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Abstract
The minimum-width layering problem tackles one step of a layout pipeline to create
top-down drawings of directed acyclic graphs. Thereby, it aims at keeping the overall
width of the drawing small.

We study layering heuristics for this problem as presented by Nikolov et al. as well as
traditional layering methods with respect to the questions how close they are to the true
minimal width and how well they perform in practice, especially, if a particular drawing
area is prescribed.

We find that when applied carefully and at the right moment the layering heuristics
can, compared to traditional layering methods, produce better layerings for prescribed
drawing areas and for graphs with varying node dimensions. Still, we also find that
there is room for improvement.

Keywords: layer-based layout, layer assignment, minimum-width layering, fixed draw-
ing area
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1 Introduction
The layer-based layout approach is a widely used method to automatically draw directed
graphs and was introduced by Sugiyama et al. in 1981 [13]. It is based on the idea to
assign nodes to subsequent layers with as many edges pointing into the same direction
as possible in order to emphasize the inherent direction of the graph. See Figure 1.1
for an example. The literature’s common layout direction is top-down, i. e. layers are
horizontal strips and edges point downwards. The method splits the layout task into
three consecutive phases: (1) the node layering phase distributes the nodes into indexed
layers such that all edges point from layers with lower index to layers with higher index,
edges that span multiple layers are split using dummy nodes such that every edge con-
nects nodes in adjacent layers, (2) the crossing minimization phase orders the nodes in
each layer such that the number of edge crossings is minimized, and finally (3) the node
placement phase determines the actual node coordinates. In practice, an initial cycle
breaking phase as well as a final edge routing phase are often added to support cyclic
graphs and different edge routing styles.

In this report, we are interested in the layering phase, in particular, in a specialized
version of it, which is referred to as minimum-width layering. One seeks to produce
layerings which have a small width, where the width of a layering is defined as the
maximum number of nodes in any layer of the layering. One can either consider the
contribution of dummy nodes to the width of a layer or not. Unless stated otherwise we
do consider dummy nodes. The height of the layering is defined as the number of used
layers.

Branke et al. showed that the problem of finding a layering with minimum width is
NP-complete when dummy nodes are considered [1]. Healy and Nikolov presented an ILP
approach to minimize the number of dummy nodes in a layering subject to bounds on the
width and height of the layering [7]. In a subsequent paper they solve their presented ILP
using a branch and cut algorithm which significantly decreases the execution time [6].
In further papers Nikolov, Tarassov, and Branke present several heuristics to solve the
minimum-width layering problem [14, 11] and to reduce the number of dummy nodes
in the resulting layerings [10]. These heuristics are the main subject of research in this
report.

Contrary to the layering methods just mentioned, traditional layering methods have no
control over the width of the resulting layering. The well-known longest path algorithm
(LP) guarantees a layering with the minimum number of layers [3], and the network
simplex approach (NS) presented by Gansner et al. guarantees a minimum number of
dummy nodes [5]. Both approaches, however, can result in layerings with an unfor-
tunate width. Adapting Coffman and Graham’s scheduling algorithm with precedence
constraints to the layering problem, one can restrict the number of regular nodes per
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layer [2]. However, it does not allow to consider the contribution of dummy nodes, which
can have a significant impact on the width of a drawing.

Contributions. In this report, we answer the following questions:

1. While the problem we are concerned with is called minimum-width layering, the
heuristics of Nikolov et al. do not necessarily find a layering with minimal width.
After all they are heuristics. What is the gap between heuristic solutions and
optimum solutions? How do the traditional layering methods compare to optimal
solutions? Both points were not yet examined by Nikolov et al.

2. Can the heuristics be used to target a certain drawing area, for instance a computer
screen?

3. Is there a need for and an easy way to extend the heuristics to consider differently-
sized nodes?

Outline. We proceed by introducing necessary terminology and the set of graphs used
for our evaluations in the next chapter. Afterwards we tackle Questions 1–3 in consec-
utive sections of Chapter 3. The final chapter contains summarizing discussions.
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(a) NS (b) LP

(c) MinWidth (d) StretchWidth

(e) MinWidth and PromoteNodes (f) StretchWidth and PromoteNodes

Figure 1.1: Different layerings of the grafo11465.34 graph from the Rome graphs collection,
produced with traditional methods, (a) and (b), and with the heuristics of Nikolov et al. [11],
(c)–(f).
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2 Preliminaries
This chapter introduces the terminology used throughout this report.

