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Abstract

Two versions of local threshold testability for languages of infinite words (w-
languages) are compared: It is proved that an w-language is finitely locally threshold
testable iff it is locally threshold testable and belongs to the Borel class F5 N Gs.
As a consequence we obtain a result on the definability of infinite word structures
in the signature of the successor function: It is decidable whether a given monadic
second order formula has the same set of infinite word models as some first order
formula. For biinfinite word models the corresponding problem was raised by JEAN
Eric PIN [LRS91, p. 172]. The major tool in the proofs is the analysis of De Bruijn
graphs.

Introduction

The primary objective of this paper is to clarify the relationship between two versions of
local threshold testability for languages of infinite words (w-languages).

An w-language L is called locally threshold testable if there are {,m > 0 such that
the membership of a word « to L depends only on

(a) the prefix of length { — 1 of «,

(b) the number of occurrences of factors of length { in o counted up to the threshold m
(that means not distinguishing between numbers equal to or greater than m), and

(c) the set of factors of length [ occurring infinitely often.

*This paper was supported by ESPRIT Basic Research Action Working Group No. 3166 ‘Algebraic
and Syntactic Methods in Computer Science’ (ASMICS).
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The language L is called finitely locally threshold testable if there are [, m > 0 such
that (a) and (b) alone determine whether or not a given word « belongs to L. (It is also
said that L is [-locally m-threshold or finitely [-locally m-threshold testable, respectively.)

Clearly every finitely locally threshold testable language is locally threshold testable,
and every locally threshold testable language is regular (in the sense of recognizable by
a Biichi automaton [Tho90, p. 136]).

The main result of this paper states that there is a certain topological condition
characterizing the class of finitely locally threshold testable w-languages within the larger
class of locally threshold testable w-languages. For that the set of all infinite words over
a fixed alphabet is viewed as a topological space as usual (cf Section 1). Then it can be
proved that an w-language is finitely locally threshold testable iff it is locally threshold
testable and belongs to the Borel class F, N Gs that contains the sets which are at
the same time countable unions of closed sets and countable intersections of open sets
(Corollary 2(a)).

In view of the fact that both the class of regular w-languages in F, N Gs and the
class of locally threshold testable w-languages are decidable [Lan69, Wil92], we obtain as
a consequence: It is decidable whether a regular w-language is finitely locally threshold
testable (Corollary 2(b)).

Following J.RicHARD BUcHI’s tradition we use the last result (in formal language
theory) to solve a problem in mathematical logic.

BUcHI proved in [Biic62] that one obtains every regular w-language over the alphabet
{0,1}* as the model set of a (closed) monadic second order formula (via an appropriate
encoding), and vice versa. Moreover the transformations between Biichi automata and
equivalent formulas were shown to be effective. WoOLFGANG THOMAS proved in [Tho82]
that the finitely locally threshold testable w-languages correspond to the model sets of
first order formulas.! Thus from the decidability of the property of a regular w-language
to be finitely locally threshold testable we obtain immediately that i1t is decidable whether
for a given second order formula there is a first order formula with the same set of infinite
word models (Corollary 5). — The corresponding result for finite word models was proved
by DANIELE BEAUQUIER and JEAN Eric PN [BP91].

In the first section we fix the notation, give the basic definitions and state the main
result. In the second section we discuss the aforementioned consequences in detail. The
rest of the paper i1s dedicated to the proofs.

1 Notation and Main Result

Let A be an alphabet, i.e. a finite set. A finite word over A is a sequence n — A where
n={0,...,n—1}is an initial segment of the set w of natural numbers. An infinite word
(w-word) over A is a sequence w — A. The domain of a word « is also called its lengths
and is denoted by |x|.

We write A* for the set of all finite words over A, use AT for the set of all finite and
non-empty words over A, and A% is the notation for the set of all w-words over A. The

T Actually the paper gives the result for the case where the formulas are interpreted over finite word
structures; but this result extends in an obvious way to structures over the set of natural numbers.
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set of all words over A of length [ is denoted by A’. Similarly we write A2! for the set of
all words of length greater than or equal to [.

Let @ be an arbitrary word over A. For 7, j € wU{w} the subsequence of ¢ consisting
of the items x(k) with index k € {l: i < [ < j} is denoted by z(i,j); it is called a
factor of x. The set of all factors of a fixed length { € w is defined by fact;(#) = {u €
A(34) z(i,i + 1) = u}. The set of all factors of length [ occurring infinitely often in an
infinite word « is defined accordingly: inf;(a) = {u € A'|(Vi)(3j)(i < jAa(j,j+1) = u)}.

