
Institut f�ur Informatik und Praktische Mathematik

der

Christian-Albrechts-Universit�at zu Kiel

D-24098 Kiel

Algebras for Classifying Regular Tree Languages

and an Application to Frontier Testability

Thomas Wilke

Bericht Nr. 9313

Juli 1993

Algebras for Classifying Regular Tree Languages

and an Application to Frontier Testability

Thomas Wilke

�

Institut f�ur Informatik und Praktische Mathematik

Christian-Albrechts-Universit�at zu Kiel, D-24098 Kiel

E-mail: tw@informatik.uni-kiel.d400.de

Abstract

Point-tree algebras, a class of equational three-sorted algebras are de�ned.

The elements of sort t of the free point-tree algebra T(A) generated by a set

A are identi�ed with �nite binary trees with labels in A. A set L of �nite

binary trees over A is recognized by a point-tree algebra B if there exists a

homomorphism h from T(A) in B such that L is an inverse image of h. A tree

language is regular if and only if it is recognized by a �nite point-tree algebra.

There exists a smallest recognizing point-tree algebra for every tree language,

the so-called syntactic point-tree algebra. For regular tree languages, this point-

tree algebra is computable from a (minimal) recognizing tree automaton.

The class of �nite point-tree algebras recognizing frontier testable (also

known as reverse de�nite) tree languages is described by means of equations.

This gives a cubic algorithm deciding whether a given regular tree language

(over a �xed alphabet) is frontier testable.

The characterization of the class of frontier testable languages in terms of

equations is in contrast with other algebraic approaches to the classi�cation

of tree languages (the semigroup and the universal-algebraic approach) where

such equations are not possible or not known.

Introduction

Since the sixties a great number of classes of regular languages of �nite words, such

as the classes of star-free, locally testable, or piecewise testable languages, have been

�

Partly supported by ESPRIT Basic Research Action No. 6317 Algebraic and Syntactic Methods

in Computer Science 2 (ASMICS 2).

1

2

a

0

a

1

q

q

q

q

q

q

�

�

�

�

A

A

A

A

a

2

a

3

a

4

�

�

@

@

s

0

q

q

q

q

q

q

�

�

�

�

A

A

A

A

�

�

�

�

A

A

A

A

t

0

s

1

�

�

�

H

H

H

q

q

q

q

q

q

�

�

�

�

A

A

A

A

a

5

q

q

q

q

q

q

�

�

�

�

A

A

A

A

a

6

s

3

�

�

�

�

A

A

A

A

t

1

�

�

�

H

H

H

s

2

�

�

�

�

�

H

H

H

H

H

H

H

H

Figure 1: Sample tree skeleton corresponding to (#)

characterized in a very succinct way by giving descriptions of the corresponding classes

of syntactic semigroups. For regular sets of �nite trees (regular tree languages) a com-

parable result, using `syntactic semigroups' for tree languages, is only known for root

testability [NP89] (which corresponds to de�niteness in the word case). The semi-

group approach [Tho84, Heu89, NP89, PP92] to regular tree languages provides the

important instrument of decomposing trees along a path (corresponding to decompo-

sitions of words), but it ignores the two-dimensional structure which trees have. So it

is not surprising that the class of frontier testable tree languages cannot be classi�ed in

the semigroup framework (Example 2.17). On the other hand, the universal-algebraic

approach proposed in [Ste92] provides an abstract classi�cation theory as represented

by Samuel Eilenberg's variety theorem [Eil76] for word languages, but characteriza-

tions of concrete classes (in non-trivial cases) are not known.

In this paper we introduce a new kind of algebra for the characterization and

classi�cation of regular languages of �nite binary trees. We call this point-tree algebra.

Basically, in a point-tree algebra trees can be decomposed in two ways: 1) along a path

and 2) in the two subtrees rooted at the top node. Both methods can be combined;

for instance, the two subtrees rooted at the top of a tree can be decomposed each

along a path or a tree can be decomposed along a path that at some inner node splits

into two paths. Even more complicated decompositions are possible. So sets of trees

matching the same `skeleton' can be described by a single term in the signature of

point-tree algebras. For example, the term

(#) a

0

(a

1

(s

0

a

2

(a

3

; a

4

); s

1

t

0

); s

2

a

5

(s

3

a

6

; t

1

))

stands for the trees with shape as depicted in Fig. 1.

Sect. 1 presents the general results concerning point-tree algebras and regular tree

languages. The formal connection between point-tree algebras and �nite binary trees

is established in Theorem 1 which states that the elements of sort t of the free point-

tree algebra T(A) generated by a �nite set A can be identi�ed with the set of �nite

3

binary trees over A. A tree language L over A is de�ned to be recognized by a

point-tree algebra B if there exists a homomorphism h from T(A) to B such that L

(strictly speaking, the subset of T(A) associated with L) is an inverse image of h, i.e.

if there is a subset P of B such that L = h

�1

(P).

1

We prove that a tree language is

regular if and only if it is recognized by a �nite point-tree algebra (Propositon 1.8).

Moreover, it is shown that there is a smallest recognizing point-tree algebra for every

tree language, the so-called syntactic point-tree algebra of the given language, which is

also e�ectively computable (Lemma 1.12). Furthermore, it turns out that recognizing

point-tree algebras (homomorphisms) and recognizing tree automata correspond to

each other in a natural way (Lemma 1.11).

In Sect. 2 frontier testable tree languages are characterized. Recall that, as for

reverse de�nite word languages, a language of �nite trees is called frontier testable

if membership to it depends only on the set of subtrees of bounded depth occurring

at the frontier of a given tree; see [Heu89], where it was shown that the class of

frontier testable languages is decidable. This was achieved by bounding the degree

of frontier testability of a given language by the number of states of a recognizing

automaton. We complement this by presenting for each degree k of frontier testability

(given by the depth k of the considered frontier trees) a �nite set of equations such

that a tree language is k-frontier testable i� its syntactic point-tree algebra satis�es

these equations (Theorem 3). First this allows us to reprove Heuter's results. In

addition, we provide an algorithm deciding whether a given regular tree language is

frontier testable that runs in time cubic in the number of states of the corresponding

minimal tree automaton and quadratic in the cardinality of the underlying alphabet

(Proposition 2.12). In the signature of point-tree algebras extended by the (implicit)

!-operation as known from �nite semigroup theory, we characterize frontier testability

in general by a �nite base of equations (Theorem 4). This is a �rst example for a

closed algebraic description of a non-trivial class of regular tree languages and gives

evidence of the usefulness of the suggested approach via point-tree algebras.

By means of the close connection between syntactic point-tree algebras and mini-

mal automata the presented equations help to understand the structure of the (min-

imal) automata of frontier testable languages.

The combinatorial properties of frontier testable languages used in Sect. 2 were,

in a weaker form, established jointly with T. Scholz (see [Sch92]).

This paper is the full version of the conference paper [Wil93]. I am grateful to

Magnus Steinby for his comments on and corrections of a preliminary version of the

paper.

1

We adopt the convention that bold symbols stand for the whole structure whereas the symbols

for the underlying sets are not in bold type.

4 1 POINT-TREE ALGEBRAS

1 Point-tree algebras

Let A be an arbitrary alphabet. We consider the set T (A) of binary trees over A,

that is, the set of all terms over the ranked alphabet �(A) that contains for every

element a of A a nullary and a binary symbol. Furthermore we are interested in the

set S(A) of all special trees

2

over A which is obtained from the elements of T (A) by

substituting � (point) for exactly one leaf, i.e. S(A) is the set of all terms over the

ranked alphabet �

0

(A) that contains for every element a of A a nullary and a binary

symbol and the nullary symbol �, and where point occurs exactly once. When we

want to stress that we are dealing with elements of T (A) and not of S(A) we speak

of ordinary trees (in contrast to special trees).

In the following we shall describe the relationships between the three sets A, S(A),

and T (A) in terms of six functions: �; �; �; �; �; �, which we now introduce. (For a

graphical illustration see Fig. 2).

[�:A! T (A)] The function � identi�es each letter a with the one-node tree a.

[�:A� T (A)! S(A)] The function � takes a letter a and a tree t as arguments

and maps them on the special tree with root a and right subtree t, i.e. �(a; t) =

a(�; t).

