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Abstract

Scheduling on Unrelated Machines is a classical optimization problem where
n jobs have to be distributed to m machines. Each of the jobs j ∈ {1, . . . , n} has
on machine i ∈ {1, . . . ,m} a processing time pij ≥ 0. The goal is to minimize
the makespan, i.e. the maximum completion time of the longest-running machine.
Unless P = NP, this problem does not allow for a polynomial-time approximation
algorithm with a ratio better than 3

2 . A natural scenario is however that many
machines are of the same type, like a CPU and GPU cluster: for each of the K
machine types, the machines i 6= i′ of the same type k satisfy pij = pi′j for all jobs j.
For the case where the number K of machine types is constant, this paper presents
an approximation scheme, i.e. an algorithm of approximation ratio 1 + ε for ε > 0,
with an improved running time only single exponential in 1

ε .

1 Introduction

Scheduling is a classical optimization problem. Jobs—e.g. computing tasks—have to be
distributed to machines such that one objective is minimized, normally the maximum
completion time of the jobs. One example is a cluster of processors that has to perform
a large amount of computing tasks. In general, the machines may be heterogeneous: a
processor may have been designed to perform a certain type of calculations very fast, but
may not be suited for other ones. However, the number of different machine types may
indeed be limited, as can be the case for e.g. a cluster of CPUs and GPUs.

We formally describe the problem. An instance I consists of a set J = J (I) of n jobs
and a setM =M(I) of m machines. Every job j has a processing time on machine i of
pij ≥ 0 for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. A non-preemptive schedule is a distribution
of the jobs to the machines such that every job is processed by exactly one machine.
Formally, it is a mapping σ : J →M of each job j to a machine i. The objective is to
find a schedule σ that minimizes the makespan maxi∈M

∑
j:σ(j)=i pij, i.e. the maximum

completion time of all jobs. Thus, even the longest-running machine shall finish the
processing as soon as possible. This classical problem is called Scheduling on Unrelated
Machines and is denoted by R | |Cmax in the 3-field notation [10].

As suggested above, we consider a variant where the machines are only of K different
types, where K is considered to be constant: for two different machines i and i′ (with
i 6= i′) of the same type, we have pij = pi′j for all jobs j ∈ {1, . . . , n}. The machines
of type k are denoted by Mk such that the sets M1, . . . ,MK are a disjoint partition
ofM. The number of machines of one type is mk := |Mk| for k ∈ {1, . . . , K}. Hence,
m1 + · · · + mK = m holds. The problem is denoted by (Pm1, . . . ,PmK)| |Cmax. We
can assume without loss of generality that mk ≤ n for all k ∈ {1, . . . , K} and therefore
m = m1 + · · ·+mK ≤ n ·K. In fact, a solution cannot use more than n machines of a
type k because there are only n jobs. For one type, machines whose number exceeds n
can therefore be discarded.
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1.1 Known Results
Even Scheduling on Identical Machines P | |Cmax (where, as the name suggests, all machines
are of the same type) is NP-complete [9]. Thus, finding the optimum objective value
OPT(I) and a corresponding schedule efficiently (i.e. in polynomial time in the input
length |I|) seems unlikely for the general case. We are therefore looking for efficient
approximation algorithms. The approximation ratio of an algorithm A is supI

A(I)
OPT(I) ,

where A(I) is the objective value of the solution found by A. List Scheduling is a
well-known heuristic with the approximation ratio 2− 1

m
for P | |Cmax. Hochbaum and

Shmoys [11] presented the first polynomial time approximation scheme (PTAS), a family
of algorithms (Aε)ε>0 where Aε has an approximation ratio of 1 + ε. The running time is
polynomial in |I|, but the degree of the polynomial may depend exponentially (or worse)
on 1

ε
.
Unfortunately, R | |Cmax does not allow for a PTAS unless P = NP: a polynomial

algorithm cannot in general have an approximation ratio c < 3
2 as shown by Lenstra,

Shmoys, and Tardos [18]. Approximation algorithms with a ratio of 2 were presented by
Lenstra et al. [18], by Shmoys and Tardos [20], and by Gairing, Monien, and Woclaw [8].
A 2 − 1

m
algorithm was found by Shchepin and Vakhania [19]. These algorithms are

based on solving a linear program (LP) and rounding the solution to an integer one, with
the exception of the purely combinatorial algorithm in [8]. Recently, Arad, Mordechai,
and Shachnai [1] have presented a new algorithm that decides that a schedule σ with
a makespan of at most T and an average machine load L =

∑
i∈M

∑
j:σ(j)=i pij

m
does not

exist, or it finds one with a makespan of at most min{T + L
h
, 2T}, where h = h(T ) is the

so-called feasibility factor.
No algorithm is known for the general problem with a ratio better than 2. For a long

time, this was even true for the Restricted Assignment Problem, a special case where
pij ∈ {pj,∞}. A breakthrough was the estimation algorithm by Svensson [21]. The
algorithm does not return an actual solution, but it can estimate the optimal makespan
within 33

17 + ε ≈ 1.9412 + ε, i.e. with a ratio better than 2. Chakrabarty, Khanna, and
Li [5] have presented for a constant δ∗ > 0 a (2 − δ∗)-approximation algorithm (that
also returns a solution) for the (1, ε̄)-Restricted Assignment Problem. In this case of
Restricted Assignment, the finite processing times are additionally either pj = 1 or pj = ε̄
for constant ε̄ > 0.

Bhaskara et al. [2] studied the matrix P = (pij)m×n of the processing times, more
precisely the influence of its rank on the non-approximability of R | |Cmax. Rank 1 is
the case of identical or uniform machines (where the processing times are of the form
pij = pj

si
), which allows for PTAS (see above for identical and e.g. [12, 17] for uniform

machines). Unless P = NP, rank 4 is already APX-hard (i.e. a PTAS cannot exist), and
rank 7 cannot be better approximated than 3

2 , as in the general case (see above). This
was improved by Chen, Ye, and Zhang [6] who showed that already rank 4 does not allow
for a polynomial-time approximation algorithm better than 3

2 unless P = NP.
If the number m of machines is constant (i.e. Rm | |Cmax is considered), the problem

has a PTAS [18] and a fully polynomial time approximation scheme (FPTAS) [13]. An
FPTAS is a PTAS where the running time is polynomial in |I| and also 1

ε
. Faster FPTAS

were successively found [7, 16], and the fastest known FPTAS has a running time in
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O(n) + (m
ε

)O(m) ≤ O(n) + ( logm
ε

)O(m logm) [15]. It should be noted that the algorithm by
Lenstra, Shmoys, and Tardos [18], while “only” being a PTAS, has a space complexity
only polynomial in m, log 1

ε
, and the input length.

Interestingly, the special case of Scheduling on a constant number of m identical
machines (Pm | |Cmax) has a lower bound of nO(1) + (1

ε
)O(m) on the running time unless

the Exponential Time Hypothesis fails [6]. For ε small enough, e.g. ε ≤ 1
m
, the running

time of the algorithm in [15] can be bounded by O(n) + (1
ε
)O(m) and therefore attains this

lower bound.
Finally, Imreh [14] considered the Scheduling problem on K = 2 types. He presented

heuristic algorithms with ratios 2 + m−1
k

and 4− 2
m
, where m is the number of processors

of the first and k the number of processors of the second type. Bleuse et al. [3] described
an algorithm with the approximation ratio 4

3 + 1
3k + ε for scheduling on m cores (CPUs)

and k GPUs. If all jobs are accelerated when executed on a GPU, the algorithm has the
ratio 3

2 + ε. Bonifaci and Wiese [4] presented a PTAS for (Pm1, . . . ,PmK)| |Cmax (where
K = O(1)). It can schedule ∆-dimensional jobs. If ∆ = 1 (i.e. in the one-dimensional
case), the algorithm has to solve mO(K·((1/ε)1/ε log 1/ε)) linear programs, which is therefore a
lower bound on the overall running time. It is double exponential in 1

ε
.

1.2 Our Result
This paper presents a PTAS for the one-dimensional case that is only single exponential
in 1

ε
.

Theorem 1. There is a PTAS for (Pm1, . . . ,PmK)| |Cmax with a running time in

O(K · n) +mO(K/ε2) ·
(

logm
ε

)O(K2)

.

