
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIKFormal Semantics for Ward & Mellor'sTRANSFORMATION SCHEMA'sand its Application to Fault-TolerantSystemsCarsta Petersohn, Jan Peleska, Cornelis Huizing andWillem-Paul de RoeverBericht Nr. 9420Dezember 1994

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut f�ur Informatik und Praktische Mathematik derChristian-Albrechts-Universit�at zu KielOlshausenstr. 40D { 24098 KielFormal Semantics for Ward & Mellor'sTRANSFORMATION SCHEMA's and itsApplication to Fault-Tolerant SystemsCarsta Petersohn, Jan Peleska, Cornelis Huizing andWillem-Paul de RoeverBericht Nr. 9420Dezember 1994e-mail: cp-, jap-, wpr@informatik.uni-kiel.d400.de,keesh@info.win.tue.nl
submitted to the CRL journal Computer Systems, Science & Engineering

AbstractA family of formal semantics is given for the Essential Model of the TransformationSchema of Ward & Mellor [12] using recent techniques developed for de�ning the semanticsof Statecharts [3] by Pnueli and Huizing. A number of ambiguities and inconsistencies inWard & Mellor's original de�nition is resolved. The models developed closely resemble thoseused for synchronous languages [1]. Each model has its own application area, e.g., one �tsbest for fault-tolerant systems.Keywords:Real-time embedded systems and their design, Structured Analysis and Design Methods, Trans-formation Schema, formal semantics, synchronous languages, micro and macro steps, Berry'ssynchrony hypothesis, safety critical systems design, simulation of and semantics for fault-tolerant systems.

1

1 Introduction1.1 Motivation and GoalStructured Analysis and Design methods (SADM) aim at giving a speci�cation of softwarewhich is independent of, and considerably more abstract and readable than, the code eventuallyproduced. Their goal is to provide in this way a speci�cation which:a) exposes inconsistencies in the requirement document describing what a client `thinks'she/he wants, as opposed to the �nally debugged hopefully consistent requirement speci-�cation describing what she/he `actually' wants, andb) provides a consistent requirement speci�cation and independent description of the task ofthe software to be written by the implementor.Obviously, this process looses a lot of its potential value once the SAD methods used contain intheir de�nition bugs and inconsistencies themselves. This happens, e.g., in case of an executablespeci�cation language, when the execution of a speci�cation does not faithfully represent thesemantics of that speci�cation as laid down in the document de�ning the method. This wouldendanger point a) above. As to point b), such inconsistencies might result in a speci�cationof dubious value, since an implementor would not know exactly what to implement, when themeaning of the requirement speci�cation is ambiguous or even inconsistent.One of the well known SAD methods is that of Ward & Mellor. Although widely used, itsdescription [12, 11] contains a number of such inconsistencies. Yet W&M's method contains atleast su�cient indications for us to try to reconstruct its intended meaning. We show that withthe formal methods developed for the de�nition and analysis of so-called synchronous languages(see [1] for an overview) a consistent and precise semantics can be reconstructed for the W&Mmethod. Incompleteness in description and downright contradictions in claimed `de�nitions'can be identi�ed and removed, and the rather remote link with timing can be built upon toform a foundation for what is promised by the method which is at least consistent. This isone important purpose of the present paper, in which we give an example of the main
awsin W&M's de�nition of the semantics of transition diagrams, our suggestions to resolve them(Sec.2) and sketch a precise semantics for the Essential Model of W&M's method (Sec.3). Alsoa formal de�nition of W&M's semantics enables the development of a symbolic interpreter toanimate TS, which is of great importance for point a) above. The other important purpose ofthis paper is to argue the need for a family of semantics for di�erent application areas using a`real-world' example from the �eld of fault tolerance (See.4).1.2 Main TechniqueThe method of W&M uses Transformation Schemas (TS) to represent a system. These are basedon data
ow diagrams, but can also represent the control aspect of a system. Therefore a TSconsists of data and control components, which are both divided into transformations (centersof activities), stores and
ows.Some of the basic
aws in the description of the semantics of Transformation Schemas in theEssential Model of W&M's method given in [11] are the following (also see Sec.2):2

