
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

Techniques for Modelling

Structured Operational and

Denotational

Semantics De�nitions with

Term Rewriting Systems

Karl-Heinz Buth

Bericht Nr. 9414

Oktober 1994

CHRISTIAN-ALBRECHTS-UNIVERSITÄT
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Abstract

A fundamental requirement for the application of automatic proof support for program veri�-

cation is that the semantics of programs be appropriately formalized using the object language

underlying the proof tool. This means that the semantics de�nition must not only be stated as

syntactically correct input for the proof tool to be used, but also in such a way that the desired

proofs can be performed without too many arti�cial complications. And it must be clear, of

course, that the translation from mathematical metalanguage into the object language is correct.

The objective of this work is to present methods for the formalization of structured operational

and denotational semantics de�nitions that meet these requirements. It combines techniques

known from implementation of the �-calculus with a new way to control term rewriting on object

level, thus reaching a conceptually simple representation based on unconditional rewriting. This

deduction formalism is available within many of the existent proof tools, and therefore application

of the representation methods is not restricted to a particular tool.

Correctness of the representations is achieved by proving that the non-trivial formalizations yield

results that are equivalent to the meta-level de�nitions in a strong sense. Since the representation

algorithms have been implemented in form of executable programs, there is no need to carry out

tedious coding schemes by hand. Semantics de�nitions can be stated in a format very close to

the usual meta language format, and they can be transformed automatically into an object-level

representation that is accessible to proof tools.

The formalizations of the two semantics de�nition styles are designed in a consistent way, both

making use of the same modelling of the underlying mathematical basis. Therefore, they can be

used simultaneously in proofs. This is demonstrated in a larger example, where an operational

and a denotational semantics de�nition for a programming language are proved to be equivalent

using the Larch Prover. This proof has been carried out by hand before, and so the characteristics

of the automated proof can be made quite clear.

Keywords

automated program veri�cation, de Bruijn index, denotational semantics, �-calculus, ��-calculus,

Larch Prover, programming language semantics, semantics equivalence proofs, structured opera-

tional semantics, term rewriting, transition systems



Zusammenfassung

Um bei der Programmveri�kation automatische Beweisunterst

�

utzungssysteme erfolgreich einset-

zen zu k

�

onnen, ist es n

�

otig, die Semantik der betrachteten Programme auf ad

�

aquate Weise in der

Objektsprache des Beweissystems darzustellen. Das hei�t nicht nur, da� die geforderte syntakti-

sche Form einzuhalten ist, sondern auch, da� die gew

�

unschten Beweise ohne allzu viele k

�

unstliche

Komplikationen durchgef

�

uhrt werden k

�

onnen. Daneben mu� nat

�

urlich sichergestellt werden, da�

die

�

Ubersetzung von der mathematischen Metasprache in die Objektsprache korrekt durchgef

�

uhrt

wird.

Ziel dieser Arbeit ist es, f

�

ur zwei Semantikde�nitionsstile solche Formalisierungsmethoden vorzu-

stellen, n

�

amlich f

�

ur den strukturiert-operationellen und f

�

ur den denotationellen. Durch Kombina-

tion von Techniken, die aus der Implementierung des �-Kalk

�

uls bekannt sind, mit einer neuartigen

Methode zur Kontrolle von Termersetzung auf Objektniveau wird dabei eine konzeptuell einfache

Darstellung erreicht, die sich nur auf einfaches, bedingungsfreies Termersetzen st

�

utzt. Da dieser

Deduktionsmechanismus in sehr vielen existierenden Beweissystemen implementiert ist, ist die

Anwendung der Formalisierungsmethoden nicht auf eine bestimmtes Beweissystem beschr

�

ankt.

F

�

ur die nichttrivialen Formalisierungsschritte wird bewiesen, da� die urspr

�

unglichen mathemati-

schen De�nitionen und ihre Repr

�

asentationen in einem starken Sinne

�

aquivalent sind, womit die

Korrektheit der Methode sichergestellt wird. Die Formalisierungsalgorithmen sind implementiert

in Form von lau�

�

ahigen Programmen, so da� die Methode keine aufwendigen Handcodierungen

erfordert. Semantikde�nitionen k

�

onnen in einem Format notiert werden, das der

�

ublichen mathe-

matischen Notation sehr

�

ahnlich ist, und die Transformation auf das Objektniveau des gew

�

ahlten

Beweissystems kann automatisch erfolgen.

Die Formalisierungen der beiden betrachteten De�nitionsstile st

�

utzen sich auf dieselbe Modellie-

rung der zugrundeliegenden mathematischen Basis. Daher ist es problemlos m

�

oglich, sie gleich-

zeitig in Beweisen zu verwenden. Dies wird anhand eines gr

�

o�eren Beispiels demonstriert, in

dem f

�

ur eine gegebene feste Sprache die

�

Aquivalenz einer strukturiert-operationellen und einer

denotationellen Semantikde�nition nachgewiesen wird. Das benutzte Beweissystem ist dabei der

Larch Prover. F

�

ur dieses Problem liegt bereits ein konventioneller Handbeweis vor, so da� die

Besonderheiten des automatisierten Beweises gut deutlich gemacht werden k

�

onnen.
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Kalk
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ul, Larch Prover, Semantik f

�

ur Programmiersprachen, Semantik

�

aquivalenzbeweis, struktu-

riert-operationelle Semantik, Termersetzung, Transitionssysteme
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Chapter 1

Introduction

Due to their ever expanding computing power and miniaturization, modern computers are be-

ing increasingly used also in safety critical applications where a malfunction could entail severe

damage to the property, to the health, or even to the life of persons.

1

Therefore, the concern

about the absence of such malfunctions is increasing as well (if probably not at the same rate).

2

A malfunction is a behaviour that is incorrect with respect to some requirement, and hence the

basic concern is about correctness of systems.

In the �eld of software, the only method that at least has the chance to guarantee correctness is

the formal veri�cation of programs against formal speci�cations. Of course, this method also has

its problems, as correctly remarked by De Millo, Lipton and Perlis [30]; see also the discussion

following Fetzer's article in the Communications of the ACM [42]. Like any human undertaking,

veri�cation is subject to errors and omissions, and the problem of capturing the requirements in a

formal speci�cation is far from being solved in a generally accepted way (cf. e. g. [41]). But under

the assumption that the formal speci�cation suitably reects the requirements and that no errors

occur during the process itself, veri�cation is capable of mathematically proving the absence of

errors in a program. This is a quality that other methods such as testing fail to achieve.

3

The main practical obstacle for implementing veri�cation as a standard part of software develop-

ment processes is the size of the problem. Even for relatively small programs, the sheer length of

the proofs to perform normally prevents all attempts to verify them in the usual mathematical

proof style. But, luckily, there is an important aspect of these proofs that shows a way to apply

veri�cation after all. Most programs contain large parts that are \obviously" correct, i. e. do

not require complicated lines of reasoning for their veri�cation, and only small parts that include

intricate algorithms. The veri�cation of these latter parts can be quite as complicated as proving

general mathematical theorems. For the former parts, however, often simple standard techniques

such as case distinctions, inductive arguments, and calculations su�ce.

This is the starting point for automatic support of program veri�cation. Tools o�ering such

support do not provide very much built-in ingenuity, despite all attempts to include a variety of

heuristics. Therefore proving general mathematical theorems with an automated prover usually

is a complicated task (see e. g. Shankar's proof [109] of G�odel's incompleteness theorem [55] with

1

For overviews, see the proceedings of the SAFECOMP conference series [38, 53, 26, 50].

2

See e. g. the regular RISKS forum in the ACM SIGSoft Software Engineering Notes.

3

Remarked e. g. by Dijkstra ([34], p. 20).
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the Boyer-Moore prover [16]). In such proofs, the e�ort of adequately formalizing proof structures

can be considerable.

But the great strength of computers is the ability to apply simple techniques very often, and

therefore proof tools can be adequately used at least for the simpler parts of veri�cation problems.

This may be even more true if the complicated parts of the proofs are completely performed by

hand. In this case, it is often su�cient to work with a less complex formalization of the problem

when dealing with the simpler parts, and thus the proof tool can work more e�ciently.

A fundamental requirement for the application of automatic proof support for program veri�-

cation is that the semantics of programs be appropriately formalized using the formal language

underlying the proof tool (the so-called object language). This means that it must not only be

stated in the syntactic form of correct input for the proof tool to be used, but also in such a

way that the desired proofs can be performed without too many arti�cial complications, and, of

course, it must be clear that the translation from mathematical metalanguage into the object

language is correct.

The objective of this work is to present methods for the formalization of structured operational

and denotational semantics de�nitions that meet these requirements. It combines techniques

known from implementation of the �-calculus with a new way to control term rewriting on object

level, thus reaching a conceptually simple representation based on unconditional rewriting. This

deduction formalism is available within many of the existent proof tools, and therefore application

of the representation methods is not restricted to a particular tool.

Correctness of the representations is achieved by formally proving that the non-trivial formaliza-

tions yield results that are equivalent to the meta-level de�nitions (in a sense made precise later).

Since the representation algorithms have been implemented in form of executable programs,

there is no need to carry out complicated coding schemes by hand. Semantics de�nitions can be

stated in a format very close to the usual meta language format, and they can be transformed

automatically into an object-level representation that is accessible to proof tools.

The formalizations of the two semantics de�nition styles are designed in a consistent way, both

making use of the same modelling of the underlying mathematical basis. Therefore, they can be

used simultaneously in proofs. This is demonstrated in a larger example, where an operational

and a denotational semantics de�nition for a programming language are proved to be equivalent.

This proof has been carried out by hand before [82], and so the characteristics of the automated

proof can be made quite clear.

Term Rewriting Systems

Replacement of equals by equals is one of the most basic steps in mathematical proofs. The

idea of term rewriting is to formalize such replacements in the form of \directed equations"

l

-

r meaning that any instance of l may be substituted by a corresponding instance of r.

The properties of \term rewriting systems" consisting of such rules have been examined since

the beginning of the 1970s. By now, rewriting forms a theory of its own right, but it has also

close links to algebraic speci�cation where data types are de�ned by equations; for purposes of

computation, as in rapid prototyping (cf. e. g. [73, 74]), the equations must become \directed",

resulting in rewrite rules.



7

There exist many extensions of the simple replacement scheme l

-

r. The most prominent is

conditional rewriting : here the rules have the form c ) l

-

r, where c is a condition that has

to be (rewritten to) true before the rule can be applied. A number of proposals have also been

presented on how to extend rewriting with parts of the �-calculus (e. g. by Dougherty [36, 37]

or Loria-Saenz and Steinbach [87]); Klop [79] and Kahrs [77] have de�ned replacement systems

that go beyond term rewriting and �-calculus by generalizing both formalisms.

In this work, a method will be used to include a subset of �-calculus into term rewriting without

having to extend the rewriting formalism (the ��-calculus, presented by Abadi et al. [1]). More-

over, a new technique will be introduced that allows to control the rewriting of a certain class of

terms without having to appeal to meta-level control techniques. In particular, this method will

allow to work with a rule of the form

f(x)

-

if b then f(y) else f(x) :

The intended semantics of this rule is \Only rewrite f(x) to f(y) if b holds; otherwise do not

change f(x)." But of course, this rule may be applied in�nitely often if b does not hold. The

control mechanism to be introduced will be de�ned in such a way that the intended semantics is

retained, but the possibility of constructing non-terminating rewriting sequences with this rule

is eliminated.

Due to their conceptual simplicity, rewriting mechanisms are built into many tools for automated

proof support: tools as di�erent as the RAP system [73, 74], the Boyer-Moore Prover [16], the

Larch Prover [51], the KIV system [65] or PAMELA [22] all include ways to de�ne rewrite rules

and to apply them in proofs.

Semantics De�nition Styles

There are three main styles for de�ning the formal semantics of programming languages (cf.

Stoy [113] or Nielson and Nielson [99]), viz. the operational, the denotational and the axiomatic

approach. The borderlines between the styles, however, sometimes are uid.

Operational semantics

The meaning of a program is de�ned by setting up an abstract machine M and interpreting the

program in terms of machine instructions of M .

Historically, the operational style was the �rst one to develop. IfM is de�ned in a \concrete" way,

including many details of real hardware, the calculation of the operational semantics of a program

comes quite close to the actual execution of the program on the computer. Therefore, operational

semantics de�nitions can provide ideas on how to implement the programming language.

A method that has proved very convenient for the de�nition of the operational semantics of

(concurrent) programming languages is the approach introduced by Plotkin [101] usually referred

to as Structured Operational Semantics (SOS for short). The method consists of setting up a

transition system that contains deduction rules de�ning the transition relation

-

S

between

state con�gurations of programs. Examples for languages de�ned in this way include parts of
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CSP [101], Ada [3] and Esterel [10]; process algebra [6] also uses SOS de�nitions. SOS rules de�ne

the semantics of constructs in a compositional way from the semantics of their subcomponents.

Since SOS de�nitions are sometimes too concrete for the purpose of reasoning about programs,

it is useful to develop more abstract representations that make the de�nitions more accessible.

Moller [94] and Aceto, Bloom and Vaandrager [2] have worked on using sets of equations for this

purpose. Bosscher [13] describes aspects of implementing the algorithms from [2] whose aim it is

to generate a set of equations that can be used to prove bisimulation properties between processes

in a certain type of languages.

In Chapter 7 of the work on hand, an algorithm will be presented that also transforms SOS

de�nitions, but with a di�erent aim. Here, the result is a set of rewrite rules, and it will be

proved that the rewriting sequences that can be constructed using these rules correspond to the

transitions that are possible in the original SOS system in a very close way. Essentially, any SOS

transition sequence has a simulating rewriting sequence, and all rewriting sequences related to

the SOS system correspond to actual SOS transition sequences.

The main problem is that those deduction rules de�ning

-

S

put less restrictions on the use

of free variables than the simple standard rewriting formalism does. The solution that will be

presented uses the ��-calculus to completely abolish problems with such variables; it relies on the

control mechanisms mentioned earlier. Since the form of ��-calculus that is used can be stated

in form of a simple rewrite system, the whole simulation of SOS systems can be accomplished

without extending the rewriting formalism. Hence, the simulation can be implemented in any

tool supporting simple term rewriting.

4

There are several examples for automated veri�cation of compilers (code generators, to be more

exact) based on operational semantics de�nitions (albeit not in SOS form). Among these are

Young [116] using the Boyer-Moore Prover [16], Berghammer, Ehler, and Zierer [8] using the

RAP system [73, 74], and Schmidt [105] using the TIP system [49, 48].

Denotational semantics

The meaning of (pieces of) programs is de�ned as an element of some mathematical value domain

(hence the name \mathematical semantics" formerly used for this style). Usually, the semantic

functions are recursively de�ned, the meaning of a construct being expressed compositionally in

terms of the meaning of its subcomponents.

The main di�culty of denotational semantics is the de�nition of appropriate value domains

for the di�erent syntactical categories. Fundamental work in this area includes that of Milne

and Strachey [92] and Scott [107]. Plotkin [100] and Smyth [110] address the special problems

concerning nondeterminism where sets of results have to be considered.

Denotational semantics is regarded as most suitable for language designers since it provides the

most concise de�nition of the meaning of language constructs.

Since denotational function de�nitions are usually given by equations in a format close to rewrite

rules that have a \natural direction", there is no problem in setting up a simulating rewrite

system. Here the main di�culty lies in �nding an appropriate representation of the data types

that are much more structured than those needed for SOS systems. The problem of how to model

4

Only some small additional assumptions will have to be made.
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quanti�ers by rewrite systems will have to be dealt with; this entails all the problems of variable

conicts and substitutions. The partial solution of this problem that will be described in Chapter

8 again relies on the ��-calculus.

Among the published veri�cation e�orts in the area of proving compiler correctness using de-

notational semantics are Buth and Buth [20, 21] using the PAMELA system [22] and Broy [17]

using the Larch Prover [51]. The latter work also makes use of operational de�nitions.

Axiomatic semantics

Proof rules are attached to (pieces of) programs; the meaning of a program is expressed in terms

of its e�ect on predicates. This style originated from the work of Floyd [43] on the veri�cation

of owcharts. Hoare [67] developed the use of correctness formulas of the form fpg s fqg (the

so-called Hoare triples) which are de�ned to be true if execution of a program s, when started

in a state satisfying the predicate p, ends up in a state satisfying the predicate q (provided s

terminates at all). Dijkstra [34] introduced the notion of weakest preconditions ; the weakest

precondition of a program s with respect to some postcondition q is the predicate that is true in

an initial state i� s will, if started in this state, terminate in a state satisfying q. This form of

predicate transformer semantics can also be regarded as denotational: the weakest precondition

of programs depends on the weakest preconditions of its components in the same compositional

way that can be observed in denotational de�nitions.

Since axiomatic de�nitions normally stay close to the syntax of programs and do not involve

complicated mathematical domains, they are most suitable for programmers who want to verify

their programs. Axiomatic semantics does not \directly" de�ne the meaning of a program;

therefore such de�nitions are often veri�ed against a de�nition stated in another style (cf. de

Bakker [29] or Loeckx and Sieber [86]).

An example for automated veri�cation based on axiomatic semantics is given by Scott and Norrie

[108]. They take a semantics de�nition in form of so-called laws (cf. Hoare et al. [69]), describing

the relations between di�erent syntactic constructs of a programming language P , and use a

proof tool based on term rewriting (the Larch Prover [51]) to verify parts of a compiler for P .

Outline of the Work

After de�ning some notation, the work starts in Chapter 3 with a full account of term rewriting

which is the basic formalism needed in the rest of the work. Important aspects introduced in

this chapter are the modelling of substitutions, and a new mechanism that extends certain terms

with information about how to rewrite these terms.

Both the simulation of SOS systems and of denotational de�nitions rely on a su�ciently strong

basic system B that describes the underlying mathematical domains. In Chapter 4, the kinds of

rules needed for the system B will be described, and how a large part of them can be very system-

atically (and even automatically) generated from a simple de�nition of the domains. Chapters

5 and 6 explain the syntactic properties of those kinds of semantics de�nitions to be dealt with,

and Chapters 7 and 8 describe the modelling of SOS and denotational semantics de�nitions with

rewrite systems.
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An example implementation of the simulation is described in Chapters 9 and 10 where the Larch

Prover [51] is used to replay a semantics equivalence proof originating from the ProCoS project

[11, 14]. For a given programming language that is equipped which both an SOS semantics and

a denotational semantics, the task is to prove equivalence of these de�nitions. This problem is

particularly well-suited to test the simulation methods since it is concerned almost entirely with

pure semantics of two di�erent styles.

The appendices start with a description of two programs that generate input for the Larch Prover

from simpler speci�cations. The �rst one transforms SOS systems into rewrite systems, and the

second one generates that part of the basic rewrite system dealing with the data types.

In Appendix B, the full correctness and completeness proofs for the simulation results of Chapter

7 are provided, and �nally, Appendix C compares two di�erent modellings of quanti�ed formulas

with the Larch Prover.
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Chapter 2

Notation

Natural numbers

IN denotes the set f1; 2; : : :g of positive natural numbers, IN

0

=

df

IN[ f0g the set of non-negative

natural numbers. For n 2 IN, de�ne [n] =

df

f1; : : : ; ng, and de�ne [0] =

df

;.

Relations

Let M and N be sets, n 2 IN

0

, and R; S;

-

�M �M relations on M . The following notation

will be used:

� M ]N denotes the union of disjoint sets M and N .

� id

M

=

df

f(m;m) j m 2Mg denotes the identity relation on M.

� R ;S =

df

f(m;n) 2M �M j 9p 2M : (m; p) 2 R ^ (p; n) 2 Sg denotes the composition

of R and S in diagrammatical order.

� Whenever suitable, in�x notation for binary relations will be used.

�

n

-

=

df

(

id

M

n = 0

n�1

-

;

-

n > 1

Note that

1

-

=

-

.

�

+

-

=

df

S

n�1

n

-

denotes the transitive closure of

-

.

�

�

-

=

df

S

n�0

n

-

denotes the reexive and transitive closure of

-

.

�

�

=

df

-

�1

denotes the inverse of

-

.

�

-�

=

df

(

-

[

�

) denotes the symmetric closure of

-

.

A relation � �M �M is a partial ordering i� it is reexive, transitive and antisymmetric. If

� is a partial ordering on M; y 2 M , and X � M , let X � y stand for 8x 2 X : x � y, and

de�ne < =

df

� nid

M

.

A relation � �M �M is an equivalence relation i� it is reexive, transitive and symmetric.
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Functions

Let M , N and N

1

be sets.

If a relation f �M �N is a partial function this is written as f :M !

j

N . The set of partial

functions from M to N is denoted by M !

j

N . De�ne

� dom f =

df

fm 2M j 9n 2 N : f(m) = ng (the domain of f) and

� rng f =

df

fn 2 N j 9m 2M : f(m) = ng (the range of f)

If f :M !

j

N with dom f =M , f is a total function, written as f :M ! N .

M ! N denotes the set of total functions from M to N , and M

IN

=

df

IN ! M the set of

sequences inM . The operator! associates to the right, i. e.M ! N ! N

1

=

df

M ! (N ! N

1

).

Words

Let M be some set.

M

�

=

df

S

n�0

( [n]!M ) denotes the set of �nite sequences or words over M . The empty word

in [0]!M is denoted by ". M

+

=

df

M

�

n f"g denotes the set of non-empty words over M .

Let w 2 M

�

and m 2 M . If n 2 domw, w

n

is also written instead of w(n). jw j =

df

jdomwj

denotes the length of w. Appending m onto w results in the function m � w : [jw j+ 1] ! M

in M

�

de�ned for n 2 [jw j+ 1] by

(m � w)(n) =

df

(

m , if n = 1

w

n�1

, if n > 1

If ��M �M is some partial ordering on M , then the lexicographic extension of � onto M

�

is a relation on M

�

(also written as �) that is de�ned by (m

1

; m

2

2M

�

):

m

1

� m

2

=

df

( jm

1

j � jm

2

j ^ 8k 2 domm

1

: m

1

(k) = m

2

(k) ) _

( 9n 2 domm

1

: jm

2

j � n ^

( 8k 2 [n� 1] :m

1

(k) = m

2

(k) ^ m

1

(n) < m

2

(n) ))

Quasi-quotes

Throughout this work, it will be important to be able to separate mathematical objects (meta-level

entities) from their representations in form of character strings (object-level entities). In order

to make this separation explicit, so-called \quasi-quotes"

p

�

q

(sometimes also

d

�

e

) will be used.

If t is a term of the mathematical meta-language, then

p

t

q

denotes the printed representation of

this term.

Example: Let f : IN! IN; n 7! n + 4. Then the mathematical term f(42) stands for (\is")

the natural number 46, whereas

p

f(42)

q

stands for (\is") is the string consisting of the

characters \f(42)".
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Meta-level variables inside of these quotes lead to representations that can be instantiated (hence

the name \quasi-quotes":

p

�

q

does not denote full quotation).

Example: If the function rep mapping a natural number to a character string is de�ned by

rep : n 7!

p

n + 8

q

, then rep(34) =

p

34 + 8

q

.

Sometimes it will be necessary to exclude parts of an otherwise quoted expression from being

quoted. For this purpose, \inverse quotes"

x

�

y

(sometimes also

b

�

c

) will be used.

Example: Let again f : IN! IN; n 7! n + 4. Then

p

f(

x

f(2)

y

+ 4)

q

=

p

f(6 + 4)

q

= \f(6 + 4)" ;

whereas

p

f(f(2) + 4)

q

= \f(f(2) + 4)" :

These expression may be nested: inside

x

�

y

, again

p

�

q

may be used, inside these quotes again

x

�

y

and so on. Nesting quotes of the same kind can also be de�ned in a way that makes sense,

but will not be used in this work.

The quasi-quote notation has been suggested by Quine [102] and is also used in denotational

semantics (see Stoy [113], pp. 26 �., where the concept is explained in detail). The inverse quotes

de�ne a concept similar to the \back quotes" used in Common Lisp [111].
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Chapter 3

Term Rewriting Systems

This chapter starts with a review of the basic notions and properties of many-sorted term rewriting

that will be used. In the next section, it will be described how let expressions as they are

known from programming and speci�cation languages such as Lisp [111] or VDM-SL [28] can

be embedded into term rewriting. Such expressions introduce concepts of �-calculus as they

can be understood as applications of �-de�ned functions to given arguments. Finally, a new

concept of \contexts" will be introduced that can be used to control rewriting of a certain class

of terms. This control mechanism is also expressible completely within term rewriting. Both

these embeddings play the key roles in simulation of structured operational semantics de�nitions

(cf. Chapter 7).

3.1 Concepts of Term Rewriting

In this section, only those aspects of term rewriting will be recapitulated that are needed later. In

particular, most proofs will be omitted. More detailed expositions can be found e. g. in Huet and

Oppen [72], Bergstra and Klop [9], Hofbauer and Kutsche [70], or Dershowitz and Jouannaud

[33]. The approach is typed; this has the same advantages a type discipline has for program

languages (cf. Goguen and Meseguer [56], p. 1):

� conceptual clarity is facilitated by making explicit the restrictions on the arguments and

results of operations, and

� many errors can be detected by type checking before execution of a program (or, as in our

case, rewriting of a term).

3.1.1 Basic De�nitions

De�nition 3.1 (S-sorted set)

Let S be an index set. An S-sorted set A is a family fA

S

j S 2 Sg of sets. A is called

disjoint i� A

S

\ A

T

= ; for all distinct S; T 2 S. Given two S-sorted sets A and B, an

S-sorted function � : A ! B is an S-indexed family f�

S

: A

S

! B

S

j S 2 Sg of

functions.
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De�nition 3.2 (signature)

Amany-sorted signature is a pair h S;� i where S is a set of sorts and � = f�

w;S

j w 2

S

�

; S 2 Sg is an (S

�

� S)-sorted set. Elements of sets in � are called function symbols

or operators.

If f 2 �

w;S

for some w = S

1

� � �S

n

2 S

�

; n � 0 and S 2 S, this will also be written as

f : w ! S or f : S

1

; : : : ; S

n

! S (if n � 1). w is the arity of f and S is the (result)

sort of f . If f 2 �

";S

for some S 2 S, f is called a constant of sort S.

If the sort set S is clear from the context, � will be written instead of h S;� i.

Note that this de�nition allows operator overloading; there may be operators f 2 �

w

1

;S

1

\�

w

2

;S

2

for di�erent hw

1

; S

1

i and hw

2

; S

2

i.

From now on, assume a �xed set S of sorts and a �xed signature h S;� i also denoted by �.

Furthermore, assume a disjoint S-sorted set V of variables such that V

S

is enumerable for each

S 2 S. The following abbreviations will be used:

� If f 2 �

w;S

for some w and S that are not important in the current context, then f 2 �

will be written instead.

� The sets V and

S

S2S

V

S

will be identi�ed.

� If f is an S-sorted function from V to some set X , f(v) will also be written instead of f

S

(v)

for v 2 V

S

and dom(f) instead of

S

fdom(f

S

) j S 2 Sg.

Since V is disjoint, the last two abbreviations are well-de�ned.

De�nition 3.3 (term, T (�; V ))

t is a term over � and V with type S 2 S i� one of the following conditions holds:

(1) t is a variable: t =

p

v

q

for some v 2 V

S

.

(2) t is a constant: t =

p

c

q

for some c 2 �

";S

.

(3) t is a complex term: t =

p

f (t

1

; : : : ; t

n

)

q

for some n 2 IN and f 2 �

w;S

with

w = S

1

: : :S

n

such that for each i 2 [n], t

i

is a term over � and V with type S

i

.

T (�; V )

S

denotes the set of all terms over � and V with type S, and T (�; V ) =

df

S

S2S

T (�; V )

S

denotes the set of all possible terms over � and V , regardless of their type.

If t 2 T (�; V )

S

, de�ne type (t) =

df

S; in this case, t will sometimes be called an S-typed

term.

For terms t, var (t) denotes the set of all variables that occur inside of t. A term t is called

a ground term i� var (t) = ;. The set of all ground terms over � with type S is denoted

by T (�)

S

, and the set of all ground terms, regardless of their type, by T (�).

Complex terms whose outermost operator is some f 2 � will also be called f-terms.

Note the use of the quasi-quotes; the separation of object-level from meta-level entities will

become particularly important when the semantics of terms is considered (starting in Section

3.1.2). For this, a way is needed to notationally distinguish terms as syntactic objects from their

semantics, which is also de�ned by means of terms. Although the notation for these latter terms
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is the same as for object-level terms, they are meta-level objects, and have to be interpreted in

the mathematical context of the de�nition.

Explicit quoting of terms is not a common practice in the areas of term rewriting and algebraic

speci�cation. But in some situations, both kinds of terms will appear together in formulas, and

then the exact distinction is important. When it is clear from the context, however, that a term

is to be considered as belonging to object-level, the quotes

p

�

q

will be dropped in order to stay

closer to conventional notation.

De�nition 3.4 (#comp (t))

Let t 2 T (�; V ). #comp(t) denotes the number of direct subterms of t, i. e. #comp (t) =

df

0 if t is a variable or a constant, and #comp (

p

f(t

1

; : : : ; t

n

)

q

) =

df

n if f : S

1

; : : : ; S

n

! S

for some n 2 IN and S

1

; : : : ; S

n

; S 2 S.

Def. 3.3 only de�nes terms in pre�x notation with parentheses. But the usual in�x, post�x or

\mix�x"

1

notation will also be used if this more convenient.

A general assumption throughout this work will be that all signatures � are sensible [72], i. e.

that T (�)

S

6= ; for all sorts S 2 S (in words: for each sort, there exists a ground term of that

sort).

De�nition 3.5 (occurrence in a term)

Let t 2 T (�; V ). The set occ (t) of occurrences in t is the smallest pre�x-closed set of

lists of natural numbers satisfying:

(1) " 2 occ (t).

(2) If t =

p

f (t

1

; : : : ; t

n

)

q

and u 2 occ (t

i

) for some i 2 [n], then i � u 2 occ (t).

De�nition 3.6 (subterm at an occurrence)

Let t; t

1

; t

2

2 T (�; V ) and u 2 occ (t). Then t=u is the subterm of t at occurrence u:

t=u =

df

(

t , if u = "

t

i

=u

0

, if t =

p

f (t

1

; : : : ; t

n

)

q

and u = i � u

0

for some i 2 [n] and u

0

2 IN

�

t

2

is a proper subterm of t

1

(t

2

C t

1

) i� there exists a u 2 occ (t

1

) n f"g such that

t

1

=u = t

2

.

1

An example for an operator normally used with mix�x notation is the conditional operator of many program-

ming languagues. It could be de�ned as if then else : Condition;Statement;Statement ! Statement, with the

intended meaning (as e. g. in OBJ3, cf. Goguen and Winkler [57]) that the i-th argument be written in the place

of the i-th \ ".
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Example 3.7 (occurrences and subterms)

Consider a signature � with sorts A;B;C; let x

A

; x

B

and x

C

be variables for these sorts,

and let there be the following operators in �:

f : A;B ! C

g : B;C ! A

g : A! C

h : B;C ! B

Then for t =

df

f(g(h(x

B

; x

C

); g(x

A

)); h(x

B

; f(x

A

; x

B

))) 2 T (�; V )

C

we have:

t=" = t

t=112 = x

C

t=22 = f(x

A

; x

B

)

�

De�nition 3.8 (subterm replacement)

Let t; t

0

2 T (�; V ) and u 2 occ (t) such that type (t=u) = type (t

0

). Then t[u  t

0

] is the

term that results from t by replacing t=u by t

0

:

t[u t

0

] =

df

8

>

>

>

<

>

>

>

:

t

0

, if u = "

p

f (t

1

; : : : ; t

i�1

;

x

t

i

[u

0

 t

0

]

y

; t

i+1

; : : : ; t

n

)

q

, if t =

p

f (t

1

; : : : ; t

n

)

q

and u = i � u

0

for some i 2 [n] and u

0

2 IN

�

Example 3.9 (subterm replacement)

Consider the signature introduced in Example 3.7. If t

1

=

df

g(g(x

B

; x

C

)), then type (t=22) =

type (t

1

) = C, and

t[22 t

1

] = f(g(h(x

B

; x

C

); g(x

A

)); h(x

B

; g(g(x

B

; x

C

))))

�

De�nition 3.10 (congruence relation)

An equivalence relation � on T (�; V ) is a congruence relation i�

8t; t

0

2 T (�; V ) 8u 2 occ (t) : t

0

� t=u ) t[u t

0

] � t

If � is a congruence relation on T (�; V ), the following holds for all operators f 2 � and t; t

0

2

T (�; V ):

t � t

0

)

p

f(: : : t : : :)

q

�

p

f(: : : t

0

: : :)

q
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De�nition 3.11 (substitution)

A substitution is an S-sorted partial function � : V !

j

T (�; V ) with �nite domain dom (�)

such that 8v 2 dom(�) : type (v) = type (� (v)). The set of all substitutions is denoted by

Subst (�; V ). A substitution �

1

is an extension of a substitution � i� � � �

1

. If

rng � � T (�), � is called a ground substitution.

A substitution � 2 Subst (�; V ) with dom (�) = fv

1

; : : : ; v

n

g and � (v

i

) = t

i

for i 2 [n]

will be written as � = [ t

1

=v

1

; : : : ; t

n

=v

n

]. Substitution application is usually written in

post�x notation.

The homomorphic extension of substitutions onto T (�; V ) is de�ned in the usual way: Let

t 2 T (�; V ). Then

t� =

df

8

>

<

>

:

v� , if t = v 2 dom(�)

t , if t 2 V n dom (�) or t is a constant

p

f (

x

t

1

�

y

; : : : ;

x

t

n

�

y

)

q

, if t =

p

f (t

1

; : : : ; t

n

)

q

; n � 1

If t

1

= t

2

� for t

1

; t

2

2 T (�; V ) and � 2 Subst (�; V ), t

1

is called an instance of t

2

, and if

t

1

2 T (�), it is called a ground instance.

If �; � 2 Subst (�; V ), the composition of � and � (written as �� ) is de�ned by: 8t 2

T (�; V ) : t(��) =

df

(t�)� .

De�nition 3.12 (extra variable)

Let t 2 T (�; V ) and v 2 V . v is an extra variable with respect to t i� v does not occur

as a subterm of t, i. e. v 62 var (t).

De�nition 3.13 (Bool, predicate term)

A sort that will always be assumed to be included in the set of sorts S is the sort Bool of

representations of truth values. Together with this sort, the usual relational and proposi-

tional operators will be included. In particular, for each sort S 2 S there will be an equality

operator = : S; S ! Bool.

Terms from T (�; V )

Bool

will be called predicate terms.

De�nition 3.14 (�-equation)

A �-equation is a term

p

� = �

q

where �; � 2 T (�; V )

S

for some S 2 S. An equational

theory is a set of �-equations.

De�nition 3.15 (�-formula)

The setWFF(�) of�-formulas is the least set satisfying the following properties:

(1) every �-equation is in WFF (�);

(2) if G;H 2WFF(�), then

p

:G

q

;

p

(G ^ H)

q

2WFF (�);

(3) if x 2 V

S

and G 2WFF(�), then

p

(8x 2 S : G)

q

2WFF (�).

Further logical operators such as _; ) ; () and 9 are de�ned as abbreviations in the

usual way. The usual precedence rules will be taken for granted and hence most of the

brackets in formulas will be omitted.
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Notation 3.16 (representation, M

0

)

Let M be a class of mathematical objects such that all elements of M can be represented

in the set of terms T (�; V ). Then the set of these representations is denoted by M

0

(�;V )

,

or, if � and V are clear from the context, just by M

0

.

Representations are de�ned to allow reasoning about mathematical objects on a syntactic level.

No assumptions are being made about uniqueness of representations; if a meta-level element of

M has more than one object-level representation in T (�; V ) (which usually will be the case),

then all of them are elements of M

0

.

Example 3.17

If the signature � includes a sort Nat that is intended to model the natural numbers IN, all

Nat-sorted terms belong to the set IN

0

, i. e. IN

0

= T (�; V )

Nat

.

�

De�nition 3.18 (term rewriting system)

A term rewriting system (TRS) over T (�; V ) is a �nite set of rewrite rules

p

�

-

�

q

2

T (�; V ) � T (�; V ) such that var (�) � var (�) and type (�) = type (�). � is called the

left-hand side of the rule, and � is called the right-hand side.

For a TRS R over T (�; V ), the rewriting relation

-

R

is de�ned as follows: For terms

t

1

; t

2

2 T (�; V ), t

1

-

R

t

2

i� there exists a rule �

-

� 2 R, an occurrence u in t

1

, and a

substitution � 2 Subst (�; V ) such that �� = t

1

=u and t

2

= t

1

[u  ��]. If u = ", the rule

is said to be applied outermost in t

1

.

De�nition 3.19 (f -rule)

Let R be a TRS and f 2 �. A rule from R is called an f-rule i� its left-hand side is an

f -term.

De�nition 3.20 (t

1

#

R

t

2

)

Let R be a TRS, and let t

1

; t

2

2 T (�; V ). Then t

1

#

R

t

2

(t

1

and t

2

have a common

reduct) i� there is a t 2 T (�; V ) for which t

1

�

-

R

t

R

�

�

t

2

.

De�nition 3.21 (normal form)

Let R be a TRS over T (�; V ), let t; t

1

2 T (�; V ). t is a normal form with respect to

R i� there exists no t

0

2 T (�; V ) with t

-

R

t

0

. (This is also written as t

-

R

.) t

1

is a

normal form of t i� t

�

-

R

t

1

and t

1

is a normal form with respect to R.
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De�nition 3.22 (conuence, termination)

Let R be a TRS over T (�; V ).

(1) R is conuent i�

8t

1

; t

2

; t

3

2 T (�; V ) : t

2 R

�

�

t

1

�

-

R

t

3

) (9t

4

2 T (�; V ) : t

2

�

-

R

t

4 R

�

�

t

3

)

(2) R is (�nitely) terminating i� there exists no in�nite sequence ft

i

g

i2IN

in T (�; V )

such that 8i 2 IN : t

i

-

R

t

i+1

.

(3) R is complete i� R is conuent and terminating.

The completeness de�ned above has nothing to do with the completeness of a proof system (which

is complete i� all valid formulas are provable). If we want to make the distinction clear, we will

also write TRS-complete resp. logically complete for these two notions.

Theorem 3.23 (existence and uniqueness of normal forms)

Let R be a TRS over T (�; V ).

(1) If R is conuent, every t 2 T (�; V ) has at most one normal form with respect to R.

(2) If R is terminating, every t 2 T (�; V ) has a normal form.

(3) If R is complete, every t 2 T (�; V ) has exactly one normal form.

3.1.2 Models for Term Rewriting Systems

Term rewriting systems of the form presented in Section 3.1.1 together with their signature are

special forms of algebraic speci�cations. This section will mainly follow Wirsing [115] in de�ning

the semantics of such speci�cations.

The semantic counterpart of a signature � is a �-algebra:

De�nition 3.24 (h S;� i-algebra)

Let h S;� i be a signature. An h S;� i-algebra A consists of a family fA

S

j S 2 Sg of

subsets of A, called carriers of A, and a function f

w;S

A

: A

w

! A

S

for each f 2 �

w;S

, where

A

w

is a one-point set if w = " and A

w

= A

S

1

� : : :� A

S

n

if w = S

1

: : :S

n

for some n � 1.

If the set of sorts is clear from the context, instead of h S;� i-algebra also just �-algebra

will be used, and if hw; S i is clear, f

A

instead of f

w;S

A

.

Alg(S;�) denotes the class of all �-algebras.

De�nition 3.25 (h S;� i-homomorphism)

Let h S;� i be a signature, and let A;B be h S;� i-algebras. An h S;� i-homomorphism

h : A! B is an S-sorted function h = fh

S

: A

S

! B

S

g such that

� 8w 2 S

+

8S 2 S 8f 2 �

w;S

8a 2 A

w

: h

S

(f

A

(a)) = f

B

(h

w

(a))

where for n � 1; w = S

1

: : :S

n

and a = h a

1

; : : : ; a

n

i : h

w

(a) =

df

hh

S

1

(a

1

); : : : ; h

S

n

(a

n

)i.

� 8S 2 S 8f 2 �

";S

: h

S

(f

A

) = f

B

.

If S is clear, h will also be called a �-homomorphism. A bijective �-homomorphism (i. e.

a �-homomorphism consisting only of bijective functions) is called �-isomorphism.
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De�nition 3.26 (initial and terminal h S;� i-algebra)

Let h S;� i be a signature. An h S;� i-algebra A is initial in a class K of h S;� i-algebras

i� there is for each h S;� i-algebra B 2 K a unique h S;� i-homomorphism h : A! B. A is

terminal in K i� there is for each h S;� i-algebra B 2 K a unique h S;� i-homomorphism

h

0

: B ! A.

Lemma 3.27 (cf. Wirsing [115])

Initial and terminal �-algebras are unique up to isomorphism.

Lemma 3.28 (term algebra)

If T (�; V )

S

6= ; for all S 2 S, then the so-called term algebra T (�; V )) (also denoted

by forms a �-algebra with carrier set T (�; V )

S

for all S 2 S and f

T (�;V )

(t

1

; : : : ; t

n

) =

df

p

f(t

1

; : : : ; t

n

)

q

for each f : S

1

; : : : ; S

n

! S 2 � and t

i

2 T (�; V )

S

i

for i 2 [n]. T (�)

=

df

T (�; ;) is also a �-algebra (the ground term algebra).

The latter fact follows from the general assumption that � is a sensible signature (see p. 17).

De�nition 3.29 (valuation, interpretation of a term)

Let A be a �-algebra.

(1) A valuation is a function v : V ! A.

(2) Let v be a valuation. The interpretation of a term t in A with respect to v is

a function v

�

: T (�; V )! A de�ned inductively by:

� v

�

(

p

x

q

) =

df

v(

p

x

q

) for all x 2 V

� v

�

(

p

f(t

1

; : : : ; t

n

)

q

) =

df

f

A

(v

�

(t

1

); : : : ; v

�

(t

n

))

for all n 2 IN

0

; f : S

1

; : : : ; S

n

! S 2 � and t

i

2 T (�; V )

S

i

for i 2 [n]

Lemma 3.30 (v

�

is a �-homomorphism)

Let A be a �-algebra and v a valuation. Then v

�

is a �-homomorphism which is (for given

V and A) the unique �-homomorphic extension of v to T (�; V ). If t 2 T (�), then v

�

(t) is

identical for all valuations v; in this case, it is denoted by t

A

.

Corollary 3.31 (T (�) is initial)

Let � be a sensible signature. Then the ground term algebra T (�) is initial in the class of

all �-algebras.

Again, this follows from the assumption that � is sensible.
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De�nition 3.32 (term generated �-algebra)

A �-algebra A is term generated i�, for each S 2 S and a 2 A

S

, there is a t 2 T (�)

S

with a = t

A

, i. e. if v

�

: T (�) ! A is surjective for a valuation v (and hence, by Lemma

3.30, for all valuations v).

The class of all term-generated �-algebras is denoted by Gen(�).

De�nition 3.33 (satisfaction of a formula)

Let A be a �-algebra, G a �-formula, E a set of �-formulas, and v a valuation. The relation

A satis�es G with respect to v (A;v j= G) is de�ned inductively by:

(1) A; v j=

p

t = t

0

q

i� v

�

(t) = v

�

(t

0

) for all terms t; t

0

of the same type.

2

(2) A; v j=

p

:G

q

i� (A; v j= G) does not hold.

(3) A; v j=

p

G ^ H

q

i� A; v j= G and A; v j= H .

(4) A; v j=

p

8x 2 S : G

q

i� A; v

1

j= G for all v

1

: V ! A with v

1

(y) = v(y) for all y 6= x.

A satis�es G (A j= G) i� A; v j= G for all valuations v. G is valid in a class K of

�-algebras (K j= G) i� A j= G for all A 2 K.

The sets of �-algebras that satisfy a set of formulas are denoted by

Alg(�; E) =

df

fA 2 Alg(�) j A j= G for all G 2 Eg

Gen(�; E) =

df

fA 2 Gen(�) j A j= G for all G 2 Eg

De�nition 3.34 (theory)

Let K be a class of �-algebras. Then de�ne:

The theory of K is:

Th(K) =

df

fG 2WFF (�) j K j= Gg

The equational theory of K is:

Th

EQ

(K) =

df

fG j G is a �-equation, K j= Gg

If K = fAg for a single �-algebra A, then Th

EQ

(A) and Th(A) will also be written instead

of Th

EQ

(K) and Th(K), respectively.

2

Note that \=" in

p

t = t

0

q

is a syntactic entity denoting an (object-level) operator, whereas in v

�

(t) = v

�

(t

0

) it

is a semantic entity denoting a (meta-level) predicate, i. e. an operation.
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De�nition 3.35 (algebraic speci�cation)

Let E be a set of �rst-order axioms (i. e. E � WFF(�)). Then h�; E i is an algebraic

speci�cation. If E is a set of equations, h�; E i is called an equational speci�cation.

For the de�nition of the semantics of an algebraic speci�cation h�; E i there are three approaches:

� loose semantics: the set of models is

Mod(�; E) =

df

Gen(�; E), i. e. the set of all term generated algebras that satisfy all

formulas in E.

� initial semantics: the set of initial models is

I(�; E) =

df

fI 2 Gen(�; E) j I is initial in Gen(�; E)g.

� terminal semantics: the set of terminal models is

Z(�; E) =

df

fZ 2 Gen(�; E) j Z is terminal in Gen(�; E)g.

Term-generated initial and terminal algebras can be characterized by the equalities among ground

terms they satisfy:

Lemma 3.36

Let K be a class of �-algebras and let B 2 K be term-generated.

(1) B is initial in K i� for all t; t

0

2 T (�)

B j=

p

t = t

0

q

() 8A 2 K : A j=

p

t = t

0

q

(2) B is terminal in K i� for all t; t

0

2 T (�)

B j=

p

t = t

0

q

() 9A 2 K : A j=

p

t = t

0

q

Initial and loose semantics are most commonly used; see [115] for a discussion of the di�erences.

Examples for speci�cation or proof tools using these approaches are OBJ3 [57] or PVS [104] for

the initial one and the Larch Prover [51] or RAP [73] for the loose one.

