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Abstract

Object identification by abstract identifiers should be @dered as a modeling and not
as a database concept. This means that object identifiersoaigpropriate for the ac-
cess to specific objects using a database language. In {hés p& discuss how the rela-
tional concept of a functional dependency can be adaptedjertodatabases in order to
get more convenient ways of accessing objects. Graph bédgect dunctional dependen-
cies are proposed as a means to specify constraints betitgbutas and object types of
an object schema. Value based identification criteria caddfi@ed using a special type
of object functional dependencies. Different definitiofisatisfaction are given for these
constraints, based on a so-called validation relationla@idrelationships are investigated.
These definitions are related to different forms of iderdiiten. Using the strongest notion
of satisfaction, inference rules for the derivation of nespé@ndencies are discussed with
emphasis on the characteristics of rules combining two ri#ggrecies, like the transitivity
rule. In addition to generalized relational rules furthges are needed, mainly concerned
with transition from the object type level to the attributeel and vice versa.

Keywords: object oriented data models, object functional depené@snealue based iden-
tification, identification criteria, keys, inference rules
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Functional Dependencies for Object Databases:
Motivation and Axiomatization

1 Introduction

One of the fundamental concepts of object orientation is object identity ([CK&&)lolvs to
distinguish objects even if they coincide in their values. In data models ltistsaat concept
is often realized by object identifiers or surrogates, i. e. by internal fiknsti(e. g. [AH84],
[AK89], [Cod79], [HOT76], [HY91], [MW9O0]). Here, internal means that the quagduage
of a data model does not provide direct access to the identifiers. Sometimesanggdes
have the capability of retrieving an arbitrarily chosen object from a set ettdjcomparable to
selecting a copy of a book to be borrowed from a number of copies available in g.liblas,
however, is a random selection and no identifying access. In general, apgigingttieval
operation twice to the same set would result in two different objects.

A major goal of database design is to define object and relationship types in sughthatva
they represent meaningful units of information with respect to the semantibs ohderlying
application domain. Thus, it should be possible to address objects by specifying sdmeé of t
properties at the level of values and relationships according to these seomatgi This shows
that object identifiers are a modeling concept and not a database concept ([Wdd®1hisF
reason starting the search for an object with a set of values should be poddihifying
values either give direct access to a single object or they define objectstagygpoints for the
retrieval of an object by navigation along links between objects in the givebaksa
Especially in the case of object oriented database design and relationaierghtion, knowl-
edge about the accessibility of objects based on their data values is of gresdtirdgplication
domains often suggest natural value based identification criteria (VBF@sn the user’s point
of view these criteria are preferable to abstract object identifiere shey carry semantics of
the modeled domain.

The significance of value based identification mechanisms for objects has bpkastrad by
several authors (e.g. [AVdB95], [Bee93], [Gog95], [Kim95], [STO3]). HoemrVless work has
been done in characterizing and investigating reasonable forms of VBIC#h¢ogath their
interaction. A further interesting problem is how the structuring of data in amcblbyiented
schema, e. g. inheritance, influences value based identification.

Some examples of VBICs to be covered by a more general theory of constraints arb/ewth
and value level are given in Figures 1 and 2: hotels offer rooms in differéegaaes, e. g.
single and double rooms (Figure 1 (a)). The valueSafommodatioattributes cannot be used
as entry values to access a singlecommodatiorobject because different hotels may offer
rooms in the same category. Hotel object together with a value feoom category however,
uniquely identifies al\ccommodatiombject. Ifnamels a key forHotel, i. e. Hotel objects are
identified by theimamevalue,room categoryandnamecan serve as a VBIC fokccommoda-
tion. Consider the schema in Figure 1 (b), representing information about differectiesof
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Hotel Accommodatio Branch Clerk Customer
name 1n 1n room_category street 1 1,n | emp_no 1n n | c_no
sfreet ff total budget name name
city ofters occupied o employs skills consults address
’ reserved T remarks
a
{xor}
/I -- -~~~ ~"~""~"~"~"~" """~ " 7" =" ~" =" =" "=~ =°=7°- I
I I
Rental l Apartment_Unit l Purchase
0,1 | 1 1 | 0,1
r_contract_no building p_contract_no
rent rented floor sold price
(c)

Figure 1: Some examples of VBICs

a bank. A customer may have accounts at different branches. At each branch &ng ater
signed to her or him as investment consultant. ThereBoaachandCustomeiobjects together
determineClerk objects. Ifstreetandc_no are keys foBranchand Customey respectively, a
VBIC for Clerkis given. This provides an additional identification criterion besides the obvious
identification ofClerk by empno, which may be useful for some applications. Neitb&eet

nor c_noalone is sufficient to identifClerk objects.

Figure 1 (c) shows an example of a different form of identification: apartmarasbuilding
are either rented or condominium apartments. Therefore the number of the leasesaethe
contract can be used to distinguigipartmentUnit objects by value, leading to a “disjunc-
tive identification” of apartments either iRentalor by Purchase The exclusive-or constraint
between the relationshipentedandsoldis expressed by the dotted line with constraint type
specified agxor} (cf. [Rat97]).

Assume that a building contractor runs, via subcompanies, some of the apartmentsifie bui
He offers this service also to private investors who bought an apartment Imdt decupy it
themselves. So Rental Institutions specialized either ttnvestoror to Administering Com-
pany, as shown by the mandatory inheritance hierarchy in Figuhev2storis a specialization
of type Buyerand Administering Compangn optional specialization of tygfgubcompanynot
every subcompany is an owner of apartmerBslyerandSubcompangbjects are distinguish-
able by theirbuyerno andcompanyno value, respectively. The attributes are inherited to the
specialized types therefore also providing VBICslforestorand Administering Companye-
spectively. In this scenario, value based identificatiorRehtal Institutionobjects becomes

| ! |
Buyer Rental I
Lo yer - Institution ;‘T’HQCPWP?W
! buyer_no | ! company_no
I . | i . |
I I
| | | |
Lo - ! ‘ [ —— _
A A
7777777 o 1 01
i | o T T
| | !
- ——— L ! L
' Occupying | Investor Administering
. Buyer Company

,,,,,,,,,

Figure 2: VBIC through inheritance

2



possible since everRental Institutionobject is specialized. This leads to “identification by
generalization/specialization”, similar to the disjunctive critpriesented in Figure 1 (c).

One simple approach to provide value based identification of objects (espacatierning
relational implementation) is to introduce an artificial identifier bttteé ([HY91], [RBP91]),
i. e. to make the abstract identifier visible. This approach should not be regardaldia based
identification in the original sense because it does not refer to the valueslatidnships of
the objects themselves. The other extreme is to use the complete objeciovatlentification,
including references to other objects recursively ([AK89], [AVdB95], [E3}), leading to the
notion of deep equality of objects. This is a very general way to identify ob@ctslues.
However, deep equality takes into account only references starting fravbject and there-
fore does not consider the complete “relationship environment” of an object, siiecernrees
directed towards the object are ignored. From a practical point of view the use adrtifdete
object value as a VBIC, including all relationships to other objects, is inap@ateprThus, the
guestion how to determine VBICs similar to the key concept of the relational datdel is
raised. A reasonable solution should lie between these two extremes by expditieatures
of the object oriented data model.

In [Che76] a relationship with cardinality restricted to 1, i. e. repnéisig a function between
entity sets, may contribute to obtain a key for an entity type (so-caleak entity typesimilar
to the example in Figure 1 (a)) by using the key of another entity type related Thét idea
of using relationships to find VBICs was applied in [Zan79] to determine keys &ards in
a network schema. There not only record types of a single set type were takendotmtac
but also record types reachable via a sequence of set types. In [ST93] thisdingogas ap-
plied to object oriented schemas using a sequence of relationships betwees,clasluding
inheritance. More general approaches to determine keys are presented by abvstoxaulas
and object terms in [AVdB95] and [Gog95], respectively. However, there iurtber con-
sideration on how to determine the proposed terms and how to distinguish difkandatof
identification terms. In the following we propose an approach to this mattgehgralizing
functional dependencies to object schemas (cf. [KR97]).

The paper is organized as follows: the next section introduces some basic notionsigettte
model we use, including a formalization of the terms object schema and schepia gsa
well as some concepts of the relational data model. Sections 3 and 4 describe @achppr
to generalize functional dependencies to object functional dependencies. These geph ba
constraints are spanning trees of subgraphs of the schema graph. Different sefoantgect
functional dependencies, corresponding to different notions of identification, are siddus
Section 5, including some remarks on effects that have to be taken into accdepeifdencies
involving more than one object type are considered. In Section 6 inference rulebjéat
functional dependencies generalizing the well-known relational rules arstigated together
with additional inference rules which become necessary for object functionaldepaes. We
conclude with some remarks on related topics and an outlook on future work.

2 Preliminaries

The object model used in our approach is similar to the static part of the Objedt¢lvig
Technique ([RBP91], [Rat97]). We start with a formal description of the model.



2.1 Objectschemas

An object schema@onsists of a finite number of named object typesl binary relationships
between these types, including inheritance. For our purposes it is sufficient tal@oasi
inheritance hierarchy as a set of binary relationships with additional caitglinahstraints for
mandatory and optional hierarchies. An object type is a (@iattr(O)), whereO is the type

name andattr(O) is a finite set of attributewith a non empty atomic domain assigned to each
attribute. In the following we will identify an object type with its namearder to simplify
notation. Relationships may have cardinalitees additional constraints. For simplicity we
assume the names of object types, relationships, and attributes to be unique throughout the
schema.

Let 1 be a countable infinite set of object identifierAn objecto of type O is a pairo =
(i,v) with i € 1 andv a tuple overattr(O), called object value The extensiomxtO) of an
object typeO is a finite set of objects of typ®. Identifiers are assumed to be unique within
ext(O). Let|(ext(O)) denote the set of object identifiers occurringeixi O). The extension
ext(r) of a relationship between two object type®;, O2 with extensionextO1), ext(O2)

is a finite set of links(i,i2) € I x I whereiy € [(ext(Oy)), i2 € 1(ext(O)). If a cardinality
constraint is specified farthen each extension ohas to comply with the constraint. The state
s(s) of an object schems consists of an extension for every object type and every relationship
of s wherel (ext(O1)) Nl (ext(O2)) = @ for each pair of different object typ&3, O, of 5. The
extension of an object typ@ can be represented by a relation over attributdisief} U attr(O),
whereidg is an attribute with domaim. With this view the abstract object identifier becomes
visible.

The schema grapB; of an object schema is a labeled grapfV, E,|) where the set of nodes
V corresponds to the object typesoénd where the set of edgesepresents the relationships
of s: {O1,0,} € E iff a relationship betwee®; and O, exists ins. | is an edge-labeling
function withl(e) = r iff e € E corresponds to relationshipof 5. A pathin G; is a sequence
M=0160;...en-10nWithGj €V, e € E, ) = {0j,0j41},ie{1,....,n}, je{1,...,n—1}.
Let a state for schemabe given. A link chair{with respect td1) between objects; € ext(O;)
ando,, € ext(On) is a sequence= 01110>. . .In—10, such thab; € ext(O;) andlj € ext(r;), where

lj is the pair of identifiers 0b; andoj 1, andrj is the label of edgej. For an object typ®,
let setg0) := 22(O) J {{O}} andsets (O) := set$0) \ {@}. O will be written as shorthand
notation for the singletofiO}. For a given object schersa let OT; be the set of all object types
of s and D = Uocor, set¢0). We shall assume an object schema to be non empty, i. e. it
contains at least an object type.

2.2 Relational notions

Let B = {B1,...,Bm}, m> 1, be a finite set of attributes with domain functidom: 3 —
{D1,...,Dx}, k> 1, where each; is a non empty domain of atomic values. A tuplerfis a

functiont : B— (JX_; »; with t(B) € don(B) for eachB < . In examples it will be written in the
usual tuple notation. A partial tupteoverf3 is a tuple ove with t(B) € domB) ort(B) unde-
fined. Undefined values are represented by the special symbd\ (partial) relationoverf is
a finite set of (partial) tuples ov@r Tuplet overistotalon{ C Biff tis defined for eaclt € (.
tis undefinedn { iff t is undefined for each attribu@c . t|; denotes the restriction oto at-
tribute set{. For a relatiorR over3 and an attribute s C B, the strong null filteSNHR ')

4



denotes the set of all tuples Bfwhich are total of’. The weak null filteMNF(R, ') denotes
the set of all tuples oR which are not undefined dBi. For a relatiorR, ar denotes the set of
attributes oR. If Ris a relation an@® C ar, thenR[p] denotes the usual projectiofR onto3.
Lett, t’ be partial tuples oveB. t’ subsumeson C Biff (VC e {)(t'(C) =t(C) Vt(C) ='-).
To give an example, lef = (1,2,3),to = (1,2,—), t3 = (1,—,3), andty = (—,2, —) be tuples
over the same attribute set. Thigrsubsumes, to, t3, andty, t; subsumes, andts, but neither
doest, subsumés nor doeds subsume.