1. The method lacks a consistent description of when a transformation can start computingupon its input. E.g., one interpretation of Ward's de�nition may lead to an unnecessaryloss of data.2. The description of the time dependent behaviour of TS is ambiguous. For the life-span of adata-item depends on the interpretation of a `discrete point in time', but a clear de�nitionis missing of what a `discrete point in time' is.We resolve these
aws technically in section 3 by de�ning a formal operational semantics forthat part of TS whose interpretation causes the above mentioned
aws. To be more precisewe de�ne a family of formal semantics. Its members are called recursive causal chain, weaklyfair and full interleaving semantics. All of these semantics are interleaving semantics de�ned bytransition systems. Referring to [7] for a non graphical syntax of TS and their speci�cations,these semantics consist ofmacro steps, describing the observable behaviour as seen by the outsideworld, which in their turn are made up out of (sequences of) micro steps, describing the internalprocessing steps of a TS which describe the internal execution of its transformations. Dependingon the family of the particular member of semantics it is belonging to, an internal sequence ofmicro steps can be characterized by properties such asmaximal or recursive-causal-chain (de�nedin Sec. 3.2).The Essential Model is characterized by an abstract notion of time. Every transformationneeds zero time to react on input and to produce an output ([12] p.94). The abstract notionof time involved here is such that micro steps take no time for their execution. However amacro step takes a positive amount of external time (as can be interpreted from Table III[11] p.206). This division between micro and macro steps is characteristic for the semanticsof synchronous languages, in which the following idealization is adopted: synchronous systemsproduce their output synchronously with their input (Berry's Synchrony Hypothesis [2]). Ofcourse this hypothesis does not hold for our usual notion of time. It merely expresses that thetime taken by a �nite number of internal steps of the system should be negligible in comparisonwith the time between successive external stimuli.The formal technique dealing with these two notions of step (due to Pnueli [9], Huizing [4],and others) had not been su�ciently formalized around 1985 for W&M to be able to realize itsconsequences for a worked out semantics. Our contribution is that we adapt these techniques tode�ne a family of semantics for TS, especially for W&M's model. Though a formalization andanimation of TS is possible by translating a TS into a Petri net [10], the notions of interleavingsemantics, micro and macro steps introduced in the present paper enable a discussion of thedi�erent views of the dynamic behaviour of a TS, for instance regarding timing, which is notfeasible using the tools of [10].1.3 Application Area: Fault Tolerant SystemsWe de�ne a family of semantics, because, as we shall argue, every application area imposesits own criteria for being satisfactorily modelled. In particular, Ward's semantics, representedby our recursive causal chain semantics, is appropriate for modelling multitasking and singleprocessor systems, but it turns out that Ward's semantics is not suitable for modelling faulttolerant processing. In this case we �nd that fault tolerant systems require our weakly fairinterleaving semantics (see Sec.4). 3

