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Abstract

A family of formal semantics is given for the Essential Model of the Transformation
Schema of Ward & Mellor [12] using recent techniques developed for defining the semantics
of Statecharts [3] by Pnueli and Huizing. A number of ambiguities and inconsistencies in
Ward & Mellor’s original definition is resolved. The models developed closely resemble those
used for synchronous languages [1]. Each model has its own application area, e.g., one fits

best for fault-tolerant systems.
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1 Introduction

1.1 Motivation and Goal

Structured Analysis and Design methods (SADM) aim at giving a specification of software
which is independent of, and considerably more abstract and readable than, the code eventually
produced. Their goal is to provide in this way a specification which:

a) exposes inconsistencies in the requirement document describing what a client ‘thinks’
she/he wants, as opposed to the finally debugged hopefully consistent requirement speci-
fication describing what she/he ‘actually’ wants, and

b) provides a consistent requirement specification and independent description of the task of
the software to be written by the implementor.

Obviously, this process looses a lot of its potential value once the SAD methods used contain in
their definition bugs and inconsistencies themselves. This happens, e.g., in case of an executable
specification language, when the execution of a specification does not faithfully represent the
semantics of that specification as laid down in the document defining the method. This would
endanger point a) above. As to point b), such inconsistencies might result in a specification
of dubious value, since an implementor would not know exactly what to implement, when the
meaning of the requirement specification is ambiguous or even inconsistent.

One of the well known SAD methods is that of Ward & Mellor. Although widely used, its
description [12, 11] contains a number of such inconsistencies. Yet W&M’s method contains at
least sufficient indications for us to try to reconstruct its intended meaning. We show that with
the formal methods developed for the definition and analysis of so-called synchronous languages
(see [1] for an overview) a consistent and precise semantics can be reconstructed for the W&M
method. Incompleteness in description and downright contradictions in claimed ‘definitions’
can be identified and removed, and the rather remote link with timing can be built upon to
form a foundation for what is promised by the method which is at least consistent. This is
one important purpose of the present paper, in which we give an example of the main flaws
in W&M’s definition of the semantics of transition diagrams, our suggestions to resolve them
(Sec.2) and sketch a precise semantics for the Essential Model of W&M’s method (Sec.3). Also
a formal definition of W&M’s semantics enables the development of a symbolic interpreter to
animate TS, which is of great importance for point a) above. The other important purpose of
this paper is to argue the need for a family of semantics for different application areas using a
‘real-world” example from the field of fault tolerance (See.4).

1.2 Main Technique

The method of W&M uses Transformation Schemas (TS) to represent a system. These are based
on data flow diagrams, but can also represent the control aspect of a system. Therefore a TS
consists of data and control components, which are both divided into transformations (centers
of activities), stores and flows.

Some of the basic flaws in the description of the semantics of Transformation Schemas in the
Essential Model of W&M’s method given in [11] are the following (also see Sec.2):



1. The method lacks a consistent description of when a transformation can start computing
upon its input. E.g., one interpretation of Ward’s definition may lead to an unnecessary
loss of data.

2. The description of the time dependent behaviour of TS is ambiguous. For the life-span of a
data-item depends on the interpretation of a ‘discrete point in time’, but a clear definition
is missing of what a ‘discrete point in time’ is.

We resolve these flaws technically in section 3 by defining a formal operational semantics for
that part of TS whose interpretation causes the above mentioned flaws. To be more precise
we define a family of formal semantics. Its members are called recursive causal chain, weakly
fair and full interleaving semantics. All of these semantics are interleaving semantics defined by
transition systems. Referring to [7] for a non graphical syntax of TS and their specifications,
these semantics consist of macro steps, describing the observable behaviour as seen by the outside
world, which in their turn are made up out of (sequences of ) micro steps, describing the internal
processing steps of a TS which describe the internal execution of its transformations. Depending
on the family of the particular member of semantics it is belonging to, an internal sequence of
micro steps can be characterized by properties such as mazimal or recursive-causal-chain (defined
in Sec. 3.2).