[�:A� T (A)! S(A)] This is the same function as � but placing the given tree

to the left of the given letter, i.e. �(a; t) = a(t; �).

[�:A� T (A)� T (A)! T (A)] The function � associates with a letter a and

two trees t

0

and t

1

the tree with root a, left subtree t

0

and right subtree t

1

, i.e.

�(a; t

0

; t

1

) = a(t

0

; t

1

).

[� :S(A)� T (A)! T (A)] Given a special tree s and a tree t, the function �

substitutes t for point in s, i.e. � (s; t) = s[�=t].

[�:S(A)� S(A)! S(A)] Given special trees s

0

; s

1

, the function � substitutes s

1

for point in s

0

, i.e. �(s

0

; s

1

) = s

0

[�=s

1

].

Example 1.1 Let A = f0; 1g. The tree t = 0(1(0; 1(0; 1)); 0(0; 0)) can be obtained

in several ways starting from the letters 0; 1 2 A. In Fig. 3 a graphical representation

of t is given and some of the possible representations in terms of �; �; : : : are listed.

Obviously the following identities hold for an arbitrary letter a 2 A, special trees

s

0

; s

1

; s

2

2 S(A), and ordinary trees t; t

0

; t

1

2 T (A).

(ASS1) �(s

0

; �(s

1

; s

2

)) = �(�(s

0

; s

1

); s

2

)

(ASS2) � (s

0

; � (s

1

; t)) = � (�(s

0

; s

1

); t)

(COM) � (�(a; t

0

); t

1

) = � (�(a; t

1

); t

0

) = �(a; t

0

; t

1

)

9

>

>

>

=

>

>

>

;

(�)

2

Special trees were introduced in [Tho84]. They are also known as pointed trees, see [NP89]. In

fact, our de�nition of special trees is a slightly modi�ed version of what is called a pointed tree in

[NP89].

5

�: a -

�

�

@

@

a

�: a;

�

�

@

@

t

-

a

q

�

�

@

@

t

�

�

H

H

�: a;

�

�

@

@

t

-

a

�

�

@

@

t

q

�

�

H

H

�: a;

�

�

@

@

t

0

;

�

�

@

@

t

1

-

a

�

�

@

@

t

0

�

�

@

@

t

1

�

�

H

H

� :

�

�

@

@q

s

;

�

�

@

@

t

-

�

�

@

@

�

�

@

@

t

s

�:

�

�

@

@q

s

0

;

�

�

@

@q

s

1

-

�

�

@

@

�

�

@

@q

s

1

s

0

Figure 2: The six operations on A, T (A), and S(A)

0

1 0

�

�

@

@

0 0

�
�
A
A

0 1

�
�
A
A

0 1

�
�
A
A

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�(0; �(1; �(0); �(1; �(0); �(1))); �(0; �(0); �(0)))

�(0; �(1; �(0); �(1; �(0); �(1))); �(�(0; �(0)); �(0)))

�(�(�(�(0; �(0; �(0); �(0))); �(1; �(0))); �(1; �(1))); �(0))

�(�(�(0; �(0; �(0); �(0))); �(�(1; �(0)); �(1; �(1)))); �(0))

�(�(�(0; �(0; �(0); �(0))); �(�(�(1; �(0)); �(1; �(1))); �(0))))

�(�(0; �(�(�(1; �(0)); �(1; �(1))); �(0))); �(0; �(0); �(0)))

Figure 3: Di�erent representations of the same tree

6 1 POINT-TREE ALGEBRAS

Each of the identities is re
ected by at least one of the di�erent presentations given

for the tree of Example 1.1. Equations (ASS1) and (ASS2) express the associativity

of the substitution operation used in the de�nition of � and � . Equation (COM) takes

into account that it is the same whether we put �rst a tree to the left of a node and

then another tree to the right of that node or do it in the reversed order. In some

sense � and � `commute'.

The equations in (�) are the starting point for the de�nition of our notion of point-

tree algebra. Consider the sort

3

set S = fl; s; tg, where we think of l as being the sort of

letters, of s as being the sort of special trees, and of t as being the sort of ordinary trees.

Besides, consider the typed signature � = f�

(l;t)

; �

(lt;s)

; �

(lt;s)

; �

(ltt;t)

; �

(ss;s)

; �

(st;t)

g. Let

T(A) be de�ned by

T(A) = A

(l)

[(S(A) n f�g)

(s)

[T (A)

(t)

:

Together with the appropriate restrictions of the functions �; �; �; : : : the set T(A)

forms a �-Algebra satisfying (�). It is denoted by T(A). In general a �-algebra

satisfying (�) will be called a point-tree algebra.

The reason for that we do not allow the trivial special tree � as an element of sort

s in T(A) will become clear in the next subsection.

We observe the following.

Remark 1.2 If B is a point-tree algebra, then the set B

(s)

together with the binary

operation �

B

is a semigroup.

We introduce some conventions concerning the notation of terms in �

0

(A). Let a

stand for l-terms (either constants or variables), �, �

0

, and �

1

for s-terms, and ,

0

,

1

for t-terms. We simply write �

0

�

1

instead of �(�

0

; �

1

) and � instead of � (�;),

since we have associativity for � and � . We also replace �(a;

0

;

1

) by a(

0

;

1

) and

sometimes write a(�;) for �(a;) and a(; �) for �(a;). The single letter a stands

for �(a).

1.1 Free point-tree algebras

We show that the point-tree algebra T(A) is uniquely determined (up to isomorphism)

by (�), that is, T(A) is freely generated by the set A in the class of point-tree algebras.

This is not true for the modi�ed algebra including the special tree � as an element of

sort s.

Theorem 1 (free point-tree algebras) Let A be an arbitrary set (possibly in�-

nite). Then T(A) is a �-algebra freely generated by A

(l)

in the class of point-tree

algebras, i.e. in the class of all �-algebras satisfying (�).

3

For fundamentals of many-sorted universal algebra we refer the reader to [EM85].

1.1 Free point-tree algebras 7

The remainder of this subsection is devoted to the proof of this theorem. We choose

a proof using rewrite systems.

4

Let F(A) denote the (free) �-term algebra generated by A

(l)

, and let � be the

congruence relation generated by the instances of (�) in F(A). Then, by Birkho�'s

theorem

5

, we know that the quotient algebra F(A)=� is freely generated byA=�. Since

distinct letters of A are non-equivalent with respect to � and T(A) satis�es (�), there

is a unique homomorphism h:F(A)=� ! T(A) with h(a=�) = a for every a 2 A.

We have to show that h is an isomorphism. It is not hard to see that h is onto.

For the injectivity we construct a rewrite system over F(A) such that the re
exive-

symmetric-transitive closure of the corresponding reduction relation coincides with �

(Lemma 1.3), the system terminates (Lemma 1.4), and the classes of two irreducible

elements go to distinct elements of T (A) under h (Lemma 1.6). Then h is one-to-one

and we are done. So we are left with �nding the rewrite system and proving the three

lemmas about it.

We obtain the rewrite system R by reading (�) from left to right, splitting (COM)

into two rules.

(1) �(s

0

; �(s

1

; s

2

))! �(�(s

0

; s

1

); s

2

)

(2) � (�(s

0

; s

1

); t)! � (s

0

; � (s

1

; t))

(3) � (�(a; t

0

); t

1

)! �(a; t

0

; t

1

)

(4) � (�(a; t

1

); t

0

)! �(a; t

0

; t

1

)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(��)

Lemma 1.3 Over F(A) the re
exive-symmetric-transitive closure $

�

of the rewrite

relation ! de�ned by (��) coincides with the congruence � generated by the instances

of (�), the equations de�ning the class of point-tree algebras.

Proof. This is immediate by the construction of R. �

We need some de�nitions for the termination proof. We write jj�jj

�

for the number

of occurrences of � in the term �; in the same sense we use jj�jj

�

and jj�jj

�

. Further-

more, if u is string over � [A [f(;)g then [u] is written for the string over f0; 1g

which is obtained from u by reading it from right to left and noting 1 for each � read,

0 for each element of A, and nothing for any other symbol. For a string v over f0; 1g

let hvi designate the number whose binary representation is v.