1.4 Future WorkBuilding a symbolic interpreter for W&M's method, based on the formal semantics sketched inthis paper, is part of a project in cooperation with a local industry (DST). As next stages, we in-tend to integrate another real-time model as also described in [11], to give a similar formalizationof W&M's implementation model, described in vol. 3 of [12], and investigate its link (in termsof possible notions of re�nement) with our formalization of the essential model in the presentpaper. Apart from the
aws mentioned in chapter 1.2 one might object that the method lacksany yardstick for determining correctness of data re�nement, or even
ow re�nement. Thereforeintegrating possibilities of formally founded re�nement is a next important stage.2 W&M's Method and an Examples of an Unsolved AmbiguityIn this section we discuss brie
y some of the ambiguities in the interpretation of TransformationSchemas as de�ned in [12] and [11]. (See [6], [7] for details.)2.1 A Short Introduction to Transformation SchemasTransformation Schemas (TS) consist of data and control components. We give here just ashort introduction to their main constituent parts, called `transformation',`
ow' and `store',which may be labelled by identi�ers. We restrict ourselves in these pages to that part of W&Mwhich is formally characterized in the present paper. For example, we assume that all
ows aretime{discrete, i.e., that they are not continuous.Example 1 ((Transformation Schema)) In �gure 1 P denotes a data transformation andK a control transformation. The data
ow a is an input
ow and the data
ow b is an output
ow of transformation P . Flows which start from `nowhere' (as
ow a) and
ows which end`nowhere' (as
ow b) are connected to the outside world of the Transformation Schema. The
ows c; d; e and Prompt(P) are control
ows. Data
ows carry values and control
ows carryevents. An event is a special value which just indicates that something has happened. Thecontrol
ow Prompt(P) (which is a special notation of ours) carries the events `ENABLE(P)'and `DISABLE(P)'. Such control
ows are called Prompts. Their meaning is explained below.If there is no value on the output
ows b; e and the transformation P is not stopped by the controltransformation K, then the transformation P computes an output along b or e as soon as aninput arrives along a. Such behaviour is called data{triggered. The
ow e is called data conditionand represents the possibility that control signals can be fed back from a data transformation toa control transformation. The control transformation K stops the data transformation P bysending a value `DISABLE(P)' to P along the
ow Prompt(P). If P is stopped, it can notcompute outputs and throws arriving inputs away. The control transformation K starts P upagain by sending a value `ENABLE(P)'. When a transformation has no Prompt as an input
ow, the transformation is never stopped.For every transformation of a Transformation Schema there must exist a speci�cation. In ourformal semantics which we sketch in chapter 3, data transformations are speci�ed by a relationwhich also takes values of data stores into account. Data stores are equivalent of a memorywithin our formalism. 4

a b
P

Prompt(P)e

c d
KFigure 1: Transformation Schema2.2 Behaviour of a TransformationAccording to [12] p.97 it is impossible for a transformation to output a new value along anoutput
ow as long as some old output value (due to a previous computation) has not been`cleared' from that
ow. As a consequence, W&M's model implies that
ows have a bu�eringcapacity of 1. On the other hand [11] p.200 states that as soon as an input arrives it will beprocessed. A model which meets both requirements may lead to a loss of output data of thetransformation. Therefore we list below all possible alternatives we can think of for de�ning thebehaviour of a transformation and discuss which one is best.1. a) The input is thrown away, if there is still an old value on an output
ow. (This optionseems to be implied in the implementational model of [11] p.208).b) The output is calculated, but its placement on output
ows is restricted to
owswhich are not occupied by old values.c) Old outputs are overwritten by new ones.2. An arrived input value of a transformation is processed only after consideration of theoutput
ows.a) The calculation is only started, when the resulting output values are going to appearon
ows which are free before the calculation.b) The transformation waits with the computation until all output
ows are free.All options under 1) lead to an arbitrary loss of data and are therefore useless for modellingdata processing systems. An example is given in [6]. Option 2a) requires foreknowledge and istherefore rejected. This leaves us option 2b) since we do not want arbitrary loss of data.3 Sketch of a Family of Formal SemanticsIn this section we sketch a family of formal operational semantics of TS referring to a non-graphical syntax of TS. (In [6], [7] a more complete de�nition of the semantics is given). Onemember of this family closely re
ects Ward's original ideas as described in [11]. All members ofthis family of semantics for TS consist of macro steps describing the observable behaviour of aTS as seen by the outside world. A macro step is made up of a sequence of internal processingsteps called micro steps. Each member of our family of formal semantics is characterized byrestrictions on the sequence of internal micro steps and restrictions on the macro steps. Theinternal sequence represents the reaction of a TS on information sent along its
ows by theoutside world, and the macro step represents the abstract view of this sequence as presented tothe outside world. 5

