
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

Functional Dependencies for Object

Databases: Motivation and

Axiomatization

Hans-Joachim Klein, Jochen Rasch

Bericht Nr. 9706

Oktober 1997

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Functional Dependencies for Object Databases:

Motivation and Axiomatization

Hans-Joachim Klein, Jochen Rasch

Bericht Nr. 9706

Oktober 1997

e-mail: hjk@informatik.uni-kiel.de
jor@informatik.uni-kiel.de

Dieser Bericht ist als persönliche Mitteilung aufzufassen.

Abstract

Object identification by abstract identifiers should be considered as a modeling and not
as a database concept. This means that object identifiers arenot appropriate for the ac-
cess to specific objects using a database language. In this paper we discuss how the rela-
tional concept of a functional dependency can be adapted to object databases in order to
get more convenient ways of accessing objects. Graph based object functional dependen-
cies are proposed as a means to specify constraints between attributes and object types of
an object schema. Value based identification criteria can bedefined using a special type
of object functional dependencies. Different definitions of satisfaction are given for these
constraints, based on a so-called validation relation, andtheir relationships are investigated.
These definitions are related to different forms of identification. Using the strongest notion
of satisfaction, inference rules for the derivation of new dependencies are discussed with
emphasis on the characteristics of rules combining two dependencies, like the transitivity
rule. In addition to generalized relational rules further rules are needed, mainly concerned
with transition from the object type level to the attribute level and vice versa.

Keywords: object oriented data models, object functional dependencies, value based iden-
tification, identification criteria, keys, inference rules

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Object schemas . 4

2.2 Relational notions . 4

3 Extending functional dependencies to objects 5

4 The validation relation 8

5 Object functional dependencies - semantics 12
5.1 Adopting FD semantics . 12

5.2 Non type canonical OFDs and forkings . 14

5.3 Object centered versus link centered view 16

5.4 Partial linkages . 17

5.4.1 Navigational semantics . 17

5.4.2 Using partial linkages for identification 18

5.5 Linkage conflicts . 19

5.6 Comparing the notions of identification . 20

5.7 OFDs as VBICs . 23

6 Inference rules 23
6.1 Adopting relational “axioms” . 24

6.2 Rules for local OFDs . 25

6.3 Rules for non local OFDs . 25

6.4 Additional inference rules . 31

6.5 Cyclic OFDs . 34

7 Related work 35
7.1 Value based identification of objects . 35

7.2 Generalized functional dependencies . 36

7.3 The validation relation . 37

7.4 Relational theory . 38

8 Outlook 38

A Graphtheoretic notions 39

References 40

Functional Dependencies for Object Databases:
Motivation and Axiomatization

1 Introduction

One of the fundamental concepts of object orientation is object identity ([CK86]). It allows to
distinguish objects even if they coincide in their values. In data models this abstract concept
is often realized by object identifiers or surrogates, i. e. by internal identifiers (e. g. [AH84],
[AK89], [Cod79], [HOT76], [HY91], [MW90]). Here, internal means that the query language
of a data model does not provide direct access to the identifiers. Sometimes query languages
have the capability of retrieving an arbitrarily chosen object from a set of objects, comparable to
selecting a copy of a book to be borrowed from a number of copies available in a library. This,
however, is a random selection and no identifying access. In general, applying the retrieval
operation twice to the same set would result in two different objects.

A major goal of database design is to define object and relationship types in such a way that
they represent meaningful units of information with respect to the semantics ofthe underlying
application domain. Thus, it should be possible to address objects by specifying some of their
properties at the level of values and relationships according to these semantic units. This shows
that object identifiers are a modeling concept and not a database concept ([WdJ91]). For this
reason starting the search for an object with a set of values should be possible. Identifying
values either give direct access to a single object or they define objects as starting points for the
retrieval of an object by navigation along links between objects in the given database.
Especially in the case of object oriented database design and relational implementation, knowl-
edge about the accessibility of objects based on their data values is of great interest. Application
domains often suggest natural value based identification criteria (VBICs).From the user’s point
of view these criteria are preferable to abstract object identifiers since they carry semantics of
the modeled domain.
The significance of value based identification mechanisms for objects has been emphasized by
several authors (e.g. [AVdB95], [Bee93], [Gog95], [Kim95], [ST93]). However, less work has
been done in characterizing and investigating reasonable forms of VBICs, together with their
interaction. A further interesting problem is how the structuring of data in an object oriented
schema, e. g. inheritance, influences value based identification.

Some examples of VBICs to be covered by a more general theory of constraints on bothobject
and value level are given in Figures 1 and 2: hotels offer rooms in different categories, e. g.
single and double rooms (Figure 1 (a)). The values ofAccommodationattributes cannot be used
as entry values to access a singleAccommodationobject because different hotels may offer
rooms in the same category. AHotel object together with a value forroom category, however,
uniquely identifies anAccommodationobject. Ifnameis a key forHotel, i. e.Hotelobjects are
identified by theirnamevalue,room categoryandnamecan serve as a VBIC forAccommoda-
tion. Consider the schema in Figure 1 (b), representing information about different branches of

1

skills

emp_no
name

c_no
name
address
remarks

Rental

r_contract_no p_contract_no

Purchase

building

floorrent

Apartment_Unit

.
price

10,1 1 0,1

rented sold
. . .

(c)

{xor}

employs

1

Branch

(b)

Hotel

1,n

offers

(a)

Accommodation

1,n

CustomerClerk

consults

room_category

total

occupied

reserved

street

budget
. . .

name
street
city

.

1,n 1,n n

Figure 1: Some examples of VBICs

a bank. A customer may have accounts at different branches. At each branch one clerk is as-
signed to her or him as investment consultant. ThereforeBranchandCustomerobjects together
determineClerk objects. Ifstreetandc no are keys forBranchandCustomer, respectively, a
VBIC for Clerk is given. This provides an additional identification criterion besides the obvious
identification ofClerk by empno, which may be useful for some applications. Neitherstreet
norc noalone is sufficient to identifyClerk objects.

Figure 1 (c) shows an example of a different form of identification: apartments in a building
are either rented or condominium apartments. Therefore the number of the lease or thesales
contract can be used to distinguishApartmentUnit objects by value, leading to a “disjunc-
tive identification” of apartments either byRentalor by Purchase. The exclusive-or constraint
between the relationshipsrentedandsold is expressed by the dotted line with constraint type
specified asfxorg (cf. [Rat97]).
Assume that a building contractor runs, via subcompanies, some of the apartments he builds.

He offers this service also to private investors who bought an apartment but donot occupy it
themselves. So aRental Institutionis specialized either toInvestoror to Administering Com-
pany, as shown by the mandatory inheritance hierarchy in Figure 2.Investoris a specialization
of typeBuyerandAdministering Companyan optional specialization of typeSubcompany(not
every subcompany is an owner of apartments).BuyerandSubcompanyobjects are distinguish-
able by theirbuyer no andcompanyno value, respectively. The attributes are inherited to the
specialized types therefore also providing VBICs forInvestorandAdministering Company, re-
spectively. In this scenario, value based identification ofRental Institutionobjects becomes

11 0,1

buyer_no company_no

Buyer

Investor

.

Administering
Company

Occupying
Buyer

Rental
Institution

.

Subcompany

Figure 2: VBIC through inheritance

2

possible since everyRental Institutionobject is specialized. This leads to “identification by
generalization/specialization”, similar to the disjunctive criteriapresented in Figure 1 (c).

One simple approach to provide value based identification of objects (especially concerning
relational implementation) is to introduce an artificial identifier attribute ([HY91], [RBP+91]),
i. e. to make the abstract identifier visible. This approach should not be regarded as value based
identification in the original sense because it does not refer to the values and relationships of
the objects themselves. The other extreme is to use the complete object value for identification,
including references to other objects recursively ([AK89], [AVdB95], [DV93]), leading to the
notion of deep equality of objects. This is a very general way to identify objectsby values.
However, deep equality takes into account only references starting from anobject and there-
fore does not consider the complete “relationship environment” of an object, since references
directed towards the object are ignored. From a practical point of view the use of thecomplete
object value as a VBIC, including all relationships to other objects, is inappropriate. Thus, the
question how to determine VBICs similar to the key concept of the relational data model is
raised. A reasonable solution should lie between these two extremes by exploiting all features
of the object oriented data model.
In [Che76] a relationship with cardinality restricted to 1, i. e. representing a function between
entity sets, may contribute to obtain a key for an entity type (so-calledweak entity type, similar
to the example in Figure 1 (a)) by using the key of another entity type related to it. The idea
of using relationships to find VBICs was applied in [Zan79] to determine keys for records in
a network schema. There not only record types of a single set type were taken into account
but also record types reachable via a sequence of set types. In [ST93] this proceeding was ap-
plied to object oriented schemas using a sequence of relationships between classes, including
inheritance. More general approaches to determine keys are presented by observation formulas
and object terms in [AVdB95] and [Gog95], respectively. However, there is nofurther con-
sideration on how to determine the proposed terms and how to distinguish differentkinds of
identification terms. In the following we propose an approach to this matter bygeneralizing
functional dependencies to object schemas (cf. [KR97]).

The paper is organized as follows: the next section introduces some basic notions of theobject
model we use, including a formalization of the terms object schema and schema graph, as
well as some concepts of the relational data model. Sections 3 and 4 describe our approach
to generalize functional dependencies to object functional dependencies. These graph based
constraints are spanning trees of subgraphs of the schema graph. Different semantics for object
functional dependencies, corresponding to different notions of identification, are discussed in
Section 5, including some remarks on effects that have to be taken into account ifdependencies
involving more than one object type are considered. In Section 6 inference rules forobject
functional dependencies generalizing the well-known relational rules are investigated together
with additional inference rules which become necessary for object functional dependencies. We
conclude with some remarks on related topics and an outlook on future work.

2 Preliminaries

The object model used in our approach is similar to the static part of the Object Modeling
Technique ([RBP+91], [Rat97]). We start with a formal description of the model.

3

2.1 Object schemas

An object schemaconsists of a finite number of named object typesand binary relationships
between these types, including inheritance. For our purposes it is sufficient to consider an
inheritance hierarchy as a set of binary relationships with additional cardinality constraints for
mandatory and optional hierarchies. An object type is a pair(O;attr(O)), whereO is the type
name andattr(O) is a finite set of attributeswith a non empty atomic domain assigned to each
attribute. In the following we will identify an object type with its name in order to simplify
notation. Relationships may have cardinalitiesas additional constraints. For simplicity we
assume the names of object types, relationships, and attributes to be unique throughout the
schema.

Let I be a countable infinite set of object identifiers. An object o of type O is a pairo =(i;v) with i 2 I andv a tuple overattr(O), called object value. The extensionext(O) of an
object typeO is a finite set of objects of typeO. Identifiers are assumed to be unique within
ext(O). Let I (ext(O)) denote the set of object identifiers occurring inext(O). The extension
ext(r) of a relationshipr between two object typesO1, O2 with extensionsext(O1), ext(O2)
is a finite set of links(i1; i2) 2 I � I wherei1 2 I (ext(O1)), i2 2 I (ext(O2)). If a cardinality
constraint is specified forr then each extension ofr has to comply with the constraint. The state
s(S) of an object schemaS consists of an extension for every object type and every relationship
of S whereI (ext(O1))\ I (ext(O2)) =? for each pair of different object typesO1, O2 of S . The
extension of an object typeO can be represented by a relation over attribute setfidOg[attr(O),
whereidO is an attribute with domainI . With this view the abstract object identifier becomes
visible.

The schema graphGS of an object schemaS is a labeled graph(V;E; l) where the set of nodes
V corresponds to the object types ofS and where the set of edgesE represents the relationships
of S : fO1;O2g 2 E iff a relationship betweenO1 andO2 exists inS . l is an edge-labeling
function with l (e) = r iff e2 E corresponds to relationshipr of S . A pathin GS is a sequence
Π = O1e1O2 : : :en�1On with Oi 2V, ej 2 E, ej = fO j ;O j+1g, i 2 f1; : : :;ng, j 2 f1; : : :;n�1g.
Let a state for schemaS be given. A link chain(with respect toΠ) between objectso12 ext(O1)
andon2ext(On) is a sequenceπ=o1l1o2 : : : ln�1on such thatoi 2ext(Oi) andl j 2ext(r j), where
l j is the pair of identifiers ofo j ando j+1, andr j is the label of edgeej . For an object typeO,
let sets(O) := 2attr(O)[ffOgg andsets+(O) := sets(O)nf?g. O will be written as shorthand
notation for the singletonfOg. For a given object schemaS , letOTS be the set of all object types
of S andD S := SO2OTS sets(O). We shall assume an object schema to be non empty, i. e. it
contains at least an object type.

2.2 Relational notions

Let β = fB1; : : :;Bmg, m� 1, be a finite set of attributes with domain functiondom: β !fD1; : : :;D kg, k� 1, where eachD i is a non empty domain of atomic values. A tupleoverβ is a

functiont : β!Sk
i=1D i with t(B)2 dom(B) for eachB2 β. In examples it will be written in the

usual tuple notation. A partial tuplet overβ is a tuple overβ with t(B) 2 dom(B) or t(B) unde-
fined. Undefined values are represented by the special symbol0�0. A (partial) relationoverβ is
a finite set of (partial) tuples overβ. Tuplet overβ is totalonζ� β iff t is defined for eachC2 ζ.
t is undefinedonζ iff t is undefined for each attributeC2 ζ. tjζ denotes the restriction oft to at-
tribute setζ. For a relationRoverβ and an attribute setβ0 � β, the strong null filterSNF(R;β0)

4

denotes the set of all tuples ofRwhich are total onβ0. The weak null filterWNF(R;β0) denotes
the set of all tuples ofR which are not undefined onβ0. For a relationR, αR denotes the set of
attributes ofR. If R is a relation andβ� αR, thenR[β] denotes the usual projectionof Rontoβ.
Let t, t 0 be partial tuples overβ. t 0 subsumest onζ� β iff (8C2 ζ)(t 0(C) = t(C)_ t(C) = 0�0).
To give an example, lett1 = (1;2;3), t2 = (1;2;�), t3 = (1;�;3), andt4 = (�;2;�) be tuples
over the same attribute set. Thent1 subsumest1, t2, t3, andt4, t2 subsumest2 andt4, but neither
doest2 subsumet3 nor doest3 subsumet2.

Let ext(O) be an extension of an object typeO. The relational representationrelext(O) of
ext(O) is the relationR with αR = fidOg [attr(O) and R = ftjt tuple overαR^ (9(i;v) 2
ext(O))(t(idO) = i^ tjattr(O)= v)g. idO is called identifier attribute. The attributes fromattr(O)
are called value attributes. The domains of the relational attributes are given by the domains of
the corresponding object type attributes. For every relationshipr between object typesO1 and
O2, ext(r) is a set of links which may be considered as relational representationof itself with
attribute setfidO1; idO2g, denoted asrelext(r).
3 Extending functional dependencies to objects

A straightforward approach to the specification of VBICs for objects types is the generalization
of functional dependencies (FDs) known from the relational model. This proceeding allows to
take advantage of the well-founded theory of FDs.