Let ext{O) be an extension of an object tyji@ The relational representatiale,y o) of
ext(O) is the relationR with ar = {ido} U attr(O) and R = {t|t tuple overar A (3(i,V) €
ext(O))(t(ido) =i Atfatr(0) = V) }- ido is called identifier attributeThe attributes fromattr(O)

are called value attribute¥he domains of the relational attributes are given by the domains of
the corresponding object type attributes. For every relationshgiween object typed; and

O,, ext(r) is a set of links which may be considered as relational representtitself with
attribute sef{ido,,ido, }, denoted ageleyr).

3 Extending functional dependencies to objects

A straightforward approach to the specification of VBICs for objects typdwigéneralization
of functional dependencies (FDs) known from the relational model. This proceedimgsat
take advantage of the well-founded theory of FDs.

Consider a relatioRR with attribute setigr and an FDf : 3 — ywith B,y C ar. f refers only

to attributes ofur and whetherf is satisfied in a given relational database state is dependent
only onR and independent of any further relations in the state. A straightforward afpmhica
of this concept to object schemas leads to a constraint on object type levéfti.and right
side of an FDf’ may not only refer to attributes @& but also to the object type itself, by
regarding the internal identifier as a special attribdte: 3’ — y with ', y C attr(O) U {O}

for some object typ® of a schemas. This allows to express constraints stating that objects
of O are distinguishable (identifiable) by their value or a part thereof in the saypasvaiples

in a relation can be distinguished by looking at their values in key attributess restricted

to local identification ofO by its own attributes only, like common FDs as intra-relational
integrity constraints on a single relation type. However, if the attrivalees of an object
are not sufficient to identify it in the extension©fin a states(.s ), relationships to other objects
and the values of these objectssig ) can be taken into account. The simplest example for this
kind of identification is the weak entity concept of the Entity-Relationship Mof{&h€76]).
Generalizing this approach leads to FDs of the fdfm A — I, with A, C D, where any
object type ofs may contribute tad\ andrl", resulting in a dependency on schema level similar
to inter-relational constraints. Object types between which such kind of depgndgists do
not have to be directly connected in the schema gfapha path between them is sufficient.

Between any two object types appearingiar between any object type Afand a type appear-

ing in I more than one path may exist@y. In schema (a) from Figure 3 for example, there
are two different paths (vi@, g and viar, s, t) for the FD{O;} — {Ogs}, connectingO; and

Os. For schema (b) and FPO1,D} — {L}, two paths connectin@s; with Og and two paths
betweerO; andO3 can be found. Usually, different paths correspond to different semantics and
a database modeler has one of these paths in mind when specifying a dependenay82}). [Li
This ambiguity is also known from the universal relation approach ([MUV83Jviously an
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Figure 3: Ambiguity of an FD at schema level

FD can be satisfied with respect to one path and not with respect to anothesasie®wn by
the following example:

Example 3.1:Consider the object typd3,, O2, O3 from Figure 3 (b) with extensions

eXt(Ol) = {(17 Vl)v (27 Vz), (37 V3)}7 eXt(Oz) = {(47 V4)7 (57 V5)7 (67 Vﬁ)}v
eXt(O3) = {(77 V7)7 (87 V8)}7 eXt( p) = {(17 4)7 (27 5)7 (37 6)}7

eXt(r) = {(17 7)7 (27 7)7 (37 8)}7 EXt(C]) = {(47 7)7 (57 8)7 (67 8)}

AnFDg: {O1} — {O2} viarelationshipp obviously holds for the given extensions sio# p)
represents a one-to-one relationship. Using relationghigsd g, g does not hold because
objects(5,vs) and(6,vs) have links to the sam@s- andO1-object and from there cannot be
distinguished by looking at th®1-objects associated to them. m

On the other hand there has to exist at least one path between each pair ofypeieeiipearing
in A and also a path between the typed odind the types ofA. Otherwise,f” would state a
dependency on object types without a path of relationships between these, i. e nbgpee
in different components db;. Thus, paths have to be specified together with FDs.

For a generalization of FDs, a graph based approach seems to be appropriatenithdba
mentioned problems, leading to the notion ofaject functional dependencyiere we con-
centrate on a restricted form of such dependencies without cycles.

Definition 3.1: Let.s be an object schema with schema gr&h= (V,E,l). An object func-
tional dependencyOFD) of s is an edge- and node-labeled grajpk: (G¢,v¢) with the fol-
lowing properties:

(i) The OFD graptGs = (Vi,Es,l¢) is an edge-labeled spanning tree of nodé&et V in
G, with Vs #£ @. |1 is the restriction of to Es.

(i) vi: Vs — D x D5 is a partial node-labeling functicsuch that for eaclo € Vi with v¢
defined and/¢(O) = (3,y) holds: 3,y € set$0) anddUy+# &. v¢ has to be defined at
least for every leaf nodeof Gs.

O with v¢(O) = (8,y) andd # @ (y+# @) is called source (sink) object tye# G or simply
source (sink) type.

v¢ induces two partial function\ss‘f :=Mjovy, i € {1, 2}, with IM; being thei-th projection.
Each component functioﬂf is undefined if the corresponding component ofilevalue is the
empty set or ifv; is undefined itself. o

1For a graph consisting of a single node, the node will be cemeil as a leaf, too.
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(Hotel /) (room_category / Accommodation) (street /) (/ Clerk) (c_no/)

Hotel ———  — Accommodation Branch—— Clerk ———— Customer
offers employs consults

@) (b)

Figure 4: Examples of OFDs

The descriptions of node labels by or v} andv? are equivalent and will be used both. The
specification of OFDs by spanning trees of nodes of the schema graph guarantees¢hat the
are no ambiguities with respect to the connections between sink and sourceTipasode-
labeling function serves two purposes: it allows to separate object typesllpaised by an
OFD, i. e. those determined by or determining an object type or values therewr tfiose

only connecting such types @¢: for the latterv¢ is undefined. Moreovex,s denotes which
parts of an object type are used to determine other types (first label componentchrami
determined by other types (second component). Since an object type can be a sourte as we
as sink type (e. g. object typ&ccommodatiomn Figure 1 (a)), the node labels are chosen as
pairs. Leaf nodes are required to be labeled because only spanning trees of suctishade s

to be considered where each leaf node contributes to the dependency, i. e. the tyjileutes

of it appear in the OFD. The OFDs corresponding to the examples from Figure 1 (@))amd
shown in Figure 4.

Each component of a node label consists either of an attribute set or of the objedsglpe i
Attributes are not mixed together with the type since the object identifier uyigestrmines
an object and therefore its value, too.

The notion of an “object functional dependency” was used by Lee ([Lee95]) to denote func-
tional dependencies restricted to a single class, where the object idestifesated as a special
attribute and may be used in dependencies.

A set oriented FD-like notation is often sufficient and more convenient to dé€)felks. It can
be derived from the node labels of an OFD as follows:

Definition 3.2: Let.s andG; be as before anfl = (G, v¢) be an OFD ofs with node seWs.

A—T withA= U {viO)}, = U {v:0)
0¢€Vs, vi(O) defined 0€Vs, v#(0) defined

is the set notationf v¢. A is called the left sidel” the right sideof the OFDf. d € Ais called
entry. An object typeO is referredto by the OFD (or involvedn the OFD) iff O itself or any
subset of its attribute set appears in the left or right sidk dfis called type canonicaif only
one object type is involved iR. A (A) (A( (")) denotes the set of nodes\, i. e. object types,
involved in the left (right) side of. A’ (AUT ) is a shorthand notation for (A) U (I') and
denotes the set of all types involvedfinO € A’ (A) (O € A (")) is calledA-node(T"-nodg. The

A (-)-notation will also be used for subs&f D, analogously, denoting the set of object types

belonging to the labels i®. f : A i I" (or, if G is uniquely determined by the underlying
schema graph, simpl — I') will be written as a shorthand notation for an OFB- (Gs,V¢)
with OFD graphGs and set notatiod — I of v¢i. We occasionally omit set braces in order to
simplify notation. 0

Notation: For a given state, “left (right) side object” or “source (sink) object” willused to
denote objects belonging to the extension of a left (right) side object type. Furtheimtire
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case of non type canonical OFDs, we will simply speak of right side objects whelnations
of right side objects connected by link chains are meant.

Example 3.2: Figure 5 shows two OFD$,;, f, of schema (b) from Figure 3, withs, =
{01, 03,04, 05} andV, = {O1,02,03,04,0s5}. Both OFDs have the set notati¢A, Os, F } —
{Oa}.

fl: O(A/) O(F/04) f2: O(A/) O(F/O4)
1\ y 4 1 y 4
O3 p O3
N N
O/ O /
0(55 ) 0, Ogs )

Figure 5: Examples of non local object dependencies

The OFDs from Figure 4 are written g$iotel,roomcategory — {Accommodatioh and
{streetc_no} — {Clerk} with graphs as given in Figure 4. m

The example demonstrates that the OFD graph is necessary to represent thplsobGa
referenced by an OFD. The set notation alone is not sufficient. Every leaf nod&pis an
object type involved irf, whereas inner nodes are involved types or types on a path connecting
two involved types.

From the set notation it can be seen whether an OFD is lpcal just one object type is
involved in f) or non local(more than one type is involved if). This corresponds to the
notions of intra-object and inter-object constraints mentioned in [JQ92]. Both kindkspein-
dencies can be further divided into attribute bafett and right side of an OFD consisting of
attribute sets only), object baséat least one object type appears in the left or right side) and
pure object base(nly object types involved in the left and right side) OFDs (cf. Figure 6).
The OFDsf; and f from the previous example are both non local object based OFDs.

4 The validation relation

G
Given a statess) and an OFDf : A— [ of s, it has to be defined what it means tHatolds
or does not hold iis(.s ). This can be done based owmalidation relation va} for f with respect
to s(s). If fis alocal OFD referring to object typ®, the validation relation is determined

object functional dependencies

non local

/ local \ / \
attribute based object based attribute based
(functional dependency) ~ (object dependency) (non local functional dependency)

pure object based
(non local object dependency)

object based
(non local object dependency)

Figure 6: Types of object functional dependencies

8



uniquely by the relation representiegt(O). If f is non local, such a relation is built by joining
the relations corresponding to the relationships and object types of the paths conrfezting t
referred types. To check a non local OFD with an object §pevolved in the right side it has

to be ensured that every objecteft(O) appears in the validation relation if the requirement
of surjective references ([ST93]) has to be fulfilled. Then the validityooD&D under a given
schema state can be defined similar to the validity of an FD with regpeatelation.

Depending on the extensions and the cardinalities of the relationships participaBnagthere
may exist right side objects having link chains to objects of only some of the typeseaavl

A. 1t is not necessary that there is a link chain to at least one object of gymynvolved in

A. The link tree corresponding to these chains will be catladial linkage If link chains to
objects of each of the left side types exist, we use the tetat linkageor linkage for short.
Furthermore, there may exist right side objects having no links at all orinstyfficient link
chains Insufficient link chains connect right side objects and objects of types being nether |
side nor right side types and cannot be completed to a link chain connecting a right side and
a left side object. If objects of a right side object type with only insufficient orimio ¢hains
exist, this might indicate thdtis invalid. For the construction of the validation relatiai; this

has two consequences: first, since partial linkages, insufficient link chaiogjexts without
any links may existyals will be a partial relation in general. Second, the natural join cannot
be used as operation to combine relations due to the well-known effect of ‘dangpiegt To
represent appropriately the partsdf ) referenced byf the full outer join ([LP76]) has to be
used, modified to operate on partial relations. Here the symbakpresents missing links of
an object. Therefore- is a null value in the sense of 'value does not exist’ and partial relations
represent complete information about the underlying extensions. Moreover, thelnaltioes

not affect the evaluation of on vals: checkingf is done by checking equality of attribute
values ofvals. In this context a comparisan='—' can be evaluated tbalseand’—' =’—' to

true for every domain value or object identifiesince two objects, one with, the other without
link of the same relationship, can obviously be distinguished.

The null extended full outer join operation, modified to handle objects without linksjlaue-
gling tuples which are undefined on the intersection attributes, is presernhbexiiext definition.

Definition 4.1: Let R, S be partial relations over attribute setg, as, respectively, with
: f . .
orNas# @. The (null extended) full outer joi(FOJ)R X Sof RandSis defined as

R %S:df {t|t tuple overagr U agA
((t total onarNasAt|ar € RAtlas € S)
V (tlag € RAt total onarNasA —(3t" € §)(t]agnas = t'|arnag) At undefined oris )\ aR)
V (tlag € SAt total onarN asA —(3t" € R)(t|arnas = t'|arnas) At undefined oror\ as)
V (tlag € RAt undefined orus)
V (t|ag € SAt undefined o)) } 0

By the first three join conditions the outer join is built for tuples total on the satetion of
the attribute sets. By the last two conditions tuples undefined on the intersacéi added to
the result. This is sufficient for our purposes, since the set of join attributealways be a
singleton. The FOJ as defined above is associative and commutative. This dbekinbthe
operands are allowed to be relations over attribute sets with emptgecten.