1.3 Techniques
Our algorithm first preprocesses the instance I with a method presented in [7, 15] to
get a new instance Imerge whose set of jobs J (Imerge) has a bounded cardinality. Then,
the well-known dual approximation approach by Hochbaum and Shmoys [11, 18] is used
to find a solution close the optimal makespan of Imerge (and therefore an approximate
solution to I). The dual approach is a binary search with an oracle: in each iteration, a
value T is tested. If there is a schedule with a makespan of at most T , the oracle returns a
solution of value at most (1 + Θ(ε))T (and T is decreased in the next iteration). If there is
not a schedule, the oracle does not return any solution (and T is increased because it was
too small). This can be iterated until a solution close enough to the optimum is found.

For a given makespan T , our oracle first partitions the jobs into large and small jobs
for every machine type k. The processing times of the jobs are then rounded such that
they have discrete values. Every feasible schedule has a profile: it states for every machine
type k the total processing time of the small jobs assigned to k. Moreover, it states for
machine type k how many machines have which total processing time of large jobs. As
the job processing times are discrete, so are the profiles. The dynamic program of the
oracle then constructs all possible profiles. When the dynamic program has finished, a
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simple condition is checked for every constructed profile to see whether the small jobs can
be greedily assigned to the machines. If yes, a real schedule for the large jobs is found
by backtracking, and the small jobs are greedily scheduled, which yields a solution with
a makespan of at most (1 + Θ(ε))T . If no profile has been generated by the dynamic
program or no profile allows for a distribution of the small jobs, the value T is too small.
The binary search adapts T according to the output of the oracle.

1.4 General Remarks and Notation
Since we are in the case of K machine types, it is sufficient to state for a job j its processing
time on every machine type and not on every individual machine. The processing time of
job j on the machine type k ∈ {1, . . . , K} is therefore denoted by pkj. The value k(i) is
the type of a machine i ∈M.

We suppose that K is constant, that 0 < ε ≤ 1
2 and that computing the logarithm

needs time in O(1).

2 Preprocessing of the Instance
The first step of the algorithm is a preprocessing to reduce the number of items. The
technique in this section is taken from [15]. Let 0 < ε′ ≤ 1

3 with ε′ = Θ(ε). The actual
value of ε′ will be determined later.

First, let
dj := min

k∈{1,...,K}
pkj

be the smallest processing time of a job j over all machine types, and let D := ∑
j∈J dj.

We have D
m
≤ OPT(I) because the jobs could ideally be scheduled uniformly on all

machines, where each job is executed on one machine of its fastest type. On the other
hand, we have OPT(I) ≤ D: a feasible solution is obtained by scheduling each job to one
of its fastest machine. In the worst case, all jobs have the same fastest machine type, and
there is only one machine of this type.

Hence, we can divide all processing times pkj by D
m

such that we get the following:

Assumption 1. Without loss of generality, the jobs are scaled such that 1 ≤ OPT(I) ≤ m
and D = ∑

j∈J dj = m.

The jobs are now partitioned into fast and slow ones for each type k. A job is slow on
type k if pkj ≥ m

ε′ dj, otherwise it is fast on type k. Should j be slow on type k, we set
pround
kj :=∞ (or to a sufficiently large value like 2m) such that a reasonable algorithm will

not schedule j on such a machine. If j is fast on type k, we round it down to

the nearest lower value pround
kj := dj (1 + ε′)h for h ∈ N .

We therefore have dj(1 + ε′)h ≤ pkj < dj(1 + ε′)h+1. The new instance of scaled and
rounded jobs J round together with the (unchanged) machines is called Iround.
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Remark 2. In this paper, we will sometimes directly refer to “fast jobs” and “slow jobs”
although we mean e.g. “jobs scheduled on machines where they are fast”. We may also
call jobs “fast” or “slow” when we refer to their processing times, which should therefore
be “the processing times of one job on machines where the job is fast” and “the processing
times of one job on machines where it is slow.” Similarly, we may also use expressions like
“jobs on slow/fast machines” when we mean “jobs scheduled on machines where they are
slow/fast.”

Finally, jobs will later on also be called “large” and “small” such that similar expressions
will be used.

Lemma 3 ([15, Lemma 2.1]). We have OPT(Iround) ≤ (1 + ε′) OPT(I).

Proof. Let I ′ be the instance where the fast jobs are rounded, but the processing times of
slow jobs have not been set to∞. On the one hand, we obviously have OPT(I ′) ≤ OPT(I)
because the processing times may only have decreased. On the other hand, we can take
an optimum solution to I ′ and replace every rounded processing time pround

kj by its original
processing time pkj. Then the schedule increases only by a factor of 1 + ε′. We get
OPT(I ′) ≤ OPT(I) ≤ (1 + ε′)OPT(I ′).

Let σ′ : J → M be an optimum schedule for I ′, i.e. with a makespan of OPT(I ′).
We transform it into a schedule σ′′ for Iround. If a job j is scheduled by σ′ to a machine
on which it is slow, it is moved to an arbitrary machine where it is processed in time dj
(i.e. to one of the fastest machines for the job). Let S be the set of jobs that have been
scheduled by σ′ on slow machines. In the worst case, the processing time for one machine
increases with the modified schedule σ′′ by

∑
j∈S

dj ≤
∑
j∈S

ε′

m
· pk(σ′(j))j =

∑
i∈M

∑
j:σ′(j)=i

ε′

m
· pk(i)j ≤

∑
i∈M

ε′

m
·OPT(I ′)

= ε′

m
·m ·OPT(I ′) = ε′OPT(I ′) ≤ ε′OPT(I) .

The modified schedule is obviously a schedule for Iround. To sum up, we get

OPT(Iround) ≤ OPT(I ′) + ε′OPT(I ′) ≤ OPT(I) + ε′OPT(I)
= (1 + ε′) OPT(I) .

The following lemma allows us to derive an approximation algorithm for I from an
algorithm for Iround.

Lemma 4 ([15, Lemma 2.3]). If there is an approximation algorithm Ar for Iround

such that Ar(Iround) ≤ αOPT(I) + β, then there is also an approximation algorithm A for
I with

A(I) ≤ α (1 + ε′)2 OPT(I) + β(1 + ε′) ≤
(
α(1 + ε′)2 + β(1 + ε′)

)
OPT(I) .

Proof (Sketch). Construct a schedule for Iround and replace the modified processing times
by the unmodified ones.
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Now, jobs are grouped together in a special way to reduce their overall number. A
rounded job j has the profile (Π1,j, . . . ,Πk,j) where Πk,j ∈ N is the exponent such that
pround
kj = dj (1 + ε′)Πk,j . We set Πk,j =∞ if pround

kj =∞.

Lemma 5. Let l be the number of profiles. The bound l ≤ (2 + log1+ε′(mε′ ))K holds.

Proof. If a job j is fast on the machine type k, its maximum processing time is m
ε′ dj.

Hence, we have for the largest exponent hmax that dj(1 + ε′)hmax ≤ m
ε′ dj such that

hmax = blog1+ε′(mε′ )c follows. The smallest exponent is hmin = 0. If j is slow on type
k, then its exponent is ∞. Thus, there are 2 + blog1+ε′(mε′ )c possible exponents on K
positions, which yields (2 + log1+ε′(mε′ ))K possible profiles. (This proof is an extension of
the proof in [15].)

Let ν := 1
dm/ε′e . The jobs are partitioned into large jobs L := {j | dj > ν} and small

jobs S := {j | dj ≤ ν}. Take an enumeration of the l profiles such that we can denote a
profile directly by its number ς ∈ {1, . . . , l}. The set S is then further partitioned into
the sub-sets Sς = {j ∈ J | j has the profile ς} for ς ∈ {1, . . . , l}.

Two jobs ja and jb with the same profile ς and for which dja , djb ≤ ν
2 holds are now

grouped together to a new composed job jc with pkjc := pkja + pkjb for every k. The
composing is repeated until there is at most one job j ∈ Sς with dj ≤ ν

2 for every profile ς .
The other jobs (including the jobs in L) now have all a processing time of at least ν

2 . The
set of all jobs is called J merge, which yields together with the (unchanged) machines the
instance Imerge.

Lemma 6. If two jobs ja and jb are grouped together to jc, then jc has the same profile
as ja and jb.

Proof. We have Πk,ja = Πk,jb for all k ∈ {1, . . . , K} because ja and jb have the same
profile. Let k′ be a machine type where Πk′,ja = Πk′,jb = 0, i.e. both jobs have their fastest
processing time dja and djb on the machine type k′. We have

pround
kjc = pround

kja + pround
kjb

= dja (1 + ε′)Πk,ja + djb (1 + ε′)Πk,jb

= (dja + djb) (1 + ε′)Πk,ja for all k ∈ {1, . . . , K} .