Definition 2.1. Let G = (V, E) be a graph with a set of nodes V and a set of directed
edges E. A layering of G is a partition of V into disjoint subsets L = {L1, . . . , L|L|}.

Definition 2.2. Let G = (V, E) be a directed graph. For a node v ∈ V , the in-degree
d−(v) is the number of directed edges ending in v and the out-degree d+(v) is the number
of edges leaving v. d̄−(G) denotes the average in-degree of all nodes in G and d̄+(G) the
average out-degree.

Definition 2.3. Let G = (V, E) be a directed acyclic graph. A layering L is valid if
∀(u, v) ∈ E with u ∈ Li ∧ v ∈ Lj: i < j.

An edge (u, v) ∈ E is short in a valid layering if j−i = 1 for u ∈ Li∧v ∈ Lj, otherwise
it is long. A valid layering L is proper if all edges are short. Given any valid layering, it
can be made proper by splitting long edges with sequences of dummy nodes. This gives
a graph G′ = (V ∪ D, E ′), where D is the set of dummy nodes and E ′ contains only
short edges. A node that is not a dummy node is referred to as regular node.

Definition 2.4. A node of a graph G may have a width w(v) and a height h(v). The
width of the edge representing dummy nodes is denoted by wd.

2.1 Measures
The introduction includes definitions of the width and the height of a layering that have
been used in the literature before. However, they represent estimates that can deviate
from the actual dimensions of a final drawing, e. g. in pixels when drawn on a screen.
Therefore, we define these terms more precisely in the following.

Definition 2.5. For a graph G with layering L, the estimated height h̃ of the layering is
the number of layers |L| and the estimated width w̃ is the maximum number of nodes in
a layer over all layers: maxL∈L|L|. A properly layered graph may include dummy nodes.
Unless stated otherwise we do include the dummy nodes in w̃.

Definition 2.6. Let G be a graph with a layering L. The estimated area ã is the
estimated width of L multiplied by its estimated height. The estimated aspect ratio ãr
is the quotient of estimated width and estimated height.
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Definition 2.7. Let G be a graph with a layering L. The edge density E(Li) of a
layer Li is the number of edges spanning from layer Li to layer Li+1. The edge density
of the last layer is thus always 0. The maximum edge density Ê of the layering L is
max1≤i<|L|E(Li). The average edge density Ē is 1

|L|−1
∑

1≤i<|L| E(Li). If G is properly
layered the average edge density can alternatively be stated as 1

|L|−1 (|E|+ |D|), where
E denotes the set of original edges and D denotes the set of introduced dummy nodes.

Definition 2.8. Let G be a graph. A drawing D of G is an embedding in the plane.

Definition 2.9. Let D be a drawing of a graph G. The (effective) width w of D is the
difference between the maximal and the minimal horizontal coordinate component of
any point in the embedding D. The (effective) height h is defined symmetrically for the
vertical components.

Definition 2.10. Let D be a drawing of a graph G. The effective area a is the product
of the width and the height of D. The effective aspect ratio ar is the quotient of width
and height.

Definition 2.11. Let R(rw,rh) denote a reference frame with width rw and height rh. For
instance, an A4 paper sheet (portrait) has R(210mm, 297mm), or simplified R(1,

√
2). The

max scale value s of a drawing D with dimensions w and h with respect to a certain
reference frame R is defined as:

s = min
{

rw

w
,
rh

h

}
.

Intuitively it represents the scaling factor by which all elements of a drawing (alongside
their positions) have to be scaled in order to fit into the reference frame.

Definition 2.12. Given two drawings D and D′, and their corresponding max scale
values s and s′ in relation to a common reference frame, the max scale ratio r = s

s′ of the
two drawings indicates which of the two drawings can be displayed with a larger scale
factor within the given reference frame. In other words, if r > 1, the drawing D can be
displayed larger than D′.

2.2 Test Graphs
Nikolov et al. used a subset of the Rome graphs1 for their evaluations. From the original
11.530 graphs they removed graphs that contain directed cycles or are unconnected,
leaving 5911 graphs. We applied the same criteria and ended up with 5912 graphs.
However, the graph grafo7417.39 contains 104 nodes. For all other graphs the last
number of the filename represents the number of nodes in the graph. Further, Nikolov et
al. state their graphs contain between 10 and 100 nodes. Therefore, we removed this
graph as well, leaving 5911 graphs. We refer to this set as RomeF during the remainder

1http://www.graphdrawing.org/data/
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of this report. The graphs of the set have between 10 and 100 nodes, 48.4 on average,
and between 9 and 158 edges, 62.7 on average.