For | € w the l-prefiz of a word z is defined by pref;(#) = 2(0,4). The l-suffix of a
finite word u of length greater than or equal to ! is given by u(|u| — {,|u|). If the length
of u 1s less than [ the word itself is its [-suffix. If « is an infinite word, every factor of
the form a(i,w) is called a suffiz of «.

Let N, denote the set N of natural numbers augmented by oo. Throughout card(X)
denotes the power of the set X if it is finite, and co otherwise.

Let # be an arbitrary word. The number of occurrences of a finite word u in x as
a factor is defined by ||#||y = card({¢|x(i,i+ ) = u}). The number of occurrences of a
letter @ in x is given by |x|, = card({ila = x()}). For a set B of letters, we use |z|p as
an abbreviation for ) 5 |2]4.

Given a natural number m > 0, we define the function [.],, by

[Jm:New — m+1

{n if n < m,
n —

m  otherwise.

Im

2 counting factors of length [

With m, [ > 0 and a word x we associate the function p
up to the threshold m:

phme Al m4 1

w = llfu]m-

Infinite words o and 3 are l-locally m-threshold equivalent, we write a ~L™ 3, if
pref,_; () = pref,_;(3) and pL™ = ulﬁ’m. They are finitely [-locally m-threshold equiva-
lent, we write a &'™ B, if in addition inf;(a) = inf;(3).

An w-language is called [-locally m-threshold testable if it is a union of ~,™-classes. It
is finitely [-locally m-threshold testable if it is a union of ~s""™-classes. It is called [finitely]
[-locally threshold testable if it is [finitely] l-locally m-threshold testable for some m, and
it is called [finitely] locally threshold testable if it is [finitely] l-locally threshold testable
for some (.

The corresponding classes of regular w-languages are denoted by Lt ,,,, L1t;, L1t and
fin-Ltt; ,, fin-Lit;, fin-Lit.

Concerning topologically defined w-languages we start at the lowest level of the Borel
hierarchy. An w-language is called open if it has the form UA® for a subset U of A*.
It is a countable intersection of open sets if it has the form lim(U) for some subset U
of A* [Lan69, p. 378, Lemma 2.2], where o € lim(U) if for all ¢ there is a j > i such that
a(0,7) € U. The corresponding set of languages is denoted by Gs. An w-language is a
countable union of closed sets if it is a complement of a language in Gs. The corresponding
set of languages is denoted by F,. (For details see [Tho90, pp. 152-156].)



2 CONSEQUENCES 4

In these terms we can state our main result.
Theorem 1 We have
(1) Lttym NFoNGs C fin-Litt forl,m >0 and ¢ = 2m - card(A)ZI.

(That means, every l-locally m-threshold testable w-language which belongs to Fy NGs is
finitely l-locally e-threshold testable.)

The proof occupies Sections 4 to 9. A sketch of it is given in Section 3.

How can the theorem be put in simple words? — The property of a locally threshold
testable language to be in F, N Gs restricts the possible combinations of sets of factors
occurring infinitely often in the words of the language. This restriction is even as strong
that already the information about the number of occurrences of the factors counted up
to a high finite threshold determines which factors occur infinitely often and which don’t.

2 Consequences

2.1 Formal Language Theory
Corollary 2 (a) We have

LN F,NGs = fin-Lt,
Lt 0 F, 0 Gs = fin-L;, for 1> 0.

(b) It is decidable whether a regular w-language is finitely locally threshold testable.

Proof. (a) Both equations follow from Theorem 1 together with the inclusion fin-Ltt C
Fs NGs proved in [Wil92, Lemma 7.5, p. 43].

(b) This is a consequence of (a) and the fact that the properties of a regular w-
language to belong to F, NGs and to be locally threshold testable are decidable [Lan69,
p. 279, Thm. 4.3],[Wil92, Corollary 7.8, p. 44].0

2.2 Mathematical Logic

An nfinite k-word structure is a tuple (w,succ, Py,..., Py) consisting of the set w of
natural numbers together with the successor function succ defined by succ(n) = n+1
and k unary predicates Pi,..., P.