Thus, we have pround
k′jc = dja + djb , and djc = dja + djb . The job jc has therefore the same

profile as ja and jb.

Lemma 7. After composing the items, we still have 1 ≤ OPT(Imerge) ≤ m.

Proof. Composed jobs have values djc that are the sum of several dj for j ∈ J (Iround).
Hence, we get D = m = ∑

j∈J dj = ∑
j∈Jmerge dj (see Assumption 1) because one j ∈

J (Iround) can only be used in the composition of one job jc ∈ J (Imerge). The upper and
lower bound now follow as before.

Theorem 8. The number of jobs in J merge (i.e. in Imerge) is bounded by min{n,O(m2

ε′ ) +
( logm

ε′ )O(K)}.
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Proof. The number of jobs does obviously not increase so that n is an upper bound.
The number of jobs in J merge that have a shortest processing time of dj > ν

2 is bounded
by

∑
j∈J dj

ν/2 = 2D
ν
. Moreover, there is at most one job left with dj ≤ ν

2 for every profile
ς. Therefore, we have at most l + 2D

ν
many jobs. Note that 0 < ε′ ≤ 1

3 such that
ln(1 + ε′) ≥ ε′ − (ε′)2 = ε′(1− ε′) ≥ 1

2ε
′ holds. We get

2D
ν

+ l

= 2m ·
⌈
m

ε′

⌉
︸ ︷︷ ︸

≤ 2m ·
(
m
ε′ + 1

)
≤ 2m2

ε′ + m2

ε′

= O
(
m2

ε′

)

+
(

2 + log1+ε′

(
m

ε′

))K
︸ ︷︷ ︸
=

(
2 + ln(m

ε′ )
ln(1+ε′)

)K
≤

(
2 + 2

ε′ · ln
(
m
ε′

))K
=

(
logm
ε′

)O(K)

≤ O

(
m2

ε′

)
+
(

logm
ε′

)O(K)

.

The proof is an extension of the proof in [15].

Theorem 9 ([15, Lemma 2.4]). We have

OPT(Iround) ≤ OPT(Imerge) ≤ OPT(Iround) + ε′ .

We state the running time to construct Imerge.

Theorem 10. Imerge can be constructed from I in time O(n ·K).

Proof. We have the following parts:

• Finding the values dj for all jobs j, the calculation of D as well as the scaling of the
instance can be done in O(n ·K).

• We suppose that determining the logarithm can be done in O(1) such that the
exponent h for which dj(1 + ε)h ≤ pkj < dj(1 + ε′)h+1 holds can be found in O(1).
Hence, the jobs can be rounded and their profiles determined in O(n ·K). A rounded
job is then directly added to the stack that corresponds to its profile. Thus, there
are at most O(n) profiles to be considered.

• The partition of the jobs in L and S is done in O(n).

• The composition of the jobs is described in Algorithm 1. First, list(j) is created for
every j ∈ S, a list that is used at the end of the algorithm to replace a composed
item by the the ones it consists of. The jobs in S are already grouped into their
respective profile sets Sς (see above). Then, the jobs are further partitioned into
S1
ς := {j ∈ Sς | dj > ν

2} and S2
ς := {j ∈ Sς | dj ≤ ν

2}. The jobs are iteratively
combined into larger ones in each S2

ς until at most one job is left in each S2
ς , i.e.

there is at most one job in Sς with dj ≤ ν
2 . The correctness of the algorithm is

obvious because each S2
ς will always contain all small jobs of profile ς with dj ≤ ν

2 .
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As for the running time, the division of the small jobs into the sets S1
ς and S2

ς needs
time in O(n) over all profiles ς. Fix one set S2

ς . The combination of two jobs in S2
ς

can be done in O(K). For combining list(ja) and list(jb), suppose that linked lists
are used for list(·). Since ja and jb are not used afterwards, we just concatenate
list(ja) and list(jb) and save the result as list(jc). With the right implementation of
linked lists, this needs only O(1). Finally, checking whether jc satisfies djc > ν

2 (and
adapting S1

ς and S2
ς ) can be done in O(1). Hence, one iteration of the while-loop

needs time in O(K). The while-loop can only be executed at most n times in total
over all Sς because all jobs will then be merged into one. Hence, we get a running
time in O(n ·K) for the entire algorithm.

for j ∈ S do
list(j) := {j} ; // Information for undoing the composition

of every item
for every Sς do

Partition Sς into S1
ς = {j ∈ Sς | dj > ν

2} and S
2
ς = {j ∈ Sς | dj ≤ ν

2};
while There are (at least) two jobs ja, jb ∈ S2

ς do
Group ja and jb together to jc;
list(jc) := list(ja) ∪ list(jb);
if djc > ν

2 then
S2
ς := S2

ς \ {jc} and S1
ς := S1

ς ∪ {jc};

Algorithm 1: This procedure combines the items in S into larger ones until at most
one item with dj ≤ ν

2 is contained in every Sς .

3 The Main Algorithm
Let 0 < δ ≤ ε′ ≤ 1

3 with δ = Θ(ε′). We present our algorithm for an instance I with n′
items and 1 ≤ OPT(I) ≤ m: it finds a solution of value at most (1 + δ)OPT(I). Later
on, I will in fact be Imerge such that we make the following assumption:

Assumption 2. I has n′ ≤ O(m2

ε′ ) + ( logm
ε′ )O(K) = O(m2

δ
) + ( logm

δ
)O(K) items.

3.1 Approximating the Optimum by Binary Search
We introduce another value δ′ = Θ(δ) with 0 < δ′ ≤ δ ≤ ε′ ≤ 1

3 . Suppose that we have an
oracle Oracle(I, T) that returns for a given makespan T and a constant C > 0 either
a solution of value at most (1 + Cδ′)T or ⊥ (false). The answer ⊥ implies that there is
not a solution of value (at most) T , i.e. T < OPT(I). We employ the well-known dual
approximation approach [11, 18], a binary search with such an oracle, to approximate the
optimum OPT(I) up to a given approximation ratio (see Algorithm 2). We start with
the lower bound LB = 1 and the upper bound UB = m and first check whether LB = 1
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yields a solution. If not, we iteratively adapt LB and UB until the difference UB − LB
is small enough. At the same time, we ensure that LB < OPT (I) always holds and that
there is a solution for the value T = UB: the solution for UB is returned at the end.
Note that the oracle can construct a solution for T = m in O(n′ +m) as described at the
beginning of Section 2.

LB := 1;
UB := m;
if Oracle(I,LB) 6= ⊥ then // Solution for T = LB exists

return Oracle(I,LB);
while UB − LB > δ′ do

T := UB+LB
2 ;

result := Oracle(I, T);
if result = ⊥ then // T is too small

LB := T ;
else // T is large enough

UB := T ;

T := UB;
return Oracle(I,T);

Algorithm 2: Binary search to approximate OPT(I) with the oracle

Lemma 11. Suppose that the Oracle function has the properties above, i.e. it returns
for given T either a solution with a makespan of at most (1 + Cδ′)T or ⊥. In the second
case, we have T < OPT(I). Then, the dual approximation approach, i.e. the binary search,
finds a schedule with a makespan of at most (1 + (C + 1)δ′ + C(δ′)2) OPT(I) and needs
O(log(m

δ′ )) iterations.

Proof. It is clear that the algorithm finishes after O(log(m
δ′ )) iterations of the binary

search.
The correctness of the binary search has already been shown in [11, 18] and is easy to

see: first, we have at the beginning 1 = LB ≤ OPT(I) and that there is a solution for
UB = m. If the oracle does not return a solution for T = LB, we have LB < OPT(I). The
algorithm then makes sure by the adaptation of T that we always have LB < OPT(I) and
that the oracle returns for T = UB a solution (of value at most (1 +Cδ′)T ). Suppose that
the binary search terminates, i.e. UB−LB ≤ δ′ holds. The oracle then returns a solution
with a makespan of at most (1 + Cδ′)UB. Since we have UB ≤ LB + δ′ ≤ OPT(I) + δ′,
we get

(1 + Cδ′)UB ≤ (1 + Cδ′) (OPT(I) + δ′)
= (1 + Cδ′) OPT(I) + (1 + Cδ′) δ′

≤ (1 + Cδ′) OPT(I) + (1 + Cδ′) δ′OPT(I)
= (1 + Cδ′) (1 + δ′) OPT(I)
=
(
1 + (C + 1)δ′ + C(δ′)2

)
OPT(I) .