3.1 Micro StepA micro step represents an internal processing step of a data or control transformation belongingto a Transformation Schema T. It is de�ned formally as a labelled transition(T; f l; �)!outin (T; f l0; �0)in the style of Plotkin [8]. Here the
ow in carries the value that causes the internal processingstep that is represented by the micro step and the quantity out consists of
ows getting newvalues as a result of the processing step. The tuple (T; f l; �) is called a micro con�guration andis de�ned as follows:� T stands for a syntactic representation of a TS. Note that T is not changed in the transition.� fl denotes a state of the
ows of T. It is a function mapping the names of
ows to thevalues they are carrying, where the symbol `?' represents a formal value indicating thatthe
ow does not carry a processable value.� � denotes the state of the transformations of T, e.g., it maps any name from a datatransformation of T to the set fDISABLE, ENABLEg, where DISABLE expresses that thetransformation has stopped and ENABLE expresses that the transformation may processdepending on values on
ows. Also � denotes the state of the stores of T, which maps thenames of the stores to the values of the variables which they carry.A micro con�guration (T,fl; �) induces a micro con�guration (T�; f l�; ��) for every transforma-tion diagram T� contained in T, where fl� and �� denote corresponding restrictions of fl and� to, respectively, the
ows and transformations of T�.A transformation schema T is made up out of data and control transformations. So in order tocapture the meaning of a micro step of TS formally, one �rst de�nes these steps on the level ofits constituting data and control transformations and then introduces the individual micro stepon the level of the overall TS, i.e., micro step itself is de�ned inductively over the non-graphicalsyntactic structure of a TS. Therefore we need two axioms, one for a data transformation stepand one for a control transformation step, and a micro rule to describe the processing step ofthe overall TS which contains these transformations using these axioms. Below we sketch theaxiom for data transformations and the micro rule.3.1.1 Axiom for Data TransformationsA data transformation is represented syntactically by Dtra(A; I;O;Sp), where A is the identi�erof the transformation, I; O denote the sets of its input and output
ows and Sp denotes the setof all stores, which can be written or read by the data transformation.With every data transformation A a relation fA and a state are associated. The relation fAspeci�es the relation between input and output data. The state of a data transformation A is atuple (dt; ds), where dt(A) can be either ENABLE or DISABLE and ds(A) maps every store ofSp to its value. 6

De�nition 3.1 ((Axiom for data transformations)) Assume fl; f l0 are states of the set of
ows I [O, � = (dt; ds) and �0 = (dt0; ds0) are states of the data transformation and a
owin 2 I and a set of
ows out � O, so that one of the following two conditions holds:1. The input
ow `in' is a data
ow and the following holds:(a) The precondition for the processing of the transformation is met:fl(f)(6= ? , if f = in,= ? , if f 2 O.(b) The result of the processing of the transformation is:i. dt0 = dt andii. if dt(A) = ENABLE then((fl; ds); (fl0; ds0)) 2 fA and out = fo jfl(o) = ? ^ fl0(o) 6= ?g;otherwise, if dt(A) = DISABLE then(fl0; ds0) = (fl[?/in]; ds) and out = ;:2. The input
ow `in' is a Prompt, and the following holds:(a) The precondition is met:fl(in) 2 f ENABLE, DISABLEg:(b) The result is:dt0(A) = fl(in); (fl0; ds0) = (fl[?/in]; ds) and out = ;:The data transformation step is now de�ned as follows :(DTra(A; I; O;Sp); f l; �)!outin (DTra(A; I; O; Sp); f l0; �0)The step is called enabled if its precondition as mentioned under (1.a) or (2.a), holds.Condition 1 models what happens when transformation A performs a processing step, i.e., theprocess is data-triggered (see exp.1). This step is only started if all output
ows are free priorto processing (see sec.2.2). The result depends on whether the state of the transformationis ENABLED or DISABLED. Condition 2 models what happens when the transformation isenabled or disabled, i.e., its possible change of state.In the following we describe how the whole TS behaves if a transformation performs a processingstep. 7