A TRS R over � and V corresponds to an equational speci�cation h�; E

R

i, where E

R

=

df

f

p

� = �

q

j

p

�

-

�

q

2 Rg. This equational theory corresponds to the rewriting relation of R in

a natural way:

Theorem 3.37 (cf. Ehrig and Mahr [39], Corollary 5.15)

Let R be a TRS and t

1

; t

2

2 T (�; V ). Then

Mod(�; E

R

) j=

p

t

1

= t

2

q

() I(�; E

R

) j=

p

t

1

= t

2

q

() t

1

�

-�

R

t

2

Th

EQ

(R) =

df

Th

EQ

(Mod(�; E

R

)) is called the equational theory generated by R.

Corollary 3.38

Let R be a complete TRS. Then R provides a decision procedure for equality in the equa-

tional theory generated by R.
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Proof

In order to check whether

p

t

1

= t

2

q

2 Th

EQ

(R) for given t

1

; t

2

2 T (�; V ), one only has to

generate the (according to Theorem 3.23) unique normal forms of t

1

and t

2

. I� they are identical,

t

1

�

-�

R

t

2

holds, and hence by Theorem 3.37 also Mod(�; E

R

) j=

p

t

1

= t

2

q

, i. e.

p

t

1

= t

2

q

2

Th

EQ

(R).

�

3.1.3 Conuence and Termination

Corollary 3.38 shows that it is very desirable to work with complete rewrite systems, and therefore

criteria are needed for conuence and termination. First consider termination.

In general, it is undecidable:

Theorem 3.39 (Dauchet [27])

Termination of rewrite systems is undecidable even for systems consisting of just one rewrite

rule.

This theorem is proved by assigning a single simulating rewrite rule to Turing machines. The

result then follows from the undecidability of the halting problem (cf. Hermes [66]). If rewrite

systems are restricted to ground systems (without variables in the rules), however, termination is

decidable (cf. Huet and Lankford [71]), but such systems are often not very useful, in particular

not in the context of this work.

For proving termination of given rewrite systems, a certain type of well-founded orderings is

important:

De�nition 3.40 (monotonic ordering, termination ordering)

Let � be a partial ordering on T (�; V ). � is called monotonic (with respect to term

structure) i�:

8t; t

1

; t

2

2 T (�; V ) 8u 2 occ (t) :

type (t

1

) = type (t

2

) ^ t

1

= t=u ^ t

1

� t

2

) t � t[u t

2

]

If � is monotonic, the following holds for all operators f in � and all terms t

1

and t

2

with

the same type:

t

1

� t

2

)

p

f(: : : t

1

: : :)

q

�

p

f(: : : t

2

: : :)

q

A termination ordering is a well-founded monotonic ordering on T (�; V ).

Termination orderings are exactly what is needed to prove termination of a TRS:
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Theorem 3.41 (cf. Dershowitz [32])

A TRS R over T (�; V ) is terminating i� there exists a termination ordering � over T (�; V )

such that �� � �� for all �

-

� 2 R and all � 2 Subst (�; V ).

Theorem 3.41 reduces termination proofs to construction of suitable termination orderings. By

now, there exist many di�erent approaches; see Dershowitz [32] or Steinbach [112] for an overview.

The usual method to prove conuence of a rewrite system uses critical pairs. In order to be able

to introduce this notion properly, uni�cation must be de�ned �rst:

De�nition 3.42 (uni�cation)

t

1

; t

2

2 T (�; V ) are called uni�able i� there exists a � 2 Subst (�; V ) with t

1

� = t

2

�.

Such a � is called a uni�er for t

1

and t

2

.

De�nition 3.43 (subsumption)

Let �; � 2 Subst (�; V ). � is called more general than � (written as � � � ) i� there

exists a � 2 Subst (�; V ) with �� = � . If � � � , � is said to subsume � .

Lemma 3.44 (cf. Hofbauer and Kutsche [70])

Let �; � 2 Subst (�; V ). If � � � and � � �, then there is a renaming substitution

� 2 Subst (�; V ) (i. e. �(v) 2 V for all v 2 V ) such that �� = � . In this case, we write

� � � .

Theorem 3.45 (Uni�cation Theorem, cf. Robinson [103])

Let t

1

; t

2

2 T (�; V ). If t

1

and t

2

are uni�able, then there exists a uni�er � 2 Subst (�; V )

for t

1

and t

2

such that for all uni�ers � 2 Subst (�; V ) for t

1

and t

2

we have � � � . Such

a � is called a most general uni�er (mgu) for t

1

and t

2

. If �

1

and �

2

are mgu's for t

1

and t

2

then �

1

� �

2

, i. e. mgu's are unique up to renaming of variables.

De�nition 3.46 (critical pair)

Let R be a TRS, and let

p

�

1

-

�

1

q

;

p

�

2

-

�

2

q

2 R. Without loss of generality it may

be assumed that var (

p

�

1

-

�

1

q

) \ var (

p

�

2

-

�

2

q

) = ;.

3

Let u 2 occ (�

1

) be a non-variable occurrence (i. e. �

1

=u 62 V ), and let � be an mgu of �

1

=u

and �

2

. Then the equation

�

1

� = (�

1

[u �

2

] )�

is called a critical pair with respect to R.

3

This can always be achieved by renaming the variables in one of the rules.
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Example 3.47

Consider the system R

1

that consists of the rules

r

1

: x+ 0

-

x

r

2

: s(y) + z

-

s(y + z)

A critical pair of these rules is the equation

s(y) = s(y + 0)

(the occurrence in r

1

being " and the mgu [s(y)=x; 0=z]).

�

Critical pairs characterize exactly those overlappings of left-hand sides of rules that may lead to

violations of conuence. This is expressed by

Theorem 3.48 (cf. Knuth and Bendix [81])

Let R be a terminating TRS. R is conuent i� t

1

# t

2

for all critical pairs

p

t

1

= t

2

q

with

respect to R.

For a �nite rewrite system there are only �nitely many critical pairs. If the system is terminating,

then moreover the �nitely many normal forms of all the terms in these pairs can be e�ectively

computed. This proves

Corollary 3.49

Conuence of terminating rewrite systems is decidable.

Because termination in general is undecidable (see Theorem 3.39), however, conuence in general

is also undecidable (see Klop [80]).

Since the critical pairs of a rewrite system R belong to its equational theory, this theory remains

unchanged if the critical pairs are ordered into rewrite rules and added to R. This is the idea

of completion; if all critical pairs can be added to R, then the resulting system is complete by

Theorem 3.48 (provided it is terminating) but the equational theory has not changed. Many

completion algorithms have been described, the best-known being that of Knuth and Bendix

[81] ; for an overview see Buchberger [19]. Note that, due to the undecidability of conuence in

general, completion algorithms may fail to terminate if the rewrite system R is not terminating.

3.2 Term Rewriting and the �-Calculus

For the simulation of operational semantics de�nitions, terms of the form

let x = e

1

in e

2

(3.1)
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will be used since they provide a convenient way to give names to intermediate results: x is a

name for the result of \evaluating" e

1

. (3.1), however, is equivalent to the term

(�x:e

2

) e

1

(3.2)

and thus the �-calculus enters the stage (see Barendregt [7]).

But not the whole of it will be needed since only terms of the very restricted form (3.2) will be

used, that is, the application of a �-abstraction to an argument. By �-reduction, (3.2) becomes

e

2

[e

1

=x] (3.3)

where the substitution [e

1

=x] is assumed not to introduce clashes in variable names here. So one

only has to provide a way to evaluate substitution applications like (3.3). This is not completely

trivial, however, because of the condition that there must not be any conicts in variable names.

4

In the literature, several calculi have been introduced that only use term rewriting and no other

mechanisms for the evalutation of (3.3); an overview is given by Lescanne [85]. Basically, these

calculi provide methods to handle substitution applications like (3.2) explicitly and not implicitly

on meta-level as it is usually done in the �-calculus (cf. Barendregt [7]).

In the next two subsections, an example for a calculus dealing with explicit substitutions will

be described, viz. the ��-calculus as introduced by Abadi et al. [1]. Like in all the calculi

mentioned in [85], the key idea for the prevention of problems with variable names is to abolish

them completely and use de Bruijn indices instead. So this concept will be introduced �rst,

followed by the substitution manipulation and application operators of the ��-calculus and the

rules de�ning them.

In the pure form of [1], however, the ��-calculus is not quite useful for the applications in this

work. The modi�cations that are necessary to adapt it to the special problems will be described

in the third of the following subsections. Finally, this section will close with a short glance at

other methods to combine �-calculus and term rewriting.

3.2.1 De Bruijn Notation

Semantically, the names of bound variables in �-terms are completely irrelevant; �x:e can be

�-converted into any other term �y:e[y=x] provided y does not occur free in e. The idea of de

Bruijn (cf. [18]) is to exploit this fact by using positive integers (\indices") instead of variable

names; the integer n then corresponds to the n-th surrounding �-abstraction:

�x:�y:xy becomes �:�:21

Of course this interpretation of n has to be respected when an operation such as �-reduction takes

place that eliminates a �. Consider the term (�:a)b. �-reduction should replace all occurrences

4

Technically, not the let operator, but rather the operators to be introduced in Section 3.2.2 that work with

substitutions will be included in the underlying signature. The let form (3.1), however, will be used as a more

intuitive representation of (3.2) or (3.3).
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of 1 in a by b. But there may also be free occurrences of other indices 2, 3 : : : in a, as in �:21

where 2 refers to a � outside of this term. All these free indices must be decremented by 1

since �-reduction removes the � around a. This could be expressed by the in�nite substitution

[1=2; 2=3; 3=4; : : :]. Together with the replacement for 1, this gives the following �rst attempt for

a modelling of the � rule:

(�:a)b

-

�

a[b=1; 1=2; 2=3; 3=4; : : :] (3.4)

Note, however, that the substitution application operator [ ] used in (3.4) has not been de�ned

so far. The main problem in its de�nition is the avoidance of variable conicts. This is usually

done by proper renaming, and in the evaluation of a[b=1; 1=2; 2=3; 3=4; : : :] one also has to perform

something similar. The problem arises when one comes across subterms of the form �:c. In c, 1

must not be replaced by b, since this is exactly the variable conict to be avoided: in �:c, 1 refers

to a bound variable. So 1 must remain unchanged, and 2 must be replaced by b instead. The

other indices in c must be decremented for the same reason as above. Furthermore, all indices in

b must be incremented by 1 since b is inserted into a term with an additional �. All this results

in the following rule which gives a part of the de�nition of the operator [ ]:

(�:c)[b=1; 1=2; 2=3; 3=4; : : :]

-

�:(c[1=1; b[2=1; 3=2; 4=3; : : :]=2; 2=3; 3=4; : : :]) (3.5)

Notice that this is not a rewrite rule because the representation of substitutions is not �nite.

The ��-calculus solution to this problem as given by Abadi et al. [1] will be shown in the next

subsection.

3.2.2 The ��-calculus of Abadi et al.

Following [1], the �rst step in de�ning the ��-calculus is to �x the syntax of terms and substi-

tutions. For the untyped case

5

, this is done in the following way:

De�nition 3.50 (syntax of the untyped ��-calculus)

The syntax of terms and substitutions for the untyped ��-calculus is given by the following

BNF-like grammar:

terms: a; b ::= 1 j a

1

a

2

j �:a j a[s]

substitutions: s; t ::= id j " j a � s j s

1

� s

2

The term constructors provided are the �rst de Bruijn index (there is no need for the other in-

dices, see below), application, �-abstraction, and substitution application. The four substitution

constructors

6

provide a way to give �nite representations for in�nite substitutions like the ones

in (3.4) and (3.5). Their intended meaning is the following:

(1) id stands for the identity substitution [i=i j i � 1].

5

Untyped rewriting �ts into the framework of Section 3.1 by assuming a universal sort as the type of all terms.

6

Note that the substitutions occurring in this section di�er from those in Def. 3.11 in only replacing de Bruijn

indices, but no other variables. Moreover, they may not have �nite representations of the form [t

1

=v

1

; : : : ; t

n

=v

n

].
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(2) " stands for the shift substitution [i+ 1=i j i � 1].

Since 1["] = 2; (1["])["] = 3, and so on, it su�ces to just have the index 1; n is coded by

1["

(

n� 1)], where "

n

is the composition of n shifts. De�ne "

0

=

df

id .

(3) a � s denotes the cons of a onto s, i. e. the substitution [a=1; i[s]=i+ 1 j i � 1].

For example

a � id = [a=1; i[id]=i+ 1 j i � 1] = [a=1; i=i+ 1 j i � 1] = [a=1; 1=2; 2=3; : : :]

1� "= [1=1; i["]=i+ 1 j i � 1] = [1=1; i+ 1=i+ 1 j i � 1] = id

(4) s � u denotes the composition of s and u: [(i[s])[u]=i j i � 1].

For example:

id � u = [(i[id ])[u]=i j i � 1] = [i[u]=i j i � 1] = u

" �(a � s) = [(i["])[a � s]=i j � � 1] = [(i+ 1)[a � s]=i j i � 1] = [i[s]=i j i � 1] = s

Using these de�nitions, (3.4) and (3.5) become

(�:a)b

-

a[b � id ] (3.6)

(�:c)[s]

-

�:(c[1 � (s� ")]) (3.7)

Note that the above description only gives an informal motivation for the substitution operators.

The formal de�nition of their semantics is given by the following set of equations that de�nes the

equational theory of the untyped ��-calculus. There is one rule Beta which is the equivalent of the

classical �-reduction rule, and fourteen rules for the evaluation of substitutions and substitution

applications, together called Sigma.

De�nition 3.51 (rules of the untyped ��-calculus)

As in Def. 3.50, let a and b be variables for terms, and s and t for substitutions. The

untyped ��-calculus is given by the following set of equations:

Beta (�:a)b= a[b � id ]

VarId 1[id ] = 1

VarCons 1[a � s] = a

App (ab)[s] = (a[s])(b[s])

Abs (�:a)[s] = �:(a[1 � (s� ")])

Clos (a[s])[t] = a[s � t]

IdL id � s = s

ShiftId " � id ="

ShiftCons " �(a � s) = s

Map (a � s) � t = a[t] � (s � t)

Ass (s

1

� s

2

) � s

3

= s

1

� (s

2

� s

3

)

Id a[id] = a

IdR s � id = s

VarShift 1� "= id

SCons 1[s] � (" �s) = s

All the above equations can be oriented from left to right, yielding an (up to now untyped) rewrite

system for the evaluation of �-terms.
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Example 3.52 (application of the ��-calculus)

Consider the �-term ((�:�:1["])(�:1)) (�:1 1). In usual notation with named variables, this

term would be written as ((�x:�y:x) (�x:x)) (�x:x x), which is transformed by �-reduction

�rst into (�y:(�x:x)) (�x:x x), and �nally into �x:x.

In the ��-calculus, this evaluation is performed taking the following steps:

((�:�:1["])(�:1)) (�:1 1)

-

Beta

((�:1["])[(�:1) � id ]) (�:1 1)

-

Abs

(�:((1["])[1 � (((�:1) � id)� ")])) (�:1 1)

-

Clos

(�:(1[" �(1 � (((�:1) � id)� "))])) (�:1 1)

-

ShiftCons

(�:(1[((�:1) � id)� "])) (�:1 1)

-

Map

(�:(1[(�:1)["] � (id � ")])) (�:1 1)

-

VarCons

(�:((�:1)["])) (�:1 1)

-

Abs

(�:(�:(1[1 � (" � ")]))) (�:1 1)

-

VarCons

(�:(�:1)) (�:1 1) [

^

= (�y:(�x:x)) (�x:x x) ]

-

Beta

(�:1)[(�:1 1) � id ]

-

Abs

�:(1[1 � ((�:1 1) � id)])

-

VarCons

�:1 [

^

= �x:x ]

�

The rewrite system Beta [ Sigma has some pleasant properties with respect to term rewriting:

Theorem 3.53 (Abadi et al. [1])

(1) Sigma is a complete rewriting system.

(2) Beta [ Sigma is conuent on closed ground terms and on terms only containing vari-

ables for terms, but not for substitutions.

In (2), a term is called closed (in the sense of �-calculus) if it does not contain free de

Bruijn indices, i. e. no indices referring to �'s outside of the term (as e. g. in �:2).

For the purposes of this work, the weak form of conuence in (2) su�ces since variables for

substitutions will not occur. There are, however, other calculi that are also conuent on open

terms; see Lescanne [85].

Since Sigma is complete, every term a has exactly one Sigma-normal form which will be denoted

by �(a) (cf. Theorem 3.23). Of course, Beta[Sigma cannot be expected to be terminating since

it is supposed to provide an execution model for the �-calculus. That this is actually the case is

expressed by the next theorem:

Theorem 3.54 (Abadi et al. [1])

(1) Let a; a

1

; : : : ; a

n

be terms of the ��-calculus for some n � 1. Then the e�ect of

the meta-level substitution [a

1

=1; : : : ; a

n

=n] on the term a can be calculated with the

rewriting system Sigma:

a[a

1

=1; : : : ; a

n

=n] = �(

p

a[ a

1

� : : : � a

n

�

x

"

(n�1)

y

]

q

)

(2) A �-reduction step can be implemented by �rst applying the rule Beta and then

calculating the Sigma-normal form.
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3.2.3 Modi�cations

3.2.3.1 Adding Types

The �rst modi�cation that is necessary to adapt the pure ��-calculus to the problems dealt

with in this work is the introduction of types. Abadi et al. already show the way how this can

be done. Their emphasis in this part, however, lies more on type checking problems than on

implementation aspects since they deal with the full �-calculus and not only with the small part

that is needed in the setting of the work on hand.

The de Bruijn form of typed �rst order terms is derived in the same way as that for untyped

terms; e. g.

�x : A:�y : B:xy becomes �A:�B:21

In principle, there is no problem in adapting Beta and Sigma to the typed situation. Note,

however, that one set of these rules is needed for each type that may occur as an argument type,

and therefore the whole system may become rather large. Moreover, di�erent de Bruijn indices

for di�erent argument types are needed. In the applications, however, mostly only one argument

type will be needed, and therefore the typed system Sigma will be essentially the same as the

untyped one.

Let S be the sort for the arguments. The ��-rewriting system is based on a sort Subst of

substitutions, and the operators together with their arities are the following:

id : ! Subst identity

" : ! Subst shift substitution

� : S, Subst ! Subst cons

� : Subst, Subst ! Subst composition

Moreover, for each sort T di�erent from Subst:

[ ] : T , Subst ! T substitution application

3.2.3.2 Function Constants

In order to be useful for the simulations described in later chapters, the ��-calculus must be

merged with ordinary term rewriting. As an immediate consequence the terms to which substi-

tutions have to be applied are of a more general kind than those of pure ��-calculus as de�ned

above. In particular, the e�ect of applying substitutions to complex terms f(t

1

; : : : ; t

n

) has to be

de�ned.

From a higher-order point of view, such a term is just a special case of an application term where

the function that is applied is described by a constant operator. Since constants are not a�ected

by substitutions, one would like to have the rule

f (t

1

; : : : ; t

n

)[u]

-

f (t

1

[u]; : : : ; t

n

[u]) (3.8)
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as an instance of App from Section 3.2.2. But, of course, it does not su�ce to have one such

rule, because there are no variables for operators in �rst-order terms. So for each operator f 2 �

(and for each of its possible arities, if it is overloaded), the corresponding version of (3.8) must

be added to the rewriting system.

Having all these instances of rule (3.8), the rule App itself will not be needed anymore, since

there will be no other application terms than those just mentioned. The rules Beta and Abs can

be omitted as well, since explicit �-abstractions will never occur.

For constants c :

-

T there could also be a rule of the form (3.8): c[u]

-

c. But for the handling

of the substitution of constants, an alternative method is chosen. Since in the special application

it is always known beforehand to which terms substitutions will be applied, each constant (or

even each term not containing a ��-calculus variable) can be enclosed by a special protection

operator I : T

-

T for each type T . For this operator there is not the rule (3.8) but instead:

I(t)[u]

-

t

In this way, there is also no problem with the occurrence of \new" constants that are added to the

system only after the rewriting system is set up (for example by actions of the proof tool during

proofs with these rewrite rules). There is no need to know the actual names of these constants; it

su�ces to know they are di�erent from the de Bruijn indices. So those occurrences where these

constants may appear can be safely surrounded by the appropriate protection operator.

3.2.4 Merging Term Rewriting and �-Calculus

Instead of embedding parts of �-calculus into term rewriting as described in the previous sections,

one could alternatively merge the two formalisms and express the desired rules in the combined

system. The main advantage of such more elaborate formalisms is that rules may become simpler

structured since some of their complexity can be moved into the reduction process itself.

The properties of such systems have already been investigated. Dougherty [36, 37] has examined

conuence and termination of systems that include rewrite systems and �-calculus; under certain

conditions, properties of the rewriting system are inherited by the combination. Loria-Saenz and

Steinbach [87] have applied techniques for proving termination of rewrite systems to a combination

of higher-order rewriting and �-calculus.

Kahrs [77] presents a generalization of the simple addition of rewriting and �-calculus. For this

purpose, four levels of so-called �-rewriting systems (LRS's) are de�ned. The complexity of terms

and rules increases across these levels, until �nally abstractions and applications may also occur

on the left-hand sides of rules. The LRS type 2 that is most interesting for our application allows

these only on right-hand sides. Conuence and termination of an LRS of type 2 are determined

by the rewriting relation, provided the system respects certain (rather reasonable) restrictions.

Combinatory reduction systems (CRS's) as introduced by Klop [79] are another generalization of

both term rewriting and �-calculus; the rules in such systems are still more general than those

in LRS's.

Since all these approaches extend simple rewriting, they cannot be used except with a special-

purpose tool that is able to handle the extensions. Kahrs describes the implementation of such

systems; but they are intended as an interpreter for LRS's and CRS's, respectively, and not so

much as a proof support system. So the use of real extensions of term rewriting is not a suitable
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alternative if existing proof tools are to be used.

3.3 Controlling Rewriting with Contexts

Normalization of terms with a set of rewrite rules (i. e. rewriting until a normal form is reached)

normally does not allow to control how often and in which order certain rules are used for

rewriting.

7

The simulation of operational semantics de�nitions in Chapter 7, however, requires

that the rewriting of a certain class F of terms be controlled in a very speci�c way in order to

achieve a faithful simulation of the semantics rules.

This class F is the set of f -terms for some �xed operator f 2 �

w;s

(for the sake of simpler

exposition, assume for the moment jw j = 1), and there are two ways in which the rewriting of

such terms must be controllable:

(1) It must be possible to normalize an f -term in such a way that it is only rewritten once

with an outermost application of an f -rule, even if more such rules could be applied. The

rewriting of subterms must not be a�ected by this restriction.

(2) It must be allowed to de�ne rules of the form

f (t

1

)

-

if b then f (t

2

) else f (t

1

) (b 2 T (�; V )

Bool

; t

1

; t

2

2 T (�; V )

w

)

in such a way that the rewriting system does not become non-terminating (which it would

if rules of this kind were added without modi�cations).

(1) is the wish to stop normalization automatically at a certain point, and (2) requests the

inclusion of a form of conditional rewriting (\only if b holds, rewrite f(t

1

) to f(t

2

)", see e. g.

Kaplan [78] or Bergstra and Klop [9]).

8

The f -terms themselves and the rewriting mechanism as de�ned in Def. 3.18 shall remain un-

changed. So the desired goal can only be reached by extending f -terms with the appropriate

control information. For (1), this requires some form of counter that has to be decremented after

an f -rule has been applied to an (extended) f -term. For (2), a kind of switch is needed that is

turned to \o�" when the testing condition b turns out be (more exactly, rewrite to) false. Since

such a switch is needed for every f -rule in the system, the control information can be gathered

in a context of the following form:

De�nition 3.55 (context)

Let f 2 �, and let l

1

-

r

1

; : : : ; l

n

-

r

n

be all the f -rules in the rewrite system R. Then

a context for f is an element of f0; 1; �g� fon; o�g

n

. For a 2 f0; 1; �g and s

1

; : : : ; s

n

2

fon; o�g, the context h a; s

1

; : : : ; s

n

i is called an a-context.

Contexts contain a counter component (0; 1 or �) and a switch for each f -rule. Instead of terms

f (t), now terms f (t) @ h a; s

1

; : : : ; s

n

i are rewritten, where @ is the special context application

operator, a 2 f0; 1; �g and s

1

; : : : ; s

n

2 fon; o�g. The intended interpretation for a is:

7

There are other models of rewriting where some kind of control is possible. In priority rewriting e. g. (see

Baeten, Bergstra and Klop [4]), the order in which rules are checked for applicability can be changed. In that

approach, a rewrite system consists of a list of rules rather than of a set.

8

Note, however, that such rules are only requested for f -terms, not for all other terms as well.
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� no more top-level rewriting steps, if a = 0,

� at most one top-level rewriting step, if a = 1,

� no limit on the number of top-level rewriting steps, if a = �.

The interpretation for the s

i

is that application of the i-th rule is allowed if s

i

= on and disallowed

otherwise.

But of course it does not su�ce to modify the term that is to be rewritten. The control mechanism

must also be built into the f -rules l

1

-

r

1

; : : : ; l

n

-

r

n

. This is done by supplying all f -terms in

all l

i

and r

j

with appropriate contexts. The exact form of these contexts depends on the speci�c

rule, but the following requirements should be met:

(1) For i 2 [n], the (i + 1)-th component of a context corresponds to the switch for the rule

l

i

-

r

i

. If it is o�, the rule should not be applicable. It also should not be applicable, if

the counter component is 0. Therefore, the context for l

i

should be of the form

h a; s

1

; : : : ; s

i�1

; on; s

i+1

; : : : ; s

n

i

where a 2 f1; �g. The restriction that l

i

-

r

i

should only be used if the use of another

rule l

j

-

r

j

, say, is also allowed can be expressed by letting s

j

= on (the same holds for

disallowed rules and s

j

= o�). If there is no such link, s

j

should be a variable; this will be

the normal case.

(2) There is also the possibility to have two new rules for one old one. If l

i

-

r

i

is to be used

both in single-step and in multi-step mode, it is necessary to have one rule with a 1-context

for l

i

and one rule with an �-context.

(3) If the context for l

i

is a 1-context, the context for an f -term on the right-hand side should

be a 0-context if it corresponds to a \successful" application. Otherwise it should be a

1-context with the switch for this rule turned o�: the i-th rule

f (t

1

)

-

if b then f (t

2

) else f (t

1

)

should become (assume that b, t

1

and t

2

do not contain f -terms)

f (t

1

) @ h 1; s

1

; : : : ; s

i�1

; on; s

i+1

; : : : ; s

n

i

-

if b then f (t

2

) @ h 0; s

0

1

; : : : ; s

0

i�1

; on; s

0

i+1

; : : : ; s

0

n

i

else f (t

1

) @ h 1; s

1

; : : : ; s

i�1

; o�; s

i+1

; : : : ; s

n

i

where s

0

1

; : : : ; s

0

n

have to be de�ned suitably. A reasonable de�nition would be to set all

s

0

i

to on, since there is no need to forbid the use of rules if one rule has been successfully

applied. Switching rule i o� in the else case is the \de-activation" that was mentioned

above.

These requirements can only be implemented if the f -rules satisfy some regularity conditions:

(1) f -terms on the left-hand sides of rules must not be nested, because otherwise, it becomes

di�cult to retain the correspondence between the rule switches and the rules. The idea

behind contexts is

� to add a suitable context to an f -term only on outermost level,

� to normalize the term together with its context, and

� �nally to remove the context which then has become useless (see Section 3.3.1)
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(2) In order to be able to assign appropriate contexts to the f -terms on the right-hand sides

(condition (3) above), one must require that the �nal outcome of these is determined by

f -terms. This means that the bodies of the right-hand sides (after removing if conditions

and let clauses) must consist only of f -terms.

Example: The rules

f(t

1

)

-

if b then f(t

2

) else f(t

3

) and

f(t

1

)

-

let x = e in f(t

2

)

satisfy the condition, whereas

f(t

1

)

-

if b then f(t

2

) else g(t

3

) and

f(t

1

)

-

let x = f(t

2

) in e

do not (in the last example, only the body of let is important, not the term on the

right-hand side of the let clause).

3.3.1 Elimination of Contexts

Since contexts are just a technical means to control the rewriting of f -terms, but not an original

part of the description of the domain modelled by these terms, an operator must be de�ned

that removes contexts that are not needed anymore. This operator will be called eval as it is

responsible for guaranteeing that the �rst component of its argument (an f -term) is rewritten

(\evaluated") according to the restrictions given by the second component (a context). If CtPair

is the sort representing pairs of elements of type S (as constructed by f) and contexts, then

eval : CtPair ! S.

In order to determine what contexts can be considered as \not needed anymore", the three

possible types of contexts have to be examined:

(1) Terms in 0-contexts are completely evaluated; so the following type of rule is needed:

eval ( s@ h 0; : : :i )

-

s (3.9)

where s is a variable of type S.

(2) Terms in 1-contexts still have to be rewritten (with rules for f -terms) exactly once. So

these contexts must not disappear, and hence there must not be a rule for this case.

(3) Terms in *-contexts may be rewritten arbitrarily often. So the context alone does not

provide the desired information, and the controlled term itself is used to determine whether

rewriting is �nished.

A special feature of the f -terms that will occur in Chapter 7 is that there exists a subclass

of these terms that represent \terminal" elements that should be irreducible. Let t be a

syntactic representation of such elements; then the following type of rule is needed:

eval ( t@ h �; : : :i )

-

t (3.10)

In order to be able to implement this kind of rule, it must be decidable from the syntactic

form of an f -term whether it denotes a terminal element or not. In the examples, this

will be achieved by requiring that a general term pattern be given for the terms t denoting

terminal elements.

Usually, the introduction of contexts restricts the rewriting relation of a given system R. Certain

unwanted rewriting sequences are prevented, but no additional sequences become possible. This
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is because every rewriting step in the system with contexts corresponds to a step in the original

system; the terms themselves are not changed.
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Chapter 4

The Basic Rewriting System B

4.1 The Underlying Theory

The aim of this work is to provide a way to use semantics de�nitions within a rewriting-based

proof tool. So let L be a language for which a semantics de�nition is given. It does not su�ce to

implement the rules de�ning the semantics of L in form of rewrite rules. Mathematical semantics

de�nitions also rely heavily on a proper understanding of the standard operators that are used

to de�ne the semantics functions. The intended meaning of these operators (their standard

interpretation) is given in form of a special �-algebra:

De�nition 4.1 (standard interpretation E , =

E

)

The standard interpretation of the operators in � is de�ned by a �-algebra E . The

equality induced by this algebra is denoted by =

E

, i. e.

8t

1

; t

2

2 T (�; V ) : t

1

=

E

t

2

,

df

E j=

p

t

1

= t

2

q

For a faithful implementation of the semantics de�nitions, E has to be modelled as well. This

means that a rewriting system has to be supplied whose equational theory is a suitable approx-

imation of Th

EQ

(E). In the following, this \basic" rewriting system will be denoted by B and

its equational theory by =

B

, i. e. (cf. Theorem 3.37)

8t

1

; t

2

2 T (�; V ) : t

1

=

B

t

2

,

df

Th

EQ

(B) j=

p

t

1

= t

2

q

, t

1

�

-�

B

t

2

In principle, =

B

should equal =

E

, but in practice this is not always necessary (see Section 4.3

below).

One should note that the signature � is not necessarily the same for all language de�nitions.

Which operators are needed to model a semantics de�nition depends heavily on the actual lan-

guage and its meta-level description. Of course, this implies that E and =

E

are not �xed, either,

and therefore the same holds for the basic rewriting system B. Only the general structure of B

can be described, but it is not possible to say in general exactly which rules it is made up of.

Essentially, B consists of two parts. The �rst one contains rules that correspond to explicit laws in

the de�nition of the language L that is being considered. In the examples, these laws are the ones



40 Chapter 4. The Basic Rewriting System B

de�ning the static semantics of L. As such de�nitions are usually of a rather simple structure,

they can be transformed into rewrite systems quite easily. Examples for static semantics rules

and their transformation can be found in Section 10.2.2.

The second, much larger group of rules contains the de�nition of the \data types" (syntactic

and semantic domains) that are used. Typically, these domains are de�ned without explicit

mentioning of the laws that are assumed to hold, and so one has to �nd a way to generate rewrite

rules from the domain de�nitions. How this can be done is the subject of the next section.

Essentially, data type rules fall into two classes. Rules in the �rst class describe those opera-

tors that concern the structure of data, such as constructors and selectors. These rules can be

derived from the de�nition of the data structures very systematically (this process can even be

automated). Rules in the second class concern the basic data types, however, and since these

types have rather individual properties, the rules for these types have to be de�ned individually

as well.

One type that is always included in the type IB of truth values, and among the most important

operators for this type are the quanti�ers. Section 4.2.5.1 shows how the problems with repre-

senting bound variables in quanti�ed formulas can to some extent be solved with the technique

that has already been used for the modelling of let terms, viz. the ��-calculus.

4.2 Data Type Rules

Most of the rules that are contained in the basic rewriting system B deal with the mathematical

domains that are used to describe the application area and the problem to be solved. The

operators occurring in these rules are constructors, selectors and recognizers for the domains.

In this section, it will be explained how domains are de�ned and what kinds of de�nitions are

always included in the rules modelling them. Besides these \standard rules" there may be more

rules that result from the de�nition of special mathematical structures on the de�ned domains,

e. g. cpo de�nitions occurring in denotational de�nitions (see Section 6.1). How such structures

are taken care of will be demonstrated later (see Section 8.2).

As in VDM (cf. Jones [76]), the domains are de�ned by a set of recursive equations.

1

Not the full

general VDM-SL form (cf. Dawes [28]), but only a restricted version will be used. An abstract

de�nition of the form of domain equations is the following:

De�nition 4.2 (domain equations)

Domain equations are de�ned by the following grammar:

dom-equation ::= idf `=' dom-expr

dom-expr ::= union-dom j function-dom j map-dom

union-dom ::= product-dom

1

` j ' : : : ` j ' product-dom

n

(n � 1)

product-dom ::= elem-dom

1

`�' : : : `�' elem-dom

n

(n � 1)

elem-dom ::= dom-name j basic-dom j token-dom

dom-name ::= idf

1

The existence of a solution for such a system of equations is assumed to be guaranteed by an suitable underlying

mathematical formalism (cf. Gunter and Scott [61]).
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basic-dom ::= Bool j Nat j : : :

token-dom ::= token

function-dom ::= product-dom `! ' elem-dom

map-dom ::= product-dom `

m

-

' elem-dom

The meaning of the di�erent sorts of domains possible for dom-expr is the following:

� idf stands for an identi�er denoting a domain that is being de�ned with a system of domain

equations. It will be assumed that for each domain identi�er there is at most one domain

equation where it occurs on the left-hand side. A domain identi�er only occurring on right-

hand sides of the domain equations of a system denotes a domain that is left unspeci�ed in

this system. In VDM, such an identi�er would be declared not yet de�ned.

� The \basic domains" are considered as prede�ned. At least the truth values (Bool) and

natural numbers ( Nat) are assumed to be among these.

� \Tokens" are special symbols denoting a one-element set consisting of just that symbol.

Tokens will be written in the special representation token.

In the following, assume thatD

1

; : : : ; D

n

and D

0

all are denotations for some domains constructed

in the form de�ned above. Instead of writing \the domain denoted by D" it will simply be written

\the domain D".

� If D = D

1

j : : : j D

n

, then D denotes the disjoint union of the domains D

1

; : : : ; D

n

.

� If D = D

1

� : : :� D

n

, then D denotes the domain of trees whose root is labelled D and

whose subtrees are unnamed and elements of the domains D

1

; : : : ; D

n

. In VDM-SL (cf.

Dawes [28]), this is written as D :: D

1

; : : : ; D

n

.

� If D = D

1

� : : : � D

n

! D

0

, then D denotes the domain of partial functions from the

product of D

1

; : : : ; D

n

into D

0

. Such functions may be in�nite.

� If D = D

1

� : : :�D

n

m

-

D

0

, then D denotes the domain of �nite maps from the product

of D

1

; : : : ; D

n

into D

0

.

This syntax is rather restrictive in not allowing very complex domain constructions. But the e�ect

of an equation with a complex expression can always be achieved by a set of simpler equations:

Instead of

T

1

= T

2

� (T

3

! T

4

)� (T

5

j T

6

)

the following mathematically equivalent system can be used:

T

1

= T

2

� T

7

� T

8

T

7

= T

3

! T

4

T

8

= T

5

j T

6

:

There is one complex construction, however, that is allowed by Def. 4.2: the alternatives in a

union domain may be domain products and not just elementary. The motivation for allowing

this kind of complexity in domain expressions was the wish to have less complexity in frequently

occurring terms. Domain equations of the form

T = A� B j C �D �E j F
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often result from abstract syntax de�nitions. In reasoning about semantics, however, abstract

syntax terms appear quite frequently.

Consider the mathematically equivalent form of the domain equations above:

T = T

1

j T

2

j F

T

1

= A �B

T

2

= C �D �E

With this de�nition, the syntactic terms would become larger (and hence, less readable) than

with the original equation. The reason is that for each new domain that has a name, injection

and projection operators are introduced that must be used to construct terms (see Section 4.2.1

for details), and therefore extra levels of nodes would have to be introduced in the abstract syntax

trees.

The following provides the de�nitions that are needed for modelling domain equations by term

rewriting systems. Italic font will be used to write mathematical domains, and sans serif font to

write the corresponding representations.

No claim will be made that a domain is completely characterized by the rules presented in this

section. A provably complete axiomatization needs a much larger number of rules, as shown by

Nickl [98]. In particular, the modelling of function domains requires many rules that will not be

introduced here. For the consequences of this incompleteness, see Section 4.3.

4.2.1 Union Domains

Consider a domain equation

T = T

11

� : : :� T

1n

1

j : : : j T

m1

� : : :� T

mn

m

where m � 1; n

i

� 1 for i 2 [m] and each of the T

ij

is elementary, i. e. the name of a basic or

de�ned domain or a token. Assume that for each of the identi�ers T

ij

in this equation there has

been de�ned a sort T

ij

, and that there are variables v

ij

for each such sort T

ij

.

Four kinds of operators are needed to model a union domain:

� constructors for T that generate an element of one of the product subdomains and inject

it into T ;

� projection operators mapping elements of T into the appropriate subdomain;

� recognizers signalling whether or not an element of T belongs to a given subdomain;

� selectors accessing components of a product subdomain.

Product domains are also considered as unions with just one subdomain (that is a product).

The form of the operators depends on the structure of the subdomains. There are four di�erent

possible cases for each i 2 [m]:
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(1) n

i

= 1 and T

i1

is a token.

In this case T

i1

itself is taken as an element of T and the one-point subdomain consisting

only of T

i1

is not considered. So the constructor is the constant T

i1

: ! T. The recognizer

for this case is simply equality to T

i1

; t 2 T

i1

is modelled as t = T

i1

.

Since the subdomain is not considered, there is no need for projection and selection opera-

tors in this case.

(2) n

i

= 1 and T

i1

is not a token.

In this case, T

i1

is just (the name of) a plain subdomain of T . Selectors are not needed

since T

i1

is syntactically not a real product.

2

The operators introduced are:

mk-T : T

i1

! T constructor

is-T

i1

: T ! Bool recognizer

to-T

i1

: T ! T

i1

projector

(3) n

i

> 1 and T

i1

is a token.

Here T

i1

is considered not as a real component of the product, but rather as a label for

elements of this subdomain. Therefore T

i1

is included in the names of the operators and

omitted from their arguments. Since the subdomain does not have a simple name, no

projection operator is introduced; the other operators are:

mk-T

i1

-T : T

i2

,: : : ,T

in

i

! T constructor

is-T

i1

-T : T ! Bool recognizer

s-j : T ! T

i;j+1

selector for component j 2 f2; : : : ; n

i

� 1g

(4) n

i

> 1 and T

i1

is not a token.

Here the i�th component domain is a simple product. As in the previous case, no projector

is introduced. Since this subdomain does not possess a name, a recognizer is not introduced

either, but only

mk-T : T

i1

,: : : ,T

in

i

! T constructor

s-j : T ! T

j

selector for component j 2 [n

i

]

The following set of rules for the sort T representing the domain T (provided the operators used

are actually declared) is de�ned:

� selector/constructor rules (j � n

i

; n

i

> 1):

s-j (mk-T (v

i1

,...,v

in

i

))

-

v

ij

� projection/recognizer rules (n

i

= 1):

is-T

i1

(mk-T (v

i1

))

to-T

i1

(mk-T (v

i1

))

-

v

i1

� disjointness rules (i 6= j):

mk-T (v

i1

,: : : ,v

in

i

) = mk-T (v

j1

,: : : ,v

jn

j

)

-

false

is-T

i1

(mk-T (v

j1

,: : : ,v

jn

j

))

-

false n

i

= 1; i 6= j; T

i1

not a token

For token components, the operators names are replaced accordingly.

2

Note, however, that there may be a domain equation de�ning T

i1

as a product. In order to access the

components of elements of T

i1

, one �rst has to project into T

i1

and then to select the apppropriate component

domain.
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In order to enhance readability, instead of the pre�x operators s-j sometimes the post�x operators

#j will be used.

4.2.2 Map and Function Domains

Consider a domain equation

T = T

1

� : : :� T

m

m

-

T

m+1

where m � 1 and each of the T

i

is a domain identi�er with typical variable v

i

. Again assume the

de�nition of sorts T

i

with typical variables v

i

as in the previous section.

Three operators are introduced for such a function domain: the empty map of sort T, the

extension (modi�cation) of a given map with an additional argument list and result, and the

application of a map to an argument tuple. So there are

� empty: ! T (empty map)

� ext: T, T

1

,: : : ,T

m+1

! T (extension)

� app: T, T

1

,...,T

m

! T

m+1

(application)

or, if m = 1, with an in�x operator:

. : T, T

1

! T

2

The application operators provide a way to circumvent the restriction to �rst-order logic. One

only has to introduce application for each map or function domain; if this has been done, variables

for functions (more exactly, for sorts representing functions) may be used on argument positions

that are reserved for operators. They must still not occur, of course, on ordinary operator

positions.

There is only one general rule that describes the e�ect of applying an extended function:

app (ext (v,v

1

,: : : ,v

m+1

), v

1

',: : : ,v

m

')

-

if v

1

= v

1

' ^ : : : ^ v

m

= v

m

'

then v

m+1

else app (v, v

1

',: : : ,v

m

')

The e�ect of applying the empty map is mathematically not de�ned. Therefore no rule is asserted

for this case. Since there are no other rules for application, the term app(empty,...) itself

denotes an error; there is no need for an extra error element. This situation should not arise

anyhow; it indicates an incorrect mathematical modelling of the problem.

Modelling a function domain

T = T

1

� : : :� T

m

! T

m+1

is similar to modelling a map domain. Since functions are total, however, there is no \empty"

function. Furthermore, maps are �nitely generated from empty and ext, whereas functions are

not necessarily �nite at all. Function \extension" means setting the result value for a particular

argument (\function overwrite"). So the rules for functions are like the rules for maps described

above.
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4.2.3 Additional VDM Domain Constructors

In full VDM-SL, there are some additional domain constructors that were not needed for the

purposes of this work. In this section, a brief description shall be given how these constructors

could be represented using the representations of the last section.

Sets If D = D

1

�set, then D denotes the domain of all �nite subsets of D.

Such a domain can also be modelled by a map domain D

0

= D

m

-

in, where in is some arbitrary

token: d = fd

1

; : : : ; d

N

g 2 D is represented as the map d

0

2 D

0

with domd

0

= fd

1

; : : : ; d

N

g.

Sequences If D = D

�

1

, then D denotes the domain of �nite sequences of elements of D

1

.

Such a domain can be modelled by a map D

0

= Nat

m

-

D

1

and the additional law

8d 2 D

0

8n 2 Nat : n > 1 ^ n 2 domd ) (n� 1) 2 domd

which ensures that the domain of d

0

2 D

0

is an interval [n] � Nat.

Named trees If D :: Id

1

: D

1

; : : : ; Id

n

: D

n

, then D denotes the trees whose root is labelled D

and whose subtrees are also labelled (with D

1

; : : : ; D

n

) and contained in D

1

; : : : ; D

n

.

Named trees of this kind can be simulated by unnamed ones; the di�erence is mainly the existence

of selector functions s

Id

1

; : : : ; s

Id

n

, but these can be expressed by the selectors s

1

; : : : ; s

n

selecting

the i-th subtree.

Tuples D = D

1

� : : :� D

n

in VDM-SL means that D denotes the set of all tuples from the

product of D

1

; : : : ; D

n

. This is di�erent from D :: D

1

; : : : ; D

n

: If

D = D

1

� : : :�D

n

; D

0

= D

1

� : : :�D

n

(*)

then D and D

0

denote the same domains, whereas in

D :: D

1

; : : : ; D

n

; D

0

::D

1

; : : : ; D

n

(**)

they denote di�erent domains: the structure of the trees is the same, but the trees themselves

are labelled di�erently.

Tuples can be simulated with trees provided the law

8d

1

2 D

1

; : : : ; d

n

2 D

n

: mk�D(d

1

; : : : ; d

n

) = mk�D

0

(d

1

; : : : ; d

n

)

is added whenever the situation (�) is desired.

4.2.4 Type Rules

The rewrite rules generated from SOS deduction rules (cf. Chapter 7) assume the possibility to

deduce the type of given terms that are formed using the VDM domain constructors. Therefore

suitable operators and rules have to be supplied.
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First a sort Type is needed for all the possible types of terms, and for each domain T an operator

type : T! Type (4.1)

and an element of Type that corresponds to T :

T : ! Type (4.2)

The �rst set of rules describes that each element of T has indeed type T :

type(v)! T (4.3)

where v is the typical variable of sort T . The second set of rules guarantees that every equality

about types can be decided by rewriting. For each two distinct domains T

1

; T

2

, there is the rule:

T

1

= T

2

! false (4.4)

Example 4.3 (deciding type conditions)

Assume that there are sorts S;T 2 S, that t 2 T (�; V )

S

, and that the condition

type(t) = T (4.5)

has to be decided. By construction (4.2), there are type constants S and T in �. If T = S,

applying the rule (4.3) (with T for T ) to (4.5) results in T = T , which is subsequently

rewritten to true by the rules for the basic domain Bool (see the next section). If, on the

other hand, T 6= S, then applying rule (4.3) yields T = S which is immediately

rewritten to false by the rules (4.4).