Before we continue to explain the next set of graphs, a word on the layout direction.
As mentioned during the introduction, the prevalent layout direction in the literature of
the layer-based layout approach is top-down. However, not all diagram types must be
drawn top-down; a left-to-right layout is just as justified. We will explain our reasons
in more detail in Section 3.3.1.

From the RomeF set we extracted three further subsets as follows. We laid out the
RomeF graphs from left-to-right using layering and node placement techniques presented
by Gansner et al. [5] and a simple polyline edge routing. For the resulting drawings we
measured the effective aspect ratio and composed three sets of 1000 graphs each:

Low: 1000 graphs with the lowest aspect ratios (roughly 0.3–1.0)

Middle: 1000 graphs with aspect ratios around 1.6, the aspect ratio of up-to-date
computer screens (roughly 1.5–1.7)

High: 1000 graphs with the highest aspect ratios (roughly 2.2–7.1)

The rationale for this partitioning is that we expect the layering heuristics of Nikolov et
al. to perform differently based on the aspect ratio of a “traditional” drawing. Consider
the following example: a low aspect ratio value of 0.5 in a left-to-right drawing may
be an indication that the maximum of the number of nodes in any layer is larger than
the number of layers. To increase the aspect ratio, thus better matching a computer
screen, the maximum number of nodes per layer would have to be decreased by moving
some nodes to new layers. Exactly this is what the heuristics do. More on this topic in
Section 3.3.1.

The last set of graphs we introduce here has, as opposed to the Rome graphs, nodes
with varying dimensions. In Section 3.4 we use it to evaluate our extensions of the
heuristics to consider individual node sizes. Sequentially Constructive Graphs (SCGs)
are specialized control flow graphs used in the context of Sequentially Constructive
Charts (SCCharts) [15]. An example SCG can be seen in Figure 3.8 on page 16. Note
that SCGs are drawn top-down with orthogonal edges. We assembled a set of 40 SCGs
with aspect ratios between 1.3 and 4.5 and an outlier of 8.5. The graphs have between
32 and 563 nodes, 84.3 on average. On average of 9.2 nodes per graph are hierarchical
nodes, i. e. nodes that contain further nodes. The edge count is between 40 and 827,
113.8 on average.
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3 Minimum-Width Layering
Nikolov et al. were the first to introduce heuristics that create layerings with restricted
width while considering dummy nodes [11]. In their 2005 paper they discuss the fol-
lowing three heuristics: MinWidth (MW), StretchWidth (SW), and PromoteNodes
(PN). In this chapter we first give a brief introduction of the heuristics and their main
differences. For an in-depth discussion we refer the reader to one of the original pa-
pers [10, 11, 14]. Second, we reconstruct evaluations of Nikolov et al., and present our
contributions third. For the moment, the layout direction is top-down again.

MinWidth. The actions of the MW heuristic are roughly based on the longest path
algorithm. The longest path algorithm iteratively places all sinks of a graph in a layer,
removes the sinks from the graph, and continues with a new layer and the newly created
sinks until the graph is empty. MW adds two new elements to this procedure: 1) instead
of adding all available sinks to the current layer, it only adds nodes as long as a certain
threshold on the width (and the predicted width of future layers) is not exceeded, and 2)
the next node to be added to the current layer is chosen to be the one with the largest
out-degree. The idea behind the second point is that the node with the largest out-
degree has the most connections to already placed nodes; selecting it keeps the number
of dummy nodes to be introduced low.

MW makes use of two input parameters. The authors conducted extensive parameter
studies and found a set of eight promising parameter combinations. They propose to
run the algorithm for all eight combinations and select the layering with smallest width.

StretchWidth. The second layering heuristic, SW, constructs the layering in a similar
fashion to MW but does not depend on input parameters. Instead, SW starts with a
low value for the threshold on the width of a layer and increases it iteratively whenever
it finds that the threshold cannot be realized.

PromoteNodes. Nikolov et al. found that the two previously described heuristics tend
to produce layerings with a large number of unnecessary dummy nodes, the removal of
which would not necessarily harm the width of the layerings. They therefore suggest to
execute a post-processing algorithm: PN. PN takes a given layering as input. It then
recursively checks whether moving groups of nodes to earlier layers decreases the overall
number of dummy nodes. When used in conjunction with MW or SW, nodes are only
promoted if the width of the layering is not increased.
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Differences. We take a closer look at the differences between MW and SW. The most
obvious difference is that MW uses two input parameters (in addition to the graph
itself) while SW does not use any input parameters. Apart from that both heuristics
are based on the idea of the longest path layering algorithm and essentially have two
further decisions to make: (1) select the node which should be placed next, and (2) start
a new layer when a certain width is reached.