3.1.2 Parallel CompositionA Transformation Schema is a network of n 2 IN components Tk, k 2 f1; :::; ng, each one ofwhich has Ik as its set of input
ows, and Ok as its set of output
ows. The TS is represented nongraphically by T = (T1 jj : : : jj Tn). If a
ow f is element of Ok and Il, where k; l 2 f1; :::; ng then
ow f `connects' Tk with Tl. A micro con�guration ((T1 jj : : : jj Tn),fl; �) induces by conventionmicro con�gurations (Ti; f li; �i) for the components Ti of T1 jj : : : jj Tn, for i 2 f1; : : : ; ng.If a transformation does a processing step, so does the whole TS. Formally the micro ruledetermines how to get a labeled transition with two micro con�gurations for the whole TS froma labeled transition with twomicro con�gurations for a transformation. We adopt an interleavingsemantics, i.e., only one transformation performs a processing step in one micro step.3.2 Internal Sequence of Micro StepsInternal sequences of micro steps represent the way the input from the outside world is processedby a TS. Members of our family of semantics can be characterized by properties of the internalsequence of micro steps which we de�ne as maximal or recursive-causal-chain. These propertiesare closely related to statements made in [11].3.2.1 MaximalOne statement describing the internal processing of a TS in [11] is as follows: `the consequencesof the arrival of a value on a
ow from outside the schema are worked out before any othervalue from outside the schema is accepted, and the execution of simultaneously arriving valueson
ows from outside the schema is sequential but in indeterminate order.'In terms of our formal semantics, this statement is represented by the restriction that everyinternal sequence of micro steps must be maximal.De�nition 3.2 (Maximal) Given a particular set of values (produced by the outside world) onthe input
ows of a TS, the resulting internal sequence of micro steps is called maximal when:1. the internal sequence is in�nite, or2. the internal sequence is �nite, and no micro step due to that set of input values is possibleat the end of the internal sequence; i.e., no data or control transformation step is anymoreenabled.If a maximal sequence is �nite and consists of n� 1 2 IN micro steps, we write (T; f l1; �1)!out1in1: : :!outn�1inn�1 (T; f ln; �n)!/ : If a maximal sequence is in�nite, we write (T; f l1; �1) "in1.8

3.2.2 Recursive Causal ChainAnother statement concerning the further internal processing of input in [Wa86] is: 'in caseof simultaneous placement of a number of tokens, the execution rules specify carrying out theinteractions sequentially but in an arbitrary order.' : : : `each branch of the interaction is carriedout till its conclusion before returning to the next one. If subbranches are encountered dur-ing an interaction, another arbitrary sequencing decision is made and the procedure is appliedrecursively.'In terms of our formal semantics this statement is modelled by the restriction that the internalsequence of micro steps must be a sequence of specially ordered causal chains. In a causal chainevery micro step except the �rst one depends causally upon the previous step in the sequence,i.e., the input of a micro step is an output of the previous micro step. The order in which thesecausal chains are composed is that obtained by backtracking the following tree recursively: itsedges are the
ows along which data values or events occurred during the computation, and itsnodes the transformation executed. The formal de�nition of when a sequence of micro stepsforms a recursive causal chain is given in [6].3.3 Macro StepA macro step represents a reaction on an input sent by the outside world of a TransformationSchema T(I; O), where I is the set of
ows of the TS coming from the outside world and O the setof
ows of the TS directed towards the outside world. Correspondingly, a macro con�guration(T,fl; �) is de�ned similarly as a micro con�guration, except that fl is a mapping of just I [O(and not of all the
ows of T) to the values carried on these
ows. We de�ne two kinds ofmacro steps for a semantics. The �rst one is de�ned as a labelled transition between macrocon�gurations, which is derived from a �nite internal sequence of micro steps. The second kindof macro step is derived from an in�nite internal sequence of micro steps. Therefore an `end'macro con�guration does not exist. For the recursive causal chain semantics the �rst kinds ofmacro step are de�ned formally below. Depending on the di�erent properties which the internalsequences of micro steps should satisfy, di�erent macro rules and a family of semantics for TSare de�ned.3.3.1 Recursive Causal Chain SemanticsThe recursive causal chain semantics semantics most closely re
ects Ward's original ideas de-scribed in [11], which are mentioned in section 3.2.2. Each internal sequence of micro steps mustbe maximal and must be a recursive causal chain. After each internal sequence of micro stepsall values left on
ows which could not be consumed are cleared before a new internal sequenceof micro steps starts. Formally this is represented by:De�nition 3.3 ((Macro rule)) Let F be the set of
ows of T. Assume1. (T,fl1; �1)!in1out1 : : :!inn�1outn�1 (T,fln; �n) with n 2 IN is an internal sequence of micro-stepsof T, where(a) the chain is maximal and a recursive causal chain,9