The set of closed monadic second order formulas using succ and Py, ..., Py is denoted
by S1Sj (second order with 1 successor over k predicates). Fach interpretation M =
(My, ..., M) for the unary predicates of a formula belonging to S1Sj can be coded as
an w-word w(M) over the alphabet 2% in a natural way: the i-th component of the j-th
letter of w(M) is 1 iff j € M;. With ¢ € SISj we associate the language L(¢) defined by
L(6) = {a € 2*|(w,suce, w(M)) = 6}.

As stated in the introduction the following is known by BUCHI.

Theorem 3 [Biic62, pp. 5-7]
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(a) An w-language L C (2¥) is regular iff there is a formula ¢ € S1S; such that
L =1(¢).

(b) There is an algorithm computing for every k and ¢ € S1S; a BUCHI automaton
recognizing L(¢).

By F1S; we denote the first order formulas of S1S;. Their model sets were charac-
terized by THOMAS.

Theorem 4 [Tho82, Thm. 4.2, p. 373]An w-language L C (2%)¥ is finitely locally thresh-
old testable iff there is a formula ¢ € F1Sy, such that L = L(¢).

Theorem 3, Theorem 4 and Corollary 2 jointly yield the desired decidability result.

Corollary 5 [t is decidable whether a given formula ¢ € S1Sg is equivalent to a formula
¢ € F1Sg (in the sense that L(¢) = L(y)).O

3 Sketch of the Proof of Theorem 1

To verify the inclusion
(1) Lttm N FoNGs C fin-L ., for {,m > 0 and ¢ = 2m - card(A4)?,

of Theorem 1 we proceed in three major steps.

In the first step (Sections 4 and 5) we will investigate the properties of locally threshold
testable languages which belong to F, N Gs. We will join ~2,™-classes into so-called [-
m-blocks of largest possible size so that a given [-locally m-threshold testable language
in F, NGs is a union of these blocks. This reduces the original problem to the proof of
the claim that every [-m-block is finitely [-locally c-threshold testable.

In the second step (Section 6) we will investigate a non-trivial example presented by
the use of De Bruijn graphs. The [-m-blocks of this example will turn out to be not
finitely [-locally m-threshold testable; this shows why we have to increase the parameter
for the threshold in inequality (1). On the other hand we will find that the considered
l-m-blocks are finitely [-locally testable though.

In the third and final step (Sections 7, 8 and 9) we will complete the proof of The-
orem 1 by showing the claim which was set up at the end of the first step. We will
essentially use what we will have learned from the example.

4 The Gs-Lemma
Lemma 6 Let L € L1t,, NGs, « € L and B =™ «. If infi(a) C infy(3), then B € L.

Proof. Assume that L = lim(IU). We are going to construct a word v € lim(U) such
that v =/ 3, which is enough.

First of all notice that for every element w of inf;(8) there is a word vy, = uwwyyy’
such that inf;(y,) = inf;(«) and fact;(y,) = inf;(8) = fact;(wy).
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Take a finite prefix ug of 3 (or «) such that pref;_;(ug) = pref;_,(5), /JL’Z” = /Jlﬁ’m
and suff;(ug) € inf;(5). Let vy = suffj(ug). Since upwy,yw, € L by construction, there
is a word uy belonging to U which is a prefix of ugwy, vy, such that ugw,, in turn is a
prefix of u;. Let vy = suffj(uy). Then there is a word uz € U such that u; < uywy,, < us
by the same arguments as before. An iteration of this construction yields an increasing
sequence

Uy < UpWyy < U < ULWy, < ... with /JL’:” = /Jlﬁ’m and u; € U for 71 € w.

Since fact;(wy,) = inf;(F) for ¢ € w by construction, the limit y of the sequence is the
desired word belonging to lim(U) such that 8 ~/™ ~.0

Corollary 7 Let L € Lit; N F,, o € L and 3 =™ «. Ifinf;(a) D infy(8), then g € L.

Proof. Assume that g does not belong to L. Then Lemma 6 applied to the complement
A¥\ L of L implies o« € A¥ \ L, which is a contradiction. (Notice that Lt ,, is closed
under complementation.)Od

5 De Bruijn graphs

By a graph G = (V, E,4,t) we mean a set V of vertices and a set E of edges together with
functions i: £ — V and ¢t: E — V determining initeal and terminal verter, respectively,
of every edge.

The De Bruijn graph G; of parameter { > 0 over the alphabet A 1s defined as follows
(cf [Ber85, p. 237]).

e The set A'=! of all words of length { — 1 forms the set V of vertices of Gy.

e The set A of all words of length [ forms the set £ of edges of Gy.