Regarding (1), out of all nodes that could possibly be placed in the current layer,
MW picks the node v with the highest out-degree d+(v). SW on the other hand picks
the node v with the highest rank, which is defined as max{d+(v), max(u,v)∈E d+(u)}.
The rank allows to look at nodes that cannot be placed yet but will have a significant
influence on the layering’s width as soon as they are placed. At the same time it yields
shorter edges. Essentially, the rank realizes a one node lookahead with relation to the
nodes’ degrees.

Regarding (2), both heuristics internally use two variables: the width wc of the cur-
rently constructed layer and an estimation of the width of future layers wu. MW com-
pares its two input parameters with these internal variables and starts a new layer if (a)
wc exceeds the input parameter for the upper bound on a layer’s width ubw and no node
with outgoing edges can be placed, or if (b) wu exceeds ubw multiplied by the second
input parameter ubc. Note that therefore ubw is not a bound on the width in a strict
sense, as it allows further nodes to be placed in the current layer as long as they have
outgoing edges. SW on the other hand starts with a lower bound on the allowed width
wc, for instance the maximum out-degree of any node in the graph, and increases this
bound until it can construct a feasible layering. A new layer is created if either (a) wc

exceeds the current lower bound or if (b) wu exceeds the current lower bound multiplied
by the average out-degree of all of the graph’s nodes.

MW first assigns a selected node to the current layer and then checks the condition if
a new layer should be started. SW proceeds vice versa, first checking its condition and
potentially starting a new layer, then assigning the selected node.

3.1 Reproducing Existing Results
We implemented the three heuristics as part of the ELK Layered algorithm of the Eclipse
Layout Kernel (ELK), a Java-based open source project.1

As a first step we wanted to know if our implementations produce the same results
as included in the paper of Nikolov et al. [11]. For this, we applied the heuristics to
the RomeF graphs (cf. Section 2.2), plotted the results, and compared our plots to the
plots of the original paper. An example illustrating the comparison of the plots for the
estimated width with consideration of dummy nodes after node promotion can be seen in
Figure 3.1. Note that our plot does not include the Coffman-Graham algorithm, which
was the weakest one in the original evaluations [11].

We found that our implementations resemble the results of Nikolov et al. with very
few and small deviations that are most likely either due to implementation details or

1http://www.eclipse.org/elk
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Figure 3.1: Plots for the estimated width with consideration of dummy nodes after node
promotion. (a) shows our results, (b) the results as published by Nikolov et al. [11]. We did
not implement the Coffman-Graham algorithm, which therefore is missing in (a).

due to partly unspecified iteration orders of the nodes. As a consequence, we omit the
plots comparing the remaining metrics: estimated height, number of dummy nodes, and
edge density.

A Remark on Edge Density. According to Healy and Nikolov, drawings with a small
maximum and average edge density are favorable [9]. They, however, give no proof for
their claim. Consider Figure 3.2. Both diagrams have the same maximum edge density
Ê and the right diagram’s average edge density Ē is lower. One can argue though that
the left diagram is more readable, at least when it comes to quickly understanding the
graph’s hierarchy.

The maximum edge density represents the situation between a single pair of layers
and completely neglects the structure of the rest of the layering. Also, it is bounded
from below by either the maximum in-degree or the maximum out-degree of a graph’s
nodes. A single high-degree node can thus impair an otherwise totally fine layering.

The average edge density tends to be smaller for layerings with a small number of
dummy nodes. This gives rise to the question why not simply use the number of dummy
nodes as a measure. Moreover, the average edge density only depends on the number of
layers for layerings with the minimum number of dummy nodes. As seen in Figure 3.3,
the number of used layers in this case is not unique though. One can also both increase
and decrease the average edge density of a given layering by inserting empty layers. In
particular, it is possible to continuously decrease the average edge density by inserting
more and more layers at the right place. This is demonstrated in Figure 3.4.

Since we are rather skeptical concerning the usefulness of the edge density as a quality
measure we do not include it throughout our evaluations.
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(a) Ê = 7; Ē = 7 (b) Ê = 7; Ē = 5.3̄

Figure 3.2: Both diagrams have the same
maximum edge density but (b) has a lower av-
erage edge density. While a lower edge density
is believed to characterize more comprehensi-
ble diagrams [9], (a) is arguably more compre-
hensible, when it comes to understanding the
hierarchy.

