INSTITUT FUR INFORMATIK

Hands-On:
Experiencing Software Architecture in
Virtual Reality

Christian Zirkelbach, Alexander Krause,
and Wilhelm Hasselbring

Bericht Nr. 1809
Januar 2019
ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITAT
/U KIEL



Institut fiir Informatik der
Christian-Albrechts-Universitat zu Kiel
Olshausenstr. 40
D - 24098 Kiel

Hands-On:
Experiencing Software Architecture in Virtual
Reality

Christian Zirkelbach, Alexander Krause,
and Wilhelm Hasselbring

Bericht Nr. 1809
Januar 2019
ISSN 2192-6247

e-mail: {czi, akr, wha}@informatik.uni-kiel.de

Technical Report



Abstract

Recently, virtual reality (VR) and gesture-based interface devices emerged at
the consumer market. Both concepts offer new visualization and interaction
capabilities, which can improve the user experience when using software. In
Software Engineering, exploring and comprehending software systems is often
addressed via visualization techniques.

In this paper, we present our VR approach to explore software systems
by using a head-mounted display and two different gesture-based interaction
devices. Hence, we achieve a more immersive user experience and natural
interaction, which benefits the comprehension process. Our VR approach
is integrated into ExplorViz, our tool for live trace visualization of large
software landscapes. In order to emphasize the advantages, we apply our
combined approach on a small software system, running within our web-
based tool ExplorViz. In this context, we present both, the visualization and
the interaction capabilities.



1 Introduction

In the past years, virtual reality (VR) techniques emerged at the consumer
market. Starting with the Oculus Rift DK1 head-mounted display (HMD),
which was available at the end of 2013, the VR devices constituted a major
step towards the consumer market. Based on this development, modern VR
approaches became affordable and available for various research purposes. A
similar development can be observed in the field of gesture-based interfaces,
when Microsoft released their Kinect sensor in 2010 [1]. A combination of
both techniques offers new visualization and interaction capabilities for newly
created software, but can also improve reverse engineering of existing software
by means of immersive user experience. In the area of software engineering,
exploring and understanding software systems is often handled through 2D or
3D visualizations [2], [3]. Based on an in-depth 3D visualization and a more
natural interaction, compared to a traditional 2D screen and input devices
like mouse and keyboard, the user gets a more immersive experience, which
benefits the comprehension process [4].

In this paper, we present a VR approach to explore software systems, visu-
alized through the 3D software city metaphor, by using a HMD and gesture-
based interaction. Our VR approach is integrated into our web-based tool
ExplorViz! [5], [6], which offers monitoring and visualization capabilities us-
ing dynamic analysis techniques to provide a live trace visualization of large
software landscapes. The tool targets system and program comprehension
for developers and operators in those landscapes while providing details on
the communication within an single application. We already successfully
employed our software in several collaboration projects [7], [8] and experi-
ments [9], [10].

For our VR approach, we use the HTC Vive (Vive)? for displaying the soft-
ware city and the bundled controllers, respectively the Leap Motion sensor?
(Leap), for the gesture recognition. We present our extended approach based
on our prior work [4], where we already successfully integrated a VR feature
into ExplorViz (previously with Oculus Rift DK1 and Microsoft Kinect v2).
The major improvements — compared to our earlier version — affect the visu-
alization in terms of performance and extensibility on the one hand, and on
the other hand — and more significant — the gesture control with respect to

lhttps://wuw.explorviz.net
2http://www.htcvive.com
3http://www.leapmotion.com



ease of use and accuracy. Furthermore, the Vive features a perceptible higher
display resolution, which provides a better usability, especially for reading
labels within our visualization.

In the following, we describe our tool ExplorViz, explain the structure
of the integrated virtual reality approach, and outline our planned demon-
stration. Afterwards, we illustrate our demonstration using ExplorViz in
combination with a example software system, which shows the capabilities
and benefits of our VR approach.

2 System Description

The system consists of our web-based tool ExplorViz (version 1.1) and our
integrated VR approach. Both components will be explained in the following.

