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Abstract

We review the technique of one-dimensional compaction and use it as part of two new
methods tackling problems in the context of automatic diagram layout: First, a post-
processing of the layer-based layout algorithm, also known as Sugiyama layout, and
second a placement algorithm for connected components with external extensions.

We apply our methods to data flow diagrams from practical applications and find
that the first method significantly reduces the width of left-to-right drawn diagrams.
The second method allows to properly arrange disconnected graphs that have hierarchy-
crossing edges.

Keywords: one-dimensional compaction, diagram layout, layer-based layout, Sugiyama
layout, disconnected graphs, dataflow diagrams
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1 Introduction

Automatically drawing graph-based visual models has gained more and more acceptance
over the past years, with industrial tools starting to incorporate automatic layout facil-
ities, be it semi-automatic or fully-automatic, to support model-driven engineering or
interactive browsing of models [5]. Example tools are LabVIEW (National Instruments),
EHANDBOOK (ETAS), Simulink (The MathWorks, Inc.), and Ptolemy (UC Berkeley).

For applications where hierarchical data flow diagrams are used, the layout techniques
have continuously been improved to handle most of the peculiarities of this type of
diagram [19]. Still, further improvements are required regarding the compactness of
the resulting drawings [10]. In this paper we show how the simple technique of one-
dimensional compaction can be used to significantly improve the compactness of data
flow diagrams drawn with state-of-the-art methods (see Figure 1.1 and Figure 1.2 for
results). While we motivate our contributions from the perspective of data flow diagrams,
they are not restricted to this type of diagram. The presented methods are implemented
as part of the KIELER open-source project1 and will make their way into the Eclipse
Layout Kernel (ELK)2.

Outline. We start by reviewing one-dimensional compaction in Section 1.1. Chap-
ter 2 and Chapter 3 introduce our contributions and their evaluations. We conclude in
Chapter 4.

1.1 One-Dimensional Compaction

One-dimensional compaction is a well-known technique to minimize the area occupied
by a set of objects in the plane. As opposed to the NP-hard two-dimensional com-
paction problem, it can be solved efficiently in time O(n log n), n being the number of
objects [14]. Lengauer thoroughly discusses one-dimensional compaction in the context
of VLSI-design and presents methods for several, quite general, variations [14]. In the
following, we present the concepts that are relevant for the remainder of this paper and
refer the reader to the book for further details.

Let R denote a set of rectangles in R2. A rectangle r = (rx, ry, rw, rh) is a quadruple
of the rectangle’s top-left position (rx, ry) ∈ R2 and its size (rw, rh) ∈ R+2. Let the
union (∪) of a pair of rectangles be defined as the set of points (a, b) ∈ R2 that are
covered by either of the rectangles (hence the resulting set does not necessarily describe

1http://rtsys.informatik.uni-kiel.de/kieler
2http://www.eclipse.org/elk
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(a)

(b)

Figure 1.1. Illustration of our first contribution. (a) An automatically drawn data flow dia-
gram with the layer-based layout methods by Schulze et al. [19]. Circled nodes
are pushed to the right due to the method’s nature. (b) The same diagram af-
ter our post-processing. The diagram’s width is reduced by about 16% and the
average edge length is reduced by over 50%.

(a) (b)

Figure 1.2. Illustration of our second contribution. Placing a diagram’s sub-graphs must
assert that no external edge (an edge connected to the outer boundary) crosses
a subgraph. In the example the Const node must not be placed to the left of
the other nodes because its external edge connects to the right border of the
compound node ConfigureInputFile. (a) A feasible placement. (b) The placement
optimized with one-dimensional compaction.
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Figure 1.3. A diagram with its corresponding constraint graph. (a) shows the diagram and
illustrates different spacing values. Edges’ vertical segments are converted into
rectangles. The constraint graph in (b) contains, as opposed to (c), redundant
constraints.

a rectangle); let the intersection (∩) be the set of points that are covered by both of
them. Similar to Lengauer, we say r is left of s, r, s ∈ R iff (rx + rw < sx) and say that
r and s overlap horizontally (r ≺ s) iff

(ry < sy + sh) ∧ (sy < ry + rh) ∧ r left of s.