Lemma 1.4 The rewrite system R terminates over F(A).

Proof. Associate with every term � the natural number

^

� de�ned by

^

� = jj�jj

�

+ jj�jj

�

+ jj�jj

�

+ h[�]i :

4

For background on rewrite systems, see [DJ90, p. 243{320].

5

For background on universal algebra, see [BS81].

8 1 POINT-TREE ALGEBRAS

Since the `less than' relation < on the natural numbers is well-founded it would be

su�cient to show that

^

 <

^

� whenever �! . We prove this by case distinction.

1. case, � !

(1)

 . Then � contains a subterm �

0

= �(

0

; �(

1

;

2

)) that is replaced

by �

1

= �(�(

0

;

1

);

2

) and

[�

0

] = [

2

][

1

]1[

0

]1 ;

[�

1

] = [

2

][

1

][

0

]11 :

Since

0

is ground we know that a 0 occurs in the string [

0

], showing h[�

0

]i > h[�

1

]i.

This immediately implies

^

 <

^

�.

2. case, �!

(2)

 . Then only the third term in the sum de�ning ^ changes its value,

and since the number of � decreases, we see

^

 <

^

�.

3. case, � !

(3)

. In this case, only the second term in the de�nition of^changes, and

since one � disappears, we also have

^

 <

^

� in this case.

4. case, �!

(4)

. The same as in the third case since � and � are treated dually. �

Next we describe the irreducible terms (normal forms) of F(A). For elements of

sort t the situation is as follows: every term of sort t in normal form is built up

from the elements of A only using the operation �; the operations �, � and � are

removed by applications of rule (2), (3), and (4), respectively. For instance, the �rst

representation in Fig. 3 is the only irreducible representation of the sample tree, and

any other representation given in the �gure can be reduced to that.

Lemma 1.5 The normal forms of the rewrite system R over F(A) are as follows.

(1) The set of normal forms of sort l is A.

(2) Every term �(a), for a 2 A, is a normal form of sort t. If � and are terms

of sort t in normal form, then �(a; �;) is in normal form for every a 2 A.

In this way every normal form of sort t can be obtained.

(3) Every term �(a;) or �(a;) with a 2 A and of sort t in normal form is

a term of sort s in normal form, called a short term. If � of sort s is in normal

form and is a short term, then �(�;) is also a term of sort s in normal

form.

In this way every normal form of sort s can be obtained.

Proof. We have to prove that all terms described above are irreducible (correctness)

and that every irreducible term belongs to the terms described (completeness). Both

proofs proceed by case distinction on the �rst symbol of a given term. We will only

show the completeness, the proof for the correctness is similar.

Assume that � is an irreducible term. There are six possible cases depending on

the �rst symbol of �.

1.2 Tree automata and regular tree languages 9

1. case, � = a. Then � belongs to the normal forms described in (1).

2. case, � = �(a). Then � belongs to the normal forms described in (2).

3. case, � = �(a;

0

;

1

). Then

0

and

1

must be in normal form, hence � belongs

to the normal forms of sort t described in (2).

4. case, � = � (

0

;

1

). Then

0

is of sort s, and thus must begin with �, �, or � | a

contradiction: � is not irreducible.

5. case, � = �(

0

;

1

). Then

0

and

1

must be terms of sort s in normal form. If

1

would start with �, then � were reducible. Thus

1

starts with � or �, hence it is a

short term. Then � belongs to the terms of sort s described in (3).

6. case, � = �(a;) or � = �(a;). Then must be in normal form and � is a short

term.�

Lemma 1.6 Let h:F(A)=� ! T(A) be the unique homomorphism with h(a=�) = a

for every a 2 A. Then � 6= implies h(��) 6= h(�) whenever � and are normal

forms.

Proof. For elements of sort l the claim is immediate. For terms of sort s and t the

claim can be proved by induction on the structure of the normal forms. We will do

it only in the case of terms of sort t, the case of terms of sort s is similar.

Induction base. If � = �(a) and 6= �, then either = �(b) for some b 6= a or

 = �(c;

0

;

1

) for some c;

0

;

1

. In the �rst case h(=�) = b, in the second case

h(=�) = c(t

0

; t

1

). In both cases we have h(=�) 6= a = h(�=�).

Induction step. Let � = �(a; �

0

; �

1

) and suppose 6= � for a term of sort t.

Then either = �(b) for some b or = �(b;

0

;

1

) for some b,

0

;

1

where b 6= a,

or

0

6= �

0

, or

1

6= �

1

. The �rst case was already treated in the induction base.

In the second case we have h(�=�) = a(h(�

0

=�); h(�

1

=�)) and similarly h(=�) =

b(h(

0

=�); h(

1

=�)). If a 6= b we can immediately derive h(�=�) 6= h(=�); otherwise,

if

0

6= �

0

, or

1

6= �

1

, we derive the desired inequality from the induction hypothesis:

h(

0

=�) 6= h(�

0

=�) or h(

1

=�) 6= h(�

1

=�).�

As a consequence of the termination of the rewrite system and the last theorem

we obtain the following.

Corollary 1.7 (con
uence) The rewrite system R is con
uent over F(A).

1.2 Tree automata and regular tree languages

This subsection shows the close relation between �nite point-tree algebras and tree

(semi-) automata. As a consequence we will obtain a characterization of regularity

for tree languages in terms of �nite point-tree algebras. First, we will present the

basic de�nitions and state the main result of this section.

10 1 POINT-TREE ALGEBRAS

A tree semi-automaton over an alphabet A is a triple A = (Q; �; �) with a �nite

state set Q, a transition function �:A � Q � Q ! Q, and an initial assignment

�:A ! Q. This assignment is inductively extended to an assignment with T (A)

as domain: �(a(t; t

0

)) = �(a; �(t); �(t

0

)) for all trees t; t

0

2 T (A) and every letter

a 2 A. We say that A recognizes a tree language L over A if there is a �nal state

set F � Q such that L = ft j �(t) 2 Fg. A tree language over A is called regular if

it is recognized by a tree semi-automaton over A.

A homomorphism h:T(A) ! B is called a recognizing homomorphism over A.

Such a homomorphism recognizes a tree language L over A if there exists a set P �

B

(t)

with the property h

�1

(P) = L, i.e. if L is an inverse image under h.

We can now state the following.

Proposition 1.8 A tree language L over A is regular i� it is recognized by a homo-

morphism h:T(A)! B into a �nite point-tree algebra.

The claim is an immediate consequence of Remarks 1.9 and 1.10 of the subsequent

paragraph.

The algebra associated with an automaton

In the following we explain in which way an automaton can be viewed as a point-tree

algebra. Basically, the state set forms the elements of sort t, the translations on the

state set induced by special trees are the elements of sort s, and the alphabet modulo

an appropriate equivalence relation forms the set of elements of sort l.

Assume we are given a tree semi-automaton A = (Q; �; �).

If q is a state of A and if a is a letter of A, then a function Q ! Q is de�ned by

p 7! �(a; q; p). Symmetrically, a function is de�ned by p 7! �(a; p; q). Functions that

are constructed in this way are called elementary translations of A. The set of all

translations of A is the smallest set containing every elementary translation and which

is closed under composition (of functions in the usual way). Obviously, a translation

can be associated with every special tree, for instance, if �(a) = q for some letter a

and if b is another letter, then p 7! �(b; p; q) is associated with the special tree b(�; a).

We now de�ne the point-tree algebra PTA(A), the point-tree algebra associated

with A. For ease in the de�nition, we write B for PTA(A).

