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Abstract: Kidney diseases still pose one of the biggest challenges for global health, and their het-
erogeneity and often high comorbidity load seriously hinders the unraveling of their underlying
pathomechanisms and the delivery of optimal patient care. Metabolomics, the quantitative study of
small organic compounds, called metabolites, in a biological specimen, is gaining more and more
importance in nephrology research. Conducting a metabolomics study in human kidney disease
cohorts, however, requires thorough knowledge about the key workflow steps: study planning,
sample collection, metabolomics data acquisition and preprocessing, statistical/bioinformatics data
analysis, and results interpretation within a biomedical context. This review provides a guide
for future metabolomics studies in human kidney disease cohorts. We will offer an overview of
important a priori considerations for metabolomics cohort studies, available analytical as well as
statistical/bioinformatics data analysis techniques, and subsequent interpretation of metabolic find-
ings. We will further point out potential research questions for metabolomics studies in the context
of kidney diseases and summarize the main results and data availability of important studies already
conducted in this field.

Keywords: metabolomics study design; nephrology; chronic kidney disease; human cohort studies;
epidemiology; kidney disease etiologies

1. Introduction

Chronic kidney disease (CKD) has become one of the major global health burdens
in the 21st century [1], with a typically chronic progressive disease course. Its extremely
heterogeneous disease pattern and comorbidity load complicates the understanding of
the underlying pathomechanisms and optimal patient treatment. Cohort studies form a
suitable study design to investigate the associations between multiple exposures on the
one hand and multiple outcomes on the other hand. They are particularly appropriate
to study rare exposures or exposures for which randomization is not possible due to
practical or ethical reasons. Even though randomized controlled trials (RCTs) are the
gold standard for a research question of the effect of an exposure on an outcome, the
majority of interventions investigated by RCTs in nephrology have so far been unable
to demonstrate treatment benefits or have even caused harm [2]. This may well be due
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to the aforementioned heterogeneity of CKD populations. Large observational studies
are therefore needed to appropriately characterize CKD population cohorts and identify
interventionally treatable subgroups.

Important findings on kidney disease pathophysiology have already been accom-
plished by omics science, i.e., genomics [3,4], epigenomics [5], transcriptomics [6], and
proteomics [7]. One of the latest additions to the omics research field is metabolomics, the
quantitative study of small organic compounds, called metabolites, present in a biological
specimen [8]. Metabolites are the intermediate and/or final products of molecular inter-
actions between different proteins, signaling cascades, and cellular environments, thus
constituting the end of the omics cascade. Additionally, they can arise from exogeneous
sources, including food and drug intake, cosmetics, gut microbe–host co-metabolism, and
others. The observation, analysis, and interpretation of the metabolites’ entirety, i.e., the
metabolome, can therefore provide us with a metabolic “snapshot” or “fingerprint” of
the current state of an organism. The ability of metabolomics studies to provide deeper
insights into fundamental disease pathomechanisms has already been demonstrated for
numerous other chronic diseases, including diabetes [9,10], cardiovascular diseases [11],
and cancer [12]. Metabolomics is increasingly recognized as a valuable tool in the field
of nephrology [13]. The first important metabolomics studies investigated metabolites as
uremic toxins [14]. The research field then shifted towards the identification of metabolites
associated with the patient’s glomerular filtration rate (GFR) [15,16], to metabolic finger-
prints of adverse patient events [17], and has now extended towards the understanding
of the underlying mechanisms in CKD progression. Especially the latter two goals make
prospective CKD cohorts with measurements of the important patient parameters, e.g.,
GFR, and metabolites available at multiple time points a prerequisite. A multitude of
different study questions can be tackled by applying metabolomics and for each study
question a fitting study design is required. Conducting extensive metabolomics studies in
large-scale cohorts of CKD patients might therefore enable the elucidation of important,
possibly causal molecular disease traits and, consequently, improve CKD patient treatment.

This review provides a guide for future metabolomics studies in kidney disease co-
horts using observational study designs. Conducting a thorough investigation of the
metabolic changes related to impaired kidney function requires sophisticated study plan-
ning, metabolomics data acquisition and statistical/bioinformatics data analysis, as well as
interpretation of the findings (Figure 1).

Figure 1. Schematic workflow of metabolomics studies in kidney disease cohorts.

Important a priori considerations for metabolomics cohort studies, the available an-
alytical as well as statistical/bioinformatics data analysis techniques, and subsequent
interpretation of metabolic findings will be given. We will further point out potential
research questions for metabolomics CKD studies and summarize the main results of im-
portant metabolomics studies already conducted in this field. A comprehensive summary
of the metabolic markers of CKD discussed throughout the text is given in Table 1.
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Table 1. Important metabolite biomarkers of chronic kidney disease and its sequelae. Abbr.: AASK, African American Study of Kidney Disease and Hypertension study; ADPKD,
autosomal dominant polycystic kidney disease; AKI, acute kidney injury; ARIC, Atherosclerosis Risk in Communities; ArMORR, Accelerated Mortality on Renal Replacement study;
CKD, chronic kidney disease; CRIC, Chronic Renal Insufficiency Cohort; CTOT-04, Clinical Trials in Organ Transplantation 04 Study; CVD, cardiovascular disease; DKD, diabetic kidney
disease; eGFR, estimated glomerular filtration rate; FSGS, focal segmental glomerulosclerosis; GCKD, German Chronic Kidney Disease; HDL, high-density lipoprotein; IDL, intermediate
density lipoprotein; IgAN, IgA nephropathy; KORA, Cooperative Health Research in the Region of Augsburg; KRT, kidney replacement therapy; LDL, low-density lipoprotein; MDRD,
Modification of Diet in Renal Disease; MESA, Multi-Ethnic Study of Atherosclerosis; mGFR, measured glomerular filtration rate; MGN, membranous glomerulonephritis; TCMR, T
cell-mediated rejection; UACR, urinary albumin-to-creatinine ratio.

Study Design/Type Study Question Study Population and
Investigated Biofluids References Detected Metabolites/Metabolic

Biomarkers/Pathways
case–control study AKI prediction patients undergoing cardiac

surgery, urine specimens collected
before and after surgery

[18] carnitine (elevated in AKI-free patients),
tranexamic acid (elevated in AKI patients) and

others
case–control study AKI prediction patients undergoing cardiac

surgery, plasma specimens
collected 24h after surgery

[19] glucuronide conjugate of propofol, Mg2+, lactate
and others

case–control study indicators of AKI hospitalized, newly diagnosed
AKI patients, serum specimens

[20] increases in acylcarnitines and amino acids and
reduction of arginine and lysophosphatidyl

cholines in AKI patients
case–control study distinct metabolic profile of

ADPKD
54 patients with ADPKD, several
control groups, urine specimens

[21] on average 51 out of 701 NMR features could
reliably discriminate ADPKD patients from other

kidney disease patients and healthy controls
case–control study non-invasive diagnosis of TCMR

in pediatric kidney transplant
recipients

pediatric kidney replacement
recipients, urine specimens

[22] proline, kynurenine, phosphatidylcholines,
diacylglycerols elevated in TCMR patients

case–control study identify metabolic pathways
altered in CKD stage 3–4

non-diabetics

CKD patients from the Paricalcitol
study; healthy controls:

employees of study centers, urine
and plasma specimens

[23] 27 urine and 33 plasma metabolites differed
between CKD vs. controls; pathway analysis:

citric acid cycle significantly affected: reduction
of urinary excretion of citrate, cis-aconitate,

isocitrate, 2-oxoglutarate, succinate; expression of
genes regulating these metabolites were reduced

2 independent nested
case–control studies (=analysis vs.

replication cohort)

metabolites predicting CVD
mortality in incident KRT

patients

ArMORR study, plasma
specimens

[24] oleoylcarnitine, linoleoylcarnitine,
palmitoylcarnitine, stearoylcarnitine, strongest

association with CVD mortality: oleoylcarnitine
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Table 1. Cont.