We consider a set of rectangles R to be valid if ∀r 6= s ∈ R : r ∩ s = ∅.
The one-dimensional compaction problem in the x-dimension seeks for a transfor-

mation of a valid set of rectangles R into a valid set of rectangles R′ by changing x-
coordinates only and preserving the order ≺ such that the width w is minimized, with
w = | maxr′∈R′ (r′x + r′w) − minr′∈R′ r

′
x |. Note that the case to compact the height

can be defined analogously.
To solve this problem two steps are executed. First, a constraint graph is derived

from the given placement that encodes which rectangles horizontally overlap. Second,
the graph is used to position the rectangles in a way that yields minimum width.

1.1.1 Constraint Graph

In the constraint graph CG = (R, C) a valid set of rectangles R represents the nodes.
The constraints C ⊆ R × R form the directed edges of the graph. An edge c = (s, r)
with s, r ∈ R is added to CG iff r ≺ s. Note that this graph is acyclic by construction.

Naively, the constraint graph can be constructed in O(n2) time by checking for every
pair of rectangles if they overlap horizontally, n being the number of rectangles. However,
the number of edges is O(n2) and several edges may be redundant. Consider Figure 1.3
where the constraint between rectangles n1 and n4 is transitively guaranteed by the
two constraints (n1, n2) and (n2, n4). Figure 1.3c shows a constraint graph without
redundant constraints.

Lengauer shows how, for a given set of rectangles, the constraint graph can be cal-
culated using a scanline technique in time O(n log n) and with O(n) edges [14]. The
procedure is illustrated in Algorithm 1. Let Y − = {ry : r ∈ R} denote the set of the
upper coordinates of all rectangles and let Y + = {ry + rh : r ∈ R} denote the set of

3



Algorithm 1. Constraint graph
Input: R: set of rectangles
Data: cand[r]: constraint candidates indexed by rectangle, S: sorted set of rectangles
Output: C: set of constraints

1 points ← Y − ∪ Y +

2 sort points ascendingly (prioritizing Y +)
3 for p in points do
4 if p ∈ Y − then
5 r ← r(p)
6 put r into S
7 cand[r] ← S.left(r)
8 cand[S.right(r)] ← r

9 else
10 if S.left(r) exists ∧ S.left(r) = cand[r] then
11 add (r, S.left(r)) to C

12 if cand[S.right(r)] = r then
13 add (S.right(r), r) to C

14 remove r from S

lower coordinates. For a point p ∈ Y − ∪ Y +, let r(p) denote the rectangle for which p
was added. The scanline processes the points in increasing order from top-to-bottom.
An array cand is used to hold constraint candidates. The set S, ordered based on the
rectangles’ x-coordinates, allows to query the (current) predecessor (left(r)) and succes-
sor (right(r)) of a rectangle r according to the order. Its implementation must provide
insert and delete operations that run in O(log n) time and constant time operations to
access neighbor elements. When the scanline encounters an upper coordinate, it adds
the corresponding rectangle to S and updates the constraint candidates. When a lower
coordinate is encountered, the scanline “finishes” the corresponding rectangle by remov-
ing it from S and by checking the set of candidate constraints, possibly adding them to
the constraints of the final graph. For the correctness of this procedure and minimality
of the resulting constraint graph, see Lengauer [14].

1.1.2 Grouping

In certain use cases it is required that two or more rectangles keep their relative posi-
tioning to each other. While Lengauer calls them grouping constraints, we refer to them
as groups and use a slightly more restricted definition. Formally, we extend a constraint
graph CG = (R, C) to a grouped constraint graph GCG = (R, C,G) where every rect-
angle is part of a group. A group g ∈ G is a non-empty set of rectangles g ⊆ R with
their offset rδ to an imaginary origin (gx, gy). We assume that the left-most rectangle of
a group has an offset of zero. During compaction the relative positions between grouped
rectangles are to be preserved by the algorithm. A grouping is valid if no rectangle is
in more than one group: ∀gi 6= gj ∈ G : gi ∩ gj = ∅. Any constraint c = (r, s) ∈ C
can be neglected if r and s share the same group. Let g(r), r ∈ R, stand for r’s group.
out(g) denotes the outgoing constraints of g, i. e. {(r, s) ∈ C : r, s ∈ R ∧ r ∈ g}, and
in(g) denotes the incoming constraints.δ+(g) = |out(g)| denotes the out-degree of group
g, i. e. the number of constraints leaving g, δ−(g) = |in(g)| denotes the in-degree.
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Algorithm 2. Compact
Input: GCG = (R, C,G): grouped constraint graph