�

Finally, an operator #comp : S ! Nat is needed for each sort S that can be used to calculate

the number of subcomponents of a tuple term. It is de�ned by the following set of rules:

#comp(mk-T(v

1

; : : : ; v

n

))! n (4.6)

for all sorts T and operators mk-T : T

1

,: : : ,T

n

! T where v

i

2 V

T

i

for i 2 [n].
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4.2.5 Rules for the Basic Domains

The most important basic domain is IB, containing the truth values and represented by the sort

Bool (see Def. 3.13). It is particularly important because every term denoting a condition is Bool-

typed, and strong assumptions about rewriting of conditions will be needed (see below in Section

4.3). Moreover, a sort Nat for representations of natural numbers will be needed to implement

the rule (4.6).

The exact form and amount of rules needed depends on the actual implementation. But at least

the following has to be assumed:

� B includes a complete axiomatization of propositional logic with the usual operators.

� For each sort S 2 S, there has to be an operator

if then else : Bool; S; S ! S

together with the usual rules for the conditional (let t

1

; t

2

2 T (�; V )

S

for some S 2 S):

if true then t

1

else t

2

-

t

1

if false then t

1

else t

2

-

t

2

The structure and amount of rules for the natural numbers and the other basic domains also

depends on the actual problem. Here it will be assumed that the operators needed are axiomatized

in su�cient completeness; what this means will become clear in Section 4.3.

4.2.5.1 Quanti�ers in Rewrite Rules

Up to now, all the variables in rewrite rules were implicitly universally quanti�ed, and no explicit

quanti�cation was used. The laws de�ning cpo's, however, also feature quanti�ers on inner

positions that can only be moved outward by turning them into existential quanti�ers. Take e. g.

the law that in a cpo hM;v i the lub z of a chain X is smaller than all upper bounds of X (see

Def. 6.1):

8z

0

2M : ( 8x 2 X : x v z

0

) ) z v z

0

(4.7)

The prenex normal form of this formula is:

8z

0

2M 9x 2 X : : x v z

0

_ z v z

0

(4.8)

In this section, we will see how universal quanti�ers can be introduced as term constructors such

that (4.7) becomes a valid rewrite rule. The method cannot deal with fully general formulas,

however, due to unsolvable problems with scoping. Consider e. g. the Boolean formula

8x 2 X : p(x) (4.9)

where the operator p is de�ned by

p(y),

df

8x 2 X : q(x; y) : (4.10)
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If (4.10) is turned into a rewrite rule (directed from left to right, since de�nitions should be

unfolded) and applied to (4.9) in term rewriting style, the result is

8x 2 X : ( 8x 2 X : q(x; x) ) : (4.11)

Of course, this result is semantically wrong because one of the x's should have been renamed,

resulting e. g. in

8x 2 X : ( 8z 2 X : q(z; x) ) : (4.12)

But this renaming of variables depends on the context in which they occur, and since term

rewriting is a context-free process, it is not possible to properly include renaming.

A similar problem has already occurred in Section 3.2: In �-calculus, there is also the need to

cope with scopes of variables and renaming. The solution of that section was to abolish variable

names completely and to use the ��-calculus. This does not help here, however, with the problem

about quanti�ed variables. The di�erence between the two situations is that in the ��-calculus,

�-reduction is stated as a rewrite rule, which allows to control term manipulations on object

(term) level by de�ning the proper substitutions. In contrast to that, the steps from (4.9) to

(4.11) are performed with a rule (viz. the de�nition of a rewrite step) only speci�ed on meta

level. Only in very special cases there is the possibility to inuence this meta level rule by term

level objects directly (see Chapter 7).

This means that for reasoning about quanti�ed formulas, one either has to resort to deduction

methods that go beyond term rewriting, or to restrict oneself to cases where conicts about

variable names cannot occur. So assume that the latter is the case, i. e. that in the actual

application formulas that contain nested quanti�ers ranging over the same sort do never occur.

3

Universal quanti�cation Basically, there are two situations in which one has to deal with a

universally quanti�ed formula 8x 2 S : p during a proof: either in an attempt to prove it or in an

attempt to put it to use by specializing x to some suitable term t of the same sort. First consider

specializing. Essentially, it means that t must be substituted for x throughout p and that the

quanti�er must be removed, following the rule

8x 2 S : p

p[t=x]

(4.13)

Usually, this rule has the side condition that t be free for x in p, but in the case where variable

conicts do not occur this may be dropped.

If this rule is to be modelled by a rewrite rule corresponding to

( 8x 2 S : p ) ) p[t=x] (4.14)

a way to perform the substitution by term rewriting has to be implemented. In Section 3.2, such

an implementation has already been described, viz. the ��-calculus. It can be employed here as

3

Nested quanti�ers ranging over di�erent sorts are no problem, since the set of variables is disjoint.
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well, solving also the problem of representing the bound variable x: it is replaced by the �rst de

Bruijn index x of sort S. So universal quanti�cation can be modelled with the operator

forall : Type;Bool! Bool

and specialization can be implemented with the rewrite rule

forall( S; p) ) p[t � id ] (4.15)

where S is the constant of sort Type representing the sort S, [ ] is the substitution application,

id the identity substitution de�ned in Section 3.2.2, and t is a variable of sort S.

In order to prove the universal formula, the usual direct way is to prove the formula p under the

assumption that x is some arbitrary, but �xed element of S (\let x 2 S : : :"). Since the de Bruijn

index x is a constant of sort S without any de�ning rewrite rules (except for those describing its

interaction with substitutions), this proof method can be modelled by the simple rewrite rule

forall(tp; true) (4.16)

where tp 2 V

Type

. If a base formula p can be rewritten to true (i. e. proved by rewriting), then

the generalized formula forall (tp, p) can also be proved using this rule:

forall(tp; p)

�

-

forall(tp; true) [ Proof for p ]

-

true [ rule (4.16) ]

Existential quanti�cation can be modelled similarly by an operator

exists : Type;Bool! Bool

with the rule

p[t � id ] ) exists( S; p) (4.17)

to be used for proving existentially quanti�ed formulas. The usual way to make use of such a

formula that is contained in a hypothesis is to drop the quanti�er and consider its variable as a

constant. This can be modelled by the rule

exists( S; p) ) p (4.18)

since the de Bruijn index corresponding to the quanti�ed variable is already de�ned as a constant.

An example proof Because of the fundamental restrictions of this method, it has not been

used in large proofs; instead, other deduction techniques provided by the proof tool used (the

Larch Prover) have been applied. In Appendix C, however, a small example from cpo theory is

presented that was treated using both methods.
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4.3 Properties of B

Since the main interest is to show how semantics de�nitions can be modelled by rewrite systems, it

will be assumed that B behaves \reasonably well": B shall not obstruct any rewriting processes

that are necessary to simulate semantics de�nitions. Since the simulating rules will contain

conditions on objects of the underlying data types, this implies that there must be su�ciently

many rules such that any such condition is decidable by rewriting, and of course all these decisions

must be correct with respect to the standard interpretation of the operators in � as described in

E . So the following is required:

Requirement 4.4 (correctness of B)

For all t 2 T (�; V )

Bool

: If t

�

-

B

true, then t =

E

true.

Requirement 4.5 (completeness of B)

For all t 2 T (�; V )

Bool

: If t =

E

true, then any rewriting sequence in B starting from t

eventually ends in the term true.

where � is the signature of the basic system, V the corresponding set of variables and Bool the

sort of the truth value representations true and false. Note that t =

E

true () t

E

= tt, where t

E

is the standard interpretation of the term t in the �-algebra E , see Def. 4.1 and Lemma 3.30.

The strong form of completeness guarantees that t is rewritten to true whichever possible rewriting

sequence for t is chosen. If only the existence of one sequence t

�

-

B

true were required, there

also might be other sequences that are not terminating and hence do not yield a result at all.

(Correctness precludes the existence of sequences that end with false.)

In the light of Corollary 3.38, one might suspect that TRS-completeness (i. e. completeness in

the term rewriting sense) together with correctness of each of the rules in B might be su�cient

to guarantee the above requirements. But these two assumptions do not guarantee that the rules

really su�ce to decide every possible term; in particular, the empty system is TRS-complete and

it obviously only contains correct rules. So one must additionally assume that there are \enough"

rewriting sequences:

Requirement 4.6 (assumptions about B)

(A) B shall be correct, i. e.

8t

1

; t

2

2 T (�; V ) : t

1

-

B

t

2

) t

1

=

E

t

2

(B) B shall decide conditions, i. e.

8t 2 T (�; V )

Bool

: t

�

-

B

true or t

�

-

B

false

(C) B shall be TRS-complete.

Lemma 4.7

The requirements 4.6 imply those in 4.4 and 4.5.
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Proof

Correctness: Follows easily by induction from (A) and from the fact that true

E

= tt.

Completeness: Let t 2 T (�; V )

Bool

with t

E

= tt. Then one can infer from (B) that t

�

-

B

true

(t

�

-

B

false is not possible because B is correct and false

E

= � 6= tt).

Since B is TRS-complete, it is terminating; so there are no in�nite rewriting sequences starting

in t. Let t

1

2 T (�; V ) with t

�

-

B

t

1

and t

1

-

B

. Then

true

B

�

�

t

�

-

B

t

1

,

and by conuence of B (from (C)), there exists a t

0

2 T (�; V ) such that

true

�

-

B

t

0

B

�

�

t

1

.

Since both true and t

1

are normal forms, it follows that t

1

� true.

�

(A) is the most basic requirement; an incorrect rewrite system is simply useless. So the rules of

B must be written with great care; no incorrect rule can be tolerated.

(B) is the condition about \enough" rewriting sequences. If (B) is violated, then there exists a

Boolean term t not reducible to true or false; if (C) holds we may assume that t is a normal form.

This is obviously an obstacle for any attempt to prove that t holds; but since the rewriting proof

simply gets stuck at t, this fault of B can easily be detected and the rules that are missing to

normalize t can be added.

If B is not terminating, then proofs (reductions of Bool-sorted terms) can fail by not reaching a

normal form, and if B is not conuent, they can fail by reaching a normal form di�erent from

true and false.

4

Especially the combination of both behaviours might lead to situations where it

is di�cult to see whether there is a problem with the rules in B and where this problem lies. But

in practice, this is hardly the case. Non-terminating rewriting can be excluded by considering

only rewriting sequences of some maximal length; if this limit is chosen suitably and it is reached

during a proof attempt, then this indicates a termination problem that should be detectable by

analysing the critical rewriting sequence. And if a Bool-sorted term is reduced to a normal form

di�erent from true or false, the situation is similar to the case where requirement (B) was violated:

Some rules are missing, and from the \wrong" normal form, it should be possible to deduce what

these rules are.

The reason for not strictly insisting on a complete system B ful�lling (B) and (C) is pragmatic.

Such a system would have to consist of a much larger number of rules.

5

Since the performance

of a proof tool is strongly related to the number of objects is has to deal with, trying to achieve

a complete system would therefore greatly decrease the e�ciency of the tool that is used to

implement the system B. Moreover, not all of the rules needed to make a system theoretically

complete are really used in actual applications.

4

If B is correct, a proof that reaches false indicates an invalid conjecture.

5

This can be seen by comparing the few rules modelling function domains in Section 4.2.2 with the larger

number of rules set up for this purpose by Nickl in her algebraic speci�cation of domain constructions that is

provably complete [98].
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Summing up: violations of (B) and (C) in practice only lead to failing proof attempts, but they

do not undermine the logical basis that is consistent as long as (A) holds. Furthermore, the

reasons for the failures are deducible from the rewriting sequences that failed to produce the

normal forms true or false.
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Chapter 5

Structured Operational Semantics

In this chapter, �rst the basic notions for operational semantics de�nitions in the style of Plotkin

[101] are introduced. Such de�nitions make use of transition systems whose transition relation is

described by a set of deduction rules. The second section of this chapter presents a new general

format for these rules and explains on a syntactic level what it means to apply such a deduction

rule. Examples from a real SOS de�nition (taken from Lakhneche [82]) are used for illustration.

Finally, the new rule format is compared with some of formats that can be found in the literature.

5.1 Transition Systems

The operational de�nition of the semantics of a programming language L is accomplished by

�rst de�ning an abstract machine M and then interpreting the constructs of L by means of the

machine instructions ofM . In Plotkin's approach, M is given in the form of a transition system:

De�nition 5.1 (transition system)

(1) A transition system is a triple (�; T;

-

), where � is the set of con�gurations,

T � � is the set of terminal con�gurations, and

-

� � � � is the transition

relation satisfying T \ dom (

-

) = ;.

(2) A labelled transition system is a tuple (�; T; A;

-

), where � and T are as in

(1), A is a set of labels, and

-

� ��A�� is the transition relation satisfying

8 (

1

; a; 

2

) 2

-

: 

1

62 T . For (

1

; a; 

2

) 2

-

we write 

1

a

-



2

.

Labelled systems are introduced because they ease the modelling of interactions with the envi-

ronment: 

1

a

-



2

means that the step from con�guration 

1

to 

2

is taken while performing

some action a together with the program's environment. Typical actions of that kind are com-

munication events.

There is, however, no greater expressive power in labelled systems. They can be simulated by

unlabelled systems whose con�gurations have an extra component that contains the sequences of

labels:
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Lemma 5.2

Let S = (�; T; A;

-

) be a labelled transition system, and S

0

= (�

0

; T

0

;

-

0

) be the

unlabelled system de�ned by

� �

0

=

df

�� A

�

; T =

df

T � A

�

and

�

-

0

=

df

f((

1

; l); (

2

; l a)) j 

1

; 

2

2 �; a 2 A; l 2 A

�

; 

1

a

-



2

g.

Then S and S

0

are equivalent in the following sense:

8n 2 IN

0

8 

0

; : : : ; 

n

2 � 8 a

1

; : : : ; a

n

2 A :



0

a

1

-



1

a

2

-

: : :

a

n

-



n

() (

0

; ")

-

0

(

1

; a

1

)

-

0

: : :

-

0

(

n

; a

1

: : :a

n

)

Proof

By induction on n.

If n = 0, there is nothing to prove.

If n > 0, let 

0

; : : : ; 

n

2 �; a

1

; : : : ; a

n

2 A.

Case \)": Assume 

0

a

1

-



1

a

2

-

� � �

a

n

-



n

. Then by induction hypothesis

(

0

; ")

-

0

(

1

; a

1

)

-

0

� � �

-

0

(

n�1

; a

1

: : : a

n�1

)

Since 

n�1

a

n

-



n

, it follows by de�nition of

-

0

: (

n�1

; a

1

: : : a

n�1

)

-

0

(

n

; a

1

: : : a

n�1

a

n

),

and this gives the desired result.

Case \(": Assume (

0

; ")

-

0

: : :

-

0

(

n�1

; a

1

: : : a

n�1

)

-

0

(

n

; a

1

: : :a

n

). The induction hy-

pothesis yields 

0

a

1

-



1

a

2

-

� � �

a

n�1

-



n�1

. Since (

n�1

; a

1

: : : ; a

n�1

)

-

0

(

n

; a

1

: : : a

n

), it

follows from the de�nition of

-

0

that also 

n�1

a

n

-



n

.

�

The aim is to show how transition sequences can be simulated by term rewriting sequences. By

Lemma 5.2, we now know that it su�ces to consider only unlabelled transition systems.

5.2 Deduction Systems

The transition relation of actual transition systems is de�ned by a deduction system. Since

reasoning about transition sequences is required on a syntactic level, in this section deduction

systems will be de�ned with an emphasis on the terms representing con�gurations.

The starting point in de�ning a transition system is the de�nition of the con�gurations. So assume

that the two sets � and T are given. Furthermore, assume a signature � and a set of variables V

such that T (�; V ) contains all the terms needed to express con�gurations, contexts, and other

mathematical objects. Special subsets of T (�; V ) are �

0

and T

0

, representing schemata for

con�gurations and terminal con�gurations, respectively. If no confusion can arise, con�gurations

and their term representations will be identi�ed.

In this work, the transition relations

-

are de�ned by means of a special kind of deduction

system:
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De�nition 5.3 (SOS deduction system)

An SOS deduction system for � and T consists of the term sets T (�; V ), �

0

and T

0

, and

inference rule schemata of the following kind:

`

p

V

i=1

b

i

^

n

V

j=1



j

L

j

-



0

j

^

q

V

k=1

B

k

` 

-



0

where

(1) n; p; q 2 IN

0

,

(2) ; 

1

; : : : ; 

n

2 �

0

n T

0

are non-terminal con�guration terms,

(3) 

0

; 

0

1

; : : : ; 

0

n

2 �

0

are (possibly terminal) con�guration terms, and 

0

1

; : : : ; 

0

n

only

contain subterms that are variables, constants, or complex terms with a mk- as their

outermost operator (see Section 4.2.1).

(4) b

1

; : : : ; b

p

; B

1

; : : : ; B

q

2 T (�; V )

Bool

are basic predicate terms not containing quanti-

�ers, the connectives ^ and _, or the operator

-

,

(5)

S

p

i=1

var (b

i

) � var (), i. e. no extra variables with respect to  in the b

i

,

(6)

S

n

i=1

var (

i

) � var (), i. e. no extra variables with respect to  in the 

i

,

(7) 8k 2 [q] : var (B

k

) 6� var (), i. e. extra variables with respect to  in each of the B

k

,

(8) [var (

0

) [

S

q

k=1

var (B

k

)] � [var () [

S

n

j=1

var (

0

j

)], i. e. all variables of the rule are

contained in (initial and �nal) con�guration terms,

(9) 8j 2 [n] : L

j

2 f1; �g. If L

j

= �, then 

0

j

2 T

0

. Here, L

j

is not a label in the sense of

Def. 5.1, but a modi�er for the relation symbol

-

, indicating whether the relation

itself (L

j

= 1) or its reexive and transitive closure (L

j

= �) is meant.

1

Note that the condition  2 �

0

nT

0

ensures that the requirement dom(

-

)\T = ; is observed.

The b

i

can be thought of as preconditions for the transition, and the B

k

as postconditions (see

the explanations after Def. 5.5).

The condition in (3) on the syntactic form of the 

0

j

restricts them essentially to tuples of variables,

constants, or other tuples (an injection term

p

mk� T(x)

q

also counted as a tuple of length 1).

The 

0

j

merely serve as patterns for the targets of transitions starting in the 

j

, with the extra

variables as the parts that may be modi�ed; the restricted syntactic form of the 

0

j

just allows to

give names to subcomponents. If a term t is desired as one of the 

0

j

, then a new extra variable

x can be used instead, and the equation

p

x = t

q

can be added to the B

k

.

In Section 5.2.2 below, this format will be compared with other rule formats for SOS de�nitions.

In order to have a short name for it, it will be called ptp/t format (for \predicates-transitions-

predicates / transition" or \precondition-transitions-postconditions / transition").

1

Since

1

-

=

-

, in the following the labels L

j

= 1 will be omitted.
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Example 5.4

As a simple example for the ptp/t format, consider the following SOS system (having no

semantic signi�cance or connection to the de�nitions used in the other examples). Con�g-

urations are either processes or a special symbol signalling termination:

� =

df

Proc [ T T =

df

fendedg

where the language of processes contains an operator �:

Proc 3 p ::= p

1

� p

2

j : : :

Assume a predicate special : Proc ! IB , and consider the rule

` special(p

1

) ^ p

1

-

p

0

1

^ p

2

�

-

ended ^ special(p

0

1

)

` p

1

� p

2

-

ended

In this example,

� p = 1, with b

1

=

p

special(p

1

)

q

;

� n = 2, with L

1

= 1; 

0

1

=

p

p

0

1

q

(this is an extra variable with respect to p

1

� p

2

) and

L

2

= �; 

0

2

=

p

ended

q

(note that 

0

2

is a terminal con�guration which is required by

condition (9) of Def. 5.3);

� q = 1, with B

1

=

p

special(p

0

1

)

q

(contains an extra variable)

�

The semantics of this kind of inference rules is as usual: An instance of the conclusion is estab-

lished if a corresponding instance of the hypothesis

2

can be established using the rules of the

system. All variables of the rules are implicitly universally quanti�ed.

As a consequence of this de�nition, the restriction to conjunctions in the hypothesis does not

limit the expressive power of the formalism. Any quanti�er-free hypothesis can be implemented

by �rst transforming it into disjunctive normal form and then splitting the rule into several rules

with the same conclusion, each component of the disjunction forming the hypothesis of a separate

rule. All these rules have the required form, and their collection is semantically equivalent to the

original, single rule.

For the formal treatment of transition sequences, a more syntactic de�nition for the semantics

of our inference rules is needed. Remember that =

E

is the equality induced by the standard

interpretation E (cf. Def. 4.1, p. 39).

2

Note that there can be more than one corresponding instance if not all extra variables of the rule occur in the

conclusion.
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De�nition 5.5 (application of an SOS deduction rule)

Let (�; T;

-

) be a transition system represented by the SOS deduction system given by

the term sets T (�; V );�

0

, and T

0

, and a set of SOS deduction rules. Let a particular rule

R of this system be given as

R :

`

p

V

i=1

b

i

^

n

V

j=1



j

L

j

-



0

j

^

q

V

k=1

B

k

` 

-



0

as in Def. 5.3. Let ; 

0

2 �

0

. Then we can derive 

-



0

using rule R i� there is a

substitution � on var () such that

(1)  =

E

�

(2) 8i 2 [p] : b

i

� =

E

true

(3) There is an extension �

0

of � onto var (R) such that

(3.1) 8j 2 [n] : 

j

�

0

L

j

-



0

j

�

0

using the rules of the system

(3.2) 8k 2 [q] : B

j

�

0

=

E

true

(3.3) 

0

=

E



0

�

0

Remarks:

(1) If there are no extra variables with respect to  that occur in R, then �

0

= �.

(2) Basically, the existence of �

0

means the existence of suitable con�gurations 

j

�

0

and 

0

j

�

0

.

(3) The equalities b

i

� =

E

true and B

j

�

0

=

E

true are consequences of the underlying equational

speci�cation.

The b

i

model \preconditions" that restrict the set of possible initial con�gurations for the

rule, whereas the B

j

model \postconditions" that must hold for the �nal con�gurations in

the hypothesis.

(4) If 

j

�

-



0

j

occurs in the hypothesis, then 

j

must be (the representation of) a terminal

con�guration. The reason is that otherwise there would be no way of knowing when to stop

the transition process in the hypothesis.

When dealing with practical semantics de�nitions, one may come across rules that do not quite

conform with the rather strict ptp/t format. But most of these rules can be easily transformed

to �t into it:

(1) Rules usually have side conditions restricting their applicability. These conditions can safely

be included into the hypothesis.

(2) In non-trivial examples, there are often several transition systems interconnected: The

hypotheses 

j

L

j

-



0

j

do not necessarily refer to the same transition relation. This is the

case when one large system has been built up from smaller ones for reasons of modularity.

As an example, consider a language of statements of which one possible kind is an assign-

ment x := e where x is some variable and e 2 Expr is some expression. Let both statements

s 2 Stmt and expressions depend on environments � 2 Env . So the sets of con�gurations
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for the SOS systems are Stmt � Env and Expr � Env , respectively, with terminal con�gu-

ration sets Env and Val (some set of values). Then the system for statements could make

use of the expression system in the following way:

` h e; � i

-

Expr

v

` h x := e; � i

-

Stmt

�[v=x]

(�[v=x] denotes the environment �, modi�ed in such a way that the value v is stored at

position x.)

The de�nitions can easily be adapted to this case by requiring rules to be of the form

R :

`

p

V

i=1

b

i

^

n

V

j=1



j

L

j

-

j



0

j

^

q

V

k=1

B

k

` 

-



0

where the

-

j

are the transition relations of the respective systems. Furthermore, the sets

of terms have to be extended appropriately to include all representations of the di�erent

con�gurations.

When reasoning about such systems built up from several smaller systems, usually all the

transition relations can and will be collected under one global relation unless there is a need

to discriminate the subrelations.

From Def. 5.5, it can immediately be deduced that transitions can be blurred as long as con�g-

urations stay within =

E

congruence classes:

Lemma 5.6

Let ; 

0

; 

1

; 

0

1

2 �

0

with  =

E



1

; 

0

=

E



0

1

, and let R be a rule of the SOS deduction

system de�ning the transition relation

-

S

. Then 

-

S



0

using rule R i� 

1

-

S



0

1

.

Proof

Follows from conditions (1) and (3.3) in Def. 5.5 and the fact that =

E

is transitive.

�

By Lemma 5.6, an SOS deduction sequence can be put together from single steps 

(1)

1

-

S



(2)

1

,



(1)

2

-

S



(2)

2

; : : : not only if 

(2)

i

= 

(2)

i+1

for all i; for this purpose, it su�ces to require 

(2)

i

=

E



(2)

i+1

.

In order to have a consistent treatment for deduction sequences of any length, the sequences of

length 0 are de�ned accordingly:

De�nition 5.7

Let (�; T;

-

) be a transition system as in Def. 5.5, and let ; 

0

2 �. Then 

0

-

S



0

,

df

 =

E



0

.

This de�nition emphasizes once more that transitions with

-

S

are taken modulo =

E

.

When comparing transition sequences with rewriting sequences, an \exact" version of SOS-rule

application will also be needed:
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De�nition 5.8 (exact application of an SOS deduction rule)

Let (�; T;

-

) be a transition system represented by the SOS deduction system given by

the term sets T (�; V );�

0

, and T

0

, and a set of SOS deduction rules. Let a particular rule

R of this system be given as

R :

`

p

V

i=1

b

i

^

n

V

j=1



j

L

j

-



0

j

^

q

V

k=1

B

k

` 

-



0

as in Def. 5.3. Let ; 

0

2 �

0

. Then we can derive 

-

=



0

using rule R i� there is a

substitution � on var () such that

(1)  = �

(2) 8i 2 [p] : b

i

� =

E

true

(3) There is an extension �

0

of � onto var (R) such that

(3.1) 8j 2 [n] : 

j

�

0

L

j

-



0

j

�

0

using the rules of the system

(3.2) 8k 2 [q] : B

j

�

0

=

E

true

(3.3) 

0

= 

0

�

0

This de�nition di�ers from the previous one only in conditions (1) and (3.3); there only matching

modulo =

E

was required, but in Def. 5.8 it is demanded that a con�guration match exactly the

left-hand side of the conclusion of a rule. The relation between the two de�nitions is expressed

by

Lemma 5.9

Let ; 

0

2 �

0

. Then



-

S



0

() 9~; ~

0

2 �

0

:  =

E

~

-

=

S

~

0

=

E



0

Proof

Obvious from the de�nitions.

�

As an additional requirement for SOS deduction systems, it will be demanded that the rules do

not permit non-terminating proof attempts. The simplest example for a rule that is forbidden

by this is

` 

-



0

` 

-



0

It has the form of Def. 5.3, but it cannot be used for deriving any transition according to Def. 5.5.

A way to exclude such unpleasant behaviour is to demand that all transitions in the premise of a

rule be smaller than the transition in the conclusion with respect to some well-founded ordering.
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The existence of such an ordering is su�cient to prevent non-terminating proof attempts (see

Section 3.1.3).

Since the problem only occurs if transitions between representations of actual con�gurations

(without variables) are to be proved, it su�ces to consider only \ground" (variable-free) instances

of the rules. This leads to the following

Requirement 5.10 (well-foundedness of SOS systems)

For every SOS system, there must be given a well-founded ordering v on transitions such

that for every ground instance

hyp

conc

of a rule of the system and all transitions t

1

in hyp and t

2

in conc, t

1

v t

2

holds.

It is rather natural to have such well-foundedness requirements; Aceto, Bloom, and Vaandrager,

e. g. , construct in [2] a well-founded ordering of this kind based on weights assigned to the

operators.

5.2.1 Examples of SOS De�nitions

The examples for operational semantics de�nitions are taken from Lakhneche [82] where the

semantics of a programming language named PL

R

0

is de�ned both operationally and denotation-

ally. Not all the details that are contained will be described, but just as much as is needed to

understand the format of the rules.

Consider the following part of the semantics de�nitions for PL

R

0

expressions:

Expr 3 exp ::= int j var j mop exp j : : :

where int stands for representations of integers, var 2 Name for variable identi�ers, and mop

for monadic operators.

Basic domains for the semantics de�nition include

val 2 Val expression values

loc 2 Loc storage locations

� 2 OpEnv = Name ! Loc operational environments

� 2 � = Loc! Val stores

� 2 Dict static environments (mapping names to types)

Let � be a basic interpretation that gives values to all the constants. (For the purpose of this

exposition, it need not be de�ned in more detail.)

The transition system for expressions is indexed with a static environment � and an operational

(dynamic) environment �. The con�guration sets are

�

�

Expr

=

df

fh exp; � i 2 Expr � � j exp can be typed as Integer or Boolean under �g

[ T

Expr

T

Expr

=

df

Val:
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In the following, the decoration \

0

" will be suppressed when talking about sets of term represen-

tations unless an explicit distinction is important.

The indexing with � and � is written in the rules as � `

�

: : : But the form of Def. 5.3 can be

easily retained by including the indices as additional components of the con�gurations. (This is

done in the implementation of the rules described in Chapter 10.)

The �rst example for a rule is an example for an axiom schema where n; p; q = 0:

(EO1) �

�

h int; � i

-

Expr

� (int)

This rule basically says that the semantics of an integer is determined by the underlying inter-

pretation �.

The next example is an inference rule schema with n = q = 1; p = 0:

(EO6)

�

�

h exp; � i

-

Expr

val ^ val 6= error

�

�

h mop exp; � i

-

Expr

� (mop ) (val)

Here, we have an occurrence of an extra variable: val is not contained in the starting con�guration

h mop exp; � i, but rather is (part of) the result of an intermediate transition step. error is a

constant element of Val indicating faulty evaluations.

In order to see a rule that does not conform with Def. 5.3, consider the semantics of PL

R

0

blocks:

Block 3 blk ::= decl : blk j proc j � : blk

A block is either a sequential process, or it is a block with a preceding variable declaration. For

the semantics de�nition, a third possibility is a block with a preceding operational environment

(this mixture of syntactic and semantic elements, however, cannot occur in program texts).

The sets of con�gurations are again indexed with a static environment �:

�

�

Block

=

df

fh blk ; � i 2 Block � � j blk is statically well-formed under �g

[ T

Block

T

Block

=

df

fterminated; stopped; invalidg � �

Terminal con�gurations contain a state and a ag that indicates in what way this state was

reached.

One of the rules for blocks has a non-computational (non-constructive) hypothesis:

(OB4)

�� �

1 ���

1

h decl : blk ; � i

�

-

Block

h �

2

: blk ; � i ^ �

1

: �

1

^ dom � \ dom �

1

= ;

�

�

h �

1

: decl : blk ; � i

�

-

Block

h �

1

� �

2

: blk ; � i

� � �

1

is the modi�cation of � by �

1

. �

1

: �

1

means that every identi�er is mapped by �

1

to a

value of a type that is allowed by �

1

. This rule expresses that declarations can be evaluated in

sequential order provided no type conicts occur, i. e. a �

1

with the above properties exists. �

1

is

the interesting bit of the rule: It is an extra variable that is not contained in the conclusion at all,

and furthermore, it is already part of the left-hand side of the transition in the hypothesis. This
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last point renders the rule non-constructive: There is no explicit hint how �

1

should be derived

from the known parameters when the rule is to be applied. This is the reason why the left-hand

sides of transitions in the premise of a rule are required not to contain extra variables; rules of

the form (OB4) will not be considered further.

5.2.2 Other Rule Formats

In the literature, some formats for SOS rules have been presented and their properties have

been investigated. In this section, three of them will be reviewed (the format proposed by De

Simone, the GSOS format of Bloom, Istrail and Meyer, and the tyft/tyxt format of Groote and

Vaandrager), and their relation to the ptp/t format of Def. 5.3 will be examined. All the other

formats have been developed for the speci�cation of concurrent systems; therefore the transition

relations that are speci�ed by such rules are all labelled (but see Lemma 5.2 on page 54). So

assume a signature �, a set of variables V and a set of labels A.

De�nition 5.11 (De Simone rule format [31])

A De Simone rule is an inference rule schema of the form

`

V

i2I

x

i

a

i

-

y

i

` f(x

1

; : : : ; x

n

)

a

-

t

where

(1) f 2 �

w;s

with jw j = n 2 IN,

(2) I � [n],

(3) x

1

; : : : ; x

n

and y

j

for j 2 I are all distinct variables,

(4) t 2 T (�; fx

0

1

; : : : ; x

0

n

g), where for i 2 [n] we let x

0

i

=

df

y

i

if i 2 I and x

0

i

= x

i

otherwise,

and each x

0

i

occurs at most once in t,

(5) a; a

i

2 A (for i 2 [n]).

Obviously, this format is a restricted version of the ptp/t format. The terms in transitions are

required to be simpler here, and there is no possibility to de�ne Boolean conditions not expressed

by transitions.

3

The restrictions about extra variables are essentially the same in both rule

formats.

A more general format than the De Simone format is the tyft/tyxt format:

De�nition 5.12 (tyft/tyxt format; Groote and Vaandrager [60])

Let f 2 �

w;s

with jw j = n � 0.

A tyft rule is an inference rule schema of the form

`

V

i2I

t

i

a

i

-

y

i

` f(x

1

; : : : ; x

n

)

a

-

t

where

3

The inclusion of such conditions, however, should introduce no additional di�culties. The evaluation of

conditions could for example be encoded by introducing a new transition relation

-

Bool

, de�ned by SOS rules in

the appropriate format.
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(1) I is some index set,

(2) x

1

; : : : ; x

n

and y

j

for j 2 I are all distinct variables,

(3) t; t

i

2 T (�; V ) (for i 2 I),

(4) a; a

i

2 A (for i 2 [n]).

A tyxt rule is of the form

`

V

i2I

t

i

a

i

-

y

i

` x

a

-

t

where

(1) I is some index set,

(2) x and y

j

for j 2 I are all distinct variables,

(3) t; t

i

2 T (�; V ) (for i 2 I),

(4) a; a

i

2 A (for i 2 [n]).

A tyft/tyxt system is a system of rules whose format is either tyft or tyxt .

De�nition 5.13 (well-founded tyft/tyxt rule)

Let R be a tyft/tyxt rule as in Def. 5.12; let the transitions of the premise ofR be ft

i

a

i

-

y

i

g.

The dependency graph of R is a directed graph with

S

i2I

var (t

i

a

i

-

y

i

) as the set of

nodes and fh x; y i j x 2 var (y

i

); i 2 Ig as the set of edges.

R is called well-founded i� there are no in�nite chains of edges in its dependency graph.

Example 5.14 (cf. Groote and Vaandrager [60])

An example for a tyft/tyxt rule that is not well-founded is the following:

R :

` f(x; y)

a

-

y

0

; g(x

0

; y

0

)

b

-

y

` x

c

-

x

0

The dependency graph of R is

x

-

y

0

� �

� �

?

6

y x

0
�

It contains a cycle; y and y

0

cannot be determined independently.

�
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De�nition 5.15 (pure tyft/tyxt rule)

Let R be a tyft/tyxt rule as in Def. 5.12. R is called pure i� it is well-founded and all the

variables in R occur on the left-hand side of the conclusion or on the right-hand side of a

transition in the premise.

There are some di�erences between the tyft/tyxt format and the ptp/t format:

(1) In tyft/tyxt format, the complexity of terms is more restricted.

(2) The conditions on extra variables are more restrictive in ptp/t format.

(3) The tyft/tyxt format does not allow additional Boolean conditions.

(4) In ptp/t format, many-step transitions are allowed in premises if they lead to terminal

con�gurations.

(3) can be neglected as in the De Simone case above.

4

But (1) and (2) make the tyft/tyxt and

ptp/t formats incomparable. Groote and Vaandrager [60] demonstrate that more complex terms

should not be allowed since otherwise pleasant mathematical properties of tyft/tyxt systems would

disappear; so (1) is a \hard" di�erence that makes the ptp/t format more general in this aspect.

On the other hand, there are no conditions on extra variables in the general tyft/tyxt Def. 5.12.

But as the limitations in Def. 5.3 are quite important to achieve the simulation properties of

Chapter 7, (2) is a hard di�erence that makes the tyft/tyxt format more general in this aspect.

The two kinds of formats become closer to each other if only pure tyft/tyxt systems are considered.

In this case, the di�erence with respect to extra variables is that a premise like

t

-

x ^ f(x)

-

y

(where x and y are extra variables with respect to the left-hand side of the conclusion) is legal

in pure tyft/tyxt format, but not allowed ptp/t format. In principle, there is no problem in also

allowing such premises in Def. 5.3, but so far, it did not seem necessary. So this di�erence is not

really hard; pure tyft/tyxt systems can be viewed as special cases of ptp/t systems.

A format that deviates farther is the GSOS format:

De�nition 5.16 (GSOS format

5

; cf. Bloom, Istrail and Meyer [12])

A GSOS rule is of the form

`

V

fx

i

a

ij

-

y

ij

j i 2 [n]; j 2 [m

i

]g ^

V

fx

i

b

ij

-

j i 2 [n]; j 2 [n

i

]g

` f(x

1

; : : : ; x

n

)

a

-

t

where:

(1) f 2 �

w;s

with jw j = n

4

In fact, there is a rule format called path format (for \predicates and tyft/tyxt hybrid format") that extends

the tyft/tyxt format by Boolean conditions (see Baeten and Verhoef [5]).

5

Originally, the \G" in GSOS stood for \guarded" since there was an additional condition about guardedness

of �xed point expressions (which will not be considered here). If this aspect is neglected, the \G" might also stand

for \grand" since this format is very general (see Aceto, Bloom, and Vaandrager [2]).
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(2) all occurring variables are distinct

(3) for i 2 [n] :m

i

; n

i

� 0

(4) t 2 T (�; fx

i

; y

ij

j i 2 [n]; j 2 [m

i

]g)

(5) a; a

ij

; b

ik

2 A for i 2 [n]; j 2 [m

i

]; k 2 [n

i

]

Besides the di�erences in term complexity and in allowing Boolean conditions and many-step

transitions as in the other two cases, the main di�erence between the GSOS format and all of the

other three rule formats is the existence of negative premises x

i

b

ij

-

. Without such premises,

GSOS rules are special cases of pure tyft/tyxt rules, and hence they �t into ptp/t format. But

negative premises in general cannot be expressed with rules according to Def. 5.3. There the

only possibility is to demand that a con�guration be terminal, a property which is syntactically

checkable. But the semantic property that a non-terminal con�guration is stuck, i. e. without a

-

successor, cannot be expressed. So this aspect of the GSOS format goes beyond the ptp/t

format. A ptp/t system describes transitions only in terms of possible events, whereas a GSOS

system is also able to consider events that are not possible.

The introduction of the three formats of this section was motivated by the wish to guarantee

certain pleasant mathematical properties of the transition relation de�ned by an SOS system.

The objective of this work, however, is to take an SOS de�nition with rules in a not too restrictive

format and to simulate the resulting transition relation by the rewrite relation of a term rewriting

system as closely as possible. If the transition relation is well-behaved, so is the rewriting relation.

But if the transition relation fails to possess some desirable property, this is also true for the

rewriting relation.
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Chapter 6

Denotational Semantics

Following the examination of structured operational semantics de�nitions, now denotational de-

scriptions of programming languages shall be considered. As in the previous chapter, the emphasis

will be on syntactic aspects concerning the representation of such descriptions rather than on the

underlying mathematical theory. This chapter does not present new material, but rather aims at

presenting a generally accepted background for denotational de�nitions.

The structure of such de�nitions follows a rather strict scheme:

(1) First, the syntax of the language L whose semantics is to be de�ned is described.

(2) Second, the domains of semantic values are introduced.

(3) Third, the semantic functions are de�ned that map syntactic objects to semantic values.

This format is widely used in the literature as it facilitates a clear separation of the various

aspects of such de�nitions. Examples can be found e. g. in Stoy [113], Gordon [58], de Bakker

[29], Loeckx and Sieber [86] and Mosses [95]. The examples of Lakhneche [82] also comply with

it.

Following the above structure, this chapter starts with an overview of the syntactic description

technique commonly used, succeeded by a short introduction to the problem of constructing

appropriate semantic domains. The latter section also contains a short introduction into the

theory of complete partial orders. This mathematical structure provides a suitable setting for

the semantic de�nition of recursive structures such as loops or procedures.

Finally, the commonly used syntactic form for the de�nition of denotational functions mapping

syntactic to semantic objects will be explained. Although the mathematical background of such

de�nitions is usually much more complex than in the SOS case, their syntactic form will turn

out to be very regular and rather simple. This section also includes some examples from actual

semantics de�nitions taken from Lakhneche [82]; these de�nitions will also be used in the proofs

described in Chapter 10.
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6.1 De�nition of the Syntactic and Semantic Domains

6.1.1 Syntactic Domains

The �rst part of a de�nition of this kind describes the syntax of the language L. Usually, abstract

syntax (see McCarthy [89]) is used, based on a de�nition of the syntactic structure by means of

a context-free grammar in Backus-Naur form [97]. Basically, this is equivalent to a de�nition of

a set of equations between the syntactic domains. The variables for syntactic structures in the

grammar can be replaced by the corresponding domains, and the operators combining syntactic

entities by corresponding operators on the syntactic domains. As a simple example, consider a

part the syntax of PL

R

0

expressions given by Lakhneche [82]:

An expression is a constant symbol int 2 Int, TRUE or FALSE, a variable, or it is constructed

from sub-expressions and operator symbols.

exp 2 Expr

exp ::= var j int j TRUE j FALSE j mop exp j exp

1

dop exp

2

6.2 Semantic Domains

Usually, the mathematical spaces of semantic values are de�ned by a set of recursive equations.

Among the operators used in these equations are (disjoint) union ( [ , also written j or

+ ), product ( � ), function construction ( ! ) and tuple (

�

). (See Gordon [58] for a short

introduction.)

In general, there are no sets satisfying a set of domain equations, as the example

E = E ! E

shows: no set is equal to its own function space, and even if \=" is interpreted as \is isomorphic

to", this relation does not hold for sets containing more than one element. But if the more compli-

catedly structured domains are used instead of sets, together with an appropriate interpretation

of the operators (and the equality) mentioned above, domain equations do have a solution. The

mathematical theory of domains will not be considered here, however; see Stoy [113] or Gunter

and Scott [61] for a detailed account.

A problem related to the recursive de�nition of sets (or domains) is that of recursive de�nition

of functions, in particular that of the existence of �xed points. This problem occurs when values

shall be assigned to structures such as loops or recursive procedures. If such constructs are part

of the language L, a mathematical structure must be used that guarantees the existence of �xed

points, and moreover, it should allow the selection of a speci�c one in order to make the de�nition

as exact as possible.

Complete partial orders as de�ned in the following provide a comparatively simple setting in

which the existence of a certain kind of �xed point (the least de�ned one) can be guaranteed for

a well-de�ned class of functions (the continuous ones). The exposition mainly follows de Bakker

[29].
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De�nition 6.1 (least upper bound)

Let hM;v i be a partially ordered set, X � M and z 2 M . z is called the least upper

bound (lub) of X (written z =

F

X) i�

(1) X v z (i. e. z is an upper bound of X) and

(2) 8z

0

2M : X v z

0

) z v z

0

(i. e. all other upper bounds are larger than z).

De�nition 6.2 (chain)

Let hM;v i be a partially ordered set. An (ascending) chain in M is a sequence h x

i

i

i2IN

in M such that for all i 2 IN : x

i

v x

i+1

.

De�nition 6.3 (complete partial order)

Let hM;v i be a partially ordered set. hM;v i is a complete partial order (cpo) i�

(1) there exists a least element ? 2M , i. e. with ? v m for all m 2M , and

(2) each chain h x

i

i

i2IN

in M has a lub

F

i�0

x

i

.

The following trivial lemma is useful to compute the lub of �nite chains as these can be modelled

by in�nite ones that become constant at a certain index:

Lemma 6.4 (end-constant chains)

Let hM;v i be a partially ordered set, h c

i

i

i2IN

a chain in M and n 2 IN with c

i

= c

n

for all

i � n. Then

F

i�0

c

i

= c

n

.

De�nition 6.5 (monotonic function)

Let hC

1

;v

1

i and hC

2

;v

2

i be partially ordered sets. A function f : C

1

! C

2

is called

monotonic i�, for all x; y 2 C

1

, x v

1

y implies f(x) v

2

f(y).

The set of monotonic functions from C

1

to C

2

is denoted by C

1

mon

-

C

2

.

The set of monotonic functions between cpo's forms a cpo (compare Appendix C, where it is

proved that the set of all functions also forms a cpo with the same partial ordering):

Lemma 6.6 (C

1

mon

-

C

2

is a cpo, Lemma 3.9 of de Bakker [29])

Let hC

1

;v

1

i and hC

2

;v

2

i be cpo's. Then the relation v on C

1

mon

-

C

2

de�ned by

8f

1

; f

2

2 C

1

mon

-

C

2

: (f

1

v f

2

,

df

8x 2 C

1

: f

1

(x) v

2

f

2

(x))

is a partial ordering, and hC

1

mon

-

C

2

;v i is a cpo. If h f

i

i

i2IN

is a chain of functions in

C

1

mon

-

C

2

, then

F

i�0

f

i

= � x:

F

i�0

f

i

(x), i. e. for all x 2 C

1

: (

F

i�0

f

i

)(x) =

F

i�0

(f

i

(x)).

Actually, it su�ces for the proof of this lemma that only C

2

is a cpo and C

1

just an arbitrary

partial order.
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De�nition 6.7 (�xed point, �f)

Let C be a cpo, f : C ! C and x 2 C.

(1) x is called a �xed point of f i� f(x) = x.

(2) x is called the least �xed point of f (x = �f) i� x is a �xed point of f and x v y

for each �xed point y of f .

