3.11. Relationalprograms are written into a program �le using a format as sket
hed above at the beginningof Se
tion 3.17. Beside relational programs a program �le 
an 
ontain de
larations ofglobal fun
tions and global domain de�nitions as well. The format for these two types ofde
larations are similar to the lo
al de
larations whi
h 
an o

ur in the de
laration partof a relational program as des
ribed in Se
tion 3.17.1. However, ea
h de
laration has tobe terminated by a dot \.":Type of de
laration Synta
ti
 formDire
t produ
t � ident�=PROD(� term�,� term�) .Dire
t sum � ident�=SUM(� term�,� term�) .Global fun
tion � ident�(� ident�, : : : ,� ident�)=� term� .Furthermore, 
omments 
an be added everywhere in a program �le. Like in PASCAL andModula-2, a 
omment must be en
losed by the bra
kets \{" and \}". En
apsulation of
omments within a 
omment is not allowed.While loading a program �le, the RELVIEW system performs various syntax 
he
ks. Ifa syntax error is dete
ted, the program �le is reje
ted, the error 
ondition is indi
ated bya noti
e prompt and an error message is written to standard output. The system printsout the line number, or at least an estimation, where the error o

ured.Please note: Program �les 
an be loaded into the system, but 
annotbe written ba
k to disk.At the end of this se
tion we present a small example of a program �le 
ontainingde
larations of a relational domain, a global fun
tion and, �nally, a relational programfor the 
omputation of the transitive 
losure R+ of a relation R by 
al
ulating the least�xpoint �f of the fun
tionf : [X $ X℄! [X $ X℄ f(Q) = R [QR :38



For illustration purposes, besides two variables in the program TransClosurs also alo
al de
lared fun
tion mult is used and some 
omments are added:Prod = PROD(R,S). { domain de
laration }zero(R) = R&{R. { global fun
tion }TransClosure(R) { relational program }DECL mult R(X) = X * R; { lo
al fun
tion }res, X { lo
al variables }BEG X = R;res = zero(R);WHILE {in
l(X,res) DOres = res | X;X = mult R(X) OD { X = X * R }RETURN resEND.More examples for relational programs 
an be found in Se
tion 4.3.18 LabelsThe RELVIEW system provides a me
hanism for labeling rows and 
olumns of relationsand nodes of graphs. A label is simply a RELVIEW identi�er. Labels are only usedfor illustration purposes. Adding labels to rows and/or 
olumns of relations and nodesof graphs often in
reases the readability and understandability of relations and graphs.Labels do not 
arry a semanti
s within the system. Espe
ially the evaluation ofrelational terms does not depend on values of labels.Please Note: In no 
ases are labels atta
hed to relations or graphsor informations about the labeling of a relation or a graph writtento a xrv-�le.3.18.1 Label Sets and Label FilesLabels are organized in so 
alled \label sets". A label set is simply a named mapping fromnatural numbers to labels, i.e., identi�ers. A de�nition of a label set is of the followingform: �label-set-name� = { �number� �label�,�number� �label�,...�number� �label��number� �label�}The name of a label set is an ordinary RELVIEW identi�er. Please note, that the blankbetween a number and a label a
ts as a separator. The numbers in a label set de�nition39



have to be unique but are allowed to appear in any order. In addition, the numbers ina label set do not have to build up an intervall. In fa
t, any gaps in the numbering areallowed. Some examples of label sets 
an be found in Se
tion 3.18.6.Label sets are stored in ordinary text �les with the �lename extension \.label", whi
hare 
alled label �les for short. One label �le 
an 
ontain an arbitrary number of de�nitionsof label sets. A label �le, more exa
tly spoken the label sets stored in the �le, 
an beloaded into the RELVIEW system by using the �le-
hooser, see Se
tion 3.11.3.18.2 The Label Dire
tory WindowThe label sets loaded into the system 
an be inspe
ted by the help of the label dire
torywindow. This window 
an be opened by pressing the button \LABEL" in the third buttonrow of the menu window. Typi
ally this window looks as follows:
Button for 

deleting all 

label sets

Selected label set

LabelNumber

As the pi
ture shows, the label dire
tory window 
ontains two s
roll lists. In the �rst list,the names of the loaded label sets are shown. A label set 
an be sele
ted by 
li
king ontothe 
orresponding list entry.The se
ond s
roll list displays the sele
ted label set. The set is printed as a list ofitems, sorted by numbers, of the form \Number : Label".40



3.18.3 Atta
hing Labels to RelationsThe rows and/or the 
olumns of a relation 
an be labeled with di�erent label sets. You
an sele
t the desired label sets by 
hoosing the menu item \LABEL REL" in one of thesubmenus of the relation editor, see Se
tion 3.4.2.Choosing the sket
hed menu item opens a pop up window with two input �elds forentering one or two names of label sets for the rows and/or the 
olumns of the relation:
After pressing the push button \LABEL" in this pop up, the rows and/or the 
olumns ofthe relation in the relation editor are atta
hed with the labels of the sele
ted label sets.For example, the window of the relation editor showing a labeled relation 
an look asfollows:

Label set for columns

Label set for rows

SimpleSet

SetWithGaps

41



Please note: The number of labels in a label set whi
h should beused for labeling the rows or 
olumns of a relation must not ex
eedthe number of rows resp. 
olumns of that relation.3.18.4 Removing Labels from a RelationThe labels atta
hed to the rows and/or 
olumns of a relation 
an be removed by sele
tingthe menu item \UNLABEL REL" in a submenu of the relation editor. Please refer toSe
tion 3.4.2 for a des
ription of the menu stru
ture of the relation editor.3.18.5 Labeling GraphsGraphs, more exa
tly spoken the nodes of a graph, 
annot be labeled dire
tly. Insteadyou 
an label the homogeneous relation belonging to the graph. Then the labels added tothe relation are atta
hed to the nodes of the graph automati
ally. A labeled node looksas follows:
11

a_prime_numberPlease note: If you want to label the nodes of a graph, the rows andthe 
olumns of the 
orresponding relation have to be labeled withthe same label set.3.18.6 Examples of Label SetsIn this se
tion we show some examples of label sets for illustration purposes:SimpleSet = { 1 row_1,2 row_2,3 row_3,4 row_4}SetWithGaps = { 3 
olumn_3,11 a_prime_number,7 a_ni
e_label,12 the_last_label}Conditions = { 1 Thinking_P1,2 Thinking_P2,3 Thinking_P3,4 Eating_P1,5 Eating_P2,6 Eating_P3} 42



3.19 Mis
ellaneousThis se
tion deals with the 
on�guration of RELVIEW, explains how to use a startup �leand gives some hints about the installation of the system. In parti
ular, the URL of theRELVIEW Web-page 
an be found in Se
tion 3.19.3.3.19.1 The Con�guration of RELVIEWThe RELVIEW system is in a wide range user-
on�gurable. Fonts, the layout of severalwindows, button sizes and more 
an be 
hoosen by de�ning resour
es in a resour
e-�le.The name of that �le is always \.xrelview". Please note the dot at the beginning of the�lename.At startup time, the system looks for a 
on�guration �le at two di�erent pla
es: First,the 
urrent dire
tory is s
anned. If it does not 
ontain a 
on�guration �le, the user'shome dire
tory is sear
hed for.If in both dire
tories no \.xrelview" �le 
an be found by the system, the system usesdefault values for the various resour
es. The resour
es supported by RELVIEW are de-s
ribed in detail in appendix A.3.19.2 Using a Start-up FileThe RELVIEW system allows to load a set of relations, fun
tions and domain de�nitionsautomati
ally at startup time. The loaded obje
ts are de
lared as \hidden" by the systemwith the e�e
t that they are only listed in the dire
tory window, if the user sele
ts themenu item \HIDDEN" in the \SHOW NOW"-menu of the dire
tory window. For detailssee Se
tion 3.3.At startup time, �rst the system looks for a �le \start up.xrv" in the 
urrent dire
tory.If this �le 
annot be found, in a se
ond step the user's home dire
tory is sear
hed for a�le \.start up.xrv". Please note the dot at the beginning of the �lename of the startup�le lo
ated in the home dire
tory.Startup �les 
an easily be 
reated by the user herself. We re
ommend to write allde�nitions of desired global fun
tions and relational domains into a prog-�le, load this�le using the �le-
hooser into the (naked) system and save it as a xrv-�le with name\start up.xrv" or \.start up.xrv", respe
tively.In appendix B an example for a set of fun
tions whi
h are normally stored in a startup�le 
an be found.3.19.3 Installation of RELVIEWThe RELVIEW system is freely available by FTP from hostftp.informatik.uni-kiel.de.It is lo
ated in the following dire
tory:pub/kiel/relviewTwo di�erent ports of the system are available, namely versions for43