2.1 ExplorViz

Our tool consists of three major components, i.e., monitoring, analysis, and
visualization. The monitoring component collects data of instrumented ap-
plications and passes the recorded data to the analysis component, where
execution traces are reconstructed and aggregated. Afterwards, the corre-
sponding traces are transformed into a data model, which constitutes the
basis for the visualization in the same-named component. Finally, the visual-
ization can be accessed through a web browser. ExplorViz features two visu-
alization perspectives — a 2D landscape-level perspective and an application-
level perspective following the 3D software city metaphor [2]. Recently, we
switched our rendering engine from plain WebGL to the JavaScript library
three.js* and restructured the system into a microservice architecture [11] for
extensibility and maintainability purposes [12]. Microservices are a promis-
ing target architecture to improve the maintainability of existing, monolitic
systems [13], [14].

An example application for the 3D application-level visualization is shown
in Figure 1. The instrumented Java application is a simplified version of the
graph database management system Neo/j and is running within ExplorViz.
The green boxes (@) in our 3D visualization represent packages showing their
contained elements. They can be opened or closed interactively. Classes are
visualized by purple boxes (@) and the communication link is displayed by

‘http://www.threejs.org



Figure 1: 3D Visualization: Simplified version of the Java application Neo4]j



orange lines (®). The width of these lines corresponds to the number of
executions for a called method or operation during a specific time interval.
The height of classes maps to the active instance count of objects for the
respective class [6]. For visualization purposes, the figure also contains the
visualized Vive controllers (@), which will be explained later.

2.2 Integrated VR Approach

Our integrated VR approach (VR mode), builds upon our 3D visualization,
which makes use of hierarchical abstractions [9], [15], in order to show de-
tails only on demand. The VR mode employs tracking abilities of HMDs
to enable viewpoint rotations and introduces hand- and controller-based in-
teractions to use intuitive motion for ExplorViz’s model manipulation. A
previous version of our VR mode used an Oculus Rift Development Kit 1
and a Kinect v2 sensor [4]. Our new approach uses HTC’s Vive and the
Leap Motion sensor for hand gesture recognition. The Leap comes with a
Software Development Kit (SDK) for JavaScript and a runtime environment,
which needs to be deployed on the client machine. To access the Vive and
its data in our web-based ExplorViz tool, we use the JavaScript API We-
bVR.5 The Vive requires a powerful computer to deliver a high and stable
frame rate. Our Windows 10 system utilizes an Intel Core i5-6500 proces-
sor, a NVIDIA GeForce GTX 1070 graphics card and 16 GB of RAM. HTC
bundles their HMD with two controllers and two laser emitters, called Light-
house base stations. The latter devices are used for inside-out tracking, hence
the HMD and the controllers obtain their respective positions in space. The
Leap, instead, employs infrared cameras and LEDs to calculate the position
of human hands in front of the device. As it is attachable to common HMDs,
it allows the development of VR applications with hand-based interactions.

Based on these two different gesture-based devices, we developed custom
gestures to interact with our 3D software visualization. This allows the user
to interact with our visualization via four gestures — Translation, Rotation,
Selection, and Open Packages.

2.3 Leap Motion Sensor

The hand-based gestures for interacting with ExplorViz’s 3D model are par-
tially based on our previous approach as presented in [4]. There was, in
particular, a lack of an intuitive zooming gesture. We resolved this problem
by extending the gesture for translation, which now additionally uses the

Shttps://webvr.info



(a) Selection (Leap) (b) Open Package (Leap)

Figure 2: VR gestures employing the Leap

z-axis for zooming. Now, to move the object freely in space, the user lifts his
right hand, clenches into a fist and then starts moving the arm. The same
gesture with the left hand is used for rotating the object.

Figure 2a demonstrates how packages and classes can be (de)selected for
tracking communication between model elements. This discrete gesture is
pre-defined in the Leap Motions JavaScript SDK and can be used out of
the box. The user lifts his right hand and pokes the virtual object. This is
supported by crosshairs in the middle of the user’s viewpoint. The gesture
triggers an event and the object behind the crosshair is (de)selected. In
Figure 2b, the gesture for opening packages is illustrated. The user lifts
his right hand and taps the virtual object with a finger. This activates a
procedure similar to the selection gesture. Likewise, the user can perform
the gesture on an open package to hide its inner structure. This gesture is
pre-defined in the Leap Motion’s SDK. Additionally, the hands are visualized
within the HMD.