11



3.2 The Oracle
We now describe the principle of the oracle. As a first step, the processing times of the jobs
in I are divided by T . We get a new instance Iscale with OPT(Iscale) ≤ 1 (if OPT(I) ≤ T ).
Then, the jobs are rounded to get the instance Ir with OPT(Ir) ≤ (1 + δ′). A dynamic
program DynProg is used to iteratively construct the sets TS0, . . . , TSn′ of profiles, where
each profile represents several (real) schedules. (A formal definition is given below.) The
profiles in TSj consider the first j jobs {1, . . . , j}. At the end, a function CreateSchedule
tries to construct a discrete schedule σ for the instance Ip (which is similar to Ir) from
each profile t ∈ TSn′ , where the profiles in TSn′ consider all n′ jobs. If there is a solution
to I with a makespan of at most T , one discrete schedule σ for I with a makespan of at
most (1 + Cδ′)T will be found by CreateSchedule. An overview is shown in Algorithm
3. We first have the following obvious lemma:

Lemma 12. The set Iscale can be constructed in O(n′ ·K).

Construct Iscale from I;
Round Iscale to Ir;
TS = (TS0, . . . , TSn′) := DynProg(Ir);
for all t ∈ TSn′ do

σ := CreateSchedule(t);
if σ 6= ⊥ then

// A schedule of value at most (1 + Cδ′) has been found for Ip

return σ;

return ⊥ ; // No schedule for I with a makespan ≤ T
Algorithm 3: An overview of the Oracle(I, T)

In a slight abuse of notation, we still denote the scaled processing times by pkj.

Definition 13. A (scaled) job j is large on a machine type k if pkj ≥ δ′. Otherwise, it is
small.

Take one job j. If its processing time is large on a machine type k, it is rounded up to the
next γ · (δ′)2 for γ ∈ N. If the processing time is small, i.e. pkj < δ′, the processing time is
rounded down to the next multiple of mk·δ′

n′ . This new instance with processing times pr
kj

is denoted by Ir.
Note that jobs are large (or small) on a machine type in Ir if they are large (or small)

in Iscale, and vice versa.

Lemma 14. If Iscale has a schedule with a makespan of at most 1, then Ir has a schedule
with a makespan of at most 1 + δ′. Ir can be constructed in O(n′ ·K).

Proof. Let σ be a schedule for Iscale with a makespan T ≤ 1. By definition, there can
only be 1

δ′ large jobs on one machine. Replace all jobs by their rounded counterpart in Ir.
The processing times of small jobs may only decrease while each large job increases by at

12



most (δ′)2. Hence, the increase of the total processing time on a machine is bounded by
(δ′)2 · 1

δ′ = δ′. The new total processing time of machine i is therefore at most T+δ′ ≤ 1+δ′.
Since this holds for all machines, the bound on the makespan follows for Ir.

The running time to obtain Ir is obvious.

Take one schedule with a makespan of at most 1 + δ′. If only large jobs of Ir are scheduled
on a machine i, its total processing time is a multiple of (δ′)2. In fact, it must be one of
the values

{0} ∪
{
γ · (δ′)2 | γ ∈ N and δ′ ≤ γ · (δ′)2 ≤ 1 + δ′

}
.

These processing times can be numbered with γ = 0 (for the total processing time 0)
and γ ∈ {γ0 := d 1

δ′ e, γ0 + 1, . . . , γ1 − 1, γ1 := b1+δ′

(δ′)2 c}. If j is large, the value γ(k, j) is the
factor such that pr

kj = γ(k, j) · (δ′)2.

Lemma 15. For Ir, there are O( 1
(δ′)2 ) processing times of the form γ · (δ′)2 of large jobs

on a machine.

Similarly, take all small jobs assigned to a machine type k. Their total processing time is
at most mk · (1 + δ′) because we consider a schedule with a makespan of at most 1 + δ′.
Moreover, the total processing time is also a multiple of mk·δ′

n′ because of the rounding, i.e.
it is one of the values in

Σk :=
{
τ · mk · δ′

n′

∣∣∣∣ τ ∈ N and 0 ≤ τ · mk · δ′

n′
≤ mk · (1 + δ′)

}
.

Lemma 16. For one machine type k of Ir, there are O(n′

δ′ (1 + δ′)) = O(n′

δ′ ) possible total
processing times of small jobs in Σk.

Proof. The small jobs have a total processing time in the interval [0, (1 + δ′) ·mk]. Since
the processing times are a multiple of mk·δ′

n′ , the lemma follows.

Based on the observations above, we introduce several useful definitions.

Definition 17. Let I ′ be a sub-instance of Ir, i.e. an instance whose jobs J ′ are a subset
of the jobs in Ir, and which has the same machines as Ir. Let σ : J ′ →M be a feasible
schedule with a makespan of at most 1 + δ′. Let bi be the total processing time of the large
jobs assigned to machine i, i.e.

bi = bi(σ) :=
∑

j:σ(j)=i,pr
k(i)j≥δ

′

pr
k(i)j .

We also introduce the remaining processing time (or remaining machine capacity) of every
machine type k for the makespan 1 + δ′:

rk = rk(σ) :=
∑
i∈Mk

(1 + δ′ − bi) = mk · (1 + δ′)−
∑
i∈Mk

bi .

13



(ab2(σ), as2(σ)) = ((1, 1, 2, 0, 0), 0.1)

Type 2

as2(σ)

Machine 1

Machine 2

Machine 3

Machine 4

0 δ′ 1 + δ′

Processing Time

Figure 1: The total processing time of the small jobs assigned to type k = 2 is
as2(σ) = 0.1. There is ab2(σ, 0) = 1 machine to which no large job has been assigned, and
ab2(σ, γ0) = 1 machine with a total processing time of γ0 ·(δ′)2 for the large jobs. Moreover,
there are ab2(σ, γ0 + 1) = 2 machines with a total processing time of (γ0 + 1) · (δ′)2 for the
large jobs. There are no machines with processing times γ · (δ′)2 for γ > γ0 + 1.

Moreover, the value abk(σ, γ) denotes the number of machines of type k where bi = γ · (δ′)2:

abk(σ, γ) :=
∣∣∣{i ∈Mk | bi = γ · (δ′)2

}∣∣∣ for γ ∈ {0, γ0, . . . , γ1} .

The vector abk(σ) = (abk(σ, γ))γ=0,γ0,...,γ1 contains all entries abk(σ, γ).
Furthermore, ask(σ) is the total processing time of all small jobs assigned to machine

type k, i.e.
ask(σ) :=

∑
j:σ(j)∈Mk,p

r
kj
<δ′

pr
kj .

As seen above, we have ask(σ) ∈ Σk. Since the small jobs have to fit into the remaining
processing time, ask(σ) ≤ rk(σ) holds for all k ∈ {1, . . . , K}.

The values abk(σ, γ) and ask(σ) form the profile of σ:([(
ab1(σ, 0), ab1(σ, γ0), . . . , ab1(σ, γ1)

)
, as1(σ)

]
,

. . . ,[(
abK(σ, 0), abK(σ, γ0), . . . , abK(σ, γ1)

)
, asK(σ)

])
.

Profiles are illustrated in Figures 1 and 2.

3.3 Dynamic Programming
The dynamic program we introduce determines all possible profiles for Ir. Therefore, one
profile t for a sub-instance I ′ is represented like above: it is a tuple of K tuples, one for
each machine type:

t = ((AB1, AS1) , . . . , (ABk, ASk) , . . . , (ABK , ASK)) .
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Profile ( ((3, 0, 0, 0, 0), 0.5), ((1, 1, 2, 0, 0), 0.1), ((0, 1, 0, 2, 0), 0.2) )

Type 1

as1(σ)

Machine 1

Machine 3

Machine 2

Type 2

as2(σ)

Machine 1

Machine 2

Machine 3

Machine 4

Type 3

as3(σ)

Machine 1

Machine 2

Machine 3

0 δ′ 1 + δ′

Processing Time

Figure 2: An illustration of the complete profile for a schedule σ.

For each k ∈ {1, . . . , K}, the entry ASk denotes the total processing time of all small jobs
that are assigned to the machines of type k.

One ABk is again a tuple

ABk = (q0, qγ0 , . . . , qγ, . . . , qγ1) .

Each entry qγ denotes the number of machines of type k where the large jobs have the
total processing time γ · (δ′)2. Obviously, q0 +∑γ1

γ=γ0 qγ = mk holds.
For convenience, ASk(t) denotes the entry ASk of a profile t. Similarly, ABk(t) stands

for the tuple ABk of profile t. Additionally, (ABk(t))γ is the entry qγ in the tuple ABk(t).