De�nition 6.8 (continuous function)

Let hC

1

;v

1

i and hC

2

;v

2

i be cpo's and f : C

1

mon

-

C

2

. f is called continuous i� for

every chain h x

i

i

i2IN

in C

1

: f(

F

i�0

x

i

) v

F

i�0

f(x

i

).

1

The set of continuous functions from C

1

to C

2

is denoted by [C

1

-

C

2

].

Lemma 6.9 (Lemma 5.2 of de Bakker [29])

Let hC

1

;v

1

i and hC

2

;v

2

i be cpo's and f : C

1

mon

-

C

2

. Then f is continuous i�

F

i�0

f(x

i

) = f(

F

i�0

x

i

) for all chains h x

i

i

i2IN

in C

1

.

Proof

The \if" part is trivial. For the \only if" part, let f 2 [C

1

-

C

2

] and h x

i

i

i2IN

be a chain in C

1

.

The goal is to prove

F

i�0

f(x

i

) v f(

F

i�0

x

i

). (h f(x

i

) i

i2IN

is a chain because f is monotonic, hence

F

i�0

f(x

i

) exists.)

Since x

i

v

F

i�0

x

i

for all i � 0, it follows by monotonicity of f that f(x

i

) v f(

F

i�0

x

i

) for all i � 0.

So f(

F

i�0

x

i

) is an upper bound of the chain h x

i

i

i�0

, and hence

F

i�0

f(x

i

) v f(

F

i�0

x

i

).

�

Lemma 6.10 (Lemma 5.3 of de Bakker [29])

Let C;C

0

be cpo's. Then h [C

1

-

C

2

];v i is a cpo, where v is the ordering de�ned in

Lemma 6.6.

Theorem 6.11 (Fixed Point Theorem, Theorem 5.8 of de Bakker [29])

Let C be a cpo and f 2 [C

-

C]. Then f has a least �xed point �f satisfying

�f =

G

i�0

f

i

(?

C

) :

1

The latter lub exists since f is monotonic.
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By Theorem 6.11, each continuous function has a least �xed point. Moreover, it can be e�ectively

approximated by successively calculating the values in the chain h f

i

(?

C

) i

i�0

(this process is

called �xed point iteration).

In the denotational de�nitions considered later on, the semantics of all the constructs in the

languages will be functions taking their arguments and values in some cpo's. Least �xed points

of continuous functions will be used to capture the meaning of recursive constructs like loops or

procedure calls; for examples, see below in Section 6.3.1.

In the literature, cpo's hM;v i are also de�ned in ways that di�er from Def. 6.3. A least element

is mostly required, but the other condition varies. Instead of demanding that each chain have a

lub, one can demand that this hold for arbitrary totally ordered subsets of M (see Loeckx and

Sieber [86]) or, still more general, for directed sets

2

(see Gunter and Scott [61]).

When solutions for general recursive domain equations are needed, the simple concept of cpo's

alone does not su�ce anymore. But it forms the basis for domain theory; the kinds of domains

that provide the solutions are cpo's with certain additional properties [61].

The approach taken here, however, will follow de Bakker and only consider the special case of

countable chains. More complex structures than cpo's will not be considered, either. This is

not too severe a restriction, as can be seen by the examples de Bakker is able to treat with this

approach.

6.3 Format of Denotational Function De�nitions

From a syntactic point of view, denotational semantics de�nitions of the form we will present

shortly are much simpler than operational ones. Basically, they consist of a set of conditional

equations that must obey a rather strict format.

In the following, it will be assumed that the syntactic categories of the language L whose semantics

is to be de�ned are given by a context-free grammar. As in the operational case, let � be a

signature and V a set of variables such that all mathematical objects that are needed can be

represented in T (�; V ). As usual, mathematical objects and their term representations will be

identi�ed if no confusion can arise.

The denotational semantics for a syntactic category C is given by a function

[[�]] : C ! D

where D is some value domain. In the examples, it will be a cpo; typically, elements of D will

be functions rather than simple data (see below in Section 6.3.1). The standard mathematical

meta-language used to de�ne semantic functions contains the following constructs:

� conditional expressions:

if condition then expression

1

else expression

2

An alternative notation used e. g. by Stoy [113] and Gordon [58] is the following:

condition ! expression

1

; expression

2

2

A set A �M is directed i� every �nite subset of A has an upper bound in M .
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� explicit �-abstractions to construct unnamed functions;

� the �-operator mapping a continuous function to its least �xed point;

� let expressions or, as an alternative form, where expressions (see Section 3.2):

p

let x = e

1

in e

2

q

�

p

e

2

where x = e

1

q

� the usual mathematical term language, in particular applications of expressions denot-

ing functions to other expressions.

3

The de�nition of such a function [[�]] is required to be given in a very regular way:

De�nition 6.12 (denotational function de�nition in clausal form)

Let C be a syntactic category de�ned by the context-free productions

C 3 q ::= q

1

j : : : j q

n

(n � 1)

and [[�]] : C ! D be the semantic function for D. The de�nition of [[�]] is given in clausal

form i� it consists of n clauses of the following structure

[[c

i

]] a

i1

: : : a

ip

i

=

8

>

<

>

:

result

i1

, if condition

i1

.

.

.

result

im

i

, if condition

im

i

(6.1)

where m

i

� 1 and p

i

� 0 for all i 2 [n] and for all i 2 [n], j 2 [m

i

] and k 2 [p

i

]:

(1) c

i

2 T (�; V )

C

0

corresponds to the i�th possible structure q

i

for C.

(2) The a

ik

are additional arguments for the function [[�]] .

If p

i

> 0, then D = D

1

! � � � ! D

ip

i

for some domains D

1

; : : : ; D

ip

i

and a

ik

2 D

0

ik

.

(3) result

ij

2 D

0

.

(4) condition

ij

2 T (�; V )

Bool

without �-abstractions.

(5) var (result

ij

) [ var (condition

ij

) � var (c

i

).

(6) Either all the result

ij

for a �xed i 2 [n] are �-abstractions with the same bound

variables, or none of them is.

(7) Occurrences of semantic functions in the result

ij

and condition

ij

may only refer to

proper subcomponents of c

i

.

The additional arguments a

ik

correspond to the case where the domain D is functional and the

function [[�]] is de�ned in a curried form (cf. Curry and Feys [25]), i. e. as

[[�]] : C ! D

1

! � � � ! D

ip

i

instead of

[[�]] : C;D

1

; : : : ; D

ip

i�1

! D

ip

i

:

3

Note that such terms can be represented in a �rst-order language by providing an application operator. Let

A be a sort representing functions from C ! D for some domains C and D (represented by C

0

and D

0

, resp.),

f 2 V

A

and c 2 V

C

0
. Then apply(f; c) 2 D

0

, where apply : A;C

0

! D

0

. (Compare Section 4.2.2.)
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By (4), the conditions are simple terms without occurrences of explicitly de�ned functions, a

complication that hardly ever occurs in practice and only would add unnecessary overhead to

the simulation in Chapter 8. Condition (5) makes sure that the semantics of a construct c only

depends on c (and its subcomponents), but not on other entities. (6) guarantees a uniform

treatment of additional parameters for [[�]] . (7) is the requirement that denotational de�nitions

be compositional, i. e. that the semantics of an expression be computable from the semantics

of its subexpressions.

The meaning of a clause of the form (6.1) is a set of m

i

conditional equations:

f condition

i1

) [[c

i

]] a

i1

: : : a

ip

i

= result

i1

;

:condition

i1

^ condition

i2

) [[c

i

]] a

i1

: : : a

ip

i

= result

i2

;

: : : ;

V

j<m

i

:condition

ij

^ condition

im

i

) [[c

i

]] a

i1

: : : a

ip

i

= result

im

i

g ;

i. e. the conditions in (6.1) have to be checked from top to bottom to determine the correct result

for an instance of c

i

.

In order to make sure that a denotational de�nition speci�es a function that is e�ectively com-

putable an additional requirement is imposed on it that is similar to the one for SOS de�nitions

(Requirement 5.10):

Requirement 6.13 (well-foundedness of denotational de�nitions)

For every system consisting of de�nitions in clausal form as de�ned in Def. 6.12, there

must be given a termination ordering � such that the right-hand sides of the denotational

equations are smaller than the left-hand sides, i. e. result

ij

� � [[c

i

]] � and condition

ij

� �

[[c

i

]] � for all i 2 [n]; j 2 [m

i

] and ground substitutions � 2 Subst (�; V ).

This requirement should be easy to ful�l since by (7) in Def. 6.12, semantic functions on the

right-hand sides of equations in (6.1) only refer to subcomponents of the argument on the left-

hand side, and therefore the subterm ordering B could serve as the termination ordering (applied

to arguments of semantic functions only, of course).

6.3.1 Examples for Denotational De�nitions

As in the previous chapter, the formal de�nition will be illustrated with slightly simpli�ed exam-

ples from the semantics de�nition for PL

R

0

expressions.

In addition to the basic domains from Section 5.2.1, the following occur:

env 2 DenEnv = Name ! Loc ] f?

DenEnv

g denotational environments

DenVal = Val ] f?

DenVal

g denotational values

Both of these domains are provided with a partial ordering that makes them cpo's.

The semantic function E for expressions has the arity

E : Expr �! DenEnv �! � �! DenVal



74 Chapter 6. Denotational Semantics

Just like the SOS de�nition on p. 60, the de�nition of E depends on the underlying interpretation

� for the operators. Example clauses are

E [[int]] env�

def

= �(int)

E [[mop exp]] env�

def

=

8

<

:

�(mop ) (E [[exp]]env�) ; if E [[exp]]env� 2 Val n ferrorg

error ; otherwise

In the equations above, it can be seen that the condition may be omitted if there is only one

case, and that one is allowed to write \otherwise" instead of \if true".

An example for the use of �xed points is the semantics de�nition for while loops in PL

R

0

. Besides

the domains already introduced, some more are needed for this de�nition:

Com communication events

Com

!

= (IN! Com) [ Com

�

traces

st 2 State = (�� Input � Com

�

) ] Inv states

inv 2 Inv = ( fstopped; invalidg � Input � Com

�

) ] Com

!

invalid states

in 2 Input input streams

On State, an ordering v is de�ned that makes it a cpo. Basically, this ordering extends the pre�x

ordering on Com

!

onto State.

The denotational semantics of PL

R

0

processes is a state transformation, i. e. a function from

[State

-

State] that satis�es the extra condition that it does not change the communication

history of processes as recorded in their Com

�

or Com

!

components. The set of these functions

is denoted by StatTr. So we have the semantic function

C : SeqProc �! DenEnv �! StatTr

The (single) clause de�ning the semantics of loops is the following (again, the condition is true):

C[[WHILE(exp; sproc)]]env

def

= ��

exp;sproc;env

where

�

exp;sproc;env

: StatTr �! StatTr

is a transformation of state transformations de�ned by

�

exp;sproc;env

(Tr)st

def

= st for all st 2 Inv

and for all st =< �; in; tr >2 State n Inv

�

exp;sproc;env

(Tr)st

def

=

8

>

>

>

<

>

>

>

:

st ; if E [[exp]]env� = �

< invalid; in; tr > ; if E [[exp]]env� =2 Bool

(Tr � C[[sproc]]env) st ; otherwise

Of course, it has to be proved that �

exp;sproc;env

is a continuous function (i. e. an element of

[StatTr

-

StatTr]).
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Chapter 7

Modelling of SOS De�nitions

This chapter formally describes the transformation of SOS deduction rules of the ptp/t format

introduced in Def. 5.3 into term rewriting rules. It is one of the core chapters of this work, showing

how to combine the ��-calculus modelling of let terms (cf. Section 3.1.3) with the new concept of

contexts (cf. Section 3.3) in order to overcome the di�erences in restrictions on variables between

the ptp/t format and the usual rewrite rule format of Def. 3.18.

The �rst section of this chapter gives an informal introduction to the idea behind the transfor-

mation of SOS de�nitions into rewrite rules; the full formal de�nition of the the transformation

algorithm follows in the second section. The rewrite systems resulting from the algorithm enjoy

rather pleasant simulation properties; these are listed in the third section, and a formal proof

is contained in Appendix B. Finally, the ptp/t algorithm is compared with an algorithm that

has been published before for the transformation of SOS systems in another format (GSOS) into

rewrite rules.

The terms occurring in this chapter are written in standard mathematical notation rather than

using the representations of Chapter 4. In this way, readability is enhanced and the terms become

smaller. In implementations, however, the representations have to be used; so is sometimes

necessary to refer to Chapter 4 in order to describe syntactic peculiarities.

7.1 The Basic Idea

The �rst section provides motivation and an informal description of the transformation method;

it also shows why some other seemingly \obvious" methods do not work. The exact de�nition of

this transformation follows in the next section.

7.1.1 The Example Language De�nition

As an example (arti�cial, but not overly simple) consider an extract from an imperative language

L. In L, there is a syntactic class of statements, denoting state transformations, and the usual

operator \;" for sequential composition:

Stmt 3 stmt ::= stmt

1

; stmt

2

j : : :
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On the semantic side, there is a set of states � that statements can be applied to. The internal

structure of states � 2 � is not important here. A con�guration can either consist of a statement

to be executed together with an initial state for this execution, or it can be the �nal state of an

execution:

�

Stmt

= ( Stmt � � ) [ T

Stmt

T

Stmt

= �

The execution of a statement list proceeds from left to right. After one computation step, the

�rst statement in a list may have terminated, resulting in a �nal state, or there may still be a

rest of the statement waiting for execution. For these two possibilities, there are the following

two inference rule schemata:

` h stmt

1

; � i

-

Stmt

�

1

` h stmt

1

; stmt

2

; � i

-

Stmt

h stmt

2

; �

1

i

(7.1)

for the case of termination of stmt

1

and

` h stmt

1

; � i

-

Stmt

h stmt

0

1

; �

1

i

` h stmt

1

; stmt

2

; � i

-

Stmt

h stmt

0

1

; stmt

2

; �

1

i

(7.2)

for the other case. stmt

0

1

is the remainder of stmt

1

after one computation step.

7.1.2 Transformation Into Rewrite Rules

The simplest possible approach to the problem of transforming a rule

` hypo

` 

-



0

into a rewrite rule is to simulate the rule's semantics (\if hypo holds, then the step from  to 

0

is possible") in form of a simple conditional rewrite rule like

hypo ) 

-



0

or, if only unconditional rules are allowed,



-

if hypo then 

0

else 

00

where 

00

has to be de�ned appropriately. But with the format of Def. 3.18, this is only possible

if there are no extra variables in hypo. This, however, is an exceptional case, since the extra

variables in SOS rules are used as names for the results of intermediate computations; e. g. �

1

in

(7.1) and stmt

0

1

in (7.2) both are extra variables.

So one has to be a little bit more inventive and has to �nd a way of disposing of the extra

variables. Consider rule (7.1). The extra variable �

1

stands for a terminal con�guration that is

related to h stmt

1

; � i by the transition relation. Viewing this relation more operationally, one

can rephrase this as �

1

standing for a possible (one-step) result of evaluating h stmt

1

; � i.

1

The

name �

1

itself is irrelevant; it is only important that it denotes a terminal con�guration.

1

There may be more than one possible result if the language is non-deterministic.
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The con�guration h stmt

1

; � i does not contain extra variables; so it may safely occur on the

right-hand side of a rewrite. Since only its result is important, it is enclosed by an additional

operator eval that is intended to yield the result of evaluating its argument. By using let terms,

i. e. �-abstraction, this result can be named, and this name can again be �

1

. So one arrives at

the rewrite rule

h stmt

1

; stmt

2

; � i

-

let �

1

= eval ( h stmt

1

; � i ) in h stmt

2

; �

1

i : (7.3)

Note that �

1

, although not appearing on the left-hand side, is not an extra variable. It is a

bound variable of �-calculus and, as much as term rewriting is concerned, it is just a constant of

type T

Stmt

0

. In Section 3.2, such bound variables were eliminated completely by using de Bruijn

indices. It will always be assumed that let terms are evaluated in applicative order (in call by

value fashion).

So far, this looks like the kind of rule that was desired. But there still remains a problem. There

is the other rule (7.2), and when the transformation procedure from above is applied to this rule,

this results in the rewrite rule

h stmt

1

; stmt

2

; � i

-

let cf = eval ( h stmt

1

; � i ) in h cf #1; stmt

2

; cf #2 i (7.4)

where cf is a variable of type Stmt �� and #1 and #2 are the projections to the �rst and second

component of a con�guration tuple, respectively. The problem is that the left-hand sides of (7.3)

and (7.4) are identical, and so each of the two rules can be applied in any case where the other

could be applied as well. In (7.1) and (7.2), the decision which rule to apply is made in the

hypothesis by means of a type check.

It is speci�ed by means of a term pattern where extra variables may be replaced by other terms of

their type, and all other parts are considered as constants. This also includes the variables that

are not extra because they are already instantiated to some constants by matching the left-hand

side of the conclusion (see (1) in Def. 5.5).

In order to get correct rewrite rules, this kind of check must be added as well. So it must be tested

whether the result of evaluating h stmt

1

; � i is terminal or not. And for the case that the result is

non-terminal even though the rule derived from (7.1) was chosen, a way back must be provided

giving a result that still allows application of the other rule. Speaking about the rewriting process

in terms of tra�c: choosing the wrong rule must be a \detour" rather than a \cul-de-sac".

Implementing the type check is simple: For (7.1), it amounts to having a rule of the form

h stmt

1

; stmt

2

; � i

-

let �

1

= eval ( h stmt

1

; � i ) in if type (�

1

) = T

Stmt

then h stmt

2

; �

1

i else : : :

(7.5)

and for (7.2) to

h stmt

1

; stmt

2

; � i

-

let cf = eval ( h stmt

1

; � i ) in

if type (cf ) = Stmt � � then h cf #1; stmt

2

; cf #2 i else : : :

(7.6)
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Of course this requires e. g. Stmt � T to be a term of the term language T (�; V ). As the basic

rewrite system B is required to decide all conditions (see Section 4.3), one may assume that there

are rules that rewrite these type checks to true or to false.

More problematic is the \way back" that must be placed in the else parts of (7.5) and (7.6).

Intuitively, one would demand that in these cases, the original con�guration h stmt

1

; stmt

2

; � i

should remain unchanged. But one cannot simply put this into the else parts since it would render

the rewrite system non-terminating: If the type check failed, the same rule could be applied over

and over again.

A straightforward solution for this problem is to provide a ag for each of the rules generated

from the SOS rules that can be raised when the else part is selected. This ag then indicates

that a rewrite rule has been tried in vain (i. e. its type check has been rewritten to false). This,

however, is exactly the kind of situation that the concept of contexts has been de�ned for (see

Section 3.3).

In this small example, there are only two rules. Hence it su�ces to introduce contexts as elements

of

f0; 1; �g� fon; o�g

2

and the desired rewrite rules become (for the one-step case)

h stmt

1

; stmt

2

; � i@ h 1; on; s i

-

let �

1

= eval ( h stmt

1

; � i@ h 1; on; on i )

in if type (cf ) = T

Stmt

then h stmt

2

; �

1

i@ h 1; on; on i

else h stmt

1

; stmt

2

; � i@ h 1; o�; s i

(7.7)

h stmt

1

; stmt

2

; � i@ h 1; s; oni

-

let cf = eval ( h stmt

1

; � i@ h 1; on; on i )

in if type (cf ) = Stmt � �

then h cf #1; stmt

2

; cf #2 i@ h 1; on; on i

else h stmt

1

; stmt

2

; � i@ h 1; s; o� i

(7.8)

The rules that de�ne the operator eval guarantee that its argument is evaluated appropriately

(see Section 3.3.1); so h stmt

1

; � i is evaluated in one step only. For this evaluation, all rules may

be used since no attempt to evaluate h stmt

1

; � i has been made so far. Furthermore, one can

easily see that the else parts are smaller than the left-hand sides (under the well-founded ordering

o� < on); there is no termination problem when the type check fails. So (7.7) and (7.8) are really

rules of a suitable kind. In the following, they will be called SOS-derived rules.

In this simple example, the two rules could be merged into one since the starting con�gurations

in the hypotheses of (7.1) and (7.2) are the same. This results in identical eval expressions in the

respective let terms, and so it would be possible to combine the two rules; this also means that
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only one ag in the context is needed:

h stmt

1

; stmt

2

; � i@ h 1; on i

-

let cf = eval ( h stmt

1

; � i@ h 1; oni )

in if type (cf ) = T

Stmt

then h stmt

2

; cf i@ h 1; oni

else if type (cf ) = Stmt � �

then h cf #1; stmt

2

; cf #2 i@ h 1; oni

else h stmt

1

; stmt

2

; � i@ h 1; o� i

(7.9)

In general, however, this merging is not possible, since the transitions in the hypotheses are not

necessarily the same. Therefore the procedure that is described in the next section only considers

one SOS rule at a time without trying this kind of optimization.

2

What remains is to mention how to handle hypotheses containing simple Boolean conditions.

The preconditions b

i

can safely be used as the conditions of an if term surrounding the whole

right-hand side since they do not contain extra variables. The then part of this if is the old

right-hand side, and the else part is the left-hand side where the switch for this rule is set to

o�. The conditions B

k

restricting the intermediate and �nal con�gurations must also become

part of the type check. The extra variables must be replaced by suitable selection expressions in

the style that has been used in rule (7.8). And �nally, multiple transitions in the hypothesis are

translated into iterated let expressions.

7.2 The Rewrite Rules Generated From an SOS System

In the following, assume a ptp/t SOS deduction system consisting of N rules for some N 2 IN.

Assume these rules are numbered R

1

; : : : ; R

N

, and consider R

l

for some l 2 [N ]:

R

l

:

`

p

V

i=1

b

i

^

n

V

j=1



j

L

j

-



0

j

^

q

V

k=1

B

k

` 

-



0

In this case, contexts are (N + 1)-tuples from the set

f0; 1; �g� Flag

where Flag =

df

fon; o�g

N

is the set of rule switches.

2

The improvement that is gained by merging the rules lies in the reduction of the number of rules and of the

length of contexts. The terms occurring in the combined rules, however, become considerably larger.
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Let s

1

; : : : ; s

N

be �xed variables for ags.

3

The following abbreviations for special contexts (or

rather, special context schemata) will be used

4

:

Kv

(l)

1

=

df

p

h 1; s

1

; : : : ; s

l�1

; on; s

l+1

; : : : ; s

N

i

q

Kv

(l)

1

=

df

p

h 1; s

1

; : : : ; s

l�1

; o�; s

l+1

; : : : ; s

N

i

q

Kv

(l)

=

df

p

h �; s

1

; : : : ; s

l�1

; on; s

l+1

; : : : ; s

N

i

q

Kv

(l)

=

df

p

h �; s

1

; : : : ; s

l�1

; o�; s

l+1

; : : : ; s

N

i

q

K

f

=

df

p

h �; on; : : : ; on i

q

K

0f

=

df

p

h 0; on; : : : ; on i

q

K

1f

=

df

p

h 1; on; : : : ; on i

q

(7.10)

Two rules will be generated for R

l

, one for a 1-context Kv

(l)

1

and one for an �-context Kv

(l)

.

7.2.1 First Case: No Transitions In the Premise

De�nition 7.1

If n = 0, then also q = 0, and there are no extra variables in the rule; hence the derived

rules can be rather simple:

@Kv

(l)

1

-

if

p

V

i=1

b

i

then 

0

@K

0f

else @Kv

(l)

1

(7.11)

@Kv

(l)

-

if

p

V

i=1

b

i

then 

0

@K

f

else @Kv

(l)

(7.12)

7.2.2 Second Case: At Least One Transition In the Premise

In this case, there may be extra variables in the SOS rule that have to taken care of. As in the

example of Section 7.1, the following items must be considered:

(1) The type check of a con�guration against a term pattern must be implemented.

(2) Extra variables must be substituted by appropriate terms.

(3) For extra variables occurring multiply, the transformation must maintain this correspon-

dence for the terms that substitute the extra variables.

7.2.2.1 The Type Check

Reconsider the rule (7.2) from the example above:

` h stmt

1

; � i

-

Stmt

h stmt

0

1

; �

1

i

` h stmt

1

; stmt

2

; � i

-

Stmt

h stmt

0

1

; stmt

2

; �

1

i

3

The s

i

are meta-level variables for elements of V

Flag

, i. e. for object-level variables of sort Flag.

4

If an abbreviation contains a \v" (like Kv

(l)

1

), this indicates that the corresponding term contains variables

(here the s

i

).
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In order to be able to describe what it means that

p

h stmt

1

; � i

q

really evaluates to a con�guration

 which is \of the form

p

h stmt

0

1

; �

1

i

q

", �rst the structure of con�gurations has to be made more

precise. In the example, they were de�ned by

�

Stmt

= Stmt � � [ T

Stmt

T

Stmt

= �

With the representation technique of Section 4.2.1, this means that con�gurations can either

be pairs of the form

p

h stmt ; � i

q

, or just states that have to be injected into the con�guration

domain, however, i. e. terms of the form

p

h � i

q

(for sake of brevity, let h � i denote this injection).

So in both cases the structure is given by

� the top-level type \con�guration";

� the number of sub-components; these numbers and the types of these components vary in

the two cases.

This means that it must be checked that

�  is of the sort of

p

h stmt

0

1

; �

1

i

q

, i. e. of the sort \con�guration",

�  and

p

h stmt

0

1

; �

1

i

q

have the same number of sub-components, and if so, that

� the corresponding components match:

(1)  #1 and stmt

0

1

are of the same sort, and

(2)  #2 and �

1

are of the same sort.

If the term pattern were deeper structured than

p

h stmt

0

1

; �

1

i

q

, then the deeper subterms would

have to be checked in the same way. So in general the type check is described by a recursively

de�ned function yielding a predicate term. Note, however, that no recursion is needed if the term

pattern does not contain extra variables. Only these de�ne a true pattern that can be replaced

by some other term; terms without extra variables just de�ne the trivial pattern that may only

be replaced by itself. So type checking against such a term can simply be expressed by checking

equality to the term.

By Def. 5.3, there are no other possibilities for the patterns than variables, constants, and tuple

constructor terms (with somemk- operator outermost). Therefore the example can be generalized

in the following way:

De�nition 7.2 (type-ok)

The function type-ok : T (�; V )� T (�; V )�P (V )! T (�; V ) is de�ned recursively by

type-ok (x; t;W ) =

df

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

p

x = t

q

, if var (t) � W

p

type(x) =

x

type (t)

y

q

, otherwise, if t is not a tuple term

d type(x) =

x

type (t)

y

^ #comp(x) =

x

#comp (t)

y

^

x

#comp (t)

y

V

i=1

x

type-ok (

p

x # i

q

; t=i;W )

y

e

, otherwise
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The �rst term x in this de�nition is the term to be type-checked, the second term t is the

pattern, and W is the set of variables that are not extra variables. Note how quasi-quotes

and inverse quotes are used to separate terms that have to be evaluated on meta-level (e. g.

t=i) from others that remain �xed (e. g. x # i). The big conjunction in the last clause is

just an abbreviation, and not a term constructor.

Example 7.3

Let v 2 V

T

; y 2 V

U

and h �; � i : T; U ! C be a tuple constructor. Then

type-ok (x; h v; y i; fyg)

= d type(x) = C ^ #comp(x) = 2 ^

x

type-ok(

p

x #1

q

; v; fyg)

y

^

x

type-ok(

p

x #2

q

; y; fyg)

y

e

= d type(x) = C ^ #comp(x) = 2 ^ type(x #1) =

x

type (v)

y

^ x #2 = y e

= d type(x) = C ^ #comp(x) = 2 ^ type(x #1) = T ^ x #2 = y e

�

7.2.2.2 Positions of Extra Variables

In the example of Section 7.1, the extra variables have been replaced by terms constructed from de

Bruijn indices and applications of selector functions:

p

h stmt

0

1

; stmt

2

; �

1

i

q

in (7.2), for example,

becomes

p

h cf # 1; stmt

2

; cf # 2 i

q

in (7.8), where cf is the representation of a de Bruijn index

bound in a let expression (see Section 3.2).

The sequences of selector applications that may be used can be deduced from the position of the

extra variables in the 

0

j

. For an extra variable v, let j

v

2 [n] be the index of a transition in

the hypothesis of R

l

such that v 2 var (

0

j

v

).

5

Since the 

0

j

are constructed only from variables,

constants, and tuple-forming operators (see condition (3) in Def. 5.3), v can be retrieved from



0

j

v

by subsequently selecting components. This path can be represented by a sequence w

v

of

projection operators # i for appropriate i 2 IN. So

w

v

2 ( f#gIN )

�

with

p



0

j

v

w

v

q

=

E

v :

Note that there is a choice for w

v

if an extra variable occurs more than once; in this case, one

�xed occurrence is chosen. Of course, the correspondence between the di�erent occurrences has

to be checked (this is done with the predicate term EV-match ; see below).

Example 7.4

If v is an extra variable of R

l

with j

v

= 2 and 

0

2

=

p

h x; h v; y i i

q

, then w

v

=

p

# 2 # 1

q

because



0

2

w

v

=

p

h x; h v; y i i #2 #1

q

=

E

v :

�

5

Such an index always exists because all extra variables of SOS rules must appear in these con�guration terms

by condition (8) in Def. 5.3.
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7.2.2.3 The Structure of the Derived Rules

De�nition 7.5

The structure of the rules for the one-step and the multi-step case is the same; they only

di�er in the contexts used:

@Kv

(l)

1

-

if

p

V

i=1

b

i

then let x

1

= eval ( 

1

@ hL

1

; on; : : : ; on i );

: : : ;

x

n

= eval ( 

n

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

x

type-ok (x

i

; 

0

i

; var ())

y

^

q

V

i=1

B

i

^

x

EV-match

y

then ~

0

@K

0f

else @Kv

(l)

1

else @Kv

(l)

1

(7.13)

@Kv

(l)

-

if

p

V

i=1

b

i

then let x

1

= eval ( 

1

@ hL

1

; on; : : : ; on i );

: : : ;

x

n

= eval ( 

n

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

x

type-ok (x

i

; 

0

i

; var ())

y

^

q

V

i=1

B

i

^

x

EV-match

y

then ~

0

@K

f

else @Kv

(l)

else @Kv

(l)

(7.14)

where:

(1) The x

i

are distinct new identi�ers. x

i

plays the role of the de Bruijn index i.

(2) For i 2 [n] : B

i

=

df

B

i

[(x

j

v

)w

v

=v j v is an extra variable in B

i

]

(3) The predicate EV-match checks that the same instantiations for v are inserted in

every possible place:

EV-match =

df

V

f

p

x

k

w

0

v

= x

j

v

w

v

q

j v is an extra variable occurring more than once

in the 

0

i

, and 

0

k

w

0

v

is an occurrence of v di�erent from 

0

j

v

w

v

g

(4) ~

0

=

df

(



0

, if 

0

does not contain extra variables



0

[x

j

v

w

v

=v j v is an extra variable in 

0

] , otherwise
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Remarks:

(1) If 

0

j

is a universal pattern that matches any con�guration, e. g. because it is just an extra

variable, then the type check for x

j

can be omitted because it is always true (and hence,

by completeness of B, rewrites to true). If this holds for all j 2 [n], and if the B

i

and

EV-match parts are not present, either, the whole if then else part can by replaced by

its then part.

(2) There is also the possibility of moving the condition

V

p

i=1

b

i

into the type check condition,

which would give simpler structured rules. On the other hand, rewriting with these simpler

versions of the rules is less e�cient because leading let clauses are rewritten before

V

p

i=1

b

i

is

checked even in those cases where this condition (which is independent of the let variables)

is rewritten to false.

7.2.3 Examples

As examples, consider the rules (EO1) and (EO6) that we already encountered in Section 5.2.

(EO1) is an axiom schema:

(EO1) �

�

h int; � i

-

Expr

� (int)

The �rst step in transforming this rule is to include its additional parameters � and � into the

con�gurations:

(EO1') ` h �; �; h int; � i i

-

Expr

h �; �; �(int) i

Now the transformation procedure can be applied: here, n; p; q = 0, and thus the following two

rules are generated, assuming (EO1) is the l-th rule out of N :

h �; �; h int; � i i@Kv

(l)

1

-

h �; �; � (int) i@K

0f

h �; �; h int; � i i@Kv

(l)

-

h �; �; � (int) i@K

f

More interesting is the translation of (EO6). After inclusion of the environments � and � into

the con�gurations, it becomes

(EO6')

` h �; �; h exp; � i i

-

Expr

h �; �; val i ^ val 6= error

` h �; �; h mop exp; � i i

-

Expr

h �; �; �(mop ) (val) i

Here, p = 0; n = q = 1; L

1

= 1, and the rules generated look as follows ( only presenting the

one-step rule and assuming that (EO6) is the j-th rule):

h �; �; h mop exp; � i i@Kv

(j)

1

-

let x

1

= eval ( h �; �; h exp; � i iK

1f

@ )

in if type (x

1

) = ExtTExpr ^ #comp(x

1

) = 2 ^ x

1

#1 = � ^ x

1

#2 = � ^

type (x

1

#3) = TExpr ^ x

1

#3 6= error

then h �; �; � (mop ) (x

1

#3) i@K

0f

else h �; �; h mop exp; � i i@Kv

(j)

1
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Remarks:

� TExpr is the type constant standing for the sort representing T

Expr

.

� ExtTExpr is the type constant standing for the sort representing T

Expr

extended by addi-

tional environment parameters.

� Since val occurs only once, EV-match is empty. Because val =

E

p

h �; �; val i # 3

q

, w

val

=

p

#3

q

. This explains the occurrences of x

1

#3 in the translation of B

1

(

p

val 6= error

q

) and

in the then part (

p

~

0

q

).

7.2.4 A Transformation Algorithm for ptp/t Systems

The structure of the SOS-derived rewrite rules is obtained from the SOS deduction rules in a very

regular manner. Therefore it was not too complicated to implement an algorithm that transforms

a complete SOS de�nition into a simulating rewrite system.

In principle, each of the SOS rules can be transformed into rewrite rules individually. One only

has to know the relative position of the SOS rule in the list of all rules in order to generate the

correct contexts. So the algorithm simply consists of performing the procedure of Sections 7.2.1

and 7.2.2 (depending on whether there are transitions in the premise or not) to each of the rules

of an SOS de�nition.

A C program (developed with lex and yacc) that implements this algorithm for practical appli-

cations is described in Appendix A.2.

7.3 Properties of the Transformed System

7.3.1 Simulation

The transformation procedure has been devised in order to produce a rewriting system R that

models an SOS semantics de�nition S as closely as possible, the characteristic feature being the

set of possible transition sequences. Therefore the most interesting questions to ask about R

are what rewriting sequences are possible and how they are related to the transition sequences

of S. It can be shown that the relation between R and S is indeed very close; if rewriting is

considered modulo the equational theory E of the basic system B, there is a 1-1 correspondence

between rewriting sequences and attened transition sequences (where steps performed in order

to establish a premise also contribute to the visual steps).

In the proofs, the general assumption from Section 4.3 will be needed that B provides (in the

logical sense) a correct and complete decision procedure for all conditions that do not depend on

the semantics de�nition. This means that each term expressing such a condition has exactly one

B-normal form, viz. either true or false.

Let S be de�ned by the transition system (�; T;

-

S

), and let

-

S

be given by a set of N 2 IN

deduction rules. Let the rewrite system R

0

be the system of SOS-derived rules, and let R

=

df

R

0

] B.
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The following additional abbreviations for contexts will be useful, where k 2 [N ] and r

j

2 fon; o�g

for j 2 [N ]:

K

(k)

1

=

df

p

h 1; r

1

; : : : ; r

k�1

; on; r

k+1

; : : : ; r

N

i

q

K

(k)

1

=

df

p

h 1; r

1

; : : : ; r

k�1

; o�; r

k+1

; : : : ; r

N

i

q

K

(k)

=

df

p

h �; r

1

; : : : ; r

k�1

; on; r

k+1

; : : : ; r

N

i

q

K

(k)

=

df

p

h �; r

1

; : : : ; r

k�1

; o�; r

k+1

; : : : ; r

N

i

q

(7.15)

Note that these contexts are ground terms (i. e. contain no variables), whereas the abbreviations

(7.10) from Section 7.2 contain variables; the r

j

used here are meta variables for ground terms,

not variables for the rewriting process.

7.3.1.1 Overview

The simulation of S by R can be described as in Fig. 7.1. The intermediate terms in the rewriting

sequence result from applying rules from R to con�guration terms. They need not themselves be

con�guration terms, but they are equal to such a term modulo =

E

.

Figure 7.1: \1:n" simulation of transition sequences



0

@h �; : : :i



0



1

@h �; : : :i



1



2

@h �; : : :i



2

6 6 6

? ? ?

- - -

- - -- - -

SOS transitions

rewriting steps

Each transition step is modelled by a rewriting sequence in R which generally has more than just

one step. In order to be allowed to perform one step 

1

-

S



2

using the transition system, there

usually have to be performed a number of transitions that correspond to the premises of transition

rules. These \hidden" transitions only contribute indirectly to 

1

-

S



2

by determining parts

of 

2

. So the transition process is not organized in linear form; each transition is equipped with

a tree of other transitions (a proof tree) that justi�es it. The corresponding rewriting process,

however, can only construct at sequences of terms. Therefore all the hidden transitions become

part of the simulating sequence 

1

@K

f

�

-

R



2

@K

f

as well. Furthermore, rewriting has to

make explicit use of the rules in B, while SOS transitions take place modulo =

E

.

Simulation works in the other direction as well. If a rewriting sequence uses one SOS-derived

rule, then this sequence corresponds to a transition sequence that is obtained via this particular

SOS rule.

For the simulation of transitions, one has to bear in mind that in 

-

S



0

both source and target

may be freely modi�ed as long as the resulting con�gurations 

1

and 

0

1

stay E-equal to  resp.



0

(see Def. 5.5). In term rewriting, however, matching is done in an exact way and not modulo
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=

E

, and the steps from 

1

to  and from 

0

1

to 

0

may not be possible with

-

B

because they go

into the wrong direction (from simple to more complex terms). Therefore, only exact transitions



-

=

S



0

can be simulated (see Def. 5.8). But this is not a real restriction; by Lemma 5.9, a

transition 

-

S



0

can always be split into  =

E

~

-

=

S

~

0

=

E



0

for some ~; ~

0

2 �

0

, and then

the exact transition can be simulated.

The remainder of this section provides a formal description of this simulation.

7.3.1.2 One-step simulation

The basic building stone for the simulation in Fig. 7.1 is the simulation of one transition step by

a rewriting sequence. It is expressed formally in the following way:

One-step completeness

8; 

0

2 � 8k 2 [N ] 8r

1

; : : : ; r

k�1

; r

k+1

; : : : ; r

N

2 fon; o�g :

if 

-

=

S



0

using rule k then @K

(k)

1

+

-

R



0

@K

0f

(7.16)

In the other direction, we have the following relation between rewriting sequences with just one

application of an SOS-derived rule and a transition sequence:

One-step correctness

8; 

0

2 � 8k 2 [N ] 8r

1

; : : : ; r

k�1

; r

k+1

; : : : ; r

N

2 fon; o�g :

if @K

(k)

1

+

-

R



0

@K

0f

then 

-

S



0

(7.17)

The names \correctness" and \completeness" are used in the logical sense: Any transition cor-

responds to a rewriting sequence (completeness), and any rewriting sequence that contains one

outermost application of an SOS-derived rule corresponds to a transition step (correctness). Note

how the 1-contexts K

(k)

1

restrict rewriting to just one transition-related step.

7.3.1.3 Normal-form simulation

Building up inductively from the one-step results, simulation properties for longer transition se-

quences may be obtained. One special case is of particular interest: sequences that end with a

terminal con�guration describe the complete evaluation of their initial con�guration. Further-

more, expressions like 

�

-

S

t ( 2 �; t 2 T ) may occur in the premises of SOS rules.

For transitions to normal forms, the following implications hold:

Normal form completeness and correctness

8 2 � 8t 2 T : 

�

-

=

S

t ) @K

f

�

-

R

t@K

f

(7.18)

8 2 � 8t 2 T : @K

f

�

-

R

t@K

f

) 

�

-

S

t (7.19)

The proofs for these results can be found in Appendix B. Because one-step and normal form

transitions are intertwined via transitions in the premises of rules, all results must be proved by

one simultaneous induction (over the number of applications of SOS-derived rules).
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7.3.1.4 Simulation of divergence

From one-step completeness, it can be immediately deduced that each in�nite transition sequence

corresponds to an in�nite rewriting sequence. So non-termination is preserved by the rewriting

system:

Divergence completeness

8f

(i)

g 2 �

IN

:

(8i 2 IN : 

(i)

-

=

S



(i+1)

) ) (8i 2 IN : 

(i)

@K

f

�

-

R



(i+1)

@K

f

)

(7.20)

On the other hand, all in�nite rewriting sequences correspond to in�nite behaviours of the tran-

sition system. If the rewriting sequence keeps returning to con�gurations terms, i. e. each tail of

the sequence contains a con�guration-context pair, then one-step correctness yields the existence

of a corresponding in�nite transition sequence which can be found by taking the �rst components

of a subsequence of the rewriting sequence:

Divergence correctness, preliminary version

8 2 � 8ft

(i)

g 2 T (�; V )

IN

: t

(1)

= @K

f

^ (8i 2 IN : t

(i)

-

R

t

(i+1)

) ^

(8i 2 IN 9j 2 IN 9

0

2 � : j > i ^ t

(j)

= 

0

@K

f

) )

9f

(i)

g 2 �

IN

9j : IN

-

IN strictly monotonic :

(8i 2 IN : 

(i)

= (t

(j(i))

# 1) ^ 

(i)

-

S



(i+1)

)

(7.21)

Now assume that there is a point in an in�nite rewriting sequence from which on there are no

more con�guration-context terms. Then there also is a corresponding behaviour of the transition

system, that is, a non-terminating attempt to prove a transition. Non-termination of this kind

can only happen because there is some let term that is never �-reduced. But B is assumed to

be terminating and the contexts prevent using the same rule unsuccessfully repeatedly; so this

means that there is an in�nite chain of attempts to evaluate con�guration-contexts pairs using

the SOS-derived rules. By construction of the rules, each such attempt corresponds to an attempt

to prove a transition in the premise of a rule, and so there is the possibility of a non-terminating

proof attempt with the transition system. But this violates the additional Requirement 5.10 in

Section 5.2; therefore, such an in�nite rewriting sequence cannot occur, and so the last result to

may be simpli�ed to:

Divergence correctness, �nal version

8 2 � 8ft

(i)

g 2 T (�; V )

IN

: t

(1)

= @K

f

^ (8i 2 IN : t

(i)

-

R

t

(i+1)

) )

9f

(i)

g 2 �

IN

9j : IN

-

IN strictly monotonic :

(8i 2 IN : 

(i)

= (t

(j(i))

# 1) ^ 

(i)

-

S



(i+1)

)

(7.22)

7.3.2 Properties Related to Term Rewriting

The system R consists of two parts: the basic system B and the system R

0

containing the SOS-

derived rules. As already mentioned in Section 4.3, B is assumed to be TRS-complete, i. e.

conuent and terminating, so there are no problems with this part. But for R

0

, the situation is

di�erent because these properties are completely determined by the semantics of the language L.

As seen in the previous section, every rewriting sequence in R has a direct counterpart in S

and vice versa. This has direct consequences for conuence and termination. Assume R is
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terminating. This means that there is no con�guration-context pair that is the initial point for

an in�nite rewriting sequence. Therefore there is also no con�guration that starts an in�nite

transition sequence in S. Obviously, this property is equivalent to L being a language that only

contains terminating programs.

For conuence, the situation is very similar. Consider rewriting modulo the equational theory =

E

generated by the basic system B. Then the only rewrite rules needed are those derived from the

SOS system. Conuence of this rewrite system means that every con�guration has at most one

normal form (modulo =

E

). As a consequence, for each initial state and each program starting

in this state, there is at most one �nal state, and hence the programming language must be

deterministic.

6

So typically R is not complete. In most cases, it will be non-terminating, and therefore nor-

malization of con�guration terms must be handled with care. Languages in the tradition of

CSP (cf. Hoare [68]) and Occam ([75]) do not even lead to conuent systems since they contain

non-deterministic choice operators. This might seem a serious drawback of the method, but it

only reects the desire to have a rewrite system that models the semantics as closely as possible.

And the problem is very well known: Interpreters for functional languages, say, usually do not

terminate (disregarding restrictions like �nite stack size) when interpreting programs that are

(semantically) \non-terminating".

There is also no point in completing the system R, e. g. by applying the Knuth-Bendix procedure

(cf. [81]). All completion algorithms assume that a rewrite rule l

-

r is a \directed equation"

and hence the interpretation of l and r are the same. But the rules from R

0

are di�erent: if L

is non-deterministic, there may be two rules in R

0

that apply to a given con�guration and yield

distinct results, exactly as in the SOS system. So there may be the situation



1

@K

1 R

�

�

@K

�

-

R



2

@K

2

(7.23)

where 

1

and 

2

are (semantically) di�erent con�gurations, and so 

1

= 

2

should not hold

(neither should 

1

=

E



2

).

A natural interpretation of con�gurations is the set of evaluation sequences (or results thereof)

starting in them. In (7.23), these interpretations of left- and right-hand sides are not the same;

here the interpretation of the left-hand side is the union of all the interpretations of possible

right-hand sides.

So

-

R

0

is not the directed version of an equality relation

7

, and therefore completion does

not make sense. Essentially, what it would do is to generate a rewrite system where all non-

determinism has been arti�cially removed by declaring di�erent possible results of programs as

equal, and this system is certainly not consistent with the original SOS system. Moller [94] shows

that to reach an equational description of systems incorporating non-determinism, additional

operators have to be introduced in the language; for an example of such operators, see the next

section.

6

This requirement can be slightly weakened; e. g. the evaluation order of parameters for function calls is

unimportant as long as this evaluation has no side e�ects.