1. Sun SPARC workstations running Solaris 2.5 and2. INTEL-based Linux systems (Kernels 1.2.x, 1.3.x, and 2.0.x).Detailed information about the dire
tory stru
ture and the available �les on the FTP-server 
an be found in a README �le 
ontained in the dire
tory pub/kiel/relview. Addi-tional informations and latest news about RELVIEW are published on the World-Wide-Web at the following lo
ation:URL: http://www.informatik.uni-kiel.de/eprogsys/relview.html
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4 Examples for the Use of RELVIEWIn this se
tion, we show how to spe
ify and develop algorithms for dis
rete stru
tures in therelation-algebrai
 framework su
h that the results 
an dire
tly be exe
uted in RELVIEW.Firstly, we deal with a latti
e-theoreti
al appli
ation, viz. the 
omputation of the 
ut
ompletion of a partially ordered set. Then, we apply relational algebra for the analysisof Petri nets. Using RELVIEW, here we investigate in parti
ular the dining philosophers
ondition/event net. And, �nally, we show how to solve some graph-theoreti
 problemsusing relational algebra and the RELVIEW system.4.1 A Latti
e-Theoreti
 Appli
ationIn 
lassi
al mathemati
s, the method of Dedekind 
uts in the rational numbers is oneof the ways for introdu
ing the real numbers. It has been generalized to a pro
edurefor 
onstru
ting 
ompletions of arbitrary partially ordered sets. Based on [4℄, in thefollowing we show how su
h a 
ut 
ompletion 
an be treated in the 
al
ulus of relationsand 
omputed using RELVIEW. To obtain this, we have to distinguish between the set-theoreti
 symbols 2 and � on the meta-level and the membership relation respe
tivelythe set in
lusion relation on the obje
t-level. In the sequel, we use on the obje
t level thetwo relations " : X $ 2X and v : 2X $ 2X for membership and in
lusion.4.1.1 Cut Completion of a Partially Ordered SetAssume R : X $ X to be a partial ordering. We 
all the pair (X;R) a partially orderedset. If, in addition, every set Y 2 2X has a least upper bound and a greatest lower bound,then (X;R) is 
alled a 
omplete latti
e. The method of Dedekind 
uts for 
onstru
tinga 
ompletion of the partially ordered set (X;R) is as follows (
ompare [14, 11℄): For agiven set Y 2 2X one 
onsiders two sets, viz. Mi(R; Y ), the set of all lower bounds of Ywrt. R, and Ma(R; Y ), the set of all upper bounds of Y wrt. R. Then one de�nes a setC 2 2X to be a Dedekind 
ut if Mi(R;Ma(R;C)) = C.Obviously, for ea
h element y 2 X the set (y) := fx 2 X : Rxyg is a Dedekind 
ut,
alled the prin
ipal 
ut generated by y.Let C denote the set of Dedekind 
uts of X and P denote the set of prin
ipal 
uts of X.Furthermore, let vC : C $ C and vP : P $ P denote the restri
tions of the set in
lusionrelation v : 2X $ 2X to the Dedekind 
uts and prin
ipal 
uts, respe
tively. Then (C;vC)is a 
omplete latti
e, having (P;vP) as sub-ordering. Furthermore, the fun
tion x 7! (x)is an order isomorphism between (X;R) to (P;vP). Therefore, the latti
e (C;vC) is saidto be the 
ut 
ompletion of the partially ordered set (X;R).4.1.2 A Relation-Algebrai
 Approa
h to Cut CompletionFor a relation-algebrai
 
onstru
tion of the 
ut 
ompletion (C;vC) of the partially orderedset (X;R), we start with the de�nition that an element y 2 X is a lower bound of the setY 2 2X if and only if 8 z z 2 Y ! Ryz. Then, we des
ribe Y by a ve
tor v : X $ 1 anduse the 
omponent-wise notation for the left residual given in Se
tion 2.3.2. We obtainthat the set of all lower bounds of v wrt. R is expressed by the ve
tor mi(R; v) = R=vT.45



Transposing the relation R yields ma(R; v) = mi(RT; v) as the ve
tor of all upper boundsof v wrt. R. In the language of RELVIEW, we obtain the relational fun
tionsmi(X,Y) = X / Y^.ma(X,Y) = mi(X^,Y).for mi and ma. If the se
ond argument of mi resp. ma is not a ve
tor but an arbitraryrelation, then obviously the fun
tions 
ompute lower and upper bounds 
olumn-wise.Aiming at the 
omputation of a ve
tor des
ribing all Dedekind 
uts, next we 
onsidera set C 2 2X . Using the 
orresponden
es between 
ertain kinds of logi
al and relation-algebrai
 
onstru
tions, we obtainC is a 
ut() 8 x x 2 Mi(R;Ma(R;C))$ x 2 C() 8 x mi(R;ma(R; "))xC $ "xC() syq(mi(R;ma(R; ")); ")CC() 9 M syq(mi(R;ma(R; ")); ")CM ^ C = M() 9 M syq(mi(R;ma(R; ")); ")CM ^ ICM ^ LM() ((syq(mi(R;ma(R; ")); ") \ I) L)C :Here the types of the identity relation respe
tively the universal relation are I : 2X $ 2Xand L : 2X $ 1. Now, we remove the subs
ript C in the result of the above derivationand arrive at the relation-algebrai
 des
riptionCutVe
tor(R) = (syq(mi(R;ma(R; ")); ") \ I) L : 2X $ 1of the ve
tor des
ribing the subset C of 2X (in the sense of Se
tion 2.2.3) the members ofwhi
h are the Dedekind 
uts. Using the inje
tive mapping inj(CutVe
tor(R)) : C $ 2Xgiven by this ve
tor (see again Se
tion 2.2.3) in 
ombination with the membership relation" : X $ 2X , we obtain the elements of C as the 
olums of the relationCutRelation(R) = " inj(CutVe
tor(R))T : X $ C :Based on the above relational fun
tions mi and ma, in RELVIEW the 
omputation of theve
tor des
ribing the Dedekind 
uts respe
tively the 
olumn-wise representation of theDedekind 
uts look as follows:CutVe
tor(R)DECL Id, 
, epsBEG eps = epsi(dom(R));Id = I(eps^ * eps);
 = dom(syq(mi(R,ma(R,eps)),eps) & Id)RETURN 
END.CutRelation(R) = epsi(dom(R)) * inj(CutVe
tor(R))^.Sin
e the Dedekind 
uts are ordered by set in
lusion, in the third step of our 
ut 
om-pletion pro
edure we 
onsider the in
lusion relation v : 2X $ 2X . If we use the 
orre-sponden
es between the two relations v and " and the meta-level symbols � and 2, then46



we obtain that set in
lusion equals as a relation on the obje
t level the right residual" n ". Hen
e, the two RELVIEW base fun
tions epsi and \ suÆ
e to 
ompute it. Next,we 
onsider the inje
tive mapping inj(Cutve
tor(R)) : C $ 2X whi
h represents C as asubset of 2X . It is obvious that the restri
tion of set in
lusion to the Dedekind 
uts 
anbe des
ribed as vC = inj(Cutve
tor(R))v inj(Cutve
tor(R))T : C $ C :A transformation of this equation into a relational program CutLatti
e (whi
h avoids
omputing the inje
tive mapping twi
e) is obvious. We obtain:CutLatti
e(R)DECL emb, eps, in
lBEG eps = epsi(dom(R));in
l = eps \ eps;emb = inj(CutVe
tor(R))RETURN emb * in
l * emb^END.As the last step of relational 
ut 
ompletion it remains to des
ribe the inje
tive orderhomomorphism x 7! (x) from X to C with relation-algebrai
 means. If we use the
ommon fun
tion notation for { := inj(CutVe
tor(R)), then we obtain(x) = {(C)() 8 y y 2 (x)$ y 2 {(C)() 8 y Ryx $ y 2 {(C)() 8 y Ryx $ (9 M y 2M ^ {(C) = M)() 8 y Ryx $ (" {T)yC() syq(R; " {T)xC :By a removal of the subs
ripts x and C, from the result of this derivation we getEmbedding(R) = syq(R; " inj(CutVe
tor(R))T) : X $ Cas relation-algebrai
 des
ription of the inje
tive mapping whi
h asso
iates an elementx 2 X to a Dedekind 
ut C 2 C if and only if C is the prin
ipal 
ut generated by x. InRELVIEW, this mapping is implemented by the relational fun
tionEmbedding(R) = syq(R,epsi(dom(R)) * inj(CutVe
tor(R))^) .using again the above relational program CutVe
tor.4.1.3 An ExampleAfter having presented a pro
edure for 
onstru
ting the 
ut 
ompletion of a partiallyordered set with relation-algebrai
 means and the 
orresponding RELVIEW fun
tionsrespe
tive programs mi through Embedding in the previous se
tion, we now deal with a
on
rete example. 47