Let B

(l)

be the set A modulo the equivalence relation � de�ned by a�b i� �(a) =

�(b) and �(a; q; q

0

) = �(b; q; q

0

) for all choices q; q

0

2 Q. Let B

(t)

= Q and let B

(s)

be

the set of translations of A. The operations of B are de�ned in a natural way. For

instance, if f is a translation and if q is an element of sort t (i.e. if q is a state of A),

then � (f; q) simply denotes the value of f when applied to q. Thus if the special tree

s is associated with f and t is a tree such that �(t) = q, then �(st) = � (f; q). The

1.2 Tree automata and regular tree languages 11

formal de�nitions are as follows:

�

B

(a=�) = �(a) for a 2 A,

�

B

(a=�; q; q

0

) = �(a; q; q

0

) for a 2 A and q; q

0

2 Q,

�

B

(a=�; q) = (q

0

7! �(a; q

0

; q)) for a 2 A and q 2 Q,

�

B

(a=�; q) = (q

0

7! �(a; q; q

0

)) for a 2 A and q 2 Q,

�

B

(f; f

0

) = f � f

0

for f; f

0

2 B

(s)

,

�

B

(f; q) = f(q) for f 2 B

(s)

and q 2 Q.

Then, as one can easily check, B together with these operations forms a �nite point-

tree algebra.

Since T(A) is free on A

(l)

(Theorem 1) there is a unique homomorphism h

A

from T(A) to PTA(A) with h

A

(a) = a=� for every a 2 A. Clearly, h

A

(t) = �(t)

for every t 2 T (A), moreover, if F is an arbitrary subset of Q then a tree language L

over A is recognized by A together with the �nal state set F i� h

�1

A

(F) = L. Thus h

A

recognizes every language recognized by A. This gives the following remark, which

constitutes one direction of the proof of Proposition 1.8.

Remark 1.9 If A is a tree semi-automaton and if L is a tree language recognized by

A, then L is also recognized by h

A

.

The homomorphism h

A

is called the homomorphism associated with A.

The automaton associated with a homomorphism

Now suppose that we are given a recognizing homomorphismh:T(A)! B into a �nite

point-tree algebra B. We de�ne a tree semi-automaton A(h) by A(h) = (B

(t)

; �; �

B

)

with �(a; q; q

0

) = �

B

(h(a); q; q

0

). Then A(h) is in fact a �nite tree semi-automaton,

which has the property h

�1

(P) = ft 2 T (A) j �(t) 2 Pg for every P � B

(t)

. So

we have the following remark, which gives us the other direction in the proof of

Proposition 1.8.

Remark 1.10 If h is a recognizing homomorphism into a �nite point-tree algebra

and if L is recognized by h, then L is also recognized by A(h).

The tree semi-automaton A(h) is called the automaton associated with h.

We conclude this subsection with a description of A(h

A

) and h

A(h)

.

Lemma 1.11 (1) If A is a tree semi-automaton, then A = A(h

A

).

12 1 POINT-TREE ALGEBRAS

(2) Let h:T(A) ! B be a recognizing homomorphism onto a �nite point-tree

algebra. Then there exists a homomorphism g:B ! PTA(A(h)) such that

h

A(h)

= g � h, i.e. PTA(A(h)) is a homomorphic image of B.

Proof. For (1) let us assume that A = (Q; �; �) and let A

0

= (Q

0

; �

0

; �

0

) be the

automaton associated with h

A

. Write B for PTA(A). By the de�nitions of A

0

and B

we have Q = Q

0

, �

0

(a; q; q

0

) = �

B

(h

A

(a); q; q

0

) = �(a; q; q

0

), and �

0

(a) = �

B

(a) = �(a).

Thus A = A(h

A

).

For the proof of (2) write B

0

for PTA(A

h

) and h

0

for h

A(h)

; de�ne the equivalence

� on B

(l)

by a�b i� �(a) = �(b) and �(a; t; t

0

) = �(b; t; t

0

) for t; t

0

2 B

(t)

. Then

B

0

(l)

= A=�, B

0

(t)

= B

(t)

, and B

0

(s)

= f(t 7! h(s)t):B

(t)

! B

(t)

j s 2 S(A)g. Thus a

homomorphism g satisfying the requirements of the lemma can be de�ned in a natural

way by setting

a 7! a=� for a 2 B

(l)

,

s 7! (t 7! h(s)t) for s 2 B

(s)

,

t 7! t for t 2 B

(t)

.

Here, it is important that h is assumed to be surjective. Otherwise it would not be

clear to which elements one should map the elements outside the range of h. �

1.3 Syntactic point-tree algebras

In this subsection we will transform the concept of syntactic congruence resp. syntac-

tic algebra to our situation of regular tree languages and point-tree algebras. We shall

see that for every regular tree language L there exists a smallest (up to isomorphism)

�nite point-tree algebra that recognizes the given language. This algebra is called the

syntactic point-tree algebra of L and we will obtain it as the factor algebra of the free

point-tree algebra modulo an appropriate congruence

�

=

L

, called the syntactic congru-

ence of L. Furthermore, as a consequence of the correspondence between recognizing

homomorphisms and tree-semi automata (Subsection 1.2) the syntactic congruence

and the syntactic point-tree algebra will turn out to be e�ectively computable.

Assume L is a tree language over A. Let

�

=

L

be the relation on T(A) de�ned as

follows:

a

�

=

L

a

0

i�

8

<

:

8s 2 S(A) (sa 2 L$ sa

0

2 L)

8s 2 S(A) 8t; t

0

2 T (A) (sa(t; t

0

) 2 L$ sa

0

(t; t

0

) 2 L)

s

�

=

L

s

0

i� 8s

0

2 S(A) 8t 2 T (A) (s

0

st 2 L$ s

0

s

0

t 2 L)

t

�

=

L

t

0

i� 8s 2 S(A) (st 2 L$ st

0

2 L)

(The symbols a; a

0

stand for letters, s; s

0

stand for special trees, and t; t

0

stand for

ordinary trees.)

1.3 Syntactic point-tree algebras 13

In other words, two elements of the same sort are equivalent if and only if they

relate to L the same in every possible context. In fact, this equivalence relation

is a congruence on T(A) and called the syntactic congruence of L. The algebra

SA(L) = T(A)=

�

=

L

is called the syntactic point-tree algebra of L and the factorizing

homomorphism h

L

:T(A) ! SA(L) is called the syntactic homomorphism of L. As

indicated above we have the following.

Lemma 1.12 (syntactic congruence) Let L be a tree language over A.

(1) The relation

�

=

L

is the greatest congruence on T(A) such that L is a union

of classes.

(2) L is regular i�

�

=

L

is of �nite index.

(3) If L is regular, then

� the syntactic homomorphism h

L

is the homomorphism associated with the

minimal tree semi-automaton A

L

,

� the minimal tree semi-automaton A

L

is the automaton associated with h

L

,

� the syntactic point-tree algebra SA(L) is e�ectively computable.

Proof. The proofs for (1) and (2) are standard. For a version concerning regular

sets of �nite trees see, for instance, the recent contribution [Koz92]. However, the

proof has to be adapted to point-tree algebras as recognizing structures.

The correspondence between A

L

and h

L

can be seen immediately from the fact

that A

L

= (T (A)=

�

=

L

; �; �) where �(a; [t]; [t

0

]) = [a(t; t

0

)] for all t; t

0

2 T (A) and where

�(a) = [a]. The e�ectivity of the construction of SA(L) follows from the fact that A

L

is e�ectively computable from any e�ective representation of L (regular expression,

�nite automaton). �

To conclude we want to emphasize that (3) of the above lemma is relevant from

the point of view of classi�cation of regular tree languages. This will be explained in

what follows.

We say that a class of regular tree languages is decidable, if there is a decision

procedure that, given a tree semi-automaton A and a �nal state set F , outputs `yes ',

if the language recognized by A with F belongs to the given class, and `no' otherwise.

In the same way one can de�ne what it means that a class of �nite point-tree algebras

is decidable. Then, as a consequence of Lemma 1.12, we obtain the following theorem.

Theorem 2 (decidability) If C is a class of regular tree languages and B is a de-

cidable class of �nite point-tree algebras such that a language L belongs to C i� its

syntactic point-tree algebra belongs to B, then C is also decidable.�

14 2 FRONTIER TESTABLE TREE LANGUAGES

2 Frontier testable tree languages

A language of �nite words is reverse de�nite if membership is determined by the

pre�x of �xed maximal length of a given word. In the case of tree languages (reading

trees from front to root, as the semi-tree automata introduced in Subsect. 1.2 do) this

corresponds to the set of frontier trees of �xed maximal depth.