Example 4.1: Consider the schema in Figure 7, consisting of object typgs0,, O3, Oy
with attribute set§ A}, {B}, {C}, {D}, respectively, and relationships, r», r3. For the next



Figure 7: Simple schema and schema graph

examples let the following extensions be given:

ext(Or) = {(1,[a]), (2 [])( [])}7 ext(O2) = {(4,[c]), (5,[c]), (6,[a]), (7,[d]),(8,[d])},
ext(O3) = {(9.[¢]). (10.[f]). (1L [g)}. ext(r1) = {(1.5).(16).(2.7).(3.8)}.
extirz) = {(6.9).(7.10)}

with relational representations derived appropriately. Application ofithediter join toreleyy o)

. . fo
andrelgyy,) yields relationR := relgyy o) X releyyr,) as result:

I’e‘lext(Og) I’elext(rz) R _ -
ido, | C ido, [1do, Ido, |ido, | C
9 e 6 9 619 ¢
10| f 7 | 10 71101
11 | g — |11 g

If Ris an intermediary relation to be used in further join operations, the foadHith join
condition ensure that partial tuples like- (—, 11, g) are not lost. For example, when joinify
with the relational representation@ft O>), t would be represented in the result. Obj&:tb])
is an example of a®1-object having only an insufficient link chain with respecQg-objects
(assume an appropriate OFD to be gived)/c|) has no link chains at all. m

Using the FOJ, a relation for checking an OFD can be constructed:

G
Definition 4.2: Let s be an object schema(s) be a state ofs and f : {&1,...,0} =
{Y1,...,¥i } be an OFD with grapls; = (V¢,Et,l+) and node-labeling functiow. Let

& O if &j is an attribute set
| {ido}if & =0,0¢ OT;

and
N =l 3
(v, I analogously).
The validation relatiowals of f unders(s) is defined as follows:

(i) If fis alocal OFD referring to object tyf®, vals is the relational representatiogley o,
of ext(O).

(i) If fisanonlocal OFDyals is obtained as follows:
let{Oq,...,Or} C Vs be the set of all sink object types ang= {ido,, . . .,ido, } the set of
their identifier attributes. For a nod&< V; let ¢o := dUyU{idp} if vi(O) = (d,y) and
@o := {ido} if v¢(O) is undefined.

(a) select a start node € Vi; 9 = releyyo)[¢o]
for all edgese € Ef incident onO with I¢(e) =r:

fo
V 1=V M releyyr); removee from E¢

10



removeO from Vs
while Vs # &
select a nod®' € V; withidg € a,,

fo
V=7V N I’e‘lext(o’) [¢o]
for all edge< € Et incident onO’ with I¢(€) =r':

fo
V 1= V M relgyyry; removee from E¢
removeQ’ from Vs

(b) (right side (rs)-normalization) If£ @, remove all tuples undefined on
vV =WNHK7 1)

(c) (subsumption (sub)-normalization) Remove all tuples subsumed by another tuple on
the attributes belonging to the left and right side types:of
vals is a maximal subset of such that no two tuplesandt’, t # t/, exist invals
with t’ subsuming on&’ U’

A’ is called set of 01, . . ., Ok }-attributesor left side attributed™ is called set of yi, ...,V }-at-
tributesor right side attributesf vals. o

Remark: If the rs-normalization results in a relatian with different tuples having the same
values on attribute sé¥’ UT’, more than one relation can be obtained fretmby applying
sub-normalization. With respect to equality&nu T’ this set of relations forms an equivalence
class and the application of sub-normalization corresponds to the selectioapgkaentative.

G
Example 4.2: Let f : {A, O3} = {O2} be an OFD of the schema in Figure 7. Here the OFD
graphGs is induced by the schema graph (except for the node labels)andan be computed
by the FOJ sequence implied B¢, when starting at nod@s:

i fo fo i fo fo .
(((relexios)[idog] X relexqr,)) X relexyo,)lido,]) X r€lexyr,)) M relexyoy)lido,, A

Using relationR (omitting attribute C) and the relational representations from Example d.1 w
get the following intermediary relations and finally the validation relatials.

fo fo fo
R =RX I’E|ext(02)[idoz] R'=R X relext(rl) v =R relext(Ol)[idOpA]

ido, [1do, ido, |1do, |1do, ido, |Alido, [Ido,
6 9 1 6 | 9 1 |a] 6 | 9

7 |10 2 7 | 10 2 |a|] 7 |10
5 _ 1 5| — 1 |al] 5| —

8 | — 3 8 | — 3 |b| 8| —

4 | — — 4 | — - |- 4| -

- |11 - | — |11 - |- - |11

The first four tuples of¥’ result from the natural join condition of the FOJ, the next one is a
dangling tuple fronrele,o,) resulting from the third condition and represents@nobject
without any links. The last tuple is included because of the fifth join condition. It @voul
be of relevance, e. g. for checking an ORFD: {O;} — {O3} with the same OFD graph as
f. The validation relatiorvals of f is obtained from’ by applying normalization step (b),
resulting in the deletion of the last tuple which is undefineddss). No tuples are deleted by
sub-normalization in this example. 0
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In case of a type canonical OFD, the construction may start with the right siéetdpe.

For every join operation the set of join attributes consists of a single idardfiribute. The
construction process guarantees that all right side objects of the given istitejng all link
chains to objects of any types appearing as nod€ pare represented by the validation rela-
tion, with the exception of tuples deleted during rs- and sub-normalization. Obyjidugles
undefined on every attribute ohls that belongs to a sink object type, represent link chains
in which no object of a right side object type participates. By discarding them nomattion
about the extensions of the sink object types is lost. For a sink object different linkecms-
binations of source objects may exist, with one combination less specific thaméngi o¢. two
different tuples invals exist, having the same values on the right side attributes, and one tuple
subsuming the other on the left side attributes. Such less specific combinagaisranated

by sub-normalization since they are subsumed by a more specific combination ofangy.
This step may delete information about an obedf a sink typeO if O is only involved at
attribute level in the OFD, but not at type level. If an additional sink objettt identical values

on these attributes exists in the given state, the information aought be discarded from the
validation relation, because sub-normalization is done with respect tottheitgs of the sink
type, ignoring the identifier attribute. In this case the OFD specifies a depgrateratue level

and not all objects afxt(O) have to be taken into account but only those having different values
on the attributes oD specified in the OFD. Thus, concerning identification sub-normalization
does not result in a loss of information because no value of the right side attrdmaiesing

in only one tuple is discarded and the more exact combination of entry values is kdpt. S
normalization is necessary because subsumed tuples might interfere wattathation off on

valf.

5 Object functional dependencies - semantics

Based on the validation relation different notions of validity can be giverafoOFD with
respect to a state of an object schema. These notions correspond to diffenendiidentifi-
cation. For example, in some situations only those objects of a type that arelaledegsising
certain paths may be of interest to a user (e.g. “all customers with dittldrare not paid for
yet”) while in other situations not all of these paths may be considered as mandatory

This kind of accessibility has not to be confused with the qualification of objeatsibgitions
in query languages. Here we are interested in the unique access to singls wbgegiven set
of objects by a fixed pattern.

5.1 Adopting FD semantics

The most obvious way to distinguish objects is to simply adopt the meaning of an BB»
for OFDs: each combination of values in the attribute@ ah a given relation determines at
most one(-combination, i. egis a function mappin@-combinations ta-combinations, with

tuples being total. In the context of an ORD A i I" this means to look only at the value
attributes and identifier attributesdls, belonging taA andl". The link chains betweefy- and
I"-objects are not considered although they are representegl fjtoo. This view corresponds
to the following definition:

12



G
Definition 5.1: Let.s be an object schema with sta{e ) andf : {&1,...,0} i {v,.- - Wi}
be an OFD with validation relatioval; unders(s) and4’, I'" as in Definition 4.2.
Let {ido,,...,idg,} be the set of identifier attributes of the sink object types.of

f is strongly satisfiethy s(.s ) iff the following conditions hold:

(I) (\V/t,tl € SNF(V&'f,AI))(t|A/ = tI|A/ = t|r/ :tl|r1)
(i) val¢[{ido,}] = SNRvals,A)[{idg }] for eachi € {1,...,1}

with SNHvals,A") denoting the strong null filter foral; on attribute sef\'. O

Condition (i) states thaf induces a function, mapping eatbtal combination ofd’-values
of val; to exactly ond™”’-combination. Given values (objects, respectively) for each entry
at most one combination of right side objects or values is reached. Condition (ingeesa
surjectivity (reachability) if all partial linkages are discarded. Thasghch sink object at least
one combination of source objects (values of objects, respectively) has to exmgtich it can
be accessed uniquely.

G
Example 5.1: (continuing Example 4.2) Fof : {A Oz} it {02} andval; from Example
4.2 it has to be checked wheti‘le{AJdoS} = t’|{A7id03}_ = t|{id02} = t’|{id02} holds for every
t,t' € SNHvals, {A ido,}). SNHvals,{A ido,}) consists of tuplesl, a,6,9) and(2,a,7,10)
which satisfy the condition. However, condition (ii) is violated (three talee eliminated by
the strong null filter on{A,ido,}). Thereforef is not strongly satisfied by the given schema

G/
state. Consider another OFD: {O,} = {A}, with respect to the same schema and state.
The validation relation of’ consists of the first four tuples of from Example 4.2 restricted to

Gsrr
attributesdo,, A, andido, (val¢ in Figure 8). f’ is strongly satisfied. OFD” : {B} (A
obtained by a left side change of to attribute level, is not strongly satisfied (efals« in
Figure 8). 0

An OFD f : A — I specifies a set of entries for accessingombinations. If arentry value

is given for an entryd € A, it may select one (id is an object type) or possibly more @fis

an attribute set) objects antry pointsn the given state. Analogously a combination of entry
values (shortentry combinatiopfor A may select one or more sets of entry points, with each
set corresponding to a linkage leading tb-aombination.

If fis strongly satisfied by a state and if a sink typés involved in the OFDs right side at type
level, this means that th®-objects can be distinguished taking only total entry combinations
into account and using values and objects as entry values. @adiject is reachable in this
way, sincef is surjective. It has to be noted thatGfis involved in the right side of only at

vals: valgn valgm

ido, |A]ido, ido, |Alido, |B ido, [1do, [B|ido, [C
1 |a|] 6 1 |a|] 6 |a 1|5 |c|— |-
2 |al 7 2 |a| 7 |d 1|6 |al 9 |e
1 |a| 5 1 |a|] 5 |c 2 | 7 |d| 10 f
3 |b| 8 3 (b 8 |d 3 |8 |d — |-

Figure 8: Validation relations of different OFDs under the same state
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Figure 9: Fork schema with state

attribute level, surjectivity refers to the different attributéuess, not to the set of alD-objects
(cf. remarks on sub-normalization, page 12), and thus, strong satisfaction doesesdangy
imply surjectivity at object level. In this case not every sink object lbayeachable by using
a total entry combination. But if such an objexexists andf is strongly satisfied, another
O-object exists in the given state, reachable via a total entry combinatiohaamay the same
values on the attributes appearingfin This coincides with the view of OFDs as integrity
constraints at object or value level: if an OFD is specified at valud [gve. only attributes
appear in the right side), different objects having identical values on the sifdugts need not
to be distinguished since it is a coarser constraint than an OFD specifiecet lebp!.

The notion of identification defined by strong satisfaction follows closely tbw af FDs. This
becomes evident especially in the case of non type canonical OFDs.

5.2 Non type canonical OFDs and forkings

If a type canonical OFD is considered, i. e. an OFD with only one sink object tyderett
linkages with identical source objects (values, respectively) may exist §ingle sink object.
In this case a set of linkages may be determined by a combination of entry alti¢isey all
lead to the same sink object. Thus, unique access to the object is guaranteeyeklanthe
case of non type canonical OFDs unique accesinbinationsof sink objects is needed in
the context of strong satisfaction, and in contrast to type canonical OFDs| gartbinations
may appear. Conflicts arise if different linkages with identical entry paerist, even if for
each sink type the same object is involved in these linkages:

Consider object typeS;, O, Or,, Or, and relationships, t, u between them as presented in Fig-
ure 9 (a), with relationships u being optional, and the simple extensions given by the graphical
representation in Figure 9 (b). For clarity, only the types and identifiersséed, no attributes

or values. The solid lines represent links between objects. Furthermoredeotise OFD

f:{O} i {Or,, Or, } with G¢ as shown in Figure 9 (a), stating th@¢ - andOy,-objects are
distinguishable by their associat®g-objects. This means that every, possibly partial, combina-
tion of Or,- andOr,-objects, connected by a link chain via @bject under the given state, is
uniquely determined by at least o@g-object. For example, combination 5/6 is determined by
Oy-object 1, using link$y, Is, I and connectin@-object 2. However, with relationshipsndu
assumed to be optional, there may also exist link chains, suclyasld5 and 13 317 6, con-
necting anO,-object with only one right side object. Here a sin@lg-object (5) and a single
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Ido, [1do idorl idor2 Ido, |ido idorl idor2 ido [idg 1o Tidg
1|4 — 1147 7 — 1' 7 7f1 e
1 (2| 5 6 1 (2| 5 6 113 = 8
1|3 — 6 13| - 8

@ ® ©

Figure 10: Validation relations of a non type canonical OFD with fork graph

Or,-object (6), as well as the combination of both, have to be identified by the Gpimleject
(1). With respect to identification, this is not critical: starting wathject 1, exactly on€©y,-

and oneOy,-object can be reached using all link chains in the given state and a singlgdinka
exists, providing access to both objects. These linkages are representedupléheshown in
the relation from Figure 10 (a). Here, sub-normalization discards tupla&é¢chhy+) because
they are subsumed on the right side attributes. The validation relation fgivdrestate consists
of the total tuple only, representing the linkage that provides the “maximal infayniatbout

the access to sink objects 5 and 6 with object 1 as entry point.