Consider a relationR with attribute setαR and an FDf : β ! γ with β;γ � αR. f refers only
to attributes ofαR and whetherf is satisfied in a given relational database state is dependent
only onR and independent of any further relations in the state. A straightforward application
of this concept to object schemas leads to a constraint on object type level, i.e.left and right
side of an FDf 0 may not only refer to attributes ofO but also to the object type itself, by
regarding the internal identifier as a special attribute:f 0 : β0 ! γ0 with β0, γ0 � attr(O)[fOg
for some object typeO of a schemaS . This allows to express constraints stating that objects
of O are distinguishable (identifiable) by their value or a part thereof in the same way as tuples
in a relation can be distinguished by looking at their values in key attributes.f 0 is restricted
to local identification ofO by its own attributes only, like common FDs as intra-relational
integrity constraints on a single relation type. However, if the attributevalues of an object
are not sufficient to identify it in the extension ofO in a states(S), relationships to other objects
and the values of these objects ins(S) can be taken into account. The simplest example for this
kind of identification is the weak entity concept of the Entity-Relationship Model ([Che76]).
Generalizing this approach leads to FDs of the formf 00 : ∆ ! Γ, with ∆;Γ � D S , where any
object type ofS may contribute to∆ andΓ, resulting in a dependency on schema level similar
to inter-relational constraints. Object types between which such kind of dependency exists do
not have to be directly connected in the schema graphGS , a path between them is sufficient.

Between any two object types appearing in∆ or between any object type of∆ and a type appear-
ing in Γ more than one path may exist inGS . In schema (a) from Figure 3 for example, there
are two different paths (viap, q and viar, s, t) for the FDfO1g ! fO3g, connectingO1 and
O3. For schema (b) and FDfO1;Dg ! fLg, two paths connectingO3 with O6 and two paths
betweenO1 andO3 can be found. Usually, different paths correspond to different semantics and
a database modeler has one of these paths in mind when specifying a dependency (cf. [Lie82]).
This ambiguity is also known from the universal relation approach ([MUV84]).Obviously an

5

O3

(b)

O

O

O3

O

O

O

1

2

4

5

6
p

r

q

O1 O

OO

2

4 5

(a)

s t

u v

A
B

C

D
E

F
G

H
K

L

p q

r t

s

Figure 3: Ambiguity of an FD at schema level

FD can be satisfied with respect to one path and not with respect to another one,as shown by
the following example:

Example 3.1:Consider the object typesO1, O2, O3 from Figure 3 (b) with extensions

ext(O1) = f(1;v1); (2;v2); (3;v3)g; ext(O2) = f(4;v4); (5;v5); (6;v6)g;
ext(O3) = f(7;v7); (8;v8)g; ext(p) = f(1;4); (2;5); (3;6)g;
ext(r) = f(1;7); (2;7); (3;8)g; ext(q) = f(4;7); (5;8); (6;8)g:

An FD g : fO1g!fO2g via relationshippobviously holds for the given extensions sinceext(p)
represents a one-to-one relationship. Using relationshipsr and q, g does not hold because
objects(5;v5) and(6;v6) have links to the sameO3- andO1-object and from there cannot be
distinguished by looking at theO1-objects associated to them. 2
On the other hand there has to exist at least one path between each pair of object types appearing
in ∆ and also a path between the types ofΓ and the types of∆. Otherwise,f 00 would state a
dependency on object types without a path of relationships between these, i. e. between types
in different components ofGS . Thus, paths have to be specified together with FDs.

For a generalization of FDs, a graph based approach seems to be appropriate to deal with the
mentioned problems, leading to the notion of anobject functional dependency. Here we con-
centrate on a restricted form of such dependencies without cycles.

Definition 3.1: Let S be an object schema with schema graphGS = (V;E; l). An object func-
tional dependency(OFD) of S is an edge- and node-labeled graphf = (Gf ;ν f) with the fol-
lowing properties:

(i) The OFD graphGf = (Vf ;Ef ; l f) is an edge-labeled spanning tree of node setVf �V in
GS with Vf 6=?. l f is the restriction ofl to Ef .

(ii) ν f : Vf ! D S �D S is a partial node-labeling functionsuch that for eachO2Vf with ν f

defined andν f (O) = (δ;γ) holds: δ;γ 2 sets(O) andδ[γ 6= ?. ν f has to be defined at
least for every leaf node1 of Gf .

O with ν f (O) = (δ;γ) andδ 6= ? (γ 6= ?) is called source (sink) object typeof Gf or simply
source (sink) type.

ν f induces two partial functionsνi
f := Πi � ν f , i 2 f1;2g, with Πi being thei-th projection.

Each component functionνi
f is undefined if the corresponding component of theν f -value is the

empty set or ifν f is undefined itself. 2
1For a graph consisting of a single node, the node will be considered as a leaf, too.

6

offers
Accommodation

(room_category / Accommodation)(Hotel /)

Hotel

(a)

Branch Clerk
employs

Customer
(/ Clerk)

(b)

consults

(c_no /)(street /)

Figure 4: Examples of OFDs

The descriptions of node labels byν f or ν1
f andν2

f are equivalent and will be used both. The
specification of OFDs by spanning trees of nodes of the schema graph guarantees that there
are no ambiguities with respect to the connections between sink and source types.The node-
labeling function serves two purposes: it allows to separate object types actually used by an
OFD, i. e. those determined by or determining an object type or values thereof, from those
only connecting such types inGf : for the latterν f is undefined. Moreover,ν f denotes which
parts of an object type are used to determine other types (first label component) or which are
determined by other types (second component). Since an object type can be a source as well
as sink type (e. g. object typeAccommodationin Figure 1 (a)), the node labels are chosen as
pairs. Leaf nodes are required to be labeled because only spanning trees of such node sets are
to be considered where each leaf node contributes to the dependency, i. e. the type or attributes
of it appear in the OFD. The OFDs corresponding to the examples from Figure 1 (a) and(b) are
shown in Figure 4.

Each component of a node label consists either of an attribute set or of the object type itself.
Attributes are not mixed together with the type since the object identifier uniquely determines
an object and therefore its value, too.

The notion of an “object functional dependency” was used by Lee ([Lee95]) to denote func-
tional dependencies restricted to a single class, where the object identifieris treated as a special
attribute and may be used in dependencies.

A set oriented FD-like notation is often sufficient and more convenient to denoteOFDs. It can
be derived from the node labels of an OFD as follows:

Definition 3.2: Let S andGS be as before andf = (Gf ;ν f) be an OFD ofS with node setVf .

∆! Γ with ∆ = [
O2Vf ; ν1

f (O) de f ined

fν1
f (O)g; Γ = [

O2Vf ; ν2
f (O) de f ined

fν2
f (O)g

is the set notationof ν f . ∆ is called the left side, Γ the right sideof the OFD f . δ 2 ∆ is called
entry. An object typeO is referredto by the OFD (or involvedin the OFD) iff O itself or any
subset of its attribute set appears in the left or right side off . f is called type canonicaliff only
one object type is involved inΓ. N (∆) (N (Γ)) denotes the set of nodes ofVf , i. e. object types,
involved in the left (right) side off . N (∆[Γ) is a shorthand notation forN (∆)[N (Γ) and
denotes the set of all types involved inf . O2N (∆) (O2N (Γ)) is called∆-node(Γ-node). The
N (�)-notation will also be used for subsetsΦ ofD S analogously, denoting the set of object types

belonging to the labels inΦ. f : ∆
Gf�! Γ (or, if Gf is uniquely determined by the underlying

schema graph, simply∆! Γ) will be written as a shorthand notation for an OFDf = (Gf ;ν f)
with OFD graphGf and set notation∆ ! Γ of ν f . We occasionally omit set braces in order to
simplify notation. 2
Notation: For a given state, “left (right) side object” or “source (sink) object” will beused to
denote objects belonging to the extension of a left (right) side object type. Furthermore, in the

7

case of non type canonical OFDs, we will simply speak of right side objects when combinations
of right side objects connected by link chains are meant.

Example 3.2: Figure 5 shows two OFDsf1, f2 of schema (b) from Figure 3, withVf1 =fO1;O3;O4;O5g andVf2 = fO1;O2;O3;O4;O5g. Both OFDs have the set notationfA;O5;Fg!fO4g.
:

O1

O3

O5

O4

O2

2f

p

q

s

u

5(O /)

(A /) 4

O5

O4

:

O3

O1 s

u

r
1f

5

(A /) 4

(O /)

(F / O) (F / O)

Figure 5: Examples of non local object dependencies

The OFDs from Figure 4 are written asfHotel; room categoryg ! fAccommodationg andfstreet;c nog! fClerkg with graphs as given in Figure 4. 2
The example demonstrates that the OFD graph is necessary to represent the subgraph of GS
referenced by an OFDf . The set notation alone is not sufficient. Every leaf node ofGf is an
object type involved inf , whereas inner nodes are involved types or types on a path connecting
two involved types.

From the set notation it can be seen whether an OFD is local(i. e. just one object type is
involved in f) or non local(more than one type is involved inf). This corresponds to the
notions of intra-object and inter-object constraints mentioned in [JQ92]. Both kinds ofdepen-
dencies can be further divided into attribute based(left and right side of an OFD consisting of
attribute sets only), object based(at least one object type appears in the left or right side) and
pure object based(only object types involved in the left and right side) OFDs (cf. Figure 6).
The OFDsf1 and f2 from the previous example are both non local object based OFDs.

4 The validation relation

Given a states(S) and an OFDf : ∆
Gf�! Γ of S , it has to be defined what it means thatf holds

or does not hold ins(S). This can be done based on avalidation relation valf for f with respect
to s(S). If f is a local OFD referring to object typeO, the validation relation is determined

object based
(object dependency)(functional dependency)

attribute based attribute based
(non local functional dependency)

object based
(non local object dependency)

pure object based
(non local object dependency)

local

object functional dependencies

non local

Figure 6: Types of object functional dependencies

8

uniquely by the relation representingext(O). If f is non local, such a relation is built by joining
the relations corresponding to the relationships and object types of the paths connecting the
referred types. To check a non local OFD with an object typeO involved in the right side it has
to be ensured that every object ofext(O) appears in the validation relation if the requirement
of surjective references ([ST93]) has to be fulfilled. Then the validity of an OFD under a given
schema state can be defined similar to the validity of an FD with respectto a relation.

Depending on the extensions and the cardinalities of the relationships participatingin Gf , there
may exist right side objects having link chains to objects of only some of the types involved in
∆. It is not necessary that there is a link chain to at least one object of everytype involved in
∆. The link tree corresponding to these chains will be calledpartial linkage. If link chains to
objects of each of the left side types exist, we use the termtotal linkageor linkage, for short.
Furthermore, there may exist right side objects having no links at all or onlyinsufficient link
chains. Insufficient link chains connect right side objects and objects of types being neither left
side nor right side types and cannot be completed to a link chain connecting a right side and
a left side object. If objects of a right side object type with only insufficient or no link chains
exist, this might indicate thatf is invalid. For the construction of the validation relationval f this
has two consequences: first, since partial linkages, insufficient link chains, orobjects without
any links may exist,val f will be a partial relation in general. Second, the natural join cannot
be used as operation to combine relations due to the well-known effect of ‘dangling tuples’. To
represent appropriately the part ofs(S) referenced byf the full outer join ([LP76]) has to be
used, modified to operate on partial relations. Here the symbol0�0 represents missing links of
an object. Therefore0�0 is a null value in the sense of ’value does not exist’ and partial relations
represent complete information about the underlying extensions. Moreover, the null value does
not affect the evaluation off on val f : checking f is done by checking equality of attribute
values ofval f . In this context a comparisonc= 0�0 can be evaluated tof alseand0�0 = 0�0 to
true for every domain value or object identifierc since two objects, one with, the other without
link of the same relationship, can obviously be distinguished.

The null extended full outer join operation, modified to handle objects without links, i.e.dan-
gling tuples which are undefined on the intersection attributes, is presented in the next definition.

Definition 4.1: Let R, S be partial relations over attribute setsαR, αS, respectively, with

αR\αS 6=?. The (null extended) full outer join(FOJ)R
f o1 Sof RandS is defined as

R
f o1 S=d f ftjt tuple overαR[αS^((t total onαR\αS^ tjαR 2 R^ tjαS 2 S)_ (tjαR 2 R^ t total onαR\αS^:(9t 0 2 S)(tjαR\αS = t 0jαR\αS)^ t undefined onαSnαR)_ (tjαS 2 S^ t total onαR\αS^:(9t 0 2 R)(tjαR\αS = t 0jαR\αS)^ t undefined onαRnαS)_ (tjαR 2 R^ t undefined onαS)_ (tjαS 2 S^ t undefined onαR))g 2

By the first three join conditions the outer join is built for tuples total on the intersection of
the attribute sets. By the last two conditions tuples undefined on the intersection are added to
the result. This is sufficient for our purposes, since the set of join attributes will always be a
singleton. The FOJ as defined above is associative and commutative. This does nothold if the
operands are allowed to be relations over attribute sets with empty intersection.

Example 4.1: Consider the schema in Figure 7, consisting of object typesO1, O2, O3, O4

with attribute setsfAg, fBg, fCg, fDg, respectively, and relationshipsr1, r2, r3. For the next

9

r2
r1

O1

A

O

B

2 O

C

3

r3

O1 O3
O2r1

r2

nn1 n
O

D

4
nn

r O
3

4

Figure 7: Simple schema and schema graph

examples let the following extensions be given:

ext(O1) = f(1; [a]); (2; [a]); (3; [b])g; ext(O2) = f(4; [c]); (5; [c]); (6; [a]); (7; [d]);(8; [d])g;
ext(O3) = f(9; [e]); (10; [f]); (11; [g])g; ext(r1) = f(1;5); (1;6); (2;7); (3;8)g;
ext(r2) = f(6;9); (7;10)g

with relational representations derived appropriately. Application of the full outer join torelext(O3)
andrelext(r2) yields relationR := relext(O3) f o1 relext(r2) as result:

relext(O3)
idO3 C

9 e
10 f
11 g

relext(r2)
idO2 idO3

6 9
7 10

R
idO2 idO3 C
6 9 e
7 10 f� 11 g

If R is an intermediary relation to be used in further join operations, the fourth and fifth join
condition ensure that partial tuples liket = (�;11;g) are not lost. For example, when joiningR
with the relational representation ofext(O2), t would be represented in the result. Object(3; [b])
is an example of anO1-object having only an insufficient link chain with respect toO3-objects
(assume an appropriate OFD to be given).(4; [c]) has no link chains at all. 2
Using the FOJ, a relation for checking an OFD can be constructed:

Definition 4.2: Let S be an object schema,s(S) be a state ofS and f : fδ1; : : :;δkg Gf�!fγ1; : : :;γlg be an OFD with graphGf = (Vf ;Ef ; l f) and node-labeling functionν f . Let

δ0i :=� δi if δi is an attribute setfidOg if δi = O;O2OTS

and
∆0 :=Sk

i=1 δ0i
(γ 0

j , Γ0 analogously).
The validation relationval f of f unders(S) is defined as follows:

(i) If f is a local OFD referring to object typeO, val f is the relational representationrelext(O)
of ext(O).