1 gx ← 0 ∀g ∈ G
2 sinks ← { g ∈ G : δ−(g) = 0 }
3 while sinks not empty do
4 g ← sinks poll
5 for r ∈ g do
6 rx = gx + rδ

7 for (s, r) ∈ {(s, r) ∈ C : r ∈ g} do
8 g(s)x = max(g(s)x, rx + rw)
9 remove (s, r) from C

10 if δ−(g(s)) = 0 then
11 sinks add g(s)

1.1.3 Compaction

The minimum width of the grouped constraint graph GCG is bound by its longest path.
To obtain a placement with minimum width we execute Algorithm 2. The method
iteratively assigns a position to sinks of the graph, initially setting all positions to zero
(gx = 0). After all rectangles of g have been placed, all incoming edges in(g) are
removed from the graph and the potential position of a constrained group g′ is set to
max(g′x,maxr∈g(rx + rw)). The procedure is repeated until all nodes have been placed,
which takes linear time. It is guaranteed to terminate since the graph is acyclic.
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2 Layer-Based Drawings

In 1981, Sugiyama et al. described the structure of a successful methodology to draw
directed graphs in the plane [20]. It is known under various names such as Sugiyama-
style layout, hierarchical layout, and layer-based layout. The approach and most of
the related research is summarized in a recent book chapter by Healy and Nikolov [12].
Essentially, it consists of five consecutive phases: (1) cycle breaking makes cyclic graphs
acyclic by reversing edges, (2) layering assigns nodes to indexed layers such that edges
always connect layers of lower index to higher index, (3) crossing minimization aims
at reducing the number of edge crossings, (4) node coordinate assignment determines
explicit y-coordinates for nodes, and (5) edge routing determines paths for edges and
assigns x-coordinates to nodes.

Most literature in this context assumes that nodes are of the same size. However,
this is not the case with most practical applications, and it has been observed that the
compactness of diagrams suffers in the presence of significant size differences [6, 10].
Existing methods to tackle this issue either result in unpleasant drawings or increase the
complexity of subsequent steps of the approach [15, 16, 6]. A common idea is to assign
large nodes to multiple layers, for instance, by splitting them into multiple small chunks.
The crossing minimization phase then has to keep edges from crossing nodes, and the
node coordinate assignment has to assert that all chunks receive the same y-coordinate.

Nonetheless, the problem becomes more and more imminent with diagram exploring
approaches where nodes sizes may differ by factors of 10 or even 100 [5, 10].

Recently, Schulze et al. presented several extensions to the layer-based approach to
handle data flow diagrams with ports (explicit attachment point of edges on a node’s
perimeter) and orthogonally routed edges [19]. See Figure 2.1 for an example. Working
with these kind of diagrams, we observed that scenarios where wide nodes (Consumer)
prevent more compact placements are quite common. The problem here is that the layer-
based approach assigns nodes rigidly to layers, marked by dashed lines in Figure 2.1, and
no pair of connected nodes may be placed in the same layer, thus pushing the Dropped
node to the right. Here, one-dimensional compaction allows to reduce the diagram’s
overall width by breaking the rigid layering and pushing everything as far as possible to
the left. Vertical segments of orthogonally routed edges may be regarded as rectangles
with either zero or very small width. Since the compaction procedure can be applied to
the final drawing, after the traditional layer-based approach has finished completely, no
additional complexity is added to any of the layer-based phases.

In the remainder of this section, we show how to convert a drawing of a graph into
a one-dimensional compaction problem to significantly reduce the drawing’s width and,
in particular, show how to address the peculiarities of data flow diagrams. An example
was already shown in Figure 1.1.
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Figure 2.1. Drawing of a data flow diagram with ports, produced with the layer-based ap-
proach. The vertical dashed lines illustrate the created layers for the top-level
graph. The layering of the nodes contained in the Consumer node is not shown
here.