We 
onsider a set X with 7 elements, for simpli
ity numbered by 1 through 7, and apartial ordering R : X $ X, whi
h, as a dire
ted graph R produ
ed on the window of thegraph editor using the layer graph drawing algorithm of RELVIEW, looks as follows:

1
1

2
2

3
3

4
4

5
5

6
6

7
7

To 
ompute the 
ut 
ompletion using RELVIEW, we have to 
reate a relation from thisdire
ted graph with the same name R. The following pi
ture shows this relation as 7� 7Boolean matrix as presented on the window of the relation editor:
1
2
3
4
5
6
7

1 2 3 4 5 6 7

Sin
e the nodes of the above dire
ted graph are labeled, the rows and 
olumns of thisBoolean matrix are also labeled.Now, we assume a program �le 
ontaining the relational fun
tions and programs of thelast se
tion and that this �le is loaded into the system's workspa
e. If we evaluate therelational term CutRelation(R) and then add labels to the rows as well as the 
olumnsof the result, we get the following 
olumn-wise representation of the 10 Dedekind 
uts:
1
2
3
4
5
6
7

C
ut

1
C

ut
2

C
ut

3
C

ut
4

C
ut

5
C

ut
6

C
ut

7
C

ut
8

C
ut

9
C

ut
10

I.e., the set C of Dedekind 
uts 
onsists of ;, f2g, f2; 7g, f2; 5; 7g, f1g, f1; 6g, f1; 2g,f1; 2; 4g, f1; 2; 3g, and the entire set X. The next pi
ture of this se
tion shows theBoolean matrix representation of the ordering relation of the 
omplete latti
e (C;vC),whi
h is obtained by evaluating the relational term CutLatti
e(R). For illustrationpurposes, again labels are added to the rows and 
olumns of the result.48



Cut1
Cut2
Cut3
Cut4
Cut5
Cut6
Cut7
Cut8
Cut9

Cut10

C
ut

1
C

ut
2

C
ut

3
C

ut
4

C
ut

5
C

ut
6

C
ut

7
C

ut
8

C
ut

9
C

ut
10

Finally, we want to visualize this 10� 10 Boolean matrix with RELVIEW as a dire
tedgraph, where additionally the embedding of the original partially ordered set is indi
atedby marked (i.e., boldfa
e) edges. To this end, �rst, we 
ompute the inje
tive mappingwhi
h embedds X in C by evaluating the relational term Embedding(R) and store theresult in the workspa
e of RELVIEW with the name E. The labeled 7 � 10 Booleanmatrix representation of E looks as follows:
1
2
3
4
5
6
7

C
ut

1
C

ut
2

C
ut

3
C

ut
4

C
ut

5
C

ut
6

C
ut

7
C

ut
8

C
ut

9
C

ut
10

Then, we draw the ordering relation of the 
omplete latti
e as a dire
ted graph. Finally,we mark the edges of this dire
ted graph with the relational term E^ * R * E, sin
e thevalue of this term is the sub-relation of the 
ut ordering generated by the images of X.The result is shown in the next pi
ture, for the produ
tion of whi
h again the layer graphdrawing algorithm of RELVIEW has been used.

Cut1
1

Cut2
2

Cut3
3

Cut4
4

Cut5
5

Cut6
6

Cut7
7

Cut8
8

Cut9
9

Cut10
10
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4.2 Analysis of Petri NetsPetri nets [19℄ are widely used for designing and modeling 
on
urrent and intera
ting pro-
esses. Sin
e the stati
 part of a Petri net 
onsists of a bipartite dire
ted graph, relationalalgebra in 
ombination with RELVIEW 
an be used for me
hani
ally investigating stati
properties like deadlo
ks, traps, 
ausality, and the free 
hoi
e property. See [5, 6℄. But, asdemonstrated in the later of these arti
les, even a relation-algebrai
 analysis of dynami
properties like rea
hability and liveness with RELVIEW is possible. In the following, wetake two of the examples of [6℄ and show how to spe
ify and implement algorithms whi
h
an be exe
uted dire
tly in RELVIEW.4.2.1 Petri Nets and their Relational RepresentationA Petri net is a bipartite dire
ted graph whi
h we represent as a pair N = (R; S) ofrelations, where R : C $ E, S : E $ C, and C \ E = ;. The elements of C and E are
alled 
onditions and events, respe
tively. In the graphi
al representation of N , usually
onditions are drawn as 
ir
les, events appear as squares, and the relation R (respe
tivelyS) is 
oded by the set of edges leading into (resp. out of) squares. A marking of N isa set of 
onditions whi
h is visualized by de
orating ea
h 
ondition in it with a bullet,
alled a token. Relation-algebrai
ally, a marking is des
ribed by a ve
tor m : C $ 1.As an example, we 
onsider the following graphi
al representation { produ
ed by one ofthe spring embedder graph drawing algorithms of the RELVIEW system { with nine 
on-ditions C = ff1; e1; t1; f2; e2; t2; f3; e3; t3g and six events E = fet1; te1; et2; te2; et3; te3g:

f1
1

e1
2

t1
3

f2
4

e2
5

t2
6

f3
7

e3
8

t3
9

et1
10

te1
11

et2
12

te2
13

et3
14

te3
15

On the window of the relation editor of RELVIEW, the labeled 9 � 6 Boolean matrix R50



respe
tively the labeled 6 � 9 Boolean matrix S representing this Petri net are depi
tedas shown in the next two pi
tures:
f1
e1
t1
f2
e2
t2
f3
e3
t3

et
1

te
1

et
2

te
2

et
3

te
3

et1
te1
et2
te2
et3
te3

f1 e1 t1 f2 e2 t2 f3 e3 t3

This Petri net is a simpli�ed des
ription of E.W. Dijkstra's dining philosophers [9℄: Threephilosophers are sitting around a table, and between ea
h two of them there is a fork as ashared resour
e. Ea
h of the three philosophers i; 1 � i � 3; is either thinking (a token onti) or eating (a token on ei). In order to start eating (event tei) he takes the two forks fiand fi+1 (respe
tively f3 and f1 if i = 1) provided they are free (de
orated with tokens).After eating a while, he goes ba
k into the thinking mode (event eti) and returns theforks. Initially, all philosophers are thinking and the forks are available. This is expressedby the marking Init = ff1; f2; f3; t1; t2; t3g des
ribed by the following RELVIEW ve
torInit:
f1
e1
t1
f2
e2
t2
f3
e3
t3The dynami
 evolution of a marked Petri net is given by a simple token game whi
hspe
i�es the e�e
t of events on the 
urrent marking. Given a marking M 2 2C , an evente 2 E is 
urrently enabled if all its prede
essors but none of its su

essors 
arry a token. Inthis 
ase its exe
ution (or �ring) results in a new marking N 2 2C whi
h is obtained fromthe previous marking M by removing all prede
essors of e and then adding all su

essorsof e. In this way, every Petri net indu
es a labeled transition relation M e! N .4.2.2 Computing Rea
hable MarkingsWe assume a Petri net N = (R; S) with 
onditions C and events E. Given two markingsM and N , we say that N is rea
hable from M if and only if there is a sequen
e oftransitions M e1! : : : en! N that transforms M into N .Sin
e the notion of rea
hability is de�ned in terms of sequen
es of transitions, in the�rst part of our development of a relational rea
hability algorithm we 
onsider a singletransition from a markingM to a marking N whi
h is 
aused by the exe
ution of an evente. We have to transs
ribe the de�nition of the transition relation of a Petri net into alogi
al predi
ate. The �rst 
ondition in that de�nition requires that M enables e whi
h51