(a) |D| = 1; |L| = 3 (b) |D| = 1; |L| = 4

Figure 3.3: Both diagrams have one dummy
node, which is the minimum number of
dummy nodes possible, but (a) has only three
layers while (b) has four. The graph (b) has
been presented before by Healy and Nikolov
to illustrate that dummy nodes can be part of
the layering’s longest path [8].

(a) Ē = 2.5 (b) Ē = 3 (c) Ē = 2

Figure 3.4: The average edge density of a given drawing (a) can be altered by artificially
inserting layers. The black circles represent dummy nodes. The average edge density of (b)
is higher; as one would expect for that particular drawing. The average edge density of (c) is
lower and converges to 1 if one continues to insert layers between n1 and n2.

3.2 Truly Minimum Width
The heuristics of Nikolov et al. aim at finding layerings with minimal width, however,
the authors never compare the widths of their layerings to the optimal solutions. We
used an optimization problem, described in the next section, to compute a layering with
minimal width (OPT). Out of interest, we dropped the requirement that edges have to
point into a common direction and also computed the minimal width of this variation
(OPT2). Results can be seen in Figure 3.5. As to the boxplots, the dot within the box
denotes the average value, while the dots outside the whiskers denote outliers. They
were created with R 3.2.3. In (a) the results of 3519 graphs are shown for which OPT
finished within a set time limit. The results of MW, SW, and LP (with subsequent
node promotion), as well as NS are close to each other with MW resulting in slightly
narrower layerings. This conforms to the results of Nikolov et al. [11]. Concerning the
actual minimum width, there is a gap of about 22 % between MW and OPT.

The results including OPT2 can be seen in Figure 3.5b, finishing for 1902 graphs.
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Figure 3.5: The estimated widths (maximum number of original nodes and dummy nodes in
any layer) for the different layering methods. OPT refers to the minimal possible estimated
width, OPT2 refers to the minimal possible estimated width if the requirement is dropped
that edges have to point into a common direction. OPT and OPT2 were implemented as
optimization problems which did not finish for all graphs within a set time limit, thus only
subsets of the graphs are plotted here. The boxplots and the line plots contain the same data.

This time there is a gap of about 75 % between the results of MW and OPT2. It must
be noted however that MW is not allowed to let edges point upwards. Nevertheless, it
gives a feeling of what is theoretically possible when seeking for layerings with a small
width. Further note that it is possible that other metrics such as the number of dummy
nodes, i. e. the edge length, and the layering’s height may be significantly worse for OPT
and OPT2. We did not investigate this so far.
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3.2.1 Optimization Problem
We started our experiments with a variation of a straightforward model for the minimum-
width layering problem presented by Healy and Nikolov [6], where we minimized the
width instead of the number of dummy nodes. However, we were able to get a larger
number of optimal results using an approach that combines Constraint Programming
(CP) with SAT solving [12, 4]. Our new model is defined in the MiniZinc language2,
a high-level language for specifying optimization problems independently from a solver.
We executed it using the open-source solver chuffed3.

Inputs. Let G = (V, E) be a graph with a set of nodes V and a set of edges E. Let
{1, . . . , n} denote the nodes, where n = |V |.

Parameters. The layer of each node i ∈ V is stored in a variable xi and can take
values in {1, . . . , n}, where n is a trivial upper bound on the number of layers. For a
layer 1 ≤ l ≤ n, the variable ll holds the number of regular nodes in this layer. Further,
the variable wl holds the sum of regular nodes as well as dummy nodes in layer l. b2i is
an operator that converts a boolean expression to an integer: true to 1 and false to 0.

Objective.
Minimize max

1≤l≤n
wl (A)

Constraints.

xi < xj for all (i, j) ∈ E (B)

ll =
∑
i∈V

b2i(xi = l) for all 1 ≤ l ≤ n (C)

wl = ll +
∑

(i,j)∈E

b2i(xi < l ∧ xj > l) for all 1 ≤ l ≤ n (D)

The constraints can easily be altered to allow edges with an arbitrary direction. For
this, constraints (B) and (D) are replaced by the following two constraints.

xi 6= xj for all (i, j) ∈ E (E)

wl = ll +
∑

(i,j)∈E

b2i(min{xi, xj} < l ∧max{xi, xj} > l) for all 1 ≤ l ≤ n (F)

2http://www.minizinc.org/
3http://github.com/geoffchu/chuffed
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Figure 3.6: The width, height, and area of the RomeF graphs when drawn with different
layering methods. Estimated measures (left side) are marked with a tilde.