The initial vertex i(e) of an edge e is its [ — 1-prefix.

e The terminal vertez t(e) of an edge e is its [ — 1-suffix.

Every word x with length at least [ gives us (exactly) one path through G;:
a(e) = x(0,0), z(1L, 1+ 1), 22,1+ 2),...,

and conversely every non-empty path determines a word with length at least {. We have
the equation

|7 (@) = |2, for x € A2! w e A,

where on the left hand side u is taken as a letter, i.e. as an edge, whereas on the right
hand side u denotes a word.

Next we need the concepts of ‘induced subgraph’ and ‘connectedness’. As we are
interested in the edge structure (rather than the vertex structure) of a given graph we
define these as follows.
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Let GG be a graph as above. If E/ C F is a set of edges of G, the subgraph of G induced
by E’is the quadruple G[E'] = (V', E',i|g/, t|p) where a vertex v belongs to V” if there
is an edge e € E’ sucht that i(e) = v or t(e) = v.

A path in G is a non-empty word p: n — E such that t(e;) = i(ej41) for every j < n.
If p is finite we say that the p connects eq with e,_1. Edges e, ¢’ are connected if there
are pathes p and p’ connecting e with ¢’ and e’ with e, respectively. In this case we write
e ~ ¢'. The connectedness relation ~ is transitive and symmetric but need not to be
reflexive (in contrast to the usual definition). A set B/ C E of edges in G is said to be
connected in G if £/ x E' is a subset of ~.

We observe that for any connected subset E’ of E the set {e € E|(Je’ € E')e ~ €'} is
the largest connected subset including E’. Its induced subgraph is called the connected
component of E’. Obviously, edge and vertex set of distinct connected components are
pairwise disjoint.

For the rest of the paper we restrict our considerations to De Bruijn graphs. We
assume that the De Bruijn graph G = G; of parameter [ over the given alphabet A is
given as (V, E,i,t). We are interested in the connected components Cy,...,Cy of the
subgraph G’ = G[E’] induced by a set of edges E/ C E, which changes from case to case.
We write E; for the edge set of C; and V; for its vertex set. The union of all E; is denoted
by E, the set R is defined by R = E’ \ E.

For a fixed E' we consider only words « such that inf;(«) C E’. With every such
word we associate the connected component C, of inf;(«) in G'. We write E, for the
edge set and V,, for the vertex set of C,,.

Often the set £’ will be given by a ~/™-class K: B’ = (u5™)~!(m) for some a € K.
This definition does not depond on «, so that we will simply write £/ = Ex.

A first application of De Bruijn graphs is a reformulation of the Gs-lemma. Let K be
a fixed &' -class and let B/ = Ex (see above).

Corollary 8 If L € Ltt; , N Fo NGy, o, B € K, and E, = Eg, then o € L off 3 € L.

Proof. By definition we have £’ = (u/y*)~'(m) . Thus there is a word 7y such that
a~b™ B ab™ 4 and infi(y) = E,. Consequently o € L iff ¥ € L by Lemma 6 together
with Corollary 7, and 8 € L iff ¥ € L by the same arguments.[]

This result leads to the following definition: An [-m-block of a ~'™-class K is a
maximal subset of K of words with the same associated connected component, 1.e. it is
a set of the form {f € K: E, = Eg} for some o € K. (Notice that the blocks of K
partition K.)

In these terms every [-locally m-threshold testable language in F, N G5 is a union
of [-m-blocks. Thus for the desired proof of Theorem 1 it suffices to show the following
claim.

Claim 9 Every [-m-block is finitely l-locally c-threshold testable.

6 Demonstration

We present the promised example. Consider Figure 1.
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Figure 1: Graph H

It shows a graph H which is a subgraph of the DE BRUIIN graph of parameter 3 over
the alphabet A = {a,b,¢,x,0,1,2,3}. We define K to be the language which contains
an w-words o € A iff

e w(«) is a path through H,

o w(«) starts in xx,

o |7()|. = 1 iff the edge e is drawn as a connected arrow,
o |7()|. > 2 iff the edge e is drawn as a dotted arrow.

Then K is finitely 3-locally 2-threshold testable since it is a ~h™-class.

Consider the connected components of ' = H[Eg]. There are exactly two of them:
the first in the upper left corner of H, the second in the upper right corner. Thus we
have two 3-2-blocks in K. The first, B;, consists of the words in K which eventually end
in the upper left corner of the graph, and the second, B,, contains all words in K which
eventually enter the upper right corner and stay there forever.