Study Design/Type Study Question Study Population and
Investigated Biofluids References Detected Metabolites/Metabolic

Biomarkers/Pathways
cross-sectional CKD study plasma metabolite profile

differences in CKD stages 2, 3,
and 4

30 participants with differing
CKD stages, plasma specimens

[25] CKD stages 3 vs. 2: 62 differing metabolites (39
higher and 23 lower in CKD stage 3); CKD stages
4 vs. 2: 111 differing metabolites (66 higher and
45 lower in CKD stage 4); CKD stages 4 vs. 3: 11

differing metabolites (7 higher and 4 lower in
CKD stage 4); major differences for higher CKD

stages: altered arginine metabolism, elevated
coagulation/inflammation, impaired carboxylate

anion transport, decreased adrenal steroid
hormone production

cross-sectional study
(proof-of-concept study)

identfication of serum
metabolites to provide a more

accurate GFR estimate

AASK study, MESA study:
participants with mGFR, serum

specimens

[26] (1) serum metabolites from untargeted
quantification: AASK—283 and MESA—387

significantly associated metabolites with mGFR;
(2) targeted metabolites: 15 metabolites used for

GFR estimation
2 cross-sectional observational

studies of the general population
association of serum metabolites

and their ratios with eGFR
KORA F4 study, TwinsUK registry,

serum specimens
[15] association with eGFR: 22 metabolites and 516

metabolite ratios; acylcarnitines were associated
inversely, ratio with the lowest p-value: serine to

glutarylcarnitine
differing study design per cohort metabolites correlating with

clinical markers of kidney
disease

4 cohorts: training cohort,
validation cohort, prospective
cohort, drug treatment cohort

[27] 5 metabolites, e.g., 5-metohydroxytryptophan,
correlate with markers of kidney function

nested case–control study CKD progression CRIC study, serum specimens [14] 10 nominally associated metabolites; 6 higher in
cases (uric acid, glucuronate,

4-hydroxy-mandelate, 3-methyladipate/pimelate,
cytosine, homo-gentisate) and 4 lower in cases

(threonine, methionine, phenylalanine, arginine)
prospective CKD cohort risk of progression to KRT GCKD study, plasma specimens [17] 24 NMR features—highest weights: creatinine,

high-density lipoprotein, valine, acetyl groups of
glycoproteins, Ca2+-EDTA

prospective CKD cohort urinary 6-bromotryptophan and
incident ESKD

GCKD study, urine specimens [28] higher 6-bromotryptophan levels were associated
with lower risk of ESKD
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Table 1. Cont.

Study Design/Type Study Question Study Population and
Investigated Biofluids References Detected Metabolites/Metabolic

Biomarkers/Pathways
prospective CKD cohort urine metabolites associated

with adverse kidney outcomes
and mortality

GCKD study, urine specimens [29] 55 metabolites significantly associated with
kidney failure, kidney failure + AKI or death;

significant enrichment for phosphatidylcholine
pathway

prospective CKD cohort adverse cardiac events in CKD
stage 3 patients

GCKD study, plasma specimens [30] association of trimethylamine N-oxide (TMAO)
with cardiac arrhythmia and myocardial

infarction
prospective CKD cohort,

prospective population-based
cohort

genetic studies of urinary
metabolites

GCKD study, UK Biobank, urine
specimens

[31] 240 unique metabolite-locus associations
highlighting novel candidate substrates for

transport proteins; genes identified are enriched
in absorption, distribution, metabolism, and

excretion (ADME) relevant tissues, potentially
novel candidates for biotransformation and

detoxification reactions
prospective diabetic cohort study multimetabolite models of

disease process from type 1
diabetic patients w/o CKD

Finnish Diabetic Nephropathy
Study Group, serum specimens

[32] cross-sectionally: patients w/o DKD
complications: low lipids, less inflammation,

better glycemic control vs. patients with
advanced CKD: high sphingomyelin, cystatin-C;

shared features: low unsaturated fatty acids
(UFA), phospholipids; prospectively: progressive

albuminuria: high UFAs, phospholipids, IDL,
LDL; accelerated DKD progression: high

saturated fatty acids, low HDL
prospective observational
transplant recipient study

prediction of allograft status via
urine metabolites

kidney graft recipients of the
CTOT-04 study, urine specimens

[33] best discrimination between acute cellular
rejection vs. no rejection: ratio of urinary

3-sialyllactose to xanthosine
prospective population-based

study
metabolite associations with

eGFR; incident CKD
ARIC study, serum specimens [16] eGFR associations: 34 metabolites

detected—strongest positive = creatinine,
strongest negative = 3-indoxyl sulfate; lower risk

of incident CKD: 5-oxoproline,
1,5-anhydroglucitol
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Table 1. Cont.

Study Design/Type Study Question Study Population and
Investigated Biofluids References Detected Metabolites/Metabolic

Biomarkers/Pathways
prospective population-based

study
kidney function decline,

incident CKD
KORA S4/F4 study, serum

specimens
[34] kidney function decline: spermidine,

phosphatidylcholine diacyl
C42:5-to-phosphatidyl acyl-alkyl C36:0 ratio;

incident CKD: kynerunine-to-tryptophan ratio
prospective population-based
study; prospective twin cohort

metabolite association with
eGFR, incident CKD

KORA F4 study, replication in
TwinsUK registry, serum

specimens

[35] 54 metabolites replicated and significantly
associated with eGFR; 6 with pair-wise

correlation with established kidney function
measures (C-mannosyltryptophan,

pseudouridine, N-acetylalanine, erythronate,
myo-inositol, N-acetylcarnosine); incident CKD:

C-mannosyltryptophan, pseudouridine,
O-sulfo-L-tyrosine

prospective small patient sample metabolic changes after kidney
allograft transplantation

19 allograft recipients, serum
specimens

[36] hippurate, mannitol, and alanine associate with
changes in transplant allograft function over time;

hippurate/histine are more sensitive to
short-term changes in kidney activity than

creatinine
two clinical trials cross-sectional association of

UACR with 637 known,
non-drug, blood metabolites

AASK, MDRD study, serum
specimens

[37] 58 metabolites associated with proteinuria;
metabolites with lowest p-value:

4-hydroxychlorthalonil and 1,5-anhydroglucitol
with all 6 metabolites of the

phosphatidylethanolamine pathway being
significant

review DKD associated metabolites multiple studies [38] early stages of DKD: association with
tricarboxylic acid cycle, glucose metabolites;

uremic toxins in DKD progression: phenyl sulfate
and tryptophan derivatives
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Table 1. Cont.