The set of frontier trees of a given tree (either ordinary or special) is de�ned as

follows:

front(a) = a for a 2 A [f�g,

front(a(t

0

; t

1

)) = front(t

0

) [front(t

1

) [fa(t

0

; t

1

)g:

The depth of a tree is inductively de�ned by the following rules:

depth(a) = 1 for a 2 A [f�g,

depth(a(t

0

; t

1

)) = maxfdepth(t

0

);depth(t

1

)g+ 1:

Now the set of frontier trees of depth less than or equal to k of a tree t is de�ned by

front

�k

(t) = ft

0

2 front(t) j depth(t

0

) � kg.

We observe the following.

Remark 2.1 Let t be an arbitrary tree.

(1) The tree has depth � k i� there is a tree of depth k in front

�k

(t).

(2) The tree has depth < k i� there is no tree of depth k in front

�k

(t). If this is

the case, there is a unique tree of maximal depth in front

�k

(t), namely t itself,

and front

�k

(t) = front(t).

A tree language L over A is k-frontier testable if, for t; t

0

2 T (A), either t; t

0

2 L

or t; t

0

=2 L. The language L is frontier testable if it is k-frontier testable for some k.

In the �rst subsection we give a characterization for k-frontier testable languages

(with �xed parameter k). In Subsect. 2.2 we give applications of this result, which

will then be extended to the general situation (without reference to a parameter) in

Subsect. 2.3.

2.1 Characterization of k-frontier testability

Let k > 0.

Assume that t

0

is a variable of sort t and that s

0

; s

1

; : : : are distinct variables of

sort s. Let t

k

be a term of sort t inductively de�ned by t

1

= t

0

and t

k

= s

k�2

t

k�1

for

k > 1. Then t

k

covers exactly all trees of depth at least k.

2.1 Characterization of k-frontier testability 15

Theorem 3 (k-frontier testability) Let L be a tree language over the alphabet A.

Then the following are equivalent:

(A) L is k-frontier testable.

(B) The syntactic point-tree algebra of L satis�es the identities

(Sym) a(t

k

; t) = b(t; t

k

)

(Idp) a(t

k

; t

k

) = t

k

(Can) a(t; b(st; t

k

)) = a

0

(st; t

k

)

(Rot) a(b(t; t

k

); t

0

) = a

0

(t; b

0

(t

k

; t

0

))

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(+)

for variables a; b; a

0

; b

0

of sort l, a variable s of sort s, variables t; t

0

of sort t,

and where t

k

is de�ned as above.

(C) L is recognized by a point-tree algebra satisfying the identities (+).

An illustration of the four equations is given in Fig. 4. These pictures also explain

the names of the equations: (Sym) stands for `symmetry', (Idp) for `idempotence',

(Can) for `cancellation', and (Rot) for `rotation'. Equation (Sym) says that a tree of

depth at least k can be turned around its root. Equation (Idp) allows a duplication of

a tree of depth at least k, (Can) allows the elimination of the occurrence of a frontier

tree which also occurs in the neighbourhood of a tree of depth at least k. Finally

(Rot) expresses that trees can be rotated around a tree of depth at least k.

If we had allowed � as an element of T(A)

(s)

, then the equation

(Can

0

) a(t; b(t; t

k

)) = a(t; t

k

)

would have been a special instance of (Can). Nevertheless, (Can

0

) is a consequence

of the other equations, as we can see from the following remark.

Remark 2.2 The equation (Can

0

) is a consequence of (Sym), (Idp) and (Rot).

Proof. This assertion is proved by the following chain of equations.

a(t; t

k

) = a(a(t; t

k

); a(t; t

k

)) by (Idp)

= a(t; b(t

k

; a(t; t

k

))) by (Rot)

= a(t; b(a(t; t

k

); t

k

)) by (Sym)

= a(t; b(t; a(t

k

; t

k

))) by (Rot)

= a(t; b(t; t

k

)) by (Idp)

16 2 FRONTIER TESTABLE TREE LANGUAGES

(Sym)

a

�

�

@

@

t

k

�

�

@

@

t

�

�

H

H

=

b

�

�

@

@

t �

�

@

@

t

k

�

�

H

H

(Idp)

a

�

�

@

@

t

k

�

�

@

@

t

k

�

�

H

H

=

�

�

@

@

t

k

(Can)

a

�

�

@

@

t

b

�

�

@

@

�

�

@

@

t

s

�

�

@

@

t

k

�

�

H

H

�

�

H

H

=

a

0

�

�

@

@

�

�

@

@

t

s

�

�

@

@

t

k

�

�

H

H

(Rot)

a

b

�

�

@

@

t �

�

@

@

t

k

�

�

H

H

�

�

@

@

t

0

�

�

H

H

=

a

0

�

�

@

@

t

b

0

�

�

@

@

t

k

�

�

@

@

t

0

�

�

H

H

�

�

H

H

Figure 4: Graphical illustration of (+)

�

The remainder of this subsection is devoted to the proof of Theorem 3. Since

equations are preserved under the application of homomorphisms we obtain, by us-

ing Lemma 1.12(1) and (2), that (B) and (C) are equivalent. So we are left with

the implication from (A) to (C) (correctness) and the implication from (C) to (A)

(completeness).

Correctness

It is su�cient to show that for every k-frontier testable tree language L over A

there exists a �nite point-tree algebra B satisfying (+) such that a homomorphism

h:T(A) ! B recognizes L. We shall obtain the algebra B as the quotient of T(A)

modulo the congruence �

k

de�ned as follows:

a �

k

a

0

i� a = a

0

s �

k

s

0

i� front

�k

(s) = front

�k

(s

0

)

t �

k

t

0

i� front

�k

(t) = front

�k

(t

0

)

(The symbols a; a

0

stand for letters, s; s

0

stand for special trees, and t; t

0

stand for

ordinary trees.)

2.1 Characterization of k-frontier testability 17

Notice that we treat, according to the de�nition, special trees simply as trees (over

the extended alphabet �

0

(A)).

As indicated above we will prove the following.

Lemma 2.3 (1) The binary relation �

k

is a congruence of �nite index (on

T(A)).

(2) A tree language over A is k-frontier testable i� it is a union of �

k

-classes.

(3) The quotient algebra T(A)=�

k

satis�es (+).

Proof. Proof of (1) and (2). Clearly �

k

is an equivalence relation of �nite index

and saturates every k-testable language over A, i.e. every k-testable language over A

is a union of �

k

-classes. For the rest of (1), namely that �

k

has the appropriate

congruence properties, we have to check that �

k

is compatible with the functions

�; �; �; : : : We restrict ourselves to � and �; the arguments in the other cases are

similar.

Compatibility with �. Suppose a �

k

a

0

and t �

k

t

0

for a; a

0

2 A and t; t

0

2 T (A).

Then a = a

0

and front

�k

(t) = front

�k

(t

0

), and we have to show a(�; t) �

k

a

0

(�; t

0

). We

proceed by case distinction on the depth of t.

Case depth(t) < k. Then t = t

0

by Remark 2.1, thus a(�; t) = a

0

(�; t), hence a(�; t) �

k

a

0

(�; t

0

).

Case depth(t) � k. Then also depth(t

0

) � k by Remark 2.1. Therefore we may write

front

�k

(a(�; t)) as front

�k

(t) [f�g and also front

�k

(a

0

(�; t

0

)) as front

�k

(t

0

) [f�g. This

proves a(�; t) �

k

a

0

(�; t

0

).

Compatibility with �. Suppose s �

k

v and s

0

�

k

v

0

for s; s

0

; v; v

0

2 S(A). We have

to prove that ss

0

�

k

vv

0

. In other words, we must show that the equivalence class

of ss

0

depends only on front

�k

(s) and front

�k

(s

0

). This can be seen from the following

equation, which can easily be veri�ed.

front

�k

(ss

0

) = front

�k

(s

0

) [front

�k

(s) \ T (A)

[front

�k

((front

�k

(s) \ S(A))� front

�k

(s

0

))

Here � is a binary operation combining a set S of special trees with a subset of

S(A) [T (A) to the set fst j s 2 S; t 2 Tg, which is also a subset of S(A) [T (A).

Besides, front

�k

is applied to sets of trees: front

�k

(M) =

S

t2M

front

�k

(t) for a set M

of trees (special or ordinary).