2.1 Width Reduction

Diagrams as the one seen in Figure 2.1 can be formalized as directed hypergraphs, which
are pairs HG = (V,H). V is a set of nodes and H ⊆ (P (V )×P (V )) a set of hyperedges
that are connected to nodes via one of the nodes’ ports. Schulze et al. represent each
hyperedge h = (S, T ) ∈ H by a set of edges, i. e. for every pair s ∈ S and t ∈ T a directed
edge e = (s, t) is introduced. This allows to use known layer-based methods without the
requirement to specifically address hyperedges. Both nodes and edges can carry labels
that contribute to their bounding boxes. Additionally, a drawing must adhere to certain
spacings between nodes and edges. Figure 1.3 illustrates the three spacings snn, sne, and
see.

After applying the layer-based approach with the extensions by Schulze et al. [19] in
conjunction with any orthogonal edge routing technique, e. g. the one by Sander [18],
we can make some assumptions: (1) nodes and edges don’t overlap; (2) prescribed
spacings are satisfied; (3) the connection point of an edge on the corresponding node’s
perimeter is fixed. These assumptions allow to apply one-dimensional compaction to HG
by transforming it into a set of rectangles R: We add the bounding box of every node
v ∈ V as a rectangle to R. Furthermore for every vertical segment of an edge e ∈ H, we
add a rectangle with corresponding height and unit width to R. To guarantee enough
room for edge labels they can be added to the set of rectangles as well. Nevertheless,
to get satisfying results, there are several subtleties to be addressed which we discuss in
the next paragraphs.

2.1.1 Spacing

When it comes to spacings a layout algorithm has to leave between a diagram’s elements,
different scenarios are possible. We discuss three: (1) A single global spacing value sg

7



(a) Input (b) Naive (c) Desired

Figure 2.2. Example of applying one-dimensional compaction to an input graph (a) with
different objectives of minimal width and minimal edge length in (b) and (c).

is used to separate any pair of elements from each other. (2) Every element has an
individual spacing value se, possibly a different one for each side. (3) Several global
spacing values are to be preserved between pairs of elements depending on their types.
For instance, Figure 1.3a illustrates three spacings snn, sne, and see between pairs of
nodes, pairs of a node and an edge, and pairs of edges.

Scenario (1): The global spacing sg can straight-forwardly be preserved during com-
paction by adding sg

2
to either side of the rectangles that represent each element before

the constraint graph is computed.
Scenario (2): As every element can specify its own spacing value se, only adding se

2

may result in spacing violations. One would thus have to add se to every side. However,
this may result in an invalid input to the scanline algorithm. If spacing violations are
not acceptable, a possible solution is to re-create a valid input using a dedicated overlap
removal algorithm [2]. The algorithm would have to support groupings.

Scenario (3): Similar to the previous scenario, it is not always possible to guaran-
tee valid spacings by enlarging the rectangles. Say sne <

snn
2

. Extending every node
representing rectangle using snn

2
may result in an overlap between a node representing

rectangle and a rectangle that represents a vertical segment. Again, this is an invalid
input for the scanline algorithm.

To resolve this, we incrementally build a constraint graph by executing the scanline
algorithm multiple times. This may result in more constraints than absolutely necessary.
Each time a different subset of the overall set of rectangles is considered and each time
the rectangles are enlarged by a different value. Consequently, a rectangle has no unique
value by which it is enlarged, which is why we operate the subsequent compaction step on
the original-sized rectangles. For this to be feasible, however, we associate an individual
“length” with every constraint which corresponds to the minimum separation between
the two involved elements and therefore re-assembles the enlarging of rectangles. Now,
when executing the compaction step, the position of an element is determined by the
current position of an outgoing constraint’s target and the determined “length”.