(ii) If f is a non local OFD,val f is obtained as follows:
let fO1; : : :;Olg �Vf be the set of all sink object types andι := fidO1; : : :; idOlg the set of
their identifier attributes. For a nodeO2Vf let φO := δ[γ[fidOg if ν f (O) = (δ;γ) and
φO := fidOg if ν f (O) is undefined.

(a) select a start nodeO2Vf ; V := relext(O)[φO]
for all edgese2 Ef incident onO with l f (e) = r:

V := V f o1 relext(r); removee from Ef

10

removeO fromVf

while Vf 6=?:
select a nodeO0 2Vf with idO0 2 αV
V := V f o1 relext(O0)[φO0]
for all edgese0 2 Ef incident onO0 with l f (e0) = r 0:
V := V f o1 relext(r 0); removee0 from Ef

removeO0 fromVf

(b) (right side (rs)-normalization) Ifι 6=?, remove all tuples undefined onι:
V := WNF(V ; ι)

(c) (subsumption (sub)-normalization) Remove all tuples subsumed by another tuple on
the attributes belonging to the left and right side types off :
val f is a maximal subset ofV such that no two tuplest andt 0, t 6= t 0, exist inval f
with t 0 subsumingt on∆0 [Γ0

∆0 is called set offδ1; : : :;δkg-attributesor left side attributes, Γ0 is called set offγ1; : : :;γlg-at-
tributesor right side attributesof val f . 2
Remark: If the rs-normalization results in a relationV with different tuples having the same
values on attribute set∆0 [Γ0, more than one relation can be obtained fromV by applying
sub-normalization. With respect to equality on∆0[Γ0 this set of relations forms an equivalence
class and the application of sub-normalization corresponds to the selection of a representative.

Example 4.2: Let f : fA;O3g Gf�! fO2g be an OFD of the schema in Figure 7. Here the OFD
graphGf is induced by the schema graph (except for the node labels) andval f can be computed
by the FOJ sequence implied byGf , when starting at nodeO3:(((relext(O3)[idO3] f o1 relext(r2)) f o1 relext(O2)[idO2]) f o1 relext(r1)) f o1 relext(O1)[idO1;A]
Using relationR (omitting attribute C) and the relational representations from Example 4.1 we
get the following intermediary relations and finally the validation relationval f .

R0 = R
f o1 relext(O2)[idO2]

idO2 idO3

6 9
7 10
5 �
8 �
4 �� 11

R00 = R0 f o1 relext(r1)
idO1 idO2 idO3

1 6 9
2 7 10
1 5 �
3 8 �� 4 �� � 11

V = R00 f o1 relext(O1)[idO1;A]
idO1 A idO2 idO3

1 a 6 9
2 a 7 10
1 a 5 �
3 b 8 �� � 4 �� � � 11

The first four tuples ofV result from the natural join condition of the FOJ, the next one is a
dangling tuple fromrelext(O2) resulting from the third condition and represents anO2-object
without any links. The last tuple is included because of the fifth join condition. It would
be of relevance, e. g. for checking an OFDf 0 : fO1g ! fO3g with the same OFD graph as
f . The validation relationval f of f is obtained fromV by applying normalization step (b),
resulting in the deletion of the last tuple which is undefined onidO2. No tuples are deleted by
sub-normalization in this example. 2

11

In case of a type canonical OFD, the construction may start with the right side object type.
For every join operation the set of join attributes consists of a single identifier attribute. The
construction process guarantees that all right side objects of the given state, including all link
chains to objects of any types appearing as nodes ofGf , are represented by the validation rela-
tion, with the exception of tuples deleted during rs- and sub-normalization. Obviously, tuples
undefined on every attribute ofval f that belongs to a sink object type, represent link chains
in which no object of a right side object type participates. By discarding them no information
about the extensions of the sink object types is lost. For a sink object different linkagesto com-
binations of source objects may exist, with one combination less specific than the other, i. e. two
different tuples inval f exist, having the same values on the right side attributes, and one tuple
subsuming the other on the left side attributes. Such less specific combinations are eliminated
by sub-normalization since they are subsumed by a more specific combination of entryvalues.
This step may delete information about an objecto of a sink typeO if O is only involved at
attribute level in the OFD, but not at type level. If an additional sink objectwith identical values
on these attributes exists in the given state, the information abouto might be discarded from the
validation relation, because sub-normalization is done with respect to the attributes of the sink
type, ignoring the identifier attribute. In this case the OFD specifies a dependency at value level
and not all objects ofext(O) have to be taken into account but only those having different values
on the attributes ofO specified in the OFD. Thus, concerning identification sub-normalization
does not result in a loss of information because no value of the right side attributesoccurring
in only one tuple is discarded and the more exact combination of entry values is kept. Sub-
normalization is necessary because subsumed tuples might interfere with theevaluation off on
val f .

5 Object functional dependencies - semantics

Based on the validation relation different notions of validity can be given foran OFD with
respect to a state of an object schema. These notions correspond to different views of identifi-
cation. For example, in some situations only those objects of a type that are accessible by using
certain paths may be of interest to a user (e.g. “all customers with ordersthat are not paid for
yet”) while in other situations not all of these paths may be considered as mandatory.

This kind of accessibility has not to be confused with the qualification of objects byconditions
in query languages. Here we are interested in the unique access to single objects in a given set
of objects by a fixed pattern.

5.1 Adopting FD semantics

The most obvious way to distinguish objects is to simply adopt the meaning of an FDg : β! ζ
for OFDs: each combination of values in the attributes ofβ in a given relation determines at
most oneζ-combination, i. e.g is a function mappingβ-combinations toζ-combinations, with

tuples being total. In the context of an OFDf : ∆
Gf�! Γ this means to look only at the value

attributes and identifier attributes ofval f , belonging to∆ andΓ. The link chains between∆- and
Γ-objects are not considered although they are represented byval f , too. This view corresponds
to the following definition:

12

Definition 5.1: Let S be an object schema with states(S) and f : fδ1; : : :;δkg Gf�! fγ1; : : :;γlg
be an OFD with validation relationval f unders(S) and∆0, Γ0 as in Definition 4.2.
Let fidO1; : : :; idOlg be the set of identifier attributes of the sink object types off .

f is strongly satisfiedby s(S) iff the following conditions hold:

(i) (8 t; t 0 2 SNF(val f ;∆0))(tj∆0 = t 0j∆0) tjΓ0 = t 0jΓ0)
(ii) val f [fidOig] = SNF(val f ;∆0)[fidOig] for eachi 2 f1; : : :; lg

with SNF(val f ;∆0) denoting the strong null filter forval f on attribute set∆0. 2
Condition (i) states thatf induces a function, mapping eachtotal combination of∆0-values
of val f to exactly oneΓ0-combination. Given values (objects, respectively) for each entryδi,
at most one combination of right side objects or values is reached. Condition (ii) guarantees
surjectivity (reachability) if all partial linkages are discarded. Thus, for each sink object at least
one combination of source objects (values of objects, respectively) has to exist via which it can
be accessed uniquely.

Example 5.1: (continuing Example 4.2) Forf : fA;O3g Gf�! fO2g andval f from Example
4.2 it has to be checked whethertjfA;idO3g = t 0jfA;idO3g) tjfidO2g = t 0jfidO2g holds for every

t; t 0 2 SNF(val f ;fA; idO3g). SNF(val f ;fA; idO3g) consists of tuples(1;a;6;9) and(2;a;7;10)
which satisfy the condition. However, condition (ii) is violated (three tuples are eliminated by
the strong null filter onfA; idO3g). Thereforef is not strongly satisfied by the given schema

state. Consider another OFDf 0 : fO2g Gf 0�! fAg, with respect to the same schema and state.
The validation relation off 0 consists of the first four tuples ofV from Example 4.2 restricted to

attributesidO1, A, andidO2 (val f 0 in Figure 8). f 0 is strongly satisfied. OFDf 00 : fBg Gf 00�! fAg,
obtained by a left side change off 0 to attribute level, is not strongly satisfied (cf.val f 00 in
Figure 8). 2
An OFD f : ∆ ! Γ specifies a set of entries for accessingΓ-combinations. If anentry value
is given for an entryδ 2 ∆, it may select one (ifδ is an object type) or possibly more (ifδ is
an attribute set) objects asentry pointsin the given state. Analogously a combination of entry
values (short:entry combination) for ∆ may select one or more sets of entry points, with each
set corresponding to a linkage leading to aΓ-combination.

If f is strongly satisfied by a state and if a sink typeO is involved in the OFDs right side at type
level, this means that theO-objects can be distinguished taking only total entry combinations
into account and using values and objects as entry values. EachO-object is reachable in this
way, sincef is surjective. It has to be noted that ifO is involved in the right side off only at

val f 0
idO1 A idO2

1 a 6
2 a 7
1 a 5
3 b 8

val f 00
idO1 A idO2 B
1 a 6 a
2 a 7 d
1 a 5 c
3 b 8 d

val f 000
idO1 idO2 B idO3 C
1 5 c � �
1 6 a 9 e
2 7 d 10 f
3 8 d � �

Figure 8: Validation relations of different OFDs under the same state

13

6

8

7

5

l2

l 3

l 5

l 6

l 4

l7

l1

r2

r1

r1

r2l 9

l 8

(a)

O

O

O

(b)

4

2

3

1
s

t

u

l O

ext(O)

ext(O)
ext(O)

l

ext(O)

Figure 9: Fork schema with state

attribute level, surjectivity refers to the different attribute values, not to the set of allO-objects
(cf. remarks on sub-normalization, page 12), and thus, strong satisfaction does not necessarily
imply surjectivity at object level. In this case not every sink object maybe reachable by using
a total entry combination. But if such an objecto exists andf is strongly satisfied, another
O-object exists in the given state, reachable via a total entry combination andhaving the same
values on the attributes appearing inf . This coincides with the view of OFDs as integrity
constraints at object or value level: if an OFD is specified at value level (i. e. only attributes
appear in the right side), different objects having identical values on the sink attributes need not
to be distinguished since it is a coarser constraint than an OFD specified at object level.

The notion of identification defined by strong satisfaction follows closely the view of FDs. This
becomes evident especially in the case of non type canonical OFDs.

5.2 Non type canonical OFDs and forkings

If a type canonical OFD is considered, i. e. an OFD with only one sink object type, different
linkages with identical source objects (values, respectively) may exist for a single sink object.
In this case a set of linkages may be determined by a combination of entry values,but they all
lead to the same sink object. Thus, unique access to the object is guaranteed. However, in the
case of non type canonical OFDs unique access tocombinationsof sink objects is needed in
the context of strong satisfaction, and in contrast to type canonical OFDs, partial combinations
may appear. Conflicts arise if different linkages with identical entry pointsexist, even if for
each sink type the same object is involved in these linkages:

Consider object typesOl , O, Or1, Or2 and relationshipss, t, u between them as presented in Fig-
ure 9 (a), with relationshipst, u being optional, and the simple extensions given by the graphical
representation in Figure 9 (b). For clarity, only the types and identifiers arelisted, no attributes
or values. The solid lines represent links between objects. Furthermore, consider the OFD

f : fOlg Gf�! fOr1;Or2g with Gf as shown in Figure 9 (a), stating thatOr1- andOr2-objects are
distinguishable by their associatedOl -objects. This means that every, possibly partial, combina-
tion of Or1- andOr2-objects, connected by a link chain via anO-object under the given state, is
uniquely determined by at least oneOl -object. For example, combination 5/6 is determined by
Ol -object 1, using linksl2, l5, l6 and connectingO-object 2. However, with relationshipst andu
assumed to be optional, there may also exist link chains, such as 1l1 4 l4 5 and 1l3 3 l7 6, con-
necting anOl -object with only one right side object. Here a singleOr1-object (5) and a single

14

idOl idO idOr1
idOr2

1 4 5 � �
1 2 5 6
1 3 � 6 �

(a)

idOl idO idOr1
idOr2

1 4 7 �
1 2 5 6
1 3 � 8

(b)

idOl idO idOr1
idOr2

1 4 7 �
1 3 � 8

(c)

Figure 10: Validation relations of a non type canonical OFD with fork graph

Or2-object (6), as well as the combination of both, have to be identified by the sameOl -object
(1). With respect to identification, this is not critical: starting withobject 1, exactly oneOr1-
and oneOr2-object can be reached using all link chains in the given state and a single linkage
exists, providing access to both objects. These linkages are represented by thetuples shown in
the relation from Figure 10 (a). Here, sub-normalization discards tuples (marked by�) because
they are subsumed on the right side attributes. The validation relation for thegiven state consists
of the total tuple only, representing the linkage that provides the “maximal information” about
the access to sink objects 5 and 6 with object 1 as entry point.

Consider linksl4 and l7 replaced by linksl8 and l9 to additional new objects 7 and 8 (dashed
lines in Figure 9 (b)). Again various combinations of sink objects can be reached from entry
object 1, but now two differentOr1-objects (Or2-objects) appear in the sink combinations, in-
dicating thatf does not hold. The validation relation for this state is shown in Figure 10 (b).
The sub-normalization does not remove the two partial tuples in this case. However, for an
OFD to be strongly satisfied, it is not sufficient that in the different linkages with identical entry
combinations always the same object per sink type occurs: consider a state corresponding to the
validation relation in Figure 10 (c) with linksl2, l4, l5, l6, andl7 missing in the state shown in
Figure 9 (b). Here, only one object per sink type is reachable from entry object 1. Also OFDsfOlg �! fOr1g andfOlg �! fOr2g are strongly satisfied. But concerning strong satisfaction
of f , the combinations ofOr1- andOr2-objects have to be considered, corresponding to the func-
tional view of an OFD:f mapsOl -objects to (possibly partial) pairs fromext(Or1)�ext(Or2)
and not to singleOr1- andOr2-objects. Thus,f is not strongly satisfied with respect to this state,
because two different sink combinations are reachable from one entry object and no “covering”
linkage providing access to both objects 7 and 8 exists.

Thus, with respect to non type canonical OFDs, the notion of identification connectedwith
strong satisfaction is restrictive in the sense that identification isnot possible if more than one
combination of sink objects is reachable from a given set of entry values, evenif at most one
object of each sink type does appear in all these combinations. For identification purposes
there has to exist a sink combination reachable from the same entry points that combines the
information of all these partial sink combinations.

