
INSTITUT FÜR INFORMATIK

A Systematic Comparison of Different
Approaches for Unsupervised Extraction

of Text from Scholarly Figures
[Extended Report]

Falk Böschen
Ansgar Scherp

Bericht Nr. 1607
November 2016
ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL



Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

A Systematic Comparison of Different
Approaches for Unsupervised Extraction of Text

from Scholarly Figures [Extended Report]

Falk Böschen
Ansgar Scherp

Bericht Nr. 1607
November 2016
ISSN 2192-6247

e-mail: fboe@informatik.uni-kiel.de,
asc@informatik.uni-kiel.de

An abridged version of this work is published at the 23rd International
Conference on Multimedia Modeling, Reykjavik, Iceland, January 2017.



A Systematic Comparison of Different
Approaches for Unsupervised Extraction of Text

from Scholarly Figures

[Extended Report]

Falk Böschen1 and Ansgar Scherp1,2

1 Kiel University, Kiel, Germany
{fboe,asc}@informatik.uni-kiel.de

2 ZBW - Leibniz Information Centre for Economics, Kiel, Germany
a.scherp@zbw.eu

Abstract. Different approaches have been proposed in the past to ad-
dress the challenge of extracting text from scholarly figures. However,
so far a comparative evaluation of the different approaches has not been
conducted. Based on an extensive study, we compare the 7 most rel-
evant approaches described in the literature as well as 25 systematic
combinations of methods for extracting text from scholarly figures. To
this end, we define a generic pipeline, consisting of six individual steps.
We map the existing approaches to this pipeline and re-implement their
methods for each pipeline step. The method-wise re-implementation al-
lows to freely combine the different possible methods for each pipeline
step. Overall, we have evaluated 32 different pipeline configurations and
systematically compared the different methods and approaches. We eval-
uate the pipeline configurations over four datasets of scholarly figures of
different origin and characteristics. The quality of the extraction results
is assessed using F-measure and Levenshtein distance. In addition, we
measure the runtime performance. The experimental results show that
there is an approach that overall shows the best text extraction qual-
ity on all datasets. Regarding runtime, we observe huge differences from
very fast approaches to those running for several weeks.

Keywords: Scholarly Figures · Text Extraction · Comparison

1 Introduction

Scholarly figures are data visualizations in scientific papers such as bar charts,
line charts, and scatter plots [9]. Different research has been conducted to extract
and use text from figures like translating the text to Braille [17], re-engineering
the raw data from the figures [28], or just for image search [31]. Many ap-
proaches follow a semi-supervised text extraction approach [8, 28]. However,
semi-supervised approaches do not scale with the amount of scientific literature
published today. Thus, unsupervised methods are needed to address the task of
text extraction from scholarly figures. This task is challenging due to the hetero-
geneity in the appearances of the scholarly figures such as varying colors, font



2 Falk Böschen and Ansgar Scherp

sizes, and text orientations. Nevertheless, extracting text from scholarly figures,
such as the examples shown in Figure 1, is an important task as the text provides
additional information that is not contained in the papers [3]. To the best of our
knowledge, no comparison of the different approaches for text extraction from
scholarly figures has been conducted so far. Most likely the reason behind this
is that existing works come from various different research areas. Furthermore,
there are no annotated, high-quality datasets as gold standard publicly available.
The only exception is the CHIME dataset. It has high quality gold standard an-
notations, but it does not contain orientation information. In addition, several of
the scanned figures are only provided in low-quality resolution. Thus, a thorough
assessment and comparison of the different text extraction approaches has not
been conducted.

x

Axx

Mxx

Pxx

Bxx

.xxx

.Axx

.Mxx

.Pxx

.Bxx

Axxx

.FB_
.FBP

.FB&
.FBB

.FBF
.FFx

.FF.
.FFA

.FF/
.FFM

.FF_
.FFP

.FF&
.FFB

.FFF
Axxx

Axx.
AxxA

Axx/
AxxM

Axx_
AxxP

Axx&
AxxB

AxxF
Ax.x

AAxx

AMxx

APxx

SeasonWjbeginningWinWtheWsecondWhalfWofWtheWyearWindicatedvW

NW
of

WW
ha

le
sW

T
ak

en

NoteJW
TheWwhalesWcaughtWinW.FB_CW.FBPCWandWjustWoverWhalfWofW.FB&WjtotallingW_C_.FWwhalesvWwereWkunderW
objectionkWofWtheWIWCWban;WtheWrestWj./CPP/WwhalesvWareWunderWtheWkscientificWpermitkWexceptionpWW
AllWnumbersWcurrentWthroughWtheWendWofWtheWAx.xmAx..Wseasonp

SourceWWInternationalWWhalingWCommissionpWretrievedWMayW&CWAx.ACWfrom
WWWWWWWWWWWWWWWhttpJmmwwwpiwcofficeporgmconservationmtable_permitphtmWWand
WWWWWWWWWWWWWWWhttpJmmwwwpiwcofficeporgmconservationmtable_objectionphtm

SpermWjNpWPacificWuWCoastalv

MinkeWjAntarcticv
MinkeWjNorthWPacificv

BrydesWjNpWPacificWuWCoastalv

SeiWjNorthWPacificv

MinkeWjCoastalv

FinWjAntarcticv

WhalingWinWJapanWSinceW.FB_

46

3

3

2

2

White Hispanic Pacific Islander Black Asian

meta-chart.com

Fig. 1. Exemplary scholarly figures (Source: Wikimedia Commmons (Public Domain))

Based on the related work, we have defined a generic pipeline of six sequen-
tial steps that abstracts from the various works on text extraction from scholarly
figures. We have re-implemented and systematically evaluated the most relevant
approaches for text extraction from scholarly figures as described in the litera-
ture. In total, we have investigated 7 different pipeline configurations motivated
by approaches described in the literature. Each configuration is a combination
of six to nine methods for the sequential steps in the extraction pipeline. Fur-



Text Extraction from Scholarly Figures: A Systematic Comparison 3

thermore, we have created 25 modifications of the best performing pipeline con-
figuration to systematically measure the influence of different methods applied
in the text extraction pipeline. Thus, in summary we have compared 32 different
configurations for text extraction from scholarly figures in this paper.

We assess each pipeline configuration with regard to the accuracy of the text
location detection via precision, recall, and F1-measure. In addition, we evaluate
the text recognition quality using Levenshtein distance. Finally, we are compar-
ing the runtime of the different configurations to find the most efficient ones.
We use four datasets in our evaluation: one from economics [2] (EconBiz), one
synthetically generated [18] (CHIME-S), one scanned and collected on the Inter-
net [32] (CHIME-R), and one created from figures of academic books provided
by the publisher DeGruyter3 (DeGruyter). We manually labeled the EconBiz
dataset and DeGruyter dataset, while the CHIME datasets were created in 2006
by the Center for Information Mining and Extraction, School of Computing,
National University of Singapore.

In summary, the contributions of the paper are as follows:

(i) We conduct a systematic comparison of in total 32 configurations of a generic
pipeline for text extraction from scholarly figures. Each configuration consists
of a combination of six to nine methods from a total of 21 different methods
that we have implemented and evaluated.

(ii) We make available four manually labeled datasets of scholarly figures that
allow reproducing and extending our results.4

(iii) Furthermore, we also make available the implementation of our generic
pipeline, including the 21 methods, as well as the 32 configurations for text
extraction from scholarly figures that we compared. This allows for reproduc-
ing our results and applying our generic implementation on other datasets.

The subsequent section discusses the related work in the field. It serves as
foundation for our generic pipeline and the different methods used in the pipeline
configurations. In Section 3, the sequence of six processing steps of the generic
pipeline is briefly described. The individual methods that are selected for com-
parison in this work are described in Section 4 and the pipeline configurations are
introduced in Section 5. Section 6 describes the four datasets and the measures
used in our evaluation. The results are described in Section 7 and discussed in
Section 8, before we conclude.

2 Related Work

Text extraction from scholarly figures is addressed by research groups from dif-
ferent domains. Thus, one finds different terms that basically describe the same
concept, such as information graphics [3], figures [9], charts [15], diagrams [5],

3 http://www.degruyter.com/
4 http://www.kd.informatik.uni-kiel.de/en/research/software/

text-extraction



4 Falk Böschen and Ansgar Scherp

and different variations of them. In the following, we will commonly denote them
as scholarly figures or short figures.

First, we discuss relevant works on text extraction from scholarly figures.
Subsequently, we consider cartographic maps, domain-specific approaches from
life sciences and chemistry, as well as briefly discuss approaches for making fig-
ures accessible to visually impaired users as well as applying text extraction on
natural photos.