The Essential Model is characterized by an abstract notion of time. Every transformation
needs zero time to react on input and to produce an output ([12] p.94). The abstract notion
of time involved here is such that micro steps take no time for their execution. However a
macro step takes a positive amount of external time (as can be interpreted from Table III
[11] p.206). This division between micro and macro steps is characteristic for the semantics
of synchronous languages, in which the following idealization is adopted: synchronous systems
produce their output synchronously with their input (Berry’s Synchrony Hypothesis [2]). Of
course this hypothesis does not hold for our usual notion of time. It merely expresses that the
time taken by a finite number of internal steps of the system should be negligible in comparison
with the time between successive external stimuli.

The formal technique dealing with these two notions of step (due to Pnueli [9], Huizing [4],
and others) had not been sufficiently formalized around 1985 for W&M to be able to realize its
consequences for a worked out semantics. Our contribution is that we adapt these techniques to
define a family of semantics for TS, especially for W&M’s model. Though a formalization and
animation of TS is possible by translating a TS into a Petri net [10], the notions of interleaving
semantics, micro and macro steps introduced in the present paper enable a discussion of the
different views of the dynamic behaviour of a TS, for instance regarding timing, which is not
feasible using the tools of [10].

1.3 Application Area: Fault Tolerant Systems

We define a family of semantics, because, as we shall argue, every application area imposes
its own criteria for being satisfactorily modelled. In particular, Ward’s semantics, represented
by our recursive causal chain semantics, is appropriate for modelling multitasking and single
processor systems, but it turns out that Ward’s semantics is not suitable for modelling fault
tolerant processing. In this case we find that fault tolerant systems require our weakly fair
interleaving semantics (see Sec.4).



1.4 Future Work

Building a symbolic interpreter for W&M’s method, based on the formal semantics sketched in
this paper, is part of a project in cooperation with a local industry (DST). As next stages, we in-
tend to integrate another real-time model as also described in [11], to give a similar formalization
of W&M’s implementation model, described in vol. 3 of [12], and investigate its link (in terms
of possible notions of refinement) with our formalization of the essential model in the present
paper. Apart from the flaws mentioned in chapter 1.2 one might object that the method lacks
any yardstick for determining correctness of data refinement, or even flow refinement. Therefore
integrating possibilities of formally founded refinement is a next important stage.

2 W&M’s Method and an Examples of an Unsolved Ambiguity

In this section we discuss briefly some of the ambiguities in the interpretation of Transformation
Schemas as defined in [12] and [11]. (See [6], [7] for details.)

2.1 A Short Introduction to Transformation Schemas

Transformation Schemas (TS) consist of data and control components. We give here just a
short introduction to their main constituent parts, called ‘transformation’,‘flow’ and ‘store’,
which may be labelled by identifiers. We restrict ourselves in these pages to that part of W&M
which is formally characterized in the present paper. For example, we assume that all flows are
time—discrete, i.e., that they are not continuous.

Example 1 ((Transformation Schema)) In figure 1 P denotes a data transformation and
K a control transformation. The data flow a is an input flow and the data flow b is an output
flow of transformation P. Flows which start from ‘nowhere’ (as flow a) and flows which end
‘nowhere’ (as flow b) are connected to the outside world of the Transformation Schema. The
flows ¢,d, e and Prompt(P) are control flows. Data flows carry values and control flows carry
events. An event is a special value which just indicates that something has happened. The
control flow Prompt(P) (which is a special notation of ours) carries the events ‘ENABLE(P)’
and ‘DISABLE(P)’. Such control flows are called Prompts. Their meaning is explained below.