Previous tests showed, that common gesticulation in conversations leads
to unintended recognition of gestures. The subsequent manipulation of the
object often resulted in confusion and annoyance, hence decreasing the us-
ability of a VR mode. To minimize this unwanted behavior we use anchor
points.



(a) Selection (Vive) (b) Translation (Vive)

Figure 3: VR gestures employing the Vive

2.4 HTC Vive Controllers

Although the Leap Motion sensor offers a very natural way of interaction with
the system, its false positive rate and angle restriction reduce the usability.
For this reason, we present an alternative interaction concept through the
HTC Vive controllers, which are also visualized within the HMD as previously
shown in Figure 1 (@). The gesture for selection is presented in Figure 3a.
The user aims for the intended object with a laser-like ray and presses the
trackpad. A similar procedure applies for moving the 3D model, which is
shown in Figure 3b. The user lifts the right controller, holds the bottom
trigger button, and then moves the object. Further gestures involve rotating
the model via the trackpad and opening and closing a package by pressing
another button.



3 Illustration

To illustrate our implemented approach and its characteristics, we present
the interactive VR mode using the previously mentioned sample software
system as shown in Figure 1.

3.1 Overview

Our demo illustration showcases our extended virtual reality (VR) approach
to explore software systems by using a head-mounted display (HMD) and
gesture-based interaction. Therefore, we integrated this approach into our
web-based tool ExplorViz, which offers monitoring and visualization capabil-
ities using dynamic analysis techniques to provide a live trace visualization
of large software landscapes. It targets system and program comprehension
in those landscapes while providing details on the communication within an
single application. The visualization of monitored applications follows the 3D
city metaphor. We utilize HTC’s Vive HMD for new capabilities, i.e., view-
point rotation based on head-tracking, to offer an immersive user experience
in those software cities.

Additionally, we apply two modern gesture-based devices for manipulating
ExplorViz’s 3D model. First, the Leap Motion sensor (Leap) is used for
hand recognition, which allows the user to interact with the visualization.
Furthermore, the sensor enables a visualization of the user’s hands in our tool.
This is a major improvement in comparison to our previous VR approach,
which used a Kinect v2 sensor with a decoupled standalone application for
gesture recognition. Second, we present an alternative interaction concept
through the Vive’s controllers, which are also visualized within the HMD.
Finally, we illustrate the advantage over the Leap in respect of false positive
rate and angle restriction, and highlight the tremendous accuracy.

3.2 Scenario

We start with a short introduction of the visualization and the related ele-
ments within our sample system, i.e., packages, classes, and communication.
Afterwards, we focus on the interaction and present the gestures, which con-
stitute the controls for the user. As we offer two different gesture recognition
systems, we begin with the Leap Motion sensor. We perform the described
gestures and present the intuitive interaction. Finally, we use the Vive con-
trollers, illustrate the advantage over the Leap in respect of false positive

10



rate and angle restriction, and highlight the accuracy. Additionally, we em-
phasize the benefits and the drawbacks of both gesture-based interaction
concepts. All mentioned gestures, their handling, and related visualizations
are showcased in an uploaded demo video. Especially the interaction of our
VR approach and the differences between both employed gesture-based de-
vices are shown. The video can been found online on YouTube, which can
be accessed at https://youtu.be/V5vluFnidcQ.

3.3 Goals

The intention of our demo is to reveal the advantages of utilizing alternative
display and interaction concepts, i.e, based on gestures, in the area of soft-
ware visualization. As an example for successful integration, we present our
tool ExplorViz, which we enhanced through the VR approach. We plan to
conduct experiments to validate our further developed approach and the re-
lated gestures. Additionally, as we aim for verifiability in general, we provide
our open-source project ExplorViz® under the Apache 2.0 License. Thus, we
encourage other researchers and developers to build upon our approach for
their future developments. In general, we would like to see further research
on the utilization of modern alternative classic input and output devices.
This proposition is particularly not limited to VR, but focuses augmented
reality as well.

3.4 Requirements and Setup

The demonstration needs approximately 3x3m of space for a wvirtual room
(Vive). An example setup four our wirtual room is presented in Figure 4.
The requirement of space for this setup — including the tripods for positional
tracking devices is illustrated. An additionally table for the computer setup,
which is needed to render the visualization for the HMD, is visible in the
lower left corner of the image.