7

Quite in contrast to

-

B

!
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7.4 Another Approach: Turning GSOS Rules into Equations

For the GSOS format of Def. 5.16, there exists a di�erent approach to generate an equational

theory from an SOS system. In [2], Aceto, Bloom and Vaandrager present an algorithm to

transform a special class of GSOS systems into equations. Their work originated from the area

of process algebra (cf. Baeten and Weijland [6] or Milner [93]), so they only consider languages

of processes. All of these languages include the language FINTREE, containing the following

process constructors:

� 0, the empty process;

� ap, denoting action pre�xing;

� p+ q, denoting non-deterministic choice

The algorithm takes a GSOS system ful�lling certain \sanity conditions" and produces a set

of equations that can be used as rewrite rules. With these, any ground process term can be

normalized to head normal form, i. e. to a sum of action pre�xed terms.

Since neither the ptp/t format nor the GSOS format are generalizations of each other, an GSOS

system without negative premises will be used as an example that can be handled by both the

transformation algorithm of Aceto, Bloom and Vaandrager, and the algorithm of Section 7.2.

7.4.1 The Example Language

The example language L

k

extends FINTREE with one additional operator, viz. synchronous

parallel composition � k � . The abstract syntax or such processes is given by:

Proc 3 p ::= 0 j a p j p

1

+ p

2

j p

1

k p

2

The set of actions includes an element c serving for synchronisation of parallel processes:

Act 3 a ::= c j : : :

Ignoring the problem of termination of processes like 0 k 0, the GSOS system de�ning the seman-

tics of L

k

is the following:

` a p

a

-

p (7.24)

` p

1

a

-

p

0

1

` p

1

+ p

2

a

-

p

0

1

(7.25)

` p

2

a

-

p

0

2

` p

1

+ p

2

a

-

p

0

2

(7.26)

` p

1

a

-

p

0

1

` p

1

k p

2

a

-

p

0

1

k p

2

a 6= c (7.27)
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` p

2

a

-

p

0

2

` p

1

k p

2

a

-

p

1

k p

0

2

a 6= c (7.28)

` p

1

c

-

p

0

1

; p

2

c

-

p

0

2

` p

1

k p

2

c

-

p

0

1

k p

0

2

(7.29)

(7.24) to (7.26) form the de�nition of FINTREE, and hence these rules are always included in

the GSOS systems considered in [2].

7.4.2 Equations for Generating Head Normal Forms

The system of equations generated according to [2] includes an equational theory T

FINTREE

essentially de�ning properties of �+ �:

p

1

+ p

2

= p

2

+ p

1

(7.30)

(p

1

+ p

2

) + p

3

= p

1

+ (p

2

+ p

3

) (7.31)

p+ p = p (7.32)

p+ 0 = p (7.33)

Since any process from FINTREE is already in head normal form, there is no need to introduce

other equations.

Rules (7.27) to (7.29) from above de�ne the semantics of � k � . Each of these rules tests the

arguments of p

1

k p

2

in a di�erent way: (7.27) and (7.28) check whether a transition with an

action di�erent from c is possible in one of the arguments without considering the other, and

(7.29) whether both are ready for a c transition. In order to group rules that perform these

checks in the same way, new operators bb , cc , and j are introduced for each of the ways that

replace k in (7.27) to (7.29). The resulting rules are

` p

1

a

-

p

0

1

` p

1

bb p

2

a

-

p

0

1

k p

2

a 6= c (7.34)

` p

2

a

-

p

0

2

` p

1

cc p

2

a

-

p

1

k p

0

2

a 6= c (7.35)

` p

1

c

-

p

0

1

; p

2

c

-

p

0

2

` p

1

j p

2

c

-

p

0

1

k p

0

2

(7.36)

and the new operators are connected by the equation

p

1

k p

2

= (p

1

bb p

2

) + (p

1

cc p

2

) + (p

1

j p

2

) (7.37)

For each of the new operators, three types of equations are generated:
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(1) distributivity laws with respect to +:

(p

1

+ p

2

) � p

3

= (p

1

� p

3

) + (p

2

� p

3

)

where � 2 fbb; cc; jg.

(2) action laws, describing when a process can take an action:

(a p

1

) bb p

2

= a (p

1

k p

2

) ; a 6= c (from (7.34))

(a p

1

) cc p

2

= a (p

1

k p

2

) ; a 6= c (from (7.35))

(c p

1

) j c p

2

= c (p

1

k p

2

) (from (7.36))

(3) inaction laws, describing when a process cannot take an action, i. e. is equal to 0:

0 bb p = 0

(c p

1

) bb p

2

= 0

)

(from (7.34))

p cc 0 = 0

p

1

cc (c p

2

) = 0

)

(from (7.35))

0 j p = 0

p j 0 = 0

(a p

1

) j (b p

2

) = 0 a 6= c or b 6= c

9

>

=

>

;

(from (7.36))

In the general case when there are negative premises to consider, some more equations are gen-

erated. In our example, however, we do not need those.

The equational theory T generated by the algorithm has two important properties:

(1) correctness: for all

p

p = q

q

2 T and all ground substitutions �, p� and q� bisimulate each

other, i. e. there exists a relation � on processes such that for all a 2 Act , the following

two conditions hold:

� 8p

0

: p�

a

-

p

0

) ( 9q

0

: q�

a

-

q

0

^ p

0

� q

0

)

� 8q

0

: q�

a

-

q

0

) ( 9p

0

: p�

a

-

p

0

^ p

0

� q

0

)

(2) completeness: any process term p 2 Proc can be transformed into head normal form

using the equations from T .

Note that the equations from T cannot simply be turned into rewrite rules as the axiomatization

of + in T

FINTREE

leads to problems with termination.

7.4.3 Rewrite Rules According to Section 7.2

In order to be able to apply the algorithm of Section 7.2 to the language from Section 7.4.1, �rst

the SOS system has to be transformed into an unlabelled one (cf. Lemma 5.2). This results in

con�gurations h p; h i that consist of a process and a trace h 2 Act

�

:

� = Proc �Act

�

T = f0g �Act

�

The rules are transformed in the following way where �^� : Act

�

;Act ! Act

�

is the concatenation

operation on traces:

` h a p; h i

-

h p; h^a i (7.38)
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` h p

1

; " i

-

h p

0

1

; a i

` h p

1

+ p

2

; h i

-

h p

0

1

; h^a i

(7.39)

` h p

2

; " i

-

h p

0

2

; a i

` h p

1

+ p

2

; h i

-

h p

0

2

; h^a i

(7.40)

` h p

1

; " i

-

h p

0

1

; a i ^ a 6= c

` h p

1

k p

2

; h i

-

h p

0

1

k p

2

; h^a i

(7.41)

` h p

2

; " i

-

h p

0

2

; a i ^ a 6= c

` h p

1

k p

2

; h i

-

h p

1

k p

0

2

; h^a i

(7.42)

` h p

1

; " i

-

h p

0

1

; c i; h p

2

; " i

-

h p

0

2

; c i

` h p

1

k p

2

; h i

-

h p

0

1

k p

0

2

; h^a i

(7.43)

From these rules, the algorithm generates the following rewrite rules (only the form for 1-contexts

is presented; for the abbreviations, see Section 7.2):

h a p; h i@Kv

(1)

1

-

h p; h^a i@K

0f

(7.44)

h p

1

+ p

2

; h i@Kv

(2)

1

-

let  = eval ( h p

1

; " i@K

1f

)

in h  #1; h^( #2) i@K

0f

(7.45)

h p

1

+ p

2

; h i@Kv

(3)

1

-

let  = eval ( h p

2

; " i@K

1f

)

in h  #1; h^( #2) i@K

0f

(7.46)

h p

1

k p

2

; h i@Kv

(4)

1

-

let  = eval ( h p

1

; " i@K

1f

)

in if hd( #2) 6= c

then h  #1 k p

2

; h^( #2) i@K

0f

else h p

1

k p

2

; h i@Kv

(4)

1

(7.47)

h p

1

k p

2

; h i@Kv

(5)

1

-

let  = eval ( h p

2

; " i@K

1f

)

in if hd( #2) 6= c

then h p

1

k  #1; h^( #2) i@K

0f

else h p

1

k p

2

; h i@Kv

(5)

1

(7.48)

h p

1

k p

2

; h i@Kv

(6)

1

-

let 

1

= eval ( h p

1

; " i@K

1f

);



2

= eval ( h p

2

; " i@K

1f

)

in if hd(

1

#2) = c ^ hd(

2

#2) = c

then h 

1

#1 k 

2

#1; h^c i@K

0f

else h p

1

k p

2

; h i@Kv

(6)

1

(7.49)

Obviously, these rules are more complex than those in the previous section. But this is not

surprising; the algorithm of Aceto, Bloom, and Vaandrager is tailored to this process algebra

situation, whereas the algorithm of Section 7.2 is designed to handle a more general class of

problems. The main di�erences in the two approaches are that the algorithm from [2] generates

an equational theory and introduces new operators, whereas the ptp/t algorithm uses only the
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operators of the original system and generates a \non-equational" rewrite system (cf. Section

7.3.2): rewriting a con�guration produces one of the possible outcomes at a time (and not the

collection of all of them). To get all possible results, one has to control the rewriting process from

outside or add new operators in the way it is done in [2], since there is no other way to construct

a complete equational theory (cf. Moller [94]).
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Chapter 8

Modelling of Denotational Semantics

De�nitions

The task of transforming a denotational semantics de�nition D in clausal form into a rewrite

system representation is twofold. First, rewrite rules have to be derived from the de�ning equa-

tions, and second, the mathematical domains that form the basis of the de�nition have to be

represented. This chapter shows how both tasks can be solved in a way that is consistent with

the approach presented in the previous chapter for modelling SOS de�nitions.

Since the clausal form equations are already given in an appropriate format with a natural

orientation from left to right, their conversion into rewrite rules is rather straightforward and

much less di�cult than the transformation of SOS rules. In order to be able to cope with bound

variables in let terms and �-abstractions occurring on the right-hand side of equations, again

the ��-calculus of Section 3.2 is used. In accordance with Section 4.2.5.1 it is also applied to

model quanti�ed formulas that arise from the de�ning axioms of the mathematical domains. The

second section show how this approach is used to model cpo structures. An additional problem

occurring in this example is the need for suitable representations for monotonic and continuous

functions that yield the �xed points used for the de�nition of recursive structures like while loops

or procedure calls. Section 8.2.1 shows some of the problems concerning �xed points in the

cpo-setting of the examples.

8.1 Turning Clausal Form De�nitions into Rewrite Rules

Let C be a syntactic category de�ned by the context-free productions

C 3 p ::= p

1

j : : : j p

n

; n � 1

and let the semantic function [[�]] : C ! D be given in clausal form according to Def. 6.12. Then

there are n clauses of the form

[[c

i

]] a

i1

: : : a

ip

i

=

8

>

<

>

:

result

i1

, if condition

i1

.

.

.

result

im

1

, if condition

im

1

(8.1)
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An obvious translation of such a clause uses the conditional operator if then else and derives

a single rewrite rule directly from the clause's meaning as de�ned in Section 6.3:

[[c

i

]] a

i1

: : : a

ip

i

-

if condition

i1

then result

i1

else : : : if condition

im

i

then result

im

i

else unde�ned

D

(8.2)

This rule su�ces because there is exactly one clause for each i 2 [n]; there is no need to provide

a \way back" as in the SOS-derived rules. In most cases, condition

im

i

will be true, which means

that the innermost if then else can be replaced by result

im

i

. Otherwise, there may be cases

when [[c

i

]] is not de�ned because none of the condition

ij

is satis�ed. The purpose of the special

term unde�ned

D

2 �

";D

0
is to indicate such cases; it does not denote an element of D

0

, but rather

that none of these elements may take its place.

Note that the condition

ij

and result

ij

may contain let subterms. These can be dealt with in the

style introduced in Section 3.2 and already used in Section 7.2, i. e. by applying the ��-calculus.

Dealing with Explicit Abstractions

Denotational function de�nitions often make use of explicit �-abstractions in order to construct

unnamed functions. There are two main reasons for this:

(1) A semantic function [[�]] : C ! D is de�ned in curried form, i. e. its result domain has the

functional structure D = E ! F for some domains E and F .

Example (notationally adapted from Stoy [113], p. 196):

Consider a language containing conditional expressions:

Expr 3 e ::= if e

1

then e

2

else e

3

j : : :

The semantics of expressions is a truth value b 2 IB, depending on states � 2 �:

[[�]] : Expr ! �! IB

Then the semantics of conditional expressions can be de�ned in the one-result clause:

[[if e

1

then e

2

else e

3

]] = �� : � : if [[e

1

]] � then [[e

2

]] � else [[e

3

]] � (8.3)

(Note that the conditional expression on the right-hand side belongs to the meta-level.)

(2) Some function occurring in the result

ij

requires functional parameters and these are ex-

plicitly constructed. A typical case where this happens very often are semantics de�nitions

involving continuations (cf. Stoy [113], p. 251 �. or Gordon [58], p. 52 �.). The con-

tinuation of a piece of program represents the remainder of the program to be executed

after the evaluation of that piece; it takes the result of that evaluation as its argument and

produces a new result from it.

Example (notationally adapted from Gordon [58], p. 58):

Consider another language containing expressions denoting truth values and natural num-

bers (Val = IB ] IN):

Expr 3 e ::= 0 j e

1

= e

2

j not e

1

j : : :
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Here, the semantics of an expression not only depends on the current state � 2 �, but also

on its \expression continuation" � 2 ECont = Val! �! (�] ferror)g:

[[�]] : Expr ! ECont ! �! (�] ferrorg

The de�ning clause for the not operator is the following:

[[not e]] �� = [[e]] (�v : Val; �

0

: � : if v 2 IB then �(:v)� else error) � (8.4)

Of course these abstractions are not only used to de�ne the semantics, but they are also applied

to given arguments when the semantics of concrete expressions is to be evaluated. Therefore,

�-reduction must also be simulated if function de�nitions with �-abstractions are modelled.

In the setting of this work, this is not a fundamental problem since techniques such as the ��-

calculus (cf. Section 3.2) can be used to implement �-reduction and substitution handling. But

one should note that application of the rewrite rules de�ning the ��-calculus (cf. Def. 3.51) can

be quite time-consuming, in particular when substitutions are applied to large terms as they often

occur in denotational de�nitions. So it is worthwhile to try to remove the explicit abstractions

beforehand by performing abstract �-reductions.

This is hardly possible for abstractions of the form of the second example above, because in

equations such as (8.4) it is not known yet what the arguments might be that are passed to the

continuation. Usually, the information about this parameter passing is only contained in the

de�nition of the semantics of the most primitive language elements. In the example (2) from

above, e. g., the semantics of the truth values is de�ned by equations such as [[true]] � � = � (tt).

But in the other case, the removal of abstractions is fairly easy. In an equation such as (8.3),

it simply amounts to adding the bound variables occurring outermost on the right-hand side

as additional arguments to the left-hand side, and removing the �-abstraction. This exactly

produces the e�ect of �-reduction, and for the example it results in:

[[if e

1

then e

2

else e

3

]] � = if [[e

1

]] � then [[e

2

]] � else [[e

3

]] � (8.5)

This method also works for clauses with more than one possible result, because by condition (6)

in Def. 6.12 all of these results are abstractions, or none of them is. Clauses of the form

[[c

i

]] a

i1

: : : a

ip

i

=

8

>

<

>

:

�x : X : result

i1

, if condition

i1

.

.

.

�x : X : result

im

i

, if condition

im

i

can also be treated in the same way by adding x to the arguments on the left-hand side, and

removing all of the \�x : X :" on the left-hand side.

Uncurrying of semantic functions Working with curried functions can lead to rather compli-

cated terms: A curried function application [[c]] a

1

a

2

must be modelled as apply(apply( [[c]] ; a

1

); a

2

),

where the overloaded apply operator has the functionalities apply : C;A

1

! (A

2

! A) and

apply : (A

2

! A); A

2

! A.

1

1

In a �rst-order formalism such as the one used here, only simple sorts are allowed for the result type of

operators. Therefore, a new sort D = A

2

! A must be introduced for the de�nition of the apply operators.
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These complications can be avoided if the above transformations for abstraction removal are

performed in such a way that every occurrence of a semantic function [[�]] in the whole de�nition

is supplied with exactly the same number m and the same kind of arguments from domains

A

1

; : : : ; A

m

(assuming D = A

1

! � � � ! A

m

! A):

[[c]] a

1

: : : a

m

(a

j

2 A

j

for j 2 [m]; c 2 C)

If this is the case, then instead of the curried version

[[�]] : C ! A

1

! � � � ! A

m

! A (8.6)

the uncurried version can be used:

sem : C;A

1

; : : : ; A

m

! A (8.7)

Using the uncurried version in the example from above, [[c]] a

1

a

2

can be modelled in the form

sem (c; a

1

; a

2

) which is much more readable and easier to deal with than the solution using apply

operators.

2

The semantics de�nitions used as examples in the proof experiments described in Chapter 10 only

contained outermost abstractions of the form (8.3), if any. Therefore, they could be removed as

described above; due to the special structure of these de�nitions, the uncurrying step from (8.6)

to (8.7) could also be performed, resulting in smaller terms and hence more e�cient rewriting

and more readable proofs.

8.2 Modelling Cpo's with Rewrite Systems

The basic mathematical structure for the denotational value domains of all the examples is that

of a cpo. In this section, rewrite rules are devised that capture the properties of such a structure.

Most of the rules of this section consist only of one predicate term p. Of course, they must be

read as abbreviations for the rewrite rule p

-

true.

Let hD;v i be a cpo. The �rst step is to de�ne a sort D with variables d; d

1

; d

2

; : : : 2 V

D

and an

operator v: D;D! Bool that represents the partial ordering. This leads to the rules

3

d v d

d

1

v d

2

^ d

2

v d

1

) d

1

= d

2

d

1

v d

2

^ d

2

v d

3

) d

1

v d

3

(8.8)

The bottom element of D is represented by ? :! D; it is de�ned by the rule

? v d (8.9)

2

The notation [[c;a

1

; a

2

]] is not adopted because the double brackets [[�]] usually serve to separate the syntactic

argument (inside the brackets) from the semantic arguments.

3

Note that all of these are rewrite rules according to Def. 3.18; ) is just a Boolean operator and has nothing

to do with conditional term rewriting as de�ned e. g. by Kaplan [78].
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In order to be able to de�ne that a partial order constitutes a cpo, the concept of chains is

required. According to Def. 6.2, these are a special form of sequences, and so a sort seqD is

introduced into S that is intended to model the set of sequences D

IN

. To this end, an application

operator

: : seqD;Nat ! D

is de�ned; ds . n represents the n�th element of the sequence ds 2 D

IN

.

That a sequence ds 2 D

IN

is a chain is expressed by the equivalence

ds is a chain () 8n 2 IN : ds

n

v ds

n+1

(8.10)

An equivalence can be read as an equation on the sort Bool, and by applying the the method of

Section 4.2.5.1, it can be turned into a rewrite rule that de�nes the recognizer operator chain :

seqD ! Bool:

chain(ds)

-

forall ( Nat; ds: n v ds:( n + 1)) (8.11)

(assuming that the addition operator + : Nat, Nat ! Nat and 1 : ! Nat have already been

appropriately de�ned and n is the �rst de Bruijn index of sort Nat). Note, however, that this

method of using quanti�ers in terms has its fundamental weaknesses as already mentioned in

Section 4.2.5.1. These rules may only be used if nested quanti�ers ranging over the same sort do

never occur.

In cpo's, chains have a least upper bound. So an operator lub : seqD ! D is introduced and

de�ned by the rules

chain(ds) ) ds:n v lub(ds)

chain(ds) ) ( forall ( Nat; ds: n v d) ) lub(ds) v d )

(8.12)

For sequences d that are not chains, lub(d) is still a well-formed term; it is not de�ned by any

rewrite rule, however.

When dealing with chains that only have a �nite number of di�erent elements, e. g. because they

are representations of �nite chains (with the last element repeated), Lemma 6.4 turns out to be

very useful for calculating the lub of these. So another rule is added (assume that n is a variable

of sort Nat):

chain(ds) ) ( forall ( Nat; n � n ) ds: n = ds:n ) ) ( lub(ds) = ds:n ) ) (8.13)

In Appendix C, an example is presented where these rules are used to prove that the domain of

functions between two cpo's again forms a cpo, and this proof is compared to a proof performed

not just by rewriting, but also by other methods.
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8.2.1 Handling of Fixed Points

For some applications, a representation of the least �xed point operator �f of Def. 6.7, or a way

to deal with �xed points in general will be needed. In particular, the � operator may occur in

the clauses of denotational function de�nitions of the form introduced in Def. 6.12. It is easy to

de�ne a �xed point x of a function f : X ! X by an equation:

x = f(x) (8.14)

But the problem with this equation is that it is di�cult to use it as a rewrite rule. The direction

f(x)

-

x (8.15)

is mostly useless; in the applications at hand, x stands for the semantics of some kind of recursive

program part, and it is given without the surrounding f(: : :). This means that (8.15) cannot be

applied. On the other hand,

x

-

f(x) (8.16)

can be applied to unfold the semantics; but this rule is obviously not terminating. So one has

to make sure that (8.16) is applied in a very controlled way; in proofs, this usually means \just

once" because after one step a point is reached where some induction hypothesis can be exploited

and so a complete evaluation of the term containing the �xed point (for examples of such proofs,

see Chapter 10) is not necessary. Usually, the operator f does not have the regular properties

required to apply the control mechanism of Section 3.3 that uses contexts, and so some other

technique must be used. The example proofs of Chapter 10 rely on control features of the proof

tool that is used; here, it su�ces to be able to mark the rule (8.16) as \only to be used on

explicit command". Without such features, a proof tool in general cannot be used to implement

reasoning about �xed points in the setting of this chapter.

An example for reasoning about �xed points with the help of a proof tool can be found in Broy

[17]. In this report, several experiments with the Larch Prover are described, and one of them

consists of a correctness proof for code generation for a functional language whose semantics is

de�ned in denotational form.
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Chapter 9

The Larch Prover as a Tool for

Implementation

The development of the simulation methods of Chapters 7 and 8 was motivated by the wish to

be able to use a proof tool in reasoning about SOS and denotational semantics de�nitions. As an

example for such a tool, the Larch Prover has been chosen for the implementation of the methods

and for performing some example proofs. This chapter will provide a short introduction into the

prover and describe those features that are needed to understand the examples. In particular,

term rewriting and general theorem proving aspects will be mentioned.

9.1 Introduction

The Larch Prover (LP for short, see Garland and Guttag [51, 52]) is a proof support system

for a subset of many-sorted �rst-order logic

1

. Originally, it has been developed for analysing

speci�cations written in Larch (cf. Guttag and Horning [62, 63, 64]), but it has also been

applied in other areas like software and hardware veri�cation and reasoning about algorithms.

An overview of recent activities can be found in Martin and Wing [88].

Since LP has been developed from the REVE rewrite rule laboratory (cf. Forgaard and Guttag

[44] and Lescanne [84]), its main strength lies in the area of term rewriting. But LP also provides

features that make it a useful tool for proof development. It is not, however, designed to be an

automatic theorem prover, but rather an interactive proof checker or, as Garland and Guttag

[52] put it, a \proof debugger". In general, it only makes sense to start working with LP if a not

too rough idea of the proof to be developed exists beforehand.

2

LP is written in CLU and runs under UNIX on several di�erent types of hardware, including

SUN workstations on which the example proofs of this work have been implemented. Although

it is possible to work with LP even on smaller machines if the problems are not too big, it is

advisable to use fast machines with a large memory for realistic applications. Only then does

working with LP become really interactive.

1

The version of LP used in the examples and described here is Release 2.4. Not all the items mentioned in this

chapter may pertain to other versions.

2

In fact, this is true for all automated proof assistants.
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Notation: Input for and output of LP will be written in typewriter font in order to distinguish

it from the notation for abstract terms of the previous chapters which were written in sans serif

font.

9.2 Speci�cation and Rewriting Features of Special Interest

All proofs with LP have to start with the de�nition of an equational speci�cation using the

many-sorted approach described in Chapter 3. Only the sort Bool modelling the truth values has

a prede�ned representation in LP (Bool); all other sorts have to be introduced explicitly.

Only a subset of �rst-order logic is supported. In particular, there is (almost) no way to use

quanti�ers in Bool sorted terms. (A very restricted form of universal quanti�cation is allowed

in deduction rules; see below.) LP provides the possibility to declare binary in�x operators (but

no mix�x operators), and to declare operators as commutative or associative and commutative.

The problem with the de�nition of commutativity by non-terminating rewrite rules of the form

a * b ! b * a does not exist here, since the special operator properties are already respected in

matching, substitution, and rewriting.

The semantic approach taken by LP is that of loose speci�cation; so any term-generated

algebra that satis�es all equations may be taken as a model of the speci�cation.

From the equational speci�cation, LP generates a term rewriting system by turning the equations

into rewrite rules. Methods are provided that guarantee termination and conuence of rewrite

systems (by construction of a termination ordering, see Def. 3.40, or by calculation of critical

pairs, see Def. 3.46, respectively); application of these methods is not mandatory, however.

Example 9.1

The running example of this section is related to Chapter 4; an axiomatization for VDM-

style domains is to be developed. So assume that the following domain equation is given:

Val = Bool j Nat� Nat j error

i. e. elements of the domain Val can either be Booleans, pairs of natural numbers or the

special element error.

The �rst step to model this domain in LP is to introduce the sorts:

declare sorts Val, Nat

(as said before, Bool is prede�ned). Next, the variables for the di�erent sorts are introduced.

declare variables

b, b1, b2 : Bool

n, n1, n2 : Nat

v, v1, v2 : Val

..

(The �nal \.." line terminates a declaration that exceeds a single line.)

Now operators are declared in the style of Section 4.2.1. For each of the subdomains of Val,

there is a constructor mapping from the subdomain into Val, and for each subdomain with
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a name, an injector into that subdomain and a recognizer. For tuple domains, additionally

selector (projection) operators are desired. Tokens are taken as constants. This leads to

the following set of rules describing the relation between the standard operators:

declare operators

% constructors:

mk_Val : Bool -> Val

mk_Val : Nat, Nat -> Val

_ERROR : -> Val

% selectors for Nat x Nat:

s_1 : Val -> Nat

s_2 : Val -> Nat

% injector into the subdomain Bool:

to_Bool : Val -> Bool

% recognizer for the subdomain Bool:

is_Bool : Val -> Bool

..

There are some peculiarities with this declaration. First note that overloading of operators

is allowed in LP. There is a type checker built in that guarantees that all terms that

occur are well-typed; it may become necessary to decorate terms with a type to make this

checking possible. And second, there are two di�erent forms of using the sort Bool in

this declaration. In to Bool, it serves as the name of a subdomain of Val, whereas in the

declaration of is Bool, Bool represents the \meta sort" of Booleans.

�

After the signature is �xed, equations can be entered. There are two ways to do so: either by

separating left- and right-hand side by a ->, or by a ==. In the �rst case, the equation is considered

as directed, the direction of the rule being determined by the arrow, whereas there is no direction

in the second case.

In order to express that some Bool-sorted term equals true, it su�ces just to write the term

without \-> true" or \== true"; this is added by LP automatically. Rules of the form not(t)

are converted automatically into the form t -> false.

Example 9.2

Some of the laws valid in the example can be stated as follows:

set name-prefix Val

assert

s_1(mk_Val(n1, n2)) -> n1 % Constructor-selector rules

s_2(mk_Val(n1, n2)) -> n2

is_Bool(mk_Val(b)) % Recognizer rules

not(is_Bool(mk_Val(n1, n2))

not(is_Bool(_ERROR))

..

In LP, each rule has a unique name. Setting the name pre�x to Val here has the e�ect that

the rules can be addressed as Val.1, : : : , Val.5. The command assert begins the de�nition

of axioms, in this example the de�nition of a set of equations.

�
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The equations cannot be used for rewriting until they have been turned into rewrite rules. This

is also true for equations l -> r; here the arrow only indicates that the direction \right to left"

is not allowed. LP transforms equations into rewrite rules by \ordering" them, i. e. by trying to

�nd a termination ordering such that the left-hand side of each resulting rule is strictly larger

than the right-hand side (see Theorem 3.41). This process is started either automatically after

the rules have been entered (if the switch automatic-ordering is set to on), or by entering the

command order.

The usual ordering process is based on weights assigned to the operators of the signature; several

strategies for the construction of the ordering are available. Especially when there are many

operators to consider, this can be very time-consuming; it might also happen that LP does not

succeed in ordering all rules on its own. In these cases, there are two possibilities. The �rst is to

instruct LP to order equations in the direction they were entered by typing

set ordering-method left-to-right

in which case termination cannot be guaranteed anymore. The second way to proceed is to order

the rules interactively by proposing suitable operator weights .

After the rules have been ordered, they can be used to rewrite terms. The default case is that

this is done using all rules; if certain rules shall be excluded (e. g. because they are known to

be non-terminating or because they de�ne an abbreviation that is to be unfolded only on special

occasions), this can be done by writing

make name passive

where name subsumes all names that have name as their name-pre�x. It is also possible to use

UNIX-like wildcards in name; e. g. *hyp subsumes all name-pre�x ends with hyp. The inverse

action is:

make name active

Passive rules can still be used; but they must be addressed explicitly by

rewrite term with name

(if term is to be rewritten just once using rules with name pre�x name) or

normalize term with name

(if a normal form of term with respect to the set of rules with name pre�x name is to be

generated). In both cases, term will be normalized with the set of all active rules.

LP maintains the invariant that the rules of the system are normalized with respect to each other

(\internormalized"). Rules can be protected from this process by writing

make immune name .

This can be useful if all the terms in a rule R are known to be normal forms and the rewriting

system is large. In this case, the time saved by not trying to apply in vain all the rules to the

rule R can be quite considerable.

Critical pairs between rules can be computed by writing

critical-pairs name

1

with name

2

All pairs found during this process are ordered into rewrite rules as described above and added

to the system. An attempt to compute all critical pairs of a system is started by

complete .

If this procedure terminates successfully, the resulting system is TRS-complete. Note, however,

that it does not necessarily terminate (cf. Section 3.1.3).

Normally, rewriting sequences are not fully documented. This can be changed by
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set trace-level n

where a larger number n causes LP to print more information during rewriting, e. g. attempts to

apply rules and matching substitutions.

9.3 LP as a Theorem Prover

There is a variety of proof methods available in LP, both in forward and in backward direction.

Forward inference (also called goal-directed inference) uses the given facts and hypotheses to

deduce additional information, whereas backward inference (or subgoal-directed inference) starts

from the goal to be proved and reduces it to (hopefully simpler) subgoals.

As already said before, however, LP has not been designed to be used as an automatic theorem

prover. So there are only very restricted possibilities to de�ne strategies or tactics as e. g. in HOL

[59], KIV [65] or PVS [104]. There is no way to \program" proofs by taking proof steps only

under certain conditions or by repeating them until some condition becomes true. The decisions

needed for building complex proof structures always have to be taken by the user. They can,

however, be stored in a �le (a \proof script"), so proofs can at least be repeated.

In the following, the main proof methods will be presented.

Normalization by term rewriting is the fundamental method since LP is based on rewrite

systems. It is used in a forward way by rewriting facts and hypotheses, but also in the other

direction by rewriting the current goal.

Computation of critical pairs is sometimes a very useful way of forward inference. Since

the process stops when some goal has been proved by the newly generated rewrite rules, it can be

used to �nish a proof when all the required information has been collected, but a direct rewrite

proof is not possible.

Example: Consider the following situation. The rewrite system R is based on the signature

declare sort S

declare variables x, y: S

declare operators

a, b : -> S

f : S -> Bool

g : S, S -> Bool

..

and contains the rules

f(x, y) -> g(x)

f(a, b) -> true

The goal that is to prove is g(a).

It is easy to see that g(a) equals true in the theory generated by R, but no rewrite proof is

possible since there is no g-rule (R is not TRS-complete).

3

But by computing critical pairs,

3

Note that the �rst rule cannot be ordered in the other direction because

var (

p

g(x)

q

) = fxg 6� fx; yg = var (

p

f(x;y)

q

).
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the goal can be proved; in this simple case, the goal even is the only critical pair of the two

rules: g(a) = true.

Application of deduction rules: Besides rewrite rules, LP also provides a restricted form of

deduction rules, written in the form

assert

when premise

yield conclusion

..

where both premise and conclusion are Bool-sorted terms. When premise can be deduced from

the system, conclusion is added to it. A particularity of deduction rules is that the premise may

contain universal quanti�ers whereas normally quanti�ers are not part of LP's object language.

4

As an example for such a rule, consider the modelling of least upper bounds in some cpo D (cf.

Def. 6.1 and rule (8.12)). Assume that ch is a variable for chains in D, and that

p

ch:n

q

represents

the n-th element of a chain ch. Let lub be the operator mapping a chain to its least upper bound,

let <= model the ordering on D, and let d be a variable for elements of D. Then the property that

the lub of a chain is smaller than all upper bounds can be expressed by the following deduction

rule:

assert

when (forall n) ch . n <= d

yield lub(ch) <= d

..

By using deduction rules instead of those rewrite rules of Section 8.2 that explicitly mention

quanti�ers, quanti�ers can be completely avoided. Therefore one does not have to provide rules

that model predicate calculus; since LP already includes rules for propositional logic, this means

that one does not have to set up logical rules at all. See Appendix C.3 for an example proof with

deduction rules.

Induction is one of the most important methods of backward inference in LP. The special form

available is called \generator induction". In the following, this concept will be explained using a

simple example. Consider the signature

declare sorts S, T

declare variables s : S, t : T

declare operators

b : T -> S

r : S, T -> S

..

where S is the representation of some set S. If all elements of S can be represented by terms

whose subterms of sort S are constructed by b or r, then S is said to be generated by b and r.

In this case, a predicate term p[s] depending on the variable s can be proved using structural

4

This is one of the major disadvantages of LP as it sometimes makes direct formulation of properties impossible.
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induction:

prove p[s] by induction on s

In the induction basis, p[b(t)] is considered, and in the induction step p[r(sc, tv)] where sc

is a newly generated (induction) constant of sort S and tv a newly generated variable of sort T.

The induction hypothesis for the new constant is p[sc].

The induction rule behind this procedure is the following:

8t 2 T : b(t) ^ ( 8s

1

2 S : p[s

1

] ) p[r(s

1

; t)] )

8s 2 S : p[s]

where the symbols in italics are the semantic counterparts of the symbols in typewriter font

consisting of the same characters.

In order to enable this induction rule, one has to enter

assert S generated by b, r .

In LP's terminology, this rule is also called an \induction rule".

The example situation is extended in the obvious way if there is more than one base case or more

than one case in the induction step (caused by more operators mapping into S without or with S

as an argument sort).

Induction was particularly important for the proofs using the simulation methods. The semantics

de�nitions considered all consist of an inductive de�nition, based on the recursive structure of

language constructs given by a context-free grammar. And so proofs generally start with an

induction on this recursive structure.

Other methods A frequently used proof method is case distinction; in LP, this is initiated by

prove p by cases t

1

,: : :,t

n

where p,t

1

,: : :,t

n

are Bool-sorted terms. The result of this proof command is that LP generates

n + 1 new subgoals: one for proving p using each of the t

i

in turn as additional hypothesis, and

one for proving that the case distinction is exhaustive (i. e. t

1

OR : : :OR t

n

= true).

Proof commands that exploit the logical structure of goals are the methods for implications and

conjunctions:

prove p => q by =>-method

causes LP to add p to the hypothesis in an attempt to prove q. In order to retain consistency, all

variables occurring in p have to be turned into constants during this proof (both in p and in q).

The names for these constants are generated by LP; typically, a \c" (for constant) is appended

to the original name of the variable.

Conjunctions p & q can be proved by typing

prove p & q by &-method .

This start two separate proofs for p and q (this results in less complex conjectures). Finally,

prove p by contradiction

causes LP to add not(p) to the hypotheses and to generate the subgoal true = false.

Resuming proofs If a proof method does not succeed in �nishing a proof completely, the proof

can be continued using another method M by entering:
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resume by M

Testing for the end of a proof LP provides a special command for checking whether all

conjectures (top-level and lemmas) have been proved:

qed

If there still is an un�nished proof, the command results in an error message indicating which

proof still has to be �nished. If this happens when the command is part of a proof script �le,

further execution of that �le is prevented. So this command can be used inside a proof script to

check that all lemmas have been proved before the proof of a theorem is begun.
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Chapter 10

Application - a Semantics

Equivalence Proof

In this chapter, it will be demonstrated how rewrite systems that are derived from SOS and

denotational de�nitions using the techniques of Chapters 7 and 8 can be applied in computer-aided

veri�cation. The problem addressed here has already been solved without mechanical assistance

by Lakhneche [82]. It is particularly useful for demonstrating the simulating rewrite systems

since it deals with several di�erent semantics de�nitions; the aim is to prove the equivalence

of two di�erent semantics de�nitions (one SOS and one denotational) for a �xed programming

language. Moreover, there already exists a complete hand proof, and hence the peculiarities of

the automated proof can be pointed out more clearly.

10.1 The Problem

The main objective of the ProCoS project [11, 14] is to demonstrate a method for obtaining a

fully veri�ed computer system. An important part of such a system is a compiler for a high-level

programming language. It has to generate code correctly, i. e. source and target program have to

be semantically \equivalent" (more precisely, the target program has to re�ne the source program)

in a sense that has to be de�ned suitably to meet the requirements of the actual application.

In order to implement compiling speci�cations written in a functional style (see e. g. Fr�anzle

[45, 46]), a language called SubLisp is used (cf. M�uller-Olm [96]), which is a purely functional

subset of Common Lisp (cf. Steele [111]) with simple data. In order to be able to generate

compiler programs that are executable on the transputer microprocessor, a compiler for SubLisp

was implemented. Aspects of the veri�cation of this compiler will be the topic of this section.

The semantics de�nitions for SubLisp and for transputer machine code are very di�erent in style:

SubLisp is de�ned denotationally [96], whereas the machine code is de�ned operationally in SOS

style [15]. The gap between the two languages is bridged by using a language called PL

R

0

as

intermediate language for the compilation. This language is essentially the language of while pro-

grams enriched by input and output features, one-dimensional integer arrays, and parameterless

procedures. Since it contains arrays and procedures, it is a suitable target for the compilation of

a functional language, and since it is imperative, it is much closer to machine code than SubLisp.



110 Chapter 10. Application - a Semantics Equivalence Proof

Figure 10.1: Compiling veri�cation for SubLisp
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For veri�cation against SubLisp, PL

R

0

has a denotational de�nition, and for veri�cation against

machine code, it has an SOS de�nition (cf. Fig. 10.1). In Sections 5.2.1 and 6.3.1, parts of these

de�nitions have already been introduced.

The idea is to deduce the correctness of the compilation from SubLisp to machine code from the

correctness of the compilations from SubLisp to PL

R

0

(compile

1

) and from PL

R

0

to machine code

(compile

2

). But since the proof for compile

1

is based on denotational semantics and the proof for

compile

2

on operational semantics, this deduction is only possible if the equivalence of the two

semantics de�nitions for PL

R

0

has been proved. Lakhneche [82] has given such a proof, and the

aim is to use LP to produce a mechanically checked version of it.

In Section 10.2, the description of the proof starts with an examination of the subproblem of

proving semantics equivalence for PL

R

0

expressions. This section also includes an account of the

general inductive proof method used to solve the problems. Section 10.3 then deals with the

veri�cation problem for sequential processes.

10.2 Semantics Equivalence for PL

R

0

Expressions

Although expressions form but a small sub-language of PL

R

0

, many general proof techniques can

already be demonstrated on this subproblem. This section starts with a su�ciently extensive ac-

count of its features, introducing all those parts that are necessary to understand the equivalence

theorem. The form of exposition is in large parts taken directly from Lakhneche [82]. After that,

the general proof method will be explained, and the automated proof will be compared with the

hand proof in [82].



10.2. Semantics Equivalence for PL

R

0

Expressions 111

10.2.1 Abstract Syntax

PL

R

0

provides the usual set of arithmetical and logical operators (monadic and dyadic):

mop 2 MonadicOp

dop 2 DyadicOp

mop ::= � j NOT

dop ::= + j = j AND j : : :

Variables can be simple identi�ers or array components:

name 2 Name

var 2 Variable

exp 2 Expr

var ::= name j name [exp]

Expressions can be integers, truth values, variables or applications of operators:

int 2 Int

exp ::= int j TRUE j FALSE j var j mop exp j exp

1

dop exp

2

An equivalent de�nition that makes the recursive structure more obvious is the following:

exp ::= int j TRUE j FALSE j name j name[exp] j mop exp j exp

1

dop exp

2

The latter form was used because it eases application of LP's built-in induction proof method.

Consider the proof of a conjecture p(exp) by induction on the syntactic structure of the expression

exp. The case exp = name [exp

1

] should belong to the induction step. With the original de�nition

of the syntactic domains, however, the case exp = var is considered by LP as belonging to

the induction basis because var does not contain an expression subterm, and so no induction

hypothesis is generated.

As an alternative to the merging of the syntactic domains for exp and var , one could add the

missing hypothesis as an additional axiom in the case exp = name[exp

1

] (or, more exactly, using

the term constructors of Chapter 4, exp = mk-Expr(mk-Var(name, exp))). In this small example,

merging is the more elegant solution, but in Section 10.3.1 an example of a similar case will be

seen where the addition of axioms is the better solution.

10.2.2 Static Semantics

In this simple example, static well-formedness is only a question of correct typing. Identi�ers

occurring in expressions can either denote integer or array variables. This is recorded in static

environments:

� 2 Dict =

df

Name ! Type

Type =

df

fVarIntg ] f(ArrayInt; n) jn 2 IN

0

g ] f?g

where �(name) = ? i� name has not been declared as an identi�er. The type of expressions can

be either \Boolean" or \integer":

tp 2 Tp =

df

fBool; integg

Formulas �

Variable

var and �

Expr

exp : tp are used to express well-formedness of variables

and expressions, respectively, with respect to static environments �. They are de�ned by a
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deduction system; the format of the rules can be seen in the following examples:

(ER1)

�

Variable

var

�

Expr

var : integ

(ER2) �

Expr

int : integ

(ER6)

�

Expr

exp : Bool

�

Expr

NOT exp : Bool

As usual, the intended meaning of this system is that PL

R

0

constructs are statically well-formed

if and only if this property can be proved using the rules.

In order to model the static semantics by rewrite rules, we �rst introduce a \well-formed" oper-

ator:

wf expr: Expr, Dict, Type -> Bool

where Type contains INTEG and BOOL , modelling integ and Bool, the possible types of expres-

sion. The corresponding operator for variables is not needed since the de�nition of the domain

Var has been expanded into the de�nition of Expr .

The deduction rules are always used in a backwards way to prove static correctness of given

complex expressions from the static correctness of simpler components and not in the other

(forward) direction. Moreover, there are no extra variables in the premise of the deduction rules.

Therefore a set of inference rules

premise

1

�

Expr

exp : tp

� � �

premise

n

�

Expr

exp : tp

that describes the several possibilities

1

for an expression exp to be well-typed with type tp can

be modelled by the rewrite rule

wf expr(exp, delta, tp ) -> premise

1

| : : :| premise

n

.

where premise

i

is the representation of premise

i

.

For the inference rules from above, this results in the following rules ( `:' is the application

operator; idf and i are the typical variables for Name and Int , respectively):

wf expr(mk Expr(idf), delta, INTEG ) -> ((delta . idf) = VarInt)

wf expr(mk Expr(i), delta, INTEG )

wf expr(mk Expr(exp1, PLUS, exp2), delta, INTEG ) ->

wf expr(exp1, delta, INTEG ) & wf expr(exp2, delta, INTEG )

The �rst rule results from expansion of var in the exp productions. In order to capture the

intended equivalence, some more rules are needed. For otherwise, with only the rules from above,

a term like

wf expr(mk expr(42), delta, BOOL )

is irreducible, even though it should reduce to false. Therefore, all the cases concerning the

\wrong types" have also to be added, e. g.

1

For most kinds of expressions, there is exactly one such rule.
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wf expr(mk Expr(idf), delta, BOOL ) -> false

wf expr(mk Expr(i), delta, BOOL ) -> false

wf expr(mk Expr(exp1, PLUS, exp2), delta, BOOL ) -> false

10.2.3 Operational Semantics

The operational semantics of an expression depends on the actual operational environment,

recording the memory locations corresponding to the identi�ers, and on the machine state,

containing the information which values are stored at the locations. Values may be integers,

Booleans, or the special element error denoting faulty evaluation:

val 2 Val =

df

Integer ] Bool ] ferrorg

� 2 � =

df

Loc! Integer

� 2 OpEnv =

df

Name ! (Loc ] Loc

�

)

The transition system for the semantics of expressions is de�ned relative to a given static envi-

ronment �:

�

�

Expr

=

df

fh exp; � i 2 Expr � � j 9tp 2 Tp : �

Expr

exp : tpg

[ T

Expr

T

Expr

=

df

Val:

The semantics of expressions, however, does not depend on the static environment. It is only used

to restrict the set of con�gurations to those containing well-typed expressions. The transition

relation is based on the interpretation � that assigns meanings to the language primitives. The

de�ning rules depend on an operational environment �; some examples are:

2

(EO1) �

�

h int; � i

-

Expr

�(int)

(EO4) �

�

h name; � i

-

Expr

�(�(name))

(EO6)

�

�

h exp; � i

-

Expr

val ^ val 2 Val n ferrorg j error

�

�

h mop exp; � i

-

Expr

�(mop ) (val) j error

The last rule is shorthand for two rules, each with identical left-hand sides in the transitions.

The various cases for the right-hand sides are separated by `j', the n-th case in the conclusion

corresponding to the n-th case in the hypothesis.

10.2.4 Denotational Semantics

Denotational environments and values di�er from their operational counterparts by being possibly

unde�ned:

DenVal =

df

Val ] f?

DenVal

g

env 2 DenEnv =

df

Name ! (Loc ] Loc

�

] f?