Study Design/Type Study Question Study Population and
Investigated Biofluids References Detected Metabolites/Metabolic

Biomarkers/Pathways
review differential metabolites in MGN,

FSGS, IgAN
multiple studies [39] amongst others—MGN: 13 urinary metabolites as

most important (dopamine, fumarate, carnosine,
nicotinamide D-ribonucleotide, pyridoxal,
deoxyguanosine triphosphate, adenosine

monophosphate, L-citrulline, nicotinamide,
deoxyuridine, phenylalanine, tryptamine,

succinate); FSGS: 10 prognostic urine metabolites
(citrulline, proline, dimethylamine, acetoacetate,

valine, alphaketoisovaleric acid, isobutyrate,
histidine, D-palmitylcarnitine,

N-methylnicotinamide); IgAN vs. controls:
higher serum metabolite levels (phenylalanine,

lactate, myo-Inositol, L6 lipids L5 lipids, L3
lipids) and lower serum metabolite levels (alpha-,

beta-glucose, valine, phosphocholine, tyrosine,
lysine, isoleucine, glycine,

glycerolphosphocholine, glutamate, glutamine,
alanine, acetate, 1-methylhistidine,

3-hydroxybutyrate)
perspectives, no study design metabolomics in CKD research:

metabolites and future risk of
mortality

AASK study, serum specimens [13] number of associated metabolites reduced after
adjustment for eGFR—metabolite classes

detected: amino acid, carbohydrate,
cofactors/vitamins, energy, lipid, nucleotide,

peptide, xenobiotic, unkown
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2. How to Get Started: A Priori Considerations for Metabolomics Cohort Studies
2.1. Possible Study Questions for Cohort Studies

Before getting started with a metabolomics study in the field of nephrology, the
researcher has to determine a study question of interest. Several exemplary study questions
can be found in Figure 2, where some of the asked questions have already been investigated
in the past.

Figure 2. Possible research questions, kidney related prerequisites, and study cohort types used for metabolomics studies.
Abbr.: AKI, acute kidney injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; KF, kidney failure;
KRT, kidney replacement therapy.

Since an eGFR decline only occurs after a patient has already lost a considerable
amount of kidney function, an early detection of kidney disease is a relevant study question.
However, it can only be tackled within a population-based study including participants
prior to a manifested diagnosis of CKD. For example, Sekula et al. were able to apply
a non-targeted metabolomics approach within a population-based study (KORA F4) by
associating metabolites with eGFR and were able to replicate 54 significantly associated
metabolites in an independent cohort (Twins UK) [35]. CKD patients are more prone to
acute kidney injury (AKI) events, but to elucidate the mechanisms of AKI, these patients
have to be monitored more tightly than what a usual study design for cohort studies will
request. So, nesting a sub-cohort of AKI patients within a prospective CKD cohort should
be the way to go. Examples of small pilot studies with a limited number of participants to
detect metabolites associated with and/or diagnostic of AKI can be found in [18–20]. Large
prospective CKD cohorts offer the possibility to not only elucidate the general mechanisms
of CKD, but to also delve deep into the causal pathways of differing CKD etiologies. Some
examples of single, specific kidney diseases can be found in the literature, but within CKD
cohorts larger patient populations with more power to detect the associations between the
metabolites and kidney diseases can be collected. Recent advances in the metabolomics
field have, for example, identified dysregulated energy metabolism between early- and
late-stage diabetic kidney disease (DKD), a well-defined etiological CKD group, and eluci-
dated the interaction between metabolic stress, mitochondrial homeostasis, and organelle
crosstalk in the kidney as being important for dynamics during DKD progression [38].
Other examples can be found for membranous nephropathy, focal segmental glomeruloscle-
rosis or IgA nephropathy [39], as well as autosomal dominant polycystic kidney disease
(ADPKD) [21]. One of the big study questions is the identification of metabolites associated
with or predicting CKD progression. Here, prospective CKD cohorts with measurements
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of kidney function markers and metabolites at multiple time-points during the study’s
follow-up phase pose an invaluable treasure of information that only needs to be launched.
Studies that have detected metabolites associated with CKD progression or with a higher
risk of adverse patient events are, e.g., studies by Rhee et al. [14], Kalim et al. [24], or
Zacharias et al. [17]. Rhee et al. identified metabolite alterations associated with subse-
quent disease progression, Kalim et al. showed that acylcarnitine may be associated with a
higher uremic cardiovascular risk, and Zacharias et al. identified a multivariate metabolite
signature for end-stage kidney disease (ESKD) risk prediction. In prospective ESKD co-
horts, interesting research questions will then move towards the detection of metabolites
to predict adverse events for hemodialysis patients or towards transplant survival/early
detection of allograft rejection in kidney transplant patients. Some smaller studies with
few participants investigating allograft rejection have been carried out in the past, e.g.,
studies by Blydt-Hansen et al. [22] and Suhre et al. [33]. These studies concluded the utility
of metabolomics for non-invasive diagnosis of allograft rejection.

Besides prospective CKD cohort studies, other common study types can be applied in
metabolomics studies of CKD, which are briefly discussed in the following paragraphs.

2.2. Common Study Designs in Human Cohorts
2.2.1. Case Reports and Case Series

Historically, case reports, focusing on a single subject, or case series, reporting on a
small group of phenotypically similar subjects, are a first step in identifying a new disease or
adverse health effect from an exposure [40]. The possible association between the observed
outcome and a specific exposure is described based on a small group of subjects. Such
studies may be the first in identifying the value of a new scientific approach to clarify the
pathophysiological background of a known disease [41]. Studies evaluating metabolomics
in CKD started out small. For example, Shah et al. investigated only 30 participants with
CKD and were able to show differences in the metabolic profiles for various CKD stages,
reflecting alterations in arginine metabolism, elevated coagulation/inflammation, impaired
carboxylate anion transport, and decreased adrenal steroid hormone production [25].
This study was a proof-of-concept study, setting the stage for large-scale prospective
cohort studies in metabolomics of CKD. Another important small-scale proof-of-concept
study of metabolic biomarker detection was conducted by Gronwald et al. [21]. Based on
urinary nuclear magnetic resonance (NMR) metabolic fingerprints, the authors were able
to discriminate ADPKD patients with moderately advanced disease from ADPKD patients
with ESKD, patients with CKD of other etiologies, and healthy controls.