Scholarly Figures An early work on text extraction from scholarly figures is
by Huang et al. [14, 15]. Their text extraction pipeline starts with a Connected
Component Labeling (CCL) [26] that generates components of coherent text ele-
ments and graphics elements. In a subsequent step, these elements are separated
by applying a series of filters. In the next step, the text elements are grouped
using a derivation of Newton’s formula for “Gravity” from classical physics. The
authors claim that this method is capable of separating text at different ori-
entations into different groups of text elements. Optical character recognition
(OCR) is applied on these text groups and the recognized text is classified into
strings and numbers. Finally, the recognized text is manually corrected in order
to have a clean assignment to the corresponding graphical elements. Sas and
Zolnierek [27] propose a three-stage approach for text extraction from figures.
Starting with a conversion of the input image to gray-scale, the authors apply
filtering operations, binarization, and CCL to generate coherent regions. Regions
are filtered by empirical thresholds and classified into text and graphic elements
using a decision tree. Tesseract is used for OCR. Besides normal orientation,
the input to the OCR engine is also rotated at a 90◦ angle to capture vertical
text elements such as labels of the y-axis. Finally, the text detection is verified
by assessing the number of special characters recognized in the text regions.
Unfortunately, the authors did not assess the quality of their OCR results. Dia-
gramFlyer [5] is a retrieval system for bar charts or scatter plots. Although the
approach sounds to be very promising, the authors do not provide any technical
specifications or details on how their extraction pipeline works. This renders it
impossible to consider their work in a systematic comparison. Finally, we have
developed a pipeline called TX for unsupervised text extraction from scholarly
figures [1, 2]. The TX pipeline uses an adaptive binarization method based on
Otsu’s method. Subsequently, CCL is applied to extract coherent regions. A few
heuristic rules are applied before the regions are clustered using DBSCAN in
order to separate text elements from graphical elements. A Minimum Spanning

Region
Extraction

Region
Classification

Line
Separation Pre-Processing

Optical
Character

Recognition
Post-Processing

1 2 3 4 5 6

TextFExtractionFPipelineFigure Text

Fig. 2. Generic pipeline for text extraction from figures abstracted from the literature



Text Extraction from Scholarly Figures: A Systematic Comparison 5

Tree (MST) clustering is applied to detect single text lines. The orientation of
these text lines is computed using a discrete Hough transformation and each line
is rotated into horizontal mode in order to send it to a standard OCR engine.
Here, the Tesseract5 OCR engine is used.

Cartographic Maps Cartographic maps use text elements to show city and street
names, regions, and landmarks. An early work on text extraction from maps is
the approach by Deseilligny et al. [11] which relies on CCL for extracting re-
gions. However, in contrast to the works on scholarly figures discussed above,
Deseilligny et al. normalize each region in order to apply a rotation invariant
character recognition. Multiple character hypotheses are generated for each re-
gion and those hypotheses are selected which create coherent strings and follow
specific syntactic rules.

A more recent approach is the semi-automatic text extraction proposed by
Chiang et al. [8]. In contrast to most of the other works, the input image is
not converted to gray-scale. Instead, a color quantization algorithm is applied.
The authors separate text elements from graphical elements using a run-length
smoothing algorithm based semi-automatic extraction that requires a positive
and a negative example for each text-color/background-color combination. Text
lines are detected by applying dilation operators on the connected components.
The orientation of each line is estimated using a Single String Orientation De-
tection algorithm, which is based on morphological operations. The algorithm
evaluates all possible orientations of text line candidates in a brute-force manner.
The text line is rotated to horizontal orientation and AbbyyFineReader6 is ap-
plied for OCR. After the OCR phase, a recognition confidence score is computed
to filter the results.

Domain Specific Text Extraction A text detection algorithm for biomedical im-
ages was proposed by Xu and Krauthammer [31] as part of the Yale Image
Finder. The authors first detect and remove so-called layout elements, followed
by a binarization, median filter, and edge detection with the Sobel operator.
The text region extraction, based on horizontal and vertical histogram projec-
tion analysis, is conducted on the edge image. This is performed recursively until
the image cannot be split any further. During this recursive processing of the
regions, heuristic filters are applied to only subdivide those regions that contain
text and discard the others.

Lu et al. [23] developed a retrieval engine for scholarly figures in chemistry.
First, the input image is converted to gray-scale and an edge image is computed.
A Hough transformation is applied on the edge image in order to compute a fea-
ture vector. The feature vector is used to classify the input in order to find 2D
plots. Only 2D plots are further processed. First, the 2D plot is binarized. Then,
the axes are detected and the plot is segmented by applying CCL. The text de-

5 https://github.com/tesseract-ocr/
6 http://www.abbyy.com/ocr-sdk/



6 Falk Böschen and Ansgar Scherp

tection is based on fuzzy rules and includes a method for separating overlapping
characters. The recognition of text strings is conducted using GOCR7.

Access for the Visually Impaired Another approach that requires text extraction
from figures is the work by Jayant et al. [17]. Their goal is to translate figures
into Braille language for the visually impaired. First, a color reduction is con-
ducted with Adobe Photoshop. Subsequently, the figure is manually classified
into a set of predefined figure types. CCL is applied to the figure to extract
regions. In order to separate text elements from graphical elements, the authors
manually train a Support Vector Machine (SVM) per figure type as well as per
book where the figures were taken from. Thus, the authors make the assump-
tions that all figures of a certain type have a similar design throughout a single
book. Subsequently, a separation into text line structures is performed, using a
so-called label training algorithm which uses a Minimum Spanning Tree with
manually created test data. The text line orientation is estimated by minimizing
the perpendicular squared distance. Finally, OCR is conducted with Omnipage8

or AbbyyFineReader. Carberry et al. [4] analyze figures, especially bar charts,
pie charts, and line charts, to generate textual summaries for visually impaired
users. Their Visual Extraction Module (VEM) claims to be capable of extracting
text elements and their position [6]. However, the paper does not provide techni-
cal details on how this is achieved. In their current work [4], manually generated
datasets are used instead of the VEM, which may indicate that the VEM does
not generate output of sufficiently high quality.

Approaches on Natural Photos Besides text extraction from scholarly figures
and related images, there is also research regarding OCR on natural photos.
The research in this area has several interesting ideas to solve the OCR prob-
lem. For example Olszewska [24] presented a template-matching approach to
extract numbers of arbitrary position and orientation in the captured 3D space
in images using contour information. Other approaches show promising results
as well [12, 22]. However, the works for text extraction from natural photos often
make specific assumptions about the difference in appearance of text and back-
ground/graphic elements. For example, the assumptions that text elements are
generally smaller than graphic elements [13], that text elements can be identified
via their edges [22], or that text has a unique or more homogeneous color [13].
These assumption often do not hold for scholarly figures like charts, diagrams,
or graphics.

3 Generic Pipeline

Based on the related work, we derived a generic pipeline for text extraction from
scholarly figures. The pipeline consists of six sequential steps as illustrated in
Figure 2. Each step can be implemented by different methods. This allows to

7 http://www-e.uni-magdeburg.de/jschulen/ocr/index.html
8 http://www.nuance.com/for-business/by-product/omnipage/csdk/index.htm



Text Extraction from Scholarly Figures: A Systematic Comparison 7

Fig. 3. Overview of the possible pipeline configurations

compare the pipeline configurations from the literature as well as to provide new
configurations of so far not investigated combinations of the various methods.
Below, we provide a brief summary of the different sequential steps that we iden-
tified for the generic pipeline. A formalization of the pipeline can be found in our
earlier publication [1]. Please note, for describing the steps of our generic pipeline
we use the following terminology: We refer to scholarly figures as images, since
it is the accepted term in computer vision. A region is a set of pixels of an
image. Each region constitutes either one or sometimes multiple text characters
or graphical symbols. A text line or text element is a set of regions representing
text.

The input to the pipeline is a (color) image of a scholarly figure and the
output are text elements together with their position, dimension, and orientation.
The six steps are as follows: (1) The first step extracts regions from an image.
Thus, a decision on pixel-level has to be made about what part of the image
belongs to a region and what is background. A common algorithm for this task
is Connected Component Labeling (CCL) on a binarized image. (2) In the second
step, the previously computed regions are classified either as text or graphics.
The regions classified as graphics are ignored in the subsequent steps. (3) The
third step computes text lines from the text regions provided by the previous
step. It is necessary to compute the text lines since most OCR engines work
only on horizontal text input and one can only reliable estimate the orientation
of single lines of text. (4) The fourth step estimates the orientation of the text
lines and performs other pre-processing that a specific OCR engine might need.
Besides rotating text lines to horizontal orientation, one may need to scale text
lines to a sufficiently high resolution or remove noise. (5) Subsequently, the fifth
step actually performs the Optical Character Recognition (OCR). A commonly
used OCR engine is Tesseract, developed by Google and used in the Google
Books project. (6) Finally, post-processing is applied on the OCR results. For
example, the OCR output is corrected using some heuristics.

4 Methods for the Pipeline Steps

For each step of the generic pipeline, we compare different methods motivated by
approaches described in the literature. Below, we describe the methods selected



8 Falk Böschen and Ansgar Scherp

along the steps of the generic pipeline as shown in Figure 2. The large number
of methods allow only a brief description of each method, but further details can
be found in the references. In Section 5, we discuss different configurations of
the generic pipeline assembled from the methods described below. An overview
of the possible configurations can be found in Figure 3.

4.1 Step (1): Region Extraction

The region extraction step consists of two sub-steps: First, the input is trans-
formed from color space into one or multiple binary images as described below.
Second, the actual region extraction is conducted using one of two approaches
that we identified in the literature. Overall, the output of this step is a set
of binary regions where each region represents one or more text characters or
graphical symbols.