DenEnv

g)

2

As already said before (cf. Section 5.2.1), these rules ful�l the restrictions of the ptp/t format since the

environments � and � can be integrated in the con�gurations (see Section 10.2.7 below).
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The semantic function E for expressions is de�ned in the standard way. Example clauses are:

E : Expr �! DenEnv �! � �! DenVal

E [[int]]env � =

df

�(int)

E [[name]]env� =

df

8

<

:

�(env(name)) ; if env(name) 6= ?

error ; otherwise

E [[mop exp]]env� =

df

8

>

>

<

>

>

:

�(mop ) (E [[exp]] env�) ;

if E [[exp]] env� 2 Val n ferrorg

error ; otherwise

10.2.5 The Equivalence Theorem

Before de�ning what is meant by equivalence of the two semantics de�nitions, �rst a compatibility

relation on environments has to be introduced: Let � 2 OpEnv; � 2 Dict. Then

� : �

def

() 8 name 2 Name : (�(name) 2 Loc, �(name) = VarInt) ^

(�(name) 2 Loc

�

, �(name) = (ArrayInt;#�(name)))

where #l for a list l is the length of l.

Now the equivalence theorem for expressions can be stated

3

:

Theorem 5.2 from [82] (expression equivalence)

For all static environments � 2 Dict, expressions exp 2 Expr , operational environments � 2

OpEnv, states � 2 � such that

� : � ^ 9 tp 2 Tp : �

Expr

exp : tp

the following two conditions are satis�ed:

(1) �

�

h exp; � i

-

Expr

t i� E [[exp]] ~� � = t;

for all t 2 T

Expr

and

(2) :(9t 2 T

Expr

: �

�

h exp; � i

-

Expr

t) i�

E [[exp]] ~� � = ? .

where ~�(name) is �(name) if this is in Loc [ Loc

�

and ? otherwise. In words: provided the

environments � and � are compatible and the expression exp is well-typed, the denotational

semantics of exp is ? i� the operational semantics does not produce a result (given as a terminal

con�guration), and it is di�erent from ? i� this value is also produced operationally.

A su�cient condition for the above theorem is:

8� 2 Dict 8exp 2 Expr 8� 2 OpEnv 8� 2 � :

� : � ^ 9tp 2 Tp : �

Expr

exp : tp )

(E [[exp]] ~�� 6= ? ^ �

�

h exp; � i

-

Expr

E [[exp]] ~��)

(10.1)

In words: If exp is statically well-formed, then operational and denotational semantics yield

the same value which is not \unde�ned", provided the static and dynamic environments are

compatible.

3

Verbatim quotes from [82] will be printed in italic font in order to distinguish them from the rest of the text.
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In [82], (10.1) is proved by structural induction on exp.

10.2.6 The Proof Method

The expression exp in (10.1) whose semantics is to be determined is not given explicitly; ap-

plication of the semantic rules, however, requires information about the semantics of its subex-

pressions. Therefore the automated proof must be based on a case distinction considering the

di�erent possibilities for the structure of exp; information about subexpressions must be gained

by an inductive argument, just as in the hand proof.

To illustrate how this induction works in connection with the simulating rewrite systems, consider

one case of the induction step, viz. that case where exp is of the form mop exp

0

for some arbitrary

but �xed exp

0

2 Expr and mop 2 MonadicOp. If the aspects of compatibility of environments

and static semantics in (10.1) are neglected, it remains to prove:

8� 2 OpEnv; � 2 Dict; � 2 � : �

�

h mop exp

0

; � i

-

Expr

E [[mop exp

0

]] ~� � (10.2)

The �rst step is to include the environments in the con�gurations because this gathers related

information in a way that is better accessible by rewriting. So the new con�guration sets are

�

Expr

=

df

fh �; �; exp; � i 2 OpEnv � Dict� Expr � � j �

Expr

exp : tpg

[ T

Expr

T

Expr

=

df

Val

which leads to the reformulated goal

8� 2 OpEnv; � 2 Dict; � 2 � : h �; �; mop exp

0

; � i

-

Expr

E [[mop exp

0

]] ~�� : (10.3)

The induction hypothesis is

8� 2 OpEnv; � 2 Dict; � 2 � : h �; �; exp

0

; � i

-

Expr

E [[exp

0

]] ~�� : (10.4)

In order to use this hypothesis in a rewrite proof, a corresponding rewrite rule must be found.

An obvious choice is

h �; �; exp

0

; � i@K

1f

-

h E [[exp

0

]] ~�� i@K

0f

(10.5)

where K

1f

= h 1; on; : : : ; on i and K

0f

= h 0; on; : : : ; on i as in Section 7.2. This rule is correct with

respect to (10.4), since it only enables transitions that are allowed by the induction hypothesis

(note that exp

0

is a constant, not a variable), and hence it may be added to the SOS-derived

rules in R

0

without destroying its correctness properties.

4

The rewriting proof of (10.3) proceeds

in three steps:

4

The completeness properties are not destroyed, either. This fact will not be needed here, however.
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Step 1 E [[exp

0

]] ~�� is evaluated using the rules from B and the denotational rules. This

results in some term t

1

.

Step 2 Next, the con�guration/context term eval ( h �; �; exp

0

; � i@K

1f

) is evaluated using

all rules in R including the induction hypothesis (10.5). This results in some term t

2

.

Note that the 1-context K

1f

restricts this evaluation to one outermost application of an

SOS-derived rule.

Step 3 Finally, equality of t

1

and t

2

is proved with the rules of B.

If the last step succeeds, it has been proved

eval ( h �; �; exp; � i@K

1f

)

�

-

R

t

1

=

E

t

2 B

�

�

E [[exp

0

]] ~�� :

The eval operator is only used in connection with SOS-derived rules. Hence, t

2

cannot contain

this operator, and there must be a point in the above sequence where the outermost eval is

removed. Due to the special context elimination rules (see Section 3.3.1), this means that there

is some term t

3

such that

eval ( h �; �; exp; � i@K

1f

)

�

-

R

eval ( t

3

@K

0f

)

-

B

t

3

�

-

B

t

1

and therefore h �; �; exp; � i@K

1f

�

-

R

t

3

. By one-step correctness (7.17) and correctness of

(10.5), it follows that

h �; �; exp; � i

-

S

t

3

and since

�

-�

B

� =

E

(see Requirement 4.6) and SOS rules are applied modulo =

E

, �nally

h �; �; exp; � i

-

S

E [[exp

0

]] ~�� :

10.2.7 Comparison of Automated Proof and Hand Proof

The �rst step in automating the proof of (10.1) is to reformulate the goal in the term represen-

tation used. Starting from (10.3) and introducing the eval operator needed to model the SOS

transition relation (cf. Sections 3.3.1 and 7.2), the goal can be stated as

prove

(compatible(rho, delta) & wf_expr(exp, delta, tp_))

=>

(is_Val(dsem(exp, retrieve(rho), sigma)) &

( eval(mk_ExtCf(rho, delta, mk_Config(exp, sigma)) @ K1f)

=

mk_ExtCf(rho, delta,

mk_Config(to_Val(dsem(exp, retrieve(rho), sigma)))) ))

by induction on exp

..

where K1f is an abbreviation for a constant context (altogether there are 12 SOS rules):
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set name context

assert

K1f -> mk_Context(_ONE, _ON, _ON, _ON, _ON, _ON, _ON,

_ON, _ON, _ON, _ON, _ON, _ON)

..

compatible(rho, delta) models � : � and wf expr(exp, delta, tp ) stands for �

Expr

exp : tp.

Note that the existential quanti�er in (10.1) can be moved to the outside and turned into a

universal quanti�er since tp only occurs in the hypothesis. In the term representation, the

environments are included in the non-terminal con�gurations. Using the input syntax for the

program gensig that generates most of the basic rewrite system (see Appendix A.1), the domain

equations for con�gurations can be written as follows (the domain constructor � is written as *):

ExtCf = OpEnv * Dict * Config | Val

Config = Expr * Store

The inductive proof of Lakhneche starts with

Case exp is a constant symbol:

This is the case when

exp = int _ exp = TRUE _ exp = FALSE:

In this case, rule (EO1), (EO2), (EO3) and the de�nition of E yield

�

�

< exp ; � >

-

Expr

�(exp) and

E [[exp]] ~� � = �(exp):

So it merely indicates what de�nitions are to be applied to calculate the desired result. With

LP, this step is slightly simpler since rewrite rules are applied automatically unless indicated

otherwise. The SOS-derived rules, however, are kept passive in order to speed up the proof (see

below for the e�ect of this optimization); so they have to be made active again at the proper

places. The same holds for the rule de�ning the abbreviation K1f.

% ==================================================

% case exp = mk_Expr(i) [INT]

make active context

make active EO1

% ==================================================

% case exp = mk_Expr(b) [Bool]

make active context

make active EO2*

The third case of the induction basis is similarly simple in [82]:

Case exp = name :

This implies by rule (EO4) that

�

�

< exp ; � >

-

Expr

�(�(name ))
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�(name) 2 Loc holds since � : � and �

Expr

exp : tp. This implies

E [[exp]] ~� � = �(~�(name)) [De�nition of E ]

= �(�(name)): [� : � and 4.8 ]

The LP proof for this case is more complicated because it requires some guidance. The proof

script containing the proof commands looks as follows:

% ==================================================

% case exp = mk_Expr(i13) [Idf]

resume by induction on tp_

Since the sort Type is declared to be generated by the constants INTEG and BOOL , induction on

this sort is nothing else than a complete case distinction with the cases tp = INTEG and BOOL .

% --------------------------------------------------

% Case tp_ = _INTEG_:

resume by =>

% new constants: deltac (delta), rhoc (rho), i13c (i13)

If the conjecture is an implication, it is mostly advisable to proceed by the =>-method. This should

not be done, however, if the hypothesis of the implication contains a variable that is subsequently

to be used for induction. The =>-method transforms all variables occurring in the hypothesis into

constants, and there is no direct way in LP to prove a conjecture by induction on a non-variable

term.

set immunity ancestor

instantiate idf by i13c in theorem5_2*Hyp

set immunity off

After extracting the hypothesis from the goal, the compatibility precondition is instantiated for

i13c.

5

Here, the instantiated formula is made \ancestor-immune", which means that it can be

rewritten by all other rules except for the rule from which it descended (without being immune,

this rule would immediately normalize it to true).

Next, some lemmas have to be proved that are needed to decide the conditions that are part of the

semantics de�nitions. In the hand proof, these lemmas are hidden in the phrases \�(name) 2 Loc

holds since � : �" and \this implies : : : [de�nition of E ]". (The �rst lemma is declared immune

because it would otherwise be normalized to true.)

% --------------------------------------------------

% Lemmas for case Idf:

set name lemma7

set immunity on

prove

5

The names for the components of exp are generated automatically by LP. When variables are turned into

constants, e. g. as the result of applying the =>-method, LP usually appends a c to the names of variables.
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is_Loc(retrieve(rhoc) . i13c)

..

set immunity off

[] % lemma 7

% ----------------------------------------

set name lemma8

prove

not((retrieve(rhoc) . i13c) = _BOTTOM_LOC)

by contradiction

..

% This lemma follows from lemma 7; but since lemma7 is immune, the required

% rewriting steps must be stated explicitly:

normalize lemma7 with lemma*hyp

normalize lemma7 with GLoc1

[] % lemma 8

% ----------------------------------------

After the lemmas are proved, it su�ces to activate the SOS-derived rule for this case to calculate

that both semantics de�nitions yield the same result. (The second case is proved automatically;

wf expr(mk Expr(i13), delta, BOOL ) is rewritten to false by the static semantics rules).

make active context

make active EO4

% case _BOOL_ is automatic

[] % case exp = mk_Expr(i13) [Idf]

As an example for the induction step, consider the case exp = mop exp

1

. The hand proof reads

as follows:

Case exp = mop exp

1

:

By induction hypothesis a value val exists such that

�

�

< exp

1

; � >

-

Expr

val and

E [[exp

1

]] ~� � = val:

If val = error then by rule (EO6) and by the de�nition of E [[ ]] ,

�

�

< exp ; � >

-

Expr

error and

E [[exp]] ~� � = error:

If val 6= error then rule (EO6) and the denotational semantics yield

�

�

< exp ; � >

-

Expr

�(mop ) val and

E [[exp]] ~� � = �(mop ) E [[exp

1

]] ~� �

= �(mop ) val:
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The structure of the automated proof is quite similar:

% ==================================================

% case exp = mk_Expr(m, expc) [Mop * Expr]

resume by induction on tp_

% --------------------------------------------------

% case tp_ = _INTEG_

instantiate tp_ by _INTEG_ in wf_lemma

resume by =>

% new constants: rhoc, deltac, mc

% enable induction hypothesis

instantiate rho by rhoc, delta by deltac, tp_ by _INTEG_ in *hyp

make active context

make active EO6

resume by case to_Val(dsem(expc, retrieve(rhoc), sigma)) = _ERROR

[] % case tp_ = _INTEG_

% --------------------------------------------------

% case tp_ = _BOOL_

instantiate tp_ by _BOOL_ in wf_lemma

resume by =>

% enable induction hypothesis

instantiate rho by rhoc, delta by deltac, tp_ by _BOOL_ in *hyp

make active context

make active EO6

resume by case

to_Val(dsem(expc, retrieve(rhoc), sigma)) = _ERROR

..

The only additional complication is the need to give explicit instantiations for the induction

hypothesis. This is not done automatically because this hypothesis is an implication. The rest

of the proof exhibits the same level of detail as the hand proof.

Note that there was no need to refer to the rather complicated structure of the SOS-derived

rules. All case distinctions have counterparts in the hand proof; the only time that contexts

occur explicitly is in the statement of the goal itself. The SOS rewriting system works completely

in the background, and hence the user is not disturbed or confused by the large intermediate

terms developing during semantics calculations.

6

6

This is only true, however, if the basic rewriting system is capable of deciding all the if conditions occurring

in the intermediate terms, see Requirement 4.6.
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The LP proof script could be made even simpler by letting the SOS-derived rules be active

throughout the proof, allowing LP to apply them automatically whenever this is possible. The

disadvantage of this simpli�cation of the proof script is that the proof itself as performed by

LP becomes more time consuming as can be seen in the respective results of the statistics

command. If the SOS-derived rules are activated manually, it produces the following output (on

a Sun SparcStation 10/40):

Recent Success Failure Total

------ Count Time Count Time Time

Ordering 200 0.05 0 0.00 0.05

Rewriting 1930 19.29 12805 17.11 36.40

Deductions 155 2.57 1784 0.80 3.37

Unification 14 0.04 8 0.02 0.06

Prover 1:34.69

GC's 9

Total time 3:22.31

Heap size = 733,395 words

and without manual activation

Recent Success Failure Total

------ Count Time Count Time Time

Ordering 176 0.06 0 0.00 0.06

Rewriting 2973 47.73 9412 23.17 1:10.90

Deductions 155 4.92 1580 0.61 5.53

Unification 14 0.03 8 0.01 0.04

Prover 1:37.67

GC's 10

Total time 4:07.66

Heap size = 743,323 words

(All times are in measured in seconds; a \word" consists of four bytes.) If the SOS-derived

rules are always active, LP applies them as early as possible, thus generating large intermediate

terms early. These terms contain subterms that are again redices but would be eliminated by

application of selector operators later. This explains the increase of successful rewritings by 50 %.

Furthermore, it takes more time to handle these large terms.

So the general strategy should be to apply the SOS-derived rules as lately as possible.

Both the above proofs started from a \frozen" basic rewriting system, i. e. a system that had

already been processed by LP and written to a �le. To set up the basic system, LP needs

additional 1:36.02 minutes.

The proof scripts show that the structure of hand proof and automated proof are very similar.

The main advantage of a proof tool is its ability to perform simple calculations. This can be seen

in those parts that merely consist of applications of de�nitions: here the automated proofs are

simpler than the hand proof.

LP is not able of checking proofs \by handwaving", however. So those parts of the hand proofs

that are just a sketch, consisting only of a collection of the relevant facts without a detailed

description of their connection, have to be spelled out completely (e. g. in the two lemmas of the
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script above). This can often lead to proof scripts that are a lot more complicated than the hand

proof, in particular containing a lot of instantiations.

10.3 Semantics Equivalence for Sequential Processes

The language of PL

R

0

sequential processes is larger than the expression language presented in the

previous section. In particular, expressions themselves may occur inside processes, and hence the

equivalence proof for processes relies on that for expressions. Sequential processes are generated

according to the following grammar:

sproc 2 SeqProc

sproc ::= SKIP j STOP j var := exp j INPUT?name j OUTPUT!exp j

SEQ [sproc

1

; : : : ; sproc

n

] j IF [gc

1

; : : : ; gc

n

] j WHILE(exp; sproc) j

CALL(name)

where n 2 IN and gc is a \guarded command":

gc 2 Guarded

gc ::= exp ! sproc

These guarded commands are not to be mistaken for those of Dijkstra [34] often written with the

same syntax. Dijkstra de�nes a nondeterministic semantics for his IF, whereas the semantics of

the IF de�ned here is deterministic (in accordance with the Occam [75] IF construct; see below).

The static semantics of processes is de�ned in the same style as that of expressions (cf. Section

10.2.2) by de�ning a predicate �

SeqProc

sproc.

10.3.1 Operational and Denotational Semantics

The operational semantics OS of sequential processes is given by the labelled transition system

(�

�

SeqProc

;T

�

SeqProc

;A;

-

SeqProc

)

where

�

�

SeqProc

=

df

f< sproc; � > j �

SeqProc

sproc ^ � 2 �g [ T

�

SeqProc

;

T

�

SeqProc

=

df

fterminated; stopped; invalidg � � ;

A

def

= Com[ f�g , and
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Com

def

= finput � k; output � k j k 2 Integerg:

Terminal con�gurations contain a state and the information how this state has been reached:

regularly terminating (terminated), irregularly terminating (stopped) or as the result of a run-

time error (invalid). Labels can be either communications with the environment, or the silent

move � .

Some of the rules de�ning the transition relation

-

SeqProc

are the following (we always assume

that static environment � 2 Dict and dynamic environment � 2 OpEnv are compatible):

Rule (OP1)

�

�

< SKIP; � >

�

-

SeqProc

< terminated; � >

Rule (OP10) For n � 1 :

�

�

< exp

1

; � >

-

Expr

tt j � j val =2 Bool

�

�

< IF [exp

1

! sproc

1

; gc

2

; : : : ; gc

n

]; � >

�

-

SeqProc

< sproc

1

; � > j

< IF [gc

2

; : : : ; gc

n

]; � > j

< invalid; � >

Rule (OP12)

�

�

< exp ; � >

-

Expr

tt j � j val =2 Bool

�

�

< WHILE(exp; sproc); � >

�

-

SeqProc

< SEQ [sproc; WHILE(exp; sproc)]; � > j

< terminated; � > j

< invalid; � >

As already mentioned in Section 6.3.1, the denotational semantics C[[sproc]] is a state transfor-

mation also depending on the denotational environment. (For the de�nition of the states, see

also Section 6.3.1, page 74.) The function C is de�ned as

C : SeqProc �! DenEnv �! StatTr :

The clauses corresponding to the operational rules from above are

C[[SKIP]]env st =

df

st

C[[IF [exp

1

! sproc

1

; gc

2

; : : : ; gc

n

]]]env st

=

df

8

>

>

<

>

>

:

C[[sproc

1

]]env st ; if E [[exp

1

]]env � = tt

C[[IF [gc

2

; : : : ; gc

n

]]]env st ; if E [[exp

1

]]env � = �

< invalid; in; tr > ; if E [[exp

1

]]env � =2 Bool

So the guarded commands in an IF are treated as a list: the �rst command whose condition is

true is executed. In Dijkstra's language, on the other hand, any command whose condition is

ful�lled can be selected for execution (not just the �rst one).

C[[WHILE(exp; sproc)]]env =

df

��

exp;sproc;env

where
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�

exp;sproc;env

: StatTr �! StatTr

�

exp;sproc;env

(Tr)st =

df

st for all st 2 Inv

and for all st =< �; in; tr >2 State n Inv

�

exp;sproc;env

(Tr)st =

df

8

>

>

>

<

>

>

>

:

st ; if E [[exp

1

]] env� = �

< invalid; in; tr > ; if E [[exp

1

]] env� =2 Bool

(Tr � C[[sproc]]env) st ; otherwise

10.3.2 The Structure of the Equivalence Proof in [82]

The structure of the manual equivalence proof is rather complex; some \intermediate semantics"

are de�ned in order to close the gap between OS and C. Instead of repeating the full de�nitions

here, rather the ideas behind the several steps of the proof will be explained. In particular, the

equivalence predicate itself will not be de�ned in a fully formal way; for details, see [82].

Step 0 De�nition of the equivalence predicate �.

OS and C are equivalent i� the following holds: If a process sproc terminates after having produced

some input/output actions, then the trace component of its denotational semantics C[[sproc]] also

includes exactly these actions in the same order. If the termination was not regular, then this

is also recorded in C[[sproc]] . If sproc does not terminate, then C[[sproc]] is an in�nite trace

containing the input/output actions produced operationally.

Step 1 De�nition of an unlabelled SOS system TrS de�ning an operational semantics TrOS

equivalent to OS .

This step uses the same idea as Lemma 5.2: actions are recorded in an additional trace component

of the con�gurations.

The main problem in the proof of � is the occurrence of mutually recursive procedures which

prevents application of ordinary structural induction. Lakhneche overcomes this problem by

introducing upper limits for the number of executions of the bodies of loops (denoted by i)

and for the number of successive procedure calls (denoted by j): instead of sproc, the \indexed

sequential process" sproc

(i;j)

is used.

Step 2 De�nition of an SOS system !-TrS de�ning an operational semantics !-TrOS for

indexed processes.

TrOS and !-TrOS are proved to be equivalent: if TrS yields a terminal con�guration for some

process sproc, then there are some �nite limits for the numbers of executions of loops and pro-

cedure calls. These limits can be used as indices for sproc, and !-TrOS applied to this indexed

process also terminates with the same result.

!-TrOS always produces �nite transition sequences, and it is monotonic with respect to indices:

if the limits are increased, the resulting traces only become longer.
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Step 3 De�nition of a denotational semantics !-C

�

for indexed processes (depending on an

operational environment �).

Indexed processes only have �nite executions. Therefore, !-C

�

can be de�ned without the use of

�xed points; loops and procedure calls are unfolded as often as allowed by the indices.

Step 4 !-TrS is proved to be correct with respect to !-C

�

.

\Correct" here means that a transition in !-TrS does not change the !-C semantics of the

con�gurations, i. e. for all !-TrS con�gurations !- and !-

0

must hold that if !-

-

!-TrS

!-

0

,

then also !-C

�

[[!-]] = !-C

�

[[!-

0

]] .

From steps 2 and 4 follows that !-C is also monotonic.

Step 5 Proof that C[[sproc]] is the least upper bound of !-C

�

[[h sproc

(i;j)

; : : :i]] (with some ad-

ditional parameters).

With step 5 completed, the proof is �nished. In step 4, the correspondence of the appropriate

operational and denotational semantics is proved, and the other steps are needed to transform

the given de�nitions into the special indexed versions for which step 4 can succeed.

10.3.3 Automating the Proof

In steps 2 to 5 above, several di�erent kinds of proofs have to be performed. There are steps that

require a large amount of formalization and use ingenuous ideas, but not much simple calculation.

On the other hand, there are proofs that mainly consist of case distinctions, inductive proofs and

straightforward calculation using the semantics de�nitions, and there are proofs whose complexity

lies in between the extremes.

One of the most important purposes of a proof support tool is to assist in proofs of the second

kind. When done by hand, these are often considered as routine work and not spelled out

completely. So there is a danger of careless mistakes, e. g. when an analogy that is assumed does

not exist in the required form. With a proof tool, however, it can easily be checked if a subproof

is analogous to another by simply repeating it the for the case in question (possibly with small

modi�cations). Moreover, these proofs are more appropriate for automating than those of the

�rst kind because they usually require less complex formalizations.

Among the steps from above, there are two that contain longish proofs of the kind just described,

mainly based on an induction on the structure of processes.
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10.3.3.1 Automating a Part of Step 4

In Step 4, Lakhneche states the following lemma:

Lemma 6.33 (from [82])

Let � 2 Dict be a static environment, !-, !-

0

2 �

�

!-TrS

be con�gurations, and � 2 OpEnv

an operational environment such that

� : � and �

SeqProc

!-:

Then

�

�

!-

-

!-TrS

!-

0

implies !-C

�

[[!-]] = !-C

�

[[!-

0

]] :

The proof of this lemma extends over �ve pages of mathematical text. But one should note that

many auxiliary de�nitions and lemmas also contribute to the size of this proof; in particular, the

additional semantics de�nitions have to be mentioned.

The �rst step in formalizing Lemma 6.33 for LP is to model these semantics de�nitions. The

language of indexed sequential processes is built on top of that of sequential processes already

de�ned above:

!-sproc 2 !-SeqProc

!-sproc ::= SKIP

q

j STOP

q

j (var := exp)

q

j (INPUT?name)

q

j (OUTPUT!exp)

q

j

SEQ [sproc

1

; : : : ; sproc

n

]

q

j SEQ [!-sproc; sproc

2

; : : : ; sproc

n

]

q

j

IF [gc

1

; : : : ; gc

n

]

q

j WHILE(exp; sproc)

q

j CALL(name)

q

where q 2 IN

2

, name 2 Name, sproc, sproc

1

; : : : ; sproc

n

2 SeqProc, exp 2 Expr , gc

1

; : : : ; gc

n

2

Guarded . An equivalent de�nition is

!-sproc ::= sproc

q

j SEQ [!-sproc; sproc

2

; : : : ; sproc

n

]

q

:

This language is much larger than the expression language of Section 10.2 and its semantics

de�nitions require additional domains not needed for the expression case. Moreover, the SOS and

denotational de�nitions are larger and more involved. As a result of this increase in complexity,

the rewrite system required for formalizing and proving the lemma is more than twice as large

as that for the proof in the previous section (about 1200 rules compared to about 500).

Formalizing the lemma is fairly simple:

prove

( compatible(rho, delta) & wf_ocf(ocf1, delta) &

trans(rho, delta, ocf1, ocf2) )

=>

( sdsem(ocf1, rho) = sdsem(ocf2, rho) )

by induction on ocf1

..

where ocf1 and ocf2 are variables for the sort of con�gurations oExtCf used in !-TrS , and the

operator trans is used to abbreviate assertions about the transition relation:
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declare operator

trans : OpEnv, Dict, oConfig, oConfig -> Bool

..

set name trans

assert

trans(rho, delta, ocf1, ocf2) ->

(eval(mk_oExtCf(rho, delta, ocf1) @ oK1f):oExtCf

= mk_oExtCf(rho, delta, ocf2))

..

The context ok1f corresponds to K1f that was used earlier (see Section 10.2.7); these contexts

di�er in their length since the SOS systems have di�erent numbers of rules. The eval term has

to be quali�ed with its sort oExtCf in order to pass LP's type checker.

The automated proof has been developed in a way similar to the proof described in Section 10.2.

The main di�erence is that, due to the larger size of the problem and the more complicated

semantics de�nitions, more explicit guidance is needed. This guidance, however, could in most

cases be easily developed from the original hand proof. The proof shall not be described in detail

here, because this would require the explanation of many auxiliary de�nitions. Instead, some

speci�c aspects shall be mentioned.

Passive rules No attempt is made to complete the rewriting system, because for a system

consisting of more than 1200 rewrite rules this would have taken far too much time.

7

As a

consequence, there are situations during the proof where certain rules are not allowed to be

applied because they would have lead either to subgoals not provable with the current rewrite

system or only at too great a cost. In order to deal with this problem, some rules have to be

declared as \passive" so that they can only be applied by explicit request.

Other rules are kept passive because they de�ned an abbreviation, e. g. the de�nition of the trans

operator above. As a general rule, such rules should be applied as late as possible in order to

keep terms smaller and more comprehensible.

8

Ordering newly generated equations LP does not support conditional rewriting. Therefore,

an implication

b ) l = r (10.6)

is only represented as a rewrite rule in the form

(b => l = r) -> true (10.7)

In particular, l = r is not considered as a directed equation, and there is no way to indicate the

direction since -> may be used only once in a rewrite rule.

9

This may lead to a problem, if for

7

Note that the fundamental problem concerning completion described in Section 7.3.2 does not exist here

because PL

R

0

is deterministic.

8

Thus by using the passive feature of LP, a weak form of strategies can be implemented.

9

The situation described is true for the current version 2.4 of LP. In future versions, it may provide ways to

state that equations shall only be directed in one way.
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an implication of the form (10.7) the precondition b can be rewritten to true. Then normally

the resulting equation is ordered in such a way that LP still can guarantee termination of the

rewriting system. If it is important to have the rule l -> r resulting from this situation, an

ordering method must be used that calculates the appropriate direction of the rule from weights

that have been assigned to the operators included.

10

As a rule of thumb, it su�ces to assign the

highest weight top to the outermost operator of l or the lowest weight bottom to that of r to

reach the desired direction. This procedure has to be applied rather often during the proofs with

LP when implications are used in formulas (in particular in inductive goals).

Repetition of proofs Just as the proof of the previous section, the proof of Lemma 6.33

contains many parts that follow exactly the same pattern. If the �rst proof in such a row has

been completed with the help of LP, the other similar proofs can very often simply be copied from

the �rst one (with some obvious modi�cations). Thus proofs that are claimed to be \analogous"

in the hand proof can easily be veri�ed explicitly.

Splitting the proof Due to the de�nition of !-SeqProc, the automated proof of Lemma 6.33

can be split into two parts. The �rst one deals with the cases for

!-sproc ::= sproc

q

and the second one with those for

!-sproc ::= SEQ [!-sproc; sproc

2

; : : : ; sproc

n

]

q

:

In the �rst part, only the semantics de�nitions for indexed ordinary sequential processes are

needed, and in the second only those for the other kind. Each of the cases requires only a part

of the whole semantics de�nition, in particular only a part of the SOS-derived rules, and hence

the length of the context tuples can be reduced. Since the size of terms not only a�ects their

readability, but also the performance of LP's rewriting mechanisms, this splitting results in a

speedup of the development of the proof.

Statistics The total length of the proof scripts for the proof of Lemma 6.33 is about 1100

lines for the �rst part and about 1400 lines for the second. Note, however, that both scripts are

heavily commented, so it cannot be deduced just from the di�erence in length that the �rst proof

is simpler. For the execution time of the proofs on a Sun SparcStation 10/40, the statistics

command reports a total time of 17:52.99 minutes for the �rst part and 3:31.61 minutes for the

second part. The timings for the generation of the basic system are 11:50.17 minutes for the �rst

case and 47.81 seconds for the second.

10.3.3.2 Automating a Part of Step 5

Step 5 contains the following main theorem:

10

Several of such ordering methods are implemented in LP; see the manual [52] for details.
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Theorem 6.41 (from [82])

Let � 2 Dict, sproc 2 SeqProc, � 2 OpEnv, � 2 �, in 2 Input, and tr 2 Com

�

such that

� : � and �

SeqProc

sproc:

Then for all j � 0

C[[sproc]] (#�	

j

#;�

(?)) < �; in; tr > =

G

i�0

!-C

�

[[< sproc

(i;j)

; �; in; tr >]]

with # and � de�ned as follows

#(name)

def

=

(

�(name ) ; if �(name) 2 Loc ] Loc

�

? ; otherwise

and

�(name )

def

=

(

�(name ) ; if �(name) 2 SeqProc

? ; otherwise :

where 	

#;�

is the functional de�ned by 	

#;�

: DenEnv ! DenEnv

	

#;�

(env) =

df

#[name 7! C[[�(name)]]env j name 2 dom�] :

� is the \function overwrite" operator: f � g =

df

f [x 7! g(x) j x 2 dom g].

This theorem is proved on seven pages in [82]. One should note, however, that only a part of the

resulting cases are treated explicitly: about a third of the cases are (correctly) declared as being

analogous to some of the other cases.

Unlike Lemma 6.33, Theorem 6.41 only deals with denotational semantics de�nitions. There-

fore, the problems encountered during the automated proof were partly of a di�erent nature; in

particular, reasoning about cpo's and the partially ordered set h IN;� i was required.

Formalizing the theorem starts with a slight simpli�cation: instead of the more complicated

de�nition of the functional 	

#;�

above, one can use an equivalent, but simpler de�nition (the

equivalence is easily proved by a case distinction over the di�erent possibilities for �(name)):

	

�

: DenEnv ! DenEnv

	

�

(env) =

df

�[name 7! C[[�(name)]]env j �(name) 2 SeqProc]

Using this simpli�cation, the goal can be stated as:

prove

( compatible(rho, delta) & wf_sproc(sproc, delta) )

=>

( dsem(sproc, env_j(rho, n2))

. mk_State(sigma, in, tr)

= lub(ch(sproc, n2, sigma, in, tr, rho)) )

by induction on sproc

..
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where the operator env j is de�ned below, and ch is used to abbreviate the chain of !-C

�

[[: : :]]

results:

declare operator

ch : SeqProc, Nat, Store, Input, Trace, OpEnv -> seqState

..

% This definition has to be passive to keep terms small:

set activity off

assert

ch(sproc, n2, sigma, in, tr, rho) . n

-> sdsem(mk_oConfig(mk_oSeqProc(sproc, mk_Index(n, n2)),

sigma, in, tr), rho)

..

sdsem is the representation of the semantic function !-C

�

[[]] , and mk Index constructs a pair of

natural numbers (resp. a representation thereof).

Again, the proof shall not be described in full detail. Most of the remarks about Lemma 6.33

also apply to this proof; but there are also some important points that are special to it.

Passive rules As in the other proof, passive rules are used to deal with non-conuence and to

de�ne abbreviations in order to make the proof more comprehensible. An example is ch operator

from above or the indexed environment env j, de�ned by

env

j

=

df

#�	

j

�

(?) :

Through most parts of the proof, it is much more convenient to work with the unexpanded form,

and therefore the rule

set name env_j

assert

env_j(rho, n) -> theta(rho) + ((psi(rho) ^ n) . bot_de')

..

is declared passive and terms env j(rho, n) are only expanded when special properties are

needed.

11

Other rules that have to be passive concern the least �xed point operator. Consider e. g. the \re-

trieve" function
~
� : OpEnv ! DenEnv mapping operational to corresponding denotational

environments. In [82], this function is de�ned by

~� =

df

�	

�

:

The representation of this function within LP reads as follows (DenEnvTr is the sort representing

transformations of denotational environments):

11

# is modelled as a function taking an argument from OpEnv in order to reect its dependence on �.
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declare operators

psi : OpEnv -> DenEnvTr

fix : DenEnvTr -> DenEnv

..

set name retrieve

assert

(psi(rho) . env) . idf ->

if(is_SeqProc(rho . idf),

mk_GLoc1(dsem(to_SeqProc(rho . idf), env)),

to_GLoc1(rho . idf))

..

% "retrieve" is an abbreviation:

set activity off

assert

retrieve(rho) -> fix(psi(rho))

..

% The fixed point properties must also be passive.

set name fixedpoint

assert

% basic fixedpoint property of fix(detr)

fix(detr) -> detr . fix(detr)

..

assert

% minimality property of fix(detr)

when

detr . env = env

yield

(fix(detr) . idf) <= (env . idf)

..

set activity on

Of course, the rule de�ning the �xed point property of the operator fix must be passive because

it is non-terminating, and it may only be used to rewrite terms one step at a time.

Reasoning about orderings and least upper bounds Theorem 6.41 is a statement about

the least upper bound of a special chain, and during its proof some other chains have to be

considered. In particular, chains are constructed from others by removing a �nite number of

elements from the beginning. These operations not only entail a lot of calculations within the

respective cpo, but also within the set IN of natural numbers, as many inequations n

1

� n

2

have

to be proved or are part of hypotheses.

Since the method for representing cpo's with rewrite rules described in Sections 8.2 (and 4.2.5)

is only applicable if none of the occurring formulas contain nested quanti�ers, cpo's are modelled

with the help of LP's deduction rule feature. As a result, most calculations concerning lub's are

not performed automatically, but have to be started by proper instantiation of the deduction

rules (see Appendix C for simple examples for such proofs and a comparison of the two methods

to represent cpo's).
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A set of rewrite rules that requires a lot of explicit instantiations is the de�nition of the ordering

� on IN which is represented by the following speci�cation:

declare operator <= : Nat, Nat -> Bool

set name Nat_le_refl

assert

n <= n

..

set name Nat_le_trans

assert

(n1 <= n2 & n2 <= n3) => (n1 <= n3)

..

set name Nat_le_antisym

assert

(n1 <= n2 & n2 <= n1) => (n1 = n2)

..

set name Nat_le_total

assert

(n1 <= n2) | (n2 <= n1)

..

The reason for this need of explicit guidance is again that implications are treated in a di�erent

way than rewrite rules. So, if x <= y & y <= z is known and transitivity shall be exploited to

deduce x <= z, the corresponding rule must be properly instantiated. Using it directly as a

rewrite rule is only possible if a part of the term to be rewritten matches the whole implication.

Alternatively, these implications could be transformed into deduction rules , e. g.

when n1 <= n2, n2 <= n3 yield n1 <= n3 .

The disadvantage of such a representation is that this rule would be partially applied whenever

a fact t1 <= t2 for some Nat sorted terms t1 and t2 is known, producing another deduction rule

when t2 <= n3 yield t1 <= n3

In the proof of Theorem 6.41, there are many such hypotheses, and hence, as the price for less

explicit instantiations, one would have to accept to lot of additional temporary deduction rules

that would decrease LP's performance.

Developing the proof The greatest part of the automated proof could be developed very

much along the lines of the hand proof. Apart from the complications mentioned in the previous

paragraph, the level of detail is quite similar. But two major exceptions have to be mentioned

that result from limitations of LP:

The �rst one concerns the proof for the case of conditional processes. Here the syntactic structure

is

sproc ::= : : : j IF [gc

1

; : : : ; gc

n

] j : : :

gc ::= exp ! sproc
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For LP, the list construction above has to be made explicit; this leads to the following domain

equations (again in gensig input syntax, see Appendix A.1):

SeqProc = : : : | _IF * GList | : : :

GList = _EMPTY_GL | Expr * SeqProc * GList

As a result of this modelling, proofs by induction on the structure of sequential processes regard

the case IF [gc

1

; : : : ; gc

n

] as a part of the induction basis, since the processes that are contained

in the guarded clauses gc

i

occur one level too deep. In order to have the induction hypotheses

for these processes as well, the appropriate instance has to be stated explicitly as an additional

axiom. Due to the more complicated structure, the clauses for SeqProc and for GList cannot be

merged in the way presented in the expression example (compare Section 10.2.1).

The other case where the proof development requires some kind of trick concerns the case of WHILE

processes. The hand proof for this case is developed in four di�erent branches, the conditions

leading to the cases being rather involved, in particular containing existential quanti�ers, e. g.

there exist n 2 IN and �

i

2 �; in

i

2 Input; tr

i

2 Com

�

for all i � n such that

8i � n : (C[[sproc

1

]]env

j

)

i

< �; in; tr >=< �

i

; in

i

; tr

i

> and

8i <n : E [[exp]]env

j

�

i

= tt and E [[exp]]env

j

�

n

= � :

Due to the limited complexity of Boolean terms in LP, such formulas cannot be expressed, and

so a simple case distinction is not possible. The method used to solve this problem is a \forced

case distinction". A new sort of Cases is introduced that is generated by four constants:

declare sort Cases

declare variable case : Cases

declare operators

case_a, case_b, case_c, case_d : -> Cases

case_predicate : Cases -> Bool

..

set name Cases

assert Cases generated by case_a, case_b, case_c, case_d

% "case_predicate" is just a way to introduce a variable of type "Cases"

% into the current subgoal:

assert case_predicate(case)

The reason for this construction is the wish to construct four branches in the automated proof.

If the original goal is

prove p

(for some Bool sorted term p) the desired branching behaviour can be achieved by considering

instead the goal
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prove

case_predicate(case) => p

by induction on case

..

This induction results in four cases forming the induction basis, and in each of these cases,

the arti�cial hypothesis case predicate(case) disappears automatically by de�nition, and the

required existentially quanti�ed entities can be introduced by de�ning appropriate constants.

For the case from above, this is done as follows:

declare operators

n' : -> Nat

states : -> seqState

..

set name theorem6_41CaseHyp

% ... this is the name used by LP for the case hypotheses!

assert

(n <= n') =>

( ( states . n =

( (dsem(sprocc, env_j(rhoc, n2)) ^ n) . mk_State(sigma, in, tr) ) )

& not(is_Inv(states . n)) )

(s(n) <= n') =>

( dsem(ec5, env_j(rhoc, n2), s_1(states . n)) =

mk_DenVal(mk_Val(true)) )

dsem(ec5, env_j(rhoc, n2), s_1(states . n')) =

mk_DenVal(mk_Val(false))

..

Of course, the correctness of this proof method relies on a meta-level proof that the case conditions

de�ned by the constants are exclusive and exhaustive.

Statistics The total length of the proof scripts for the proof of Theorem 6.41 is about 5000

lines, again containing mostly comments. The execution time of the proof on a Sun SparcStation

10/40 have been recorded as 33:01.94 minutes, starting from a basic system that took 3:53:49 to

be built.
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Chapter 11

Conclusion

The aim of this work was to present new techniques for the representation of structured opera-

tional and denotational semantics de�nitions in form of term rewriting systems. These systems

were intended to be used within automated proofs about semantics de�nitions, and the ap-

proaches for representation were to be consistent to allow both kinds of semantics to occur in the

same proof. In order to become independent of speci�c proof tools, moreover the formalism to be

used was to be simple and general, i. e. it should be based on pure unconditional term rewriting

without too many additional features.

In Chapters 7 and 8, representation techniques have been described that ful�l the above require-

ments. From semantics de�nitions stated in a fairly general format, simulating term rewriting

systems are derived. In both cases the axiomatic basis is the same, consisting of a basic rewriting

system B, and so they can be used simultaneously in proofs performed with an automated proof

tool.

In order to simulate SOS de�nitions, one essentially has to deal with two problems. The �rst one

stems from di�erent regulations for the usage of variables in SOS rules and rewrite rules, and the

second from the fact that it may be tested whether an SOS rule is applicable to a con�guration

 without changing  or even performing any visible activity. This is a concept that is unknown

in unconditional rewriting.

The problem with variable usage is solved by employing the concept of let terms, thus introducing

bound variables. These are not directly available in term rewriting, either, but they can be hidden

completely with the help of the ��-calculus (see Abadi et al. [1]). This calculus is a formulation

of �-calculus that explicitly manages the substitutions resulting from �-reduction (or, here, the

evaluation of let terms). Since it only uses simple rewrite rules, no extension of the rewriting

formalism is required for its implementation. In order to guarantee correct evaluation of let

terms, however, the leftmost-innermost rewriting strategy has to be assumed (corresponding to

call-by-value reduction).

Testing the applicability of a rewrite rule is also implemented without having to resort to ad-

ditional concepts (such as conditional rewriting). Here, special properties of SOS systems are

exploited that allow to supply the con�guration terms included with contexts containing infor-

mation about the number of SOS rewriting steps that are still allowed, and the SOS rules that

may be used for these steps.
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The rewrite system R generated in this way from an SOS system S simulates it very closely (as

proved in Appendix B). Any rewriting sequence of R corresponds to a transition sequence of S,

and any transition sequence of S is represented by a rewriting sequence.

The usefulness of the rewrite systems derived from SOS de�nitions is demonstrated in the example

proofs, where the representation mechanism is only visible because of the need to add appropriate

contexts to con�gurations. If the basic rewrite system is su�ciently complete to decide all Boolean

conditions, then there is never the need to consider details of intermediate terms concerning the

��-calculus or contexts.

Finding a rewrite system that models a denotational function de�nition is much easier than the

corresponding problem for SOS systems. Such a de�nition already consists of equations, and

these equations have a natural orientation that allows to view them as rewrite rules. In this case,

the real problem is to �nd suitable representations for the data types that underlie a denotational

de�nition. These are de�ned by a set of domain equations, for which in general simple sets do

not provide solutions. Moreover, recursive functions are used for which the existence of (least)

�xed points is required. Because of these reasons, denotational data types usually possess a more

complex structure than those needed for SOS de�nitions. This complexity is reected by laws

about the domains that cannot be expressed without explicit use of quanti�ers, in contrast to

the SOS case where the assumption of implicit universal quanti�cation over the rules su�ces.

In Chapter 4, a method is presented how to employ the ��-calculus to model quanti�ers as term

constructors, provided the formulas expressed in this way stay rather simple. This method can

also be applied to the cpo data structures of the example de�nitions in Chapter 10. Unlike in the

SOS case, however, this application of the ��-calculus does not remain in the background when

it comes to proofs using these rules (to be seen in the example proofs in Appendix C); moreover,

it is not very e�cient. Therefore, and since the example proof tool (the Larch Prover) provides

a simpler alternative to this method (using deduction rules with very restricted use of universal

quanti�ers), the pure rewrite modelling of cpo's has only been demonstrated in small examples,

but not been adopted for larger proofs. In order to be able to work with �xed points, both forms

of cpo representation have to rely on some kind of mechanism that allows to control the number

of applications of the �xed point expansion rules.

The format of denotational de�nitions considered in this work is fairly general and is used through-

out the literature. For SOS de�nitions, however, there is a feature that is not allowed by the

ptp/t format of Def. 5.3 but by other formats, e. g. the GSOS format of Bloom, Istrail, and

Meyer [12]. This feature is that of negative antecedents 

a

-

in rules, meaning that from

the con�guration , a transition labelled by a is not possible. This di�erence reects a di�erent

view of observable properties. With a ptp/t system, only transitions are observable; the semantics

is described only in terms of what may happen. In contrast, a GSOS system can also observe

inability to perform a transition, and hence, the semantics may also be described in terms of

what cannot happen.

In another aspect, the ptp/t format is more general than the GSOS format and other formats

occurring in the literature. The complexity of terms allowed in the premises of rules is not

restricted in ptp/t rules, in contrast to the other formats. This is motivated again by the di�erent

goals to be achieved. The other formats have been devised with the aim to be able to guarantee

certain mathematical properties, e. g. that bisimulation is a congruence relation on process terms

(see Groote and Vaandrager [60]). The aim of the de�nition of the ptp/t format, however, was to

be able to transform a large class of SOS systems into rewrite rules, not regarding the properties of
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these systems. By the simulation results, the SOS-derived rewrite systems inherit the properties

of the SOS systems, and therefore this approach allows to reason about SOS systems even if they

fail to possess some otherwise desirable property.