yields the formula (8 
 R
e ! 
 2M) ^ (8 
 Se
 ! 
 62M) :Now, we represent events by points from [E $ 1℄. Then R e : C $ 1 is the ve
tor of theset of prede
essors and ST e : C $ 1 is the ve
tor of the set of su

essors of the evente : E $ 1. Furthermore, a 
ondition 
 2 C is a prede
essor of e if and only if (Re)
 anda su

essor of e if and only if (ST e)
. Hen
e, the above formula be
omes(8 
 (R e)
 ! 
 2M) ^ (8 
 (ST e)
 ! 
 62M) :Using the 
orresponden
es between 
ertain kinds of logi
al and relation-algebrai
 
on-stru
tions, our next aim is to repla
e the set-theoreti
 and logi
al symbols of this formulawith relational operations and \outermost" subs
ripts M and N . The desired form isderived by (8 
 (R e)
 ! 
 2M) ^ (8 
 (ST e)
 ! 
 62 M)() (8 
 (R e)
 ! "
M) ^ (8 
 (ST e)
 ! " 
M)() (8 
 (R e L)
N ! "
M) ^ (8 
 (ST e L)
N ! " 
M)() (R e L n ")NM ^ (ST e L n " )NM() ((Re L n ")T \ (ST e L n " )T)MN ;where the type of the universal relation is L : 1$ 2C and " : C $ 2C is the membershiprelation on 
onditions.The se
ond 
ondition of the labeled transition relation M e! N says: If e is exe
uted,then the new marking N results from the old marking M by repla
ing the prede
essorsof e with its su

essors. On a

ount of our point representation e : E $ 1 of events andsin
e thus Re : C $ 1 is the 
omplement of the set of prede
essors of e, this is spe
i�edby 8 
 (
 2M ^ Re 
) _ (ST e)
 $ 
 2 N :Again, we are able to repla
e all the set-theoreti
 and predi
ate logi
 symbols with rela-tional operations and subs
ripts M and N ; a possible derivation is8 
 (
 2M ^ Re 
) _ (ST e)
 $ 
 2 N() 8 
 ("
M ^ R e 
) _ (ST e)
 $ "
N() 8 
 ("
M ^ (Re L)
M) _ (ST e L)
M $ "
N() 8 
 ((" \ Re L) [ ST e L)
M $ "
N() syq((" \ R e L) [ ST e L; ")MN ;where the types of the universal relation L and the membership relation " are as above.Next, we 
an remove the subs
ripts M and N in the results of the last two derivations.Putting together the remainig relational terms, we getTrans(R; S; e) = (Re L n ")T \ (ST e L n " )T \ syq((" \ Re L) [ ST e L; ") : 2C $ 2Cas a relation-algebrai
 des
ription of a relation that des
ribes all possible single transitionsbetween markings whi
h are 
aused by an exe
ution of the event e : E $ 1.Having derived a relation-algebrai
 des
ription of the transition relation, we have solvedthe most diÆ
ult part of the rea
hability problem. By de�nition, the rea
hability relation52



Rea
h(R; S) on markings we have sear
hed for is pre
isely the re
exive-transitive 
losureof the union of all transition relations:Rea
h(R; S) = ( [e2P(E)Trans(R; S; e))� : 2C $ 2CHere P(E) denotes the set of all points from [E $ 1℄. Also testing whether one marking
an be rea
hed from another is now trivial. If they are given as ve
tors m : C $ 1and n : C $ 1, �rst, we produ
e the 
orresponding points syq(";m) : 2C $ 1 andsyq("; n) : 2C $ 1 in the powerset (see Se
tion 2.4.3). Then, we have the equivalen
en is rea
hable from m () syq(";m) syq("; n)T � Rea
h(R; S) :Likewise to obtain a ve
tor des
ribing the setM of all markings rea
hable fromm : C $ 1is easy. We only have to 
ompute the relation-theoreti
 su

essors wrt. the rea
habilityrelation of the point 
orresponding to m:Rea
hVe
tor(R; S;m) = Rea
h(R; S)T syq(";m) : 2C $ 1As in the 
ase of Dedekind 
uts, we 
an represent the elements 
ontained in the subsetM of 2C des
ribed by this ve
tor 
olumn-wise byRea
hRelation(R; S;m) = " inj(Rea
hVe
tor(R; S;m))T : C $M :If we transform the just developed relation-algebrai
 des
riptions into the language ofRELVIEW, then we obtain the following relational programs respe
tively fun
tions, wherewe have de
ided to formulate Rea
h by means of the base operations init and nextgenerating the set of events:Trans(R,S,e)DECL eps, L, resBEG eps = epsi(dom(R));L = L1n(eps);res = (R * e * L \ eps)^;res = res & (S^ * e * L \ -eps)^;res = res & syq((eps & -(R * e) * L) | S^ * e * L, eps)RETURN resEND.Rea
h(R,S)DECL e, resBEG e = init(dom(S));res = Trans(R,S,e);WHILE -empty(next(e)) DOe = next(e);res = res | Trans(R,S,e) ODRETURN refl(trans(res))END.Rea
hVe
tor(R,S,m) = Rea
h(R,S)^ * syq(epsi(dom(R)),m).Rea
hRelation(R,S,m) = epsi(dom(R)) * inj(Rea
hVe
tor(R,S,m))^.53



Evaluating the relational term Rea
hRelation(R,S,Init) with RELVIEW, where R andS are the relations of the philosophers net and Init des
ribes its initial marking Init ,produ
es the subsequent 
olumn-wise representation of the four markings rea
hable fromInit, where labels are added for illustration purposes:
f1
e1
t1
f2
e2
t2
f3
e3
t3

M
1

M
2

M
3

in
it

The last 
olumn of this 9 � 4 Boolean matrix des
ribes the initial marking Init , whereall philosophers are thinking. As 
an also be seen from this Boolean matrix, besidesthis marking three di�erent markings are rea
hable from the initial one. Ea
h of them
orresponds to one of the �rst three 
olumns and expresses that exa
tly one philosophereats and the others think.4.2.3 Liveness of MarkingsThere are several notions of a marking of a Petri net to be live, see [17℄. The followingversion seems to be preferred in the literature: Given a Petri net N = (R; S), an evente 2 E is said to be dead under a markingM 2 2C if there is no marking N 2 2C rea
hablefrom M whi
h enables e. A marking M 2 2C is 
alled live if for all markings N 2 2Crea
hable from M and all events e 2 E we have that e is not dead under N .Let again " : C $ 2C be the membership relation on 
onditions. We start our devel-opment of a relation-algebrai
 des
ription of liveness with(8 
 R
e ! 
 2M) ^ (8 
 Se
 ! 
 62M)whi
h spe
i�es that the marking M enables the event e. In 
ontrast with Se
tion 4.2.2,however, we do not represent events by points in the relational sense. This allows thefollowing derivation whi
h repla
es the set-theoreti
 and predi
ate logi
 symbols withrelational operations and the subs
ripts M and e:(8 
 R
e ! 
 2M) ^ (8 
 Se
 ! 
 62M)() (8 
 RTe
 ! "TM
) ^ (8 
 Se
 ! "TM
)() ("T =RT)Me ^ ( "T = S)Me() (("T =RT) \ ( "T = S))MeNow, the subs
ripts M and e 
an be removed from the last formula, yieldingEnable(R; S) = ("T =RT) \ ( "T = S) : 2C $ Eas relation-algebrai
 des
ription of the enabling relation. Combining it with the rea
h-ability relation Rea
h(R; S) derived in the last se
tion, we have that an event e 2 E is54