Binarization of Color Images Given a color image, one can convert it directly
to multiple binary images. An alternative is to use an intermediate transforma-
tion to a grey-scale image, which is then converted to the binary output. For
directly converting a color image to multiple binary images, a so-called Color
Quantization method can be used. Color Quantization performs a clustering
over the color space. For each cluster, a representative color is chosen and each
color in the original image is replaced by the color of the cluster closest to
it. Finally, the image is split into multiple binary images, one for each color,
where all pixels that have the specific color are set and the others are not. The
color quantization method is inspired by the work of Chiang [7], Fraz [12], and
Jayant [17]. The RGB to Grey via Luminance method is commonly used
to create an intermediate grey-scale image [2, 14]. It uses the conversion formula
Y = 0.2126R + 0.7152G + 0.0722B to weight the color components red (R),
green (G), and blue (B) to the luminance value Y based on human perception.
Subsequently, the grey-scale image is binarized using one of the following meth-
ods: Otsu’s Method [25] separates two regions by finding the threshold that
maximizes the inter-class variance. One problem with Otsu’s method is that
it only computes one threshold (or multiple if the Multi-Otsu method is used)
which are applied globally on the entire image. This leads to problems with
local inhomogeneities like varying text-color/background-color combinations. In
order to address this challenge, an Adaptive Otsu Binarization method [2]
was developed that computes multiple thresholds to create a locally adaptive
binarization. This is achieved by subdividing the image into smaller parts and
recursively applying Otsu’s method to compute new thresholds. Another bina-
rization method is Niblack’s Method and modifications of it [21]. We tested
all versions of Niblack’s Method as described by Khurshid et al. [21] with the
specified parameters. The modified version of Sauvola performed best during our
preliminary tests. Thus, we compare it with the two Otsu variants.

Region Extraction from Binary Images Given a binary image, we can apply one
of the following two methods for region extraction: The most common method [2,



Text Extraction from Scholarly Figures: A Systematic Comparison 9

14, 27] is Connected Component Labeling (CCL) [26]. The CCL algorithm
iterates over the whole image and assigns each pixel to a region by taking the
assignment of the adjacent pixels into account (4-/ 8-pixel-neighborhood). As
an alternative, we use Xu and Krauthammer’s [31] Pivoting Histogram Pro-
jection method for region extraction. Here, first an edge image of the binary
image is computed. The edge image’s pixels are alternately projected on the x-
and y-axes and the image is split after every projection at the minimal point(s)
of the histogram into multiple sub-images. Each sub-image is further processed
while alternating the direction until no further split is possible. Thus, one ob-
tains multiple rectangular areas, which are converted into regions by taking all
foreground pixels of each region from the binary image.

4.2 Step (2): Region Classification

The output of the region extraction in Section 4.1 has to be classified into text
elements and graphical elements. For each region, we compute a feature vector
which is composed of the center of mass x-/y-coordinates, width and height,
and area-occupation-ratio (the number of foreground pixels of the bounding box
divided by the area) that are used to group the regions into text and graphics.
Heuristic Filtering methods are commonly applied as pre-processing to help
separate text elements from graphical elements [2, 27]. For example, very small
regions typically constitute noise, large regions are graphical elements like axes,
and average-sized regions refer to characters. Another approach is to consider
the coverage of the bounding box of a region. Heuristic filters are parameterized
and thus require a suitable choice of parameter values. A less parameterized ver-
sion for region classification are unsupervised density-based clustering algorithms
like DBSCAN which can be used to group regions [2]. Since text is normally
more dense and of different size than graphic elements, it can be separated from
graphic elements using DBSCAN. Another method to distinguish between text
and graphics is the graph-based Minimum Spanning Tree (MST) clustering
algorithm [17]. After constructing the tree, the clusters are created by split-
ting the graph, i. e., removing edges. There are multiple possibilities on how to
split the tree. In our experiments, we consider splits at inconsistent edges, i. e.,
edges that are longer than the local average edge length. Huang et al. [15] pro-
posed Grouping Rules based on Newtons Gravity Formula from classical
physics. The formula computes a threshold which defines whether two regions
should be grouped together. This results in text elements, each representing a
single text line. Finally, the Morphological Method by Chiang et al. [3, 8] is
applied on the individual pixels of the image and uses morphological operations
to merge characters into words. Thus, it also generates text elements.

4.3 Step (3): Separation into Text Lines

The methods for determining text elements in the previous step can result in
clusters of regions of various shape. Thus, the text elements may contain text
of different orientation. This is problematic for standard OCR engines as they



10 Falk Böschen and Ansgar Scherp

require text at horizontal orientation. Therefore, it is necessary to split the text
elements into single text lines, since one can only reliably estimate the orientation
for single lines of text. One method to separate text elements into text lines is to
apply an Angle-Based MST [2] clustering. The MST is constructed over the
centers of mass of the regions in a cluster. The assumption is that characters of a
text line are closer to each other than characters from different text lines. Thus,
most edges of the MST constitute a single line while only few edges connect across
different text lines. Edges connecting different lines will have orientations that
differ strongly from the main orientation and can therefore easily be removed.

4.4 Step (4): Text Line Orientation

Standard OCR engines require that the text of the input image has horizontal
orientation. In this step, the single text lines produced in the previous step are
analyzed w.r.t. their orientation. We compute the orientation of each line using
one of the following methods: The first method uses the Hough Transforma-
tion [16] to calculate the orientation [2]. The method transforms all center of
mass coordinates of the characters of a text line into Hough space and the max-
imal value in this Hough space represents the main orientation. Since text lines
can have only an orientation between +90 and -90 degree, we can limit the Hough
space computation to this interval. Another method to estimate the orientation
is to minimize the Perpendicular Squared Distance of the bounding box of
each text line [17]. The Single String Orientation Detection (SSOD) [8]
method assesses different orientation candidates by rotating the text elements
and applying morphological operations on its regions. The orientation at which
the largest pixel area remains after applying the operators, is selected as the
orientation of the text element. Subsequently, we rotate the text lines into the
opposite direction to bring them into horizontal alignment.

4.5 Step (5): Optical Character Recognition

We now have individual text lines at horizontal orientation. Thus, in this step,
we can apply standard Optical Character Recognition (OCR) engines to extract
the text. We analyzed different OCR engines mentioned in the related work. We
have selected Tesseract and Ocropy as they are freely available and frequently
updated. A possible extension is the use of commercial OCR engines like Ab-
byyFineReader. To ensure the reproducibility of the results of this work, we de-
cided to limit the number of options for the OCR step to open source solutions.
The OCR engine Tesseract provides trained models for different languages,
where we choose English. We are not using Tesseracts Layout Analysis capabil-
ities for removing graphic elements and conducting line detection since it only
works for horizontal text. Tesseract has already been used in the past for text
extraction from scholarly figures [2, 27]. Ocropy9 is a collection of open source
tools for document analysis and OCR. It is designed for character recognition

9 https://github.com/tmbdev/ocropy



Text Extraction from Scholarly Figures: A Systematic Comparison 11

from full-page documents similar to Tesseract. Ocropy has several constraints
regarding parameters like minimum image width and height in order to assure
good results. Thus, we modify the input image to fulfill the required thresh-
olds by properly scaling the text lines. Like Tesseract, the OCR engine Ocropy
provides a pre-trained model for the English language.

4.6 Step (6): Post-Processing

The last step of the pipeline conducts potential corrections of the textual output
of OCR engines. Here, several approaches exist: For example, one can use dic-
tionaries [29] to correct the OCR output. Since text in scholarly figures is very
sparse and often contains abbreviations, one cannot apply standard dictionaries.
A much simpler heuristic-based correction is the Special Character Filtering
per single Character method. It removes all special characters from the out-
put, i. e., all characters that are not a white space, number, or character from
a-z or A-Z. This makes sense, because recognition errors often appear in form
of special characters like dots or dashes in the output. Sas and Zolnierek pro-
posed a Special Character Filtering per String [27], which is a modified
version of the previous method. Here, complete text elements are removed if
they contain too many special characters. Another post-processing method is
the Quantitative OCR Assessment by Jayant et al. [17]. The main idea is
to reuse knowledge from previous steps of the extraction pipeline by compar-
ing the number of regions that went into the OCR process with the number of
characters that were recognized from them. If the difference is above a certain
threshold, one can assume that one or multiple recognition errors happened dur-
ing the OCR process. While Jayant’s approach also takes recognition confidence
information on character level from AbbyyFineReader into account, one cannot
in general assume that this information is available from all OCR engines. Thus,
the implemented Quantitative OCR Assessment method performs its post-
processing only based on the difference between the number of regions before
and the number of characters after the OCR step.

5 Pipeline Configurations

From the methods defined in the previous section, one can create various pipeline
configurations. Some methods are restricted in how they can be combined as
illustrated in Figure 3. Section 5.1 discusses the configurations that are motivated
from the related work. A further systematic assessment of the different methods
is conducted by the configurations described in Section 5.2.