Proof of (3). We have to show: if � = is an equation of (+) and t and t

0

are

values of � resp. under an assignment, then front

�k

(t) = front

�k

(t

0

). To prove this

one has to take into account that every interpretation of the term t

k

yields a tree

of depth at least k, and one uses the following relation, which can easily be derived

from the de�nitions: front

�k

(a(t; t

0

)) = front

�k

(t) [front

�k

(t

0

) for t; t

0

2 T (A) with

depth(t) � k or depth(t

0

) � k. �

18 2 FRONTIER TESTABLE TREE LANGUAGES

a

�

�

�

@

@

@

u

0

a

�

�

�

@

@

@

u

1

�

�

�

�

H

H

H

H

�

�

�

�

H

H

H

H

q

q

q

a

�

�

�

@

@

@

u

n�1

�

�

�

@

@

@

u

n

�

�

�

�

H

H

H

H

Figure 5: Graphical illustration of a tree in normal form

Completeness

We want to prove the implication from (C) to (A) in Theorem 3. Therefore we �x

a recognizing homomorphism h:T(A) ! B where B satis�es (+). We have to show

h(t) = h(t

0

) whenever t �

k

t

0

for t; t

0

2 T (A). If depth(t) < k then t = t

0

and the

claim is trivial. So we are left with trees of depth at least k. We will de�ne a set

of trees in so-called normal form that contains for every tree t of depth at least k

an �

k

-equivalent tree t

0

(possibly more than one) such that t �

k

t

0

and h(t) = h(t

0

)

(Lemma 2.4). We will furthermore show that all �

k

-equivalent trees in normal form

have the same image under h (Lemma 2.8). This will then be enough for the claim.

For notational convenience we will often write t �

h

t

0

for h(t) = h(t

0

) and in the

same sense t �

h

k

t

0

i� t �

h

t

0

and t �

k

t

0

, i.e. �

h

k

= �

h

\ �

k

.

Trees in normal form. Let a 2 A be a �xed letter. We say that a tree t is a comb

with teeth u

0

; : : : ; u

n

and width n+ 1 if t has the form

a(u

0

; a(u

1

; : : : ; a(u

n�1

; u

n

) : : :)):

The tree is denoted by �(u

0

; : : : ; u

n

). For a graphical representation see Fig. 5.

We say that a comb �(u

0

; : : : ; u

n

) is in normal form if its width is at least 2,

depth(u

n

) = k and, for i with i � n, depth(u

i

) � k. Furthermore, we demand

front

�k

(t) = fu

0

; : : : ; u

n

g. The requirement of u

n

being of depth k allows us to

reformulate this condition on the frontier trees of t: for every i with i � n we need

front

�k

(u

i

) � fu

0

; : : : ; u

n

g.

In what follows the reader has to keep in mind that every transformation according

to an equation of (+) does not only preserve �

h

-equivalence but also ensures �

k

-

equivalence, i.e, �

h

k

-equivalence, because (+) is correct (Lemma 2.3).

The �rst lemma tells us that every tree of depth at least k is �

h

k

-equivalent to a

tree in normal form.

2.1 Characterization of k-frontier testability 19

Lemma 2.4 For every tree t of depth at least k, there exists a �

h

k

-equivalent tree t

0

in normal form such that t �

h

k

t

0

.

Proof. The proof goes by induction on the structure of t.

Induction base, depth(t) = k. By (Idp) the tree t can be transformed into a(t; t). If

t

0

is a proper frontier tree of t then t and a(t; t) can be written as st

0

and a(st

0

; t),

respectively, and an application of (Can) transfers a(t; t) into a(t

0

; a(t; t)) = �(t

0

; t; t).

Repeated applications of this argument yield a comb �(u

0

; u

1

; : : : ; u

n

; t; t) which is

�

h

k

-equivalent to t and such that front

�k

(t) = ftg [fu

0

; : : : ; u

n

g.

Induction step, depth(t) > k. Let t = a(t

0

; t

1

). We proceed by case distinction on

the depth of t

1

.

Case 1, depth(t

1

) � k. By induction hypothesis there exists t

00

in normal form with

t

00

�

h

k

t

1

. A case distinction on the depth of t

0

is helpful.

Case 1.a, depth(t

0

) � k. The tree t is �

h

k

-equivalent to a(t

0

; t

00

), so in a similar way

as before a repeated application of (Can) yields the desired tree.

Case 1.b, depth(t

0

) > k. By induction hypothesis there exists a tree t

0

in normal

form with t

0

�

h

k

t

0

. Let t

0

= �(u

0

; : : : ; u

m

) and t

00

= �(v

0

; : : : ; v

n

). For the rest it

su�ces to prove a(t

0

; t

00

) �

h

k

�(u

m

; : : : ; u

0

; v

0

; : : : ; v

n

). (Observe that the tree on the

right hand side is in normal form.) This equivalence follows immediately from the

lemma subsequent to this proof.

Case 2, depth(t

1

) < k. Then depth(t

0

) � k, and an application of (Sym) yields

t �

h

k

a(t

1

; t

0

): we are in Case 1. �

Lemma 2.5 Let t = �(u

0

; : : : ; u

m

) and t

0

= �(v

0

; : : : ; v

n

) be combs with depth(v

n

) =

k. Then a(t; t

0

) is �

h

k

-equivalent to �(u

m

; : : : ; u

0

; v

0

; : : : ; v

n

).`

Proof. The proof goes by induction on m. The induction base (m = 0) is trivial.

Induction step, m > 0. Write �(u

0

; : : : ; u

m

) as a(u

0

; �(u

1

; : : : ; u

m

)). Then

a(t; t

0

) �

h

k

a(a(u

0

; �(u

1

; : : : ; u

m

)); t

0

)

�

h

k

a(a(�(u

1

; : : : ; u

m

); u

0

); t

0

) by (Sym)

�

h

k

a(�(u

1

; : : : ; u

m

); a(u

0

; t

0

)): by (Rot)

And an application of the induction hypothesis does the rest. �

We now show that adjacent teeth commute.

Lemma 2.6 Let t = �(u

0

; : : : ; u

n

) be a tree in normal form. If i < n�1, or i = n�1

and depth(u

n�1

) = k, then t �

h

k

�(u

0

; : : : ; u

i�1

; u

i+1

; u

i

; u

i+2

; : : : ; u

n

), and the tree on

the right hand side is also in normal form.

20 2 FRONTIER TESTABLE TREE LANGUAGES

Proof. The case i = n � 1 is an immediate consequence of (Sym). For the other

cases write t as s�(u

i

; : : : ; u

n

) for an appropriate special tree s. Then

t = s�(u

i

; : : : ; u

n

)

= sa(u

i

; a(u

i+1

; �(u

i+2

; : : : ; u

n

)))

�

h

k

sa(a(u

i+1

; �(u

i+2

; : : : ; u

n

); u

i

)) by (Sym)

�

h

k

sa(u

i+1

; a(�(u

i+2

; : : : ; u

n

); u

i

)) by (Rot)

�

h

k

sa(u

i+1

; a(u

i

; �(u

i+2

; : : : ; u

n

))) by (Sym)

= s�(u

i+1

; u

i

; u

i+2

; : : : ; u

n

):�

Next, we observe that multiple occurrences of a teeth can be eliminated.

Remark 2.7 If t = �(u

0

; : : : ; u

n

) is a tree in normal form and if 0 � i < n and

u

i

= u

i+1

, then t �

h

k

�(u

0

; : : : ; u

i�1

; u

i

; u

i+2

; : : : ; u

n

), and the tree on the right hand

side is also in normal form.

This is an immediate consequence of (Can

0

) (and (Sym) in the case of combs of

width 2).

Combining the foregoing lemma and remark we can conclude the following.

Lemma 2.8 Two �

k

-equivalent trees in normal form are also �

h

-equivalent.

Proof. If t and t

0

are �

k

-equivalent trees in normal form, they have the same set of

teeth.

Let t

0

; : : : ; t

l

be an enumeration of all trees of depth � k (over the given alphabet).