dead under a marking M 2 2C if and only if:9N Rea
h(R; S)MN ^ Enable(R; S)Ne :So the set of all su
h pairs M; e relation-algebrai
ally is spe
i�ed byDead(R; S) = Rea
h(R; S)Enable(R; S) : 2C $ E :To spe
ify liveness in predi
ate logi
, �nally, we use the rea
hability relation Rea
h(R; S)again, but now in 
ombination with Dead(R; S). We get that a marking M is live if andonly if the formula 8N 8 e Rea
h(R; S)MN ! :Dead(R; S)Neholds. In this 
ase, the repla
ement of the set-theoreti
 and predi
ate logi
 symbols withrelational operations and the subs
ript M follows from8N 8 e Rea
h(R; S)MN ! :Dead(R; S)Ne() 8N Rea
h(R; S)MN ! :9 e Dead(R; S)Ne() :9N Rea
h(R; S)MN ^ 9 e Dead(R; S)Ne() :9N Rea
h(R; S)MN ^ (Dead(R; S) L)N() Rea
h(R; S)Dead(R; S) LM ;using an universal ve
tor L : E $ 1. Finally, a removal of the subs
ript M yieldsLiveVe
tor(R; S) = Rea
h(R; S)Dead(R; S) L : 2C $ 1as the ve
tor whi
h des
ribes the set L of all markings whi
h are live andLiveRelation(R; S;m) = " inj(LiveVe
tor(R; S;m))T : C $ Las the 
olumn-wise representation of the set L. To avoid repeated evaluations of rela-tional terms, in the following RELVIEW implementations of Enable, LiveVe
tor , andLiveRelation we have used relational programs instead of relational fun
tions.Enable(R,S)DECL epsBEG eps = epsi(dom(R))RETURN (eps^ / R^) & (-eps^ / S)END.LiveVe
tor(R,S)DECL rea
h, deadBEG rea
h = Rea
h(R,S);dead = -(rea
h * Enable(R,S))RETURN -dom(rea
h * dead)END.LiveRelation(R,S) = epsi(dom(R)) * inj(LiveVe
tor(R,S))^.55



As an example, we 
onsider again the relations R and S of the philosophers net. If weevaluate the relational term LiveRelation(R,S) with RELVIEW and add labels to theresult, we obtain the following 9� 8 Boolean matrix:
f1
e1
t1
f2
e2
t2
f3
e3
t3

M
1

M
2

M
3

in
it

From the 
olumns 1, 2, 5, and 6 we see that every marking rea
hable from the initialmarking init is live, i.e.,Rea
hVe
tor(R; S; init) � LiveVe
tor(R; S)holds, a test whi
h 
an easily be veri�ed with RELVIEW. This means that the markedphilosophers net N = (R; S; Init) is live. There are four more live markings, but noneof them 
orresponds to a \real" state in a philosopher's dinner. For example, the mark-ing fe1; e2; e3g depi
ted in the third 
olumn des
ribes the impossible situation that ea
hphilosopher is eating.4.3 Solving Graph-Theoreti
 ProblemsGraphs are the most 
ommon abstra
t stru
ture in 
omputer s
ien
e. There are varioustypes of graphs whi
h appear in the literature, e.g., dire
ted graphs, undire
ted graphs,simple graphs, hypergraphs, bipartite graphs. If one does not allow edges to be indepen-dent mathemati
al obje
ts but 
onsider them as pairs of nodes, then this kind of graphs(often 
alled 1-graphs) and relations are very 
losely related. In prin
iple, su
h a graphg = (X;R) is given by its asso
iated relation R : X $ X on the set X of nodes. Manyappli
ations require algorithms that operate on graphs, sin
e any system that 
onsists ofdis
rete states or sites and 
onne
tions between them 
an be modeled by a graph. Inthis se
tion, we show how a relation-algebrai
 approa
h to graph theory 
an be used todevelop su
h algorithms. Most of the examples are taken from [5, 7℄.4.3.1 Computing KernelsSuppose a graph g = (X;R). A set a 2 2X of nodes is said to be absorbant if from everynode outside of it there is at least one edge leading into it, a property whi
h is des
ribedby 8 x x =2 a! (9 y y 2 a ^Rxy) :Furthermore, a set s 2 2X of nodes is 
alled stable if no two nodes of it are related viathe relation R. This spe
i�
 situation is 
hara
terized by8 x x 2 s! (9 y y 2 s! R xy) :56



And, �nally, a kernel of the graph g is a set of nodes whi
h is at the same time absorbantand stable.The 
on
ept of a kernel plays an import rôle in 
ombinatorial games, sin
e kernels ingame graphs 
orrespond to winning strategies. To explain this, we 
onsider the followingwell-known game: From a pile of, say, 10 mat
hes two players A and B may alternatelytake one or two mat
hes, whi
h is 
alled a move. If some player has to move but 
annotdo this be
ause the pile is empty, then he loses.Represented in the RELVIEW system as a 
ir
uit-free, bipartite graph, this mat
hesgame looks at follows:
A10

1
A9

2
A8

3
A7

4
A6

5
A5

6
A4

7
A3

8
A2

9
A1

10
A0

11

B10
12

B9
13

B8
14

B7
15

B6
16

B5
17

B4
18

B3
19

B2
20

B1
21

B0
22Ea
h node of this graph stands for a spe
i�
 situation whi
h 
an o

ur during the game.If it is labeled with Ai (respe
tively Bi), then this means that the pile 
onsists of i mat
hesand player A (respe
tively B) has to move. Hen
e, the possible moves are represented bythe edges and the terminal nodes with labels A0 respe
tively B0 stand for the situationsthat player A respe
tively B loses.The above game graph has exa
tly one kernel the nodes of whi
h are drawn as squares.Its knowledge provides the player moving from some situation outside it with the winningstrategy \move into the kernel".To develop a relation-algebrai
 des
ription of the set of all kernels of a graph g = (X;R)as a ve
tor from [2X $ 1℄, we start with the �rst of the above two formulae, saying thata set a of nodes is absorbant. Using the 
orresponden
es between logi
al and relation-algebrai
 
onstru
tions, then we transform it as follows:8 x x =2 a! (9 y y 2 a ^ Rxy)() 8 x "xa _ (9 y "ya ^ Rxy)() 8 x "xa _ (R")xa() 8 x (" [R")xa() ( " [R" n O)aThis derivation introdu
es the membership relation " : X $ 2X and the empty ve
tor O :X $ 1. For the removal of the universal quanti�
ation using a right residual 
onstru
tionin the last step, see Se
tion 2.3.2. Now, we remove the subs
ript a in ( " [ R" nO)a andobtain, thus, AbsorbVe
tor(R) = " [ R" n O : 2X $ 157



as relation-algebrai
 des
ription of the ve
tor of the absorbant sets. An analogous deriva-tion shows for the ve
tor of the stable sets the relation-algebrai
 des
riptionStableVe
tor(R) = (" \R") n O : 2X $ 1 ;where the types of the membership relation and the empty ve
tor are as in the 
ase of thefun
tion AbsorbVe
tor . Now, the ve
tor des
ribing the elements of 2X whi
h are kernelsof g is given as interse
tionKernelVe
tor(R) = AbsorbVe
tor(R) \ StableVe
tor(R) : 2X $ 1 :If this ve
tor is non-empty, i.e., the graph g = (X;R) has at least one kernel, then the
olumn-wise representation of the set K of all kernels of g isKernelRelation(R) = " inj(KernelVe
tor(R))T : X $ K :In ea
h of the relation-algebrai
 des
riptions AbsorbVe
tor(R) and StableVe
tor(R) themembership relation " : X $ 2X on nodes appears twi
e. In order to avoid repeated eval-uations of the 
orresponding relational term epsi(dom(R)), in the following RELVIEWversions of KernelVe
tor and KernelRelation we implement the �rst fun
tion by a rela-tional program:KernelVe
tor(R)DECL AbsorbVe
tor(R,e,O) = -(e | R * e) \ O;StableVe
tor(R,e,O) = (e & R * e) \ O;epsBEG eps = epsi(dom(R))RETURN AbsorbVe
tor(R,eps,On1(R)) & StableVe
tor(R,eps,On1(R))END.KernelRelation(R) = epsi(dom(R)) * inj(KernelVe
tor(R))^.Now, let us 
onsider a 
on
rete example for 
omputing kernels. We assume the nodeset of our example graph g = (X;R) to 
onsist of the natural numbers from 1 through 15.The following pi
ture shows the relation of g as presented on the window of the relationeditor of RELVIEW as labeled 15� 15 Boolean matrix R:
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

58



To produ
e the 
olumn-wise representation of the four kernels of the graph given by thisrelation using RELVIEW, we have to evaluate the relational term KernelRelation(R)and obtain then { after an appropriate labeling of the rows and 
olumns of the result {the following 15� 4 Boolean matrix:
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

K
1

K
2

K
3

K
4

In the next pi
ture of this se
tion we show the relation R as a dire
ted graph, produ
edby a spring embedder graph drawing algorithm of RELVIEW.
1