Consider linkd4 andl replaced by linksg andlg to additional new objects 7 and 8 (dashed
lines in Figure 9 (b)). Again various combinations of sink objects can be reachedentry
object 1, but now two differen®;,-objects Or,-objects) appear in the sink combinations, in-
dicating thatf does not hold. The validation relation for this state is shown in Figure 10 (b).
The sub-normalization does not remove the two partial tuples in this caseevdgwor an
OFD to be strongly satisfied, it is not sufficient that in the different linkagés identical entry
combinations always the same object per sink type occurs: consider a state cor g pmtich
validation relation in Figure 10 (c) with links, 14, I, g, andl7 missing in the state shown in
Figure 9 (b). Here, only one object per sink type is reachable from entry object . ONBs
{0} — {Or,} and{O,} — {Cy,} are strongly satisfied. But concerning strong satisfaction
of f, the combinations d®r,- andOr,-objects have to be considered, corresponding to the func-
tional view of an OFD:f mapsO;-objects to (possibly partial) pairs froext Oy, ) x extOr,)

and not to singl®©y, - andOr,-objects. Thusf is not strongly satisfied with respect to this state,
because two different sink combinations are reachable from one entry object acmvearig”
linkage providing access to both objects 7 and 8 exists.

Thus, with respect to non type canonical OFDs, the notion of identification connedted
strong satisfaction is restrictive in the sense that identificatioigpossible if more than one
combination of sink objects is reachable from a given set of entry values,ifestmost one
object of each sink type does appear in all these combinations. For identification ggirpos
there has to exist a sink combination reachable from the same entry points thahesrthe
information of all these partial sink combinations.

The graph structure from which constellations with partial sink combinatiogsas in Figure

10 may arise corresponds to that dibak schemaor fork graph at least three different object
types O;,0r,,0r, in Figure 9 (a)) have to be involved in with a minimum of two sink object
types among them, such that not all three are nodes of a pG@th ihherefore an additional type,

the fork type(O), must exist, from which separate paths to the involved object types emerge.
The graph in Figure 9 (a), represents the simplest constellation of types pdeattihg to the
conflicts shown in the validation relations of Figure 10. Furthermore, each phthe leading
from the fork type to the sink object types has to contain at least one optionabnslaitd.

The “handle” path of the fork graph connects the source type and the fork type, the “tine”
paths lead from the fork type to the sink types. The involved object types do not haee to
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connected directly to the fork type, and more than one source type or further sink tgpdsem
involved in the OFD. But every OFD graph where linkages as presented ireFiQunay arise

in an associated state is non type canonical and contains a fork graph as subgraplherhus
existence of a fork type with the described properties concerning the positions oé somdc
sink types is crucial.

If an OFD graph contains a fork graph, the OFD is non type canonical. The reversalatoes
hold in general, i. e. the class of OFDs with OFD graph containing a fork graplpreper
subclass of the class of non type canonical OFDs.

Remark: Here, as in the previous sections, we have argued primarily on the objeciviesel
investigating identification. Demanding the equality of values of objects isiehmveaker
condition and so all statements are still valid if a set of objects wlghtical values on the right
side attribute sets of an OFD is considered instead of just a single obpatbgausly for the
left side).

Whereas FDs, considered as functions on a (total) relation, are alwaydtiserjthis does not
hold for non local OFDs in general: with respect to a pEtlof an OFD, connecting a left
side object type, and a right side typ&®;, an O,-object may have link chains 10,-objects,
insufficient link chains to objects of types on the path other thaor even no link chains at all.
In case of more than one left side object type also partial linkages Of arbject may appear.
If it only has insufficient link chains, this means that it cannot be reached frgn®abject
by simply following a link chain, and thus, the OFD as a function mappir@,tobjects is not
surjective. In contrast to FDs this does not imply that the schema statisplete. However,
in the sense of strong satisfaction, no value combination exists to distinguzistarO, -object
from others since totality oA’ and the surjectivity property are required for this. Relaxation of
these conditions leads to distinct forms of satisfaction which are of interse identification
of objects. These will be discussed in the following sections.

5.3 Object centered versus link centered view

Strong satisfaction of an OFD guarantees totalith@md surjectivity, i. e. reachability from the
total entry combinations. Giving up surjectivity corresponds to a view of idertidicawhere
we are only interested in such sink objects that can be reached by giving ahtgsvor all
A-elements and following the linkages selected by these values. Right sidésdig@ing only
partial linkages to left side objects are discarded under this view, for theyothe retrieved
by giving a value combination foh. If all right side objects accessible in this way can be
distinguished by looking at thA-values of their associated source objedtayill be called
weakly satisfiedy the schema state:

Definition 5.2: Let s, s(s), f, &', I, {ido,,...,ido } andval; as in Definition 5.1. f is
weakly satisfiedy s(5) iff condition (i) from Definition 5.1 holds. m

G
Example 5.2: (continuing Example 4.2) OFD : {A, O3z} St {03} is weakly satisfied in the

G
given state.f” : {B} — {A} from Example 5.1 is not weakly satisfied by the given state (cf.
vals» from Figure 8). m

The validation relation as defined can be described as an object centenedf\vige state.
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Every object of the sink typésf the underlying OFD is represented, including all links of it.
Using only the relational representations of relationships to build the viaiideglation would
lead to a more restrictive, link centered view. Objects without anly &re ignored. If we
try to construct such a validation relation by using the natural join, eaclaplarkage will be
discarded, resulting in a total relation. The outer join, however, includes‘saated” objects,

I. e. objects without any link.

Weak satisfaction represents this link centered view. With respedMBiICs, weakly and
strongly satisfied OFDs represent two different types of OFDs: when lookindHies usually
only those criteria are of interest, that allow to access each objemdiab to the extension
of a considered type. Therefore in general a weakly satisfied OFD cannot besusaBC.
However, if an OFD is weakly satisfied, all those objects of the sink obypetof an OFD are
uniquely determined which are “visible” by using the elementA af entries.

Our examples in Figure 1 (c) and Figure 2 show that totalitd@an be too strong a condition if
we look for possibilities to identify objects. Thus, partial linkages should bentaite account.

5.4 Partial linkages

In this section we will discuss the use of missing links and partial linkages) @r the identi-
fication of objects. Null values in a validation relation can originate ftbese elements only.
Objects with partial values, i. e. null values in an object value, areormdidered here.

5.4.1 Navigational semantics

Consider an OF®: {A, B} S, {O} with A andB being attributes of object typ&3; andOy,

both directly connected to typ®, and extensions given for thesg.specifies (value based)
entries that allow to retrieve objects of tyPeby navigating along the relationships connecting
01, O2 andO. We will denote this asavigational semanticsf OFD g (cf. [Lie82]). Given a
combination of values foA andB, and usingGg under the given state, at most cDebject is
retrieved ifg is valid. As described in Section 5.2 this navigational view does also fit for non
type canonical OFDs, i. e. for combinations of sink objects.

Suppose we want to retrieve @iobject withA-value 1,B-value 2 and a secorf@d-object with
A-value 1 but ndB-value, i. e. with no link to anyD»,-object in the given state. The first can
be accessed by starting with objects denoted byAthend B-value, following the links of the
selectedO:- and Oz-o0bjects to arO-object if such exists for the given combination of entry
values. For the second object this is not possible sincB-nalue exists. AllO-objects with
associatedh-value 1 have to be selected instead, using énas entry, and in a further step it
has to be checked whether an object witho8taalue exists among these. This is contrary to
the navigational view of identification where values and objects are used tb setey points
for traversing the relationships specified by the OFD graph. From this prigoticd of view,

a missing link at object level can only be used in the additional “hidden” seledbut not as
entry value. Thus, for the selection of a linkage (or a set of linkages) leadingit@ke sink
object, missing links cannot be utilized accordingly.

20r all different values of sink objects, if only attributefssosink type occur in the OFDs right side.
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Nevertheless, when investigating identification, missing links and &ig thus null values in
the validation relation, arise naturally in the context of some modeling coneeptsexclusive-
or constrained relationships and inheritance: depending on the cardinality of theanter
hierarchy an ancestor tyf2; usually identifies its inheriting subtyp€&€» andOs. This can be

specified by an OFDO; } S, {02, 03}, where under a given state missing links:fobjects
with respect t0O,- or Os-objects may appear if the inheritance is optional. In the context of
inheritance, missing links of the right side objects are also possible as shothe byxample

in Figure 2. This situation can be represented by an @FQbuyerno,companyno} Sn,
{Rental Institutiont, where missing links oRental Institutiorobjects with respect to the left
side object types may appear. Here the notion of strong satisfaction would bstroctike be-
cause théuyer no/companyno-combination associated tdRental Institutiorobject is always
partial. This example also shows that the current definition of OFDs does natthkoexact
specification of some kinds of VBICs. From the cardinality of the inheritancetstre follows
that missing links play no role for identification by EachRental Institutiorobject is identi-
fied by either arinvestor or anAdministering Compangbject. This can only be captured by
an (exclusive) disjunctive combination of the left side setls.dh this paper, only conjunctions
of the left side sets are considered for OFDs, similar to the definition sf ERclusive-or like
constraints demonstrate the necessity to consider missing links whengatiesft VBICs or
OFDs as integrity constraints at schema level, even if they are not toebiefasidentification
purposes.

5.4.2 Using partial linkages for identification

Partial linkages in the form of partial tuples\als can be used to distinguish objects. At object
level missing links cannot be exploited in this way directly, because it is nailgesto use
them as entry values for the retrieval of objects (cf. Section 5.4.1). Taduagntage of partial
linkages or missing links as they are represented by the validation reluwgoio/lowing notions

of PL-satisfactioni. e. satisfaction considering partial linkages, can be derived framgind
weak satisfaction:

Definition 5.3: Lets, s(s), f, &, I, {ido,,...,idg, } andval; be as in Definition 5.1.
f is strongly PL-satisfiedly s(.s ) iff the following conditions hold:

(I) (\V/t,tl - WNF(Va|f,AI))(t|A/ = tI|A/ = t|r/ :tl|r1)
(i) val¢[{ido,}] =WNF(valf,A')[{idg }] for eachi € {1,....1}

WNF(vals,A') denotes the weak null filter faals onA'.
f is weakly PL-satisfiedy s(.s) iff condition (i) holds. 0

Strong PL-satisfaction represents a view of identification where at mostigieside object
can be reached, even if only for some of the entries objects or values exiserd®ned before,
for the check of condition (i) the null value will be treated as a constant, beifegeiit from all
other domain values. A notion of identification in the sense of weak satisfacte. discarding
surjectivity, is represented by weak PL-satisfaction.

Strong and weak PL-satisfaction exploit the use of partial linkages for thealish of objects.
As with strong and weak satisfaction, right side objects having only insufficien link
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chains to objects of source types are not considered since they are not reachableyfajrtne
specified entries.

Example 5.3: (continuing Example 4.2) Because objects- (5,[c]) and 0 = (8,[d]) of

G
ext(O2) have no links to arDs-object, OFDf : {A Oz} = {02} is weakly PL-satisfied by
the given statef is not strongly PL-satisfied due to objext (4,[c|) having no links. OFD

G
£ : {B,C} — {01} is strongly PL-satisfied (cfal;» from Figure 8). 0

Besides the problem with respect to the navigational point of view, the use of missisg
for identification is limited, depending on the number/shodes. The maximum number of
objects distinguishable by missing links also depends on the chosen type of identifieagion,
conjunctive or disjunctive combination of the object types involved in the leftciden OFD.
The use of disjunctive combination allows for every state to distinguish rightabjects by
using only objects (or values) of one of the left side sets. This reduces the maximuremaim
objects distinguishable by missing links to 1.