We run the scanline algorithm three times: First, only node representing rectangles
are considered and enlarged by snn

2
. Second, edge representing rectangles are enlarged

8



(a) (b) (c) (d)

Figure 2.3. When aiming for a compact layout with short edges some special cases have to
be considered. In (a) and (b) node n1 should be allowed to be placed below n2.
In (c) the vertical segment of the edge (n1, n2) should stay close to n1. In (d)
external ports’ labels of different lengths reveal compaction potential; n2 can be
moved further to the left.

by see
2

and constraints are generated solely between pairs of edges. These two passes
guarantee valid spacings between pairs of nodes and pairs of edge segments and a valid
input to the scanline algorithm. The third pass is executed using all rectangles. This
time the selection of the enlarging value is more intricate and we distinguish three cases
based on the value of sne. Either of the three cases results in a valid input to the scanline
algorithm by carefully enlarging rectangles such that no overlaps are introduced. Note
that the first two cases are not exclusive. If both conditions hold, either case can be
chosen. The third case permits constraints though that result in a compacted diagram
with slightly violated prescribed spacings. This is because the rectangles are enlarged
by the smallest spacing in order to avoid overlaps.

sne <
snn
2

: Add sne to all node representing rectangles.

sne <
see
2

: Add sne to all edge representing rectangles.

sne > min{snn, sne} : Add min{snn, see} to the node representing rectangles.

A different way to ensure valid spacings in every scenario is to compute the constraint
graph in the naive way mentioned in Section 1.1.1. While it takes quadratic time and
yields a quadratic number of constraints, the pair-wise comparison of elements allows to
handle every scenario discussed above. Again, a length has to be associated with every
constraint.

2.1.2 North and South Ports

With the extensions by Schulze et al., edges are allowed to connect to the northern
and southern border of a node. Consider the edge e = (n5, n6) in Figure 2.2. One-
dimensional compaction, as specified above, would allow the edges’ vertical segments
to detach from the nodes’ perimeters. To prevent this, we create a common group for
rectangles of a node and of any vertical segments of edges that attach to the northern
or southern side. The offset between the two rectangles is defined by the segment’s
attachment point subtracted by the node’s position. Additionally, for edges such as e,

9



Table 2.1. Results of applying one-dimensional compaction to layer-based drawings of
dataflow diagrams. LR stands for left compaction followed by right compaction, and EL
stands for compaction aiming for short edges. n̄ and ē denote the average number of nodes
and edges. w̄ denotes the average width after compaction in percent of the original width, ēl
the average edge length. Standard deviations are given in brackets.

n̄ ē w̄(%) ēl(%)

EHANDBOOK 25.4 [15.0] 30.8 [18.3]
LR 83.7 [11.9] 78.2 [15.4]

EL 85.3 [11.2] 76.6 [16.2]

Ptolemy 15.7 [7.4] 19.6 [11.5]
LR 93.6 [8.2] 88.3 [13.8]

EL 94.3 [7.4] 87.1 [13.3]

where the edge directly connects a northern port with a southern port, we can improve
the result by setting the spacing between the two involved vertical segments to zero if
they belong to the same edge. Compare Figure 2.2b and Figure 2.2c.

2.1.3 Edge Length

One-dimensional compaction does not consider the length of an edge. In Figure 2.2b,
the placement of nodes is reasonable when aiming for minimal width. To get a visually
pleasing layout, however, n2 has to be positioned as far to the right as possible to reduce
the edge length, without violating spacing constraints. The problem to minimize the
total edge length can be formalized as a minimum cost flow problem and has been well
studied in the context of VLSI design, where the length of wires should be minimized [14,
11]. Here, we suggest two simple solutions specifically tailored for graph layout.

LR. To achieve minimal width with some edge length reduction, we compact everything
to the left, fix the positions of nodes that have no outgoing edge in the original graph,
and execute another compaction pass to the right. This would yield the position for
node n2 as seen in Figure 2.2c but may yield sub-optimal results for other diagrams.

EL. To guarantee minimal edge length, we simply take the constraint graph, add the
edges of the original graph, and solve the problem using the network simplex algorithm
presented by Gansner et al. [8]. The algorithm runs fast in practice and is already
present in many implementations of the layer-based approach since it can be used for
the layering and node placement step. Care has to be taken when adding the original
edges though. Consider Figure 2.3 (a) and (b). Adding an edge from n1 to n2 would
prevent n1 from being placed below n2. We solve this using two ideas presented by
Gansner et al. We add an auxiliary node to the network simplex graph and two edges
from it to both of the existing nodes. The minimal lengths of these edges are chosen
such that they reflect the port offsets. Furthermore, vertical segments of inverted ports,
such as the one of edge (n1, n2) in Figure 2.3c, should stay close to the port’s node.
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Figure 2.4. Execution times of the two compaction strategies plotted against the number of
nodes: LR (bold lines) and EL (thin lines). The solid lines show the absolute
execution time in seconds (left y-axis) and the dashed lines show the relative
execution time compared to the overall algorithm (right y-axis).