2.2.2. Cross-Sectional Study

In a cross-sectional study, outcome and exposures are analyzed at the same time. In
comparison to case–control (participants selected based on the outcome status) or cohort
studies (participants selected based on the exposure status), the participants in a cross-
sectional study are only selected based on the inclusion and exclusion criteria. This type of
study design can be easily implemented, is rather cheap, and can be started at enrollment
or any later time point during the course of a cohort study. Since the inference of causal
relationships between exposure and outcome by a one-time measurement is not possible,
these studies are traditionally used to investigate disease prevalence or the influence of
environmental factors such as drugs, toxins, or diet, as, e.g., demonstrated in [42].

Cross-sectional studies can further be employed to identify subgroups or stages in
complex diseases. Luo et al., for instance, identified 58 serum metabolites associated with
proteinuria in a cross-sectional study design, some of which were also associated with
CKD progression [37]. Within a proof-of-concept study setting, multivariate metabolite
signatures of measured GFR were used to improve GFR estimation [26]. Goek et al. found
the serum concentrations of spermidine to be associated with kidney function change in
the general population, and serum metabolites were able to predict incident CKD [34].
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Another study by Barrios et al. investigated metabolic signatures of diabetic nephropathy
combining four European cohorts [43].

2.2.3. Case–Control Study

Within case–control studies, the odds of an exposure within a predefined group with
a characteristic trait of interest are compared to the odds of an exposure in a control group.
When appropriately designed, case–control studies (1) can provide the same information
as a cohort study; (2) are more rapid and efficient, because, unlike in cohort studies, only
a minority of the population is included in the study; and (3) data on exposure are being
collected in retrospect. Disadvantages include: (1) ‘general types of bias’; (2) specific
sources of bias; and (3) selection of cases and controls can prove to be complex [40]. A
special form of case–control study is the nested design of a case–control study, where cases
and controls are drawn from within a prospective study. All cases who developed the
outcome of interest during the follow-up are selected and compared with a random sample
of the cohort [41]. A nested case–control study of metabolomics in a CKD population was,
for instance, carried out within the Chronic Renal Insufficiency Cohort (CRIC) Study by
Rhee et al. in 2016 [14]. The authors compared a subset of the CRIC Study population
with rapid progression of kidney disease according to eGFR slopes to a subset with slow
progression. For each case a control was selected that was categorized within the same
eGFR and proteinuria category at study entry. Ten metabolite alterations were nominally
associated with subsequent CKD progression and, cross-sectionally, six of the metabolites
that were higher in the cases than controls were significantly associated with eGFR at
baseline. The authors concluded that their results warrant further interest in arginine,
methionine, and threonine as potential markers of kidney function and progression of
kidney disease.

2.2.4. Prospective Cohort Study

As already outlined above, prospective cohort studies collect consecutive information
on outcomes and exposures from the same participants within a specific time period. They
allow, e.g., time-to-event analyses, time-course evaluations, and risk score development
based on metabolite measures. To date, only few prospective CKD studies acquired
metabolomics data, amongst them the German Chronic Kidney Disease (GCKD) study [44].
Within this study, Zacharias et al. developed a novel risk score based on NMR-derived
plasma metabolic features, including creatinine, high-density lipoprotein, valine, acetyl
groups of glycoproteins, and Ca2+-EDTA, to predict the risk of ESKD within four years
after the metabolomics measurements [17]. In another metabolomics study conducted
in the GCKD cohort, Sekula et al. discovered a significant association between higher
urinary 6-bromotryptophan levels and lower risk of kidney failure, both unadjusted and
adjusted for kidney failure risk factors other than eGFR [28]. Similar results were obtained
for investigations of serum 6-bromotryptophan levels. Steinbrenner et al. discovered
55 urinary metabolites that predict adverse kidney outcomes and/or mortality, including
C-glycosyltryptophan, within a metabolome-wide association study [29]. Within the
same cohort, Schlosser et al. identified the underlying molecular mechanisms related
to the absorption, distribution, metabolism, and excretion (ADME) of metabolites in the
kidney [31]. Comprehensive summaries of recent ongoing prospective CKD cohort studies
within the International Network of Chronic Kidney Disease cohort studies (iNET-CKD)
can be found in [45]. Another example from the CRIC Study by Kwan et al. detected
a negative association of 3-hydroxyisobutyrate and 3-methylcrotonylglycine with eGFR
slopes whereas citric acid and aconitic acid were positively associated.

2.2.5. Randomized Controlled Trial

Since RCTs, when carried out appropriately, are still the gold-standard for studying
the effects of an intervention or any other type of therapy on an outcome, RCTs in a CKD
metabolomics context might likewise be of interest. The first steps into this direction have
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been taken in animal studies as well as for other disease entities. Hypertension in CKD
patients, one of the leading underlying CKD causes, is mostly treated via several available
drugs, but another treatment strategy could be to metabolically rewire the hypertensive
kidney. Rinschen et al. were able to show promising results in animal models, leading to
possible future dietary intervention studies [46]. These kinds of studies would constitute
a metabolic challenge that can be supervised by measuring metabolites before and after
the intervention of, e.g., a lipid-consuming, ketogenic diet in comparison to controls.
Similar studies have been carried out with dietary interventions in patients diagnosed with
rheumatoid diseases [47], as well as diabetes [48]. In the latter, postprandial metabolic
alterations in healthy men with a high genetic risk of diabetes were evaluated after two
meals with a varying macronutrient content, finding that modifications in intermediate
lipid metabolism were induced by a high caloric meal.

2.3. Important Considerations for Sample Collection in Metabolomics Studies

In human studies involving non-deceased study participants, common specimen
types include plasma, serum, urine, whole blood, saliva, cerebrospinal fluid, feces, and
tissue. Plasma, serum, and urine, in particular, constitute the most suitable biofluids
analyzed by metabolomics in large-scale cohorts due to easy sample collection, handling,
and preparation, as well as being in high abundance, and, most importantly, involved in
key renal regulatory mechanisms. The analysis of kidney tissue is likewise important, but
requires more complex, invasive sample collection and extensive sample preparation.

Sample collection should, ideally, be carried out in a standardized fashion according
to well-defined standard operating procedures (SOPs) across the whole study period to
minimize unwanted technical and biological sample variation. The metabolite content of
a blood and urine specimen is significantly influenced by an individual’s fasting status,
fluid intake, circadian rhythm, age, sex, body fat composition, comorbidities, and specific
lifestyles, including smoking and alcohol intake, as well as a plethora of different medi-
cations [49–51], but also by numerous genetic factors [52]. The collection of such biofluid
specimens should thus be carried out within a homogeneous time window across the whole
study cohort, ideally after a well-defined fasting state period. To appropriately account
for non-influenceable confounders, e.g., sex or comorbidities, matching or randomization
strategies should be applied, and/or confounder adjustment and stratification during
the statistical analysis. Here, accurate documentation of all important phenotypical, but
also study protocol information, such as sample collection time, is warranted. To avoid
bacterial growth in freshly collected urine samples, appropriate preservation steps, i.e.,
either filtration, centrifugation, or addition of bacteriostatics, should be carried out [53].
In the case of plasma samples, the use of only one specific type of anticoagulant, e.g.,
ethylenediaminetetraacetic acid (EDTA), heparin, or citrate, across the whole sample cohort
is strongly recommended, since substance traces can appear in metabolic fingerprints
and might complicate further analysis steps [19,54]. Ideally, appropriate sample volumes
should be immediately aliquoted for subsequent metabolomics measurements to avoid
unnecessary freeze–thaw cycles. To ensure metabolite stability, samples should be frozen at
−80 ◦C immediately after collection until further processing. Especially in the case of large-
scale cohort studies comprising hundreds to thousands of individual specimens, automatic
sample handling and documentation is strongly recommended. A comprehensive review,
including the SOPs for optimal pre-analytical handling of, e.g., urine, plasma, serum, and
tissue specimens for subsequent metabolomics measurements, is provided in [53].