5.5 Linkage conflicts
Further problems may arise when partial linkages or insufficient link chainstéized for
object identification. This is shown by the next example:

Example 5.4: Consider the schema from Figure 7 with extensions given by the following
relational representations:

I’G"Iext(ol) releyt ri) I’e"lext(oz) releyt ra) releyt O3) I’e"lext(rg,) releyt O4)
ido, A ido,| 1do, ido, B ido,| 1do, ido, C ido, 1do, ido, D
1|a 1] 3 3 |a 3|7 7 |e 7 |10 10 | f
2 |b 2|5 4 | c 4 | 7 8 | e 8 | 10 11| g
5 |cC 5| 8 9 |d 9 |11
6 | b 519
6 | 8

Under this state the relation obtained for OFD{O1, 04} i {O3} prior to the application of
sub-normalization contains three total and two partial tuples, correspondihg tmkages of
O3-objects to01- andO4-objects (cf. relatior’ in Figure 11). The partial tuples, marked with

« In 9/, would interfere with the way is evaluated but they are deleted by sub-normalization
since subsuming tuples exist. m

Unfortunately, this normalization step may delete information from thelaabn relation by
which objects could be distinguished, because in some cases this is possible onhygdyLsi

Example 5.5: Consider extensions for the relationships and object types of the schema from
Figure 7, leading to the relatior’ shown in Figure 11 before sub-normalization (using OFD

f:{O1,04} i {O3}). Os-objects(7,]...]) and(8,][...]) have link chains to the san®;- and
Os-objects and therefore cannot be distinguished by them. But using the PL for Objeci),

the two objects can be separated by their associdtgevalues. During sub-normalization the
second instead of the first tuple is deleted, resulting in a validationaelby which f is not
satisfied, although the twOs-objects obviously can be distinguished via their link chains to
O;-objects. m
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'V P! 2" _ valg

ido, [ido, [ido, [1do, ido, |1do, [1do, |ido, ido, [1do, |1do, |1do, ido, [ido, [ido,
1 ]10] 3 | 7 1 [10] 3| 7 1 (10 3| 7 1131 7
— 10| 4 | 7 k — (10| 4 | 7 — 110 4 | 7 11 4] 8
2 /10| 5| 8 1 10| 5| 8 1 /10| 5| 8 _ 15| 7
— 10| 6 | 8 K 1111} 5 |9 — 10| 6 | 8 — | 51| 8
2 |11 5|9 2 | 10| 13| 16 IS
2 | 10| 14| 8 | {01.02} — {03}
12 | 10| 15| 7
12 |11 (15| 9

{O1,04} = {03}

Figure 11: Linkage conflicts

The kind of effect described in Example 5.5 arises only if a subsuming tuple iratltation
relation exists and PL-satisfaction is considered. We will call cdastans as shown in Fig-
ure 11, where identification of objects is possible but disturbed by the existence tblenul
(partial or total) linkages for a sink objedinkage conflicts4’, ¥’ and%” represent different
kinds of linkage conflicts. Some disappear by sub-normalizatiori{&f.In other cases sub-
normalization may remove tuples necessary for identificatiom(€f.or it has no effect at alll
since the linkage conflict arises from total linkages (¢f.) or additional PLs as shown in the
next example.

Example 5.6: Consider OFDy: {O1,0,} i {03} with graph induced by the schema from
Figure 7 and a schema state leading to the validation relesilgas shown in Figure 11. Tuples
(—,5,7) and(—,5,8) are not removed by sub-normalization because no subsuming tuples on
{ido,,ido,,ido,} exist. Both notions of identification taking PLs into account are affected by
this. i

To avoid linkage conflicts involving PLs it would be necessary to decide whichelPe needed
for identification. For a small number of objects this seems feasible, but aniex more
difficult with an increasing number of objects in a given state. Furthernamre,” already
indicates, the problem is not restricted to PLs. Linkage conflicts may aise i only total
linkages appear in the state: for example, replace all null values in th®nsldrom Figure 11
by a new object identifier to obtain states having total linkages only.

5.6 Comparing the notions of identification

From the definitions of satisfaction follows directly:

G
Lemma 5.1: Let 5 be an object schema with states) and f : A — T be an OFD. Iff is
strongly satisfied (strongly PL-satisfied) undgs ), thenf is weakly satisfied (weakly PL-
satisfied) undes(.s ). O

For a given relatiofiR over attribute setir and3 C ar the strong null filteSNHR, B) is always
a subset of the weak null filt8% NF(R, ). Thus, we have:

G
Lemma 5.2: Lets be an object schema with stadgs) and f : A —% I be an OFD. Iff is
weakly PL-satisfied undex.s ), thenf is weakly satisfied undex.s ). O
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Figure 12: Shielding and converge constellation

In general the reversals of both lemmas do not hold. The notions of strong satisfaotd
strong PL-satisfaction have to be examined more thoroughly. Whereas it is obvabssrong
PL-satisfaction does not imply strong satisfaction, the navigational seraaftobject identifi-
cation suggests the opposite implication to hold as well: if in a given stad®jact is reachable
by using an entry value for every specified entry and following the link chaohsded, then this
object is still reachable via the same combination of values if any additidusedf@ considered,
too. The reason for the implication not to hold &k conflicts linkage conflicts as shown in
Example 5.6, which solely arise from additional PLs {&fly in Figure 11).

By applying the null filter when checking for strong satisfaction not only the use offéLs
identification is prevented but also PL conflicts are discarded, i. e. the ofiedentification
represented by strong satisfaction ignores PL conflicts. If all right sidetstgee distinguish-
able by total linkages and only PLs not leading to PL conflicts exist in the givés staong
PL-satisfaction is implied by strong satisfaction. Therefore catkr the possible appearance
of PL conflicts depending on the graph structure of an OFD are of interest.

G
Lemma 5.3: Lets be an object schema with stae ) andf : A L I be an OFD, such that
vals contains no PL conflict. Thehis strongly PL-satisfied undefs) if f is strongly satisfied
unders(s). 0

If some arrangements of source and sink nodes do not appear in an OFD graph, PL conflicts
cannot arise. Obviously this is the case if only one type is involved in theitkftaf an OFD.

Null values in an object value are not considered here, therefore in thi©ogstuples total

or undefined on the left side attributes appear in the validation relation. fteedae not taken

into account for identification. This leads to a first restricted criterion:

. G .
Lemma 5.4: Lets be an object schema with stads ), andf : A —% I be an OFD with at
most one object type involved v Thenvals contains no PL conflict. 0

Less restrictive criteria for source types of an OF@re needed which exclude the existence
of PL conflicts. Under two constellations PL conflicts may arise in a stsiteeldingsand
convergeswith respect to sink types. A source object typg is shieldedby another source
typeQ,, if a path inG¢ exists, connectin@®;, and a sink object typ®, via nodeQ,, (see Figure

12 (a)). For example, consider the graph from Figure 7 as OFD graph{@;, O,} i {O4}.

O is shielded byO, with regard toO4. From shieldings PL conflicts may arise since different
Or-objects can be connected to the sabjgobject with theOy,-object having no link to an
O,,-object in a given state.
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strongly satisfied .

weakly satisfied strongly PL-satisfied

'\\ =

weakly PL-satisfied

A — B: AimpliesB A > B: Adoes notimply B in general A -> B: Aimplies B for a certain
class of OFDs

Figure 13: Implication relationships between the notions of identification

A convergecan be regarded as a fork graph with source and sink nodes “inverted”. In agenve
constellation two source typ&3, andO, have a nod® in common on their paths to a sink
typeOr and there is no single path connectidg, O,, andO; (see Figure 12 (b)). For example,
consider the OFD grapt; induced by node®1, O3, O4 and Os of Figure 3 (b) andf :

G
{01,04} i {Os}. TypesO; andO, are a converge with respect@. Converges may lead
to PL conflicts in the following way: tw@®;-objects can be connected to ddg-object, but for
the O-object involved in the link chains there may exist no chain t@grobject.

Shieldings and converges do not appear if every path of an OFD graph connecting te® sour
types contains a sink node. We will call this conditieource path conditionIn this case a
situation like that in Example 5.6, with right side objéct. . .) having partial and total linkages
(as represented by tuplés,5,7) and(1, 3,7)) could not occur{7,...) has a link chain to two
O2-objects and on®1-object. If O3 were the connecting node between source typeand

O, no PLs of(7,...) could exist. Therefore, if the source path condition is satisfied, a sink
objecto either has no link chain to any object of a source tghei. e. every linkage 0b is
partial, or it has at least one such chain and no PLs with resp&gtappear in the given state.
The sink object type acts as a “cartesian product node”, combining all link chainsinka
object to source objects to other link chains. The same does hold in the case ofeageonv
Following from this, no two tuples representing link chains of the same sinklojee being
total, the other undefined on the same left side attribute can exist in tidatiaf relation. As

a consequence, no PL conflicts can arise. This is summarized by the next lemma:

: _ G
Lemma 5.5: Lets be an object schema with stae ) andf : A % I be an OFD. Let every
path inGs connecting two source nodes satisfy the source path condition. vEthenontains
no PL conflict. 0

This lemma gives a more general criterion than Lemma 5.4. Strong Plastits follows

from strong satisfaction for an OFDif the paths connecting the sink object tyPewith the
source types are disjoint, except for the nd@éself. In this case, source types appear only
as leafs ofGs without any converges. If non-leaf source types exist, additional sink nodes
do separate them. Informally speaking, under the source path condition an objectriype ca
determined by any set of types of the underlying schema g&gpfhe “environment” o0 in

G; contributing to the identification is not limited as far as the number of source sype: the
length of connecting paths i@; are concerned. The implication relationships of the different
notions of satisfaction are summarized in Figure 13.

Additional constraints of the object schema like cardinality restrictions havbeen taken into
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account here. Integrating such schema information helps to avoid PL confictd ¢éve source
path condition is violated. For example, if all relationships on the path to adgldielbject type
are mandatory, no PL conflicts can result from a shielding.

Note that general PL conflicts were not considered here, but emphasis was ortsarifiah
are of relevance in the context of strong satisfaction and strong PLagaisf. The former are
a special case of linkage conflicts caused by total linkages as shown in Figureelatipn’’
or ", To solve such conflicts other notions of identification which allow to selettes for
each object have to be introduced.

5.7 OFDs as VBICs

Using OFDs we can formalize a VBIC for an object typas an OFDf whereO is element of
the right side off and no type occurs in the left side bf

G
Definition 5.4: An OFD f : A — {O} is called an identification criteridior an object typed
of schemas. A value based identification criterigiBIC) for O is an identification criterion

f: 4% (O} for O with 51 OT, = & for eachd € A. !

Whereas an identification criterion specifies a set of entries possiblginong object types, a
VBIC offers access to objects only by values, i. e. a pure value basedesmatfor the object
identifier.

If VBICs shall be minimal like keys no proper subggtof the left sideA may exist, such that

fron i {O} holds and each € A has to be minimal, too. If no pure VBIG can be found,

i. e. A contains not only attribute sets but also object types, a different notion of nlitjma
seems to be advisable since in this case a\setontaining less object types than a Agt
might be preferable as set of entries, evejiif > |Az| holds.

The different notions of identification have to be carefully taken into account whesidering
VBICs for an object typ@® since access to each objec®fs usually desired. This is not guar-
anteed in the case of weak (PL-) satisfaction. Furthermore, as wittidnatdependencies,
inference rules may be necessary for the derivation of VBICs. This nvailtdre addressed in
Section 6.

6 Inference rules

OFDs may be used to specify dependencies between object types and/or attnitheekesign
phase of a database schema. As with FDs usually not all valid dependencies baggaen by
the designer. Some dependencies are trivial or they follow from specified depezsdénarder
to derive such dependencies inference rules are needed. In this section elalatate how
rules similar to relational inference rules for FDs (reflexivity, decontmyg augmentation,
union, transitivity and pseudotransitivity, cf. [UII88]) are applicable taD8FAs we shall see,
additional rules are necessary in order to guarantee completeness of rule sets

For a generalization of relational rules two approaches are conceivable: amehieand, a
notion of satisfaction, e. g. strong PL-satisfaction, can be chosen and thenicéerules can
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be modified in such a way that from a PL-satisfied OFD only OFDs are degiveltikch are

PL-satisfied too. Depending on the choice of semantics, this may lead to s¢singtions of

the OFDs involved in the derivation process and to additional requirementisgfonference
rules, respectively. On the other hand, relational inference rules may besddtipctly to

OFDs, imposing as few as possible restrictions on the involved OFDs. tilglproceeding a
relaxation of the semantics may be necessary.

When considering rules for non local OFDs, we will follow the second approach, agdpe

rules for strongly satisfied OFDs.

Inference rules are of interest for determining VBICs since the designerabhged to specify
VBICs directly for each object type of the schema if VBICs can be deriveonaatically (cf.
the derivation of candidate keys for a relational schema).

6.1 Adopting relational “axioms”

FDs are specified on an attribute set of a relation type. Their sdtwfas defined with respect
to a single relation of that type. For an ORDsatisfaction is defined regarding a relation type
specific tof. Two OFDs different by graph or labels are evaluated over validatiatioak with
different sets of attributes in general. Thus, the schema state canaseascommon basis for
checking them.

For a derived OFD a graph together with node labels has to be determined basednamathe
OFDs. In case of a non local OFD the derived graph has to comply with the defioitian
OFD graph (tree structure with all the leaf nodes being labeled). For lodak®@&ferring to
the same object type relational inference rules are obviously applicable. Qmdy sayntactic
modifications of the rules are necessary since FDs are defined over atsétsitwhereas OFDs
are defined over sets of attribute and object type sets. The graph of a locat@BI3ts of a
single node and remains unchanged for derived OFDs.