2.2 Discussion

Our main goal is to improve on diagrams that occur in practice. We therefore do not
use randomly generated diagrams and diagrams from often-used graph sets, such as
the Rome graphs where all node are of unit size. Our evaluation set consists of 69
diagrams from the commercial interactive model browsing solution EHANDBOOK1 and
a subset of 529 diagrams shipping with the academic Ptolemy project [17]. Note that
both diagram types are hierarchical. Nodes can contain further nodes, i. e. sub-diagrams.
We extracted such sub-diagrams and evaluate them separately, which is feasible since
the layout algorithm considers every sub-diagram separately anyway. For both diagram
types the number of nodes per hierarchy level averages between 15 and 25 with slightly
more edges.

The results of applying our method can be seen in Table 2.1. We measured values for
both compaction strategies mentioned in Section 2.1: subsequent left-right compaction
with node locking (LR) and minimizing edge length (EL). The average width of the
drawings decreased by about 16% and 6%, the edge lengths decreased by 22% and 12%.
No significant difference can be observed between the two compaction strategies. Still,
edges that can obviously be shortened are immediately noticed by users (cf. Figure 2.2).
We thus suggest to use compaction with edge length minimization.

As seen in Figure 2.4, both methods finish in well under 10ms for up to 100 nodes,
with EL using about a fifth of the overall execution time and LR about a tenth. For up
to 1000 nodes EL’s execution time increases significantly, which is expected since the
network simplex algorithm is used. Still, it finishes in under 0.6s. Therefore all setups
are fast enough for applications that involve user interaction. We ran the algorithm on
an Intel i7 2GHz CPU and 8GB memory laptop using a 64bit JVM.

1http://www.etas.com/de/products/ehandbook.php
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3 Connected Components With
External Extensions

When a diagram consists of multiple sub-graphs that are not connected among each
other (see Figure 1.2 for a simple example), the problem arises to place the sub-graphs
in the plane such that little space is used. Each sub-graph can be approximated by
its bounding box and the problem can be formulated as a rectangle packing problem.
However, such problems are often NP-complete [14] and rectangles may be poor approx-
imations. Freivalds et al. and Goehlsdorf et al. discuss relevant related work and present
heuristics for the problem based on a polyomino representation, which approximates ev-
ery sub-graph using squares on a grid [4, 9]. The approaches work well for flat diagrams.
With data flow diagrams, a node can contain a sub-graph and nodes of the sub-graph
can be connected to nodes on other hierarchy levels via so-called external ports on the
hierarchical node’s perimeter. The edge between FrontDropQueue and VariableSleep in
Figure 2.1 represents such an external edge. When placing the sub-graphs in the plane
these edges have to be considered. They are not allowed to cross other sub-graphs. This
cannot be prevented using the previously mentioned methods. Furthermore, sub-graphs
should be placed such that the overall length of external edges is as small as possible.

Lai et al. present a method based on the sequence-pair representation, which is solved
using simulated annealing [13]. It allows to specify for a module of a VLSI design,
i. e. a rectangle, that it has to touch one of the four boundaries. However, this is not
sufficient for the previously described problem and again rectangles do not approximate
sub-graphs well.

In the following, we generalize the problem, show how a placement of sub-graphs with
connections to external ports can be constructed that is guaranteed to be overlap-free,
and use one-dimensional compaction to improve the drawings. To better approximate
a sub-graph, we construct its rectilinear convex hull and split it into a set of rectangles.
Both can be done in O(n log n) time using a scanline method, where n is the number
of points used to represent the area covered by a sub-graph in the first case, and the
number of corners of the rectilinear convex hull in the second case.