If there is no value on the output flows b, e and the transformation P is not stopped by the control
transformation K, then the transformation P computes an output along b or e as soon as an
input arrives along a. Such behaviour is called data—triggered. The flow e is called data condition
and represents the possibility that control signals can be fed back from a data transformation to
a control transformation. The control transformation K stops the data transformation P by
sending a value ‘DISABLE(P)’ to P along the flow Prompt(P). If P is stopped, it can not
compute outputs and throws arriving inputs away. The control transformation K starts P up
again by sending a value ‘ENABLE(P)’. When a transformation has no Prompt as an input
flow, the transformation is never stopped.

O

For every transformation of a Transformation Schema there must exist a specification. In our
formal semantics which we sketch in chapter 3, data transformations are specified by a relation
which also takes values of data stores into account. Data stores are equivalent of a memory
within our formalism.
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Figure 1: Transformation Schema

2.2 Behaviour of a Transformation

According to [12] p.97 it is impossible for a transformation to output a new value along an
output flow as long as some old output value (due to a previous computation) has not been
‘cleared’ from that flow. As a consequence, W&M’s model implies that flows have a buffering
capacity of 1. On the other hand [11] p.200 states that as soon as an input arrives it will be
processed. A model which meets both requirements may lead to a loss of output data of the
transformation. Therefore we list below all possible alternatives we can think of for defining the
behaviour of a transformation and discuss which one is best.

1. a) Theinput is thrown away, if there is still an old value on an output flow. (This option
seems to be implied in the implementational model of [11] p.208).

b) The output is calculated, but its placement on output flows is restricted to flows
which are not occupied by old values.

¢) Old outputs are overwritten by new ones.

2. An arrived input value of a transformation is processed only after consideration of the
output flows.

a) The calculation is only started, when the resulting output values are going to appear
on flows which are free before the calculation.

b) The transformation waits with the computation until all output flows are free.

All options under 1) lead to an arbitrary loss of data and are therefore useless for modelling
data processing systems. An example is given in [6]. Option 2a) requires foreknowledge and is
therefore rejected. This leaves us option 2b) since we do not want arbitrary loss of data.

3 Sketch of a Family of Formal Semantics

In this section we sketch a family of formal operational semantics of TS referring to a non-
graphical syntax of TS. (In [6], [7] a more complete definition of the semantics is given). One
member of this family closely reflects Ward’s original ideas as described in [11]. All members of
this family of semantics for TS consist of macro steps describing the observable behaviour of a
TS as seen by the outside world. A macro step is made up of a sequence of internal processing
steps called micro steps. Each member of our family of formal semantics is characterized by
restrictions on the sequence of internal micro steps and restrictions on the macro steps. The
internal sequence represents the reaction of a TS on information sent along its flows by the
outside world, and the macro step represents the abstract view of this sequence as presented to
the outside world.



3.1 Micro Step

A micro step represents an internal processing step of a data or control transformation belonging
to a Transformation Schema T. It is defined formally as a labelled transition

(T, fl,o) =5 (T, f1',0")
in the style of Plotkin [8]. Here the flow in carries the value that causes the internal processing
step that is represented by the micro step and the quantity out consists of flows getting new
values as a result of the processing step. The tuple (T, fl, o) is called a micro configuration and
is defined as follows:

¢ T stands for a syntactic representation of a T'S. Note that T is not changed in the transition.

o fl denotes a state of the flows of T. It is a function mapping the names of flows to the
values they are carrying, where the symbol ‘1’ represents a formal value indicating that
the flow does not carry a processable value.

e o denotes the state of the transformations of T, e.g., it maps any name from a data
transformation of T to the set {DISABLE, ENABLE}, where DISABLE expresses that the
transformation has stopped and ENABLE expresses that the transformation may process
depending on values on flows. Also o denotes the state of the stores of T, which maps the
names of the stores to the values of the variables which they carry.

A micro configuration (T, fl, o) induces a micro configuration (T*, fI*,¢*) for every transforma-
tion diagram T* contained in T, where fl* and ¢* denote corresponding restrictions of fl and
o to, respectively, the flows and transformations of T*.