During the construction of new (local or non local) OFDs it might be necessary tbinem
labels of a node appearing in different OFD graphs to a new one. For this, a “combining
operation” of labels and sets of labels is needed. If two labels belonging to tleersade in
different graphs are to be combined, and if the labels are attribute setsytieedis obtained

by building the union of the label components. Equality of objects is a stronger notion than the
equality of attribute values. Therefore, mixing of attributes and objecstgheuld be avoided.

An attribute set is ignored if one of the operands is an object type:

Definition 6.1: Let.s be an object schem®,c OS;, andd, y € set$0). The label combination
oWy of d andyis defined as

_J o ifd=0ory=0
6L+Jy_{ ouUy otherwise

Let A, C D be two sets such that no two different s&isd; € A or y1,y2 € ' refer to the
same object type. The label combinatidw I" of A andr is defined as

AWl = {5|8cA A dcsetgO) A O¢ al (M)}

U{y|yerl AyesetgO) A O¢ AL (D)}
U{dWy|dcA AYET A dyeEsetsO)}

24



Example 6.1: Let Oy, Oy, andO3 be object types with attribute sedstr(O1) = {A,B,C,D},
attr(Oy) ={E,F,G}, attr(O3) = {H,l } and®; = {A,C},y1 = {A,D}, 02 ={E,F}, yo = {O2},
O3 ={H}, andA = {1,, 8}, I = {y1,Y2}. Then we gebr Wy, = {A,C,D}, Wy, = {Oz},
andAwl = {{AC,D},{O2},{H}}. O

6.2 Rules forlocal OFDs

The modification of the node labels is straightforward when new local OFDs axedeT his
shows the next lemma.

Lemma 6.1: Let s be an object schema with stades ), O € OTy, 0,Y,€ € set$0) andG =
({0}, @,1¢) the OFD graph consisting of the single ndde
(Reflexivity) Letd € setg (O). Thenf : {3} S, {0} is strongly satisfied under
8($)-
(Decomposition)  Leff : A S, vi(O) = (3,y) be strongly satisfied undets).
Theng: A -2 I with vg(O) = (8,Y), Y C v, and3 € sets (O)
ory € sets (O) is strongly satisfied undet.s).
(Augmentation) Let : A-S5T be strongly satisfied undets).
Theng: Aw {€} —=s W {e) is strongly satisfied unde.s ).

(Union) Let f;: A S, MNandfy: A S, > be strongly satisfied under
s(s). Theng: A S riwrais strongly satisfied undet.s ).

(Transitivity) Letfi:A N r,fo:r S, dbe strongly satisfied undsfs ) and
A+ @ or®d+#@. Theng: A S ois strongly satisfied under
8($)-

(Pseudotransitivity) Leff; : A S, r, fo:Tw{y} S, ®be strongly satisfied under
s(s)andA+# @ or® £ g orye setd (O). Theng: AW {y} S
is strongly satisfied undex.s).
O

For local OFDs, the left and right sides are singletons or one side is empty. Bris ba taken

into account for the construction of each derived OFD. The OFD graph, consistingjrajla

node, remains unchanged. Soundness of the rules for local OFDs follows obviously from the
soundness of the relational rules.

Corollary 6.1: The rules for local OFDs given in Lemma 6.1 are also valid under wead sati
faction, strong PL-satisfaction and weak PL-satisfaction. 0

6.3 Rules for non local OFDs

In contrast to local OFDs, inference rules for FDs cannot be adopted directlyoh local
OFDs since the OFD graphs, arbitrary spanning trees of a subgraph of the schemaavaph,
to be taken into account. Corresponding rules are only valid under certaictiessifor OFD

G _ G _ N
graphs: if OFDg: & —% I is derived fromf : A 2, object types occurring in both OFD
graphs have to be connectedGyg in the same way as iG¢. This requirement is necessary in
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order to guarantee semantic compatibility of the OFDs involved. Example 3visshat this

is essential if the validity of is to be inferred from the validity of under the same schema
state. This compatibility can be formalized by'“trees”, spanning trees induced by a node set
V/ CV of an OFD-graplGs = (Vs, Ex, 11)3.

Among the given notions of satisfaction, strong satisfaction represents theasingtive view
of identification. It is closely related to FDs and thus, inference ruldsb&iinvestigated for
non local OFDs with respect to this semantics. We will show that strotigfaetion cannot
always be guaranteed for derived OFDs.

In the following lets be an object schema with stadgs) andA, I, ® C »,. If not stated
otherwise, we assume an OFD graph= (Vi,Es,lt) and a node-labeling function; to be
given for each OFLF. val; denotes the validation relation éfunders(.s).

Reflexivity Rule

Letf:A i A, A+ @, be an OFD withGt being am( (A)-tree ofG;. Thenf is
weakly satisfied.

Here, left and right side of refer to the same types and attributes, and the sets of left and
right side attributes are identical. Therefdrés weakly satisfied. However, strong satisfaction
cannot be expected in general for the derived OFD if optional relationships ateadvn the
OFD graph. This is illustrated by the following example:

Example 6.2: Consider the schema from Figure 7, restricted to object tghe®©,, andOs
and relationships; andro. Assume a state with the following simple extensions to be given:

ext{O1) = {(1,[a]),(2,[a])} extr1)={(1,3),(2,4)}
ext{Oz) = {(3,[b]), (4,[b])}  extrz) = {(4,5)}
ext(Os) = {(5.[c]). (6.[c])}

We get the following validation relation for the OFp {A,C} — {A,C}:

valg
ido, | Alido, | ido,| C
1 ja| 3| — |—
2 |a| 4 5 |c
- | =] = 6 |C

It is easy to see that OF®is not strongly satisfied, because the null filter on attribAtasdC
removes information about obje, [a]) of O; and object6, [c]) of Os. u

As demonstrated in the example, surjectivity is a crucial property for a nah @E€D derived
by an inference rule if strong satisfaction is required. If an OFD inbyaional relationships,
this condition may be violated in a given database state. The impact of thetsttyygoroperty
on the satisfaction of a derived OFD has also to be taken into account for liwifa rules.

3For graphtheoretic terms see the Appendix.
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Decomposition Rule

G _
Let f : A —5 T be an OFD wher€ = {y,....yi},| > 1; letT = {y1,...,¥i} with

—. |y vyCv.,y#@,if yiis an attribute set .
y;._{ v otherwise forie{1,...,1}.

Gy _
If fis strongly satisfied an#l : A LN P,PCT,A#% o ord=£g,isthe OFD with
Gt thea’ (AU @)-tree ofG¢, thenf’ is strongly satisfied.

The given rule allows decomposition by omitting label sets ffoas well as by omitting some
attributes in any of the label sets. The new gr&his uniquely determined by the given OFD
graphGs and setb. Thea( (A)-trees ofGs andGy are identical, and the two OFD graphs differ
only if the restriction ofl” to ® discards d -node that is not also A-node. As a consequence,
vals: projected onto the set d- and ®-attributes is a subset @&l projected onto the same
set. From® C ™ and the construction df follows that f’ is strongly satisfied iff is strongly
satisfied.

Augmentation Rule

G G/
Let f :A —5 T be an OFD an® ¢ OTs, € € sets0), f': Aw{e} 4 ry{e} an
OFD such thaGs is thea( (AUT )-tree of G¢ and

vi(O) if O € Vs \ {O}

(€,€) if O =0,0¢ViorQO =0,0¢€ Vi,
v (O) = v¢(O) undefined

(OWe,yWE) if O =0,0¢€ Vi andv¢(0) = (d,y)

undefined if0’ € Vg, \ (Vs U{O})

If fisweakly satisfied, thefl is weakly satisfied.

If f is satisfied undes(s) with O € V;, G andGy. are identical graphs. Only the node label
for O has to be adjusted. The attribute sejg, andaya,, differ only if € C attr(O), otherwise
they are identical. Sinceis added to both sides df f’ is weakly satisfied, too.

If Ois a new object type, i. € ¢ Vi, a pathrt from an object type < Vs to O exists, such
that every node on this path, exceptis a new type. More than one path of this kind may
existinG;. SinceGy: is an OFD graph, one of these paths is selected, @jthbeing the graph
resulting from the combination @& andrt Following from this,aya; andaya,, differ in an
attribute set consisting of the identifier attributes of the types of pathd, if € C attr(O),
the attributes of. Besides the tuples fromals extended to attribute sets,,, further tuples
may exist invals:, especially tuples representiagbjectsé-values for which only partial entry
combinations do exist (cf. Example 6.3). Therefore and because of the fagishedded ta\
andrl, the weak satisfaction df follows from the weak satisfaction df.

By Lemma 5.1, the augmentation rule is also applicablefftaeing strongly satisfied. The
next example illustrates that in general the derived GFIB not strongly satisfied, even ffis
strongly satisfied anelrefers to a node d&;.
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Example 6.3: Consider the schema from Example 6.2 and a state with the following exten-

2ons ext(O1) = {(L[a])) ext(r1) = {(1,2)}
ext(Oz) = {(2.[b).(3.[b])}  extra) = {(2.4)}
ext(Os) — {(4.]0)}

OFDg; : {A} — {C} is strongly satisfied, whilg, : {A,B} — {C, B} is not strongly but only
weakly satisfied:

valg, valg,
ido, | Aido,[ ido,| C ido, [ Afido,| B | ido,| C
1 la| 2| 4 |c 1 |a| 2 |b| 4 |cC
— -l 3|p| = |=

Object(3,[b]) of the new sink nod®, of g2 has no links. The null filter on attribute sgA B}
discards the information about this object and surjectivity@grand thus, strong satisfaction
of g» is not given. Of course the same effect can be achieved by augmentation witmade
not yet included in the graph of the initial OFD. m

The rule covers the augmentation of a given OFD by a single object type or amnitatsés of

an object type. Obviously, any augmentation of an OFD by abset » can be done by a
sequence of elementary augmentations in the sense of the rule presented, ashengy aght
resulting from adding th&>-nodes (as well as connecting nodes and edges) is still an OFD
graph. An “attribute set variant” of the augmentation rule is not needed sicoeld only be
applied to attribute sets of the same object type, appearing in the leftgiricide of an OFD.
Clearly, this is covered by the given rule.

Up to now, only rules yielding trivial dependencies or deriving a new OFD from a sd&jle
pendency were considered. If an OFD is derived from two OFDs with gréphsGs,, the
subgraphs o6+, andGt, induced by the object types present in both OFDs have to match. This
corresponds to the intuitive notion of combining the graphs via the subgraph common to both.
Because of our restriction to cycle free OFD graphs cycles have to be avoittexinew graph.

Both requirements are fulfilled if the intersection graph@f andGt, is connected and non
empty. This is equivalent to the union graph®f andGg, being cycle free (cf. Lemma A.1 in

the Appendix) and thus provides a simple precondition for the last three inference rules

Union Rule

For a generalization of the union rule the effect described in Section 5.2 Hestaéken into

account. When two OFDs are combined, a constellation as shown in Figure 1@¢chde
possible, for which the derived OFD is not satisfied. In principle, this magys be the case if
two OFDs differ in at least one node, even for very simple OFD graphs:

for example, consider OFDy : {B,C} Gég {D} andg.: {B,C} 649 {O1} of schemas from
Figure 7. Obviously, the intersection graph of both OFDs, consisting of Moglé3; and edge
rs, is connected. A state for is easily constructed whegg andg, are (strongly) satisfied but
the union OFD{B,C} — {O;,D} of both is not. The same effect may occur with “non linear”
OFDs of the schema from Figure 3 (b).

To avoid this problem, we restrict the union rule to OFDs with identical graphs

(e
Let fi: A il i, i € {1,2}, be two OFDs with identical graphs.

G
Thenf :A 2% M1 w2 is strongly satisfied ify and f, are strongly satisfied.
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Figure 14: Violation of surjectivity by transitive combination of OFDs

According to our assumption, attributes and types are unique throughout the schemaoréheref
the distribution of thé\-labels is the same 6+, andGt,, and then’ (A)-induced subgraphs of

both graphs are identical. Labels of nodes that are sinks in both graphs are combitigd loca
for each sink in the new OFD. Obviously, no violation of strong satisfaction is caused by
this. If nodes exist that are sinks of only one of the graphsandGyt,, they must be non leaf
nodes or source nodes and it can be shown that the combination of both OFDs does not violate
satisfaction, i. e. conflicts as in Figure 10 (c) cannot arise. Thissstrongly satisfied, if; and

f, are strongly satisfied.

Remark: A more general union rule can be given where the OFD graphs do not have to be
identical. An additional dependency must be satisfied for the node of attachment ofethe |
section graph of both OFD graphs@®@y, (Gt,, respectively). For each of the two OFDs such a
node may exist (e. g. in the previous examgjeandg, have different nodes of attachmedi

and Oz, wheread; andhy haveO3 as common node of attachment).Afis an identification
criterion for these nodes, the union OFD is strongly satisfied.