Lemma 18. One profile t has O( K
(δ′)2 ) entries.

Proof. There are K entries ASk(t) and K tuples ABk(t). Each ABk(t) has again O(γ1) =
O( 1

(δ′)2 ) many entries (see Lemma 15). The overall bound follows.

The idea of the dynamic program DynProg (as shown in Algorithm 5) is quite simple. We
start with the tuple set

TS0 =


( (

(
q0︷︸︸︷
m1 , 0, . . . , 0)︸ ︷︷ ︸

AB1

, 0︸︷︷︸
AS1

)
, . . . ,

(
(
q0︷︸︸︷
mK , 0, . . . , 0)︸ ︷︷ ︸

ABK

, 0︸︷︷︸
ASK

) ) (1)
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that represents the empty schedule: for every machine type k, small jobs have not been
assigned (ASk = 0), and mk machines (i.e. all machines of type k) have a total processing
time of large jobs equal to 0.

Suppose that the set TSj−1 has been determined: it contains all profiles that can be
obtained for the first j − 1 jobs {1, . . . , j − 1}. The profiles for {1, . . . , j} are constructed
by considering for each t ∈ TSj−1 all possibilities to add j to t. Fix one t ∈ TSj−1. We go
over all k. If j is small on type k, then ASk(t) is simply increased by pr

kj (lines 6–12): we
have a new profile t′ where additionally j is assigned to the machine type k. If j is large on
type k, all qγ = (ABk(t))γ > 0 are taken into account (lines 13–20): there are qγ machines
of type k in t where each has the total processing time γ · (δ′)2. If we add j to one of
these machines, there is obviously one machine less with the processing time γ · (δ′)2 and
one machine more with the processing time γ · (δ′)2 + pr

kj = γ · (δ′)2 + γ(k, j) · (δ′)2. Hence,
qγ decreases and qγ+γ(k,j) increases by one. The add operation is shown in Algorithm 4.
Thus, each qγ > 0 in ABk(t) generates a new profile t′ ∈ TSj.

Input: ABk, γ, j
Set γ′ := γ + γ(k, j);
(ABk)γ′ := (ABk)γ′ + 1;
(ABk)γ := (ABk)γ − 1;
return ABk;

Algorithm 4: add(ABk, γ, j)

When t′ has been constructed, it is checked whether t′ ∈ TSj already holds (lines 10 and
18), i.e. whether we already have obtained the tuple t′ in another way (e.g. from another
t ∈ TSj−1). If no, we save t′ together with the corresponding backtracking information to
later construct a schedule (lines 11–12 and 19–20). If yes, we only keep the old backtracking
information. Note that the add operation is only executed if γ · (δ′)2 + pr

kj ≤ (1 + δ′), i.e.
γ + γ(k, j) ≤ γ1 (see line 15): we only want to find the profiles representing schedules
with makespans of at most 1 + δ′. Similarly, the bound ASk(t) + pr

kj ≤ mk · (1 + δ′) for
ASk is checked in line 7. It is therefore possible that there is not any profile t ∈ TSj−1
such that j can be assigned: the value T is too small. Then, DynProg returns the empty
set (line 22), and Oracle will therefore return ⊥. We show that a schedule for Ir with a
makespan of at most (1 + δ′) corresponds to at least one profile.

Lemma 19. Let σ be a schedule for Ir with a makespan of at most 1 + δ′. Then the
dynamic program DynProg generates a profile t for Ir where

• (ABk(t))γ = abk(σ, γ) for all γ ∈ {0, γ0, . . . , γ1} and k ∈ {1, . . . , K}, and

• ASk(t) = ask(σ) for all k ∈ {1, . . . , K}.

Proof. The statement is easy to see because the dynamic program does exactly what a
natural algorithm to construct σ would do: it takes all currently constructed schedules for
the first j − 1 jobs and tries for each of these schedules to assign job j to every machine i.
However, only the corresponding profiles are saved.

Since σ has a makespan of at most 1+δ′, all conditions checked during the construction
of tσ will be satisfied.
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Input: Instance Ir, δ′ > 0
1 Set TS0 as seen in Equation (1);
2 for j = 1, . . . , n′ do
3 TSj := ∅;
4 for t ∈ TSj−1 do
5 for k = 1, . . . , K do
6 if j is small on type k then
7 if ASk(t) + pr

kj ≤ mk · (1 + δ′) then
8 t′ := t;
9 ASk(t′) := ASk(t′) + pr

kj;
10 if t′ /∈ TSj then
11 Backtrack(t′) := (t, k);
12 TSj := TSj ∪ {t′};

13 else // j is large on type k
14 for γ = 0, γ0, . . . , γ1 − 1 do
15 if qγ = (ABk(t))γ > 0 and γ + γ(k, j) ≤ γ1 then
16 t′ := t;
17 add(ABk(t′), γ, j);
18 if t′ /∈ TSj then
19 Backtrack(t′) := (t, k, γ);
20 TSj := TSj ∪ {t′};

21 if TSj = ∅ then
22 return ∅;

23 return TS = (TS0, TS1, . . . , TSn′);
Algorithm 5: The dynamic program DynProg
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Lemma 20. The number κ of profiles in TSj is bounded by

κ ≤ mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)

.

Proof. Fix one machine type k. The number of possible vectors ABk is bounded by
(m+ 1)O(1/(δ′)2) = mO(1/(δ′)2) because ABk has O( 1

(δ′)2 ) entries (see Lemma 15), and each
entry (ABk)γ is in {0, 1, . . . ,mk} ⊆ {0, . . . ,m}.

For every value of ABk, we will only save O(n′

δ′ ) possible values for ASk (see Lemma 16).
Note that we have n′ ≤ O(m2

δ
)+( logm

δ
)O(K) = O(m2

δ′ )+( logm
δ′ )O(K) because of Assumption 2

and δ′ = Θ(δ). We get

O

(
n′

δ′

)
= O

(
m2

(δ′)2

)
+
(

logm
δ′

)O(K)

.

If we consider all machine types k, we have the upper bound on the number of profiles of

(
mO(1/(δ′)2) ·O

(
n′

δ′

))K
=
mO(1/(δ′)2) ·

O( m2

(δ′)2

)
+
(

logm
δ′

)O(K)
K

=
mO(1/(δ′)2) · m

2

(δ′)2 +mO(1/(δ′)2) ·
(

logm
δ′

)O(K)
K

=
mO(1/(δ′)2) ·

(
logm
δ′

)O(K)
K

= mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)

.

We have used that 1
(δ′)2 = 22 log(1/(δ′)) ≤ 2O(1/δ′) ≤ mO(1/δ′) so that m2

(δ′)2 · mO(1/(δ′)2) =
mO(1/(δ′)2).

Lemma 21. The dynamic program (Algorithm 5) needs time in O( K
(δ′)2 · m · κ · n′) =

mO(K/(δ′)2)( logm
δ′ )O(K2) to construct all profiles TS0, . . . , TSn′.

Proof. The for-loop for the items needs n′ iterations. When an item is processed in the
for-loop, it is tried to assign it to each of the O(κ) profiles in TSj−1. Fix one profile
t ∈ TSj−1 and one machine type k. If the item is small on machine type k, we need O(1) to
check whether j can be added to type k. If the item is large, we need O(γ1) Lem. 15= O( 1

(δ′)2 )
to check the entries qγ and the conditions whether j can be added. Note that there are
O(mk) entries qγ > 0 and therefore only O(mk) cases where an item is added.

When an item is added, we need time in O( K
(δ′)2 ) to create the new profile t′ and add

the item to it (see Lemma 18; note that the add operation of Algorithm 4 needs time in
O(1)). Additionally, it has to be checked whether t′ is new in TSj. We can suppose that
this can be done in the size of the profile O( K

(δ′)2 ): all profiles t′′ ∈ TSj can be saved in
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one array where the position of t′′ is given by its values (ABk(t′′))γ and ASk(t′′). Finally,
the backtracking information only has to save a pointer to the old profile from which the
new one was obtained as well as the values k and/or γ. In total, the time needed to add
an item is bounded by O( K

(δ′)2 ).
Obviously, the case where j is large on type k dominates the running time for one

machine type. The dynamic program therefore needs time in

O

n′ · κ · K∑
k=1

(
1

(δ′)2︸ ︷︷ ︸
checks of qγ

+ mk︸︷︷︸
number of qγ > 0

· K

(δ′)2︸ ︷︷ ︸
time to add an item

) = O

(
n′ · κ ·m · K

(δ′)2

)
.