(b) fl1 satis�es 8z2Fn(I[O) : fl1(z) = ?,2. in; out � (I [O), where in = f x 2 (I [O) j flin(x) 6= ? g andout = O \Sni=1foutig,3. flin is a state of (I [O) which meets 8x2(I[O) : flin(x) = fl1(x),4. flout is a state of (I [O), which meets 8x2(I[O) : flout(x) = fln(x).Given the assumptions above, the �rst kind of macro rule is de�ned as follows:(T; f l1; �1)!out1in1 : : :!outn�1inn�1 (T; f ln; �n)!/(T; f lin; �1))outin (T; f lout; �n)3.3.2 Weakly Fair Interleaving SemanticsThis semantics does not re
ect Ward's statement mentioned in section 3.2.2, but the statementmentioned in 3.2.1. It has the same initialization and termination assumptions as the recursivecausal chain semantics (conditions 1.b, 2, 3, 4 of the macro rule), but drops the recursive-causal-chain condition 1.a of the macro rule by allowing any possible transition to be taken for eachmicro step. The condition 1.a is replaced by `maximal holds'. Consequently, no transformationable to make a step is left at the end of the premise of the macro rule. The name given to thissemantics is motivated by this fact. For full discussion of this topic see [5].3.3.3 Full Interleaving SemanticsThis semantics drops the input restrictions (condition 1 of the macro rule) by allowing newinputs from the environment to be placed and processed at each micro step. As a result noobservable di�erence between macro and micro steps remains, and therefore macro steps areidenti�ed with micro steps. Note that there is no situation where values placed on
ows arecleared because they are left after an internal sequence of micro steps, i.e., condition 1.b of themacro rule is dropped.4 Application Area: Fault Tolerant SystemsOur opinion is that every member of our family of semantics has its own application area in the`real-world'. An example from the �eld of fault tolerant systems is sketched below to investigatethe practical applicability of the various semantics de�ned above. The example is part of atypical problem of hardware redundancy having two mutually duplicating computers CP1 andCP2 to prevent system failure. The complete speci�cation is given in [5].The TS given in �gure 2 represents the internal structure of CP1. Transformation P1 processesinput from
ow a1 and produces output on
ow B1. If
ow B1 gets a value at the same moment
ow b1 and wrB1 get a value, respectively an event. If process CCP1 gets an event wrB1 and10

has not consumed an event CRASH1 before, it produces an event NEXT1. If the process getsan event CRASH1 it disables process P1.The following fault hypothesis must be modelled: Computer CP1 can be stopped by a failureevent CRASH1, though CP1 is processing an input. The input from
ow a1 is consumed andan output on
ow b1 produced, but an event NEXT1 will not be produced.
ENABLE
P1 P1