Transitivity Rule

In addition to cycles, surjectivity may cause problems in connection vatisttivity of OFDs if
strong satisfaction is considered. This can be illustrated by the examipigure 14: if OFDs

G G
01: {A} % {O3,E} andgy : {O3,E} 2 {H} are combined transitively in the usual way, this

leads to OFDy: {A} i {H}. With respect to the graphical representation of the extensions as
given in Figure 14, it is easy to see tltatandgy are both strongly satisfied. The derived OFD

g, however, is obviously not strongly satisfied under the same extensions. The feaos

is the lack of surjectivity for object typ©,, i. e. there aré»-objects in the given extensions
which are not reachable from any object of the so@geFor the satisfaction af; this has no
consequences, becaudegis no sink ofgs, but in the derived OF@, O, becomes a “combining
object type” on the path between source and sink, i. e. the gragisaibtained by combining

the graphs 0§; andg, via this node.

A violation of surjectivity (and thus, of strong satisfaction) is always possftthe OFD graphs
are connected by a node which was no sink in the first OFD. In the following, the raften
combining object type will be clarified and based upon this a criterion for the awedaf
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surjectivity violations will be given.

G G
Definition 6.2: Let f;: A 2 r and fo: I 2 ®, I C I, be two OFDs, such that the
union graphGy of both graphs is cycle free. A node of attachment&f in G, is called
combining (object) type m

Example 6.4: Object typeO, is the only combining type of OFDg andg, from the example
in Figure 14. 0

A combining type off; andf; exists ifVt, C Vy,, i. e. the graphs are not identical aB¢, does
not coverGy,. More than one combining type may exist for two OFDs. In the following we
will focus on a transitivity rule for OFDs with exactly one combining object type.

If for the combining object typ® of a transitively derived OFD graph the surjectivity property
IS given, no surjectivity violation can arise. Obviously, the sinks of an O&t3fy this property.
Therefore the OFD graphs should be combined via a sink type of the first OFD. However,
easy to construct an example showing that this prerequisite alone is not saffieie Surjec-
tivity is needed at object level. Under the notion of strong satisfaction,gmetiguaranteed if
only attributes of a sink type appear in the OFD. Therefdteas not only to be a sink type, it
must be an object type in the right side of the first OFD in order to get a sufficienttmondi

To avoid cycles and to be sure that the two OFDs refer to the same subgraplisaideces
induced by the intersection of the node sets are sufficient. Again this is gitbe tase of a
cycle free union graph. It can be shown that this property follows from the exestdrexactly
one combining type.

G G
Let f1: A T and fo: 2 ® be OFDs withAU ® # @ and node labeling
functionsvy,, v¢,, such that exactly one combining ty O € I', exists. Let

f:A i ® be the OFD withG¢ being thea’ (AU ®)-tree of G and let the node-
labeling function be given by

(3,2) if O (A)\A(P), v, (O) = (3,y)
(2,Y) if Ocal(P)\A (D), vi,(0) = (3,y)
Vi(0):i=¢ (B1,y2) if O (D)NA(P), v, (0) = (81,y1)

Vi,(0) = (02, Y2)
undefined otherwise

Thenf is strongly satisfied if; and f, are strongly satisfied.

Note that the combining object type &f and f2 coincides with the node of attachment of the
subgraph induced b+, in thea (AU ®)-tree of the union graph.

The restriction oG+ to thea’ (AU ®)-tree of the union graph is necessary si@Gamight contain
"-nodes as leaves which are not needed in the new graph if they @earsb-nodes. Such
nodes, including all nodes on the paths connecting them withtffeU ®)-tree, can be omitted
because they are not part of any path connectifi@\)- and A’ (®)-nodes. For example, the
M-nodesO3 andO4 of the OFDs in Figure 14, including the edges connecting them to @ede
are not needed in the derived graph.

Sincea( (') is a subset of both node sets, the right sidé;cdind the left side of, refer to the
same subgraph. If any other object types common to both OFD graphs exist, they are¢exmnnec
in the same way irG¢, as inGg,. Following from this and the surjectivity propertyals,

30



projected onto thE-attributes is a subset whls, projected onto the same attributes, since every
combination ofz( (I")-objects in the given state is representedatt,, except for combinations
subsumed by others. As a consequence, for each combitatioralues on theb-attributes

in valt, a combination off -attributes exists, determinirigand also appearing mals,. I'-
nodes may be deleted during the derivation of the new graph, but the prerequisite aancerni
the combining type guarantees that and f»-linkages can be combined, i. e. a total entry
combination exists for eacf-combination inval,. Thus, the®-attributes are determined by
theA-attributes invals, too, if f; andf, are strongly satisfied. Thereforkjs strongly satisfied
under the same state.

Remark: The transitivity rule (as well as the following pseudotransitivity rule) ba general-
ized to cover the combination of OFDs having no or more than one combining type. This wil
be addressed in forthcoming work.

Pseudotransitivity Rule

Pseudotransitivity can be handled similar to transitivity, wghl" & © % dandf :AWO i

®. Only the construction of the node-labeling function fas slightly different since for nodes
appearing in more than one of the s&t$A), A((©), anda( (P), the labels have to be combined
by functionv¢, whereas labels corresponding to a set only appearihdhewve to be omitted:

G G
Let f: A —% T andf,:Tw© —2 ® be OFDSAUGU® + &, with node labeling
functionsvy,, v¢, such that exactly one combining tyj@® O € I', exists. Let

G
f:AwO —s ® be the OFD with graplGs being thex (AUOU ®D)-tree of G
and let the node-labeling function be defined by} andv? as follows:

vi(0)  if Oca(A)\A(O)

[0) if @O, pesets(0), Oec N (O)\ A (L)
vi(0):={ vi(O)we if pe O, pe sets(0), Oe A (A)NA(O)
%] if O (P)\ A (AUO)

undefined otherwise

) {V%Z(O) if O 2 (D)
vi(0):=¢ o if Oc A (AUG)\ AL (D)

undefined otherwise
Thenf is strongly satisfied if; and f, are strongly satisfied.

Note that the use of the common union operation in the left side wbuld impose a restriction
on the applicability of the rule.

The relational pseudotransitivity rule can be substituted by other relatiomel. rih general,
this is not possible for the OFD rule set presented here if the notion of identfichés to

remain unchanged. The reason for this is that an augmentation of the left side &Cars O
only possible by using the augmentation rule. However, augmentation of a strongfiedat
non local OFD generally leads to a weakly satisfied OFD.

6.4 Additional inference rules

In addition to the relational inference rules adopted so far, further ruéeseseded for OFDs.
First of all, these rules are concerned with transition from the object gy to the attribute
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level and vice versa.
Object Rule

The following simple rule represents the fact that an object is uniquely dietedrby its object
identifier, i. e. the identifier always determines the object value. Thisvalto derive a set

of local OFDs for each object type of the schema and can be regarded as a suppletinent of
reflexivity rule:

Let O € OT, andy € sets (0). Thenf : {O} —% {y} with G = ({O},2.l¢) is strongly
satisfied.

Lifting Rule

While the object rule allows a transition from object type level to atteldavel, the next rule

allows a transition to object type level, but only for source types. If a giveD @ : A i r
contains an attribute séte sets (O) in the left side,d can be replaced by the object tyfe

if f is strongly satisfied, @&-entry combinatiorx leads to at most onE-combinationy. If
values are involved ir, more than one linkage may leadytoSince different objects may have
identical values, a replacement of values by objects results in a “refiitéofex: instead o,

the identifier attributédo is now taken into account for checking strong satisfaction. Thus, the
new OFD withd substituted byO is strongly satisfied, too. The following rule formalizes this
kind of change of source labels.

Let f: A i [ be a strongly satisfied OFD withe A, d € sets (O) for some nodé® of Gg.
Thenf’: (A\ {8})U{O} — I is strongly satisfied, too.

Of course this only holds for a change of source labels. In general, a change of sinkrlabels
the same manner leads to a violation of the OFD.

Shifting Rule

If an OFD is strongly satisfied by a state, the considered linkages guarantge @acess to
sink objects or sink values. Using this, new OFDs can be derived by remowahgddes and
modifying the source labels of such nodes in the following way:

Letf:A i " with |V¢| > 1 be strongly satisfied wit® being a source type df that is a leaf
of G and no sink, and node labe{(O) = (5, ). AssumeO’ to be the node connected@in

G/
Gt via edgee. Then OFDf’ : &' I with
A= (A\{3})U{O},
Vf/ = Vf \ {O},
Et :=Ef\{e}, and
It =lt|g,,
is strongly satisfied.

Note that due to the tree structure of OFD graphs, r@dend edge?’ are uniquely determined.

Correctness of the shifting rule follows from simple observations concerniriqmiages rele-
vant for f: aA-total linkagel for f implies aA'-total linkagel’ for f’ by removing theD-object

of | and its link belonging t@, and thus, provides a total entry combination for the same sink
objects a$. From the entry combination &f the entry combination df is constructed, where
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Figure 15: Application of the shifting rule

the entry value od in | is replaced by th€'-object ofl. No collisions can arise from this (cf.
lifting rule) and thereford’ is strongly satisfied if is strongly satisfied.

The example in Figure 15 shows a sequence of applications of the shifting rule tdar@im
OFD {81,062} S, {Y1,Y2,y3} three new OFDs are derived by modifying the source labgls

02 and removing node®;, O,, andOs3. The OFDg: {Os} i {Y1,¥2, Y3} derived in the last
step contains no source node which is also a leaf. Thus, the shifting rule is n@ppicable
to g. Moving non-leaf source labels within the OFD graph usually affects valittity easy to
construct an example illustrating this.

Example 6.5:Consider OFDf; from Figure 16 and the state given below. The application of
G/
the shifting rule leads to OF[, : {O3} N {H}:

(A1) (/H) (03/) (/H)
O, O, Oy — O,——— Og
@G [@) ————@ x2)— (7. [d) @, xz)) ————— (7, [d])
@@ ——06,yy)— 8, [d) G yy)— (8, [d])
@ b)) ———— @6, yy)— 9, [) 6, [y y) ——— (9, If])

A shifting at attribute level fron®; to Oz is not possible forf1: for everyf € set$03), {B} S,

{H} does not hold. 0
fr (AN (/H) f0 (cn (/0,)
0, O3 Og 0, O3

Figure 16: Necessity of the shifting rule
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The necessity of the shifting rule is shown by OFf3sand f, (Figure 16) of object schema
from Figure 3 (b). Byf, object typeOs is determined which is neither source nor sinkfof
The two OFDs cannot by combined by application of the transitivity rule. Using taqars

rules except the shifting rule, an OFPwhere attributeC of O, determines attributel of Os
Gy

cannot be derived. Obviously, OF) : {O3} S {H} can be derived fronf; by application
of the shifting rule. Nowg is derivable fromf; and f, by using transitivity. Thus, the shifting
rule is necessary to derive new valid OFDs.

The shifting rule focuses on leaf nodes that are source but no sink types. Note tpptibsgtéon
of the decomposition rule each source/sink-node can be transformed into a “pures sodec

The shifting rule as defined above combines the transition from attribute toléypewith
source shifting, instead of allowing a shifting only for source labels that aexbtyjpes. Oth-
erwise, the application of the lifting rule would be necessary before usindnitieg rule.

In summary we get the following theorem:

Theorem 6.1: Let s be an object schema with statgs). The inference rules (reflexivity,
decomposition, augmentation, union, transitivity, pseudotransitivity, liftingtisgifand object
rule) for non local OFDs are sound. |

6.5 Cyclic OFDs

In this paper we focus on acyclic OFD graphs. However, especially in coonegtth tran-

sitivity, cycles may arise in graphs. These have to be avoided not only totheedefinition

of an OFD graph: in such a case it cannot be expected that an OFD derived b{vitgnsi
from two valid OFDs is strongly satisfied by the same state. Considerctiens given in
Figure 17. A customer may have one or more accounts at different branches of a bank, but

Branch

o Clerk
Account | p keeps works_at "

holds Customer serves

Figure 17: Example of a cyclic OFD graph

only one account per branch. Each customer has a clerk responsible for her/him latagath
where she/he holds an account, and each clerk is assigned to exactly one bragighadsv
count determines the branch keeping it and the customer holding it. A clerk is deterby a
customer together with a branch; neither of the two object types alone sufficegfdreehe
OFDs f : {Account — {Branch Custome} andg : {Branch Custome} — {Clerk} do hold

in all states. OFDh: {Account — {Clerk} holds if for eachBranch/Customecombination

in valy a matching combination imals exists. To check this, the construction of the valida-
tion relation by outer joins must not be linear. In the example above, a rel&pyasenting
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the Account, Branch, Customaubgraph and one representing Bnch,Customer,Clerk
subgraph are needed. The validation relatiorhdfas to be obtained by joining these two
relations on the identifier attributes Bfanch and Customer Applying the usual linear con-
struction of the validation relation, different combinations with the s@ustomerobject (or
Branchobject) get mixed, falsifying the evaluation bf What has to be ensured is that only
matchingCustometBranchcombinations are combined during the construction of the valida-
tion relation. On that score, it is useful taking into account more than one pathdair of
object types involved in an OFD. This example shows that cyclic graphs mal fiesn the
combination of semantically meaningful OFDs and therefore should be considered, too.

7 Related work

7.1 Value based identification of objects

Many of the approaches to the specification of constraints at object scherharegencerned
with specifying (value based) identification criteria or keys for object typasnot with de-
pendencies for object schemas as a more general framework for this purposed Relek,
directed towards the definition and investigation of identification cates discussed in this
section.