The graph structure from which constellations with partial sink combinations asgiven in Figure
10 may arise corresponds to that of afork schemaor fork graph: at least three different object
types (Ol ,Or1,Or2 in Figure 9 (a)) have to be involved inf , with a minimum of two sink object
types among them, such that not all three are nodes of a path inGf . Therefore an additional type,
the fork type(O), must exist, from which separate paths to the involved object types emerge.
The graph in Figure 9 (a), represents the simplest constellation of types possibly leading to the
conflicts shown in the validation relations of Figure 10. Furthermore, each of thepaths leading
from the fork type to the sink object types has to contain at least one optional relationship.
The “handle” path of the fork graph connects the source type and the fork type, the “tine”
paths lead from the fork type to the sink types. The involved object types do not have tobe

15

connected directly to the fork type, and more than one source type or further sink types may be
involved in the OFD. But every OFD graph where linkages as presented in Figure 10 may arise
in an associated state is non type canonical and contains a fork graph as subgraph. Thus, the
existence of a fork type with the described properties concerning the positions of source and
sink types is crucial.

If an OFD graph contains a fork graph, the OFD is non type canonical. The reversal doesnot
hold in general, i. e. the class of OFDs with OFD graph containing a fork graph isa proper
subclass of the class of non type canonical OFDs.

Remark: Here, as in the previous sections, we have argued primarily on the object levelwhen
investigating identification. Demanding the equality of values of objects is a much weaker
condition and so all statements are still valid if a set of objects with identical values on the right
side attribute sets of an OFD is considered instead of just a single object (analogously for the
left side).

Whereas FDs, considered as functions on a (total) relation, are always surjective, this does not
hold for non local OFDs in general: with respect to a pathΠ of an OFD, connecting a left
side object typeOl and a right side typeOr , anOr-object may have link chains toOl -objects,
insufficient link chains to objects of types on the path other thanOl , or even no link chains at all.
In case of more than one left side object type also partial linkages of anOr-object may appear.
If it only has insufficient link chains, this means that it cannot be reached from any Ol -object
by simply following a link chain, and thus, the OFD as a function mapping toOr-objects is not
surjective. In contrast to FDs this does not imply that the schema state is incomplete. However,
in the sense of strong satisfaction, no value combination exists to distinguish such anOr -object
from others since totality on∆0 and the surjectivity property are required for this. Relaxation of
these conditions leads to distinct forms of satisfaction which are of interest for the identification
of objects. These will be discussed in the following sections.

5.3 Object centered versus link centered view

Strong satisfaction of an OFD guarantees totality on∆ and surjectivity, i. e. reachability from the
total entry combinations. Giving up surjectivity corresponds to a view of identification, where
we are only interested in such sink objects that can be reached by giving entry values for all
∆-elements and following the linkages selected by these values. Right side objects having only
partial linkages to left side objects are discarded under this view, for they cannot be retrieved
by giving a value combination for∆. If all right side objects accessible in this way can be
distinguished by looking at the∆-values of their associated source objects,f will be called
weakly satisfiedby the schema state:

Definition 5.2: Let S , s(S), f , ∆0, Γ0, fidO1; : : :; idOlg andval f as in Definition 5.1. f is
weakly satisfiedby s(S) iff condition (i) from Definition 5.1 holds. 2
Example 5.2: (continuing Example 4.2) OFDf : fA;O3g Gf�! fO2g is weakly satisfied in the

given state.f 00 : fBg Gf 00�! fAg from Example 5.1 is not weakly satisfied by the given state (cf.
val f 00 from Figure 8). 2
The validation relation as defined can be described as an object centered view of the state.

16

Every object of the sink types2 of the underlying OFD is represented, including all links of it.
Using only the relational representations of relationships to build the validation relation would
lead to a more restrictive, link centered view. Objects without any link are ignored. If we
try to construct such a validation relation by using the natural join, each partial linkage will be
discarded, resulting in a total relation. The outer join, however, includes even “isolated” objects,
i. e. objects without any link.

Weak satisfaction represents this link centered view. With respect to VBICs, weakly and
strongly satisfied OFDs represent two different types of OFDs: when looking forVBICs usually
only those criteria are of interest, that allow to access each object belonging to the extension
of a considered type. Therefore in general a weakly satisfied OFD cannot be used as a VBIC.
However, if an OFD is weakly satisfied, all those objects of the sink objecttype of an OFD are
uniquely determined which are “visible” by using the elements of∆ as entries.

Our examples in Figure 1 (c) and Figure 2 show that totality on∆ can be too strong a condition if
we look for possibilities to identify objects. Thus, partial linkages should be taken into account.

5.4 Partial linkages

In this section we will discuss the use of missing links and partial linkages (PLs) for the identi-
fication of objects. Null values in a validation relation can originate fromthese elements only.
Objects with partial values, i. e. null values in an object value, are not considered here.

5.4.1 Navigational semantics

Consider an OFDg : fA;Bg Gg�! fOg with A andB being attributes of object typesO1 andO2,
both directly connected to typeO, and extensions given for these.g specifies (value based)
entries that allow to retrieve objects of typeO by navigating along the relationships connecting
O1, O2 andO. We will denote this asnavigational semanticsof OFD g (cf. [Lie82]). Given a
combination of values forA andB, and usingGg under the given state, at most oneO-object is
retrieved ifg is valid. As described in Section 5.2 this navigational view does also fit for non
type canonical OFDs, i. e. for combinations of sink objects.

Suppose we want to retrieve anO-object withA-value 1,B-value 2 and a secondO-object with
A-value 1 but noB-value, i. e. with no link to anyO2-object in the given state. The first can
be accessed by starting with objects denoted by theA- andB-value, following the links of the
selectedO1- andO2-objects to anO-object if such exists for the given combination of entry
values. For the second object this is not possible since noB-value exists. AllO-objects with
associatedA-value 1 have to be selected instead, using onlyA as entry, and in a further step it
has to be checked whether an object without aB-value exists among these. This is contrary to
the navigational view of identification where values and objects are used to select entry points
for traversing the relationships specified by the OFD graph. From this practical point of view,
a missing link at object level can only be used in the additional “hidden” selection, but not as
entry value. Thus, for the selection of a linkage (or a set of linkages) leading to asingle sink
object, missing links cannot be utilized accordingly.

2Or all different values of sink objects, if only attributes of a sink type occur in the OFDs right side.

17

Nevertheless, when investigating identification, missing links and PLs,and thus null values in
the validation relation, arise naturally in the context of some modeling concepts, e. g. exclusive-
or constrained relationships and inheritance: depending on the cardinality of the inheritance
hierarchy an ancestor typeO1 usually identifies its inheriting subtypesO2 andO3. This can be

specified by an OFDfO1g G�!fO2;O3g, where under a given state missing links ofO1-objects
with respect toO2- or O3-objects may appear if the inheritance is optional. In the context of
inheritance, missing links of the right side objects are also possible as shown bythe example

in Figure 2. This situation can be represented by an OFDh : fbuyer no;companynog Gh�!fRental Institutiong, where missing links ofRental Institution-objects with respect to the left
side object types may appear. Here the notion of strong satisfaction would be too restrictive be-
cause thebuyer no/companyno-combination associated to aRental Institution-object is always
partial. This example also shows that the current definition of OFDs does not allow the exact
specification of some kinds of VBICs. From the cardinality of the inheritance structure follows
that missing links play no role for identification byh. EachRental Institution-object is identi-
fied by either anInvestor- or anAdministering Company-object. This can only be captured by
an (exclusive) disjunctive combination of the left side sets ofh. In this paper, only conjunctions
of the left side sets are considered for OFDs, similar to the definition of FDs. Exclusive-or like
constraints demonstrate the necessity to consider missing links when investigating VBICs or
OFDs as integrity constraints at schema level, even if they are not to be used for identification
purposes.

5.4.2 Using partial linkages for identification

Partial linkages in the form of partial tuples ofval f can be used to distinguish objects. At object
level missing links cannot be exploited in this way directly, because it is not possible to use
them as entry values for the retrieval of objects (cf. Section 5.4.1). Takingadvantage of partial
linkages or missing links as they are represented by the validation relation, the following notions
of PL-satisfaction, i. e. satisfaction considering partial linkages, can be derived from strong and
weak satisfaction:

Definition 5.3: Let S , s(S), f , ∆0, Γ0, fidO1; : : :; idOlg andval f be as in Definition 5.1.
f is strongly PL-satisfiedby s(S) iff the following conditions hold:

(i) (8 t; t 0 2WNF(val f ;∆0))(tj∆0 = t 0j∆0) tjΓ0 = t 0jΓ0)
(ii) val f [fidOig] = WNF(val f ;∆0)[fidOig] for eachi 2 f1; : : :; lg

WNF(val f ;∆0) denotes the weak null filter forval f on∆0.
f is weakly PL-satisfiedby s(S) iff condition (i) holds. 2
Strong PL-satisfaction represents a view of identification where at most oneright side object
can be reached, even if only for some of the entries objects or values exist. As mentioned before,
for the check of condition (i) the null value will be treated as a constant, being different from all
other domain values. A notion of identification in the sense of weak satisfaction, i. e. discarding
surjectivity, is represented by weak PL-satisfaction.

Strong and weak PL-satisfaction exploit the use of partial linkages for the distinction of objects.
As with strong and weak satisfaction, right side objects having only insufficientor no link

18

chains to objects of source types are not considered since they are not reachable fromany of the
specified entries.

Example 5.3: (continuing Example 4.2) Because objectso = (5; [c]) and o0 = (8; [d]) of

ext(O2) have no links to anO3-object, OFD f : fA;O3g Gf�! fO2g is weakly PL-satisfied by
the given state.f is not strongly PL-satisfied due to objecto = (4; [c]) having no links. OFD

f 000 : fB;Cg Gf 000�!fO1g is strongly PL-satisfied (cf.val f 000 from Figure 8). 2
Besides the problem with respect to the navigational point of view, the use of missinglinks
for identification is limited, depending on the number of∆-nodes. The maximum number of
objects distinguishable by missing links also depends on the chosen type of identification,e.g.
conjunctive or disjunctive combination of the object types involved in the left sideof an OFD.
The use of disjunctive combination allows for every state to distinguish right side objects by
using only objects (or values) of one of the left side sets. This reduces the maximum number of
objects distinguishable by missing links to 1.

5.5 Linkage conflicts

Further problems may arise when partial linkages or insufficient link chains areutilized for
object identification. This is shown by the next example:

Example 5.4: Consider the schema from Figure 7 with extensions given by the following
relational representations:

relext(O1)
idO1 A
1 a
2 b

relext(r1)
idO1 idO2

1 3
2 5

relext(O2)
idO2 B
3 a
4 c
5 c
6 b

relext(r2)
idO2 idO3

3 7
4 7
5 8
5 9
6 8

relext(O3)
idO3 C
7 e
8 e
9 d

relext(r3)
idO3 idO4

7 10
8 10
9 11

relext(O4)
idO4 D
10 f
11 g

Under this state the relation obtained for OFDf : fO1;O4g Gf�!fO3g prior to the application of
sub-normalization contains three total and two partial tuples, corresponding to the linkages of
O3-objects toO1- andO4-objects (cf. relationV in Figure 11). The partial tuples, marked with� in V , would interfere with the wayf is evaluated but they are deleted by sub-normalization
since subsuming tuples exist. 2
Unfortunately, this normalization step may delete information from the validation relation by
which objects could be distinguished, because in some cases this is possible only by using PLs:

Example 5.5:Consider extensions for the relationships and object types of the schema from
Figure 7, leading to the relationV 0 shown in Figure 11 before sub-normalization (using OFD

f : fO1;O4g Gf�! fO3g). O3-objects(7; [: : :]) and(8; [: : :]) have link chains to the sameO1- and
O4-objects and therefore cannot be distinguished by them. But using the PL for object(7; [: : :]),
the two objects can be separated by their associatedidO1-values. During sub-normalization the
second instead of the first tuple is deleted, resulting in a validation relation by which f is not
satisfied, although the twoO3-objects obviously can be distinguished via their link chains to
O1-objects. 2

19

V
idO1 idO4 idO2 idO3
1 10 3 7� 10 4 7 �
2 10 5 8� 10 6 8 �
2 11 5 9

V 0
idO1 idO4 idO2 idO3

1 10 3 7� 10 4 7
1 10 5 8
1 11 5 9

V 00
idO1 idO4 idO2 idO3

1 10 3 7� 10 4 7
1 10 5 8� 10 6 8
2 10 13 16
2 10 14 8
12 10 15 7
12 11 15 9fO1;O4g Gf�! fO3g

valg
idO1 idO2 idO3

1 3 7
1 4 8� 5 7� 5 8fO1;O2g Gg�! fO3g

Figure 11: Linkage conflicts

The kind of effect described in Example 5.5 arises only if a subsuming tuple in the validation
relation exists and PL-satisfaction is considered. We will call constellations as shown in Fig-
ure 11, where identification of objects is possible but disturbed by the existence of multiple
(partial or total) linkages for a sink object,linkage conflicts. V , V 0 andV 00 represent different
kinds of linkage conflicts. Some disappear by sub-normalization (cf.V). In other cases sub-
normalization may remove tuples necessary for identification (cf.V 0) or it has no effect at all
since the linkage conflict arises from total linkages (cf.V 00) or additional PLs as shown in the
next example.

Example 5.6: Consider OFDg : fO1;O2g Gg�! fO3g with graph induced by the schema from
Figure 7 and a schema state leading to the validation relationvalg as shown in Figure 11. Tuples(�;5;7) and(�;5;8) are not removed by sub-normalization because no subsuming tuples onfidO1; idO2; idO3g exist. Both notions of identification taking PLs into account are affected by
this. 2
To avoid linkage conflicts involving PLs it would be necessary to decide which PLs are needed
for identification. For a small number of objects this seems feasible, but it becomes more
difficult with an increasing number of objects in a given state. Furthermore,asV 00 already
indicates, the problem is not restricted to PLs. Linkage conflicts may also arise if only total
linkages appear in the state: for example, replace all null values in the relations from Figure 11
by a new object identifier to obtain states having total linkages only.

5.6 Comparing the notions of identification

From the definitions of satisfaction follows directly:

Lemma 5.1: Let S be an object schema with states(S) and f : ∆
Gf�! Γ be an OFD. If f is

strongly satisfied (strongly PL-satisfied) unders(S), then f is weakly satisfied (weakly PL-
satisfied) unders(S). 2
For a given relationRover attribute setαR andβ� αR the strong null filterSNF(R;β) is always
a subset of the weak null filterWNF(R;β). Thus, we have:

Lemma 5.2: Let S be an object schema with states(S) and f : ∆
Gf�! Γ be an OFD. Iff is

weakly PL-satisfied unders(S), then f is weakly satisfied unders(S). 2
20

l1
O l2

O Or

l1
O

l2
O

Or

(a)

O

(b)

Figure 12: Shielding and converge constellation

In general the reversals of both lemmas do not hold. The notions of strong satisfaction and
strong PL-satisfaction have to be examined more thoroughly. Whereas it is obviousthat strong
PL-satisfaction does not imply strong satisfaction, the navigational semantics of object identifi-
cation suggests the opposite implication to hold as well: if in a given state an object is reachable
by using an entry value for every specified entry and following the link chains induced, then this
object is still reachable via the same combination of values if any additional PLs are considered,
too. The reason for the implication not to hold arePL conflicts, linkage conflicts as shown in
Example 5.6, which solely arise from additional PLs (cf.valg in Figure 11).