A transformation schema T is made up out of data and control transformations. So in order to
capture the meaning of a micro step of TS formally, one first defines these steps on the level of
its constituting data and control transformations and then introduces the individual micro step
on the level of the overall TS, i.e., micro step itself is defined inductively over the non-graphical
syntactic structure of a TS. Therefore we need two axioms, one for a data transformation step
and one for a control transformation step, and a micro rule to describe the processing step of
the overall TS which contains these transformations using these axioms. Below we sketch the
axiom for data transformations and the micro rule.

3.1.1 Axiom for Data Transformations

A data transformation is represented syntactically by Dtra(A, I, 0, Sp), where A is the identifier
of the transformation, I, O denote the sets of its input and output flows and Sp denotes the set
of all stores, which can be written or read by the data transformation.

With every data transformation A a relation f; and a state are associated. The relation f4
specifies the relation between input and output data. The state of a data transformation A is a
tuple (dt,ds), where dt(A) can be either ENABLE or DISABLE and ds(A) maps every store of
Sp to its value.



Definition 3.1 ((Axiom for data transformations)) Assume fl, fl' are states of the set of
flows U O, o = (dt,ds) and o' = (dt',ds’) are states of the data transformation and a flow
m € I and a set of flows out C O, so that one of the following two conditions holds:

1. The input flow ‘in’ is a data flow and the following holds:
(a) The precondition for the processing of the transformation is met:
#L i f=um,
fl(f){ =1 ,iffeO.
(b) The result of the processing of the transformation is:
7. dt’ = dt and

ii. if dt(A) = ENABLE then

((fl,ds),(fU,ds")) € fa and out = {o|fl(o)= L A fl'(0) # L},
otherwise, if dt(A) = DISABLE then
(fU,ds")y = (fl[L/in],ds) and out = (.

2. The input flow “in’ is a Prompt, and the following holds:

(a) The precondition is met:
fl(in) € { ENABLE, DISABLE).
(b) The result is:
dt'(A) = fl(in), (fU',ds") = (fl[L/in],ds) and out = ().

The data transformation step is now defined as follows :

(DTra(A,1,0,5p), fl,o) = (DTra(A,I,0,Sp), fl;o’)

n

The step is called enabled if its precondition as mentioned under (1.a) or (2.a), holds.

Condition 1 models what happens when transformation A performs a processing step, i.e., the
process is data-triggered (see exp.l). This step is only started if all output flows are free prior
to processing (see sec.2.2). The result depends on whether the state of the transformation
is ENABLED or DISABLED. Condition 2 models what happens when the transformation is
enabled or disabled, i.e., its possible change of state.

In the following we describe how the whole TS behaves if a transformation performs a processing
step.



3.1.2 Parallel Composition

A Transformation Schema is a network of n € N components T}, k& € {1,...,n}, each one of
which has I as its set of input flows, and Oy, as its set of output flows. The TS is represented non
graphically by T = (T4 ||...|| Tn). If aflow f is element of O and I;, where k,[ € {1,...,n} then
flow f ‘connects’ T} with 7. A micro configuration ((Ty ||...|| T»),fl, o) induces by convention
micro configurations (T;, fl;, 0;) for the components T; of Ty ||...|| T,, fori e {1,...,n}.

If a transformation does a processing step, so does the whole TS. Formally the micro rule
determines how to get a labeled transition with two micro configurations for the whole TS from
alabeled transition with two micro configurations for a transformation. We adopt an interleaving
semantics, i.e., only one transformation performs a processing step in one micro step.

3.2 Internal Sequence of Micro Steps

Internal sequences of micro steps represent the way the input from the outside world is processed
by a TS. Members of our family of semantics can be characterized by properties of the internal
sequence of micro steps which we define as maximal or recursive-causal-chain. These properties
are closely related to statements made in [11].