1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

In this dire
ted graph also the kernel K1 = f2; 4; 5; 7; 10; 12g of g, des
ribed by the �rst
olumn of the above kernel relation, is indi
ated by squares.Computing the kernels of a graph in the way des
ribed above, frequently may befairly ineÆ
ient. This is not the fault of relational algebra, as the problem is in fa
tNP-
omplete as shown in [12℄. For spe
i�
 
lasses of graphs, however, a 
ombination ofrelational algebra and �xpoint theory (see [23, 18℄) allows the development of eÆ
ientalgorithms for 
omputing kernels; see [20℄ for example. In the following, we present su
ha 
ase.We 
onsider again a graph g = (X;R). In 
ontrast with the �rst enumeration approa
h,however, we 
onsider now a single kernel as a ve
tor v : X $ 1. In doing so, the logi
alformulae de�ning absorbant and stable sets be
ome8 x a x ! (9 y ay ^ Rxy) 8 x sx ! (9 y sy ! R xy) :59



Translating these formulae into a notation without 
omponents, we get the two in
lusionsa � Ra and s � Rs . As a 
onsequen
e, a ve
tor k : X $ 1 des
ribes a kernel of g ifand only if k = Rk, i.e., if and only if it is a �xpoint of the fun
tion� : [X $ 1℄! [X $ 1℄ �(v) = Rv :This fun
tion is antitone (order-reversing), so A. Tarski's well-known �xpoint theorem formonotone fun
tions on 
omplete latti
es (see [23℄) 
annot be applied. We therefore studythe �xpoints of its square� 2 : [X $ 1℄! [X $ 1℄ � 2(v) = �(�(v)) = R Rvwhi
h is monotone. Suppose m�2 : X $ 1 and M�2 : X $ 1 to denote the least resp.greatest �xpoint of � 2. Then we have for ea
h kernel k : X $ 1 of g thatO � � 2(O) � � 4(O) � : : : � m�2 � k �M�2 � : : : � � 4(L) � � 2(L) � L :Also the two equations �(m�2) = M�2 and �(M�2) = m�2 easily 
an be shown. Hen
e,if the fun
tion � 2 has exa
tly one �xpoint, whi
h is equivalent to M�2 � �(M�2) or to�(m�2) � m�2 , then g has pre
isely one kernel.Using this fa
t, for instan
e, it 
an be shown that a progressively �nite graph, i.e.,a graph in whi
h all paths have �nite lengths, has exa
tly one kernel. When spe
ifyingprogressive �niteness of g = (X;R) with relation-algebrai
 means, we obtain thatv � Rv =) v = O (�)for all ve
tors v : X $ 1. Compare [5, 7℄. Now, we use the S
hr�oder equivalen
es andget RTM�2 � RM�2 from M�2 � � 2(M�2). Next, we haveRM�2 \M�2 � (R \M�2 M�2T) (M�2 \ RTM�2) Dedekind rule� R (M�2 \RTM�2) Monotoni
ity� R (M�2 \RM�2) see above.In 
ombination with the relational des
ription of progressively �niteness by impli
ation(�), we obtain the equation RM�2 \M�2 = O i.e., the in
lusion M�2 � �(M�2). Hen
e,the fun
tion � 2 and, therefore, also the fun
tion � have pre
isely one �xpoint.For the set of nodes being �nite, we have that a dire
ted graph is progressively �niteif and only if it is 
ir
uit-free. Using the RELVIEW system, therefore, we 
an 
omputethe only kernel of a �nite, 
ir
uit-free graph by the following relational program:KernelNoetherian(R)DECL k, vBEG k = On1(R);v = -(R * -(R * k));WHILE -eq(k,v) DOk = v;v = -(R * -(R * k))ODRETURN kEND. 60



This program 
omputes the kernel as the limit of the 
hain O � � 2(O) � � 4(O) � : : : forthe least �xpoint of � 2. Its run time 
omplexity is O(n3), where n is the 
ardinality ofthe set of nodes. If it is applied to the 22� 22 Boolean matrix
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

B10
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

whi
h is the matrix representation of the relation R of the mat
hes game, then we obtainthe following 22� 1 Boolean ve
tor
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

B10
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0This ve
tor exa
tly des
ribes the marked nodes of the graph representation of R given atthe beginning of this se
tion.4.3.2 Algorithms for Computing Transitive ClosuresAssume g = (X;R) to be a graph and we have to test whether there is a path between twogiven nodes. If many of su
h questions will be asked about the same graph and responsetime is 
riti
al, then it is a good idea to 
ompute the transitive 
losure R+ of the relationR on
e and for all, sin
e then subsequently queries 
an be answered by simple look-up.This works be
ause a node y 2 X 
an be rea
hed from another node x 2 X just when(R+)xy holds.To obtain a �rst algorithm for transitive 
losures, re
all that R+ is the smallest tran-sitive relation whi
h 
ontains the relation R. Therefore, we haveR+ =\fQ : R � Q;QQ � Qg =\fQ : R [QQ � Qg :Looking to A. Tarskis �xpoint theorem for monotoni
 fun
tions on 
omplete latti
es [23℄,from the third expression of this equation we obtain R+ as the least �xpoint �� of the61



monotone fun
tion� : [X $ X℄! [X $ X℄ �(Q) = R [QQ ;on relations, i.e., as the limit of the 
hain O � �(O) � �2(O)) � : : : whi
h is �niteprovided the node set X of the graph is �nite. With the RELVIEW system, this limit
an be 
omputed by the following relational program:TransCl(R)DECL Q, SBEG Q = O(R);S = R;WHILE -eq(Q,S) DOQ = S;S = R | Q * QODRETURN QEND.Obviously, the run time 
omplexity of TransCl is O(n3 logn), where n is the 
ardinalityof the set of nodes.A more eÆ
ient algorithm for 
omputing transitive 
losures was proposed by S. War-shall [25℄. It relies on a 
lever problem generalization similar forms of whi
h o

ur inmany transformational developments. Relational algebra allows us to 
apture this ideain a 
on
ise 
al
ulation, 
ompletely avoiding informal ad-ho
 arguments about the exis-ten
e of paths and intermediate nodes. In the following, we show how formally to developWarshall's transitive 
losure algorithm from a spe
i�
ation by 
ombining relational alge-bra and well-known te
hniques that aid the 
onstru
tion of imperative programs. Thesete
hniques 
an be tra
ed ba
k to [10℄.Our problem is to �nd a relational program with a parameter R of type [X $ X℄ anda relation-valued lo
al variable Q of the same type, su
h that after the exe
ution of itsbody the post
ondition (spe
i�
ation)post(R;Q) :() Q = R+holds1. As a generalization of this post
ondition, we 
onsider for a ve
tor v : X $ 1 theformula Inv(R;Q; v) :() Q = (R Iv)�R ;where Iv = I\v vT is the partial identity given by v. This formula is the relation-algebrai
des
ription of the fa
t that Q 
onsists of the pairs hx; yi 2 X � X of nodes for whi
hthere exists a path from x to y in g = (X;R) the \inner" nodes of whi
h are from the setdes
ribed by v. Hen
e, we suppose the relational program to be developed to 
ontain inaddition to Q a ve
tor-valued lo
al variable v.1Usually, a spe
i�
ation of an imperative program 
onsists of a post
ondition and a pre
ondition, butin our spe
i�
 