Definitions. Let C be a set of components. Each component ci ∈ C is a tuple ci =
(Ri,Ei), where Ri is a non-empty set of rectangles and Ei is a (possibly empty) set of
external extensions. Rectangles are 4-tuples. The k-th rectangle of ci is rki , with all
elements in R. We assume that all rectangles of the same component somewhere touch
alongside their border. An external extension eli = (dli, δ

l
i, ε

l
i) of a component ci is a

triple of a direction dli ∈ {n, e, s, w}, an offset δli relative to r0i , and a width εli. The
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Figure 3.1. The diagram shows two components c0 and c1. c0 consists of three rectangles and
two external extensions and c1 consists of a single rectangle and two extensions.
The external extensions e01 and e10 are allowed to overlap since one is vertical and
the other one is horizontal. They are not, however, allowed to overlap with any
of the rectangles.

offset and the width describe an extension clockwise, i. e. for a south extension, the
offset is its right-most point and the width points to the left. Intuitively it represents
a line or a strip attached to the border of a rectangle which extends infinitely into the
specified direction. We say an extension (d, δ, ε) is horizontal if d ∈ {w, e} and vertical
if d ∈ {n, s}. See Figure 3.1 for an illustration.

A set of components C is considered proper if no pair of components overlaps and no
external extension overlaps a component.

3.1 Construction of a Proper Solution

Using compaction to minimize the area of a set of components requires a proper set of
components to start with. We use a simple placement algorithm we call cell packing that
turns a (possibly improper) set of components into a proper one by calculating sensible
x and y-coordinates for all rectangles. Algorithm 3 shows the basic approach, and we
will refer to the pseudocode in the following explanations.

The algorithm takes a set of components to be placed as its input, and computes x and
y-coordinates for each component. The basic idea is to add components to a container
(cont function in the pseudocode) divided into nine cells, as shown in Figure 3.2. Each
cell can hold components with certain types of external extensions: a component with
extensions to the northern and western side will end up in the top left cell, while a
component with no extensions at all will end up in the center cell (cells function). Each
cell can conceptually hold arbitrarily many components since they can easily be placed
inside the cell without illegal overlaps.

However, components that have external extensions to opposing sides cannot simply
be added to a single cell: placing a component with external extensions to the eastern and
western sides in only the left cell would possibly result in its external extensions overlap-
ping with components added to the center and right cells (see Figure 3.2b). Therefore, it

13



Algorithm 3. Cell Packing
Input: C: set of components to be placed

Data: cont : C→ N: mapping of components to containers
Data: cells : C→ P{nw, n, ne, w, c, e, sw, s, se}: mapping of components to container cells

1 cont(c)← ⊥ ∀c ∈ C

2 cells(c)← ∅ ∀c ∈ C

3 for c ∈ C do
4 n← min

{
i ∈ N : canAddTo(c, cont−1(i)

}
5 cont(c)← n
6 cells(c)← computeCells(c)

7 (x, y)← (0, 0)
8 for i ∈ cont(C) do
9 (x, y)← placeComponents(f−1(i), (x, y))

NNW NE

CW E

SSW SE
(a) Container with nine cells.

r0
r1 r2

r3

(b) Container with nine cells.

r4

(c) Final placement of containers.

Figure 3.2. (a) The cell packing algorithm places components in containers that are divided
into nine cells. (b) Each cell can hold a certain type of component, depending on
its external extensions. Having extensions on opposite sides, such as r3, forces a
component to span multiple cells. (c) In this example, the rectangle r4 had to
be placed in a new container since it spans the center row of container cells, but
the center row in the top left container was not free.
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(a) (b)

Figure 3.3. Placing a diagram’s sub-graphs must assert that no external edge crosses a sub-
graph. We show how to construct a feasible placement (a) and how to compact
it using one-dimensional compaction (b).

needs to span all three cells and needs to prevent other components from being added to
either them. We call such components spanning components. In Figure 3.2c, a spanning
component had to be placed in a new container since the top left container’s center row
was already partly occupied.

If a component is to be added to a cell which already contains a spanning component,
a conflict occurs because the cell can only hold the spanning component. Take for
example the situation in Figure 3.2. Here, the component rc has external extensions
the the left and right side and would thus be placed in the middle row of the top left
container. The two left cells of the middle row already contain components, however, and
thereby prevent rc from being added. The canAddTo function called in the pseudocode
is defined on a component to be added to a container and a set of components already
in that container and checks whether adding the new component would cause such a
conflict or not. We simply look for the first container the component can be added to
without causing a conflict and add the component to it (lines 4–6). This may actually
be a completely new container: a component will never cause a conflict with an empty
set of components.