3.3 Assessing Final Drawings
In the previous two sections estimated values were used during evaluations, primarily
the estimated width of a layering. As mentioned before, we believe that it is not enough
to assess the performance of a layering heuristic using estimations of the final dimensions
of a drawing when it comes to practical applications. The layering phase only defines
parts of the topology of a drawing and it is not until the node placement and edge
routing phase that explicit coordinates are determined. For this reason, we extended
the evaluation of Nikolov et al. by further measures, such as the effective width in pixels.

We created final drawings of the RomeF graphs using a node placement technique
presented by Gansner et al. [5] and a simple polyline edge routing. The prescribed
spacing between pairs of nodes is set to 20 pixels, both vertically and horizontally. The
parameters ubw and ubc of MW were set to 4 and 2. We plotted the results in the same
way as seen in Figure 3.1, i. e. a certain measure against the node count.

The only significant difference we could find is that without node promotion the
estimated width of layerings created with MW is slightly larger than if the layering is
created with NS, while the opposite is true for the effective width. Apart from that the
overall trend of estimated and effective measures is comparable. We believe that the
results are similar due to nodes being of the same size in the RomeF set and expect
it to be different when nodes vary in size. Nevertheless, summarizing boxplots of our
results can be seen in Figure 3.6. As said, the results of the four layering algorithms
are similar for the presented measures with MW being a minor exception: the width of
layerings created with MW is slightly smaller but the height of the layerings is larger.
This is true for both estimated and effective values. Looking at the area, the reduction
in width cannot compensate for the increase in height, resulting in an overall larger area
for MW. Furthermore, while the estimated width is on average larger than the estimated
height for all layering algorithms, it is the opposite way around for the effective width
and effective height. A possible explanation for this could be different spacing values
between pairs of layers and between pairs of nodes within the same layer. This is not the
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case here since we set both spacings to the same value as mentioned above. It is more
likely that the additional height is contributed by the final edge routing phase, which
makes enough room between pairs of layers to tidily route the edges. Consequently, the
estimated values obtained after the layering phase cannot be used as a reliable indicator
for the aspect ratio of the final drawings.

Summarizing this section, we found that while the estimations of width and height are
similar to the width and height of a final drawing for the RomeF graphs, care has to be
taken when drawing conclusions based on combinations of the measures, e. g. the aspect
ratio. Moreover, MW indeed slightly reduces the width of a final drawing, however at
the cost of an overall larger area. Generally speaking, no significant differences can
be observed between the layering algorithms, particularly no advantages in terms of
drawing area. This leads to the question whether MW and SW are useful in practice.
We address this question in the next section; after all the idea to reduce the width while
increasing the height sounds promising, for instance, in order to alter the layering of a
graph such that it better suits a particular drawing area.

3.3.1 Target Drawing Area
Usually the drawing of a graph ends up being displayed on a screen or printed to a page.
In both cases it is not enough to look at the width and height of a drawing in isolation to
evaluate its quality. The max scale measure introduced in Chapter 2 grasps this desire
to assess the quality of a drawing w.r.t. to a particular reference frame.

The previous section posed the question as to whether MW and SW are usable in
practice. If one would plot max scale values for the layering methods discussed here and
the RomeF graphs in the same way as in Figure 3.6, the conclusion would be that NS
works best. Nevertheless, even if not usable as general purpose layering algorithms, MW
and SW may be able to create layerings that are more suitable for a certain drawing
area where NS fails. To evaluate this, we split the RomeF graphs into three further
subsets, as explained in Section 2.2: Low, Middle, and High. MW and SW try to
create layerings with a small width, thus we expect it to perform well for graphs for
which NS uses few layers and places many nodes within the layers.

As a basis for the evaluation we chose the reference frame R(16,10), resembling an
up-to-date computer screen, and a left-to-right layout direction. The results seen in
Figure 3.7 confirm our expectations on the one hand and indicate that one has to be
careful when to apply a certain method on the other hand. The boxplots in (a) show
max scale ratio values for MW, SW, and LP relative to NS’s results. The boxplots in (b)
show the number of dummy nodes for each method. For the Low graphs MW produces
better results than NS for over three quarters of the graphs. However, a larger number of
dummy nodes (thus edge length) is necessary which may worsen readability. The picture
is completely different for Middle, where MW produces worse results. NS guarantees a
minimum number of dummy nodes, and thus produces very compact drawings. Because
the graphs of Middle were selected to roughly fit R(16,10) when drawn with NS, it feels
natural that MW performs worse. For High no conclusion can be drawn from the results.
Still, since the graphs in this set are already quite narrow MW and SW would have to
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Figure 3.7: Boxplots for the subsets of the RomeF graphs. A reference frame R(16,10) and
a left-to-right layout direction were used. Max scale ratio values are relative to the max scale
values of NS.

behave in the opposite way (putting more nodes in layers) in order to improve the max
scale measure for R(16,10).