3. Metabolomics Data Acquisition
3.1. Common Analytical Platforms in Metabolomics Studies

Two main analytical platforms are commonly used for metabolomics studies: nuclear
magnetic resonance (NMR) spectroscopy and hyphenated mass spectrometry (MS). The
principle of NMR spectroscopy is based on the separation of different analyte signals
by their resonance frequencies within a magnetic field. It is particularly well suited for
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large-scale metabolomics studies, since instrumentation and data acquisition is highly
stable across time and even across different lab facilities [55]. Only few, rather cheap
sample preparation steps are mandatory and no metabolite derivatization is needed. Due
to its non-destructive nature, NMR experiments allow the re-use of sample material after
measurement and instrument cleaning is not required. NMR spectroscopic data allows,
theoretically, the absolute quantification of all detectable metabolites with the use of only
one internal standard. However, NMR spectroscopy suffers, in comparison to hyphenated
mass spectrometry, from low sensitivity, resulting in lower metabolite coverage. Due to
typically limited time resources, only one-dimensional (1D) NMR experiments are carried
out for large-scale cohort studies. 1D NMR spectra, especially of urine and plasma/serum
specimens, exhibit a high number of spectrally overlapping metabolite signals, which
might complicate subsequent metabolite identification and accurate quantification. Two-
dimensional (2D) NMR experiments are able to resolve these strongly overlapping signals
into a second dimension and can provide further structural information about the detected
metabolites, enhancing metabolite identification. Significantly longer acquisition times
for 2D NMR experiments, however, preclude their wide application for large-scale co-
hort studies, although recent progress in the development of, e.g., non-uniform sampling
techniques for 2D NMR [56] might overcome this obstacle soon. Although NMR experi-
mental costs are, in general, low, the initial set-up of a well-operating NMR spectroscopy
platform suitable for high-throughput metabolomics measurements is expensive and spe-
cific site requirements have to be fulfilled. Commercial NMR metabolomics platforms
have been established in recent years and have proven their reliability in numerous stud-
ies [57]. The latest instrumental and analytical developments include the miniaturization
of NMR spectrometers to a “benchtop” size [58–60] and the introduction of Bruker IVDr
methods [61,62].

In contrast, hyphenated mass spectrometry, such as liquid chromatography (LC) or
gas chromatography (GC)–MS offer much higher sensitivity and selectivity. MS identifies
metabolites according to their mass-to-charge-ratios. It is typically coupled to an LC or
GC, which separate analytes according to different physical and chemical properties, e.g.,
molecular size, charge, polarity, and affinity toward other molecules [63]. In contrast to
NMR, which requires about 100–400 µL volume per biofluid specimen [62,64], MS exper-
iments are typically carried out with much lower sample volumes of about 10 µL. MS
sample preparation usually includes a derivatization step and the addition of individual
internal standards for each absolutely quantified metabolite. These sample preparation
steps, but also specific sample introduction systems and ionization techniques can prevent
the detection of certain metabolite classes [65]. MS techniques are per se destructive and
samples cannot be recovered after measurement. However, due to the low sample volume
required, this hardly ever constitutes a serious limitation for MS in human cohort studies.
The initial installation of a hyphenated MS system is, in comparison to an NMR spectrom-
eter platform, cheaper, and less elaborate site requirements have to be fulfilled. On the
other hand, hyphenated MS systems are, in general, less robust, and therefore data are less
reproducible than when acquired on NMR systems; MS systems also require regular instru-
ment cleaning. It has to be noted that the metabolome coverage of NMR spectroscopy and
hyphenated MS, although displaying very good overlap between the different techniques,
still exhibits distinct differences [66], and these analytical platforms should be rather con-
sidered as complementary than competing. Instrumental improvements in hyphenated
mass spectrometry include the introduction of comprehensive two-dimensional (2D) gas
chromatography (GC x GC), displaying superior separation capacity for complex biological
mixtures, high sensitivity, peak resolution, and reproducibility [67]. Likewise, comprehen-
sive 2D LC x LC substantially reduces peak overlap [68]. Imaging mass spectrometry (IMS)
enables the in vivo or in vitro detection and 2D or 3D imaging of metabolites in tissues or
cells and thus provides additional spatial information about metabolite distributions in
these specimens [69].
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Irrespective of the employed analytical platform, metabolomics analyses can be con-
ducted in two different approaches: targeted or untargeted metabolomics. Targeted
metabolomics constitutes the accurate detection and often absolute quantification of a
preselected set of known metabolites. Commercially optimized kits for high-throughput
quantitative analysis are readily available and several commercial contract research or-
ganizations offer targeted and/or untargeted metabolomics measurement services [70].
Such targeted MS protocols allow high-throughput measurements with excellent repro-
ducibility. Non-targeted metabolomics, in contrast, aims at maximization of metabolome
coverage without any a priori metabolite selection, i.e., hypothesis free. Analyte signals
of interest, typically revealed by statistical data analysis, are then identified post hoc.
For MS techniques, non-targeted metabolomics is only able to provide semi-quantitative
metabolite measures since individual internal standards are naturally missing. NMR
spectroscopy, however, still allows a posteriori absolute metabolite quantification after
accurate identification of previously unknown metabolites measured in an untargeted
approach. The choice of metabolomics approach for a nephrological study should be based
on the particular research question: if the study aims at elucidating the role of one or
several distinct metabolites in a phenotype, which are known based on previous research,
a targeted, hypothesis-driven approach is recommended. If the study aims at uncover-
ing yet unknown metabolic key players involved in a specific phenotype, an untargeted,
hypothesis-generating approach should be employed.