Once all components have been added to containers, they can by design be easily
placed inside their cells without illegal overlaps, which is what line 9 does. We end up
with containers that potentially have external extensions protruding to all four sides.
To avoid illegal overlaps, the containers are placed along a diagonal, which only pro-
duces legal overlaps among external extensions. We thus end up with a proper set of
components that can be compacted.

Note that the behaviour of the cell packing algorithm could be changed to allow
more components to share a container. If a component with external extensions to the
western and eastern sides is to be added to a container, it could occupy a separate,
fourth row regardless of whether the center row already has components in it or not.
More components with horizontal external extensions could easily be added to the same
container, but components with external extensions to the northern and southern side
would cause a conflict.
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3.2 Compaction

For the use case of compacting layer-based drawings described in Chapter 2, it is suf-
ficient to compact along the x-dimension only. This time, however, it is necessary to
compact in both dimensions, which is possible by continuously applying one-dimensional
compaction in alternating dimensions and directions until no further, or little, progress
is made. For a given set of components C we construct a grouped constraint graph. Each
component is represented by a group and the component’s rectangles are added to it.
The external extensions are converted into finite rectangles: each external extension is
cut at the point where it intersects with the bounding box surrounding all components of
C. After each compaction pass these lengths have to be adjusted to prevent components
from permuting.

Obviously, rectangle representing horizontal and vertical extensions cannot be present
at the same time during one-dimensional compaction since the set of rectangles may
not be valid. Remember that external extensions are allowed to overlap with each
other but the representing rectangles are not allowed to overlap. Still, it is important
that the horizontal extensions are considered during vertical compaction, to prevent
nodes from overlapping with external extensions (the same is true for vertical extensions
during horizontal compaction). The independent application of horizontal and vertical
compaction allows to use two different sets of rectangles depending on the compaction
direction: H = R ∪ {(d, δ, ε) ∈ E : d ∈ {n, s}} for horizontal compaction and V =
R ∪ {(d, δ, ε) ∈ E : d ∈ {e, w}} for vertical compaction.

As mentioned earlier, the goal may not only be a small area but also short external
extensions, for instance, if they represent edges of a diagram. We support this by execut-
ing an additional compaction pass in each dimension and applying a locking strategy as
discussed in Section 2.1’s paragraph on edge length. Alternatively, the network simplex
approach can be used with an artificial source and sink node connected to rectangle
representing nodes with corresponding external edges.

3.3 Discussion

The methods presented in the preceding sections allow us to properly draw diagrams such
as Figure 1.2 and Figure 3.3. So far, this was not possible. While we were satisfied with
most results we have seen so far, we believe that both the construction and compaction
can be significantly improved. Our current set of example diagrams is too small for a
meaningful quantitative evaluation though.
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4 Final Remarks

In this paper we show how one-dimensional compaction can be applied to two problems
from the field of automatic diagram layout, more specifically, layer-based drawings and
placement of disconnected graphs. We tested our methods with data flow diagrams from
practice and found that the width of layer-based drawings can significantly be reduced
and that they allow disconnected graphs with hierarchy-crossing edges that are part of
hierarchical graphs to be placed.

In future work, we plan to examine the possibility to insert jogs during horizontal
compaction, as discussed by Chen and Lee [1]. Mapped to our problem this means
splitting a vertical segment and allowing the edge to take a detour, see Figure 4.1b.
Furthermore, in scenarios such as Figure 4.1c it is desirable to let nodes jump over vertical
segments. Furthermore, we plan to collect a larger set of diagrams from practice to
evaluate to component compaction and plan to inspect further compaction strategies: a
combination of our construction and polyomino packing [4, 9] as well as stress-minimizing
methods that are capable of preventing or removing overlaps [3, 7].

(a) (b) (c) (d)

Figure 4.1. Two potential improvements of the layer-based compaction. In (b) the edge was
elongated and an additional horizontal segment was introduced to further reduce
the diagrams width. In (d) node n3 is allowed to jump over the vertical edge
segment. Note that the order of n2’s edges must not be changed.
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