5.1 Motivated from the Literature

There are seven pipeline configurations that are motivated from the literature.
Each configuration is identified by (x), an acronym created from the contribut-
ing author(s). The first configuration (SZ13) is inspired by the work of Sas



12 Falk Böschen and Ansgar Scherp

and Zolnierek [27]. It uses Otsu’s method for binarization, followed by CCL.
Subsequently, it applies heuristic filtering similar to the original approach. The
decision tree used by Sas and Zolnierek is replaced by the line generation ap-
proach based on MST. The rationale behind this is that a decision tree is a
supervised method while MST is unsupervised. This configuration does not use
any method for orientation estimation from step 4 of the pipeline, since the orig-
inal work by Sas and Zolnierek does not have such a feature. Tesseract is used
as OCR engine, since it was also used in the original paper. In the post pro-
cessing step, all strings are removed that contain too many special characters.
The second configuration (Hu05) is based on the work of Huang et al. [15].
After region extraction using Otsu binarization and CCL, the Heuristic Filter
method is applied, and the regions are grouped using the Gravity method. Fi-
nally, the grouped regions are processed with Tesseract. Based on the work of
Jayant et al. [17], configuration (Ja07) starts with Otsu’s method and CCL.
Subsequently, it clusters the regions using a MST and approximates the orien-
tation by minimizing the perpendicular squared distance. Text recognition is
achieved by applying Tesseract. Different from the previous configurations, the
fourth configuration (CK15) – inspired by Chiang et al. [8] – uses Color Quan-
tization to generate multiple binary images, followed by a CCL. Subsequently,
it applies heuristic filtering and Morphological Clustering on the regions. This
step differs from the original paper, where the relevant color levels were manually
selected. Thus, we assess all extracted binary images. The orientation of each
cluster is estimated using the SSOD method, followed by Tesseract OCR, and
quantitative post-processing. Similar to the previous pipeline configuration, the
fifth configuration (Fr15), inspired by Fraz et al. [12] from the photo processing
domain, starts with Color Quantization and CCL. The original approach uses
a supervised SVM to form words, which we replaced with unsupervised meth-
ods from our methods set. The extracted regions are filtered and DBSCAN is
applied, followed by a MST clustering into text lines. The orientation of the
text lines is calculated using Hough method and the text is recognized using
Tesseract. All configurations so far use CCL to extract regions. The sixth con-
figuration (XK10), motivated by Xu and Krauthammer [31], uses the pivoting
algorithm after binarization with adaptive Otsu. The regions are filtered using
heuristics and grouped into lines using DBSCAN and MST. This differs from
the original work, which only applied heuristic filtering to remove the graphic
regions. The reason behind this is that the authors only aimed at finding text
regions and not to recognize the text. Thus, we filled the rest of the pipeline
steps with suitable methods. The orientation of each line is estimated via Hough
and OCR is conducted with Tesseract. Finally, configuration (BS15) resembles
our own work [2]. It uses adaptive Otsu for binarization and CCL for region
extraction. Heuristic Filtering is applied on the regions and DBSCAN groups
them into text elements. Text lines are generated using the angle-based MST
approach and the orientation of each line is estimated via Hough transformation,
before applying Tesseract’s OCR.



Text Extraction from Scholarly Figures: A Systematic Comparison 13

5.2 Systematic Modifications

In order to evaluate the influence of the individual methods, we chose the pipeline
configuration (BS15) as basis for systematical modification, since it is the most
recent development for the task of automatically extracting text from scholarly
figures and showed the best performance of the seven configurations from the
literature. The systematic modifications are organized along the six steps of
the generic pipeline in Figure 2. Each of the systematic configurations has an
identifier (BS-XYZ) based on the original configuration, where X is a number
that refers to the associated pipeline step and YZ uniquely identifies the method.
The systematically modified configurations are described below:

Modifications of Step (1): The binarization and region extraction is evalu-
ated with the following configurations: (BS-1NC) differs from (BS15) by using
Niblack instead of adaptive Otsu for binarization. Configuration (BS-1OC) uses
the third option for binarization, Otsu’s method. Color quantization is combined
with the pivoting region extraction in (BS-1QP).

Modification over Steps (2) and (3): The next step is the region classifica-
tion and generation of text lines. Configuration (BS-2nF) differs from the base
configuration by not applying the optional heuristic filtering method. Configu-
ration (BS-2CG) uses the Gravity Grouping instead of DBSCAN and MST.
Configuration (BS-2CM) applies MST to cluster regions and create text lines.
Morphological text line generation is used in configuration (BS-23M).

Modifications of Step (4): The following two configurations assess the meth-
ods for estimating the orientation of a text line: Configuration (BS-4OP) uses
the Perpendicular Squared Distance method and configuration (BS-4OS) uses
the Single String Orientation Detection method to estimate the orientation.

Modifications of Step (5): For all configurations, both OCR engines are used
to generate the results. The identifier of a configuration is extended to (BS-
XYZ-T) or (BS-XYZ-O), when referencing the configurations that use Tesser-
act or Ocropy, respectively. Furthermore, we assess the direct impact of the OCR
engine on the recognition results with configuration (BS15-O), which only dif-
fers with respect to the OCR method from the base configuration by using the
Ocropy OCR engine instead of Tesseract.

Modifications of Step (6): The last step of the pipeline is the post-processing.
We use three configurations to evaluate the different post-processing methods:
Configuration (BS-6PC) uses the Special Character Filter method for post-
processing. Configuration (BS-6PS) uses the String Filter method for post-
processing. Configuration (BS-6PQ) uses the Quantitative Assessment method
for post-processing.

6 Evaluation

We conduct our evaluation on four datasets which are described in Section 6.1.
The evaluation measures are described in Section 6.2.



14 Falk Böschen and Ansgar Scherp

Table 1. Number of figures, average figure width and height, and average number of
text elements (TE), words, and characters per figure.

Dataset # Figures Width Height # TE # Words # Characters

EconBiz 121 982 681 25 35 151

DeGruyter 120 959 619 24 34 149

CHIME-R 115 714 454 14 18 69

CHIME-S 85 440 320 12 18 76

Total 441 801 535 19 27 114

6.1 Datasets

To the best of our knowledge, no high quality datasets for text extraction from
scholarly figures exist. Thus, using our own tool that was specifically designed
for manually labeling text elements in figures, we have created two datasets.
One is in the domain of economics, the other is based on educational books. In
addition, we use the CHIME datasets, which consist of figures of varying quality
and origin. In total, we use four datasets with 441 figures of varying origin and
characteristics.

– EconBiz We have created a corpus of 121 scholarly figures from the eco-
nomics domain. We obtained these figures from a corpus of 288,000 open
access publications from EconBiz10 by extracting all images, filtering them
by size and other constraints, and randomly selecting the subset of 121 fig-
ures. The dataset resembles a wide variety of scholarly figures from bar
charts to maps. The figures were manually labeled to create the necessary
gold standard information.

– DeGruyter We manually labeled another dataset, composed of scholarly
figures from books provided by DeGruyter11 under a creative commons li-
cense12. We selected ten books, mostly from the chemistry domain, which
contain figures with English text and selected 120 figures randomly from
these books. The gold standard for these figures was created using the same
tool which has been used for the creation of the EconBiz dataset.

– CHIME-R The Chart Image Dataset13 consists of two subsets. The CHIME-
R dataset consists of 115 real images that were collected on the Internet or
scanned from paper. Most of the figures are bar charts. The rest are some
pie charts and line charts. The gold standard was created by Yang Li [32].

– CHIME-S The other, CHIME-S dataset consists of 85 synthetically gener-
ated images. This set mainly contains line charts and pie charts and few bar
charts. The gold standard was created by Zhao Jiuzhou [18].

10 https://www.econbiz.de/
11 http://www.degruyter.com/
12 http://www.degruyter.com/dg/page/open-access-policy
13 https://www.comp.nus.edu.sg/~tancl/ChartImageDataset.htm



Text Extraction from Scholarly Figures: A Systematic Comparison 15

Some statistics about the datasets which are useful for understanding the evalua-
tion results can be found in Table 1. Both, the CHIME-R and CHIME-S datasets
contain figures with an on average lower resolution than the EconBiz and De-
Gruyter datasets, which are almost equal. With respect to the average number
of characters, words, and text elements in a figure, the distribution of EconBiz
and DeGruyter are similar, with about twice as many as the CHIME datasets.

The use of standard test corpora greatly improves comparability. Thus, we
looked at ImageNet, TREC, ICDAR, and ImageCLEF datasets, but none of
these provide datasets for text extraction from scholarly figures. The closest
candidates are the Medical Compound Figure Separation14 challenge from Im-
ageCLEF and the image-to-structure task15 in the TREC chemistry track from
2011. The ImageCLEF dataset has the problem that the compound figures do
not only contain scholarly figures but also diagnostic images like x-ray or ul-
trasound images. For TREC 2011, we focus on the chemistry track which aims
at extracting the visually encoded structure of chemical elements. Thus, the
chemistry task actually differs quite a lot from our general text extraction task.
The text contained in the chemical images is even sparser and each string often
consists of less than three characters. Furthermore, text and graphics are much
more intertwined with a dominance in graphical components. The Robust Read-
ing Competition (RRC) [19] held at the ICDAR conferences has a Born-Digital
Images track which consists of artificial images extracted from the Web. We
did not consider this dataset because none of its images are scholarly figures,
therefore posing different challenges. For example, RRC images span from spam
mails to logos and advertisements from websites. They contain only horizontal
text, use specific unique fonts, with characters that are merged or broken by
design. Furthermore, the images are often of low resolution. Extracting text at
different orientations is a challenge common to scholarly figures that can not
be evaluated using the ICDAR RRC dataset. This is also reflected in the 2013
report of the ICDAR RRC competition [20] where Karatzas et al. state that ”All
bounding boxes are defined as axis-aligned isothetic rectangles, a reasonable de-
sign choice as in born-digital images most text is horizontal.”, which does not
hold for scholarly figures. In addition, they leave out all words that have less
than three characters. The ICDAR RRC evaluation consists of four tasks for
measuring the performance. The first task is the evaluation of the text localiza-
tion, which is based on the framework proposed by Wolf and Jolion [30]. The
second task in the ICDAR RCC evaluation is text segmentation on the atom
level as defined by Clavelli et al. [10]. The third evaluation task is word recogni-
tion, which works with a case-sensitive standard edit distance. The final task is
a combination of the three previous tasks. The metrics used in Task 1, 2, and 4
are classic precision, recall, and F1-measure.