3.2. Sample Preparation, Measurements, and Preprocessing in Metabolomics Studies

Numerous comprehensive protocols for both NMR and hyphenated MS, including
elaborate sample preparation, measurement, and data preprocessing workflows, are avail-
able [8,63,64,71–74]. A selective summary of the key metabolomics data preprocessing
steps, including the available software tools, is provided in Table 2. In brief, sample prepa-
ration for NMR-based metabolomics studies includes the addition of buffer solution, D2O,
and a spectral reference substance, such as 3-trimethylsilyl-2,2,3,3-tetradeuteropropionate
(TSP), to the respective urine, plasma, serum, or tissue extract specimens [64]. Please note
that the protein present in the specimen, as, for instance, in plasma or urine of patients
suffering from proteinuria, gives rise to broad, unspecific NMR signals, which might ob-
scure smaller metabolite signals, and severely binds to the reference substance TSP [64]. In
this case, TSP can no longer be used as a reference for absolute quantification, and other
reference substances, e.g., formic acid, have to be employed [75]. Alternatively, proteins
can be removed prior to metabolomics data acquisition by, e.g., ultrafiltration or chemical
protein precipitation [76], or a specific NMR pulse sequence, the Carr–Purcell–Meiboom–
Gill (CPMG) sequence can be employed to suppress broad protein signals [75]. Likewise,
suitable water suppression techniques are typically employed during NMR data acquisi-
tion for urine, plasma, and serum specimens to reduce the dominance of the strong water
signals in the spectra [70]. Preprocessing of raw NMR data includes Fourier transformation
of the NMR signal with the application of an exponential filter function, as well as phase
and baseline correction [64]. To facilitate statistical evaluation of NMR spectra, the corre-
sponding NMR signals need to be extracted beforehand. Various NMR signal extraction
methods have been proposed, but a simple binning of the complete spectrum into equidis-
tant sections of, e.g., 0.01 ppm width, is probably still the most popular technique [8]. Any
metabolomics dataset is affected by unwanted technical and/or biological variances and
biases, such as varying dilution of urine specimens [8]. These variances can be reduced by
appropriate data normalization techniques, but subsequent statistical analysis results are
inherently dependent on the specific, a priori chosen method [8,77]. To overcome this issue,
Zacharias et al. proposed the application of (logistic) zero-sum regression [78,79] for the
generation of normalization-invariant multivariate metabolic biomarker signatures, which
proved to yield highly robust and predictive metabolic biomarker signatures of AKI after
cardiac surgery [77]. Besides data normalization, both NMR and MS metabolomics data
are typically transformed to approximately follow a multivariate normal distribution and
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to exhibit constant variance, e.g., by application of a log transformation [8]. In the case of
untargeted NMR metabolomics studies, statistical analysis steps are typically carried out
with yet unidentified NMR spectral features, and subsequent metabolite identification only
focuses on statistically relevant NMR peaks. This identification is achieved by manual com-
parison of the complex NMR spectrum of a biofluid specimen to the NMR reference spectra
of pure compounds, available from either commercial or public data bases, e.g., the Human
Metabolome Data Base (HMDB) [64,80]. Here, additional 2D NMR measurements can offer
extremely valuable structural information to support this identification step. Following
successful identification, these metabolites can then be absolutely quantified [64].

For LC-MS measurements, removal of protein during the sample preparation step, e.g.,
by methanol extraction, is mandatory to avoid signal suppression of the low-abundance
analytes and protein precipitation under reversed-phase LC conditions [70]. The analysis
of urine by LC-MS techniques is challenged by the high salt content, varying dilution, and
the complex composition of the samples [70]. Various analytical pretreatment and data
normalization strategies have been proposed to overcome these issues [81]. A systematic
comparison of different protocols by Vogl et al. revealed that dilution of urine specimens
to a fixed creatinine concentration yielded the least number of missing values and allowed
reliable classification of urine specimens from healthy controls and CKD patients [81]. The
urinary creatinine concentration is, however, significantly influenced by sex, age, muscle
mass, diet, pregnancy, and renal pathology [82–85]. Alternative normalization approaches
have thus been proposed, including a normalization to the urine volume, osmolality,
and “total useful MS signal” [86,87]. Since, however, the choice of MS data normaliza-
tion strategies, as described above in an analogous manner for NMR data normalization
strategies, substantially influences subsequent statistical data analysis results [86], it is
recommended to either employ a combination of different normalization strategies [86,87]
or normalization-invariant data analysis methods, such as zero-sum regression [77,78]. The
application of GC-MS for metabolomics analyses requires the volatilization of the analyzed
compounds, which have to be thermally stable. Subsequent data preprocessing steps again
include feature extraction and (automatic) identification, based on commercial or freely
available databases, as well as absolute quantification of metabolites. One should keep
in mind that the latter is only possible if the corresponding internal standard had been
included in the measurement step [70]. Both untargeted and targeted MS datasets include
certain amounts of missing data points due to failed peak detection, leading to incomplete
data matrices. Since many statistical data analysis methods, however, require complete
data matrices, these missing data points are typically imputed prior to statistical analysis.
A combination of NMR and hyphenated MS experiments can significantly enhance the
metabolite identification in untargeted metabolomics studies.
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Table 2. Important preprocessing steps in targeted and/or untargeted metabolomics studies and selected commercial or freely available preprocessing software. Abbr.: JBA, pJRES binning
algorithm; kNN, k-nearest neighbors; MCR-ALS, Multivariate Curve Resolution-Alternating Least Squares; MICE, multivariate imputation by chained equations; MS, mass spectrometry;
NMR, nuclear magnetic resonance; RF, random forest; ROI, region of interest; SRV, statistical recoupling of variables.

Preprocessing
Step Goal Available Methods Commercially Available Software Freely Available Software

NMR Spectroscopy Hyphenated MS NMR
Spectroscopy Hyphenated MS NMR

Spectroscopy Hyphenated MS NMR
Spectroscopy Hyphenated MS

spectral
preprocessing

transform spectral
data from time to

frequency domain,
correct baseline and

phase distortions

reproducible
identification and
quantification of

peak features across
multiple MS spectra

Fourier
transformation,

zero filling,
apodization,

phase correction,
baseline

correction,
spectral alignment,

removal of
unwanted regions

deisotoping,
retention time

alignment,
baseline and noise

filtering,
recalibration

TopSpin
(BrukerBioSpin

GmbH,
Rheinstetten,

Germany), AMIX
(BrukerBioSpin

GmbH,
Rheinstetten,

Germany), ACD
(ACD labs)

ACD (ACD labs),
AMIX

(BrukerBioSpin
GmbH,

Rheinstetten,
Germany),

vendor-specific
software, Mnova

Automics
(Softpedia),

NMRFx,
NMRPipe [88],
BAYESIL [89],

R-package
AlpsNMR [90],

R-package speaq
[91]

ChromA [92],
Chromaligner [93],

MetAlign [94],
MZmine [95,96],
MZmine 2 [97],
OpenMS [98],

XCMS [99],
XCMS2 [100],
MAVEN [101],

eRah [102]

metabolic
feature

extraction

extract signal intensities in untargeted
manner from spectra to perform subsequent
statistical analysis, reduce dimensionality,

minimize effects from peak position
variations across different spectra

equidistant bucket-
ing/binning,

Gaussian binning
[103], adaptive
binning [104],

adaptive
intelligent binning

[105], dynamic
adaptive binning
[106], SRV [107],
JBA [108], peak
picking, man-
ual/automatic

definition of ROIs

equidistant bucket-
ing/binning, peak
detection/picking,

man-
ual/automatic

definition of ROIs

AMIX
(BrukerBioSpin

GmbH,
Rheinstetten,

Germany),
Chenomx

(Chenomx Inc.
Edmonton,

Canada) [109]

vendor-specific
software

R-package mQTL
[110], R-package

MWASTools [111],
R-package speaq
[91], R-package
speaq 2.0 [112],

R-package
AlpsNMR [90]

MetaboAnalyst
[113], MZmine

[95,96], MZmine 2
[97], XCMS [99],
MetAlign [94],
MAVEN [101],
MSClust [114],
ROIMCR [115]
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Table 2. Cont.