11.1 Practical Experiences with the Simulation

The proofs performed with the Larch Prover and presented in Chapter 10 show that the simulation

approach leads to rewrite systems that can be useful for automated veri�cation. These proofs

also demonstrate that some automatic support is indispensable for the setting up of the basic

rewriting system B.

In the proofs of the simulation theorems (in Appendix B), strong correctness and completeness

assumptions about B have to be made, and so the actual implementation of B should come

as close as possible to the ideal system ful�lling the assumptions. Of course, there must be no

compromise when it comes to correctness of B, but with respect to to completeness one is allowed

to be more liberal. Here the assumption is that B can rewrite all simple conditions not depending

on the transition relation to either true or false. But if B fails to be able to decide a particular

condition, then this can only happen because some rule is missing in B, and the only consequence

for the current proof is that it gets stuck at some intermediate result. From this result, it is

usually not very di�cult to see which kind of rule is missing, and so the problem can be resolved.

Nevertheless, each such problem stops the progress of the proof, and therefore B should be as

complete as possible. The tool gensig that was developed as part of this work proved to be

very useful for this purpose; it is much easier to write down a set of domain equations than the

corresponding set of rewrite rules, not because the rules are so complicated, but simply because

there are so many of them. Moreover, and perhaps even more important, it is much easier to

change the domain equations when one domain turns out be incorrectly or inadequately de�ned,

than to change a whole set of rules.

The algorithm for the transformation of SOS rules from Section 7.2 was implemented as part

of this work, too. The resulting tool named gensos also was very helpful, since rules in ptp/t

notation are much easier to understand than the rewrite rules generated from them. In this way,

a possible source of errors can be avoided. The use of this tool, however, remains restricted to

this particular application, whereas gensig can assist in all problems whose solution pro�ts from

a structured data representation.

For large applications such as the semantics equivalence proof for PL

R

0

with its about 50 domain

equations, one should bear in mind that the system B generated by gensig becomes quite large

(easily 1000 rules or more). Moreover, the rules generated by gensos are very large compared to

usual rewrite rules. Therefore, the approach described here requires a lot of computing power, a

lot of storage, and last, but not least, a proof tool that is capable of dealing with large objects.

The Larch Prover is an example for a tool satisfying this requirement.

A general observation made during the proofs with LP is that it usually does not make much sense

to try and develop proofs with a proof tool. Rather, one should have a clear concept beforehand,

including at least the proof structure, if not also details, and then try to check the proof concept

with the help of the tool.
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11.2 Future Work

One obvious direction for subsequent work is the application of simulating rewrite systems to

other veri�cation problems. First examples might be the \compiling veri�cations" mentioned in

Section 10.1. These have also already been performed by hand [96, 47], and therefore there is again

the possibility to compare automated proofs to manual ones and to evaluate their e�ectiveness.

Both these proofs deal with only one style of semantics de�nition, which makes the simulation

aspects simpler than in our examples in Chapter 10.

An interesting modi�cation of the SOS simulation approach might be to simulate a transition

relation

-

S

not on meta-level with a rewrite relation

-

R

as it is done in this work, but on

object level using a representation of the form trans (

1

; a; 

2

) to stand for 

1

a

-

S



2

. In this

way, additional parameters to the transition relations (such as labels) can be added directly to

the representation without having to resort to the trace method of Lemma 5.2. A disadvantage

of this modelling is that transitivity of this relation has to be de�ned by additional rules of the

form

trans (

1

; a; 

2

) ^ trans (

2

; b; 

3

) ) trans (

1

; ab; 

)

If such a rule is to be understood as an unconditional term rewriting rule, then many explicit

instantiations are required to apply it inside of proofs. (Examples of such instantiations can be

found in Appendix C, where transitivity of � on IN is modelled in the same way.)

Useful extensions of the work presented here would be on the one hand the investigation of

di�erent concepts of rewriting (in particular order-sorted rewriting), and on the other hand the

adaptation of the techniques to other kinds of semantics de�nitions than those treated so far (in

particular axiomatic ones).

11.2.1 Using Order-sorted Rewriting

In Section 3.1, term rewriting was de�ned based on many-sorted algebra, where no relation

exists between the di�erent sorts of a signature. Order-sorted algebra extends this formalism by

introducing a partial ordering on the sorts (see e. g. Goguen and Meseguer [56]). In this framework

it is possible to de�ne subsorts and supersorts, and many concepts (e. g. partial functions) can

be modelled much more elegantly than by adopting many-sorted algebra. Examples for proof

systems that support order-sorted logic are OBJ3 [57] and PVS [104].

The price to be paid for the increase in succinctness of speci�cations is considerably greater

complexity in matching, uni�cation and rewriting (cf. Gnaedig, Kirchner and Kirchner [54]).

Consider for example the following situation. There are two sorts S and T such that S is

a subsort of T , and there are the operators

f : S ! S

a : ! S

b : ! T

with the rewrite rule a

-

b. This rule is well-typed since any element of (a set modelling)

the sort S is also an element of T . But it must not be applied to the term f(a), since
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this would produce the ill-typed term f(b). So matching alone does not su�ce to decide

whether a rule may be applied; here, also more elaborate type checking is needed than in

the many-sorted case.

The part of the work that would pro�t most from using order-sorted rewriting is the generation

of the basic rewriting system B. In the many-sorted approach, a large number of operators have

to be de�ned that map sorts representing subdomains into sorts representing superdomains and

back (see Section 4.2.1). These rules could be replaced by the much simpler declaration of subsort

relations, if order-sorted algebra was used.

11.2.2 Other Styles of Semantics De�nitions

Up to now, no axiomatic de�nitions have been dealt with. There are, however, two special forms

of this style that could be represented by rewrite systems in a way that greatly pro�ts from the

results of Chapters 7 and 8.

11.2.2.1 Predicate Transformer Semantics

In de�nitions of this style proposed by Dijkstra [34], the semantics of language constructs maps

predicates (that are interpreted as postconditions) to other predicates (that are interpreted as

weakest preconditions).

1

A \semantic version" of such de�nitions presented in de Bakker [29]

2

that is very close to deno-

tational de�nitions as introduced in Chapter 6.

Consider e. g. a simpli�ed version of the semantics de�nition for statements in [29]. Among

the possible statements, there are assignments and sequences of statements:

Stmt 3 S ::= idf := exp j S

1

; S

2

j : : :

A predicate is a mapping from states � 2 � to truth values:

� 2 � = �! IB

The weakest precondition of statements is de�ned by a function

wp : Stmt ! [�

-

�]

given by equations like

wp (idf := exp) = � � : � � : � [ v (exp; �) = idf ]

wp (S

1

; S

2

) = � � : wp (S

1

) (wp (S

2

) �) :

Here v : Expr ;�! Val is a valuation function determining the values of expressions. Obviously,

this format is very similar to the clausal format for denotational de�nitions (see Def. 6.12); since

the de�nition of the mathematical domains needed is also very similar, problems and solutions

for such de�nitions should be the same as in Chapter 8 for the denotational case.

1

The other direction, mapping preconditions to strongest postconditions is also possible, yet less commonly

used.

2

Section 8.3, pp. 308 �.
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Dijkstra [34] and Dijkstra and Scholten [35] suggest a more \syntactic variant" of predicate

transformer semantics. The core of the de�nition is the same, however; the main di�erences to de

Bakker's version are the use of simpler mathematical domains, the absence of �-abstractions, and

the avoidance of explicit reference to states by special notational conventions. Since this setting

is simpler, application of the techniques of Chapter 8 should also be simpler for this variant than

for the \semantic version" above.

11.2.2.2 Proof Rules in the Style of Milne

In [91], Milne proposes an axiomatic semantics de�nition for a variant of the VDM speci�cation

language (cf. Jones [76]). For each kind of statement stmt proof rules are provided that give

information about certain pre- and postconditions pre [[stmt ]] and post [[stmt ]] . These are related

to weakest preconditions by the following equation:

wp (stmt) � ()

( pre [[stmt ]] ) ( 9v

0

1

2 type [[stmt ]] ; : : : ; v

0

n

2 type [[stmt ]] )

( post [[stmt ]] ^ � [ v

0

1

; : : : ; v

0

n

= v

1

; : : : ; v

n

] ) )

where v

1

; : : : ; v

n

are the variables that stmtmay write to; v

0

i

refers to the value of v

i

after execution

of stmt.

Examples for rules de�ning pre [[stmt ]] and post [[stmt]] are the following:

pre [[idf := exp ]] =

df

pre [[exp]]

post [[idf := exp]] =

df

( idf = exp )

pre [[S

1

; S

2

]] =

df

pre [[S

1

]] ^ ( post [[S

1

]] ) pre [[S

2

]] )

post [[S

1

; S

2

]] =

df

(9v

00

1

2 type [[v

1

]] ; : : : ; v

00

n

2 type [[v

n

]] )

post [[S

1

]] [v

00

1

; : : : ; v

00

n

=v

0

1

; : : : ; v

0

n

] ^

post [[S

2

]] [v

00

1

; : : : ; v

00

n

; w

1

; : : : ; w

m

= v

1

; : : : ; v

n

; w

1

; : : : ; w

m

]

where the v

i

are those variables that both S

1

and S

2

may write to, and the w

j

are those variables

that only S

1

may write to.

In order to generate rewrite systems from such equations, some problems have to be overcome:

� Quanti�ers must be dealt with. This could be done in the style of Section 4.2.5.1 provided

the formulas become not too complex.

� In order to de�ne the conditions for loops, deduction rules are used. Since these rules are

more general than the transition rules of Section 5.2, this seems to go beyond the methods

presented here; the Larch Prover, however, supports deduction rules (see Section 9.3 and

Appendix C).
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� There are many references to intermediate values of variables in the rules. Since these are

mostly bound by quanti�ers, they could be replaced by de Bruijn indices like in Section

8.2.

The above considerations show that it is reasonable to assume that semantics de�nitions in the

wp-calculus and in the style of Milne can also be simulated with the techniques of this work.
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Appendix A

Automatic Generation of LP Input

As a part of this work, two tools have been implemented to provide support for the automated

proofs described in Chapter 10:

(1) a program generating most of the basic system according to the method of Section 4.2 and

(2) a program transforming SOS de�nitions into rewrite rules, implementing the algorithm of

Section 7.2.

Both of these tools are intended as frontends for the Larch Prover, generating detailed complete

LP input �les from simpler speci�cations. Since most application areas have special notations

for writing concise problem descriptions that are more readable than LP input �les, it is quite

common to have such frontend tools. Engberg, Gr�nning and Lamport [40] e. g. use an ML

program to transform speci�cations written in TLA (the temporal logic of actions, cf. Lamport

[83]) into LP's input language, and Mellergaard and Staunstrup [90] describe a frontend trans-

lating synchronous circuit descriptions. In all cases, the motivation is to avoid tedious routine

encodings that distract from the real problem to be solved.

Both of the tools mentioned above will be described by means of small examples exhibiting all

the features supported.

A.1 Transforming Domain Speci�cations with gensig

The program gensig generates the basic rewrite system from a domain speci�cation of the type

described in Section 4.2. Moreover, it is able to generate special incarnations of the ��-calculus

(see Section 3.2) and the de�nitions that are needed to model cpo structures (see Section 8.2).

gensig is written in C with lex and yacc and has a size of about 6000 lines of code. It has been

developed with the help of the VDM ADT domain compiler (cf. Schmidt and H�orcher [106]), a

tool whose purpose is very similar to that of gensig. From similar VDM domain speci�cations

it generates C code

1

, thus relieving the developer from tedious implementation of data type

representations.

Although designed specially to be used in problems of the kind described in this work, gensig

1

Other languages such as Pascal or Modula-2 are also supported.
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can also be useful in other applications of LP. By modelling the relations between domains as

de�ned in domain equations, it introduces a bit of the data modelling power of order-sorted

algebra (see p. 138) into the many-sorted world of LP. The disadvantage compared to the true

order-sorted approach is the greater complexity of terms that results from the need to write

explicitly the injection operators from subsorts into supersorts that are available in implicit form

in an order-sorted setting.

A.1.1 An Example Input File

As a small example for gensig input, consider the following �le. It is designed to include most of

the features supported by the program in as small a �le as possible; it does not, however, have

any semantic relevance.

1 % ======================================================================

2 % gensig-ex: signature file as input for gensig

3 .MAX VAR 4

4 .CONFIGURATIONS Conf .TERMINAL mk_Conf(s) .CONTEXT Context .RULES 3

5 .VAR

6 cf : Conf, n : Nat, pr : Prog,

7 s : State, val : Value, x : Var

8 .TYPES

9 .SPECIAL _SKIP

10 Conf = Prog * State | State

11 , Prog = _SEQU * Prog * Prog | _SKIP

12 , State = Var -> Value

13 , Value = is not yet defined

14 , Var = is not yet defined

15 .EXPLICIT SUBSTITUTIONS FOR Value WITH 4 INDICES _val

16 .CPO (Value, <=) WITH BOTTOM botv RULETYPE rewrite

The �le is structured as follows (comments are started by % and extend to the end of the current

line):

(1) First, the maximal index for variables is set (line 3). The e�ect of setting it to 4 is that

for each sort S, the following variables are declared: base,base1,: : :,base4, where base is the

name for variables of sort S as introduced in the variable de�nition section (lines 5{7).

(2) The next, optional section introduces a name for con�gurations, a term denoting general

terminal con�gurations, a name for contexts and the number of SOS rules (line 4). This

extra information is needed to generate data type rules related to SOS de�nitions. In

particular, a general denotation for terminal con�gurations must be known in order to be

able to automatically construct the rules for the eval operator (see Section 3.3.1).

(3) After the variable de�nition section follows the type de�nition section (lines 6{14). The

types of domain equations that are allowed here have already been explained in Section 4.2.

Tokens token are represented in the form TOKEN, usually written in capital letters only. The

product sign � is written as *. The meaning of \special" tokens (line 9) is explained below.
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(4) The next, optional section states which incarnations of the ��-calculus are required (line

15). Parameters are the sort of the de Bruijn indices (here Value), their number (here 4)

and their base name (here val). (Only one index is actually needed; the remaining ones

are just used for abbreviation, see Section 3.2.)

(5) The last section (again optional) contains information about the cpo de�nitions to be

generated (line 16). The type of rules used for these de�nitions can either be deduction

meaning LP deduction rules are to be used (this is the default), or rewrite meaning the

rewrite rule modelling of Section 8.2 is to be applied (see Appendix C for a comparison).

A.1.2 Declarations

From the input �le gensig-ex above, the command

gensig gensig-ex

produces a set of four di�erent �les containing LP input. The output is split in order to enable

selective processing. This is useful since not all of the rules that are generated are needed for all

applications.

The �rst of the output �les (gensig-ex.lp) contains the declarations of sorts, variables, and

operators, and it also includes the induction rules that are generated. Besides the sorts that

correspond to domain equations, there are some sorts that are always automatically included

(Nat, Type). Others are included automatically only if contexts are needed, i. e. if the second

section of the input �le is not empty (Count, Flag, CCPair, Subst, representing the component

types of contexts, con�guration-context pairs, and substitutions, respectively).

1 % ======================================================================

2 % Basic rewriting system for signature file gensig-ex

3 % Part 1: sorts, operators and variables

4 % Input file for LP, rel. 2.4, generated by gensig, v. 1.52

5 % Generated on Sat Feb 12 14:31:13 1994

6 declare sorts

7 Conf, Nat, Prog, State, Value, Var, Count, Flag, CCPair, Context, Type, Subst, Bool

8 ..

9 declare variables

10 cf, cf1, cf2, cf3, cf4 : Conf

11 n, n1, n2, n3, n4 : Nat

12 pr, pr1, pr2, pr3, pr4 : Prog

13 s, s1, s2, s3, s4 : State

14 val, val1, val2, val3, val4 : Value

15 x, x1, x2, x3, x4 : Var

16 ct, ct1, ct2, ct3, ct4 : Count

17 s, s1, s2, s3 : Flag

18 ccp, ccp1, ccp2, ccp3, ccp4 : CCPair

19 K, K1, K2, K3, K4 : Context

20 tp, tp1, tp2, tp3, tp4 : Type

21 u, u1, u2, u3, u4 : Subst

22 b, b1, b2, b3, b4 : Bool

23 ..

24 declare operators

25 type : Conf -> Type

26 _Conf : -> Type

27 type : Nat -> Type

28 _Nat : -> Type

29 type : Prog -> Type
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30 _Prog : -> Type

31 type : State -> Type

32 _State : -> Type

33 type : Value -> Type

34 _Value : -> Type

35 type : Var -> Type

36 _Var : -> Type

37 type : Count -> Type

38 _Count : -> Type

39 type : Flag -> Type

40 _Flag : -> Type

41 type : CCPair -> Type

42 _CCPair : -> Type

43 type : Context -> Type

44 _Context : -> Type

45 type : Subst -> Type

46 _Subst : -> Type

47 type : Bool -> Type

48 _Bool : -> Type

49 ..

50 declare operators

51 @ : Conf, Context -> CCPair

52 ..

53 declare operator

54 eval : CCPair -> Conf

55 ..

56 declare operators

57 mk_Context : Count, Flag, Flag, Flag -> Context

58 s_1 : Context -> Count

59 s_2 : Context -> Flag

60 s_3 : Context -> Flag

61 s_4 : Context -> Flag

62 ..

63 declare operators

64 _NULL : -> Count

65 ..

66 declare operators

67 _ONE : -> Count

68 ..

69 declare operators

70 _MANY : -> Count

71 ..

72 declare operators

73 _ON : -> Flag

74 ..

75 declare operators

76 _OFF : -> Flag

77 ..

78 set name Conf

79 declare operators

80 mk_Conf : Prog, State -> Conf

81 s_1 : Conf -> Prog

82 s_2 : Conf -> State

83 ..

84 declare operators

85 mk_Conf : State -> Conf

86 to_State : Conf -> State
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87 is_State : Conf -> Bool

88 ..

89 assert

90 Conf generated by

91 mk_Conf : Prog, State -> Conf,

92 mk_Conf : State -> Conf

93 ..

94 set name Prog

95 declare operators

96 mk_SEQU_Prog : Prog, Prog -> Prog

97 is_SEQU_Prog : Prog -> Bool

98 s_1 : Prog -> Prog

99 s_2 : Prog -> Prog

100 ..

101 declare operators

102 _SKIP : -> Prog

103 ..

104 assert

105 Prog generated by

106 mk_SEQU_Prog : Prog, Prog -> Prog,

107 _SKIP : -> Prog

108 ..

109 declare operators

110 . : State, Var -> Value

111 ..

112 % ============================================================

113 % Application of explicit substitutions as in [ACCL90]

114 declare operators

115 _val1, _val2, _val3, _val4: -> Value

116 id : -> Subst % identity substitution {x_i/x_i}

117 sh : -> Subst % shift substitution {x_(i+1)/x_i}

118 + : Value, Subst -> Subst % substitution extension (cons)

119 * : Subst, Subst -> Subst % substitution concatenation

120 ..

121 % ============================================================

122 % Value is an omega cpo:

123 declare sort seqValue

124 declare operators

125 botv : -> Value

126 <= : Value, Value -> Bool

127 lub : seqValue -> Value

128 chain : seqValue -> Bool

129 ..

130 % ============================================================

131 % Application of explicit substitutions as in [ACCL90]

132 declare operators

133 _n1, _n2, _n3: -> Nat

134 id : -> Subst % identity substitution {x_i/x_i}

135 sh : -> Subst % shift substitution {x_(i+1)/x_i}

136 + : Nat, Subst -> Subst % substitution extension (cons)

137 * : Subst, Subst -> Subst % substitution concatenation

138 ..

139 declare variables

140 seqval, seqval1, seqval2, seqval3, seqval4 : seqValue

141 ..
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142 % === Natural numbers:

143 declare sort Nat

144 declare operators

145 forall : Type, Bool -> Bool

146 0 : -> Nat

147 s : Nat -> Nat

148 <= : Nat, Nat -> Bool

149 ..

150 % === Sequences in Value:

151 declare operators

152 . : seqValue, Nat -> Value

153 ..

154 declare operators

155 type : seqValue -> Type

156 _seqValue : -> Type

157 ..

Comments:

(1) As already mentioned above, there are some sorts that are implicitly generated (lines 6{

8). The sorts for the components of contexts (Count and Flag) are added when there is a

con�guration de�nition part in the input �le. The same holds for the sort of con�guration-

context pairs (CCPair).

The sort of types of terms (Type), the sort of ��-calculus substitutions (Subst) and the sort

of Booleans are always included (the latter mostly for sake of completeness, as Bool is the

only built-in sort of LP).

(2) For each of the sorts, variables are declared according to the .MAX VAR de�nition in the

input �le (lines 9{23).

(3) The �rst block of operators contains those that are needed to determine the type of a term,

i. e. for each sort S an operator type mapping the sort to the type sort, and a constant of

sort Type representing S (lines 24{49).

(4) The next block contains the declarations of the operators corresponding to the domain

equations (lines 50{111). For an explanation of the operators, see Section 4.2. Note the

two induction rules in lines 89{93 and 104{108.

In lines 101{103, the e�ect of declaring SKIP a \special token" can be seen. It results in

generating a Prog object of the form SKIP; if no such declaration would have been given,

the result would have been an object of form mk SKIP Prog instead.

(5) Lines 112{120 contain the declaration of the ��-operators for the sort Value, followed by

those needed to model that it is a cpo (lines 121{157). Note that due to the request for

RULETYPE rewrite another incarnation of the ��-calculus for the sort Nat of natural numbers

is also needed (lines 130{138, see Section 8.2).

A.1.3 Basic Rules

The rules generated by gensig fall into three parts (and hence are written to three �les):

(1) data type rules as explained in Section 4.2, written to gensig-ex-rules.lp;
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(2) rules modelling distribution of substitution application as it is needed for the implementa-

tion of the ��-calculus, written to gensig-ex-subst.lp;

(3) type rules relating sort and their corresponding types (objects of sort type) and stating

that all types are distinct, written to gensig-ex-type.lp.

Only the rules of the �rst group will be reproduced here as the other rules are generated in a

very obvious way, however resulting in rather lengthy �les.

1 % ======================================================================

2 % Basic rewriting system for signature file gensig-ex

3 % Part 2: rules; requires gensig-ex.lp

4 % Input file for LP, rel. 2.4, generated by gensig, v. 1.52

5 % Generated on Sat Feb 12 14:31:13 1994

6 set activity off

7 set name CCPair

8 assert

9 eval(cf @ mk_Context(_NULL, s, s1, s2)):Conf -> cf

10 eval(mk_Conf(s) @ K):Conf -> mk_Conf(s)

11 ..

12 make immune CCPair

13 set name Context

14 assert

15 s_1(mk_Context(ct, s, s1, s2)):Count -> ct

16 s_2(mk_Context(ct, s, s1, s2)):Flag -> s

17 s_3(mk_Context(ct, s, s1, s2)):Flag -> s1

18 s_4(mk_Context(ct, s, s1, s2)):Flag -> s2

19 ..

20 make immune Context

21 set name Count

22 assert

23 _NULL = _ONE -> false

24 _NULL = _MANY -> false

25 _ONE = _MANY -> false

26 ..

27 make immune Count

28 set name Flag

29 assert

30 _ON = _OFF -> false

31 ..

32 make immune Flag

33 set name Conf

34 assert

35 s_1(mk_Conf(pr, s)):Prog -> pr

36 s_2(mk_Conf(pr, s)):State -> s

37 is_State(mk_Conf(s))

38 to_State(mk_Conf(s)) -> s

39 mk_Conf(pr, s) = mk_Conf(s) -> false

40 not(is_State(mk_Conf(pr, s)))

41 ..

42 make immune Conf

43 set name Prog

44 assert

45 s_1(mk_SEQU_Prog(pr, pr1)):Prog -> pr
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46 s_2(mk_SEQU_Prog(pr, pr1)):Prog -> pr1

47 is_SEQU_Prog(mk_SEQU_Prog(pr, pr1))

48 mk_SEQU_Prog(pr, pr1) = _SKIP -> false

49 not(is_SEQU_Prog(_SKIP))

50 ..

51 make immune Prog

52 set name State

53 assert

54 ..

55 make immune State

56 % === Rules for cpo Value:

57 set immunity on

58 set name bottom_Value

59 assert

60 botv <= val

61 ..

62 set name ord_Value

63 assert

64 % <= is an ordering relation on Value:

65 val <= val

66 (val1 <= val2 & val2 <= val3) => (val1 <= val3)

67 (val1 <= val2 & val2 <= val1) => (val1 = val2)

68 ..

69 set name chain_Value

70 assert

71 chain(seqval) -> forall(_Nat, (seqval . _n1) <= (seqval . (s(_n1))))

72 ..

73 % === Rules for natural numbers:

74 % <= is a total ordering relation on Nat:

75 set name Nat_le_refl

76 assert

77 n <= n

78 ..

79 set name Nat_le_trans

80 assert

81 (n1 <= n2 & n2 <= n3) => (n1 <= n3)

82 ..

83 set name Nat_le_antisym

84 assert

85 (n1 <= n2 & n2 <= n1) => (n1 = n2)

86 ..

87 set name Nat_le_total

88 assert

89 (n1 <= n2) | (n2 <= n1)

90 ..

91 set name Nat_le_succ

92 assert

93 (s(n1) <= s(n2)) -> (n1 <= n2)

94 ..

95 % === More rules for cpo Value:

96 set name lub_Value

97 assert

98 % lub is upper bound:

99 chain(seqval) => ((seqval . n) <= lub(seqval))

100 % lub is smaller than all upper bounds:

101 (chain(seqval) & forall(_Nat, (seqval . _n1) <= val)) => (lub(seqval) <= val)

102 % "constant tail" rule for lub:

103 (chain(seqval) & forall(_Nat, (n <= _n1) => ((seqval . n) = (seqval . _n1))))

104 => (lub(seqval) = (seqval . n))

105 ..
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106 set immunity off

107 set ordering left-to-right

108 order

109 set activity on

110 make active *

Some of the terms in these rules that include overloaded operators have to be \quali�ed" (i. e.

annotated with their result sort) in order to help LP's type checker to understand the input (e. g.

in lines 7{18).

Before processing, activity is turned o� (line 6), and all rules are declared to be immune (lines 12,

20 etc.). The reason for these settings is that otherwise, LP would start to internormalize all rules,

that is, normalize each rule with all the other rules. For sets of rules as large as those set up here,

this is rather time consuming, even though it has little e�ect as most rules are already in normal

form. Therefore internormalization is prevented, and terms are only normalized while proving

conjectures, but not within the rules themselves. Of course, the rules have to be re-activated

after all of them have been processed (line 110).

Lines 56{106 contain the rules for the cpo Value. Note that rules about the total ordering <= on

Nat are needed (lines 73{94) in order to be able to deal with sequences of elements of Value.

A.2 Translating SOS Rules with gensos

The program gensos implements the translation algorithm from Section 7.2. It has been developed

in the same way as gensig and has a size of about 3500 lines of code. Its output relies on a basic

rewriting system as produced by gensig.

A.2.1 An Example SOS Input File

As in Section A.1.1, input for and output of gensos will be explained with the help of a small

input �le not having any semantic signi�cance. Since the task of gensos is to translate a set of

SOS rules into rewrite rules and the structure of the SOS rules does not change, it su�ces to

present just the �rst SOS rule. (Assume, however, that there are a total of four rules to consider.)

In the abstract form of Def. 5.3, this rule looks as follows:

` is-special (pr

1

) ^ pr

1

-

pr

3

^ pr

2

-

pr

4

^ is-not-special (pr

4

)

` h pr

1

; pr

2

i

-

pr

3

where con�gurations are either elements pr 2 Prog or pairs thereof. In this rule, is-special (pr

1

)

forms the precondition part (pr

1

is not an extra variable), pr

1

-

pr

3

^ pr

2

-

pr

4

forms the

transition part, and is-not-special (pr

4

) forms the postcondition part (pr

4

is an extra variable).

The representation of this rule for gensos assumes the domain equation (in gensig input syntax)

Config = Prog | Prog * Prog

The rule is represented as follows:
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1 % ==================================================

2 % gensos-ex: small input file for gensos

3 .SYSTEMS Config .IN CONTEXT Context .WITH 4 .RULES AND INDICES x

4 .VAR

5 cf : Config,

6 n : Nat,

7 b : Bool,

8 ct : Context,

9 pr : Prog

10 .NAME R1

11 INFER mk_Config(mk_Prog(pr1, pr2)) -> mk_Config(pr3)

12 FROM is_special(pr1),

13 mk_Config(pr1) -> mk_Config(pr3) &

14 mk_Config(pr2) -> mk_Config(pr3,pr4),

15 is_not_special(pr4)

The structure of this �le is rather simple:

(1) It starts with an introduction of the name of the sort of con�gurations together with the

name of the sort of contexts, the total number of SOS rules and the base name of the de

Bruijn indices used (line 3).

(2) The next section contains the variable declarations (lines 4{9); this is just the same as in

the input for gensig.

(3) The body of the input �le contains a set of groups of rules (in this case only one group

with just one rule in it). Each group is preceded by a name declaration (line 10) that is

directly translated into a set name command for LP. Thus, larger SOS de�nitions can be

structured by introducing di�erent names and single rules can be picked out more easily.

In the example from Chapter 10, each rule has been given the name of the corresponding

rule in [82].

(4) The format of the rules is that of Def. 5.3. Precondition part is special(pr1), transition

part (mk Config(pr1) -> : : :), and postcondition part is not special(pr4) are separated

by commas (lines 11{15).

A.2.2 Generated SOS Derived Rules

From the input �le above, the command

gensos gensos-ex

produces the following output in the �le gensos-ex.lp:

1 % =================================================================

2 % Term rewriting system simulating SOS system in file gensos-ex

3 % Input file for LP, rel. 2.4, generated by gensos, v. 1.33

4 % Generated on Tue Mar 1 21:50:11 1994

5 set immunity on

6 % ====================================================

7 % Application of explicit substitutions as in [ACCL90]
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8 declare operators

9 x1, x2, x3 : -> Config

10 id : -> Subst % identity substitution {x_i/x_i}

11 sh : -> Subst % shift substitution {x_(i+1)/x_i}

12 + : Config, Subst -> Subst % substitution extension (cons)

13 * : Subst, Subst -> Subst % substitution concatenation

14 ..

15 set name sigma_Config

16 assert

17 % rules for eliminating bound variables

18 x1 # id -> x1 % VarId

19 x1 # (cf + u) -> cf % VarCons

20 % rules for evaluating substitutions

21 id * u -> u % IdL

22 sh * id -> sh % ShiftId

23 sh * (cf + u) -> u % ShiftCons

24 (cf + u) * u1 -> (cf # u1) + (u * u1) % Map

25 (u1 * u2) * u3 -> u1 * (u2 * u3) % Ass

26 (cf # u1) # u2 -> cf # (u1 * u2) % Clos

27 % extra rules

28 u * id -> u % IdR

29 x1 + sh -> id % VarShift

30 (x1 # u) + (sh * u) -> u % SCons

31 x2 -> x1 # sh

32 x3 -> x1 # (sh * sh)

33 ..

34 make passive sigma_Config

35 % ==================================================

36 % Rewrite rules generated from the transition system

37 set name R1

38 assert

39 mk_Config(mk_Prog(pr1, pr2)) @ mk_Context(_ONE, _ON, s2, s3, s4) ->

40 if(is_special(pr1) & is_Prog(x1) & (type(x2) = I(_Config))

41 & (comps(x2) = I(s(s(0)))) & (type(s_1(x2)) = I(_Prog))

42 & (type(s_2(x2)) = I(_Prog)) & is_not_special(s_2(x2)) & (s_1(x2) = to_Prog(x1)),

43 % then

44 mk_Config(to_Prog(x1)) @ mk_Context(_NULL, _ON, s2, s3, s4),

45 % else

46 I(mk_Config(mk_Prog(pr1, pr2))) @ mk_Context(_ONE, _OFF, s2, s3, s4))

47 #(eval(mk_Config(pr1) @ mk_Context(_ONE, _ON, _ON, _ON, _ON)):Config

48 + (eval(mk_Config(pr2) @ mk_Context(_ONE, _ON, _ON, _ON, _ON)):Config + id))

49 mk_Config(mk_Prog(pr1, pr2)) @ mk_Context(_MANY, _ON, s2, s3, s4) ->

50 if(is_special(pr1) & is_Prog(x1) & (type(x2) = I(_Config))

51 & (comps(x2) = I(s(s(0)))) & (type(s_1(x2)) = I(_Prog))

52 & (type(s_2(x2)) = I(_Prog)) & is_not_special(s_2(x2)) & (s_1(x2) = to_Prog(x1)),

53 % then

54 mk_Config(to_Prog(x1)) @ mk_Context(_MANY, _ON, _ON, _ON, _ON),

55 % else

56 I(mk_Config(mk_Prog(pr1, pr2))) @ mk_Context(_MANY, _OFF, s2, s3, s4))

57 #(eval(mk_Config(pr1) @ mk_Context(_ONE, _ON, _ON, _ON, _ON)):Config

58 + (eval(mk_Config(pr2) @ mk_Context(_ONE, _ON, _ON, _ON, _ON)):Config + id))

59 ..

60 make active sigma_Config

61 order

62 set immunity off

Comments:

(1) As in the rule systems generated by gensig, all rules are made immune to prevent internor-
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malization (line 5).

(2) The �rst block of output contains the required incarnation of the ��-calculus (lines 6{34);

cf. Section 3.2.

(3) As already mentioned, the rule groups begin with a set name command, followed by the

two rules generated for each of the SOS rules in the group (one-step and many-step case).

Note how terms that are known not to include extra variables (resp. de Bruijn indices) are

protected from substitution by surrounding them with the I operator (see Section 3.2.3.2).

Again, some of the terms in the rules have to be quali�ed with their result sort in order to

pass LP's type checker.
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Appendix B

Complete Proofs for the Simulation

Results of Chapter 7

B.1 Preliminaries

In this appendix, the results of Section 7.2 will be proved. Besides the abbreviations of Chapter

7, the following notation is used:

Notation B.1

Let n 2 IN; ; 

0

2 �, and K;K

1

be contexts. Then @K

[n]

-

R



0

@K

1

will be written

if @K

�

-

R



0

@K

1

with exactly n outermost applications of SOS-derived rules. If n = 1

and the rule that is applied outermost is the m�th for some m 2 [N ], it will also be written

@K

[1(m)]

-

R



0

@K

1

.

The 1-version and the �-version of an SOS-derived rule di�er only in the �rst components of the

contexts on their left-hand sides and in the bodies of the if expressions on their right-hand sides.

Therefore, a rewriting sequence

@K

(k)

1

[1(k)]

-

R



0

@K

0f

containing con�gurations in 1-contexts can be transformed into a sequence

@K

(k)

[1(k)]

-

R



0

@K

f

containing the same con�gurations in �-contexts and vice versa. The substitutions needed for

rewrite rule applications are identical in both cases; only the counter components of the contexts

have to be changed and the other form of rule k has to be applied. So the following two lemmas

hold:

Lemma B.2

Each rewriting in a 1-context can also be performed in a �-context: Let ; 

0

2 �; k 2

[N ]; r

1

; : : : ; r

N

2 fon; o�g such that @K

(k)

1

[1(k)]

-

R



0

@K

0f

. Then it also holds that

@K

(k)

[1(k)]

-

R



0

@K

f

.
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Lemma B.3

Each one-step SOS rewriting in an �-context can also be performed in a 1-context: Let

; 

0

2 �; k 2 [N ]; r

1

; : : : ; r

N

2 fon; o�g and @K

(k)

[1(k)]

-

R



0

@K

f

. Then it also holds

that @K

(k)

1

[1(k)]

-

R



0

@K

0f

.

B.2 Completeness

It su�ces to prove the following theorem:

Theorem B.4 (completeness)

8M 2 IN

0

8 ; 

0

2 � : 

M

-

=

S



0

) @K

f

[M ]

-

R



0

@K

f

Proof

Let M 2 IN and ; 

0

2 � with 

M

-

=

S



0

. The proof proceeds by induction on the total number

M

0

of transitions needed to establish this transition sequence. (Note thatM

0

�M because there

may be transitions that are needed to prove premises of SOS rules.)

Induction basis: M

0

= 0.

In this case, also M = 0, hence  = 

0

, and thus obviously @K

f

[0]

-

R



0

@K

f

.

Induction step: M

0

> 0.

Under this condition, also M > 0 because SOS transitions can only occur if there is at least

one top-level transition. Hence there is a " 2 � with 

-

=

S

"

M�1

-

=

S



0

. The induction

hypothesis yields "@K

f

[M�1]

-

R



0

@K

f

. Hence it remains to be proved that @K

f

[1]

-

R

"@K

f

.

There is a k 2 [N ] such that 

-

=

S

" is possible due to rule k. This rule is of the form presented

in Def. 5.3:

`

p

V

i=1

b

i

^

n

V

j=1



j

L

j

-



0

j

^

q

V

k=1

B

k

` 

-



0

Case 1: n = 0 (it follows that q = 0).

In this case, the rule (7.12) is generated:

@Kv

(k)

-

if

p

V

i=1

b

i

then 

0

@K

f

else @Kv

(k)
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where Kv

(k)

=

df

p

h �; s

1

; : : : ; s

k�1

; o�; s

k+1

; : : : ; s

N

i

q

. Since rule k has been chosen, there exists

a substitution � that ful�ls the conditions (1) to (3) from Def. 5.8. In particular:

 = � (1)

8i 2 [p] : b

i

� =

E

true (2)

" = � (3)

By general assumption, B � R is complete for conditions; since true is a normal form, it follows

that

8i 2 [p] : b

i

�

�

-

R

true

Moreover for �

1

=

df

fon=s

i

j i 2 [N ]; i 6= kg:

Kv

(k)

�

1

= h �; on; : : : ; on i = K

f

.

The s

i

only occur in contexts but not in con�gurations. Therefore it holds for �

2

=

df

� ] �

1

that �

2

=  and Kv

(k)

�

2

= K

f

, hence @K

f

= (@Kv

(k)

)�

2

, and also for all i 2 [p] that

b

i

�

2

= b

i

�

�

-

R

true.

Therefore the derived rule is applicable for @K

f

, and the resulting term is

p

(

0

@K

f

)

q

�

2

=

p

x



0

�

2

y

@

x

K

f

�

2

y

q

[ substitution is homomorphic ]

=

p

x



0

�

y

@

x

K

f

�

1

y

q

[� and �

1

are disjoint ]

=

p

"@

x

K

f

�

1

y

q

[ condition (3) ]

=

p

"@K

f

q

[K

f

is constant ]

Hence, it has been proved @K

f

[1(k)]

-

R

"@K

f

, and therefore @K

f

[1]

-

R

"@K

f

.

Case 2: n > 0.

As in Case 1, there are substitutions �, �

1

and �

2

with �

2

= � ] �

1

; � =  and Kv

(k)

�

1

= K

f

such that

8i 2 [p] : b

i

�

2

�

-

R

true and @K

f

= (@Kv

(k)

)�

2

Therefore, the derived rule (7.14) can be applied, the outermost if term on the right-hand side
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can be reduced to its then case, and one obtains:

p

@K

f

q

=

p

(@Kv

(k)

)

q

�

2

�

-

R

d

( let x

1

= eval ( 

1

@ hL

1

; on; : : : ; on i );

: : : ;

x

n

= eval ( 

n

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

x

type-ok (x

i

; 

0

i

; var ())

y

^

q

V

i=1

B

i

^

x

EV-match

y

then ~

0

@K

f

else @Kv

(k)

)

e

�

2

=

d

let x

1

= eval (

x



1

�

y

@ hL

1

; on; : : : ; on i )

: : : ;

x

n

= eval (

x



n

�

y

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

x

(type-ok (x

i

; 

0

i

; var ()))�

y

^

q

V

i=1

x

B

i

�

y

^

x

EV-match

y

then

x

~

0

�

y

@K

f

else

x

�

y

@

x

Kv

(k)

�

1

y

e

�

substitution is homomorphic, de�nition of �

2

,

EV-match is free of variables

�

Case 2.1: The SOS rule does not contain extra variables.

It follows that q = 0 and EV-match = true. Furthermore by Def. 7.2:

(type-ok (x

i

; 

0

i

; var ()))� �

p

x

i

= 

0

i

�

q

for all i 2 [n]

and by de�nition of ~

0

((4) in Def. 7.5)

~

0

� � 

0

� .

Hence the resulting term for the development above is:

X �

df

d

let x

1

= eval (

x



1

�

y

@ hL

1

; on; : : : ; on i )

: : : ;

x

n

= eval (

x



n

�

y

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

x

i

=

x



0

i

�

y

then

x



0

�

y

@K

f

else

x

�

y

@

x

Kv

(k)

�

1

y

e

By condition (3.1) from Def. 5.8, for all i 2 [n] holds that 

i

�

L

i

-



0

i

�, and consequently

p

eval (

x



i

�

y

@ hL

i

; on; : : : ; on i )

q

�

-

R



0

i

�.

[ Proof: Let i 2 [n].

Case L

i

= 1:

The transitions in 

i

�

L

i

-



0

i

� are a proper subset of those counted in M

0

. Therefore it

is true by induction that

p

x



i

�

y

@K

f

q

[1]

-

R

p

x



0

i

�

y

@K

f

q

. From Lemma B.3, it follows

p

x



i

�

y

@K

1f

q

�

-

R

p

x



0

i

�

y

@K

0f

q

, and hence

p

eval (

x



i

�

y

@K

1f

)

q

�

-

R



0

i

�, since 

0

i

� is

completely evaluated in the context K

0f

(cf. Section 3.3.1) .

Case L

i

= �:
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As in the other case, it follows by induction that

p

x



i

�

y

@K

f

q

�

-

R

p

x



0

i

�

y

@K

f

q

, hence

also

p

eval (

x



i

�

y

@ hL

i

; on; : : : ; on i )

q

�

-

R



0

i

� since 

0

i

� 2 T (see Def. 5.3, condition (9)),

and terminal con�gurations are completely evaluated (cf. Section 3.3.1).

� ]

Therefore, one obtains

X

�

-

R

d

let x

1

=

x



0

1

�

y

; : : : ; x

n

=

x



0

n

�

y

in if

n

V

i=1

x

i

=

x



0

i

�

y

then

x



0

�

y

@K

f

else

x

�

y

@

x

Kv

(k)

�

1

y

e

+

-

R

p

x



0

�

y

@K

f

q

[��-calculus, B is complete for conditions ]

=

p

"@K

f

q

[

0

� = " (condition (3.3) from Def. 5.8) ]

and thus

p

@K

f

q

[1]

-

R

p

"@K

f

q

.

Case 2.2: There are extra variables in the SOS rule.

In this case

8i 2 [n] : (type-ok (x

i

; 

0

i

; var ()))� �

d

type (x

i

) = T



0

i

^ #comp(x

i

) =

x

#comp (

0

i

)

y

^

x

#comp (

0

i

)

y

V

k=1

x

type-ok (

p

x

i

#k

q

; 

0

i

=k; var ())�

y

e

~

0

= 

0

�

EV

B

i

= B

i

�

EV

where

�

EV

=

df

[ x

j

v

w

v

=v j v is an extra variable ]

and T



0

i

is a type constant representing the type T



0

i

. Therefore the resulting term for the

development above is:

X �

df

d

let x

1

= eval (

x



1

�

y

@ hL

1

; on; : : : ; on i );

: : : ;

x

n

= eval (

x



n

�

y

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

[ type (x

i

) = T



0

i

^ #comp(x

i

) =

x

#comp (

0

i

)

y

^

x

#comp (

0

i

)

y

V

k=1

x

type-ok (

p

x

i

#k

q

; 

0

i

=k; var ())

y

] � ^

q

V

i=1

x

(B

i

�

EV

)�

y

^

x

EV-match

y

then

x

(

0

�

EV

)�

y

@K

f

else

x

�

y

@

x

Kv

(k)

�

1

y

e

By condition (3) from Def. 5.8, there exists an extension �

0

of � onto var (R

k

) with 

j

�

0

= 

j

�
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for all j 2 [n] (because there are no extra variables in 

i

by condition (6) in Def. 5.3) and

8j 2 [n] : 

j

�

L

j

-

j



0

j

�

0

(4)

8j 2 [q] : B

j

�

0

=

E

true (5)

" = 

0

�

0

(6)

As in Case 2.1, one obtains for j 2 [n]

p

eval (

x



j

�

y

@ hL

j

; on; : : : ; on i )

q

�

-

R



0

j

�

0

:

Hence:

X

�

-

R

d

let x

1

=

x



0

1

�

0

y

; : : : ; x

n

=

x



0

n

�

0

y

in if

n

V

i=1

[ type (x

i

) = T



0

i

^ #comp(x

i

) =

x

#comp (

0

i

)

y

^

x

#comp (

0

i

)

y

V

k=1

x

type-ok (

p

x

i

#k

q

; 

0

i

=k; var ())

y

] � ^

q

V

i=1

x

(B

i

�

EV

)�

y

^

x

EV-match

y

then

x

(

0

�

EV

)�

y

@K

f

else

x

�

y

@

x

Kv

(k)

�

1

y

e

+

-

R

d

if

n

V

i=1

[ type (

0

i

�

0

) = T



0

i

^ #comp(

0

i

�

0

) =

x

#comp (

0

i

)

y

^

x

#comp (

0

i

)

y

V

k=1

x

type-ok (

p



0

i

�

0

#k

q

; 

0

i

=k; var ())

y

] � ^

q

V

i=1

x

(B

i

�

EV

)�

y

^

x

EV-match [ 

0

i

�

0

=x

i

j i 2 [n] ]

y

then

x

(

0

�

EV

)�

y

@K

f

else

x

�

y

@

x

Kv

(k)

�

1

y

e

[��-calculus ]

where �

0

EV

=

df

[ (

0

j

v

�

0

)w

v

=v j v is an extra variable ].

Since all components of the structure of 

0

i

also occur in 

0

i

�

0

, it follows easily from the de�nition

of type-ok that the type-ok part of the if condition equals true, and therefore can be rewritten

by B (and thus also by R) to true since B is complete for such conditions. Furthermore one can

deduce that (B

i

�

0

EV

)�

�

-

R

true for i 2 [q].