By applying the null filter when checking for strong satisfaction not only the use of PLsfor
identification is prevented but also PL conflicts are discarded, i. e. the view of identification
represented by strong satisfaction ignores PL conflicts. If all right side objects are distinguish-
able by total linkages and only PLs not leading to PL conflicts exist in the given state, strong
PL-satisfaction is implied by strong satisfaction. Therefore criteria for the possible appearance
of PL conflicts depending on the graph structure of an OFD are of interest.

Lemma 5.3: Let S be an object schema with states(S) and f : ∆
Gf�! Γ be an OFD, such that

val f contains no PL conflict. Thenf is strongly PL-satisfied unders(S) if f is strongly satisfied
unders(S). 2
If some arrangements of source and sink nodes do not appear in an OFD graph, PL conflicts
cannot arise. Obviously this is the case if only one type is involved in the left side of an OFD.
Null values in an object value are not considered here, therefore in this caseonly tuples total
or undefined on the left side attributes appear in the validation relation. The latter are not taken
into account for identification. This leads to a first restricted criterion:

Lemma 5.4: Let S be an object schema with states(S), and f : ∆
Gf�! Γ be an OFD with at

most one object type involved in∆. Thenval f contains no PL conflict. 2
Less restrictive criteria for source types of an OFDf are needed which exclude the existence
of PL conflicts. Under two constellations PL conflicts may arise in a state:shieldingsand
convergeswith respect to sink types. A source object typeOl1 is shieldedby another source
typeOl2 if a path inGf exists, connectingOl1 and a sink object typeOr via nodeOl2 (see Figure

12 (a)). For example, consider the graph from Figure 7 as OFD graph off : fO1;O2g Gf�!fO4g.
O1 is shielded byO2 with regard toO4. From shieldings PL conflicts may arise since different
Or -objects can be connected to the sameOl2-object with theOl2-object having no link to an
Ol1-object in a given state.

21

B :A A implies B B :A A does not imply B in general B :A A implies B for a certain
class of OFDs

strongly satisfied

strongly PL-satisfiedweakly satisfied

weakly PL-satisfied

Figure 13: Implication relationships between the notions of identification

A convergecan be regarded as a fork graph with source and sink nodes “inverted”. In a converge
constellation two source typesOl1 andOl2 have a nodeO in common on their paths to a sink
typeOr and there is no single path connectingOl1, Ol2 andOr (see Figure 12 (b)). For example,
consider the OFD graphGf induced by nodesO1, O3, O4 and O5 of Figure 3 (b) andf :fO1;O4g Gf�! fO5g. TypesO1 andO4 are a converge with respect toO5. Converges may lead
to PL conflicts in the following way: twoOr-objects can be connected to oneOl2-object, but for
theO-object involved in the link chains there may exist no chain to anOl1-object.

Shieldings and converges do not appear if every path of an OFD graph connecting two source
types contains a sink node. We will call this conditionsource path condition. In this case a
situation like that in Example 5.6, with right side object(7; : : :) having partial and total linkages
(as represented by tuples(�;5;7) and(1;3;7)) could not occur:(7; : : :) has a link chain to two
O2-objects and oneO1-object. If O3 were the connecting node between source typesO1 and
O2, no PLs of(7; : : :) could exist. Therefore, if the source path condition is satisfied, a sink
objecto either has no link chain to any object of a source typeOl , i. e. every linkage ofo is
partial, or it has at least one such chain and no PLs with respect toOl appear in the given state.
The sink object type acts as a “cartesian product node”, combining all link chains of asink
object to source objects to other link chains. The same does hold in the case of a converge.
Following from this, no two tuples representing link chains of the same sink object, one being
total, the other undefined on the same left side attribute can exist in the validation relation. As
a consequence, no PL conflicts can arise. This is summarized by the next lemma:

Lemma 5.5: Let S be an object schema with states(S) and f : ∆
Gf�! Γ be an OFD. Let every

path inGf connecting two source nodes satisfy the source path condition. Thenval f contains
no PL conflict. 2
This lemma gives a more general criterion than Lemma 5.4. Strong PL-satisfaction follows
from strong satisfaction for an OFDf if the paths connecting the sink object typeO with the
source types are disjoint, except for the nodeO itself. In this case, source types appear only
as leafs ofGf without any converges. If non-leaf source types exist, additional sink nodes
do separate them. Informally speaking, under the source path condition an object type can be
determined by any set of types of the underlying schema graphGS . The “environment” ofO in
GS contributing to the identification is not limited as far as the number of source types and the
length of connecting paths inGf are concerned. The implication relationships of the different
notions of satisfaction are summarized in Figure 13.

Additional constraints of the object schema like cardinality restrictions havenot been taken into

22

account here. Integrating such schema information helps to avoid PL conflicts even if the source
path condition is violated. For example, if all relationships on the path to a shielded object type
are mandatory, no PL conflicts can result from a shielding.

Note that general PL conflicts were not considered here, but emphasis was on conflicts which
are of relevance in the context of strong satisfaction and strong PL-satisfaction. The former are
a special case of linkage conflicts caused by total linkages as shown in Figure 11 byrelationV 0
or V 00. To solve such conflicts other notions of identification which allow to select entries for
each object have to be introduced.

5.7 OFDs as VBICs

Using OFDs we can formalize a VBIC for an object typeO as an OFDf whereO is element of
the right side off and no type occurs in the left side off :

Definition 5.4: An OFD f : ∆
Gf�! fOg is called an identification criterionfor an object typeO

of schemaS . A value based identification criterion(VBIC) for O is an identification criterion

f : ∆
Gf�! fOg for O with δ\OTS =? for eachδ 2 ∆. 2

Whereas an identification criterion specifies a set of entries possibly containing object types, a
VBIC offers access to objects only by values, i. e. a pure value based replacement for the object
identifier.

If VBICs shall be minimal like keys no proper subset∆0 of the left side∆ may exist, such that

f 0 : ∆0 Gf 0�! fOg holds and eachδ 2 ∆ has to be minimal, too. If no pure VBIC∆ can be found,
i. e. ∆ contains not only attribute sets but also object types, a different notion of minimality
seems to be advisable since in this case a set∆1, containing less object types than a set∆2,
might be preferable as set of entries, even ifj∆1j> j∆2j holds.

The different notions of identification have to be carefully taken into account whenconsidering
VBICs for an object typeO since access to each object ofO is usually desired. This is not guar-
anteed in the case of weak (PL-) satisfaction. Furthermore, as with functional dependencies,
inference rules may be necessary for the derivation of VBICs. This matterwill be addressed in
Section 6.

6 Inference rules

OFDs may be used to specify dependencies between object types and/or attributesin the design
phase of a database schema. As with FDs usually not all valid dependencies have to be given by
the designer. Some dependencies are trivial or they follow from specified dependencies. In order
to derive such dependencies inference rules are needed. In this section we will elaborate how
rules similar to relational inference rules for FDs (reflexivity, decomposition, augmentation,
union, transitivity and pseudotransitivity, cf. [Ull88]) are applicable to OFDs. As we shall see,
additional rules are necessary in order to guarantee completeness of rule sets.

For a generalization of relational rules two approaches are conceivable: on theone hand, a
notion of satisfaction, e. g. strong PL-satisfaction, can be chosen and the inference rules can

23

be modified in such a way that from a PL-satisfied OFD only OFDs are derivable which are
PL-satisfied too. Depending on the choice of semantics, this may lead to strongrestrictions of
the OFDs involved in the derivation process and to additional requirements forthe inference
rules, respectively. On the other hand, relational inference rules may be adopted directly to
OFDs, imposing as few as possible restrictions on the involved OFDs. Withthis proceeding a
relaxation of the semantics may be necessary.
When considering rules for non local OFDs, we will follow the second approach, adopting the
rules for strongly satisfied OFDs.

Inference rules are of interest for determining VBICs since the designer is notobliged to specify
VBICs directly for each object type of the schema if VBICs can be derived automatically (cf.
the derivation of candidate keys for a relational schema).

6.1 Adopting relational “axioms”

FDs are specified on an attribute set of a relation type. Their satisfaction is defined with respect
to a single relation of that type. For an OFDf satisfaction is defined regarding a relation type
specific tof . Two OFDs different by graph or labels are evaluated over validation relations with
different sets of attributes in general. Thus, the schema state can serve as a common basis for
checking them.

For a derived OFD a graph together with node labels has to be determined based on theinitial
OFDs. In case of a non local OFD the derived graph has to comply with the definition of an
OFD graph (tree structure with all the leaf nodes being labeled). For local OFDs referring to
the same object type relational inference rules are obviously applicable. Only minor syntactic
modifications of the rules are necessary since FDs are defined over attribute sets, whereas OFDs
are defined over sets of attribute and object type sets. The graph of a local OFDconsists of a
single node and remains unchanged for derived OFDs.

During the construction of new (local or non local) OFDs it might be necessary to combine
labels of a node appearing in different OFD graphs to a new one. For this, a “combining
operation” of labels and sets of labels is needed. If two labels belonging to the same node in
different graphs are to be combined, and if the labels are attribute sets, the new label is obtained
by building the union of the label components. Equality of objects is a stronger notion than the
equality of attribute values. Therefore, mixing of attributes and object types should be avoided.
An attribute set is ignored if one of the operands is an object type:

Definition 6.1: Let S be an object schema,O2OSS , andδ;γ2 sets(O). The label combination
δ] γ of δ andγ is defined as

δ] γ =� O if δ = O or γ = O
δ[γ otherwise

Let ∆;Γ � D S be two sets such that no two different setsδ1;δ2 2 ∆ or γ1;γ2 2 Γ refer to the
same object type. The label combination∆]Γ of ∆ andΓ is defined as

∆]Γ = fδ j δ 2 ∆ ^ δ 2 sets(O) ^ O =2 N (Γ)g[fγ j γ 2 Γ ^ γ 2 sets(O) ^ O =2 N (∆)g[fδ] γ j δ 2 ∆ ^ γ 2 Γ ^ δ;γ 2 sets(O)g 2
24

Example 6.1: Let O1, O2, andO3 be object types with attribute setsattr(O1) = fA;B;C;Dg,
attr(O2) = fE;F;Gg, attr(O3) = fH; Igandδ1 = fA;Cg, γ1 = fA;Dg, δ2 = fE;Fg, γ2 = fO2g,
δ3 = fHg, and∆ = fδ1;δ2;δ3g, Γ = fγ1;γ2g. Then we getδ1] γ1 = fA;C;Dg, δ2] γ2 = fO2g,
and∆]Γ = ffA;C;Dg;fO2g;fHgg. 2
6.2 Rules for local OFDs

The modification of the node labels is straightforward when new local OFDs are derived. This
shows the next lemma.

Lemma 6.1: Let S be an object schema with states(S), O 2 OTS , δ;γ;ε 2 sets(O) andG =(fOg;?; l f) the OFD graph consisting of the single nodeO.

(Reflexivity) Letδ2 sets+(O). Then f : fδg G�!fδg is strongly satisfied under
s(S).

(Decomposition) Letf : ∆ G�! Γ, ν f (O) = (δ;γ) be strongly satisfied unders(S).
Theng : ∆ G�! Γ0 with νg(O) = (δ;γ0), γ0 � γ, andδ 2 sets+(O)
or γ0 2 sets+(O) is strongly satisfied unders(S).

(Augmentation) Letf : ∆ G�! Γ be strongly satisfied unders(S).
Theng : ∆]fεg G�! Γ]fεg is strongly satisfied unders(S).

(Union) Let f1 : ∆ G�! Γ1 and f2 : ∆ G�! Γ2 be strongly satisfied under

s(S). Theng : ∆ G�! Γ1]Γ2 is strongly satisfied unders(S).
(Transitivity) Let f1 : ∆ G�!Γ, f2 : Γ G�!Φ be strongly satisfied unders(S) and

∆ 6= ? or Φ 6= ?. Theng : ∆ G�! Φ is strongly satisfied under
s(S).

(Pseudotransitivity) Letf1 : ∆ G�! Γ, f2 : Γ] fγg G�! Φ be strongly satisfied under

s(S) and∆ 6=? or Φ 6=? or γ2 sets+(O). Theng : ∆]fγg G�!Φ
is strongly satisfied unders(S). 2

For local OFDs, the left and right sides are singletons or one side is empty. This has to be taken
into account for the construction of each derived OFD. The OFD graph, consisting of asingle
node, remains unchanged. Soundness of the rules for local OFDs follows obviously from the
soundness of the relational rules.

Corollary 6.1: The rules for local OFDs given in Lemma 6.1 are also valid under weak satis-
faction, strong PL-satisfaction and weak PL-satisfaction. 2
6.3 Rules for non local OFDs

In contrast to local OFDs, inference rules for FDs cannot be adopted directly for non local
OFDs since the OFD graphs, arbitrary spanning trees of a subgraph of the schema graph,have
to be taken into account. Corresponding rules are only valid under certain restrictions for OFD

graphs: if OFDg : ∆0 Gg�! Γ0 is derived fromf : ∆
Gf�! Γ, object types occurring in both OFD

graphs have to be connected inGg in the same way as inGf . This requirement is necessary in

25

order to guarantee semantic compatibility of the OFDs involved. Example 3.1 shows that this
is essential if the validity ofg is to be inferred from the validity off under the same schema
state. This compatibility can be formalized by “V0-trees”, spanning trees induced by a node set
V0 �V of an OFD-graphGf = (Vf ;Ef ; l f)3.

Among the given notions of satisfaction, strong satisfaction represents the most restrictive view
of identification. It is closely related to FDs and thus, inference rules will be investigated for
non local OFDs with respect to this semantics. We will show that strong satisfaction cannot
always be guaranteed for derived OFDs.

In the following let S be an object schema with states(S) and ∆;Γ;Φ � D S . If not stated
otherwise, we assume an OFD graphGf = (Vf ;Ef ; l f) and a node-labeling functionν f to be
given for each OFDf . val f denotes the validation relation off unders(S).
Reflexivity Rule

Let f : ∆
Gf�! ∆, ∆ 6=?, be an OFD withGf being anN (∆)-tree ofGS . Then f is

weakly satisfied.