Our aim is to show that both blocks are finitely 3-locally threshold testable. Obviously
they are not finitely 3-locally 2-threshold testable. Thus we must increase the threshold.
But how far?

We want to distinguish between the cases that a word of K eventually stays in the
left or right component of H’. Each path of a word of K passes exactly four times the
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space between the upper right circle of H and its origin xx, because every direct path
from bb to xx must be used exactly once. Therefore, the edge abc is passed four or five
times, and this depends just on which component the path finally stays in. This means:
A word of K belongs to B, iff its path has at least five occurences of abc, otherwise it
belongs to B;. Thus B; and B, are finitely 3-locally b-threshold testable. —

In the present example we saw that we can determine the block of a given word by
threshold counting of edges coming in and going out of the connected components of
the reduced graph G’. This illustrates a general phenomenon which we are going to
explain in detail.

Let us fix an arbitrary a"-class K and let B/ = Ex. Our aim is to determine the
connected component C', associated with an arbitrary word « in K, i.e. the [-m-block «
belongs to.

Look at the path of & through G. Since inf;(a) C Cy there is either some position
in the path where an edge occurs which goes into Cy and all edges after that position
belong to Cy, or else all edges of the path belong to C, right from the beginning.

In the latter case we have no edges coming in or going out of any component in G’,
and the | — 1-prefix of « belongs to V,,. Thus we can determine C, since the { — 1-prefix
is the same for all words of a as’"-class, in particular for all words of K.

In the former case we have this final incoming edge, and before that every edge coming
into any component C; matches an edge going out of it.

That means if we could count the number of occurrences of incoming and outgoing
edges, we would be able to determine Cy, just by counting modulo 2 (Lemma 11): If all
paths of words of K start outside any connected component, only for ', there is an odd
number of incoming and outgoing edges. If all paths start from the component C; then
C; = Cy iff there is an even number of incoming and outgoing edges for C;; otherwise
C, 1s the component different from C; for which we count an odd number of incoming
and outgoing edges.

As a matter of fact we are able to precisely count incoming and outgoing edges,
although we are only allowed to count up to a fixed finite threshold. In fact it can be
proved that the number of incoming and outgoing edges is bounded for all paths of the
words of an arbitrary class K (Corollary 13). If this number were not bounded, we could
show that there 1s an incoming or outgoing edge which belongs to a connected component
— a contradiction.

There is just one thing to mention before we go into details. Counting or pairing of
incoming and outgoing edges is not that easy. It may happen that an edge is at the same
time an incoming and outgoing edge for the same component or an incoming edge for
one and an outgoing edge for another component. But this can also be fixed.

7 IN-/OUT-Counting

In this section E’ is an arbitrary set of edges in the graph Gj.
The set of incoming edges (in Gy) of a connected component C; of G’ is defined by

IN; ={e€ E\ E;: t(e) € V;}.
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The set of outgoing edges of Cj is defined analogously:
ouT; = {6 S E\EZ 2(6) € Vz}

The union of all sets IN; is denoted by IN, the union of all sets OUT; is denoted
by OUT, and IO is defined as to be INUOUT.

Remark 10 (a) The sets IN; are pairwise disjoint.
(b) The sets OUT; are pairwise disjoint.
(¢) IONE CR.

In the remainder of this section we will analyze how incoming and outgoing edges
occur in a path through Gy.

Lemma 11 Let p be an arbitrary finite path through G; starting with e and ending with f.
Set u = pref(e) and v = suff(f). Denote by x; the characteristic function of V;. Then

Iplin; + xi(u) = |plouT; + xi(v), forie{l,...n}.

Proof. The proof proceeds by induction on the length of p.

Induction base, |p| = 1. Assume p consists of the single edge g. We proceed by case
distinction depending on the values x;(u) and y;(v).

Case y;(u) = x4(v) = 0. Then g is neither in OUT; nor in IN;. Thus the equation is
true.

Case x;(u) = 1 and y;(v) = 0. Then g isin OUT; but not in IN;. Hence, the equation
is true.

Case y;(u) = 0 and x;(v) = 1. Then g is in IN; but not in IN;. Hence, the equation
is true.

Case x;(u) = xi(v) = 1. Then neither ¢ € IN; nor g € OUT;, or g € IN; N OUT;.
Thus, the equation is also true.