Preprocessing
Step Goal Available Methods Commercially Available Software Freely Available Software

NMR Spectroscopy Hyphenated MS NMR
Spectroscopy Hyphenated MS NMR

Spectroscopy Hyphenated MS NMR
Spectroscopy Hyphenated MS

spectral
deconvolution deconvolute highly overlapping peak areas curve fitting MCR-ALS [116]

Chenomx
(Chenomx Inc.

Edmonton,
Canada) [109]

vendor-specific
software

BATMAN
[117,118], decon1d

[119],
MetaboDecon1D
[120], BAYESIL
[89], non-linear

peak fitting based
on Voigt line

shape model [121]

MetSign [122],
DecoMetDIA

[123], eRah [102]

missing value
imputation –

impute missing
values to obtain full

data matrix
–

half minimum
imputation, mean
value imputation,
zero imputation,

median value
imputation, RF

[124], MICE, kNN

– vendor-specific
software –

MZmine [95,96],
MetaboAnalyst

[113], eRah [102],
R-package mice
[125], R-package

VIM [126],
R-package

randomForest
[127]

metabolite
identification identify metabolites in measured spectra

compare spectral features against
reference spectra of pure compounds

and/or query databases

Chenomx
(Chenomx Inc.

Edmonton,
Canada) [109],

AMIX
(BrukerBioSpin

GmbH,
Rheinstetten,

Germany) with
BBIOREFCODE

database, Aldrich
FT-NMR

(Sigma-Aldrich)

vendor-specific
software

COLMAR [128],
KnowItAll

Metabolomics
(BioRad Corp.),
MetaboHunter

[129],
MetaboMiner

[130], BAYESIL
[89], ASICS [131],
R-package speaq

2.0 [112]

MZmine 2 [97],
OpenMS [98],

XCMS [99],
XCMS2 [100],

MZedDB [132],
eRah [102]
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Table 2. Cont.

Preprocessing
Step Goal Available Methods Commercially Available Software Freely Available Software

NMR Spectroscopy Hyphenated MS NMR
Spectroscopy Hyphenated MS NMR

Spectroscopy Hyphenated MS NMR
Spectroscopy Hyphenated MS

metabolite
quantification

determine absolutely quantified
concentrations of identified metabolites

accurately determine area under the
curve of metabolite signal and reference
with respect to known concentration of

internal standard

Chenomx
(Chenomx Inc.

Edmonton,
Canada) [109],

AMIX
(BrukerBioSpin

GmbH,
Rheinstetten,

Germany)

vendor-specific
software

BATMAN [117],
[118],

MetaboQuant
[133], BAYESIL

[89], AQuA [134],
ASICS [131]

OpenMS [98]

metabolite
data transfor-

mation

scaling of data in order to reduce data
heteroscedasticity

e.g., log-transformation, variance
stabilization transformation [135],

auto-scaling, pareto scaling [136], mean
centering

R Base, R-package vsn [137], R-package speaq 2.0 [112], Normalyzer [138], MetaPre
[139]

metabolite
data

normalization

minimize unwanted biological and/or
technical variation between samples

e.g., creatinine normalization (for urine
specimens), total spectral area

normalization, normalization to internal
standard, probabilistic quotient
normalization [140], variance

stabilization normalization [137],
osmolality normalization,

sample-specific normalization factors
(e.g., volume), alternative:

normalization-invariant zero-sum
regression [77,78]

AMIX
(BrukerBioSpin

GmbH,
Rheinstetten,

Germany)

vendor-specific
software

MetaboAnalyst [113], R-package
AlpsNMR [90], R-package speaq 2.0

[112], Normalyzer [138], MetaPre [139],
R-package zeroSum [77,78]
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4. Statistics and Bioinformatics Data Analysis

Probably the main goal of metabolomics analyses in biomedical research is the de-
tection of powerful metabolic biomarkers for disease diagnosis or prognosis, response
to therapeutic interventions, or, in general, response to external stimuli, e.g., nutrition or
exercise. The NIH defines the term “biomarker” as “a characteristic that is objectively mea-
sured and evaluated as an indicator of normal biological processes, pathogenic processes,
or pharmacologic responses to a therapeutic intervention” [141]. The search for novel
metabolic biomarkers in the context of nephrology, as illustrated in Figure 2, is a highly
emerging research area. From a statistical point of view, several different approaches can
be distinguished (Table 3):

• Hypothesis testing: Univariate statistical differentiation between two or more prede-
fined groups.

• Multivariate biomarker signature detection: Generation of multivariate regression
scores to predict an outcome of an unknown test sample.

• Subgroup identification: Exploratory approach to identify biomedically different
patient/sample subgroups.

• Metabolome-wide association study: Systematic analysis of the entire measured
metabolome based on regression, including appropriate confounder adjustment to
identify significant associations between metabolites and an outcome. A correction
for multiple testing is essential for these comparisons.

• Statistical network analysis: Systematic analysis of interactions between different
metabolites and/or patient parameters, other omics variables, etc., which are repre-
sented as a network. Allows a holistic view on the metabolome and its interaction with
specific phenotypes, and can reveal molecular mechanisms or regulating processes.

• Meta-analysis: Combination of statistical results across multiple studies to increase
statistical power and to gain more robust results.

• Time-to-event analysis: Time-to-event data contain information about if and when
an event occurred, but typically also censored data. Survival analysis appropriately
associates time-to-event data with, e.g., metabolite levels.

• Time-course analysis: Analysis of metabolite concentration changes across time and
typically in response to external stimuli.

• Pathway (enrichment) analysis: Post-hoc mapping of differential metabolites to
metabolic pathways, employing pathway databases, e.g., KEGG [142] or Gene On-
tology [143], and subsequent testing if significantly differentiating metabolites are
significantly enriched in a specific pathway.

The statistical analysis of high-dimensional metabolite data often includes multiple
comparisons, which easily can result in a high number of false positives. To reduce this
error and avoid misleading conclusions, the p-values have to be corrected for multiple
testing by, e.g., adjustment of the false-discovery rate (FDR) as proposed by Benjamini
and Hochberg [144]. Since the statistical analysis of metabolomics data requires a broad
range of different methods, alongside the popular statistical analysis software R [145],
several stand-alone software solutions exist, providing a collection of web-based tools
with graphical user interfaces, e.g., MetaboAnalyst [113] and 3Omics [146], as reviewed by
Cambiaghi et al. [147].
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Table 3. Overview of different statistical research goals and corresponding statistics/bioinformatics tools, including freely available R software packages, for metabolomics data analysis.
Abbr.: ANOVA, analysis of variance; ASCA, analysis of variance—simultaneous component analysis; GGM, gaussian graphical model; LASSO, least absolute shrinkage and selection
operator; MGM, mixed graphical model; OPLS-DA, orthogonal projections to latent structures—discriminant analysis; ORA, over-representation analysis; PH, proportional hazards;
PLS-DA, partial least squares—discriminant analysis; WGCNA; weighted gene co-expression network analysis.