Shttps://www.explorviz.net

11



Figure 4: Setup for our virtual room

12



References

1]

L. Garber, “Gestural technology: Moving interfaces in a new direction,”
Computer, vol. 46, no. 10, pp. 22-25, 2013, 1ssN: 0018-9162. poI: 10.
1109/MC.2013.352.

R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Proceedings of the 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2007, pp. 92-99. DOI: 10.
1109/VISSOF.2007.4290706.

J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring, “Syn-
chroVis: 3D visualization of monitoring traces in the city metaphor
for analyzing concurrency,” in Ist IEEE International Working Con-
ference on Software Visualization (VISSOFT 2013), Sep. 2013. DOTI:
10.1109/VISSOFT.2013.6650520.

F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities
in virtual reality,” in Proceedings of the 3rd IEEE Working Conference
on Software Visualization (VISSOFT 2015), 2015, pp. 130-134. DOT:
10.1109/VISSOFT.2015.7332423.

F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visu-
alization for comprehending large software landscapes: The ExplorViz
approach,” in 1st IEEFE International Working Conference on Software
Visualization (VISSOFT 2013), Sep. 2013. DOT: 10.1109/VISSOFT.
2013.6650536.

F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and
application visualization for system comprehension with ExplorViz,”
Information and Software Technology, 2016, 1SSN: 0950-5849. DOI: 10.
1016/j.infsof .2016.07.004.

R. Heinrich, R. Jung, C. Zirkelbach, W. Hasselbring, and R. Reuss-
ner, “An architectural model-based approach to quality-aware devops
in cloud applications,” in Software Architecture for Big Data and the
Cloud, 1. Mistrik, R. Bahsoon, N. Ali, M. Heisel, and B. Maxim, Eds.,
Cambridge: Elsevier, Jun. 2017, pp. 69-89.

R. Heinrich, C. Zirkelbach, and R. Jung, “Architectural Runtime Mod-
eling and Visualization for Quality-Aware DevOps in Cloud Applica-
tions,” in Proceedings of the IEEE International Conference on Soft-
ware Architecture Workshops (ICSAW), Apr. 2017, pp. 199-201. DOT:
doi:10.1109/ICSAW.2017.33.

13



9] F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchical software
landscape visualization for system comprehension: A controlled experi-
ment,” in Proceedings of the 3rd IEEE Working Conference on Software
Visualization (VISSOFT 2015), IEEE, Sep. 2015, pp. 36-45.

[10] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller, “Comparing Trace
Visualizations for Program Comprehension through Controlled Exper-
iments,” in Proceedings of the 23rd IEEFE International Conference on
Program Comprehension (ICPC 2015), May 2015, pp. 266-276.

[11] W. Hasselbring and G. Steinacker, “Microservice architectures for scal-
ability, agility and reliability in e-commerce,” in Proceedings 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW),
Gothenburg, Sweden: IEEE, Apr. 2017, pp. 243-246. por: 10.1109/
ICSAW.2017.11.

[12] C. Zirkelbach, A. Krause, and W. Hasselbring, “On the modernization
of ExplorViz towards a microservice architecture,” in Combined Pro-
ceedings of the Workshops of the German Software Engineering Con-
ference 2018, vol. Vol-2066, Ulm, Germany: CEUR Workshop Proceed-
ings, Feb. 2018.

[13] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, pp. 44-49, May
2018. DOI: 10.1109/MS.2018.2141035.

[14] ——, “Drivers and Barriers for Microservice Adoption — A Survey
among Professionals in Germany,” Enterprise Modelling and Informa-
tion Systems Architectures (EMISAJ) — International Journal of Con-
ceptual Modeling, vol. 14, no. 1, pp. 1-35, 2019. DOI: 10.18417/emisa.
14.1.

[15] F. Fittkau, S. Roth, and W. Hasselbring, “Explorviz: Visual runtime
behavior analysis of enterprise application landscapes,” in Proceedings
of the 23rd European Conference on Information Systems (ECIS 2015),
AIS, 2015, pp. 1-13.

14