Based on the ICDAR RRC evaluation scheme, we have developed three mea-
sures, specifically designed for the structure of our gold standard, to evaluate
our pipeline configurations.

14 http://www.imageclef.org/2016/medical
15 https://wiki.ir-facility.org/index.php/Image2Structure_Task



16 Falk Böschen and Ansgar Scherp

6.2 Measures

We have selected four measures to evaluate the pipeline configurations and com-
pare their results. Our gold standard consists of text elements which represent
single lines of text taken from a scholarly figure. Each text line consists of one
or multiple words which are separated by blank space. Each word may consist
of any combination of characters and numbers. Every text line is defined by a
specific position, size, and orientation.

Each pipeline configuration generates a set of text line elements as well.
These text lines need to be matched to the gold standard. Since we do not have
pixel information per character, we match the extraction results with the gold
standard by using the bounding boxes. This is based on the first evaluation task
of the ICDAR RRC and evaluates the text localization on text line level. We
iterate over all text lines in the gold standard and take all matches that are
above the so-called intersection threshold. Our matching procedure calculates
the intersection area between all pairs of the pipeline output and gold standard
text lines. If the intersection comprises at least ten percent of the combined
area of both text elements, than it is considered a match. This reduces the error
introduced through elements which are an incorrect match and only have a small
overlap with the gold standard, but still tolerates it when a lines was broken up
into multiple parts. We look at each gold standard element and take all elements
from the pipeline as matches that are above the intersection threshold. Thus, a
gold standard element can have multiple matching elements and an element from
the pipeline can be assigned to multiple elements from the gold standard if it
fulfills the matching constraint for each match. We have defined three measures
to assess these matches. The first two measures analyze the text localization. The
third measure compares the recognized text, similar to the word recognition task
of the ICDAR RRC, although we compare text lines and not individual words.
Finally, we also decided to analyze the performance of the individual methods.

Text Location Detection First, we evaluate how accurate the configurations are
at detecting the text locations. If at least one match is found for an element
from the gold standard set, it counts as a true positive, regardless of what text
was recognized. If no match was found, it is considered as false negative. A
false positive is an element from the pipeline output which has no match. From
these values, we compute precision, recall, and F1-measure for assessing the text
location detection. This measure is a binary evaluation and assesses only whether
a match to an element exists or not. Additionally, we report the Element Ratio
(ER) which is the number of elements recognized by the pipeline divided by the
number of elements in the gold standard and the Matched Element Ratio (MER)
which is the number of matched items from the pipeline divided by the number
of elements of the gold standard. These ratios give an idea whether gold standard
elements get matched by multiple elements and whether the configuration tends
to find more elements or less elements than it actually should find. We restrict
the number of matches by applying a coverage threshold, which means that
the intersection area of two elements has to be at least as big as 10% of the



Text Extraction from Scholarly Figures: A Systematic Comparison 17

total covered area. This measure penalizes mappings between elements of largely
varying size. We further evaluate these matches with the next two measures.

Text Element Coverage Second, we investigate the matching in more detail by
assessing the text element coverage. For each gold standard text element, we
take the pixels of the bounding boxes and compute their overlap to calculate
precision, recall, and F1-measure over all of its matches. The true positives in
this case are the overlapping pixels and the false positives are those pixels from
the text elements from the pipeline which are not overlapping. The false negatives
are the pixels of the gold standard element which were not covered by a text
element from the pipeline. The values are averaged over all gold standard text
elements in a figure.

Text Recognition Quality Third, we assess the quality of the recognized text by
computing the Levenshtein distance between the extracted text and the gold
standard. We calculate the distance for each match and report the average for
the whole figure. Since multiple text elements from the pipeline can be matched
to a gold standard text line, we have to combine their text into one string. We
combine the elements using their position information. Besides a (local) Leven-
shtein Distance per match, we also compute a global Levenshtein distance over all
extracted text. This means that for each figure, we combine all characters from
the text elements of the gold standard and add them to one string. Likewise, we
create a string from the text elements extracted by the pipeline. The characters
in both strings are sorted alphabetically and we compute the Levenshtein Dis-
tance between these strings. This approximates the overall number of operations
needed to match the strings without considering position information. Since the
global Levenshtein Distance depends on the number of characters inside a fig-
ure, we also report an operations per character (OPC) score, which is computed
by dividing the global Levenshtein Distance by the number of characters in the
gold standard. This normalizes the global Levenshtein Distance and makes it
comparable across scholarly figures with different amounts of characters.

Runtime Performance Finally, we log the execution time for each method in
milliseconds to see which method has the best runtime performance. We analyze
each configuration individually and compute the average time for each method
over all figures from all four datasets. For each configuration, we aggregate the
execution time of its methods to compute the average time needed per step of
the pipeline.

7 Results

We have executed all configurations listed in Section 5 and analyzed the out-
put with respect to the measures for Text Location Detection, Text Element
Coverage, Text Recognition Quality, and Runtime Performance as defined in
Section 6.2. For reasons of simplicity, we are only reporting the average values



18 Falk Böschen and Ansgar Scherp

over all datasets for all configurations as well as for each dataset separately. We
compute the average Precision/Recall/F1-measure over the elements of each fig-
ure. We report the average Precision/Recall/F1-measure in terms of mean and
standard deviation over all individual results per figure. The local Levenshtein
distance is reported as the average of the mean values per figure and the aver-
age standard deviation. The global Levenshtein distance is defined by the mean
and standard deviation over all figures and the normalized OPC score. Subse-
quently, the performance measures are reported. First, we report the results of
the configurations from the literature. Subsequently, we present the results for
the systematically modified configurations.

Text Location Detection, Text Element Coverage, and Text Recognition Qual-
ity The text location detection results for the configurations from the literature
computed over all datasets are reported in Table 2. The best result, based on
the F1-measure, is achieved by configuration (BS15) with a F1-measure of 0.58.
Looking at each dataset separately, as documented in Table 3, one can see that
configuration (BS15) works best for the DeGruyter (0.70) and CHIME-R (0.63)
datasets while (SZ13) has the best result for the CHIME-S (0.55) and Econ-
Biz (0.57) datasets. The coverage assessment in Table 4 shows the best precision
of 0.79 for (Hu05), the best recall of 0.59 for (SZ13), and the best F1-measure
of 0.57 for (Hu05). The individual results per dataset for all configurations are
shown in Table 5. The text recognition quality is presented in Table 6 and the
individual results per dataset for all configurations are presented in Table 7. We
obtain the best results with (BS15) with only 0.67 operations per character
(OPC), an average local Levenshtein of 6.23, and an average global Levenshtein
of 108.81. Only configuration (CK15) has a slightly better average local Leven-
shtein (6.07).

Table 2. Configurations from the literature: Precision (Pr), Recall (Re), and F1-
measure for the Average Text Location Detection, Element Ratio (ER), and Matched
Element Ratio (MER). Results are averaged over all datasets.

Config. Pr Re F1 (SD) ER MER

SZ13 0.63 0.47 0.54 (0.23) 0.80 0.59

Hu05 0.61 0.43 0.48 (0.28) 0.77 0.57

Ja07 0.59 0.45 0.49 (0.28) 0.83 0.51

BS15 0.66 0.55 0.58 (0.25) 1.04 0.69

CK15 0.52 0.50 0.53 (0.23) 1.37 0.60

Fr15 0.55 0.51 0.54 (0.25) 1.44 0.72

XK10 0.73 0.35 0.45 (0.26) 0.43 0.39

For the systematically modified configurations, Table 8 shows the text lo-
cation detection results, Table 9 the coverage assessment, and Table 10 shows
the text recognition results. The best location detection F1-measure of 0.67 is



Text Extraction from Scholarly Figures: A Systematic Comparison 19

achieved by (BS-4OS), which is also supported by the coverage assessment in
Table 9 with the highest F1-measure of 0.65. The separate evaluation of each
dataset in Table 3 confirms as well that (BS-4OS) works best for EconBiz,
CHIME-R, and CHIME-S with F1-measures of 0.68, 0.66, and 0.63. The best
result for DeGruyter is an F1-measure of 0.73 by (BS-23M) with (BS-4OS)
having the second best F1-measure of 0.71. The best coverage assessment results
for EconBiz (0.56), DeGruyter (0.67), CHIME-R (0.71), and CHIME-S (0.66)
are by (BS-4OS), as shown in Table 5. Configuration (BS-4OS-O) also pro-

Table 3. Average F1-measure and Standard Deviation for Text Location Detection
per Configuration on each Dataset

Config. EconBiz DeGruyter CHIME-R CHIME-S

SZ13 0.57(0.25) 0.51(0.24) 0.53(0.21) 0.55(0.23)

Hu05 0.45(0.29) 0.55(0.30) 0.50(0.25) 0.34(0.26)

Ja07 0.47(0.29) 0.50(0.27) 0.52(0.26) 0.33(0.22)

CK15 0.53(0.22) 0.54(0.21) 0.56(0.24) 0.49(0.25)

Fr15 0.48(0.26) 0.62(0.21) 0.58(0.24) 0.41(0.21)

XK10 0.38(0.24) 0.50(0.24) 0.48(0.26) 0.29(0.18)