To conclude, it makes sense to use MW and SW in cases where NS is not able to
produce drawings that feature the desired aspect ratio.

3.4 Considering Actual Node Sizes
During the previous sections regular nodes and dummy nodes were considered to have
the same dimensions. In practice however, the dimension of the nodes of a graph may
vary significantly depending on the application the graph originates from. Furthermore,
the introduced dummy nodes effectively represent edges, which usually require less space
in the final drawing than regular nodes. An example of this can be seen in Figure 3.8,
which additionally contains hierarchical nodes, nodes that contain further nodes. To
handle the hierarchy, the layout algorithm is executed in a bottom-up fashion, starting
with the inner-most hierarchical nodes. Nikolov et al. already consider different node
widths during their motivation of the problem but return to a unit width as soon as they
discuss the heuristics. The remainder of this section discusses how actual node widths
can be incorporated into each of the three heuristics. Note that it is essential that the
node promotion has the same, or at least a very similar, notion of a layer’s width as
the prior layering heuristic. Otherwise it is not possible to prevent nodes from being
promoted that would inadvertently increase the width of the layering.

To incorporate varying node dimensions we proceed in a similar fashion for MW and
SW, and thus start with a general explanation before we discuss details specific to each
method. The two heuristics essentially use the out-degree and the in-degree of a node v
as predictions for the number of introduced dummy nodes, i. e. the contribution to the
width of layers adjacent to v’s layer. Thereby, a dummy node contributes one unit to

15



(a) Traditional methods

(b) MinWidth and PromoteNodes

Figure 3.8: Example of an SCG drawn with different layering methods. Depending on the
available drawing area, one can imagine that either (a) or (b) is advantageous. For instance,
(b) can be scaled larger when fitted on a sheet of paper in portrait orientation. Node labels
would thus be more legible.
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the width of a layer just as a regular node contributes one unit.
Let w(v) denote the width of a node v and w̌ denote the smallest width of any node

of a graph. During a pre-processing step, we normalized the node widths with respect
to w̌ and refer to the normalized widths as w̄(v). Furthermore, we set the width of
dummy nodes wd to a user-specified minimum separation between edges and normalize
it as well. Wherever necessary, one can have individual widths for dummy nodes, e. g. if
edges have different line widths. We omit this during the upcoming explanations since it
is easy to incorporate. Let wc denote the width of the currently constructed layer and wu

denote the predicted width of future layers. With these definitions the decision whether
to start a new layer can be adjusted for both MW and SW in the way discussed below.
Additionally, the parts of the original heuristics that keep track of the current layer’s
width wc and the predicted width of future layers wu must multiply the node degrees by
wd and use the real width of a node. This can however be amended straightforwardly.
Apart from these two modifications, the way the next node to be placed is selected
remains unaltered.

3.4.1 MinWidth
Let ubw and ubc be the two input parameters to MW as discussed in Chapter 3. Further
let v be the node currently looked at.

Size-Un-Aware. The original condition to start a new layer as defined by Nikolov et
al. is:

wc ≥ ubw ∧ d+(v) < 1

or wu ≥ ubw · ubc

Size-Aware. We change this to consider actual node widths as follows. The upper
bound on the width of a layer ubw is multiplied by the average width of all nodes of
the graph. The resulting value is denoted by ubw′. If a node’s width exceeds ubw′ it
can still be placed since MW first assigns nodes to the current layer and then checks the
condition.

wc ≥ ubw′ ∧ d+(v) · wd < w̄(v)

or wu ≥ ubw′ · ubc
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3.4.2 StretchWidth
Let wm denote the current maximal allowed width of a layer that is iteratively increased
if it is too small (cf. Chapter 3). Further let v be the node currently looked at.

Size-Un-Aware. The original condition to start a new layer as defined by Nikolov et
al. is:

wc − d+(v) + 1 > wm

or wu + d−(v) > wm · d̄+(G)

Size-Aware. We change this to consider actual node widths as follows:

wc − d+(v) · wd + w̄(v) > wm

or wu + d−(v) · wd > wm · d̄+(G) · wd

In the original version of the algorithm the wu variable only accumulates the in-
degrees of the nodes placed within the current layer and is reset every time a new layer
is started. As a consequence long edges spanning multiple layers are only considered
once and neglected afterwards, i. e. they only contribute width to one layer no matter
how long they are. An alternative could be to not reset the wu variable when a new
layer is started but to “correct” it instead: once a node v is placed in the current layer,
v’s out-degree is subtracted from wu and its in-degree is added.