ase the latter one may be assumed as formula True.62



From (R IL)�R = R�R = R+ we obtain that Inv(R;Q; v) and v = L imply the post-
ondition post(R;Q). Guided by this fa
t, we 
hoose Inv(R;Q; v) as invariant and v = Las negation of the guard of the while-loop and look { in the notation of RELVIEW { fora relational program of the following form:Warshall(R)DECL Q, vBEG � initialization�;WHILE -eq(v,L(v)) DO� loop body�ODRETURN QEND.It remains to �nd an initialization whi
h establishes the invariant, and a loop body whi
hmaintains it.Due to the equation R = O�R = (R IO)�R we have Inv(R;R;O) and it seems reason-able to 
hoose, again in RELVIEW notation, the assignmentsQ = R; v = On1(R)as initialization. Sin
e then the while-loop starts with the empty ve
tor, a natural 
hoi
efor the variant fun
tion is v 7! v [ point( v ) as this ensures its termination if the graph is�nite. For the following 
al
ulations, we introdu
e p as shorthand for point( v ).Assume v 6= L and the invariant Inv(Q;R; v). Then the point p is de�ned. To workout the loop body, we will use the star de
omposition rule (S [ T )� = (S� T )� S� andthat (S wwT)� = I [ S wwT for any ve
tor w. A proof of the �rst equation 
an be foundin [21℄, the latter equation immediately follows from the fa
t that S wwT is transitive.Next, we have for the partial identities Iv and Iv[p the relationshipIv [ p pT = (I \ v vT) [ p pT= I \ (v vT [ p pT) as p pT � I due to (E2)= I \ ((v [ p) (v [ p)T) (E1) implies v pT � I and p vT � I= Iv[pas expe
ted. Using it, we are able to derive the equation(R Iv[p)�R = (R (Iv [ p pT))�R= (R Iv [Rp pT)�R= ((R Iv)�Rp pT)� (R Iv)�R star de
omposition rule= (I [ (R Iv)�Rp pT) (R Iv)�R (S wwT)� = I [ S wwT= (R Iv)�R [ (R Iv)�Rp pT (R Iv)�R= Q [Qp pTQ assumption Inv(Q;R; v);whi
h shows that also the formula Inv(R;Q [ Qp pTQ; v [ p) holds. As a 
onsequen
e,the following loop body in RELVIEW notation maintains the invariant:Q = Q | (Q * point(-v)) * (point(-v)^ * Q); v = v | point(-v)63



Completing now the above program fragment by the initialization and the loop body just
al
ulated and introdu
ing after that an additional variable p to avoid multiple evalua-tions of the relational term point(-v), we obtain the following relational program for
omputing the transitive 
losure of a relation:Warshall(R)DECL Q, v, pBEG Q = R;v = On1(R);WHILE -eq(v,L(v)) DOp = point(-v);Q = Q | (Q * p) * (p^ * Q);v = v | pODRETURN QEND.In the se
ond assignment of the loop body, we have both produ
ts Q * p and p^ * Q putin parentheses so that the new value of the lo
al variable Q in ea
h turnaround of thewhile-loop 
an be 
omputed in time O(n2), where n is the number of nodes of the graph.Hen
e, the relational program Warshall runs in time O(n3).As a 
on
rete RELVIEW appli
ation, we present the following dire
ted graph produ
edby the layer graph drawing algorithm of the system:
1

2

3

4

5

6

7

8

9

10This dire
ted graph represents the transitive 
losure of that relation whi
h is depi
ted asa sub-graph by the boldfa
e edges.4.3.3 An Algorithm for Finding CutnodesWe 
all a graph g = (X;R) simple if its relation R : X $ X is symmetri
 (RT � R) andirre
exive (R � I ). A node x 2 X then is said to be a 
utnode (or arti
ulation node)of g if the sub-graph generated by the set X n fxg 
ontains more 
onne
ted 
omponents64



than g. This 
on
ept serves for determining \how tightly" a graph is 
onne
ted. It isimportant in many pra
ti
al appli
ations of graph theory, e.g., in transport networks.Given a simple graph g = (X;R), we want to develop a relation-algebrai
 des
riptionof the ve
tor of all 
utnodes. A little re
e
tion shows that a node x 2 X is a 
utnodeif and only if it 
annot \bypassed", i.e., there exist di�erent nodes y 2 X n fxg andz 2 X n fxg su
h that ea
h path from y to z 
ontains x. Now, we interpret x as arelational point p : X $ 1 and 
onsider the relation (inj( p )R inj( p )T)+ \ I whi
h relatesa node y 2 X nfxg to a node z 2 X nfxg if and only if y 6= z and there exists a path fromy to z in g whi
h does not 
ontain x. Obviously, it is in
luded in inj( p )R+ inj( p )T \ I ,sin
e this relation relates y 2 X n fxg to z 2 X n fxg if and only if y 6= z and there existsa path from y to z in g. The reverse in
lusion is equivalent to the fa
t that the node x
an be bypassed. As a 
onsequen
e, we have(inj( p )R inj( p )T)+ \ I 6= inj( p )R+ inj( p )T \ I () p is a 
utnode :Now, we use L : 1 $ 1 and O : 1 $ 1 as truth values (see Se
tion 2.3.5), the equalitytest eq, and a fun
tion Del(R; p) = inj( p )R inj( p )T for deleting from R all edges whi
hare in
ident with the node des
ribed by p. Then, we get from the aboveIsCut(R; p) = eq(Del(R; p)+ \ I ;Del(R+; p) \ I ) : 1$ 1as relation-algebrai
 test of a point p : X $ 1 to be a 
utnode of the graph g = (X;R).The relation-algebrai
 des
ription of the ve
tor of 
utnodes we are sear
hing for followsimmediately from this test. We use that the node set X in the set-theoreti
 sense isisomorphi
 to the disjoint union Px2X 1 of jXj 
opies of the spe
i�
 singleton set 1.Identifying X and this disjoint union, we then get the ve
tor of 
utnodes asCutVe
tor(R) = Xp2P(X) IsCut(R; p) : X $ 1 ;i.e., as the jXj-ary relational dire
t sum (for the binary 
ase, see Se
tion 2.4.2) of thetruth values IsCut(R; p), where p ranges over all points from [X $ 1℄.To implement CutVe
tor in RELVIEW, we use the base operation for binary dire
t sumin 
ombination with the base operations for generating sets and a while-loop to 
ompute�nite dire
t sums. This leads to the following relational program:CutVe
tor(R)DECL Ipa(R) = R & -I(R);Del(R,v) = inj(-v) * R * inj(-v)^;IsCut(R,p) = -eq(Ipa(trans(Del(R,p))),Ipa(Del(trans(R),p)));
, pBEG p = init(Ln1(R));
 = IsCut(R,p);WHILE -empty(next(p)) DOp = next(p);
 = 
 + IsCut(R,p)ODRETURN 
END. 65



Sin
e transitive 
losures 
an be 
omputed in 
ubi
 time, its run time 
omplexity is O(n4),where n is the 
ardinality of the set of nodes.The next pi
ture shows a symmetri
 and irre
exive relation R as a 16 � 16 Booleanmatrix whi
h rows and 
olums are labeled by the numbers from 1 through 16.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If we evaluate the relational term CutVe
tor(R) with RELVIEW and after that add therow labels of R also to the rows of the result, on the window of the relation editor we seethe following 16� 1 Boolean ve
tor:
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16From this ve
tor we see that the graph 
orresponding to R has four 
utnodes, viz. 1, 5, 10,and 14. In the following pi
ture, the drawing of whi
h was supported by the grid fa
ilityof the RELVIEW graph editor, these nodes are drawn as squares.

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

We will 
lose this se
tion with a remark on the 
on
ept dual to 
utnodes. Of 
ourse, ifone removes an edge instead a node, then the number of 
omponents may in
rease, too.66



In this 
ase, the edge is 
alled a bridge. Sin
e an edge is a bridge if and only if it 
annotbypassed, it is obvious that our approa
h for �nding the 
utnodes of a simple graph 
analso be used for 
omputing its bridge relation.
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5 Con
luding RemarksIn this report we have given a des
ription of the 
omputer system RELVIEW in
lusivea user's manual and some examples and have also informed about the theoreti
al ba
k-ground. Besides the experiments des
ribed in the last se
tion, a lot of other 
ase studieshave been performed with the present RELVIEW system or its prede
essors. These in-
lude, for example, further graph-theoreti
 questions and algorithms (see [24, 15, 27℄) orrelational semanti
s (see [26℄). At Kiel University, RELVIEW was and is also applied inedu
ation, i.e., in le
tures and seminars.It turns out that RELVIEW is a good tool for the intera
tive manipulation of relationsand supports many di�erent prototyping tasks within nearly all stages of a developmentof a relational program. Its real attra
tion is its 
exibility sin
e this property allows toexperiment with new relational 
on
epts as well as relational spe
i�
ations and programswhile avoiding unne
essary overhead.Let us 
lose with a few remarks on further developments 
on
erning RELVIEW. Of
ourse, a main improvement is possible in the graph layout. Presently, �ve di�erentgraph drawing algorithms are available. Here we plan to in
lude further fa
ilities foran aestheti
 layout of graphs, e.g., planar drawing or orthogonal grid drawing. Anotherwork to be done in the future 
on
erns the error messages of the parser. In the presentRELVIEW version, they are not always as helpful as they should be. E.g., when readinga synta
ti
ally faulty program from a �le, the line number indi
ating the error is oftenina