We get

O

(
K

(δ′)2 ·m · κ · n
′
)

= O

 K

(δ′)2 ·m ·

mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)
 ·
(m2

δ′

)
+
(

logm
δ′

)O(K)


= K

(δ′)2 ·m
O(K/(δ′)2) ·

(
logm
δ′

)O(K2)

= K ·mO(K/(δ′)2) · 1
(δ′)2 ·

(
logm
δ′

)O(K2)

= mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)

with Assumption 2 and Lemma 20.

Remark 22. Profiles can of course be stored in a more compact form: we only have to
save the strictly positive abk(σ, γ) and (ABk(t))γ . The number of entries in one profile is
then bounded by O(K +m). However, the number of profiles κ does not decrease: it is
independent of the fact whether we save the qγ = 0 or not. Lemma 20 still holds so that
the asymptotic running time also remains unchanged (see the proof of Lemma 21).

3.4 Construction of a Schedule
The goal of this section is the construction of a schedule with a makespan of at most
1 + 3δ′ from a suitable profile. We first state two definitions.

Definition 23. For a given profile t′, the remaining total processing time for every
machine type k is defined by

Rk = Rk(t′) := mk · (1 + δ′)−
∑
γ

(ABk(t))γ · γ · (δ
′)2 .

The definition corresponds to the one of rk in Definition 17.

Definition 24. Take one job j in I. If its processing time is large on machine type k, it
is rounded up to the next γ · (δ′)2 for γ ∈ N. The small processing times of a job are not
changed. This is the new instance Ip whose processing times are denoted by pp

kj.
Ip is therefore the instance Ir without the rounding of the small jobs. We have pp

kj = pkj
if j is small on type k, and we have pp

kj = pr
kj if j is large on type k.
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After DynProg, Oracle (Algorithm 3) calls for every t′ ∈ TSn′ CreateSchedule, a func-
tion that is shown in Algorithm 6. First, CreateSchedule(t′) checks whether enough
processing time is left for the small jobs (lines 1–4), i.e. whether ASk(t′) ≤ Rk(t′) holds
for all k ∈ {1, . . . , K}. If yes, this is sufficient to construct a schedule for Ip of value at
most 1 + 3δ′ (lines 5–9) as will be shown below in Lemma 25. In line 6, the function
Backtracking uses the backtracking information to find the set of small jobs Jk assigned
to machine type k. Moreover, it constructs a schedule σk for the large jobs assigned to
type k. This is shown in detail below in Algorithm 7. When Backtracking has finished,
σ is updated according to each σk (line 8). The small jobs assigned to k are greedily
added to the machinesMk (line 9): a machine inMk gets assigned jobs in Jk until the
total processing time of the machine exceeds 1 + 2δ′. Then, the next machine inMk is
processed in the same way. As mentioned above, it will be shown in Lemma 25 that this
procedure will be successful.

Note that Oracle returns ⊥ if it cannot construct a schedule (because TSn′ = ∅ or no
t′ satisfies Rk(t′) ≤ ASk(t′) for all k). It will be shown in Theorem 27 that Oracle indeed
satisfies the properties of Lemma 11.

Input: Profile t′
1 for k = 1, . . . , K do
2 Determine Rk = Rk(t′);
3 if ASk(t′) > Rk then
4 return ⊥;

5 σ := ∅ ; // The empty schedule
6 (σ1,J1), . . . , (σK ,JK) := Backtracking(t′);
7 for k = 1, . . . , K do
8 Set σ(j) := σk(j) for the jobs j scheduled by σk;
9 Assign the jobs in Jk greedily to the machines inMk and adapt σ accordingly;

10 return σ;
Algorithm 6: CreateSchedule(t′) from the oracle (Algorithm 3)

Let us present the Backtracking function as shown in Algorithm 7. The backtracking
information of DynProg allows us to go directly from t′ = t′n′ ∈ TSn′ to t′n′−1 ∈ TSn′−1 from
which t′n has been constructed. We continue and get t′n′−2 ∈ TSn′−2, . . . , t

′
j ∈ TSj, . . . , t′1 ∈

TS1, t
′
0 ∈ TS0, where t′j has been obtained from t′j−1. Next, we define the σk and Jk (line

3).
Starting from t′0 (which is the profile of the empty schedule, see (1)), we have two

cases. Either t′j has been constructed from t′j−1 by adding j to a machine type k where
it is large, and inMk to one machine with the current processing time γ · (δ′)2 for one
γ. The corresponding value γ and the machine type k are exactly the values stored in
Backtrack(t′j) (see line 19 of Algorithm 5). The current schedule σk is then updated
accordingly by assigning j to one machine inMk with a current processing time of γ · (δ′)2

(lines 8–11). Otherwise, j has been assigned to a type k where it is small. The value of
k is stored in Backtrack(tj) (see line 11 of Algorithm 5). The job j is then added to Jk
(lines 12–14). The assignment of large jobs to the machines is rendered more comfortable
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by the function extime(·): it keeps track of the current total processing time of large jobs
on every machine.

Input: Profile t′
1 Determine by backtracking the profiles
t′ = t′n′ ∈ TSn′ , t′n′−1 ∈ TSn′−1, . . . , t

′
j ∈ TSj, . . . , t′1 ∈ TS1, t

′
0 ∈ TS0 from which t′

has been constructed;
2 for k = 1, . . . , K do
3 σk := ∅ and Jk := ∅;
4 for i = 1, . . . ,m do
5 extime(i) := 0 ; // Total processing time of large jobs on machine i

6 for j = 1, . . . , n′ do
7 if Backtrack(t′j) is of the form (t′j−1, k, γ) then

// j is added to a machine type where it is large
8 Take k and γ from Backtrack(t′j);
9 Use extime(·) to find one machine i inMk with a total processing time of

large jobs equal to γ · (δ′)2;
10 Add j to i: σk(j) := i;
11 extime(i) := extime(i) + pr

kj;
12 else // j is added to a machine type where it is small
13 Take k from Backtrack(t′j) ; // Backtrack(t′j) = (t′j−1, k)
14 Jk := Jk ∪ {j};

15 return (σ1,J1), . . . , (σK ,JK);
Algorithm 7: Backtracking (t′) from Algorithm 6

Lemma 25. Let t ∈ TSn′ be a profile for which ASk(t) ≤ Rk(t) holds for all k. Then,
CreateSchedule and Backtracking (Algorithms 6 and 7) return a schedule σ for Ip with
a makespan of at most 1 + 3δ′. It is also a schedule for I of value at most (1 + 3δ′)T .

Proof. As we have ASk(t) ≤ Rk(t), CreateSchedule(t) calls Backtracking(t), which
returns the schedules σk and the job sets Jk for all k ∈ {1, . . . , K}. For each k ∈ {1, . . . , K},
the algorithm takes the schedule σk for the machinesMk and greedily assigns the small
jobs in Jk as explained above. When this is done for all k ∈ {1, . . . , K}, the schedule σ
for Ip has been constructed. Note that the σk are formally schedules for jobs in Ir, and
the sets Jk are also taken from J (Ir). However, they can be trivially adapted to Ip: the
instances Ip and Ir have a one-to-one correspondence of the jobs and differ only in the
processing times pp

kj and pr
kj.

We have to show that all small jobs in the sets Jk can indeed be greedily assigned
and that the resulting schedule has a makespan of at most 1 + 3δ′. We first state several
identities. For the total processing time of large jobs on a machine, bi(σk) = bi(σ) holds:
we have pr

kj = pp
kj for jobs j that are large on a machine type k, and σk is σ restricted

to the large jobs assigned to machine type k. Hence, we also have abk(σ, γ) = abk(σk, γ)
for each γ. Moreover, abk(σk, γ) = (ABk(t))γ holds: it is clear that the backtracking
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constructs σk in such a way that it has a profile for the large jobs on k that corresponds
to t. By induction, it can indeed be shown that (ABk(tj))γ = abk((σk)(j), γ), where (σk)(j)

is the schedule σk restricted to the large jobs in {1, . . . , j}, and tj ∈ TSj is the profile
of which t is constructed. To sum up, we have abk(σ, γ) = abk(σk, γ) = (ABk(t))γ for all
γ ∈ {0, γ0, . . . , γ1}.