Induction step, |p'| = j + 1. Assume the equation holds for p with length < j. Write
p’ as pg with |p| = j and ¢ € E. Let u and v as in the formulation of the lemma, and let
u’ = pref(g) and o' = suff(¢). Then by induction hypothesis

Iph; + xi(w) = Iplour, + xi(v) and [g]mN, + xi(u') = [glmv, + xi(v').
Adding up both equations yields

1P/ [in; + xi(uw) + xi(w') = [P/ louT; + xi(v) + x4 (v).

Thus it remains to show y;(v) = x;(u'), but this is true, for v’ = v by definition.O
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8 «a-Partitions

Throughout this section, B/ = Ex for some ~h™-class K. Qur aim is to show that the
value |7(&) |10 is bounded for all « € K.

Lemma 12 Let o € K.

(a) If p€ B is a factor of m(a), then |w|g < card(A)'.

(b) |m(@)]an g < (m — 1)card(A).
Proof. (a) Assume that the first inequality does not hold. Then there is an edge e of R
which occurs (at least) twice in p. Thus e belongs to a component of G’; hence e € F
which contradicts e € R = F'\ F.

(b) Recall that every word of length { not belonging to £’ occurs less than m times
in o.0d

Corollary 13 Let a € K. Then |7(a)|io < 2m - card(A).

Proof. Since (p4™)~1(m) = E’, the path 7(a) allows a decomposition as follows:

(o) = upv1urve . .. U7,

where u; € E’+, v; € (AP\ BNt for i > 0, up € Ej*, € E¥. We split |7(e) |10
into |upuy ...ur_1)10 and |vivs... v, 7' |10. Since IO N E = (), the latter term is equal to
[v1vs ... vpl10.

From Lemma 12(b) we obtain

(i) r<(m-— 1)card(A)l.

Then
luouy .. up—1lio < |uousy .. ur—1|r Remark 10
=305 luilr
< r-card(A) Lemma 12(a)
< (m — 1)card(A)card(A) (i).
On the other hand we have
|v1vs ... vp |10 < |U1U2...UT|AI\E1 v; € AU\ B
< m(a)lang:
< (m — 1)card(A)". Lemma 12(a)

Adding up these inequalities yields

|T(a@)1o < (m — 1)card(A) card(A)' + (m — 1)card(A)’
< 2m - card(A4)?.
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9 Proof of Claim 9 and Theorem 1

Remember that we reduced the proof of Theorem 1 to the proof of Claim 9 (Section 5):
Every [-m-block 1s finitely /-locally c-threshold testable.

We will show that, for any a'*-equivalent words « and §3, if o belongs to the l-m-
block B, then 3 belongs to B’'.

Let a belong to the ~h™-class K. Consider B/ = Ef. Since ~/*Crb™ | the word 3
belongs to an [-m-block B’ in K. Then we are left with the proof of B = B’. This in
turn is equivalent to C; = €}, when Cj is the component associated with o and C is the
component associated with j3.

Both paths 7(«) and #(53) allow decompositions pr and p'n’ respectively such that
p and p’ are not empty and v and 7’ do not contain edges of I0. Furthermore we can
assume that the last edge of p and every edge in 7 belong to E; and, analogously, that
the last edge of p’ and every edge in 7’ belong to Ej;.

Recall that ¢ was defined just as to be the right hand side of the inequality in Corol-
lary 13. Thus

(i) |y = |5, for u € 10.

Let u' denote the | — 1-prefix of the first edge of p’ and v the [ — 1-suffix of the last
edge of p’. We have y;(v) = 1, thus Lemma 11 implies

(ii) Iplin, + xi(w) = [plouT, + 1 and [p'lin, + xi(w') = |P|ouT, + x:i(v).

From (i) we may conclude

Iplin; = [P’ v, and [plouT, = [P/ |ouT;-

Thus (ii) yields x;(u) = 1 and x;(«’') = x;(v'). Since u = pref;_;(«) = pref(5) = v’ we
finally obtain y;(v") = 1, hence i = j, whence B = B’, as was to be shown.

This completes the proof of Claim 9 and Theorem 1.

Discussion

The fact that the class of finitely locally threshold testable w-languages equals the inter-
section of the class of locally threshold testable languages with the Borel class F, N Gs
gives us a decision procedure for testing the property of being finitely locally threshold
testable for a regular w-language, which can also be used in the model theory of infinite
word structures.

In the special case m = 1 it was shown [Wil92, Thm. 7.9, p. 45] that ¢ can be chosen
as 1. We leave open the question which is the optimal ¢ in Theorem 1, and have as yet
no results about the complexity of the involved decision procedures.
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