urate. Sin
e no further hint is given, this may not be very helpful. It is plannedto improve this in a future RELVIEW version. A third future extension of RELVIEW
on
erns the interfa
e with other systems. E.g., an interfa
e to the relational formulamanipulation system and proof 
he
ker RALF (see [13℄) is planned. Sin
e the xrv-�les
reated on a Sun SPARC station with Solaris and the xrv-�les 
reated on a Linux systemare not inter
hangable, presently, we work on tools for 
onverting relations and graphs
ontained in a xrv-�le into ASCII format and vi
e versa. Besides data transfer betweenSolaris and Linux, this also allows to produ
e big relations and graphs to be manipulatedwithin RELVIEW using a 
onventional programming language.
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A Con�guration of RELVIEW { Resour
esAs des
ribed in detail in Se
tion 3.19.1, the RELVIEW system 
an be 
on�gured bysetting resour
es in a 
on�guration �le. If a resour
e is not expli
itly set, the systemuses a default value as shown in the list below. The following resour
es are supported byRELVIEW:Resour
e example (default)# Size and position of# the graph editor window:�relview.graph.xv width: 300 (400)�relview.graph.xv height: 300 (400)�relview.graph.xv x: 760 (10)�relview.graph.xv y: 490 (10)# Size and position of# the relation editor window:�relview.relation.xv width: 300 (400)�relview.relation.xv height: 300 (400)�relview.relation.xv x: 760 (10)�relview.relation.xv y: 160 (10)# Size and position of# the menu-window:�relview.xv width: 245 (340)�relview.xv height: 220 (750)�relview.xv x: 760 (10)�relview.xv y: 0 (10)# Size and position of# the dire
tory window:�relview.dir.xv width: 330 (450)�relview.dir.xv height: 600 (950)�relview.dir.xv x: 600 (10)�relview.dir.xv y: 10 (10)# Number of lines in the various# s
roll lists in the dire
tory window:Rel dir.Lines: 5 (10)Fun dir.Lines: 5 (10)Prog dir.Lines: 5 (10)Dom dir.Lines: 2 (3)# Spe
i�
 button-resour
es:# button-width (panel label width)# A value of 0 means that the width of the71



# button depends on the width of the text# in the button.# xv x and xv y de�ne the position of the# button relatively to the top left 
orner# of the window.# Buttons of the menu window:�relview�.�les button.panel label width: 0 (40)�relview�.�les button.xv x: 8 (8)�relview�.�les button.xv y: 4 (4)�relview�.info button.panel label width: 0 (40)�relview�.info button.xv x: 130 (176)�relview�.info button.xv y: 4 (4)�relview�.quit button.panel label width: 0 (40)�relview�.quit button.xv x: 190 (260)�relview�.quit button.xv y: 4 (4)�relview�.rel button.panel label width: 0 (40)�relview�.rel button.xv x: 8 (8)�relview�.rel button.xv y: 68 (68)�relview�.graph button.panel label width: 0 (40)�relview�.xrv button.panel label width: 0 (40)�relview�.xrv button.xv x: 8 (8)�relview�.xrv button.xv y: 132 (132)�relview�.label button.panel label width: 0 (40)�relview�.fun button.panel label width: 0 (40)�relview�.fun button.xv x: 8 (8)�relview�.fun button.xv y: 196 (196)�relview�.eval button.panel label width: 0 (40)�relview�.iter button.panel label width: 0 (40)�relview�.test button.panel label width: 0 (40)�relview�.test button.xv x: 8 (8)�relview�.test button.xv y: 228 (228)�relview�.or button.panel label width: 0 (40)�relview�.or button.xv x: 8 (8)�relview�.or button.xv y: 292 (292)�relview�.and button.panel label width: 0 (40)�relview�.neg button.panel label width: 0 (40)�relview�.komp button.panel label width: 0 (40)�relview�.trans button.panel label width: 0 (40)�relview�.lres button.panel label width: 0 (40)72



�relview�.lres button.xv x: 8 (8)�relview�.lres button.xv y: 356 (356)�relview�.rres button.panel label width: 0 (40)�relview�.syq button.panel label width: 0 (40)�relview�.trans
 button.panel label width: 0 (40)�relview�.trans
 button.xv x: 8 (8)�relview�.trans
 button.xv y: 420 (420)�relview�.re

 button.panel label width: 0 (40)�relview�.symm
 button.panel label width: 0 (40)�relview�.dom def button.panel label width: 0 (40)�relview�.dom def button.xv x: 8 (8)�relview�.dom def button.xv y: 484 (484)�relview�.dom ord button.panel label width: 30 (40)�relview�.1st button.panel label width: 30 (40)�relview�.2nd button.panel label width: 30 (40)�relview�.p1 button.panel label width: 30 (40)�relview�.p1 button.xv x: 8 (8)�relview�.p1 button.xv y: 548 (548)�relview�.p2 button.panel label width: 30 (40)�relview�.ptup button.panel label width: 30 (40)�relview�.s1 button.panel label width: 30 (40)�relview�.s1 button.xv x: 8 (8)�relview�.s1 button.xv y: 612 (612)�relview�.s2 button.panel label width: 30 (40)�relview�.stup button.panel label width: 30 (40)�relview�.epsi button.panel label width: 0 (40)�relview�.epsi button.xv x: 8 (8)�relview�.epsi button.xv y: 676 (676)�relview�.partf button.panel label width: 0 (40)�relview�.totf button.panel label width: 0 (40)�relview�.inj button.panel label width: 0 (40)# Resour
es for the �le-
hooser:# position and size of the window��le 
hooser.xv x: 10 (10)��le 
hooser.xv y: 10 (10)��le 
hooser.xv width: 580 (580)��le 
hooser.xv height: 300 (300)# Positions of the s
roll lists: 73



�dir list.xv x: 10 (10)�dir list.xv y: 10 (10)��le list.xv x: 250 (250)��le list.xv y: 10 (10)# Positions of the input �elds:�name �eld.xv x: 10 (10)�name �eld.xv y: 240 (10)��lter �eld.xv x: 10 (10)��lter �eld.xv y: 270 (270)# Button width and position:�load button.panel label width: 50 (50)�load button.xv x: 500 (500)�load button.xv y: 20 (20)# Label of load button:Load.Label: LOAD �.� (LOAD �.�)�save button.panel label width: 50 (50)�save button.xv x: 500 (500)�save button.xv y: 50 (500)Save.Label: SAVE �.xrv (SAVE �.xrv)�
an
el button.panel label width: 0 (50)�
an
el button.xv x: 500 (500)�
an
el button.xv y: 100 (100)Can
el.Label: CANCEL (CANCEL)# Buttons for prede�ned �lter values:# (button width and position)�xrv button.panel label width: 60 (50)�xrv button.xv x: 500 (500)�xrv button.xv y: 150 (150)�prog button.panel label width: 60 (50)�prog button.xv x: 500 (500)�prog button.xv y: 190 (190)�label button.panel label width: 60 (50)�label button.xv x: 500 (500)�label button.xv y: 230 (230)
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# Labels of �lter buttons:Xrv.Label: �.xrv (�.xrv)Prog.Label: �.prog (�.prog)Label.Label: �.label (�.label)B Example of a Start-up FileThis se
tion shows a number of fun
tions whi
h normally are stored in a �le "start up.xrv\resp. ".start up.xrv\ and loaded into the system at startup time. Startup �les are de-s
ribed in detail in Se
tion 3.19.2.Name andparameters Relational term Meaningmax(X,Y) min(Y^,X) Maximal elements of a set wrt. an ordermin(X,Y) Y&((X&{I(X))\{Y) Minimal elements of a set wrt. an orderma(X,Y) mi(X^,Y) Upper bounds of a set wrt. an ordermi(X,Y) X/Y^ Lower bounds of a set wrt. an ordersup(X,Y) inf(X^,Y) Least upper bound of a set wrt. an orderinf(X,Y) ge(X,mi(X,Y)) Greatest lower bound of a set wrt. an orderge(X,Y) le(X^,Y) Greatest element of a set wrt. an orderle(X,Y) Y&mi(X,Y) Least element of a set wrt. an ordert
(X) trans(X) Transitive 
losurert
(X) refl(trans(X)) Re
exive-transitive 
losures
(X) X|X^ Symmetri
 
losurer
(X) refl(X) Re
exive 
losureae
(X) rt
(s
(X)) Equivalen
e 
losure
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