Among others, Kim ([Kim95]) noted:

“An OID does not carry any additional semantics. . It is more convenient for
the user to be able to fetch one or more objects using user-defined keys.”

Several approaches for the access to objects or entities have been disespsedlly in the
context of other data models.

The restriction to a single relationship for the determination of a key fonstyeype, similar
to the weak entity concept of the Entity-Relationship Model ([Che76]), can be fouseleral
approaches, e. g. [GMP88], [KZ95] or [RR94]. In [Zan79] for each record type of a nletwor
schema a set alynonymgkeys) is derived by inspecting different paths. Missing links are also
considered: if an optional set type participates in a path, the resyitsswado synonyntor the
transformation to the relational model pseudo synonyms are ignored. In contresafgoroach
presented in this paper, each synonym is determined using only one path in the.schema

In P/FDM ([PG88], [OE95]), a database system based on the functional datd, ninedkey

of a classC can be specified by using more than one path in the schema. A key is either a
subset of the local attribute set©for a set of relationships @ together with a local attribute
subset. Along each relationship the whole key of the related class is usaittta key forC by
expanding the key specifications recursively. The use of non-key attributes fronctabses

as well as the construction of a key exclusively using foreign keys is not possisteeFmore,

each class must have a key in the aforementioned sense and only single Vialtieadstaps are

used in the process.

Schewe and Thalheim ([ST93]) present a formal approach to VBICs in the caf@xtobject
oriented data model. In addition to using only the type of a class itself for thendetgion
of VBICs, leading to the notions ofalue identifiabilityandvalue representabilitynon local
identification criteria are also considered: a classs calledweak value identifiablé a value
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identifiable clas€,; and a path of relationships fro@p to C; exists, where each participating
relationship, regarded as a directed reference f@no C;, has to be a surjective function.

This corresponds to an OFD: {C,} i {C1} with Gt being a chain. Only one object type is
used and no combination with local attributes is allowed. As in [Zan79] aespath is consid-
ered. Furthermore, the requirement of every relationship of the sequence tgeogivaiis not
necessary and does not allow the use of partial linkages. Surjectivity isdtitiee, even if
no partial linkages or insufficient link chains Gi-objects appear in a given state: obviously,
f might hold even if not every object of the classes participating in a chamvaved in a
sequence of links leading to&-object. Considering only surjective relationships would be an
unnecessary restriction.

Some of the results from [ST93] can also be found in [Kos95] where, in additidretoliject
identifier and the complete object value, key specifications for schemas arderedso dis-
tinguish objects. Objects (or their values) of other classes are takencecaars by so-called
external keyswithout considering how to obtain these keys.

The possible use of the existence of values for the distinction of objects is mentdBJ®5],
where the use of tree structures for the identification of entities in an exteéeBemodel is
sketched also. Entity identification is reduced to identification in nastietions where differ-
ent types of equality are considered. Axiomatization or inference rules are eot giv

In the data model proposed for database design by Rosenthal and Reiner ([RR94))y kays
are allowed to include null attributes as long as unique identification of enigiguaranteed.
No further remarks on the type of identification implied by this approach are givdwmy set
K as introduced in [Tha89] allows the specification of keys with null attributesvever, they
are not used for accessing tuples in a relation since for eachtttifdes has to exist at least one
keyk in £ such that is total onk.

In [AVdB95] the use of the complete object value for distinguishing objects in the sdeep
equality is investigated. An object value is unfolded by dereferencing olgedtifiers ap-
pearing in it and value based identification is defined with respect to thadded value. This
corresponds to a programming language view of the environment of objects in the database by
using directed references with no possibility to follow pointers backwdrdsationships in an
OMT-like object schema are not directed (although they can be implementecdogerdirected
references, of course). As a consequence, the environment of an object under theedataba
subsumes the environment as seen under the programming language view. Therefore it is pos
sible that two deep equal objects are distinguishable if their completeoredhatp environment

in the database is taken into account.

7.2 Generalized functional dependencies

In [Lee95],0bject functional dependenciage introduced as FDs on the attribute set of a single
class. Among these attributes, complex attributes, i. e. attrilofiteslection type or attributes
that are references to other classes, are allowed. Referentetatriepresent relationships
and thus it is possible to specify an object functional dependpreyR, wheref is an attribute
set determining the reference attribiRe This restricts the relationship representedrboip a
function and leads to a notion of identification similar to weak entitietf) thie class referenced
by R corresponding to the weak entity type. However, this is the only way to specigpen-
dency involving more than one class. Apart from this case, object functional depersiaac
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proposed by [Lee95] refer to one class only. More general non local dependencies cannot be
expressed.

Weddell ([Wed90], [Wed92]) introducgsath functional dependencies a generalization of
FDs for semantic data models. This generalization is based upon a relstiacéemodel: a class
schema is given by a set of complex object types, with each type defined by a gebates,
called properties. A property is either of atomic type or of object type. In therlaase, the
property represents a directed relationship between the two types. Reepadi directed paths
of properties have to be functions and they are mandatory. As a consequence am object
type O must have exactly one link for each relationship tBgiarticipates in. Relationships of
more general cardinality have to be modeled by introducing additional linking typkspas
from the network data model. For a class schema, a path functional dependency, @snoted
C(X —Y), is defined by specifying two se¥sandY of property paths with respect to a single
type C, the “center type”. All paths oK andY originate from this type. The constraint is
satisfied, if for each pair of-objects with identical values on the properties givenXyythe
property values ol coincide, too. Relationships directed towa@iare not taken into account.
By definition, surjectivity is only guaranteed for the center type. Thus, only type czadoni
constraints can be expressed and the specification of an identificatiogioofifer a typeC’ by

a path functional dependengyrequiresC’ to be the center type qf.

Inference rules for path functional dependencies are presented by generalaiiogatrules,
as well as by adding rules which allow to modify the paths involved in a dependency
However, even for simple object schemas (e. g. the schema from Figurkitligajifficult to
obtain a class schema representing the same semantics as the object sci@xample, class
schemas offer no inverse properties for representing undirected, bidirécéatimnships. The
use of additional linking types is in conflict with the requirement of properties todredatory.

7.3 The validation relation

A validation relation is constructed by joining the relational represenmtatof types and rela-
tionships in appropriate order using identifier attributes. This operational ghogeis equiv-
alent to navigating through the database along links between objects and is ciatdy to

the notion ofmaximal traversalsmaximal sets of connected records obtained by navigation in
a network database, as introduced by Lien ([Lie82]). Each maximal tevesgesponds to a
partial tuple and in the case of a cycle free network schema a partiabrelsbbtained, repre-
senting the database state. This coincides with the construction of the unnednalizlation
relation? where the underlying OFD graph is regarded as a network schema and link chains
as maximal traversals. Following from this, no tupleifis subsumed by any other tuple in
7. Concerning identification, the rs- and sub-normalization steps are applieddalitionally.
Furthermore, only those object types and attributes of a schema which areangdesshe
evaluation of an OFD have to be considered in the validation relation. Ingettes is not the
whole schema.

Lee and Wiederhold ([LW94]) describe the construction of objects from sets of{Lgtéeting
with apivot relationand using théeft outer joinoperation. Their main emphasis is on the con-
struction process, not on determining VBICs. The identifier of an object is prdideply by

4Using a notion of identification like strong satisfactionavé each object is to be identified in order to ensure
surjectivity.

37



the key of the pivot relation; it could be used as a (local) VBIC since it is no olgjentificator

in the sense of an internal identifier. Nevertheless, building objects fetetians is related

to building a validation relatiowal;. In the case of type canonical OFDs the method can be
applied: the construction process must start with the sink object@Qypief and the sequence

of operations has to be chosen appropriately. This is necessary to ensure th&-ebgect is
represented inals. Also the left outer join would eliminate the need for the rs-normalization
step in this case, which in terms of [LW94] is simply the application nba-null filter. Equiv-
alently, it can be seen as a restriction to traversals ([Lie823) tmt the attributes belonging
to the right side object type. However, sub-normalization is still necgsgaen using the left
outer join. The aforementioned generalization of the surjectivity requirememt f[ST93] is

not affected by changing the join operator. Given non type canonical OFDs, the appfoach
Lee and Wiederhold is not applicable for our purposes. In this case the FOJ has talbe use
since no unique pivot relation is given to start the construction.

7.4 Relational theory

The construction of the validation relation of a non local OFD can be formulaiag ssme

well known terms of relational theory, too. It is easy to see that a jom (BFMY83]) is
obtained by the following modifications to an OFD grapft insertion of relationship nodes,
adjustment of edge labels and nodes. Due to the construction, only identifier asticbute-
sponding to a single object type appear as edge labels. Because of the monotonicity af the FO
operation, results from relational theory concerning the natural join operatoapgmlicable

in this case, too. The relational database schema implie@;blyas the running intersection
property ([BFMY83]). From the join tree dbs a monotone, sequential join expressionan

be derived ([BFMY83])vals (unnormalized) is obtained by applyimgto the relational repre-
sentations.

Viewing the OFD graph itself as a database schema, the validatiororelatalso related to

the basic idea of the universal relation approach ([Mai83], [UlI88]). Theeedorrespondence
between the universal relation and the construction of a validation relatitre case of an

acyclic relational database schema.

8 Outlook

This paper presents a framework for the specification of constraints betitgbuatas and ob-
jecttypes in the context of a simple object oriented data model by using OFDsthigittind of
dependency, (value based) identification criteria can be defined directlynegadl&om a given
set of OFDs by applying inference rules. The derivation process for this has nedstigated
more thoroughly. Especially with respect to the determination of VBICs,¢hersa structure
has to be taken into account. It is necessary to translate schema elevitbrnmslevance for
identification, like relationships of restricted cardinality or inheritan@earchies, into OFDs.
They have to be added to the set of dependencies that are specified explicitty dbjeat
schema. For this, the simplified object model we considered in this paper hasxttebded to
include inheritance.

In general, it cannot be expected that for each object type of a schema a “natBtal”iy/
specified or derivable. Thus, in some cases artificial identifier atg#have to be introduced
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in order to supply a VBIC for a type. This should be done under consideration of the exist-
ing identification dependencies, i. e. the introduction of an identifier attriioute single type
should provide VBICs for other types as well, if possible. Criteria for the phesse of such
attributes in a schema are needed, using the information given by the OF[ilsetschema.

The notion of OFDs considered in this paper allows to specify conjunctive, ppsshllocal

VBICs. However, some VBICs, e. g. those from the examples in Figuresdn¢c}®, can only
be “simulated” by choice of an appropriate notion of identification. For these VBIG&lzer

notion of identification is needed where missing links may be present but are nottesttmi

identification purposes. This leads to disjunctive VBICs or set oriented ¥BIC

The views of identification discussed in this paper arise naturally if the &¥fidoach is taken.
The schema state can also be represented by a graph consisting of objects anddos
as edges. Identification criteria can be defined with respect to this grapbrisydering the
link environment of an object and defining subgraphs “centered” around the object.ebiffer
ways to distinguish objects at this level should be investigated and compaidehtification
as proposed by the OFD approach.

A Graphtheoretic notions

Definition A.1: For afinite seV let #»(V) denote the set of all subsets\biwith cardinality 2.
Let G = (V, E) be a connected finite graph with node ¥eaind edge st C 2>(V). Gis atree
if Gis cycle free. A subgrapbf Gis a graphG = (V,E) withV CV andE C (En®,(V)). A
node of attachmenif subgraphG in graphG is a node ofG that is incident inG with an edge
not belonging tcE. LetV’' CV be a non empty subset . A V'-covering subgrapbf G is
a connected subgragh= (V,E) of G with V' CV. A V'-treeof G is a minimalV’-covering
subgraplG = (V,E) (i. e. there exists n@’-covering subgrap®’ = (V' E’) with V' c V), such
thatG is a tree. The intersection graghof two graphsG; = (V1, E1), G2 = (Vs, E) is defined
asG = (ViNVz, (E1 N Ez2)|pyvinvy))- If G1, G2 are edge-labeled graphs, the labels of edges in
E1 NEz have to match, too. The union gra@of G; andG; is defined a& := (V1 UV, E1 UEy).
For edge-labeled graphs the edge labeling functio& @ derived from the labels d&; and
Gz. O

The definition of &/'-tree for edge-labeled graphs is analogous. Note that for &tre¢V, E)
eachV'-tree ofG is unique.

Definition A.2: Let G = (V,E) be a connected graph and C V. Let G; = (V1,E1), G2 =
(V2, E2) be twoV'-trees ofG. G1 andG; are identicalff Vi = V> andE; = E;. In case 0fGy
andG; being edge-labeled graphs, the labels have to match, too. 0

Lemma A.1: Let treesTs = (Vi,E1) and T2 = (Vo, E2) be subgraphs of a connected graph
G = (V,E) with V1 NV, # @. The following conditions are equivalent:

(i) The union graph off; andT; is cycle free (i. e. is a tree).
(i) The intersection graph of; andTs is connected.

(iii) The (ViNV,)-trees ofTy andT, are identical.
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