3.2.1 Maximal

One statement describing the internal processing of a TS in [11] is as follows: ‘the consequences
of the arrival of a value on a flow from outside the schema are worked out before any other
value from outside the schema is accepted, and the execution of simultaneously arriving values
on flows from outside the schema is sequential but in indeterminate order.’

In terms of our formal semantics, this statement is represented by the restriction that every
internal sequence of micro steps must be maximal.

Definition 3.2 (Maximal) Given a particular set of values (produced by the outside world) on
the input flows of a TS, the resulting internal sequence of micro steps is called maximal when:

1. the internal sequence is infinite, or

2. the internal sequence is finite, and no micro step due to that set of input values is possible
at the end of the internal sequence; i.e., no data or control transformation step is anymore

enabled.

O

outy
iny

If a maximal sequence is finite and consists of n — 1 € IN micro steps, we write (T, fl,,0,) —
Pt (T fl,,0,) #. If a maximal sequence is infinite, we write (T, fly, 1) Tin, -

Np_1



3.2.2 Recursive Causal Chain

Another statement concerning the further internal processing of input in [Wa86] is: ’in case
of simultaneous placement of a number of tokens, the execution rules specify carrying out the
interactions sequentially but in an arbitrary order.” ... each branch of the interaction is carried
out till its conclusion before returning to the next one. If subbranches are encountered dur-
ing an interaction, another arbitrary sequencing decision is made and the procedure is applied
recursively.’

In terms of our formal semantics this statement is modelled by the restriction that the internal
sequence of micro steps must be a sequence of specially ordered causal chains. In a causal chain
every micro step except the first one depends causally upon the previous step in the sequence,
i.e., the input of a micro step is an output of the previous micro step. The order in which these
causal chains are composed is that obtained by backtracking the following tree recursively: its
edges are the flows along which data values or events occurred during the computation, and its
nodes the transformation executed. The formal definition of when a sequence of micro steps
forms a recursive causal chain is given in [6].

3.3 Macro Step

A macro step represents a reaction on an input sent by the outside world of a Transformation
Schema T (1, 0), where [ is the set of flows of the T'S coming from the outside world and O the set
of flows of the TS directed towards the outside world. Correspondingly, a macro configuration
(T,fl,0) is defined similarly as a micro configuration, except that fIis a mapping of just I U O
(and not of all the flows of T) to the values carried on these flows. We define two kinds of
macro steps for a semantics. The first one is defined as a labelled transition between macro
configurations, which is derived from a finite internal sequence of micro steps. The second kind
of macro step is derived from an infinite internal sequence of micro steps. Therefore an ‘end’
macro configuration does not exist. For the recursive causal chain semantics the first kinds of
macro step are defined formally below. Depending on the different properties which the internal
sequences of micro steps should satisfy, different macro rules and a family of semantics for TS
are defined.

3.3.1 Recursive Causal Chain Semantics

The recursive causal chain semantics semantics most closely reflects Ward’s original ideas de-
scribed in [11], which are mentioned in section 3.2.2. Each internal sequence of micro steps must
be maximal and must be a recursive causal chain. After each internal sequence of micro steps
all values left on flows which could not be consumed are cleared before a new internal sequence
of micro steps starts. Formally this is represented by:

Definition 3.3 ((Macro rule)) Let F be the set of flows of T. Assume

1 (T, fli,o0) = ... —>ZZ;‘;_11 (T,fl,,0,) with n € N is an internal sequence of micro-steps
of T, where

(a) the chain is maximal and a recursive causal chain,



(b) fly satisfies V.cr\(ruo) : fli(2) = L,

2. in,out C (1UQO), where in ={ z € (1UO0)| fli,(z)# L } and
out = O N, {out;},

3. flin is a state of (I U O) which meets Yoe(uoy © flin(x) = fli(2),
4. flous is a state of (IUO), which meets Yoc(ruoy © flou(2) = fl ().