BS15 0.55(0.25) 0.70(0.18) 0.63(0.23) 0.43(0.25)

BS-1NC 0.54(0.26) 0.65(0.20) 0.61(0.24) 0.42(0.26)

BS-1OC 0.46(0.28) 0.51(0.28) 0.52(0.24) 0.43(0.25)

BS-1QP 0.42(0.23) 0.53(0.23) 0.49(0.27) 0.36(0.22)

BS-2nF 0.46(0.22) 0.59(0.19) 0.53(0.22) 0.37(0.25)

BS-2CG 0.48(0.29) 0.64(0.22) 0.58(0.27) 0.33(0.28)

BS-2CM 0.55(0.25) 0.70(0.21) 0.62(0.22) 0.40(0.24)

BS-23M 0.62(0.24) 0.73(0.17) 0.63(0.22) 0.47(0.25)

BS-4OP 0.57(0.24) 0.64(0.20) 0.59(0.24) 0.39(0.27)

BS-4OS 0.68(0.21) 0.71(0.18) 0.66(0.23) 0.63(0.26)

BS-6PC 0.55(0.25) 0.71(0.17) 0.62(0.23) 0.43(0.26)

BS-6PS 0.55(0.26) 0.71(0.17) 0.64(0.23) 0.43(0.25)

BS-6PQ 0.38(0.24) 0.57(0.21) 0.50(0.21) 0.36(0.25)

Table 4. Configurations motivated the literature: Precision (Pr), Recall (Re), and F1-
measure for the Average Text Element Coverage. Results are averaged over all datasets.

Config. Pr Re F1 (SD)

SZ13 0.52 0.59 0.47 (0.21)

Hu05 0.79 0.54 0.57 (0.20)

Ja07 0.41 0.32 0.32 (0.21)

BS15 0.60 0.49 0.50 (0.24)

CK15 0.53 0.41 0.42 (0.21)

Fr15 0.65 0.54 0.54 (0.23)

XK10 0.33 0.34 0.30 (0.22)



20 Falk Böschen and Ansgar Scherp

duces the best text recognition results with an average local Levenshtein of 4.71
and an OPC of 0.53. The best local Levenshtein for each dataset is also achieved
by configuration (BS-4OS-O) with values between 3.51 and 5.80 (see Table 7).
In addition, configuration (BS-4OS-O) shows the best results of 95.49 for the
average global Levenshtein Distance. Comparing the different, systematically
modified configurations per step of the pipeline shows that the only major im-
provement is achieved by (BS-4OS).

Table 5. Average F1-measure and Standard Deviation for Text Element Coverage per
Configuration on each Dataset

Config. EconBiz DeGruyter CHIME-R CHIME-S

SZ13 0.42(0.18) 0.44(0.23) 0.49(0.21) 0.55(0.20)

Hu05 0.48(0.17) 0.58(0.22) 0.66(0.18) 0.47(0.22)

Ja07 0.28(0.19) 0.33(0.20) 0.41(0.22) 0.21(0.19)

CK15 0.37(0.19) 0.48(0.20) 0.45(0.22) 0.35(0.23)

Fr15 0.42(0.21) 0.62(0.15) 0.62(0.25) 0.45(0.25)

XK10 0.23(0.17) 0.34(0.21) 0.37(0.26) 0.16(0.11)

BS15 0.40(0.20) 0.62(0.14) 0.60(0.26) 0.31(0.21)

BS-1NC 0.36(0.21) 0.58(0.16) 0.58(0.26) 0.27(0.17)

BS-1OC 0.32(0.24) 0.46(0.28) 0.42(0.25) 0.31(0.21)

BS-1QP 0.43(0.22) 0.45(0.23) 0.43(0.26) 0.33(0.22)

BS-2nF 0.40(0.17) 0.56(0.16) 0.60(0.22) 0.35(0.23)

BS-2CG 0.46(0.19) 0.58(0.16) 0.69(0.19) 0.45(0.23)

BS-2CM 0.36(0.20) 0.60(0.16) 0.59(0.25) 0.24(0.18)

BS-23M 0.39(0.19) 0.62(0.14) 0.56(0.22) 0.30(0.17)

BS-4OP 0.37(0.17) 0.47(0.14) 0.48(0.21) 0.20(0.20)

BS-4OS 0.56(0.14) 0.67(0.11) 0.71(0.21) 0.66(0.20)

BS-6PC 0.39(0.20) 0.62(0.15) 0.60(0.26) 0.30(0.20)

BS-6PS 0.39(0.20) 0.61(0.15) 0.59(0.26) 0.31(0.21)

BS-6PQ 0.21(0.16) 0.41(0.20) 0.36(0.22) 0.19(0.17)

Table 6. Average local Levenshtein (L) and global Levenshtein (G) and Operations
Per Character (OPC) over all datasets for the configurations from the literature using
Tesseract

Config. AV GL(SD) AV GG(SD) OPC

SZ13 6.67 (4.82) 122.28 (141.03) 0.70

Hu05 6.65 (5.41) 126.35 (138.95) 0.71

Ja07 7.92 (5.56) 150.25 (140.59) 1.13

BS15 6.23 (4.93) 108.81 (108.53) 0.67

CK15 6.07 (5.08) 120.12 (125.87) 0.71

Fr15 6.72 (6.02) 135.64 (201.31) 0.85

XK10 7.06 (5.41) 125.45 (134.88) 0.74



Text Extraction from Scholarly Figures: A Systematic Comparison 21

Runtime Performance Figure 4 compares the seven configurations motivated
from the literature. For each configuration, the average execution time over all
figures from all four datasets are reported. The execution time is split up along
the pipeline steps. Please note that the runtime is specified in milliseconds. Fig-
ure 4 shows the results at log scale, due to the varying performance. As one
can see from the figure, the configurations (SZ13), (Hu05), and (Ja07) are in
the same range, with the latter one being the fastest configuration. The other
configurations are by an order of magnitude slower, with (CK15) being the con-
figuration needing most of the time (about 38 days for all four datasets). One
can also clearly see that in general the first step of the pipeline contributes most
to the execution time. Looking at the data generated by the systematically mod-
ified configurations, we make the following observations. The fastest binarization
is Otsu’s method with on average less than 100ms and adaptive binarization re-
quires the most time with about two minutes on average. The pivoting algorithm
requires about twice as much time as Connected Component Labeling. Looking
at step 2 and 3 of the pipeline, only the morphological clustering differs a lot
from the rest with an average execution time of several minutes or more. The
PSD and Hough orientation estimation execute on average in a few milliseconds,
while the SSOD needs several seconds. The comparison of Ocropy and Tesseract

Table 7. Average Levenshtein and Standard Deviation for Text Recognition Quality
per Configuration on each Dataset

EconBiz DeGruyter CHIME-R CHIME-S

Config. T O T O T O T O

SZ13 6.00(3.24) - 6.13(3.25) - 7.10(6.25) - 7.29(5.64) -

Hu05 5.69(3.33) - 5.69(3.74) - 6.75(6.95) - 7.94(6.13) -

Ja07 7.15(3.62) - 7.97(3.85) - 7.94(7.25) - 8.36(6.34) -

CK15 5.27(3.11) - 4.96(2.78) - 6.65(7.21) - 6.74(5.30) -

Fr15 5.74(3.34) - 6.53(5.87) - 6.81(7.76) - 7.26(5.55) -

XK10 6.27(3.46) - 6.46(3.56) - 6.99(7.14) - 7.88(6.09) -

BS15 5.42(3.06) 4.80(2.93) 4.88(2.58) 4.07(2.26) 6.51(6.85) 5.96(6.97) 7.21(5.34) 7.20(5.66)

BS-1NC 5.47(3.12) 4.81(2.86) 5.30(2.78) 4.47(2.83) 6.42(6.85) 5.94(7.00) 7.22(5.42) 7.47(5.71)

BS-1OC 5.74(3.20) 5.16(3.10) 5.76(3.05) 5.21(3.23) 6.72(6.72) 6.54(6.89) 7.51(5.71) 7.35(5.89)

BS-1QP 7.13(4.13) 6.18(3.33) 8.44(4.88) 6.29(3.04) 8.50(7.88) 7.19(7.72) 8.68(6.49) 8.51(6.27)

BS-2nF 5.78(3.33) 5.30(2.94) 5.83(3.11) 5.02(2.58) 6.64(6.29) 6.91(7.83) 7.63(5.72) 7.78(6.22)

BS-2CG 5.77(3.43) 5.28(3.27) 5.49(3.79) 4.71(2.92) 6.63(7.46) 6.31(7.83) 8.34(6.27) 8.14(6.29)

BS-2CM 5.57(3.07) 4.98(3.00) 4.95(2.75) 4.45(2.42) 6.72(7.27) 6.09(7.35) 7.51(6.08) 7.73(6.10)

BS-23M 5.17(3.16) 4.56(2.89) 4.92(3.34) 3.82(2.24) 6.66(6.68) 6.13(7.01) 7.53(5.62) 7.33(5.60)

BS-4OP 7.56(3.95) 6.34(3.29) 8.82(3.84) 6.71(3.44) 8.15(7.25) 7.36(7.81) 8.49(6.47) 8.22(6.44)

BS-4OS 4.90(3.01) 3.86(2.82) 4.55(2.55) 3.51(2.00) 5.76(6.01) 5.08(6.32) 6.27(4.97) 5.80(5.50)