By Lemma 2.6 we know that the �

h

-class of a tree in normal form is independent

from the order of the teeth. So we can assume t and t

0

given as �(t

i

0

; : : : ; t

i

m

) and

�(t

j

0

; : : : ; t

j

n

) such that

� 0 � i

0

� i

1

� : : : i

m

� l,

� 0 � j

0

� j

1

� : : : j

n

� l,

� fi

0

; : : : ; i

m

g = fj

0

; : : : ; j

n

g.

Now, several applications of the previous remark, saying that multiple occurrences of

a tooth can be reduced to one, yield that t and t

0

are �

h

-equivalent. �

Completeness proof. As pointed out at the beginning of this paragraph, for the

completeness of (+) we have to show that �

k

-equivalent trees t and t

0

go to the same

element under h: By Lemma 2.4 there exist �

k

-equivalent trees t

0

and t

0

0

such that

t

0

�

h

t and t

0

0

�

h

t

0

; due to Lemma 2.8 we may write t

0

�

h

t

0

0

, hence t �

h

t

0

, thus

h(t) = h(t

0

).�

This also completes the proof of Theorem 3.�

2.2 Decidability 21

2.2 Decidability

We show that Theorem 3 implies the decidablity of the class of frontier testable tree

languages, and outline an e�cient algorithm.

We need the following lemma.

Lemma 2.9 If B is a point-tree algebra satisfying (+) for some k and if l = jB

(t)

j,

then B satis�es (+) also for k = l+ 1.

Proof. Let m be the smallest number such that B satis�es (+) with k = m. If

m � l + 1, there is nothing to show. If m > l + 1 we �nd an equation � = in

(+) and an assignment � to the variables such that the equation � = does not

hold for k = m� 1. Consider the values q

1

; : : : ; q

m�1

de�ned by q

i

= �(t

m�1

). Since

m � 1 > l, there exist i and j such that i < j and q

i

= q

j

. Thus, using a pumping

argument, we can �nd an assignment �

0

that coincides with � on the variables distinct

from t

0

; s

0

; s

1

; : : : and such that �

0

(t

m�1+j�i

) = �(t

m�1

). Let r = m� 1 + j � i and

let �

0

and

0

be the terms obtained from � and , respectively, by replacing t

m�1

by t

r

. By the construction of �

0

we know �

0

(�

0

) = �(�) and �

0

(

0

) = �(). From

m�1+j�i � m and the assumption that B satis�es (+) for k = m we may conclude

�

0

(�

0

) = �

0

(

0

), hence �(�) = �(), which is a contradiction. �

Corollary 2.10 [Heu89] If L is a frontier testable tree language and its minimal

automaton A

L

has l states, then L is (l + 1)-frontier testable.

Proof. From Lemma 1.12(3) we know that PTA(A

L

) is the syntactic point-tree

algebra of L, so it satis�es (+) for some k. By construction of PTA(A

L

) we know

that it has exactly l elements of sort t. So PTA(A

L

) satis�es (+) with k = l + 1 by

the previous lemma, which implies that L is (l + 1)-frontier testable by Theorem 3.

�

As an immediate consequence of this we obtain the decidability of the class of

frontier testable tree languages.

Corollary 2.11 [Heu89] It is decidable whether a given regular tree language is fron-

tier testable.

Proof. We sketch a decision procedure: �rst compute the syntactic point-tree

algebra of L (which can be done e�ectively, Lemma 1.12), then count the numbers of

elements of sort t, say l, and check whether (+) holds with k = l + 1. This can be

done e�ectively since there are only a �nite number of equations. �

A closer analysis of the equations shows the following.

22 2 FRONTIER TESTABLE TREE LANGUAGES

Proposition 2.12 Let A be a �xed alphabet. There is an O(l

3

)-time algorithm de-

ciding whether a regular tree language over A is frontier testable. The tree language L

is assumed to be given by its minimal automaton whose number of states is assumed

to be l.

Proof. We have to show that checking (+) for k = l + 1 and the syntactic point-

tree algebra can be done in the given time. Let A

L

= (Q;�; �) be the minimal tree

semi-automaton. We say that a state q is of height k if there is a tree with depth at

least k such that �(t) = q. We say that a state q

0

is reachable from a state q if there

is special tree s and a tree t such that �(t) = q and �(st) = q

0

. Now, checking (Sym)

simply amounts to check whether for any choice of letters a; b and states q; q

0

with

q of height l + 1, the relation �(a; q; q

0

) = �(b; q

0

; q) holds. (Idp) and (Rot) can be

checked in a similar way. The veri�cation of (Can) is more complicated: one has to

check whether for any choice of letters a; b and states q; q

0

; q

00

such that q is of height k

and q

0

is reachable from q

00

, the relation �(a; �(b; q; q

0

); q

00

) = �(a; q; q

0

) holds.

The set of states of height l+1 can be computed in timeO(l

3

) by a straightforward

procedure. In the same time the reachability-relation is computable. Finally, it is

important to observe that in any equation there are only three state variables that

occur, resulting in an O(l

3

)-procedure to check the validity of the equations. �

2.3 Characterization of frontier testable tree languages

The aim of this section is to present a (�nite) base of identities for frontier testable

tree languages (where the parameter k is not �xed). As is the case of reverse de�nite

languages of �nite words, it is impossible to �nd an appropriate set of equations over

the given signature �(A).

Proposition 2.13 For every set E of equations in the signature �, if the syntactic

point-tree algebras of all frontier testable tree languages satisfy E then so does also

the syntactic point-tree algebra of a non-frontier testable tree language.

Proof. We distinguish two cases.

1. case, E � f� = � j � term in �g. Then every �nite point-tree algebra satis�es E,

in particular, the syntactic point-tree algebra of a regular non-frontier testable tree

language.

2. case, E " f� = � j � term in �g. Take an equation � = of E such that � and

 are distinct. W.l.o.g. we can assume that � and are of sort t. Let A be the

alphabet that contains the variables occurring in � and . Then we can regard �

and as distinct (ordinary) trees over A. Let k be the maximum of depth(�) and

depth() and let L be de�ned by L = ft 2 T (A) j � 2 front

�k

(t); =2 front

�k

()g.

Then L is a k-frontier testable language but its syntactic point-tree algebra does not

2.3 Characterization of frontier testable tree languages 23

satisfy the equation � = (since � 2 L, but =2 L), hence it does not satisfy E: a

contradiction. �

However, one could modify the notion of `ultimately de�ned by an in�nite sequence

of equations' (e.g., see [Pin86]) known from �nite semigroup theory to the tree case.

But introducing implicit operations (see [Rei82]) is an even better remedy, for in

our case the base of identities turns out to be �nite. We do not want to transform

the entire machinery of implicit operations and implicit equations (as elaborated

in [Alm90]) to tree algebras, but con�ne ourselves to equations involving only (apart

from symbols of �) the !-operation from �nite semigroup theory.

As pointed out before, if B is a �nite point-tree algebra, then B

(s)

together with

the binary function �:B

(s)

� B

(s)

! B

(s)

de�ned by s � s

0

= �

B

(s; s

0

) forms a �nite

semigroup. Thus for every s 2 B

(s)

there is a unique element s

!

in fs; s � s; : : :g with

s

!

� s

!

= s

!

. This justi�es the following convention.

Convention. From now on every �nite point-tree algebra B is viewed as a structure

over the signature �

0

= � [f

!

(s;s)

g, where ! maps every element s 2 B

(s)

onto the

unique element e 2 fs; s � s; : : :g with �

B

(e; e) = e, in particular, this operation may

also be used in equations for characterizing �nite point-tree algebras.

In the context of frontier testable point-tree algebras the !-operation can be un-

derstood as a tool which implicitly introduces a parameter that correlates with the

degree of frontier testability. The correlation between the length of a decomposition

of a semigroup element and the !-operation is expressed in the following well-known

lemma from �nite semigroup theory.

Lemma 2.14 If S is a �nite semigroup of cardinality n and if m � n, then the

following are equivalent for an element s 2 S:

(A) There exist s

0

; : : : ; s

m�1

2 S, such that s can be written as s

0

: : : s

m�1

.

(B) There exist s

0

; s

1

; s

2

2 S such that s can be written as s

0

s

!

1

s

2

.