[ Proof: Let v be an extra variable. By de�nition holds 

0

j

v

w

v

= v, and the occurrence of v

in 

0

j

v

is the same as that of v�

0

in 

0

j

v

�

0

. Thus (

0

j

v

�

0

)w

v

= v�

0

, and by completeness of B

follows (

0

j

v

�

0

)w

v

#

B

v�

0

. Consequently for i 2 [q]:

(B

i

�

0

EV

) � = (B

i

[ (

0

j

v

�

0

)w

v

=v j v is an extra variable ]) �

#

B

(B

i

[ v�

0

=v j v is an extra variables ]) �

= B

i

�

0

[ �

0

is an extension of � ]

By condition (5), B

i

�

0

=

E

true, thus B

i

�

0

�

-

B

true by completeness of B. So we have

(B

i

�

0

EV

)� #

B

B

i

�

0

�

-

B

true, and by correctness of B follows (B

i

�

0

EV

)� =

E

true. Again by
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completeness of B, one can deduce (B

i

�

0

EV

)�

�

-

B

true, and hence (B

i

�

0

EV

)�

�

-

R

true.

� ]

EV-match [ 

0

i

�

0

=x

i

j i 2 [n] ] also rewrites to true.

[ Proof: By de�nition of Ev-match , it holds that

EV-match [ 

0

i

�

0

=x

i

j i 2 [n] ] �

V

f

p

(

x



0

k

�

0

y

)w

0

v

= (

x



0

j

v

�

0

y

)w

v

q

j v is an extra variable,



0

k

w

0

v

occurrence of v di�erent from 

0

j

v

w

v

g:

Let v be an extra variable, v = 

0

j

w

0

v

, and (j; w

0

v

) 6= (j

v

; w

v

). Then one must prove

p

(

x



0

j

�

0

y

)w

0

v

= (

x



0

j

v

�

0

y

)w

v

q

�

-

R

true. Since substitution application commutes with pro-

jection to subterms, it holds that

(

0

j

�

0

)w

0

v

=

E

(

0

j

w

0

v

)�

0

=

E

v�

0

;

(

0

j

v

�

0

)w

v

=

E

(

0

j

v

w

v

)�

0

=

E

v�

0

;

hence (

0

j

�

0

)w

0

v

= (

0

j

v

�

0

)w

v

, and by completeness of B follows the desired result. � ]

Therefore the whole if condition rewrites to true, and thus

X

+

-

R

p

x

(

0

�

0

EV

) �

y

@K

f

q

�

-

R

p

x



0

�

0

y

@K

f

q

�

as in the proof of (B

i

�

0

EV

)�

�

-

R

true above

�

=

p

"@K

f

q

[ by (6) ]

and so @K

f

[1]

-

R

"@K

f

.

�

From the result proved, one immediately obtains normal-form completeness, and with Lemma

B.3 also one-step completeness.

B.3 Correctness

Similar to the case of completeness, it su�ces to prove

Theorem B.5 (correctness)

8M 2 IN 8 ; 

0

2 � : @K

f

[M ]

-

R



0

@K

f

) 

M

-

S



0

Proof

Let M 2 IN and ; 

0

2 � such that @K

f

[M ]

-

R



0

@K

f

. The proof proceeds by induction on

the total number M

0

of applications of SOS-derived rules in this sequence (again, observe that

M

0

> M).

Induction basis: M

0

= 0.

Since  and K

f

do not contain subterms that are con�guration/context pairs, in this case

@K

f

�

-

B



0

@K

f

. Since B is not concerned with con�guration/context pairs, this means



�

-

B



0

, and by correctness of B follows  =

E



0

, and thus 

0

-

S



0

by Def. 5.7.
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Induction step: M

0

> 0.

In this case, also M > 0 and there is some " 2 � with @K

f

[1]

-

R

"@K

f

[M�1]

-

R



0

@K

f

.

By induction holds "

M�1

-

S



0

and it remains to prove 

1

-

S

".

Let k 2 [N ] such that @K

f

[1(k)]

-

R

"@K

f

uses only SOS-derived rule k outermost. Let D

be the number of applications of SOS-derived rules in this sequence that occur on inner levels.

Case 1: D = 0.

In this situation, rule k must have the form (7.12):

@Kv

(k)

-

if

p

V

i=1

b

i

then 

0

@K

f

else @Kv

(k)

Contexts can only be modi�ed in SOS-derived rules. Therefore, there are 

M

; 

0

M

2 � such that

1

@K

f

�

-

B



M

@K

f

-

R

0



0

M

@K

f

�

-

B

"@K

f

(remember R = B ] R

0

) and by Def. 3.18 and the de�nition of the rules for the if operator (see

Section 4.2.5) there is a substitution � with

� = 

M

; 

0

� = 

0

M

;Kv

(k)

� = K

f

8i 2 [p] : b

i

�

�

-

B

true

Since B is not concerned with contexts, 

�

-

B



M

and 

0

M

�

-

B

", and by correctness of B

follows  =

E



M

; 

0

M

=

E

". Similarly it holds for i 2 [p] that b

i

� =

E

true. Summarizing, there

exists a substitution � for the variables in  with

(1)  =

E



M

= �, hence  =

E

�

(2) 8i 2 [p] : b

i

� =

E

true

(3.3) " =

E



0

M

= 

0

�, hence " =

E



0

�

i. e. 

-

S

" using rule k. (Conditions (3.1) and (3.2) from Def. 5.5 hold vacuously since there

are no extra variables in rule k.)

1

Without loss of generality we may assume that there are no detours that result from failing type checks in

SOS-derived rules. Such detours would only lengthen the sequence without changing the situation.
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Case 2: D > 0.

In this case, the SOS-derived rule has the form (7.14):

@Kv

(k)

-

if

p

V

i=1

b

i

then let x

1

= eval ( 

1

@ hL

1

; on; : : : ; on i );

: : : ;

x

n

= eval ( 

n

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

x

type-ok (x

i

; 

0

i

; var ())

y

^

q

V

i=1

B

i

^

x

EV-match

y

then ~

0

@K

f

else @Kv

(k)

else @Kv

(k)

As in case 1, there are 

M

; 

M

i

(i 2 [n]); ~

0

M

2 �, and a substitution � such that

p

@K

f

q

�

-

B

p



M

@K

f

q

-

R

0

X �

df

d

let x

1

= eval ( 

M

1

@ hL

1

; on; : : : ; on i );

: : : ;

x

n

= eval ( 

M

n

@ hL

n

; on; : : : ; on i )

in if

n

V

i=1

x

type-ok (x

i

; 

0

i

; var ()) �

y

^

q

V

i=1

x

B

i

�

y

^

x

EV-match

y

then ~

0

M

@K

f

else 

M

@K

(k)

e

�

-

R

p

"@K

f

q

and



M

= � (1)

K

f

= Kv

(k)

� (2)



M

i

= 

i

� (i 2 [n]) (3)

~

0

M

= ~

0

� (4)

K

(k)

= Kv

(k)

� (5)

b

i

�

�

-

B

true (i 2 [p]) (6)
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Note that by (6), the outermost if of rule (7.14) could be removed using the rules about this

operator. In the last step of the derivation above,

�

-

R

is used (unlike in Case 1, where

�

-

B

was used), because the let clauses have been evaluated.

Considering the context K

f

of the �nal term, one conclude that the then part of T has been

chosen in this rewriting sequence. Therefore the condition must rewrite to true (after evaluation

of the let clauses), and since B is correct, this means that the condition equals true in E.

Case 2.1: The corresponding SOS rule does not contain extra variables.

Then it must be the case that ~

0

= 

0

; q = 0;Ev-match = true, and type-ok (x

i

; 

0

i

; var ()) � �

p

x

i

=

x



0

i

�

y

q

for i 2 [n]. Furthermore, none of the x

i

occurs in the then or else case of the rule.

Consequently,

X

�

-

R

~

0

M

@K

f

�

-

B

"@K

f

; (7)

the latter because there is only one outermost application of SOS-derived rules in the sequence

@K

f

[1]

-

R

"@K

f

. Since the condition rewrites to true, for each i 2 [n] there must be a term

T

i

such that

p

eval (

x



i

�

y

@ hL

i

; on; : : : ; on i )

q

�

-

R

T

i R

�

�



0

i

� (8)



0

i

� is a con�guration without a context; hence 

0

i

�

�

-

B

T

i

must hold, and by correctness of B

follows 

0

i

� =

E

T

i

.

Now one can prove: 8i 2 [n] : 

i

�

L

i

-

S



0

i

�.

[ Proof: Let i 2 [n].

Case L

i

= 1: Then

p

eval (

x



i

�

y

@ h 1; on; : : : ; on i )

q

�

-

R

T

i

.

Since eval terms only occur in SOS-derived rewrite rules, but not in the SOS rules them-

selves, 

0

i

is not an eval term, and neither is T

i

because the substitution � also does not

involve eval terms. So (8) must contain the successful application of an SOS-derived rule,

because the eval operator can be removed only then (see Section 3.3.1). So there is a

con�guration ~

i

2 � with

p

eval (

x



i

�

y

@ h 1; on; : : : ; on i )

q

�

-

R

p

eval ( ~

i

@K

0f

)

q

�

-

R

T

i

(9)

and also 

i

�@ h 1; on; : : : ; on i

�

-

R

~

i

@K

0f

. By Lemma B.2, it also holds that 

i

�@K

f

[1]

-

R

~

i

@K

f

. Since (9) is a proper subsequence of the initial sequence containing at least

one SOS application less, it follows by induction that 

i

�

-

S

~

i

. ~

i

cannot contain con�g-

uration/context pairs (otherwise the type check in R would have failed), hence ~

i

�

-

B

T

i

and by correctness of B also ~

i

=

E

T

i

. So ~

i

=

E



0

i

� and thus 

i

�

-

S



0

i

� by Lemma 5.6.

Case L

i

= �: In this case

p

eval (

p



i

�

q

@ h �; on; : : : ; on i )

q

�

-

R

T

i

.

As in the other case, there must be a point in this sequence where the eval operator is
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removed, i. e. some P 2 IN and ~

i

2 T

0

(see Section 3.3.1) such that

p

eval (

x



i

�

y

@ h �; on; : : : ; on i )

q

[P ]

-

R

p

eval ( ~

i

@ h �; on; : : : ; on i )

q

-

R

~

i

�

-

R

T

i

(assuming without loss of generality that no detours occur in this sequence). The induction

hypothesis yields 

i

�

P

-

S

~

i

, and as in the other case ~

i

�

-

B

T

i

holds, hence ~

i

=

E

T

i

,

and thus 

i

�

�

-

S



0

i

�:

� ]

Since @K

f

�

-

B



M

@K

f

, it follows as above 

�

-

B



M

and hence  =

E



M

. Similarly one can

derive ~

0

M

=

E

", and on the whole this yields

(1)  =

E



M

= �, hence  =

E

�

(2) 8i 2 [p] : b

i

� = true

(3.1) 8i 2 [n] : 

i

�

L

i

-

S



0

i

�

(3.3) " =

E

~

0

M

= ~

0

� = 

0

�, hence " =

E



0

�

i. e. 

-

S

" using rule k (condition (3.2) holds vacuously since q = 0).

Case 2.2: The corresponding SOS rule contains extra variables.

Somewhere in the sequence X

�

-

R

"@K

f

�-reduction (substitution application) takes place

(because the reduction strategy is call-by-value, only after the let clauses have been completely

evaluated). The resulting term has the form

T

1

� ( if : : : then : : : else : : :) �

x

where for i 2 [n] there are M

i

2 IN

0

and ~

i

2 � such that

�

x

=

df

[ ~

i

=x

i

j i 2 [n] ]

and



i

�@K

1f

[M

i

]

-

R

~

i

@K

0f

, if L

i

= 1 (10)



i

�@K

f

[M

i

]

-

R

~

i

@K

f

, if L

i

= � (11)

From the construction of the SOS-derived rules and the rules for removing eval , it follows that

M

i

= 1 if L

i

= 1.

According to Def. 5.5, the goal is to �nd an extension �

0

of � onto var (R

k

) with

(3.1) 8i 2 [n] : 

i

�

L

j

-

S



0

i

�

0

(3.2) 8i 2 [q] : B

i

�

0

=

E

true

(3.3) " =

E



0

�

0

De�ne �

0

=

df

�

x

� ( � [ �

EV

), where �

EV

=

df

[ x

j

v

w

v

=v j v 2 EV

k

]. Then it can be proved that

�

0

ful�ls (3.1) { (3.3).

Proof for (3.1):

It su�ces to prove
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8i 2 [n] : ~

i

=

E



0

i

�

0

because this implies (3.1) by (10) resp. (11), Lemma 5.6, and the induction hypothesis.

So let i 2 [n]. Since the condition of T

1

is rewritten to true with rules of B, it is, by correctness

of B, also E-equal to true. Hence it may be assumed that

true =

E

type-ok (x

i

; 

0

i

; var ()) � ) �

x

= type-ok (~

i

; 

0

i

; var ()) �

which is by de�nition of type-ok (cf. Def. 7.2) the term

p

~

i

=

x



0

i

�

y

q

(12)

if there are no extra variables in 

0

i

, or

p

type(~

i

) =

x

type (~

0

i)

y

q

(13)

otherwise, if 

0

i

is not a tuple constructor term, or

p

type(~

i

) = T



0

i

^ #comp(~

0

i) =

x

#comp (

0

i

�)

y

^

x

#comp (

0

i

)

y

V

i=1

x

type-ok (

p

~

i

#k

q

; 

0

i

=k; var ()) �

y

q

(14)

otherwise. Note that the type-ok conditions do not contain extra variables, just references to the

x

j

. Therefore, �

EV

has no e�ect on these conditions.

This means that the goal has been proved for case (12), and that the term structure of 

0

i

� equals

that of ~

i

in cases (13) and (14). It remains to show E-equality on extra variable positions. So

let v be an extra variable in 

0

i

with v = 

0

i

w

0

v

. It has to be proved that ~

i

w

0

v

=

E

(

0

i

�

0

)w

0

v

.

Because the condition of T

1

is E-equal to true, it must hold that

EV-match �

x

=

E

true (15)

If i = j

v

and w

0

v

= w

v

, then

(

0

i

�

0

)w

0

v

=

E

(

0

i

w

0

v

)�

0

[ positions in terms are not changed by substitutions ]

=

E

v�

0

[ de�nition of w

0

v

]

= (x

j

v

w

v

)�

x

[ de�nition of �

0

]

= (x

i

w

0

v

)�

x

[ case hypothesis ]

= ~

i

w

0

v

[ de�nition of �

x

]

Otherwise:

(

0

i

�

0

)w

0

v

=

E

(

0

i

w

0

v

)�

0

=

E

v�

0

= (x

j

v

w

v

)�

x

[ up to here as in the other case ]

= ~

j

v

w

v

[ de�nition of �

x

]

= ~

i

w

0

v

[ prerequisite (15) ]
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Proof for (3.2):

Let i 2 [q]. Since the if condition is rewritten to true, it must hold that (B

i

�) �

x

�

-

R

true.

By de�nition, B

i

= B

i

�

EV

, and � � �

EV

= (�

EV

[ �), because dom(�) \ dom(�

EV

) = ;.

Furthermore by de�nition �

0

= �

x

� (� [ �

EV

), and hence B

i

�

0

�

-

R

true. There are no contexts in

this rewriting sequence; thus one obtains B

i

�

0

�

-

B

true, and by correctness of B follows B

i

�

0

=

E

true.

Proof for (3.3):

One can deduce



0

�

0

= (

0

(� [ �

EV

)) �

x

[ de�nition of �

0

]

= ((

0

�

EV

)�) �

x

[ see the proof for (3.2) ]

= (~

0

�) �

x

[ de�nition of ~

0

in Def. 7.5 ]

�

-

R

" [ the then part of T gives the result ]

This rewriting sequence does not contain contexts; hence 

0

�

0

�

-

B

", and by correctness of B

follows 

0

�

0

=

E

".

�

From the proved result, one immediately obtains normal form correctness, and by Lemma B.2

also one-step correctness.
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Appendix C

Rewrite Rules vs. Deduction Rules

In Section 4.2.5.1, a method has been presented to include quanti�ers as term constructors into

the language by de�ning appropriate rewrite rules (including the ��-calculus). In this appendix,

the use of these rules will be demonstrated in a small example proof with the Larch Prover, and

compared to a proof of the same theorem that uses LP's deduction rules instead of quanti�cation

on term level.

C.1 The Example Theorem

In abstract form, the theorem to be proved states that the set of functions between two cpo's,

when equipped with the \natural" ordering, also forms a cpo:

Theorem C.1

Let hC;v

C

i and hD;v

D

i be cpo's. Let the relation v on F =

df

C ! D be de�ned by

8f

1

; f

2

2 F : f

1

v f

2

,

df

8c 2 C : f

1

(c) v

D

f

2

(c)

Then hF;v i is a cpo.

The proof of this theorem has three main parts (cf. [29]):

(1) Show that v is a partial ordering on F .

(2) Show that ?

F

=

df

�c 2 C:?

D

is the least element in F.

(3) Show that for each chain h f

i

i

i2IN

in F

G

i2IN

f

i

= �c 2 C:

G

i2IN

f

i

(c)

C.2 Proof Using Only Rewrite Rules

First consider the automated proof that only uses rewrite rules. The speci�cation of the input

domains (as input for the tool gensig, see Appendix A.1) looks as follows:
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1 % ======================================================================

2 % lcpo-sig: signature file for simulation of cpos with ls calculi

3 % Input file for gensig

4

5 .max var 4

6

7 .rules 0

8

9 .var

10 c : Dom1,

11 d : Dom2,

12 f : F,

13 n : Nat,

14 sf : seqF

15

16 .types

17 F = Dom1 -> Dom2,

18 seqF = Nat -> F

19

20 .explicit substitutions for

21 Nat with 4 indices _n,

22 Dom1 with 4 indices _c,

23 Dom2 with 4 indices _d

24

25 .cpos

26 (Dom1, <=) with bottom botc ruletype rewrite,

27 (Dom2, <=) with bottom botd ruletype rewrite

28

gensig does not generate rules about quanti�ers; so they have to be added individually:

1 % ============================================================

2 % lcpo-extras.lp : Additional rules dealing with quantifiers

3 % To be used with lcpo-sig-*.lp.

4

5 set name generalize

6 assert

7 forall(tp, true) -> true

8 ..

9

10 set name specialize_Nat

11 assert

12 forall(_Nat, b) => (b # (n + id))

13 ..

14

15 set name specialize_Dom1

16 assert

17 forall(_Dom1, b) => (b # (c + id))

18 ..

19

20 % To detect some nestings of quantifiers ranging over the same sort:

21 declare operator

22 quantifier_clash : -> Bool

23 ..

24

25 % Substitution distribution rules for quantified formulas:

26 % --------------------------------------------------------

27 % Substitution of one argument sort distributes only over the other sorts;

28 % if an attempt is made to distribute over the same sort as in

29 % (#) forall(tp, b) # (x + u) , x : tp

30 % this is an error ("quantifier clash"). The only way how such a term can come

31 % up is by specialization, and specialization corresponds to eliminating a quantifier.

32 % In the case (#), there must have been nested quantifiers of the same sort which is

33 % not allowed because of scoping problems (see Ch. 6).

34

35 set name subst_quant

36 assert
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37 forall(_Nat, b) # (n + u) -> quantifier_clash

38 forall(_Nat, b) # (c + u) -> forall(_Nat, b # (c + u))

39 forall(_Nat, b) # (d + u) -> forall(_Nat, b # (d + u))

40

41 forall(_Dom1, b) # (n + u) -> forall(_Dom1, b # (n + u))

42 forall(_Dom1, b) # (c + u) -> quantifier_clash

43 forall(_Dom1, b) # (d + u) -> forall(_Dom1, b # (d + u))

44

45 forall(_Dom2, b) # (n + u) -> forall(_Dom2, b # (n + u))

46 forall(_Dom2, b) # (c + u) -> forall(_Dom2, b # (c + u))

47 forall(_Dom2, b) # (d + u) -> quantifier_clash

48

49 quantifier_clash # u -> quantifier_clash

50 ..

51

52 % Universal quantifiers of different sorts may be swapped. The rules expressing this

53 % fact must be passive since they form a non-terminating TRS:

54 set activity off

55 set name forall_swap_from_Nat

56 assert

57 forall(_Nat, forall(_Dom1, b)) -> forall(_Dom1, forall(_Nat, b))

58 forall(_Nat, forall(_Dom2, b)) -> forall(_Dom2, forall(_Nat, b))

59 ..

60

61 set name forall_swap_from_Dom1

62 assert

63 forall(_Dom1, forall(_Nat, b)) -> forall(_Nat, forall(_Dom1, b))

64 forall(_Dom1, forall(_Dom2, b)) -> forall(_Dom2, forall(_Dom1, b))

65 ..

66

67 set name forall_swap_from_Dom2

68 assert

69 forall(_Dom2, forall(_Nat, b)) -> forall(_Nat, forall(_Dom2, b))

70 forall(_Dom2, forall(_Dom1, b)) -> forall(_Dom1, forall(_Dom2, b))

71 ..

72 set activity on

The proof with LP runs with the following proof script:

1 % ============================================================

2 % lscpo.lp : Proof of the following theorem:

3 % Let (C,<=) and (D,<=) be cpo's, F = C -> D and for f1, f2 \in F

4 % define f1 <= f2 iff (\forall c \in C: f1 . c <= f2 . c).

5 % Then (F,<=) is a cpo.

6 %

7 % cpo's are modelled with rewrite rules and ls calculi

8

9 % The proof starts from a frozen basic system:

10 thaw ~/LP/cpo/lcpo

11

12 % ==================================================

13 % Definition of the po-set (F,<=)

14

15 declare operators

16 <= : F, F -> Bool

17 chain : seqF -> Bool

18 botf : -> F

19 ..

20

21 % --------------------------------------------------

22 % extensionality on F:

23 set name ext_F

24 assert forall(_Dom1, f1 . _c1 = f2 . _c1) => (f1 = f2)

25

26 % --------------------------------------------------

27 % ordering:

28 set name ord_F
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29 assert f1 <= f2 -> forall(_Dom1, (f1 . _c1) <= (f2 . _c1))

30

31 % --------------------------------------------------

32 % <= is an ordering on F:

33

34 prove f <= f % <= is reflexive:

35 % immediate

36 [] % [reflexivity]

37

38 % ----------------------------------------

39 prove % <= is antisymmetric:

40 ((f1 <= f2) & (f2 <= f1)) => (f1 = f2)

41 by =>-method

42 ..

43

44 % We always have to describe the effect of substitutions on all constants:

45 assert

46 f1c # u -> f1c

47 f2c # u -> f2c

48 ..

49

50 % The claim follows directly from antisymmetry on Dom2:

51 instantiate b by (f1c . _c1) <= (f2c . _c1), c by _c1 in specialize_Dom1

52 instantiate b by (f2c . _c1) <= (f1c . _c1), c by _c1 in specialize_Dom1

53 instantiate d1 by f1c . _c1, d2 by f2c . _c1 in ord_Dom2

54 instantiate f1 by f1c, f2 by f2c in ext_F

55 [] % [antisymmetry]

56

57 % --------------------------------------------------

58 prove % <= is transitive:

59 ((f1 <= f2) & (f2 <= f3)) => (f1 <= f3)

60 by =>-method

61 ..

62

63 % We always have to describe the effect of substitutions on all constants:

64 assert

65 f1c # u -> f1c

66 f2c # u -> f2c

67 f3c # u -> f3c

68 ..

69

70 % The claim follows directly from antisymmetry on Dom2:

71 instantiate b by (f1c . _c1) <= (f2c . _c1), c by _c1 in specialize_Dom1

72 instantiate b by (f2c . _c1) <= (f3c . _c1), c by _c1 in specialize_Dom1

73 instantiate d1 by f1c . _c1, d2 by f2c . _c1, d3 by f3c . _c1 in ord_Dom2

74 [] % [transitivity]

75

76 % --------------------------------------------------

77 % bottom:

78 set name bottom_F

79 assert

80 botf . c -> botd

81 botf # u -> botf

82 ..

83

84 % --------------------------------------------------

85 % chains:

86 set name chain_F

87 assert chain(sf1) -> forall(_Nat,(sf1 . _n1) <= (sf1 . (s(_n1))))

88

89 % ==================================================

90 % Claim 1: botf is the smallest element in F.

91

92 set name claim1

93

94 prove botf <= f

95 % immediate:

96 [] % claim1
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97

98 % ==================================================

99 % Claim 2: There is a lub for each chain in F.

100

101 declare operator sfc : -> seqF

102

103 set name assumption

104 assert

105 sfc # u -> sfc

106 chain(sfc)

107 ..

108

109 % --------------------------------------------------

110 % We have to prove that there exists an fc \in F with

111 % (1) \forall n \in Nat : sfc . n <= fc

112 % (2) \forall f \in F: (\forall n \in Nat: sf.n <= f) => fc <= f

113

114 % First step:

115

116 declare operator scd : Dom1 -> seqDom2

117

118 set name construction1

119 assert scd(c) . n -> (sfc . n) . c

120

121 % ----------------------------------------

122 set name scd_lemma

123 prove chain(scd(c))

124

125 % We must prove

126 % forall(_Nat, ((sfc . _n1) . c) <= ((sfc . s(_n1)) . c))

127 % and have

128 % assumption.1: forall(_Nat,

129 % forall(_Dom1, ((sfc . _n1) . _c1) <= ((sfc . s(_n1)) . _c1)))

130 % We need to swap the quantifiers ...

131

132 rewrite assumption with forall_swap_from_Nat

133

134 % ... in order to specialize the assumption:

135

136 instantiate

137 b by forall(_Nat, ((sfc . _n1) . _c1) <= ((sfc . s(_n1)) . _c1))

138 in specialize_Dom1

139 ..

140 [] % [scd_lemma]

141

142 % ------------------------------

143 % Second step:

144

145 declare operator fc : -> F

146

147 set name construction2

148 assert

149 fc # u -> fc

150 fc . c -> lub(scd(c))

151 ..

152

153 % ----------------------------------------

154 % Prove (1):

155 set name claim2

156

157 prove (sfc . n) <= fc

158

159 % Current subgoal:

160 % forall(_Dom1, ((sfc . n) . _c1) <= lub(scd(_c1))) == true

161

162 instantiate seqd by scd(_c1) in lub_Dom2

163 % .. result: lub_Dom2.1.1:

164 % ((sfc . n) . _c1) <= lub(scd(_c1)) == true
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165 [] % [claim2]

166

167 % ----------------------------------------

168 % Prove (2):

169

170 declare operator fc1 : -> F

171

172 set name assumption

173 assert

174 fc1 # u -> fc1

175 (sfc . n) <= fc1

176 ..

177

178 set name claim2_2

179

180 prove fc <= fc1

181

182 % Current subgoal: forall(_Dom1, lub(scd(_c1)) <= (fc1 . _c1))

183

184 % We need the verbatim form of the following lemma:

185 set immunity on

186 set name lemma1

187

188 prove forall(_Nat, (scd(c) . _n1) <= (fc1 . c))

189

190 set immunity off

191

192 % Follows from the assumption about sfc:

193 instantiate

194 b by ((sfc . _n1) . _c1) <= (fc1 . _c1),

195 c by c

196 in specialize_Dom1

197 ..

198 [] % [lemma1]

199 % ------------------------------

200

201 instantiate seqd by scd(_c1), d by (fc1 . _c1) in lub_Dom2

202

203 qed

Note that in order to have a correctly working ��-calculus, the e�ect of substitutions must be

speci�ed for all constants, even those that are generated by LP during the proof (e. g. see lines

44{48). The protection feature mentioned in Section 3.2.3.2 only saves this work in special cases,

including the SOS simulation of Chapter 7.

C.3 Proof Also Using Deduction Rules

A proof for Theorem C.1 that makes use of LP's deduction rules instead of explicit quanti�ers as

term constructors starts from a similar domain speci�cation. The only di�erences are that there

are no \explicit substitution" rules required and that the \ruletype" is \deduction" instead of

\rewrite". Moreover, it does not need additional de�nitions like those about quanti�ers in the

previous section. The proof script is the following:

1 % ============================================================

2 % fcpo-ded.lp : Proof of the following theorem:

3 % Let (C,<=) and (D,<=) be cpo's, F = C -> D and for f1, f2 \in F

4 % define f1 <= f2 iff (\forall c \in C: f1 . c <= f2 . c).

5 % Then (F,<=) is a cpo.

6 %

7 % cpo's are modelled with deduction rules.
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8

9 % The proof starts from a frozen basic system:

10 thaw ~/LP/cpo/cpo

11

12 % ==================================================

13 % Definition of the po-set (F,<=)

14

15 declare operators

16 <= : F, F -> Bool

17 chain : seqF -> Bool

18 botf : -> F

19 ..

20

21 % --------------------------------------------------

22 % extensionality on F:

23 set name ext_F

24

25 assert

26 when (forall c) f1 . c = f2 . c

27 yield f1 = f2

28 ..

29

30 % --------------------------------------------------

31 % ordering:

32 set name ord_F

33

34 assert

35 when (forall c) (f1 . c) <= (f2 . c)

36 yield f1 <= f2

37 ..

38

39 assert (f1 <= f2) => ((f1 . c) <= (f2 . c))

40

41 % --------------------------------------------------

42 % <= is an ordering on F:

43

44 prove f <= f % <= is reflexive

45

46 % This follows immediately from the definition (but deduction rules must

47 % be properly instantiated to make things work):

48

49 instantiate f1 by f, f2 by f in deduction-rule ord_F

50

51 [] % [reflexivity]

52

53 % ----------------------------------------

54 prove % <= is antisymmetric:

55 ((f1 <= f2) & (f2 <= f1)) => (f1 = f2)

56 by =>-method

57 ..

58

59 % This follows from antisymmetry on Dom2:

60 instantiate f1 by f1c, f2 by f2c in rewrite-rule ord_F

61 instantiate f1 by f2c, f2 by f1c in rewrite-rule ord_F

62 instantiate d1 by f1c . c, d2 by f2c . c in rewrite-rule ord_Dom2

63 [] % [antisymmetry]

64

65 % --------------------------------------------------

66 prove % <= is transitive:

67 ((f1 <= f2) & (f2 <= f3)) => (f1 <= f3)

68 by =>-method

69 ..

70

71 % This follows from transitivity on Dom2:

72 instantiate f1 by f1c, f2 by f2c in rewrite-rule ord_F

73 instantiate f1 by f2c, f2 by f3c in rewrite-rule ord_F

74 instantiate d1 by f1c . c, d2 by f2c . c, d3 by f3c . c in rewrite-rule ord_Dom2

75 [] % transitivity
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76

77 % --------------------------------------------------

78 % bottom:

79 set name bottom_F

80

81 assert botf . c -> botd

82

83 % --------------------------------------------------

84 % chains:

85 set name chain_F

86

87 assert

88 when (forall n) (sf . n) <= (sf . s(n))

89 yield chain(sf)

90 ..

91

92 assert chain(sf) => ((sf . n) <= (sf . (s(n))))

93

94 make passive chain_F

95

96 % ==================================================

97 % Claim 1: botf is the smallest element in F.

98

99 set name claim1

100

101 prove botf <= f

102

103 instantiate f1 by botf, f2 by f in deduction-rule ord_F

104 [] % claim1

105

106

107 % ==================================================

108 % Claim 2: There is a lub for each chain in F.

109

110 declare operator sfc : -> seqF

111

112 set name assumption

113 assert chain(sfc)

114

115 % --------------------------------------------------

116 % We have to prove that there exists an fc \in F with

117 % (1) \forall n \in Nat : sfc . n <= fc

118 % (2) \forall f \in F: (\forall n \in Nat: sfc.n <= f) => fc <= f

119

120 % First step:

121

122 declare operator scd : Dom1 -> seqDom2

123

124 set name construction1

125 assert scd(c) . n -> (sfc . n) . c

126

127 set name scd_lemma

128 prove chain(scd(c))

129

130 % We need the verbatim form of the following lemma:

131 set immunity on

132

133 % ----------------------------------------

134 % Lemma:

135

136 prove ((scd(c)) . n) <= ((scd(c)) . s(n))

137

138 set immunity off

139

140 instantiate sf by sfc in chain_F

141 instantiate f1 by (sfc . n), f2 by (sfc . s(n)) in ord_F

142 [] % Lemma

143 % ----------------------------------------
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144

145 instantiate seqd by scd(c) in deduction-rule chain_Dom2

146 [] % [scd_lemma]

147

148 % ------------------------------

149 % Second step:

150

151 declare operator fc : -> F

152

153 set name construction2

154 assert fc . c -> lub(scd(c))

155

156 % ----------------------------------------

157 % Prove (1):

158 set name claim2

159

160 prove (sfc . n) <= fc

161

162 % ------------------------------

163 set name lemma

164

165 prove ((sfc . n) . c) <= (fc . c)

166

167 % This follows from the definitions:

168 instantiate seqd by scd(c) in lub_Dom2

169 [] % [lemma]

170 % ------------------------------

171

172 instantiate f1 by (sfc . n), f2 by fc in deduction-rule ord_F

173 [] % [claim2]

174

175 % ----------------------------------------

176 % Prove (2):

177

178 declare operator fc1 : -> F

179

180 set name assumption

181 assert (sfc . n) <= fc1

182

183 set name claim2_2

184

185 prove fc <= fc1

186

187 % Lemma needed in order to apply the definition of <= on F:

188

189 set name lemma1

190 prove (fc . c) <= (fc1 . c)

191

192 % ------------------------------

193 % Since fc . c -> lub(scd(c)), we prove:

194

195 set name lemma2

196 prove (scd(c) . n) <= (fc1 . c)

197

198 % Follows from the assumption about sf:

199 instantiate f1 by (sfc . n), f2 by fc1 in rewrite-rule ord_F

200 [] % [lemma2]

201 % ------------------------------

202

203 instantiate seqd by scd(c), d by (fc1 . c) in deduction-rule lub_Dom2

204 [] % [lemma1]

205

206 % ------------------------------

207 % Now the claim follows from the definition of <=:

208

209 instantiate f1 by fc, f2 by fc1 in deduction-rule ord_F

210

211 qed



186 Appendix C. Rewrite Rules vs. Deduction Rules

C.4 Comparison of the Proofs

The structure of the two proofs is the same; both have been derived from the abstract proof. On

the detail level, however, there are some di�erences. In the following, we refer to the proof in

Section C.2 as the \rewrite proof" and to the proof in Section C.3 as the \deduction proof".

� The need to specify substitution rules for all constants makes the rewrite proof longer than

would be desirable. This kind of internals should be hidden from the user.

� Since deduction rules are not always applied automatically, the deduction proof needs more

explicit instantiations of rules than the rewrite proof. See e. g. the application of the

de�nition of v in the proofs of claim 1 (rewrite proof, lines 94{96, and deduction proof,

lines 101{104).

� Due to the much larger set of rewrite rules needed, the rewrite proof takes more time

and needs more space than the deduction proof. Compare the statistics gained on a Sun

SparcStation 10/40; for the rewrite proof it reads:

Recent Success Failure Total

------ Count Time Count Time Time

Ordering 41 0.00 0 0.00 0.00

Rewriting 189 1.29 2134 1.62 2.91

Deductions 6 0.12 44 0.00 0.12

Unification 0 0.00 0 0.00 0.00

Prover 0.87

GC's 2

Total time 8.65

Heap size = 218,731 words

and for the deduction proof:

Recent Success Failure Total

------ Count Time Count Time Time

Ordering 42 0.01 0 0.00 0.01

Rewriting 93 0.39 1102 0.75 1.14

Deductions 15 0.17 350 0.13 0.30

Unification 0 0.00 0 0.00 0.00

Prover 0.38

GC's 1

Total time 5.05

Heap size = 143,261 words

So the performance of the deduction proof is considerably better than that of the rewrite proof.

Since this is a very important aspect in an interactive proof environment, therefore the repre-

sentation of quanti�ed formulas with rewrite rules in the style of Section 4.2.5.1 has not been

adopted for larger proofs.
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Italic page numbers refer to pages that contain a de�ning occurrence of the corresponding item.
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Alg(�; E), 23

B, see basic rewriting system

IB, 47
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R

, 24
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Gen(�; E), 23

I , see protection operator
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R
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�

w;S
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Subst (�; V ), 19

T (�), 16, 22
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, 16

T (�; V ), 16, 22

T (�; V )

S

, 16

Th(K), 23

Th

EQ

(K), 23

Th

EQ

(R), 24

WFF (�), 19

Z(�; E), 24

�, 60, 113

#comp (t), 17

f

A

, 21

id , see identity substitution (��-calculus)

is-T

i

, 43

is-T

i

-T, 43

mk-T, 43

mk-T

i

-T, 43

occ (t), 17

s-j, 43

�(a), 31

t

A

, 22

to-T

i

, 43

type (t), 16

var (t), 16

w

v

, 82

wp, 139
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=

E

, 39

F

X , see least upper bound

?, 69, 98

C, 17

j=, 23

~
� (retrieve function), 130

. (application operator), 44

@, 34

T (type constant), 46

x

�

y

(inverse quotes), 13

s � u, see composition (��-calculus)

a � s, see cons (��-calculus)

p

�

q

(quasi-quotes), 13

�f , 70, 100, 130

t=u, 17

Abs (��-calculus), 30, 33

abstract syntax, 42

action laws (GSOS transformation), 92

active (LP rule status), 104, 159

algebraic speci�cation, 24

analogous (proof), 125, 128

ancestor-immune (LP rule status), 118

App (��-calculus), 30, 33

app (operator), 44

application of a map, 44

apply (operator), 72, 97

arity, 16

Ass (��-calculus), 30

assert (LP command), 103

associative and commutative operator, 102

automatic theorem prover, 101

automatic-ordering (LP setting), 104

back quotes, 13

Backus-Naur form, 68

backward inference, 105

basic rewriting system, 39

properties of, 50, 85

Beta (��-calculus), 30, 31, 33

�-reduction, 28, 48, 97

bisimulation, 92

Bool, 19, 41, 47, 102

Bool, 102, 156

bottom (LP operator weight), 128

Boyer-Moore Prover, 7, 8

de Bruijn indices, 28, 77, 153, 160

carrier, 21

cases (LP proof method), 107

chain, 69, 99

end-constant, 69

clausal form for denotational function de�ni-

tion, 72, 139

transformation into rewrite rules, 95

Clos (��-calculus), 30

closed term, 31

CLU, 101

combinatory reduction system, 33

Common Lisp, 13, 109

common reduct, 20

commutative operator, 102

#comp (operator), 46

compiling veri�cation, 110

complete (LP command), 104

complete partial order, 69, 129, 153, 177

completeness, 21

of R, 89

of GSOS transformation, 92

completion, 27, 104

of R, 89

complex term, 16

composition (��-calculus), 30, 32

compositional, 73

conditional expressions, 71, 96

conditional rewriting, 7, 127

con�guration, 53

conuence, 21, 26, 27

of R, 89

congruence relation, 18

cons (��-calculus), 30, 32

constant, 16

constructors, 42

context, 34, 78, 152, 153, 160

regularity conditions for the introduction

of, 35

removing of, 36

continuations, 96, 97

continuous function, 70

contradiction (LP proof method), 107

correctness (GSOS transformation), 92

cpo, see complete partial order

critical pair, 26, 102, 104, 105

critical-pairs (LP command), 104

curried form (function), 72, 96, 98

de Simone rule, 62
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declare (LP command), 102

deduction (switch for gensig), 153

deduction rule (LP), 106, 132, 153, 182

deduction rule (SOS), 55

application, 57

exact application, 59

denotational function de�nition, 72, 139

well-foundedness, 73

dependency graph, 63

detour, 77

directed set, 71

disjoint S-sorted set, 15

disjointness rules, 43

distributivity laws (GSOS transformation),

92

domain equation, 40, 102

empty (operator), 44

empty map, 44

equational speci�cation, 24

equational theory, 19

generated by R, 24

of K, 23

EV-match, 83

eval , 36, 78, 152

existential quanti�cation, 49

exists (operator), 49

ext (operator), 44

extension

of a map, 44

of a substitution, 19

extra variable, 19

in SOS rule, 76

position of, 82

f -rule, 20

f -terms, 16

FINTREE, 90

�xed point, 70, 100

�xed point iteration, 71

Fixed Point Theorem, 70

Flag, 79

forall (LP quanti�er), 106

forall (operator), 49

forced case distinction, 133

forward inference, 105

frozen rewrite system (LP), 121

function domain, 44

function symbol, 16

generated by (LP assertion), 107

generator induction, 106

gensig, 137, 151, 159, 177

gensos, 137, 159

goal-directed inference, 105

ground instance, 19

ground substitution, 19

ground term, 16

ground term algebra, 22

GSOS rule, 64, 90

guarded command, 122, 123

handwaving, proof by, 121

head normal form, 90

HOL, 105

Id (��-calculus), 30

identity substitution (��-calculus), 29, 32

IdL (��-calculus), 30

IdR (��-calculus), 30

if then else (operator), 47

immune (LP rule status), 104, 159

immunity (LP setting), 118

implication, 107, 118, 127, 132

inaction laws (GSOS transformation), 92

induction in LP, 106, 118

induction rule (LP), 107, 133

in�x operators, 102

initial semantics, 24

initial �-algebra, 22

instance, 19

internormalization (LP), 104, 159, 161

interpretation, 22

inverse quotes, 13

KIV, 7, 105

Knuth-Bendix procedure, 27, 89

label (of transition), 53

�-abstractions, 72

�-calculus, 7, 15, 27, 28, 31{33, 48, 77

�-rewriting system, 33

��-calculus, 29, 48, 96, 97, 153, 157, 162, 177

Larch, 101

Larch Prover, 7, 9, 24, 100, 101, 151, 177

least upper bound, 69, 99, 131

let expressions, 72
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let term, 27, 77

lex, 151

logically complete, 21

loose semantics, 24, 102

LP, see Larch Prover

lub, see least upper bound

many-sorted, 16, 102, 152

Map (��-calculus), 30

map domain, 44

=>-method (LP proof method), 107, 118

&-method (LP proof method), 107

mgu, 26

mix�x notation, 17

modi�cation of a map, 44

monotonic function, 69

monotonic ordering, 25

more general, 26

most general uni�er, 26

�-operator, 72

name-prefix (LP setting), 103

named tree (VDM), 45

Nat, 41, 47

non-computational hypothesis, 61

normal form, 20

normalization, 104, 105

normalize (LP command), 104

not yet de�ned, 41

OBJ3, 24, 138

occurrence, 17

o� (rule switch in contexts), 34

on (rule switch in contexts), 34

operator, 16

order (LP command), 104

order-sorted, 138, 152

ordering of equations, 104

ordering-method (LP setting), 104

outermost application, 20

overloading, 16, 103, 159

PAMELA, 7, 9

partial ordering, 98

passive (LP rule status), 104, 127, 130

path format, 64

PL

R

0

, 60, 73, 109

expressions, 110

sequential processes, 122

predicate term, 19

predicate transformer, 139

priority rewriting, 34

ProCoS, 109

projection operators, 42

projection/recognizer rules, 43

proof debugger, 101

proof script, 105, 108

proper subterm, 17

propositional logic, 47

in LP, 106

protection operator, 33, 162, 182

prove (LP command), 107

ptp/t format, 55, 62, 64, 65

PVS, 24, 105, 138

qed (LP command), 108

quanti�ers, 47, 177

in LP, 102

quasi-quotes, 13, 16

RAP, 7, 8, 24

recognizers, 42

representation, 20

result sort, 16

resume (LP command), 108

retrieve function, 130

REVE, 101

rewrite (LP command), 104

rewrite (switch for gensig), 153

rewrite rules, 20

rewriting relation, 20

routine work, 125

h S;� i-algebra, 21

h S;� i-homomorphism, 21

S-sorted function, 15

S-sorted set, 15

S-typed term, 16

satisfaction, 23

SCons (��-calculus), 30

scoping problems, 47

selector/constructor rules, 43

selectors, 42

semantics equivalence, proof method for, 115

for processes, 124

sensible signature, 17

sequence (VDM), 45

set (VDM), 45
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shift substitution (��-calculus), 30, 32

ShiftCons (��-calculus), 30

ShiftId (��-calculus), 30

side conditions, 57

Sigma, 30

Sigma (��-calculus), 31

�-algebra, 21

�-equation, 19

�-formula, 19

�-homomorphism, 21

�-isomorphism, 21

signature, 16

simulation of SOS system

divergence, 88

normal-form, 87

one-step, 87

sort, 16

SOS deduction system, 55

interconnection of, 57

well-foundedness of, 60

SOS-derived rules, 78

specialization, 49

standard interpretation, 39

static semantics, 40, 111

statistics (LP command), 121

strategies, 105, 127

subgoal-directed inference, 105

SubLisp, 109

substitution, 19

substitution composition, 19

substitution application (��-calculus), 32, 157

subsumption, 26

subterm, 17

subterm replacement, 18

synchronous circuit, 151

syntax, 68

tactics, 105

term, 16

term algebra, 22

term generated, 23

term rewriting system, 20

terminal �-algebra, 22

terminal con�guration, 53

terminal semantics, 24

termination, 21, 25

of R, 89

termination ordering, 25, 102, 104

theory, 23

TIP, 8

TLA, 151

token, 41, 152

top (LP operator weight), 128

trace-level (LP setting), 105

transformation of SOS rules, 79

algorithm for, 85

transition relation, 53

blurring of, 58, 87

transition system, 53

transputer, 109

TRS, 20

TRS-complete, 21, 104

tuple (VDM), 45

Turing machine, 25

tyft/tyxt rule, 62

pure, 64

well-founded, 63

Type (sort), 46

type (operator), 46

type check, 77, 80

type discipline, advantages of, 15

type rules, 45, 156

type-ok, 81

uncurried form (function), 98

uni�cation, 26

Uni�cation Theorem, 26

union domain, 42

universal quanti�cation, 48

in LP, 106

valid, 23

valuation, 22

VarCons (��-calculus), 30

variable, 16

VarId (��-calculus), 30

VarShift (��-calculus), 30

VDM, 40, 140

VDM ADT domain compiler, 151

VDM-SL, 40, 45

weakest precondition, 139, 140

weight, of operators (LP), 104, 128

where expressions, 72

yacc, 151