From this, we can directly derive the following identity for the remaining machine
capacity on machines of type k:

rk(σ) =
∑
i∈Mk

(1 + δ′ − bi(σ)) = (1 + δ′) ·mk −
∑
γ

∑
i:bi(σ)=γ·(δ′)2

γ · (δ′)2

= (1 + δ′) ·mk −
∑
γ

abk(σ, γ) · γ · (δ′)2

= (1 + δ′) ·mk −
∑
γ

(ABk(t))γ · γ · (δ′)2 = Rk(t) .

Note first that pp
kj ≤ pr

kj + mk·δ′

n′ holds for small jobs. Thus, we have ∑j∈Jk p
p
kj ≤∑

j∈Jk(pr
kj + mk·δ′

n′ ) ≤ (∑j∈Jk p
r
kj) +mk · δ′. As we have the identity ASk(t) = ∑

j∈Jk p
r
kj for

the total processing time of small jobs assigned to type k, we get∑j∈Jk p
p
kj ≤ ASk(t)+mk·δ′.

Since we have ASk(t) ≤ Rk(t) by assumption, we finally get ∑j∈Jk p
p
kj ≤ Rk(t) +mk · δ′:

the small jobs in Jk with their processing times pp
kj only slightly exceed the remaining

capacity of the machines of type k.
Assume for the sake of contradiction that there is one type k for which all small jobs

in Jk cannot be greedily scheduled. Thus, every machine i ∈Mk has a processing time
larger than 1 + 2δ′, and there are still small jobs left. Let δi > 0 be the processing time
by which all jobs assigned to machine i exceed 1 + 2δ′. We have∑

j∈Jk
pp
kj ≥

∑
i∈Mk

(1 + 2δ′ + δi − bi(σ))

>
∑
i∈Mk

(1 + 2δ′ − bi)

=
∑
i∈Mk

(1 + δ′ − bi) +mk · δ′

= rk(σ) +mk · δ′ = Rk(t) +mk · δ′

≥
∑
j∈Mk

pp
kj .

This is a contradiction. All small jobs can therefore be greedily scheduled. As we have
pp
kj < δ′ for small jobs on type k, the bound δi ≤ δ′ holds: at most one small job is

assigned to a machine i such that the processing time exceeds 1 + 2δ′. Hence, we have for
the makespan maxk maxi∈Mk

1 + 2δ′ + δi ≤ 1 + 3δ′.
Note that the proof by contradiction above is in fact independent of whether some

small jobs are still left or all small jobs have been assigned, but all machines i ∈ Mk

have a processing time that exceeds 1 + 2δ′. It is shown that there must be at least one
machine with a total processing time of at most 1 + 2δ′ because we get the contradiction
otherwise.

Finally, the schedule σ for Ip is also one for Iscale with a makespan of at most 1 + 3δ′.
In fact, small processing times are identical in Ip and Iscale, and if we undo the rounding
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of the large processing times, the makespan does not increase because the large jobs were
rounded up in Ip. After undoing the scaling of Iscale, the schedule σ is a solution to I of
value at most (1 + 3δ′)T .

The assignment of the large jobs is illustrated in Figure 3 and of the small jobs in
Figure 4. We now state the overall running time for the functions Backtracking and
CreateSchedule.
Lemma 26. One call of Backtracking(t′) (Algorithm 7) needs time in O(K + n′ ·m).
Therefore, the total running time for all calls of CreateSchedule (Algorithm 6), i.e. of
the for-loop in Oracle (Algorithm 3), is in O(κ · K

(δ′)2 + n′ ·m) = mO(K/(δ′)2) · ( logm
δ′ )O(K2).

Proof. Let us first consider Backtracking. Creating a list consisting of pointers to the t′j
can be done in O(n′): we just follow the pointers given by the backtracking information
Backtrack(t′j). The creation of the σk and Jk is in O(K), and setting the values extime(i)
to 0 in O(m). This is followed by the n′ iterations of the for-loop. In one iteration, the
case where j is small can be done in O(1). The case where j is large needs O(m): we
have to check all i ∈Mk and their corresponding value extime(i). In total, we need time
O(K + n′ ·m) for one call of Backtracking.

Let us now consider CreateSchedule. One call of CreateSchedule(t′) first determines
all Rk. Note that Rk = ∑

γ(ABk(t′))γ ·γ · (δ′)2 so that determining all Rk needs O(K · 1
(δ′)2 )

including the checks of the if-condition (see the bound on γ1 in Lemma 15). Should one of
the if-conditions fail, the call of CreateSchedule(t′) is terminated such that the oracle
checks the next t′′ ∈ TSn′ . In the worst case, CreateSchedule is therefore called κ times
without constructing a schedule, which needs in total O(κ · K

(δ′)2 ).
The schedule σ is constructed if we have ASk(t′) ≤ Rk(t′) for all machine types k.

CreateSchedule is not called again afterwards because the oracle terminates if σ has been
found. The construction of σ first calls Backtracking(t′), which needs O(K + n′ ·m),
and then greedily assigns the small jobs to the machines. Let nk be the number of large
jobs assigned toMk. The greedy procedure then needs O(nk +mk + |Jk|) for one k, i.e.
O(n′+m) for all K machine types. In total, we have a time complexity first for all checks
of the if-condition and then for the construction of σ in

O

(
κ · K

(δ′)2 + (K + n′ ·m) + (n′ +m)
)

= O

(
κ · K

(δ′)2 + n′ ·m
)

= K

(δ′)2 ·m
O(K/(δ′)2) ·

(
logm
δ′

)O(K2)

+m ·

O(m2

δ′

)
+
(

logm
δ′

)O(K)


= mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)

,

where we have used Assumption 2 and Lemma 20.

Theorem 27. Let I be an instance with 1 ≤ OPT(I) ≤ m. The binary search (Algorithm
2) with the Oracle function of Algorithm 3 is a PTAS: it finds for given δ > 0 and δ′ := δ

5
a solution of value at most (1 + δ)OPT(I). The running time is in

mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)

= mO(K/δ2) ·
(

logm
δ

)O(K2)

.
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(3, 0, 0, 0, 0)

Machine 1

Machine 2

Machine 3

(2, 1, 0, 0, 0)

Machine 1

Machine 2

j1 Machine 3

Backtrack(t ′1) = (t ′0, k, 0): Add j1 to one machine of type k
with a processing time of 0 · (δ′)2 = 0

(1, 2, 0, 0, 0)

Machine 1

j2 Machine 2

j1 Machine 3

Backtrack(t ′2) = (t ′1, k, 0): Add j2 to one machine of type k
with a processing time of 0 · (δ′)2 = 0

(1, 1, 0, 0, 1)

Machine 1

j2 Machine 2

j1 j3 Machine 3

Backtrack(t ′3) = (t ′2, k, γ0): Add j3 to one machine of type k
with a processing time of γ0 · (δ′)2

(1, 0, 0, 1, 1)

Machine 1

j2 j4 Machine 2

j1 j3 Machine 3

Backtrack(t ′4) = (t ′3, k, γ0): Add j4 to one machine of type k
with a processing time of γ0 · (δ′)2

(0, 0, 0, 2, 1)

j5 Machine 1

j2 j4 Machine 2

j1 j3 Machine 3

Backtrack(t ′5) = (t ′4, k, 0): Add j4 to one machine of type k
with a processing time of 0 · (δ′)2 = 0

Figure 3: Assignment of the large jobs on machine type k by using the backtracking
information
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ABk = (0, 0, 0, 0, 0, 1, 1, 3)

ASk = 1.3

0 δ′ 1
+
δ ′

1
+
2δ ′

1
+
3δ ′

Processing Time

Small Jobs

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

(a) Backtracking has assigned the large jobs to the ma-
chines. The small jobs still have to be greedily scheduled.
ABk = (0, 0, 0, 0, 0, 1, 1, 3)

ASk = 1.3

0 δ′ 1
+
δ ′

1
+
2δ ′

1
+
3δ ′

Processing Time

Small Jobs

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

(b) The small jobs are assigned to the first machine until
1 + 2δ′ is exceeded. Note that the processing time of the
machine is still smaller than 1 + 3δ′.

Figure 4: The scheduling of the small jobs after the assignment of the large jobs.

25



ABk = (0, 0, 0, 0, 0, 1, 1, 3)

ASk = 1.3

0 δ′ 1
+
δ ′

1
+
2δ ′

1
+
3δ ′

Processing Time

Small Jobs

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

(c) As shown in the proof of Lemma 25, all small jobs can
be greedily assigned without exceeding the makespan of
1 + 3δ′.

Figure 4: (continued) The scheduling of the small jobs after the assignment of the large
jobs.