Given the assumptions above, the first kind of macro rule is defined as follows:

(vallvgl) H?ﬁfl e H::zi_ll (valnvgn) 74
(T7 flmv Ul) j?ﬁt (T7 flout7 Un)

3.3.2 Weakly Fair Interleaving Semantics

This semantics does not reflect Ward’s statement mentioned in section 3.2.2, but the statement
mentioned in 3.2.1. It has the same initialization and termination assumptions as the recursive
causal chain semantics (conditions 1.b, 2, 3, 4 of the macro rule), but drops the recursive-causal-
chain condition l.a of the macro rule by allowing any possible transition to be taken for each
micro step. The condition l.a is replaced by ‘maximal holds’. Consequently, no transformation
able to make a step is left at the end of the premise of the macro rule. The name given to this
semantics is motivated by this fact. For full discussion of this topic see [5].

3.3.3 Full Interleaving Semantics

This semantics drops the input restrictions (condition 1 of the macro rule) by allowing new
inputs from the environment to be placed and processed at each micro step. As a result no
observable difference between macro and micro steps remains, and therefore macro steps are
identified with micro steps. Note that there is no situation where values placed on flows are
cleared because they are left after an internal sequence of micro steps, i.e., condition 1.b of the
macro rule is dropped.

4 Application Area: Fault Tolerant Systems

Our opinion is that every member of our family of semantics has its own application area in the
‘real-world’. An example from the field of fault tolerant systems is sketched below to investigate
the practical applicability of the various semantics defined above. The example is part of a
typical problem of hardware redundancy having two mutually duplicating computers C'P1 and
C' P2 to prevent system failure. The complete specification is given in [5].

The TS given in figure 2 represents the internal structure of C'P1. Transformation P1 processes
input from flow a1l and produces output on flow Bl. If flow B1 gets a value at the same moment
flow b1 and wrB1 get a value, respectively an event. If process C'C'P1 gets an event wrB1 and

10



has not consumed an event C'RAS H 1 before, it produces an event N K XT'1. If the process gets
an event C'RAS H1 it disables process P1.

The following fault hypothesis must be modelled: Computer C'P1 can be stopped by a failure
event CRASH 1, though C'P1 is processing an input. The input from flow a1 is consumed and
an output on flow b1 produced, but an event NEXT1 will not be produced.

al @ B1 ‘ bl
! ‘wrBl
ENABLE | DI SABLE: !
P1 P P1 ‘ !
| R
copr L NEXTL -

Figure 2: Internal structure of C'P1

With the recursive causal chain semantics it is not possible to model the fault hypothesis. To
model the fault hypothesis, CRASH1 and a value on flow a1 must be input of one macro step,
because flows al and CRASH1 are connected to the outside world. Now only two internal
processing sequences are possible. The first possibility is that the input from al is processed
and an output on flows B1,b1 and wrB1 is produced. Because of the recursive causal chain
condition C'C' P1 must consume the event on wrB1 and produce an event on N EXT1 before
CRASHI is processed by C'C'P1. The other possibility is that first CRASH1 is taken into
account. Then P1 can not process the value on al and no output on bl is produced. So the
fault hypothesis is not modelled.

The most abstract semantics for this purpose within our setting is the weakly fair interleaving
semantics. It models the following internal processing sequence: Event C'RASH1 and a value
on flow al are input of one macro step and output on flows B1,b1 and wrB1 is produced. Now
the choice of processing input event wrB1 or C RAS H1is made non deterministically by C'C P1.
Therefore CC'P1 can consume C'RAS H1 before wrB1 and no event N K XT1 will be produced.

With the full interleaving semantics it is possible to model the fault hypothesis, too, but with
an inappropriately low level of abstraction. The following processing sequence is possible: Both
C'RASH1 and a value on flow al are input of one macro step. The value on flow al is processed.
Now a new value on flow a1 placed before C RAS H 1 is taken into account. Therefore a situation
where in spite of the occurrence of CRASH1 two inputs are processed by computer C'P1 is

modelled.
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