Here, left and right side off refer to the same types and attributes, and the sets of left and
right side attributes are identical. Thereforef is weakly satisfied. However, strong satisfaction
cannot be expected in general for the derived OFD if optional relationships are involved in the
OFD graph. This is illustrated by the following example:

Example 6.2: Consider the schema from Figure 7, restricted to object typesO1, O2, andO3

and relationshipsr1 andr2. Assume a state with the following simple extensions to be given:

ext(O1) = f(1; [a]); (2; [a])g ext(r1) = f(1;3); (2;4)g
ext(O2) = f(3; [b]); (4; [b])g ext(r2) = f(4;5)g
ext(O3) = f(5; [c]); (6; [c0])g

We get the following validation relation for the OFDg : fA;Cg �! fA;Cg:
valg

idO1 A idO2 idO3 C
1 a 3 � �
2 a 4 5 c� � � 6 c’

It is easy to see that OFDg is not strongly satisfied, because the null filter on attributesA andC
removes information about object(1; [a]) of O1 and object(6; [c0]) of O3. 2
As demonstrated in the example, surjectivity is a crucial property for a non local OFD derived
by an inference rule if strong satisfaction is required. If an OFD involves optional relationships,
this condition may be violated in a given database state. The impact of the surjectivity property
on the satisfaction of a derived OFD has also to be taken into account for the following rules.

3For graphtheoretic terms see the Appendix.

26

Decomposition Rule

Let f : ∆
Gf�! Γ be an OFD whereΓ = fγ1; : : :;γlg, l � 1; let Γ = fγ1; : : :;γlg with

γi :=� γ γ� γi ;γ 6=?; if γi is an attribute set
γi otherwise for i 2 f1; : : :; lg.

If f is strongly satisfied andf 0 : ∆
Gf 0�!Φ, Φ� Γ, ∆ 6=? or Φ 6=?, is the OFD with

Gf 0 theN (∆[Φ)-tree ofGf , then f 0 is strongly satisfied.

The given rule allows decomposition by omitting label sets fromΓ as well as by omitting some
attributes in any of the label sets. The new graphGf 0 is uniquely determined by the given OFD
graphGf and setΦ. TheN (∆)-trees ofGf andGf 0 are identical, and the two OFD graphs differ
only if the restriction ofΓ to Φ discards aΓ-node that is not also a∆-node. As a consequence,
val f 0 projected onto the set of∆- andΦ-attributes is a subset ofval f projected onto the same
set. FromΦ � Γ and the construction ofΓ follows that f 0 is strongly satisfied iff is strongly
satisfied.

Augmentation Rule

Let f : ∆
Gf�! Γ be an OFD andO2 OTS , ε 2 sets(O), f 0 : ∆]fεg Gf 0�! Γ]fεg an

OFD such thatGf is theN (∆[Γ)-tree ofGf 0 and

ν f 0(O0) :=8>>><>>>: ν f (O0) if O0 2Vf nfOg(ε;ε) if O0 = O;O =2Vf or O0 = O;O2Vf ;
ν f (O) undefined(δ] ε;γ] ε) if O0 = O;O2Vf andν f (O) = (δ;γ)

undefined ifO0 2Vf 0 n (Vf [fOg)
If f is weakly satisfied, thenf 0 is weakly satisfied.

If f is satisfied unders(S) with O2Vf , Gf andGf 0 are identical graphs. Only the node label
for O has to be adjusted. The attribute setsαvalf andαvalf 0 differ only if ε� attr(O), otherwise
they are identical. Sinceε is added to both sides off , f 0 is weakly satisfied, too.
If O is a new object type, i. e.O =2 Vf , a pathπ from an object typeO 2Vf to O exists, such
that every node on this path, exceptO, is a new type. More than one path of this kind may
exist inGS . SinceGf 0 is an OFD graph, one of these paths is selected, withGf 0 being the graph
resulting from the combination ofGf andπ. Following from this,αvalf andαvalf 0 differ in an
attribute set consisting of the identifier attributes of the types of pathπ and, if ε � attr(O),
the attributes ofε. Besides the tuples fromval f extended to attribute setαvalf 0 , further tuples
may exist inval f 0, especially tuples representingε-objects/ε-values for which only partial entry
combinations do exist (cf. Example 6.3). Therefore and because of the fact thatε is added to∆
andΓ, the weak satisfaction off 0 follows from the weak satisfaction off .

By Lemma 5.1, the augmentation rule is also applicable forf being strongly satisfied. The
next example illustrates that in general the derived OFDf 0 is not strongly satisfied, even iff is
strongly satisfied andε refers to a node ofGf .

27

Example 6.3: Consider the schema from Example 6.2 and a state with the following exten-
sions:

ext(O1) = f(1; [a])g ext(r1) = f(1;2)g
ext(O2) = f(2; [b]); (3; [b0])g ext(r2) = f(2;4)g
ext(O3) = f(4; [c])g

OFDg1 : fAg�!fCg is strongly satisfied, whileg2 : fA;Bg�!fC;Bg is not strongly but only
weakly satisfied:

valg1

idO1 A idO2 idO3 C
1 a 2 4 c

valg2

idO1 A idO2 B idO3 C
1 a 2 b 4 c� � 3 b’ � �

Object(3; [b0]) of the new sink nodeO2 of g2 has no links. The null filter on attribute setfA;Bg
discards the information about this object and surjectivity forO2 and thus, strong satisfaction
of g2 is not given. Of course the same effect can be achieved by augmentation with a new node
not yet included in the graph of the initial OFD. 2
The rule covers the augmentation of a given OFD by a single object type or an attribute set of
an object type. Obviously, any augmentation of an OFD by a setΦ � D S can be done by a
sequence of elementary augmentations in the sense of the rule presented, as long as the graph
resulting from adding theΦ-nodes (as well as connecting nodes and edges) is still an OFD
graph. An “attribute set variant” of the augmentation rule is not needed since itcould only be
applied to attribute sets of the same object type, appearing in the left and right side of an OFD.
Clearly, this is covered by the given rule.

Up to now, only rules yielding trivial dependencies or deriving a new OFD from a singlede-
pendency were considered. If an OFD is derived from two OFDs with graphsGf1, Gf2, the
subgraphs ofGf1 andGf2 induced by the object types present in both OFDs have to match. This
corresponds to the intuitive notion of combining the graphs via the subgraph common to both.
Because of our restriction to cycle free OFD graphs cycles have to be avoided in the new graph.
Both requirements are fulfilled if the intersection graph ofGf1 andGf2 is connected and non
empty. This is equivalent to the union graph ofGf1 andGf2 being cycle free (cf. Lemma A.1 in
the Appendix) and thus provides a simple precondition for the last three inference rules.

Union Rule

For a generalization of the union rule the effect described in Section 5.2 has tobe taken into
account. When two OFDs are combined, a constellation as shown in Figure 10 (c) becomes
possible, for which the derived OFD is not satisfied. In principle, this may always be the case if
two OFDs differ in at least one node, even for very simple OFD graphs:

for example, consider OFDsg1 : fB;Cg Gg1�! fDg andg2 : fB;Cg Gg2�! fO1g of schemaS from
Figure 7. Obviously, the intersection graph of both OFDs, consisting of nodesO2, O3 and edge
r3, is connected. A state forS is easily constructed whereg1 andg2 are (strongly) satisfied but
the union OFDfB;Cg! fO1;Dg of both is not. The same effect may occur with “non linear”
OFDs of the schema from Figure 3 (b).

To avoid this problem, we restrict the union rule to OFDs with identical graphs:

Let fi : ∆
Gfi�! Γi, i 2 f1;2g, be two OFDs with identical graphs.

Then f : ∆
Gf1�! Γ1]Γ2 is strongly satisfied iff1 and f2 are strongly satisfied.

28

ext(O)3

ext(O)5ext(O)2

ext(O)4

ext(O)2 ext(O)5ext(O)1
1ext(O)

O2O1

O4

O3

(/ O)3

O2

O3

O4

O5

(O /)3

O1 O2 O5

(A /) (/ H)

(2, ..) (3, ..)
(2, ..)

(3, ..)
(1, ..)

(4, ..)

(5, ..)

(6, ..)
(1, ..)

(6, ..)

state level

(/ E) (E /)

(A /) (/ H)

schema level

Figure 14: Violation of surjectivity by transitive combination of OFDs

According to our assumption, attributes and types are unique throughout the schema. Therefore
the distribution of the∆-labels is the same inGf1 andGf2, and theN (∆)-induced subgraphs of
both graphs are identical. Labels of nodes that are sinks in both graphs are combined locally
for each sink in the new OFDf . Obviously, no violation of strong satisfaction is caused by
this. If nodes exist that are sinks of only one of the graphsGf1 andGf2, they must be non leaf
nodes or source nodes and it can be shown that the combination of both OFDs does not violate
satisfaction, i. e. conflicts as in Figure 10 (c) cannot arise. Thus,f is strongly satisfied, iff1 and
f2 are strongly satisfied.

Remark: A more general union rule can be given where the OFD graphs do not have to be
identical. An additional dependency must be satisfied for the node of attachment of the inter-
section graph of both OFD graphs inGf1 (Gf2, respectively). For each of the two OFDs such a
node may exist (e. g. in the previous exampleg1 andg2 have different nodes of attachmentO2

andO3, whereash1 andh2 haveO3 as common node of attachment). If∆ is an identification
criterion for these nodes, the union OFD is strongly satisfied.

Transitivity Rule

In addition to cycles, surjectivity may cause problems in connection with transitivity of OFDs if
strong satisfaction is considered. This can be illustrated by the example inFigure 14: if OFDs

g1 : fAg Gg1�!fO3;Eg andg2 : fO3;Eg Gg2�! fHg are combined transitively in the usual way, this

leads to OFDg : fAg Gg�!fHg. With respect to the graphical representation of the extensions as
given in Figure 14, it is easy to see thatg1 andg2 are both strongly satisfied. The derived OFD
g, however, is obviously not strongly satisfied under the same extensions. The reasonfor this
is the lack of surjectivity for object typeO2, i. e. there areO2-objects in the given extensions
which are not reachable from any object of the sourceO1. For the satisfaction ofg1 this has no
consequences, becauseO2 is no sink ofg1, but in the derived OFDg, O2 becomes a “combining
object type” on the path between source and sink, i. e. the graph ofg is obtained by combining
the graphs ofg1 andg2 via this node.

A violation of surjectivity (and thus, of strong satisfaction) is always possible if the OFD graphs
are connected by a node which was no sink in the first OFD. In the following, the notionof a
combining object type will be clarified and based upon this a criterion for the avoidance of

29

surjectivity violations will be given.

Definition 6.2: Let f1 : ∆
Gf1�! Γ and f2 : Γ0 Gf2�! Φ, Γ � Γ0, be two OFDs, such that the

union graphGu of both graphs is cycle free. A node of attachment ofGf2 in Gu is called
combining (object) type. 2
Example 6.4: Object typeO2 is the only combining type of OFDsg1 andg2 from the example
in Figure 14. 2
A combining type off1 and f2 exists ifVf2 �Vf1, i. e. the graphs are not identical andGf2 does
not coverGf1. More than one combining type may exist for two OFDs. In the following we
will focus on a transitivity rule for OFDs with exactly one combining object type.

If for the combining object typeO of a transitively derived OFD graph the surjectivity property
is given, no surjectivity violation can arise. Obviously, the sinks of an OFD satisfy this property.
Therefore the OFD graphs should be combined via a sink type of the first OFD. However,it is
easy to construct an example showing that this prerequisite alone is not sufficient yet. Surjec-
tivity is needed at object level. Under the notion of strong satisfaction, this is not guaranteed if
only attributes of a sink type appear in the OFD. ThereforeO has not only to be a sink type, it
must be an object type in the right side of the first OFD in order to get a sufficient condition.
To avoid cycles and to be sure that the two OFDs refer to the same subgraphs, identical trees
induced by the intersection of the node sets are sufficient. Again this is given inthe case of a
cycle free union graph. It can be shown that this property follows from the existence of exactly
one combining type.

Let f1 : ∆
Gf1�! Γ and f2 : Γ

Gf2�! Φ be OFDs with∆[Φ 6= ? and node labeling
functionsν f1, ν f2, such that exactly one combining typeO, O 2 Γ, exists. Let

f : ∆
Gf�! Φ be the OFD withGf being theN (∆[Φ)-tree ofG and let the node-

labeling function be given by

ν f (O) :=8>>><>>>: (δ;?) if O2 N (∆)nN (Φ); ν f1(O) = (δ;γ)(?;γ) if O2 N (Φ)nN (∆); ν f2(O) = (δ;γ)(δ1;γ2) if O2 N (∆)\N (Φ);ν f1(O) = (δ1;γ1);
ν f2(O) = (δ2;γ2)

undefined otherwise

Then f is strongly satisfied iff1 and f2 are strongly satisfied.

Note that the combining object type off1 and f2 coincides with the node of attachment of the
subgraph induced byGf2 in theN (∆[Φ)-tree of the union graph.

The restriction ofGf to theN (∆[Φ)-tree of the union graph is necessary sinceG might contain
Γ-nodes as leaves which are not needed in the new graph if they are no∆- or Φ-nodes. Such
nodes, including all nodes on the paths connecting them with theN (∆[Φ)-tree, can be omitted
because they are not part of any path connectingN (∆)- andN (Φ)-nodes. For example, the
Γ-nodesO3 andO4 of the OFDs in Figure 14, including the edges connecting them to nodeO2,
are not needed in the derived graph.
SinceN (Γ) is a subset of both node sets, the right side off1 and the left side off2 refer to the
same subgraph. If any other object types common to both OFD graphs exist, they are connected
in the same way inGf1 as in Gf2. Following from this and the surjectivity property,val f2

30

projected onto theΓ-attributes is a subset ofval f1 projected onto the same attributes, since every
combination ofN (Γ)-objects in the given state is represented inval f1, except for combinations
subsumed by others. As a consequence, for each combinationt of values on theΦ-attributes
in val f2 a combination ofΓ-attributes exists, determiningt and also appearing inval f1. Γ-
nodes may be deleted during the derivation of the new graph, but the prerequisite concerning
the combining type guarantees thatf1- and f2-linkages can be combined, i. e. a total entry
combination exists for eachΦ-combination inval f2. Thus, theΦ-attributes are determined by
the∆-attributes inval f , too, if f1 and f2 are strongly satisfied. Therefore,f is strongly satisfied
under the same state.

Remark: The transitivity rule (as well as the following pseudotransitivity rule) can be general-
ized to cover the combination of OFDs having no or more than one combining type. This will
be addressed in forthcoming work.

Pseudotransitivity Rule

Pseudotransitivity can be handled similar to transitivity, withf2 : Γ]Θ
Gf2�!Φ and f : ∆]Θ

Gf�!
Φ. Only the construction of the node-labeling function forf is slightly different since for nodes
appearing in more than one of the setsN (∆), N (Θ), andN (Φ), the labels have to be combined
by functionν f , whereas labels corresponding to a set only appearing inΓ have to be omitted:

Let f1 : ∆
Gf1�! Γ and f2 : Γ]Θ

Gf2�!Φ be OFDs,∆[Θ[Φ 6=?, with node labeling
functionsν f1, ν f2 such that exactly one combining typeO, O 2 Γ, exists. Let

f : ∆]Θ
Gf�! Φ be the OFD with graphGf being theN (∆[Θ[Φ)-tree of G

and let the node-labeling functionν f be defined byν1
f andν2

f as follows:

ν1
f (O) :=8>>>><>>>>: ν1

f1
(O) if O2 N (∆)nN (Θ)

φ if φ 2Θ; φ 2 sets+(O); O2 N (Θ)nN (∆)
ν1

f1
(O)]φ if φ 2Θ; φ 2 sets+(O); O2 N (∆)\N (Θ)? if O2 N (Φ)nN (∆[Θ)

undefined otherwise

ν2
f (O) :=8<: ν2

f2
(O) if O2 N (Φ)? if O2 N (∆[Θ)nN (Φ)

undefined otherwise

Then f is strongly satisfied iff1 and f2 are strongly satisfied.