BS-6PC 5.13(3.03) 4.73(2.93) 4.77(2.33) 4.28(2.23) 6.06(6.71) 5.73(6.82) 7.29(5.43) 7.19(5.63)

BS-6PS 5.39(3.02) 4.75(2.89) 4.83(2.44) 4.08(2.27) 6.53(6.87) 5.79(6.87) 7.24(5.37) 7.16(5.61)

BS-6PQ 5.47(3.13) 5.20(2.99) 4.96(2.63) 4.64(2.77) 6.31(6.91) 5.95(6.59) 7.43(5.70) 7.57(6.05)



22 Falk Böschen and Ansgar Scherp

Table 8. Systematically modified configurations: Precision (Pr), Recall (Re), and F1-
measure for the Average Text Location Detection, Element Ratio (ER), and Matched
Element Ratio (MER). Results are averaged over all datasets

Config. Pr Re F1 (SD) ER MER

BS15 0.66 0.55 0.58 (0.25) 1.04 0.69

BS-1NC 0.64 0.52 0.57 (0.25) 0.96 0.64

BS-1OC 0.67 0.40 0.49 (0.26) 0.74 0.53

BS-1QP 0.61 0.44 0.48 (0.25) 0.96 0.75

BS-2nF 0.60 0.46 0.51 (0.23) 0.86 0.52

BS-2CG 0.62 0.50 0.55 (0.27) 0.90 0.64

BS-2CM 0.61 0.54 0.59 (0.25) 1.19 0.74

BS-23M 0.67 0.55 0.62 (0.23) 1.08 0.65

BS-4OP 0.62 0.53 0.57 (0.24) 1.01 0.66

BS-4OS 0.67 0.63 0.67 (0.22) 1.27 0.88

BS-6PC 0.69 0.54 0.59 (0.25) 0.97 0.70

BS-6PS 0.67 0.55 0.60 (0.25) 1.01 0.69

BS-6PQ 0.66 0.38 0.48 (0.25) 0.60 0.43

shows that the latter one is about three times faster. Finally, all post-processing
methods need on average less than a millisecond.

Table 9. Systematically modified configurations: Precision (Pr), Recall (Re), and F1-
measure for the Average Text Element Coverage. Results are averaged over all datasets.

Config. Pr Re F1 (SD)

BS15 0.60 0.49 0.50 (0.24)

BS-1NC 0.59 0.44 0.47 (0.24)

BS-1OC 0.46 0.40 0.38 (0.26)

BS-1QP 0.41 0.57 0.42 (0.23)

BS-2nF 0.59 0.54 0.50 (0.21)

BS-2CG 0.76 0.54 0.57 (0.20)

BS-2CM 0.57 0.47 0.47 (0.24)

BS-23M 0.60 0.47 0.48 (0.22)

BS-4OP 0.49 0.40 0.41 (0.20)

BS-4OS 0.77 0.63 0.65 (0.17)

BS-6PC 0.59 0.49 0.49 (0.24)

BS-6PS 0.59 0.49 0.49 (0.24)

BS-6PQ 0.39 0.29 0.31 (0.21)



Text Extraction from Scholarly Figures: A Systematic Comparison 23

Table 10. Average local Levenshtein (L) and global Levenshtein (G) and Operations
Per Character (OPC) over all datasets for the systematic configurations

Tesseract Ocropy

Config. AV GL(SD) AV GG(SD) OPC AV GL(SD) AV GG(SD) OPC

BS15 6.23 (4.93) 108.81 (108.53) 0.67 5.47 (4.98) 108.55 (106.64) 0.64

BS-1NC 6.27 (4.95) 117.58 (124.23) 0.69 5.70 (5.09) 117.46 (128.73) 0.66

BS-1OC 6.55 (5.06) 131.58 (142.74) 0.75 6.16 (5.21) 131.39 (143.16) 0.73

BS-1QP 8.31 (6.14) 154.54 (168.10) 1.09 7.06 (5.62) 136.40 (132.05) 0.82

BS-2nF 6.55 (4.94) 111.30 (105.13) 0.75 6.29 (5.50) 120.71 (109.18) 0.76

BS-2CG 6.68 (5.65) 108.86 (102.93) 0.66 6.22 (5.75) 130.21 (127.87) 0.69

BS-2CM 6.30 (5.29) 115.43 (113.79) 0.69 5.85 (5.34) 110.74 (107.23) 0.67

BS-23M 6.15 (5.12) 104.61 (105.97) 0.63 5.52 (5.10) 106.71 (104.05) 0.64

BS-4OP 8.30 (5.59) 147.91 (129.55) 1.04 7.23 (5.60) 135.21 (122.48) 0.85

BS-4OS 5.47 (4.39) 96.29 (99.44) 0.58 4.71 (4.66) 95.49 (94.80) 0.53

BS-6PC 5.96 (4.88) 105.50 (107.16) 0.61 5.46 (5.00) 109.07 (104.57) 0.63

BS-6PS 6.20 (4.90) 108.06 (109.38) 0.64 5.45 (4.96) 106.38 (103.29) 0.63

BS-6PQ 6.07 (5.03) 120.78 (122.44) 0.67 5.79 (4.97) 126.92 (124.06) 0.71

8 Discussion

Comparing the different configurations from the literature shows that the best
performing configuration is (BS15). A possible reason is that our pipeline does
not make many assumptions about the figures. Thus performing better on the
heterogeneous datasets. In the following, we will discuss the results for the in-
dividual pipeline steps based on the results from the systematically modified
configurations. Comparing the configurations for the first pipeline step leads to
the conclusion that the adaptive binarization works best, because it can adept to
local variations of the appearance in a figure. Otsu’s method is too simple and
Niblack’s method is more suited for document images which have fewer color
variations. The lower results for the pivoting algorithm can be explained with
the larger regions and the possibility that a region can be a mixture of text and
graphic elements due to the only horizontal and vertical subdivision. Looking
at step 2 and 3 of the pipeline, only the morphological clustering shows slightly
better results than the DBSCAN-MST combination, most likely due to its pro-
cessing on pixel level. However, it is by an order of magnitude slower. The overall
best results are achieved by (BS-4OS). This can be explained by the fact that
the orientation estimation via Hough in the base configuration works on the cen-
ters of mass of character regions, which is an aggregated region representation,
while the SSOD in (BS-4OS) computes the orientation on the original pixels.
Thus, it avoids a possible error, induced by the pixel aggregation, which comes
at the price of a higher computational time like with the morphological cluster-
ing. When comparing the OCR engines from step 5, Ocropy generally produces
better results than Tesseract. Ocropy seems to be more conservative, having
built in much more restrictions about what input to accept and when to execute



24 Falk Böschen and Ansgar Scherp

Fig. 4. Average execution time aggregated per pipeline step for the configurations
motivated from the related work.

the OCR. Furthermore, each OCR engine comes with its own English language
model and we did not evaluate their influence. The methods for post-processing
do not seem to be an improvement. One reason might be the simplicity of their
nature. Thus, some more advanced techniques may be developed in the future.

The performance analysis results for the configurations motivated from the
literature clearly show that the first pipeline step is the most expensive one
with respect to the execution time. Those configurations which use standard
Otsu’s method are a lot faster than those using Adaptive Otsu Binarization.
This difference was expected, since the latter one recursively processes a figure
while applying Otsu’s method multiple times. In addition, configuration (CK15)
did not finish in reasonable time (about 2 hours per image, 38 days in total) due
to its expensive morphological clustering. This method is very expensive since it
iterates multiple times over an image increasing the region by single pixel borders
each time. The systematic comparisons confirm these results. Furthermore, the
systematic comparisons show that the SSOD is more expensive than Hough and
PSD, because it works on the pixel level similar to the morphological clustering.
Furthermore, the difference between Ocropy and Tesseract can be explained
by the fact that Tesseract is used via an API while Ocropy is currently used
via command line which requires system calls. The fast execution of the post-
processing methods results from their simplicity, applying only simple string
comparisons.

Overall, there are many more options for the different pipeline steps, e. g.,
other binarization methods, different clustering algorithms, or post-processing
methods. However, we made a selection of relevant approaches and methods to
limit the combinatorial complexity. Furthermore, we did not consider commercial
OCR engines like AbbyyFineReader or OmnipageReader, nor GOCR (which
is only rarely updated, last update from 2013). Since adding more methods
would lead to additional pipeline configurations, which significantly increases



Text Extraction from Scholarly Figures: A Systematic Comparison 25

the complexity of our experiments. However, as stated in the introduction, we
provide the datasets and the implementation of the generic pipeline that was
used in our experiment to the public. This allows for integrating and comparing
new methods as well as the reproduction of our results.

9 Conclusion

Our comparison of the 32 pipeline configurations for text extraction shows that
there is a clear favorite, configuration (BS-4OS). The systematic modifications
revealed that the SSOD line orientation estimation works better than the Hough
Transformation and Ocropus returns better OCR results than Tesseract, when
comparing with the best configuration from the literature. However, there is still
room for other improvements: We plan to further expand our experiment by in-
tegrating commercial OCR engines like AbbyyFineReader. Furthermore, the use
of heuristic post-processing has only little influence on the final results and other
methods should be investigated. In addition, further extensions with respect to
superscripts and subscripts as well as mathematical formulas should be investi-
gated. Finally, we also plan to investigate non-linear pipeline configurations and
extend our pipeline to target the ICDAR Robust Reading Competition on the
Born-Digital Images dataset.