Proof. Lemma 11 states that the binary search returns a solution of value at most
(1 + (C + 1)δ′ + C(δ′)2)OPT(I) if Oracle has the stated properties. These will now be
shown.

Suppose first that Oracle (Algorithm 3) returns a solution σ for T and input I. First,
the instance is scaled by Oracle and becomes Iscale, which is rounded to get Ir. The
solution σ is then determined for Ip. It is clear that a schedule is only returned if there is
a profile t ∈ TSn′ for which ASk(t) ≤ Rk(t) holds. Hence, the returned schedule σ has
a makespan of at most 1 + 3δ′ as seen in Lemma 25. It is easy to see that it is also a
schedule for I with a makespan of at most (1 + 3δ′)T .

It remains to prove that there is not a solution to I of value (at most) T if Oracle(I, T)
returns ⊥. We show this by demonstrating that the oracle will always return a solution if
there is a solution of value (at most) T :

• The instance I satisfies OPT(I) ≤ T , which implies that

• the instance Iscale has an optimum OPT(Iscale) ≤ 1, which again implies that

• the instance Ir satisfies OPT(Ir) ≤ 1 + δ′ (see Lemma 14). Let σ be an optimal
schedule for Ir. Then,

• DynProg, CreateSchedule and Backtracking will find a schedule: Lemma 19 states
that there is a profile tσ for which we have abk(σ, γ) = (ABk(tσ))γ and ask(σ) =
ASk(tσ) for all k and γ. As in the proof of Lemma 25, the identity abk(σ, γ) =
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(ABk(tσ))γ implies rk(σ) = Rk(tσ). Since the small jobs assigned by σ to the machine
type k have to fit into the remaining machine capacity rk(σ), we have ASk(tσ) =
ask(σ) ≤ rk(σ) = Rk(tσ). By Lemma 25, the function CreateSchedule(tσ) will
therefore construct a schedule σ′ for Ip with a makespan of at most 1 + 3δ′, which
is also a solution to I with a makespan of at most (1 + 3δ′)T .

Hence, the oracle has the desired properties. We now want that the bound (1 + (C +
1)δ′ +C(δ′)2)OPT(I) ≤ (1 + δ)OPT(I) is satisfied. Note that we have C = 3. Set δ′ := δ

5
such that (C + 1)δ′ + C(δ′)2 = 4δ′ + 3(δ′)2 ≤ δ holds because δ ≤ 1

3 .
Let us bound the overall running time of the binary search, i.e. Algorithm 2. The

binary search needs O(log(m
δ′ )) = O(log(m

δ
)) iterations as seen in Lemma 11. In each

iteration, Oracle (Algorithm 3) is called. When called, Oracle needs O(K · n′) to obtain
first Iscale and then Ir as stated in Lemmas 12 and 14. Lemma 21 bounds the running
time for the dynamic program by mO(K/(δ′)2)( logm

δ′ )O(K2). The for-loop of Oracle also needs
time in mO(K/(δ′)2) · ( logm

δ′ )O(K2) (see Lemma 26). Overall, we have a time complexity in

O
(

log
(
m

δ′

))
·

O(K · n′) +mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)


= O
(

log
(
m

δ′

))
·mO(K/(δ′)2) ·

(
logm
δ′

)O(K2)

= mO(K/(δ′)2) ·
(

logm
δ′

)O(K2)

= mO(K/δ2) ·
(

logm
δ

)O(K2)

.

We have used Assumption 2 to see that O(K ·n′) = O(K · [m2

δ′ + ( logm
δ′ )O(K)]) ≤ mO(K/(δ′)2) ·

( logm
δ′ )O(K2).

4 The General PTAS
The PTAS is presented in Algorithm 8.

Input: Instance I, ε > 0
1 Set ε′ := ε

5 and δ := ε′;
2 Construct from I the instance Imerge as shown in Section 2;
3 Call the binary search for Imerge (Algorithm 2) with δ′ = δ

5 = ε
25 ;

4 Undo the combination of the items in Imerge and then the rounding of Iround to get a
schedule σ for I;

5 return σ;
Algorithm 8: An overview of the PTAS

Lemma 28. For the values of ε′ = ε
5 , δ = ε′ and δ′ = ε

25 , the algorithm returns a solution
of value Aε(I) ≤ (1 + ε) OPT(I).

Proof. As seen in Theorem 27, the binary search returns a solution to Imerge whose value is
bounded by (1 + δ) OPT(Imerge). For convenience, we denote the makespan of its solution
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by Am(Imerge). By undoing the combination of the items, we get a solution to Iround of
the same makespan. Thus,

• transforming Iround into Imerge,

• applying the binary search and then

• undoing the combination of items

is an algorithm Ar for Iround with

Ar
(
Iround

)
= Am(Imerge) ≤ (1 + δ)OPT(Imerge) = (1 + ε′)OPT(Imerge) .

Since OPT(Iround) ≤ OPT(Imerge) ≤ OPT(Iround) + ε′ (see Theorem 9), we have an
algorithm with

Ar
(
Iround

)
≤ (1 + ε′) OPT(Imerge) ≤ (1 + ε′)

(
OPT(Iround) + ε′

)
= (1 + ε′) OPT(Iround) + ε′(1 + ε′) .

By Lemma 4, this implies an algorithm for I with

Aε(I) ≤
(
(1 + ε′)3 + ε′ · (1 + ε′)2)OPT(I) ≤ (1 + ε) OPT(I) .

This upper bound holds because

(1 + ε′)3 + ε′ · (1 + ε′)2 =
(

1 + ε

5

)3
+ ε

5 ·
(

1 + ε

5

)2

=
(

1 + 3ε5 + 3 ε
2

25 + ε3

125

)
+ ε

5 + 2 ε
2

25 + ε3

125
ε≤1/2

≤ 1 + 3
5ε+ 3

50ε+ ε

4 · 125 + ε

5 + ε

25 + ε

4 · 125
≤ 1 + ε .

(Main parts of the proof are taken from [15].)

Lemma 29. The PTAS has a running time in

O(K · n) +mO(K/ε2) ·
(

logm
ε

)O(K2)

.

Proof. The time to construct Imerge is in O(n · K) as stated in Theorem 10. The run-
ning time for the binary search of mO(K/(δ′)2)·( logm

δ′ )O(K2) = mO(K/ε2)·( logm
ε

)O(K2) is shown in
Theorem 27. When Imerge is constructed from Iround, it is saved for every item j ∈ Imerge

which items in Iround have been combined into j. (This is the set list(j) in Algorithm 1.)
Reversing the combination of the items is therefore in O(n). Undoing the rounding can
finally be done in O(K · n).

These two lemmas show Theorem 1.
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5 Concluding Remarks
We have described a PTAS for Scheduling on Unrelated Machines of Few Different Types
that is single exponential in 1

ε
. A natural question is of course the existence of an efficient

PTAS (a PTAS with a running time of the form f(1
ε
) · |I|O(1), i.e. where the degree of the

polynomial is independent of 1
ε
). Another interesting task is the generalization of this

algorithm to jobs with ∆ dimensions because Bonifaci and Wiese [4] considered this more
general case. However, we run into trouble when it comes to the preprocessing of jobs
in Section 2. For one dimension ∆ = 1, jobs can be partitioned into fast and slow ones
on every machine type. The partition is then explicitly used to set pround

kj =∞ for jobs
that are slow on a machine type k. This allowed us to bound the number of profiles in
Lemma 5 and therefore the number of jobs n′ in Imerge. The bound on n′ helped us to
limit the overall running time of the dynamic program. In ∆ ≥ 2 dimensions, a partition
into fast and slow jobs on a machine type may not be possible in a way similar to ours
because a job may be fast in one, but slow in another dimension.

Optimizations for the running time of our algorithm are probably possible. For instance,
the jobs large on a machine type are rounded linearly and then the rounded processing
times are used to derive the profiles. An adapted rounding may lead to a smaller number
of profiles. Geometric rounding may be an option, but then the processing times are not
necessarily a discrete multiple of a value like (δ′)2. One possibility may therefore be not
to round the processing times. Instead, the interval [0, 1 + δ′] is partitioned geometrically.
For each interval of the partition, the number of machines is saved whose total processing
time lies in this interval. This may lead to an improved running time.

Finally, an open question is whether the FPTAS for a constant number of machines m
presented by Jansen and Mastrolilli [15] can also be adapted to (Pm1, . . . ,PmK)| |Cmax
and yield an FPTAS for a constant number of machine types K.
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