Note that the use of the common union operation in the left side off2 would impose a restriction
on the applicability of the rule.

The relational pseudotransitivity rule can be substituted by other relational rules. In general,
this is not possible for the OFD rule set presented here if the notion of identification has to
remain unchanged. The reason for this is that an augmentation of the left side of an OFD is
only possible by using the augmentation rule. However, augmentation of a strongly satisfied
non local OFD generally leads to a weakly satisfied OFD.

6.4 Additional inference rules

In addition to the relational inference rules adopted so far, further rules are needed for OFDs.
First of all, these rules are concerned with transition from the object type level to the attribute

31

level and vice versa.

Object Rule

The following simple rule represents the fact that an object is uniquely determined by its object
identifier, i. e. the identifier always determines the object value. This allows to derive a set
of local OFDs for each object type of the schema and can be regarded as a supplement ofthe
reflexivity rule:

Let O 2 OTS and γ 2 sets+(O). Then f : fOg Gf�! fγg with Gf = (fOg;?; l f) is strongly
satisfied.

Lifting Rule

While the object rule allows a transition from object type level to attribute level, the next rule

allows a transition to object type level, but only for source types. If a given OFD f : ∆
Gf�! Γ

contains an attribute setδ 2 sets+(O) in the left side,δ can be replaced by the object typeO:
if f is strongly satisfied, a∆-entry combinationx leads to at most oneΓ-combinationy. If
values are involved inx, more than one linkage may lead toy. Since different objects may have
identical values, a replacement of values by objects results in a “refinement” of x: instead ofδ,
the identifier attributeidO is now taken into account for checking strong satisfaction. Thus, the
new OFD withδ substituted byO is strongly satisfied, too. The following rule formalizes this
kind of change of source labels.

Let f : ∆
Gf�! Γ be a strongly satisfied OFD withδ 2 ∆, δ 2 sets+(O) for some nodeO of Gf .

Then f 0 : (∆nfδg)[fOg Gf�! Γ is strongly satisfied, too.

Of course this only holds for a change of source labels. In general, a change of sink labelsin
the same manner leads to a violation of the OFD.

Shifting Rule

If an OFD is strongly satisfied by a state, the considered linkages guarantee unique access to
sink objects or sink values. Using this, new OFDs can be derived by removing leaf nodes and
modifying the source labels of such nodes in the following way:

Let f : ∆
Gf�! Γ with jVf j> 1 be strongly satisfied withO being a source type off that is a leaf

of Gf and no sink, and node labelν f (O) = (δ;?). AssumeO0 to be the node connected toO in

Gf via edgee. Then OFDf 0 : ∆0 Gf 0�! Γ with
∆0 := (∆nfδg)[fO0g,
Vf 0 := Vf nfOg,
Ef 0 := Ef nfeg, and
l f 0 = l f jEf 0

is strongly satisfied.

Note that due to the tree structure of OFD graphs, nodeO0 and edgee0 are uniquely determined.

Correctness of the shifting rule follows from simple observations concerning thelinkages rele-
vant for f : a ∆-total linkagel for f implies a∆0-total linkagel 0 for f 0 by removing theO-object
of l and its link belonging toe, and thus, provides a total entry combination for the same sink
objects asl . From the entry combination ofl , the entry combination ofl 0 is constructed, where

32

O1

O2

O3 O5 O6

O7

O8

(δ /)1
(/ γ)1

(δ /)2

O3 O5 O6

O7

O8

(/ γ)2

(/ γ)1

O2

O3 O5 O6

O7

O8

(/ γ)2

(/ γ)1

(δ /)2

(O /)3

(O /)3

O5 O6

O7

O8

(/ γ)2

(/ γ)1

(/ γ)2

(/ γ)3

(/ γ)3 (/ γ)3

(/ γ)3
O4

O4

O4

O4

(O /)5

Figure 15: Application of the shifting rule

the entry value ofδ in l is replaced by theO0-object ofl . No collisions can arise from this (cf.
lifting rule) and thereforef 0 is strongly satisfied iff is strongly satisfied.

The example in Figure 15 shows a sequence of applications of the shifting rule to an OFD. From

OFD fδ1;δ2g G�! fγ1;γ2;γ3g three new OFDs are derived by modifying the source labelsδ1,

δ2 and removing nodesO1, O2, andO3. The OFDg : fO5g Gg�! fγ1;γ2;γ3g derived in the last
step contains no source node which is also a leaf. Thus, the shifting rule is no moreapplicable
to g. Moving non-leaf source labels within the OFD graph usually affects validity. It is easy to
construct an example illustrating this.

Example 6.5:Consider OFDf1 from Figure 16 and the state given below. The application of

the shifting rule leads to OFDf 01 : fO3g Gf 01�!fHg:
(1, [a])

(2, [a])

(3, [b])

O1

(9, [f])

(8, [d])

(7, [d])

(5, [y,y])

(4, [x,z])

(6, [y,y]) (9, [f])

(8, [d])

(7, [d])

(5, [y,y])

(4, [x,z])

(6, [y,y])

(A /) (/ H)

O3
O5

(/ H)

O3

3

O5

(O /)

A shifting at attribute level fromO1 to O3 is not possible forf1: for everyβ2 sets(O3), fβg G�!fHg does not hold. 2
O2 O3

(/ O)
3(C /)

O1 O3

f : 2
f :

1 (A /) (/ H)

O5

Figure 16: Necessity of the shifting rule

33

The necessity of the shifting rule is shown by OFDsf1 and f2 (Figure 16) of object schema
from Figure 3 (b). Byf2 object typeO3 is determined which is neither source nor sink off1.
The two OFDs cannot by combined by application of the transitivity rule. Using the previous
rules except the shifting rule, an OFDg where attributeC of O2 determines attributeH of O5

cannot be derived. Obviously, OFDf 01 : fO3g Gf 01�! fHg can be derived fromf1 by application
of the shifting rule. Nowg is derivable fromf 01 and f2 by using transitivity. Thus, the shifting
rule is necessary to derive new valid OFDs.

The shifting rule focuses on leaf nodes that are source but no sink types. Note that by application
of the decomposition rule each source/sink-node can be transformed into a “pure” source node.

The shifting rule as defined above combines the transition from attribute to typelevel with
source shifting, instead of allowing a shifting only for source labels that are object types. Oth-
erwise, the application of the lifting rule would be necessary before using the shifting rule.

In summary we get the following theorem:

Theorem 6.1: Let S be an object schema with states(S). The inference rules (reflexivity,
decomposition, augmentation, union, transitivity, pseudotransitivity, lifting, shifting, and object
rule) for non local OFDs are sound. 2
6.5 Cyclic OFDs

In this paper we focus on acyclic OFD graphs. However, especially in connection with tran-
sitivity, cycles may arise in graphs. These have to be avoided not only to meetthe definition
of an OFD graph: in such a case it cannot be expected that an OFD derived by transitivity
from two valid OFDs is strongly satisfied by the same state. Consider the schema given in
Figure 17. A customer may have one or more accounts at different branches of a bank, but

Account

Branch

Customer

Clerk

. . .

. . .

. . .

. . .

n

1

n

1

1

n

n

n

serves

works_atkeeps

holds

Figure 17: Example of a cyclic OFD graph

only one account per branch. Each customer has a clerk responsible for her/him at eachbranch
where she/he holds an account, and each clerk is assigned to exactly one branch. Every ac-
count determines the branch keeping it and the customer holding it. A clerk is determined by a
customer together with a branch; neither of the two object types alone suffices. Therefore the
OFDs f : fAccountg ! fBranch;Customerg andg : fBranch;Customerg ! fClerkg do hold
in all states. OFDh : fAccountg ! fClerkg holds if for eachBranch/Customercombination
in valg a matching combination inval f exists. To check this, the construction of the valida-
tion relation by outer joins must not be linear. In the example above, a relation representing

34

the Account, Branch, Customer-subgraph and one representing theBranch,Customer,Clerk-
subgraph are needed. The validation relation ofh has to be obtained by joining these two
relations on the identifier attributes ofBranchandCustomer. Applying the usual linear con-
struction of the validation relation, different combinations with the sameCustomer-object (or
Branch-object) get mixed, falsifying the evaluation ofh. What has to be ensured is that only
matchingCustomer/Branch-combinations are combined during the construction of the valida-
tion relation. On that score, it is useful taking into account more than one path fora pair of
object types involved in an OFD. This example shows that cyclic graphs may result from the
combination of semantically meaningful OFDs and therefore should be considered, too.

7 Related work

7.1 Value based identification of objects

Many of the approaches to the specification of constraints at object schema level are concerned
with specifying (value based) identification criteria or keys for object types,but not with de-
pendencies for object schemas as a more general framework for this purpose. Related work,
directed towards the definition and investigation of identification criteria, is discussed in this
section.

Among others, Kim ([Kim95]) noted:

“An OID does not carry any additional semantics. [: : :] It is more convenient for
the user to be able to fetch one or more objects using user-defined keys.”

Several approaches for the access to objects or entities have been discussed,especially in the
context of other data models.

The restriction to a single relationship for the determination of a key for an entity type, similar
to the weak entity concept of the Entity-Relationship Model ([Che76]), can be found in several
approaches, e. g. [GMP88], [KZ95] or [RR94]. In [Zan79] for each record type of a network
schema a set ofsynonyms(keys) is derived by inspecting different paths. Missing links are also
considered: if an optional set type participates in a path, the result is apseudo synonym. For the
transformation to the relational model pseudo synonyms are ignored. In contrast to the approach
presented in this paper, each synonym is determined using only one path in the schema.

In P/FDM ([PG88], [OE95]), a database system based on the functional data model, the key
of a classC can be specified by using more than one path in the schema. A key is either a
subset of the local attribute set ofC or a set of relationships ofC together with a local attribute
subset. Along each relationship the whole key of the related class is used to build a key forC by
expanding the key specifications recursively. The use of non-key attributes from other classes
as well as the construction of a key exclusively using foreign keys is not possible. Furthermore,
each class must have a key in the aforementioned sense and only single valued relationships are
used in the process.

Schewe and Thalheim ([ST93]) present a formal approach to VBICs in the contextof an object
oriented data model. In addition to using only the type of a class itself for the determination
of VBICs, leading to the notions ofvalue identifiabilityandvalue representability, non local
identification criteria are also considered: a classC1 is calledweak value identifiableif a value

35

identifiable classC2 and a path of relationships fromC2 to C1 exists, where each participating
relationship, regarded as a directed reference fromC2 to C1, has to be a surjective function.

This corresponds to an OFDf : fC2g Gf�! fC1g with Gf being a chain. Only one object type is
used and no combination with local attributes is allowed. As in [Zan79] a single path is consid-
ered. Furthermore, the requirement of every relationship of the sequence to be surjective is not
necessary and does not allow the use of partial linkages. Surjectivity is too restrictive, even if
no partial linkages or insufficient link chains ofC1-objects appear in a given state: obviously,
f might hold even if not every object of the classes participating in a chain is involved in a
sequence of links leading to aC1-object. Considering only surjective relationships would be an
unnecessary restriction.
Some of the results from [ST93] can also be found in [Kos95] where, in addition to the object
identifier and the complete object value, key specifications for schemas are considered to dis-
tinguish objects. Objects (or their values) of other classes are taken into account by so-called
external keys, without considering how to obtain these keys.

The possible use of the existence of values for the distinction of objects is mentionedin [BT95],
where the use of tree structures for the identification of entities in an extended ER model is
sketched also. Entity identification is reduced to identification in nestedrelations where differ-
ent types of equality are considered. Axiomatization or inference rules are not given.

In the data model proposed for database design by Rosenthal and Reiner ([RR94]), primary keys
are allowed to include null attributes as long as unique identification of entities is guaranteed.
No further remarks on the type of identification implied by this approach are given.A key set
K as introduced in [Tha89] allows the specification of keys with null attributes.However, they
are not used for accessing tuples in a relation since for each tuplet there has to exist at least one
keyκ in K such thatt is total onκ.

In [AVdB95] the use of the complete object value for distinguishing objects in the sense of deep
equality is investigated. An object value is unfolded by dereferencing object identifiers ap-
pearing in it and value based identification is defined with respect to this unfolded value. This
corresponds to a programming language view of the environment of objects in the database by
using directed references with no possibility to follow pointers backwards.Relationships in an
OMT-like object schema are not directed (although they can be implemented by inverse directed
references, of course). As a consequence, the environment of an object under the database view
subsumes the environment as seen under the programming language view. Therefore it is pos-
sible that two deep equal objects are distinguishable if their complete relationship environment
in the database is taken into account.

7.2 Generalized functional dependencies

In [Lee95],object functional dependenciesare introduced as FDs on the attribute set of a single
class. Among these attributes, complex attributes, i. e. attributesof collection type or attributes
that are references to other classes, are allowed. Reference attributes represent relationships
and thus it is possible to specify an object functional dependencyβ!R, whereβ is an attribute
set determining the reference attributeR. This restricts the relationship represented byR to a
function and leads to a notion of identification similar to weak entities, with the class referenced
by R corresponding to the weak entity type. However, this is the only way to specifya depen-
dency involving more than one class. Apart from this case, object functional dependencies as

36

proposed by [Lee95] refer to one class only. More general non local dependencies cannot be
expressed.

Weddell ([Wed90], [Wed92]) introducespath functional dependenciesas a generalization of
FDs for semantic data models. This generalization is based upon a restricted data model: a class
schema is given by a set of complex object types, with each type defined by a set of attributes,
called properties. A property is either of atomic type or of object type. In the latter case, the
property represents a directed relationship between the two types. Properties and directed paths
of properties have to be functions and they are mandatory. As a consequence an objecto of
typeO must have exactly one link for each relationship thatO participates in. Relationships of
more general cardinality have to be modeled by introducing additional linking types, asknown
from the network data model. For a class schema, a path functional dependency, denotedas
C(X !Y), is defined by specifying two setsX andY of property paths with respect to a single
type C, the “center type”. All paths ofX andY originate from this type. The constraint is
satisfied, if for each pair ofC-objects with identical values on the properties given byX, the
property values onY coincide, too. Relationships directed towardsC are not taken into account.
By definition, surjectivity is only guaranteed for the center type. Thus, only type canonical
constraints can be expressed and the specification of an identification criterion4 for a typeC0 by
a path functional dependencyp requiresC0 to be the center type ofp.
Inference rules for path functional dependencies are presented by generalizing relational rules,
as well as by adding rules which allow to modify the paths involved in a dependency.
However, even for simple object schemas (e. g. the schema from Figure 1 (a)) it is difficult to
obtain a class schema representing the same semantics as the object schema. For example, class
schemas offer no inverse properties for representing undirected, bidirectional relationships. The
use of additional linking types is in conflict with the requirement of properties to be mandatory.