P1

CRASH1

NEXT1
CCP1

DISABLE

B1 b1

wrB1

a1

Figure 2: Internal structure of CP1With the recursive causal chain semantics it is not possible to model the fault hypothesis. Tomodel the fault hypothesis, CRASH1 and a value on
ow a1 must be input of one macro step,because
ows a1 and CRASH1 are connected to the outside world. Now only two internalprocessing sequences are possible. The �rst possibility is that the input from a1 is processedand an output on
ows B1; b1 and wrB1 is produced. Because of the recursive causal chaincondition CCP1 must consume the event on wrB1 and produce an event on NEXT1 beforeCRASH1 is processed by CCP1. The other possibility is that �rst CRASH1 is taken intoaccount. Then P1 can not process the value on a1 and no output on b1 is produced. So thefault hypothesis is not modelled.The most abstract semantics for this purpose within our setting is the weakly fair interleavingsemantics. It models the following internal processing sequence: Event CRASH1 and a valueon
ow a1 are input of one macro step and output on
ows B1; b1 and wrB1 is produced. Nowthe choice of processing input event wrB1 or CRASH1 is made non deterministically by CCP1.Therefore CCP1 can consume CRASH1 before wrB1 and no event NEXT1 will be produced.With the full interleaving semantics it is possible to model the fault hypothesis, too, but withan inappropriately low level of abstraction. The following processing sequence is possible: BothCRASH1 and a value on
ow a1 are input of one macro step. The value on
ow a1 is processed.Now a new value on
ow a1 placed before CRASH1 is taken into account. Therefore a situationwhere in spite of the occurrence of CRASH1 two inputs are processed by computer CP1 ismodelled.AcknowledgementsThe research of Carsta Petersohn has been partially supported by DST. The research of Willem-Paul de Roever has been partially supported by ESPRIT BRA2 projects \SPEC" (no. 3096)and \REACT" (no. 6021). 11

References[1] A. Benveniste and G.Berry. The synchronous approach to reactive and real-time systems.In IEEE-Proceedings : Another look at Real-Time Programming, 1992.[2] G. Berry and G. Gonthier. The esterel synchronous programming language : Design,semantics, implementation. Technical report, Ecole Nationale Sup�erieur des Mines de Paris,1988.[3] D. Harel. On visual formalisms. Communications of the ACM, 31:514{530, 1988.[4] C. Huizing and R. T. Gerth. Semantics of reactive systems in abstract time. In G. RozenbergJ.W. de Bakker, W.-P. de Rover, editor, Real-Time: Theory in Practice, proceedings of aREX workshpo, June 1991, LNCS 600, pages 291{314. Springer Verlag, Berlin, Heidelberg,1992, June 1991.[5] J . Peleska, C. Huizing, and C. Petersohn. A comparison of Ward&Mellor`s TRANSFOR-MATION SCHEMA with STATE-&ACTIVITYCHARTS. Technical report, EindhovenUniversity of Technology, 1994.[6] C. Petersohn, C. Huizing, J. Peleska, and W.-P. de Roever. Formal semantics for Ward &Mellor`s TRANSFORMATION SCHEMAS. In D. Till, editor, Sixth Re�nement Workshopof the BCS FACS Group. Springer Verlag, 1994.[7] Carsta Petersohn. Formalisierung reaktiver Systeme mit Transformationsschemata sowie einVergleich mit Activity- und Statecharts. Master's thesis, Christian{Albrechts{Universit�atzu Kiel, 1992.[8] G. Plotkin. An operational semantics for csp. In In Proceedings of the IFIP Conference onthe Formal Description of Programming Concepts II, North Holland, pages 199{225, 1993.[9] A. Pnueli and M. Shalev. What is in a step: On semantics of statecharts. In T. Ito andA.R. Meyer, editors, Theoretical Aspects of Computer Software, volume 526 of Lect. Notesin Comp. Sci., pages 244{264. Springer-Verlag, 1991.[10] G. Richter and B. Mu�eo. Towards a Rigorous Interpretation of ESML { Extended SystemsModeling Language. IEEE Transaction on Software Engineering, 19(2):165{180, February1993.[11] Paul T. Ward. The Transformation Schema: An extension of the data
ow diagram torepresent control and timing. IEEE TSE, SE-12(2):198{210, February 1986.[12] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time Systems,volume 1-3 of Yourdon Press Computing Series. Prentice Hall, Englewood Cli�s, 1985.
12