In our situation this extends to the following result.

Corollary 2.15 If B is a �nite point-tree algebra with n = jB

(s)

j and if m > n, then

the following are equivalent for an element t 2 B

(t)

:

(A) There exist t

0

2 B

(t)

and s

0

; : : : ; s

m�1

2 B

(s)

, such that t can be written as

t

m+1

(where t

m+1

is de�ned as at the beginning of Subsect. 2.1).

(B) There exist t

0

2 B

(t)

and s

0

; s

1

2 B

(s)

such that t can be written as s

0

s

!

1

t

0

.

From this together with Theorem 3 we get the desired characterization of frontier

testability.

24 2 FRONTIER TESTABLE TREE LANGUAGES

Theorem 4 (frontier testability) Let L be a tree language over A. The following

are equivalent:

(A) L is frontier testable.

(B) The syntactic point-tree algebra of L satis�es the identities

(Sym) a(s

0

s

!

1

t

0

; t) = b(t; s

0

s

!

1

t

0

)

(Idp) a(s

0

s

!

1

t

0

; s

0

s

!

1

t

0

) = s

0

s

!

1

t

0

(Can) a(t; b(st; s

0

s

!

1

t

0

)) = a

0

(st; s

0

s

!

1

t

0

)

(Rot) a(b(t; s

0

s

!

1

t

0

); t

0

) = a

0

(t; b

0

(s

0

s

!

1

t

0

; t

0

))

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(++)

for variables a; b; a

0

; b

0

of sort l, s; s

0

; s

1

of sort s, t

0

; t; t

0

of sort t.

(C) L is recognized by a point-tree algebra satisfying the identities under (++).

�

As a consequence of the last theorem and Theorem 2, using also the fact that the

!-operation is e�ectively computable in �nite semigroups, we obtain a second proof

of the decidability of the class of frontier testable tree languages.

Corollary 2.16 [Heu89] The class of frontier testable tree languages is decidable.

We conclude with an example showing that within the semigroup approach frontier

testability cannot be characterized.

Example 2.17 Let A = fa;bg. Let L be the set of all trees over A such that some

leaf is labelled with a, i.e.

L = ft 2 T (A) j a 2 front

1

(t)g :

Let L

0

be the set of all trees over A such that some node is labelled with a, i.e.

L

0

= L [ft 2 T (A) j 9s 2 S(A) 9t

0

; t

1

2 T (A) (t = sa(t

0

; t

1

))g

On the one hand, L is frontier testable but L

0

is not. On the other hand, the syntactic

semigroup of L

0

(in the sense of [NP89]) can be embedded in the syntactic semigroup

of L. The syntactic semigroups of L and L

0

are isomorphic to the semigroups S and

S

0

, respectively, given by the following multiplication tables:

S 0 x y

0 0 0 0

x 0 x y

y 0 x y

S

0

0 x

0 0 0

x 0 x

So the class of syntactic semigroups corresponding to the class of frontier testable

tree languages cannot be characterized by a set of equations (rather than by a pseu-

dovariety of semigroups) since equationally de�ned classes of semigroups (and pseu-

dovarieties) are closed under isomorphic copies and subsemigroups.

REFERENCES 25

Discussion

We have seen that point-tree algebras are an appropriate structure for the charac-

terization of the class of frontier testable tree languages. There is some hope that

the results can be viewed as the starting point of a more exhaustive algebraic clas-

si�cation of regular tree languages. First of all it is not hard to extend these results

to the more general case of generalized de�nite tree languages (cf. [Heu89b]). One

only needs to combine them with the results on root testable languages presented

in [NP89]. This is worked out in [Sch92]. Presumably a transformation of known

results [Alm90] from universal algebra could provide an abstract framework for the

classi�cation of regular tree languages | we think of an Eilenberg correspondence as

known for regular languages of �nite [Eil76] and in�nite [Wil91] words. (However,

working with more than one sort, this might not be straightforward.) It would be

desirable to try to characterize other, more complicated, classes of regular tree lan-

guages by using point-tree algebras. Perhaps a characterization of locally testable tree

languages [Heu89, Ste92], a natural class of regular tree languages, can be obtained

along these lines. In the corresponding word case the use of the wreath product is

essential. Therefore it would be interesting to know what the appropriate notion of

wreath product for point-tree algebras should be.

References

[Alm90] Jorge Almeida. On pseudovarieties, varieties of languages, �lters of congru-

ences, pseudoidentities and related topics. Algebra Universalis, 27:333{350,

1990.

[BS81] Stanley Burris and H.P. Sankappanavar. A course in universal algebra,

volume 78 of Graduate Texts in Mathematics. Springer, New York, 1981.

[DJ90] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In Jan van Leeuwen,

editor, Handbook of Theoret. Comput. Sci.: Formal Models and Semantics,

volume B, chapter 6. Elsevier, Amsterdam, 1990.

[Eil76] Samuel Eilenberg. Automata, Languages and Machines, volume B. Aca-

demic Press, New York, 1976.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1, volume 6

of EATCS Monographs on Theoret. Comput. Sci. Springer, Berlin, 1985.

[Heu89] Uschi Heuter. Zur Klassi�zierung regul�arer Baumsprachen. Doctoral The-

sis, RWTH Aachen, June 1989.

26 REFERENCES

[Heu89b] Uschi Heuter. Generalized de�nite tree languages. In A. Kreczmar and G.

Mirkowska, editors, Mathematical Foundation of Computer Science 1989,

volume 379 of Lecture Notes in Computer Science, pages 270{280, Porabka-

Kozubnik, August/September 1989. European Assoc. Theoret. Comput.

Sci., Springer Verlag.

[Koz92] Dexter Kozen. On the Myhill-Nerode theorem for trees. Bull. European

Assoc. Theoret. Comput. Sci., 47:170{173, June 1992.

[NP89] Maurice Nivat and Andreas Podelski. De�nite tree languages. Bull. Euro-

pean Assoc. Theoret. Comput. Sci., 38:186{190, June 1989.

[Pin86] Jean Eric Pin. Varieties of Formal Languages. North Oxford Academic

Press, London, 1986.

[PP92] Pierre P�eladeau and Andreas Podelski. On reverse and general de�nite

tree languages. In Werner Kuich, editor, Automata, Languages and Pro-

gramming: 19th Internat. Coll., volume 623 of Lecture Notes in Computer

Science, pages 150{161, Wien, July 1992. European Assoc. Theoret. Com-

put. Sci., Springer Verlag.

[Rei82] Jan Reiterman. The Birkho� Theorem for �nite algebras. Algebra Univer-

salis, 14:1{10, 1982.

[Sch92] Thorsten Scholz. Charakterisierung de�niter Baumsprachen durch Glei-

chungen in der Termalgebra. Diploma thesis, Universit�at Kiel, Inst. f. In-

form. u. Prakt. Math., Univ. Kiel, Germany, September 1992.

[Ste92] Magnus Steinby. A theory of tree language varieties. In Maurice Nivat

and Andreas Podelski, editors, Tree Automata and Languages, pages 57{

81. Elsevier Science Publishers, 1992.

[Tho84] Wolfgang Thomas. Logical aspects in the study of tree languages. In Bruno

Courcelle, editor, Ninth Coll. on Trees in Algebra and Programming, pages

31{51. Cambridge Univ. Press, 1984.

[Wil91] Thomas Wilke. An Eilenberg theorem for 1-languages. In J. Leach Al-

bert, B. Monien, and M. Rodr��guez Artalejo, editors, Automata, Languages

and Programming: 18th Internat. Coll., volume 510 of Lecture Notes in

Computer Science, pages 588{599, Madrid, 1991. European Assoc. Theoret.

Comput. Sci., Springer Verlag. (Extended version in Internat. J. Algebra

and Comput., to appear.)

REFERENCES 27

[Wil93] Thomas Wilke. Algebras for classifying regular tree languages and an ap-

plication to frontier testability. In A. Lingas, R. Karlsson, and S. Carlsson,

editors, Automata, Languages and Programming: 20th Internat. Coll., vol-

ume 700 of Lecture Notes in Computer Science, Lund, 1993. Europ. Assoc.

Theoret. Comput. Science, Springer Verlag.