7.3 The validation relation

A validation relation is constructed by joining the relational representations of types and rela-
tionships in appropriate order using identifier attributes. This operational proceeding is equiv-
alent to navigating through the database along links between objects and is closely related to
the notion ofmaximal traversals, maximal sets of connected records obtained by navigation in
a network database, as introduced by Lien ([Lie82]). Each maximal traversal corresponds to a
partial tuple and in the case of a cycle free network schema a partial relation is obtained, repre-
senting the database state. This coincides with the construction of the unnormalized validation
relationV where the underlying OFD graph is regarded as a network schema and link chains
as maximal traversals. Following from this, no tuple ofV is subsumed by any other tuple in
V . Concerning identification, the rs- and sub-normalization steps are applied toV additionally.
Furthermore, only those object types and attributes of a schema which are necessary for the
evaluation of an OFD have to be considered in the validation relation. In general, this is not the
whole schema.

Lee and Wiederhold ([LW94]) describe the construction of objects from sets of tuples, starting
with apivot relationand using theleft outer joinoperation. Their main emphasis is on the con-
struction process, not on determining VBICs. The identifier of an object is provided simply by

4Using a notion of identification like strong satisfaction where each object is to be identified in order to ensure
surjectivity.

37

the key of the pivot relation; it could be used as a (local) VBIC since it is no object identificator
in the sense of an internal identifier. Nevertheless, building objects from relations is related
to building a validation relationval f . In the case of type canonical OFDs the method can be
applied: the construction process must start with the sink object typeO of f and the sequence
of operations has to be chosen appropriately. This is necessary to ensure that every O-object is
represented inval f . Also the left outer join would eliminate the need for the rs-normalization
step in this case, which in terms of [LW94] is simply the application of anon-null filter. Equiv-
alently, it can be seen as a restriction to traversals ([Lie82]) total on the attributes belonging
to the right side object type. However, sub-normalization is still necessary when using the left
outer join. The aforementioned generalization of the surjectivity requirement from [ST93] is
not affected by changing the join operator. Given non type canonical OFDs, the approachof
Lee and Wiederhold is not applicable for our purposes. In this case the FOJ has to be used,
since no unique pivot relation is given to start the construction.

7.4 Relational theory

The construction of the validation relation of a non local OFD can be formulated using some
well known terms of relational theory, too. It is easy to see that a join tree ([BFMY83]) is
obtained by the following modifications to an OFD graphGf : insertion of relationship nodes,
adjustment of edge labels and nodes. Due to the construction, only identifier attributes corre-
sponding to a single object type appear as edge labels. Because of the monotonicity of the FOJ
operation, results from relational theory concerning the natural join operation are applicable
in this case, too. The relational database schema implied byGf has the running intersection
property ([BFMY83]). From the join tree ofGf a monotone, sequential join expressionπ can
be derived ([BFMY83]).val f (unnormalized) is obtained by applyingπ to the relational repre-
sentations.

Viewing the OFD graph itself as a database schema, the validation relation is also related to
the basic idea of the universal relation approach ([Mai83], [Ull88]). There is a correspondence
between the universal relation and the construction of a validation relationin the case of an
acyclic relational database schema.

8 Outlook

This paper presents a framework for the specification of constraints between attributes and ob-
ject types in the context of a simple object oriented data model by using OFDs. Withthis kind of
dependency, (value based) identification criteria can be defined directly or derived from a given
set of OFDs by applying inference rules. The derivation process for this has to be investigated
more thoroughly. Especially with respect to the determination of VBICs, the schema structure
has to be taken into account. It is necessary to translate schema elementswith relevance for
identification, like relationships of restricted cardinality or inheritancehierarchies, into OFDs.
They have to be added to the set of dependencies that are specified explicitly for an object
schema. For this, the simplified object model we considered in this paper has to beextended to
include inheritance.

In general, it cannot be expected that for each object type of a schema a “natural” VBIC is
specified or derivable. Thus, in some cases artificial identifier attributes have to be introduced

38

in order to supply a VBIC for a type. This should be done under consideration of the exist-
ing identification dependencies, i. e. the introduction of an identifier attributefor a single type
should provide VBICs for other types as well, if possible. Criteria for the placement of such
attributes in a schema are needed, using the information given by the OFD set ofthe schema.

The notion of OFDs considered in this paper allows to specify conjunctive, possibly non local
VBICs. However, some VBICs, e. g. those from the examples in Figures 1 (c)and 2, can only
be “simulated” by choice of an appropriate notion of identification. For these VBICs afurther
notion of identification is needed where missing links may be present but are not exploited for
identification purposes. This leads to disjunctive VBICs or set oriented VBICs.

The views of identification discussed in this paper arise naturally if the OFDapproach is taken.
The schema state can also be represented by a graph consisting of objects as nodesand links
as edges. Identification criteria can be defined with respect to this graph byconsidering the
link environment of an object and defining subgraphs “centered” around the object. Different
ways to distinguish objects at this level should be investigated and compared to identification
as proposed by the OFD approach.

A Graphtheoretic notions

Definition A.1: For a finite setV let P2(V) denote the set of all subsets ofV with cardinality 2.
Let G= (V;E) be a connected finite graph with node setV and edge setE � P2(V). G is a tree
if G is cycle free. A subgraphof G is a graphG= (V;E) with V �V andE � (E\P2(V)). A
node of attachmentof subgraphG in graphG is a node ofG that is incident inG with an edge
not belonging toE. Let V0 �V be a non empty subset ofV. A V0-covering subgraphof G is
a connected subgraphG = (V;E) of G with V0 �V. A V0-treeof G is a minimalV0-covering
subgraphG= (V;E) (i. e. there exists noV0-covering subgraphG0 = (V 0;E0) with V0 �V), such
thatG is a tree. The intersection graphG of two graphsG1 = (V1;E1), G2 = (V2;E2) is defined
asG := (V1\V2; (E1\E2)jP2(V1\V2)). If G1, G2 are edge-labeled graphs, the labels of edges in
E1\E2 have to match, too. The union graphG of G1 andG2 is defined asG :=(V1[V2;E1[E2).
For edge-labeled graphs the edge labeling function ofG is derived from the labels ofG1 and
G2. 2
The definition of aV0-tree for edge-labeled graphs is analogous. Note that for a treeG= (V;E)
eachV0-tree ofG is unique.

Definition A.2: Let G = (V;E) be a connected graph andV 0 � V. Let G1 = (V1;E1), G2 =(V2;E2) be twoV0-trees ofG. G1 andG2 are identicaliff V1 = V2 andE1 = E2. In case ofG1

andG2 being edge-labeled graphs, the labels have to match, too. 2
Lemma A.1: Let treesT1 = (V1;E1) andT2 = (V2;E2) be subgraphs of a connected graph
G= (V;E) with V1\V2 6=?. The following conditions are equivalent:

(i) The union graph ofT1 andT2 is cycle free (i. e. is a tree).

(ii) The intersection graph ofT1 andT2 is connected.

(iii) The (V1\V2)-trees ofT1 andT2 are identical. 2
39

References

[AH84] S. Abiteboul and R. Hull. IFO: A formal semantic database model. InProceedings
of the 3rd ACM Symposium on Principles of Database Systems (PoDS), Waterloo,
pages 119–132, 1984.

[AK89] S. Abiteboul and P. C. Kanellakis. Object identity as a query language primitive. In
Proceedings ACM SIGMOD Conference on Management of Data, ACM SIGMOD
Record, 18(2), pages 159–173, 1989.

[AVdB95] S. Abiteboul and J. Van den Bussche. Deep equality revisited. InProceedings
4th Conference on Deductive and Object-Oriented Databases, Singapore, vol-
ume 1013 ofLecture Notes in Computer Science, pages 213–228. Springer-Verlag,
1995.

[Bee93] C. Beeri. Some thoughts on the future evolution of object-oriented database con-
cepts. In W. Stucky and A. Oberweis, editors,Datenbanksysteme in Büro, Technik
und Wissenschaft,5. GI-Fachtagung, Braunschweig, pages 18–32. Springer-Verlag,
1993.

[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes.Journal of the ACM, 30(3):479–513, 1983.

[BT95] C. Beeri and B. Thalheim. Identification as a primitive of database models. pre-
liminary version, 1995.

[Che76] P. P. S. Chen. The entity – relationship model – toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

[CK86] G. P. Copeland and S. N. Khoshafian. Object identity. InProceedings OOPSLA
1986, Annual Conference on Object-Oriented Programming Systems, Languages,
and Applications, ACM SIGPLAN, Vol. 1(11), pages 159–173, 1986.

[Cod79] E. F. Codd. Extending the database relational model to capture more meaning.
ACM Transactions on Database Systems, 4(4):397–434, 1979.

[DV93] K. Denninghoff and V. Vianu. Database method schemas and object creation.
In Proceedings of the 12th ACM Symposium on Principles of Database Systems
(PoDS), Washington, pages 265–275, 1993.

[GMP88] P. M. D. Gray, D. S. Moffat, and N. W. Paton. A Prolog interface toa functional data
model database. In J. W. Schmidt, S. Ceri, and M. Missikoff, editors,Proceedings
Advances in Database Technology - EDBT ’88, Venice, volume 303 ofLecture
Notes in Computer Science, pages 34–48. Springer-Verlag, 1988.

[Gog95] M. Gogolla. A declarative query approach to object identification. InProceedings
14th International Conference on Object-Oriented and Entity-Relationship Model-
ing, Gold Coast, volume 1021 ofLecture Notes in Computer Science, pages 65–76.
Springer-Verlag, 1995.

40

[HOT76] P. Hall, J. Owlett, and S. Todd. Relations and entities. In G.M. Nijssen, edi-
tor,Modelling in Data Base Management Systems, pages 201–220. North-Holland,
1976.

[HY91] R. Hull and M. Yoshikawa. On the equivalence of database restructurings involving
object identifiers. InProceedings of the 10th ACM Symposium on Principles of
Database Systems (PoDS), Denver, pages 328–340, 1991.

[JQ92] H.V. Jagadish and X. Qian. Integrity maintenance in an object-oriented database.
In Proceedings 18th Conference on Very Large Database Systems, Vancouver,
Canada, pages 469–480. VLDB Endowment, 1992.

[Kim95] W. Kim. Object-oriented database systems: Promises, reality, and future. In
W. Kim, editor, Modern Database Systems: The Object Model, Interoperability
and Beyond, chapter 13. ACM Press, 1995.

[Kos95] A. S. Kosky. Observational distinguishability of databases with objectidentity.
Technical report, Department of Computer and Information Science, MS-CIS-95-
20, University of Pennsylvania, 1995. also in: P. Atzemi, V. Tannen (eds.): Pro-
ceedings of the Fifth International Workshop on Database Programming Languages
(DBPL-5), Gubbio, Italy, Springer-Verlag, 1995.

[KR97] H. J. Klein and J. Rasch. Value based identification and functional dependencies
for object databases. InData Management Systems - Proceedings of the Third
International Basque Workshop on Information Technology (BIWIT 97), Biarritz,
France, pages 22–32. IEEE Computer Society Press, 1997.

[KZ95] M. Kolp and E. Zimanyi. Relational database design using an ER approach and Pro-
log. In S. Bhalla, editor,Proceedings 6th Conference on Information Systems and
Management of Data (CISMOD), Bombay, India, volume 1006 ofLecture Notes in
Computer Science, pages 214–231. Springer-Verlag, 1995.

[Lee95] B. S. Lee. Normalization in OODB design.ACM SIGMOD Record, 24(3):23–27,
1995.

[Lie82] Y. E. Lien. On the equivalence of database models.Journal of the ACM, 29(2):333–
362, 1982.

[LP76] M. Lacroix and A. Pirotte. Generalized joins.ACM SIGMOD Record, 8(3):15–16,
1976.

[LW94] B. S. Lee and G. Wiederhold. Outer joins and filters for instantiating objects from
relational databases through views.IEEE Transactions on Knowledge & Data En-
gineering, 6(1):108–119, 1994.

[Mai83] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[MUV84] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the universal
relation model.ACM Transactions on Database Systems, 9(2):283–308, 1984.

[MW90] T. Matsushima and G. Wiederhold. A model of object-identities and values.Tech-
nical report, Stanford University, USA, 1990. Report STAN-CS-90-1304.

41

[OE95] Object Database Group and S. Embury. User manual for P/FDM V.10.1. Tech-
nical report, Department of Computer Science, University of Aberdeen, U.K.,
AUCS/TR9501, 1995.

[PG88] N. W. Paton and P. M.D. Gray. Identification of database objects by key.In K. R.
Dittrich, editor, Advances in Object-Oriented Database Systems, Proceedings 2.
International Workshop on Object-Oriented Database Systems, Bad Münster, Ger-
many, 1988, volume 334 ofLecture Notes in Computer Science, pages 280–285.
Springer-Verlag, 1988.

[Rat97] Rational Software Corporation, Santa Clara, USA.Unified Modeling Language
(UML) Notation Guide, Version 1.0, 1997.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.Object-
Oriented Modeling and Design. Prentice-Hall, 1991.

[RR94] A. Rosenthal and D. Reiner. Tools and transformations-rigorous and otherwise-for
practical database design.ACM Transactions on Database Systems, 19(2):167–
211, 1994.

[ST93] K. D. Schewe and B. Thalheim. Fundamental concepts of object oriented
databases.Acta Cybernetica, 11(1–2):49–83, 1993.

[Tha89] B. Thalheim. On semantic issues connected with keys in relational databases
permitting null values. Journal Information Processing and Cybernetics EIK,
25(1/2):11–20, 1989.

[Ull88] J. D. Ullmann.Principles of Database and Knowledge-Base Systems, volume I and
II. Computer Science Press, 1988.

[WdJ91] R. Wieringa and W. de Jonge. The identification of objects and roles – object
identifiers revisited. Technical report, Vrije Universiteit Amsterdam, 1991. Report
IR–267, Faculteit de Wiskunde en Informatica Vrije Universiteit Amsterdam.

[Wed90] G. E. Weddell. A theory of functional dependencies for object-oriented data mod-
els. In W. Kim, J.-M. Nicolas, and S. Nishio, editors,Proceedings of the First Inter-
national Conference on Deductive and Object-Oriented databases (DOOD89), Ky-
oto, Japan, 1989, pages 165–184. Elsevier Science Publisher B.V. (North-Holland),
1990.

[Wed92] G. E. Weddell. Reasoning about functional dependencies generalized for semantic
data models.ACM Transactions on Database Systems, 17(1):32–64, 1992.

[Zan79] C. Zaniolo. Design of relational views over network schemas. InProceedings
ACM SIGMOD International Conference on Management of Data, Boston, pages
179–190, 1979.

42