Acknowledgement This research was co-financed by the EU H2020 project MOV-
ING (http://www.moving-project.eu/) under contract no 693092.

References

1. F. Böschen and A. Scherp. Formalization and preliminary evaluation of a pipeline
for text extraction from infographics. In R. Bergmann, S. Görg, and G. Müller,
editors, Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB,
Trier, Germany, October 7-9, 2015., volume 1458 of CEUR Workshop Proceedings,
pages 20–31. CEUR-WS.org, 2015.

2. F. Böschen and A. Scherp. Multi-oriented text extraction from information graph-
ics. In C. Vanoirbeek and P. Genevès, editors, Proceedings of the 2015 ACM Sympo-
sium on Document Engineering, DocEng 2015, Lausanne, Switzerland, September
8-11, 2015, pages 35–38. ACM, 2015.

3. S. Carberry, S. Elzer, and S. Demir. Information graphics: an untapped resource for
digital libraries. In E. N. Efthimiadis, S. T. Dumais, D. Hawking, and K. Järvelin,
editors, SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Seattle, Wash-
ington, USA, August 6-11, 2006, pages 581–588. ACM, 2006.

4. S. Carberry, S. E. Schwartz, K. F. McCoy, S. Demir, P. Wu, C. F. Greenbacker,
D. Chester, E. Schwartz, D. Oliver, and P. S. Moraes. Access to multimodal articles
for individuals with sight impairments. TiiS, 2(4):21, 2012.

5. Z. Chen, M. J. Cafarella, and E. Adar. Diagramflyer: A search engine for data-
driven diagrams. In A. Gangemi, S. Leonardi, and A. Panconesi, editors, Proceed-
ings of the 24th International Conference on World Wide Web Companion, WWW
2015, Florence, Italy, May 18-22, 2015 - Companion Volume, pages 183–186. ACM,
2015.



26 Falk Böschen and Ansgar Scherp

6. D. Chester and S. Elzer. Getting computers to see information graphics so users
do not have to. In M. Hacid, N. V. Murray, Z. W. Ras, and S. Tsumoto, editors,
Foundations of Intelligent Systems, 15th International Symposium, ISMIS 2005,
Saratoga Springs, NY, USA, May 25-28, 2005, Proceedings, volume 3488 of Lecture
Notes in Computer Science, pages 660–668. Springer, 2005.

7. Y. Chiang and C. A. Knoblock. A general approach for extracting road vector
data from raster maps. IJDAR, 16(1):55–81, 2013.

8. Y. Chiang and C. A. Knoblock. Recognizing text in raster maps. GeoInformatica,
19(1):1–27, 2015.

9. S. R. Choudhury and C. L. Giles. An architecture for information extraction from
figures in digital libraries. In A. Gangemi, S. Leonardi, and A. Panconesi, editors,
Proceedings of the 24th International Conference on World Wide Web Companion,
WWW 2015, Florence, Italy, May 18-22, 2015 - Companion Volume, pages 667–
672. ACM, 2015.

10. A. Clavelli, D. Karatzas, and J. Lladós. A framework for the assessment of text
extraction algorithms on complex colour images. In Document Analysis Systems,
ACM International Conference Proceeding Series, pages 19–26. ACM, 2010.

11. M. P. Deseilligny, H. L. Men, and G. Stamon. Character string recognition on maps,
a rotation-invariant recognition method. Pattern Recognition Letters, 16(12):1297–
1310, 1995.

12. M. Fraz, M. S. Sarfraz, and E. A. Edirisinghe. Exploiting colour information for
better scene text detection and recognition. IJDAR, 18(2):153–167, 2015.

13. J. Gllavata and B. Freisleben. Adaptive fuzzy text segmentation in images with
complex backgrounds using color and texture. In A. Gagalowicz and W. Philips,
editors, Computer Analysis of Images and Patterns, 11th International Conference,
CAIP 2005, Versailles, France, September 5-8, 2005, Proceedings, volume 3691 of
Lecture Notes in Computer Science, pages 756–765. Springer, 2005.

14. W. Huang and C. L. Tan. A system for understanding imaged infographics and
its applications. In P. R. King and S. J. Simske, editors, Proceedings of the 2007
ACM Symposium on Document Engineering, Winnipeg, Manitoba, Canada, August
28-31, 2007, pages 9–18. ACM, 2007.

15. W. Huang, C. L. Tan, and W. K. Leow. Associating text and graphics for scientific
chart understanding. In Eighth International Conference on Document Analysis
and Recognition (ICDAR 2005), 29 August - 1 September 2005, Seoul, Korea, pages
580–584. IEEE Computer Society, 2005.

16. J. Illingworth and J. Kittler. A survey of the hough transform. Computer Vision,
Graphics, and Image Processing, 44(1):87–116, 1988.

17. C. Jayant, M. Renzelmann, D. Wen, S. Krisnandi, R. E. Ladner, and D. Comden.
Automated tactile graphics translation: in the field. In E. Pontelli and S. Trewin,
editors, Proceedings of the 9th International ACM SIGACCESS Conference on
Computers and Accessibility, ASSETS 2007, Tempe, Arizona, USA, October 15-
17, 2007, pages 75–82. ACM, 2007.

18. Z. Jiuzhou. Creation of synthetic chart image database with ground truth. Honors
year project report, National University of Singapore, 2006. https://www.comp.

nus.edu.sg/~tancl/ChartImageDatabase/Report_Zhaojiuzhou.pdf.
19. D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. K. Ghosh, A. D. Bagdanov,

M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu, F. Shafait,
S. Uchida, and E. Valveny. ICDAR 2015 competition on robust reading. In 13th
International Conference on Document Analysis and Recognition, ICDAR 2015,
Nancy, France, August 23-26, 2015, pages 1156–1160. IEEE Computer Society,
2015.



Text Extraction from Scholarly Figures: A Systematic Comparison 27

20. D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i Bigorda, S. R. Mestre,
J. Mas, D. F. Mota, J. Almazán, and L. de las Heras. ICDAR 2013 robust reading
competition. In ICDAR, pages 1484–1493. IEEE Computer Society, 2013.

21. K. Khurshid, I. Siddiqi, C. Faure, and N. Vincent. Comparison of Niblack inspired
binarization methods for ancient documents. In K. Berkner and L. Likforman-
Sulem, editors, Document Recognition and Retrieval XVI, DRR 2009, 16th Doc-
ument Recognition and Retrieval Conference, part of the IS&T-SPIE Electronic
Imaging Symposium, San Jose, CA, USA, January 18-22, 2009. Proceedings, vol-
ume 7247 of SPIE Proceedings, pages 1–10. SPIE, 2009.

22. S. Lu, T. Chen, S. Tian, J. Lim, and C. L. Tan. Scene text extraction based on
edges and support vector regression. IJDAR, 18(2):125–135, 2015.

23. X. Lu, S. Kataria, W. J. Brouwer, J. Z. Wang, P. Mitra, and C. L. Giles. Automated
analysis of images in documents for intelligent document search. IJDAR, 12(2):65–
81, 2009.

24. J. I. Olszewska. Active contour based optical character recognition for automated
scene understanding. Neurocomputing, 161:65–71, 2015.

25. N. Otsu. A threshold selection method from gray-level histograms. Systems, Man
and Cybernetics, IEEE Transactions on, 9(1):62–66, Jan 1979.

26. H. Samet and M. Tamminen. Efficient component labeling of images of arbitrary
dimension represented by linear bintrees. IEEE TPAMI, 10(4):579–586, 1988.

27. J. Sas and A. Zolnierek. Three-stage method of text region extraction from dia-
gram raster images. In R. Burduk, K. Jackowski, M. Kurzynski, M. Wozniak, and
A. Zolnierek, editors, Proceedings of the 8th International Conference on Computer
Recognition Systems CORES 2013, Milkow, Poland, 27-29 May 2013, volume 226
of Advances in Intelligent Systems and Computing, pages 527–538. Springer, 2013.

28. M. Savva, N. Kong, A. Chhajta, F. Li, M. Agrawala, and J. Heer. Revision:
automated classification, analysis and redesign of chart images. In J. S. Pierce,
M. Agrawala, and S. R. Klemmer, editors, Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, Santa Barbara, CA, USA,
October 16-19, 2011, pages 393–402. ACM, 2011.

29. C. M. Strohmaier, C. Ringlstetter, K. U. Schulz, and S. Mihov. Lexical post-
correction of ocr-results: The web as a dynamic secondary dictionary? In 7th
International Conference on Document Analysis and Recognition (ICDAR 2003),
2-Volume Set, 3-6 August 2003, Edinburgh, Scotland, UK, pages 1133–1137. IEEE
Computer Society, 2003.

30. C. Wolf and J. Jolion. Object count/area graphs for the evaluation of object
detection and segmentation algorithms. IJDAR, 8(4):280–296, 2006.

31. S. Xu and M. Krauthammer. A new pivoting and iterative text detection algorithm
for biomedical images. Journal of Biomedical Informatics, 43:924–931, 2010.

32. L. Yang, W. Huang, and C. L. Tan. Semi-automatic ground truth generation for
chart image recognition. In H. Bunke and A. L. Spitz, editors, Document Analysis
Systems VII, 7th International Workshop, DAS 2006, Nelson, New Zealand, Febru-
ary 13-15, 2006, Proceedings, volume 3872 of Lecture Notes in Computer Science,
pages 324–335. Springer, 2006.