We briefly evaluated this for the SCGs, where we observed that the second part of the
condition to start a new layer is hardly true as wu is often too small. Our modification
seemed to improve things slightly but requires more thorough evaluation to make a final
statement.

3.4.3 PromoteNodes
The PN heuristic tries to improve existing layerings by reducing the overall number of
dummy nodes. When applied after either MW or SW, which try to create layerings with
small width, it is sensible to prevent PN from increasing the layering’s width again.

As soon as MW and SW are aware of width of regular nodes and dummy nodes, PN
must consider this as well. It is not hard to incorporate this into the heuristic. The
width of every layer of the given layering can be computed upfront and it makes no
differences whether regular nodes and dummy nodes factor in with a width of one or
an individual width. While promoting nodes it can be checked if moving a node would
increase the maximal width of the original layering.
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Figure 3.9: Assessing the impact of considering individual node sizes based on the set of
SCGs A reference frame R(10,16) is assumed. The plotted max scale ratio values are relative to
NS’s results.

3.4.4 Results
The example in Figure 3.8 highlights the importance of considering actual node sizes.
Note that the depicted graph is hierarchical. It is laid out in a bottom-up fashion,
consecutively executing the layout algorithm for the different hierarchy levels. As such,
the shaded areas representing hierarchical nodes are at some point “black boxes” from
the perspective of the layout algorithm.

Looking at the top-level graph with 9 nodes and 12 edges, the estimated width of the
layering in both (a) and (b) is 5 when individual node widths are not considered. In
their original form, neither MW nor SW would create the drawing (b), which in terms
of pixels is significantly narrower.

We executed the two layering heuristics for the set of SCGs, as introduced in Sec-
tion 2.2, in four configurations: either without node promotion (NONP) or with node
promotion (NP), and either without size-awareness or with size-awareness (SA). Re-
member that SCGs are drawn top-down and that we selected those test graphs that
are rather wide (large aspect ratio). This time we aim at producing drawings that fit
computer screens in portrait-orientation, i. e. R(10,16). The results are presented in Fig-
ure 3.9. The boxplot shows max scale ratio values relative to the results produced with
the network simplex layering (NS) approach. The size-aware heuristics clearly produce
better drawings for the defined setting when compared to the original versions, with
drawings that can be displayed about 1.5 times larger. When not considering node sizes
the results of the heuristics are worse than NS for the majority of the graphs. No clear
winner can be identified between MW and SW based on the tested SCGs. The execution
of a subsequent node promotion only improves matters for SW. However, the latter two
observations probably strongly depend on the particular set of graphs.
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4 Discussion
In this report we examined layering heuristics for the minimum-width layering problem
and posed three questions in Chapter 1. Summarizing they can be answered as follows.

First, we found that for many of the RomeF graphs there is a noteworthy gap between
the heuristic solution and an optimal solution. Nevertheless, it is not clear if optimal
solutions are desirable when it comes to a layering’s width. After all, a very narrow
drawing may corrupt other important layout aesthetics, such as the number of edge
crossings and the overall edge length. Second, in the general case the layering heuristics
perform inferior to the traditional layering method NS. However, when used with care
MW and SW are able to produce drawings that are better suited for certain drawing
areas, e. g. computer screens. Third, we showed how one can extend the heuristics to
consider individual node sizes. Our evaluation based on a set of SCGs suggests that this
is both necessary and successful.

Finally, we look at future avenues of research. Both heuristics are based on the idea of
the LP algorithm. Superfluous dummy nodes are removed by the node promotion post-
processing step. To a certain extent this mimics the underlying goal of NS: minimizing
the number of dummy nodes. It has been shown that NS produces good and compact
layerings [7]. Therefore, it may be more promising to base a heuristic for the minimum-
width layering problem on the idea of NS from the start. Another point to consider
is whether MW’s parameters should be linked to the graph instance at hand, instead
of being absolute values. The parameter values suggested by Nikolov et al. base on
extensive experiments with the RomeF graphs [11]. Those graphs have a specific range
of node and edge counts and are sparse. Denser graphs may require larger parameter
values for good results.

Acknowledgments. We thank Thorsten Ehlers for valuable support regarding con-
straint programming and the use of chuffed.
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