Research Goal Example LiteratureExample Common Statistics/
Bioinformatics Method

Popular Statistics/
Bioinformatics Tools R Software Packages Further Reading

hypothesis testing compare metabolite levels
in CKD patients and

healthy controls

[18] hypothesis testing Student’s t-test, ANOVA >R Base: t.test, R Base:
anova

[8,64]

multivariate bio-marker
signature detection

multivariate metabolite
signature to classify AKI

vs. non-AKI patients
[19]

multivariate
classification or linear

regression

PLS-DA [148], OPLS-DA
[149], support vector

machine [150], Random
Forest [124], LASSO

regression [151], ridge
regression [152], elastic net

[153]

mixOmics [154], ropls
[155], e1071 [156],

randomForest [127],
glmnet [157]

[8,64,158]

subgroup identification

exploratory identify CKD
patient subgroups with

different survival
outcomes based on
metabolic profiles

[32] supervised/unsupervised
machine learning

PCA [159], Hierarchical
Clustering, Self-organizing

maps [160]

R Base: prcomp, ropls
[155], R Base: hclust,

kohonen [161]
[8,64,160,162,163]

metabolome-wide
association study

associations between all
measured metabolites and

eGFR, adjusted for age
and sex

[35]
univariate/multivariate
regression analysis (with
confounder adjustment)

linear/logistic/Cox PH
regression analysis MWASTools [111] [164]

statistical network
analysis

exploratory identification
of metabolite-metabolite

associations
[30]

probabilistic graphical
modeling, correlation

networks

correlation network
analysis, WGCNA [165],
GGM [166], MGM [166]

corrr, WGCNA [167],
GeneNet [168], mgm [169] [166,170,171]

meta-analysis

combining p-values for
creatinine and eGFR

metabolite associations
across multiple studies

[35] regression model fixed-effects model metafor [172], meta [173] [174]
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Table 3. Cont.

Research Goal Example LiteratureExample Common Statistics/
Bioinformatics Method

Popular Statistics/
Bioinformatics Tools R Software Packages Further Reading

time-to-event analysis
estimate the mortality of
CKD patients based on a

set of metabolites
[17] survival analysis

Cox PH regression
analysis [175], LASSO Cox

PH regression [151],
random survival forest

[176]

survival [177], glmnet
[157], randomForestSRC

[176]
[177–179]

time-course analysis

analyze metabolite
intensity changes over

time under different CKD
treatment conditions

[36] time-course analysis ASCA [180,181] MetStaT [182], DESeq2
[183] [184]

pathway (enrichment)
analysis

identify set of metabolites
differentiating non-CKD
and CKD patients with
affiliation to a specific

pathway

[23] hypergeometric test,
regression model

MSEA [185], ORA, global
test [186]

FELLA [187], Lilikoi [188],
globaltest [186] [171,189]
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5. Validation, Interpretation, and Beyond

Any statistical results of metabolomics studies have to be carefully validated. Ideally,
novel statistically significant metabolic biomarkers should prove to be still significantly
associated with the respective outcome in independent cohorts. Since metabolomics data
in large-scale human CKD cohorts are still scarce, possibilities to replicate, e.g., a significant
association between a set of metabolites and time-to-kidney-failure, are rather limited.
Likewise, the predictive performance of novel metabolic risk scores for the diagnosis or
prognosis of specific renal outcomes has to be validated on independent test sets to proof
any clinical utility. Luckily, several strategies for unbiased performance assessment of
novel classification or prediction scores within the same patient cohort are well established,
e.g., cross-validation, where the complete data set is iteratively split into training and test
data sets and, within each cross-validation run, the new predictive model is solely trained
on the training set and solely tested on the test set, respectively (compare to Figure 1) [190].

Next to statistical replication, further exploration of metabolic findings, discovered in
human cohorts, can be carried out in suitable animal models or cell lines, and vice versa.
Animal and cell line studies offer the huge advantage of a very controlled experimental
environment and suitability for extensive intervention studies, and they are able to further
elucidate the underlying pathophysiologic mechanisms [191]. Chen et al., for example,
identified 5-methoxytryptophan (5-MTP) as a potential marker of CKD in a human cohort,
and subsequently examined the anti-inflammatory and anti-fibrotic effects of 5-MTP and
the biological roles of its regulatory enzyme tryptophan hydroxylase-1 in cell and animal
models [27]. A next step typically carried out in metabolomics studies is the interpretation
of metabolic biomarkers in the context of their metabolic pathway environment, also known
as pathway mapping, as well as in the context of already published research. Numerous
open-source software for pathway mapping exist, including MetaboAnalyst [113], as
extensively reviewed in [192]. The explosively growing amount of metabolomics data from
many small studies and different analytical platforms, however, challenges the unified
interpretation of metabolic findings across different studies. Abbiss et al. provide an
extensive list of metabolites that have been reported as important for two or more kidney
diseases [193].

The interplay of the microbiome and the metabolome in terms of the gut–kidney axis
and its contribution to kidney diseases is reviewed in [194] and might help to highlight
common biochemical processes in kidney diseases, such as the purine and tryptophan
metabolism. The Human Metabolome Database (HMDB; https://hmdb.ca/ (accessed on
10 June 2021)) offers a rich source of information on metabolites, their chemical properties,
normal and abnormal abundances, biochemical/enzymatic/pathway data, as well as
important literature references [80]. Kidney-specific web resources for different omics
data, including Nephroseq (https://www.nephroseq.org/ (accessed on 10 June 2021)),
the Kidney and Urinary Pathway Knowledge Base (KUPKB; www.kupkb.org (accessed
on 10 June 2021)) [195], and the Chronic Kidney Disease database (CKDdb; www.padb.
org/ckdbd (accessed on 10 June 2021)) [196], which allow the unification of all available
information from different sample origins and omics levels, are reviewed by [197].

While metabolomics studies represent a fascinating research field with huge potential
that still needs to be launched on its own, an integration of multiple omics datasets will
further help to elucidate CKD pathomechanisms. Multi-omics studies will make use of
genome-wide association study (GWAS) data, whole exome or whole genome sequencing
from DNA, messenger RNA (mRNA) as the product of gene transcription, as well as
proteomics and metabolomics from the same patient or even the same sample. Genomic
analyses can identify the risk factors/disease causing variants and can thereby enlighten
regulatory networks. Together with proteomics and metabolomics measurements, one
will be able to delve deeper into a functional/molecular basis of disease pathology [198].
Network analyses exploring the interconnectivity of genetic and molecular entities in CKD
will provide additional information on the critical drivers of kidney diseases. Moreover,
these networks will expand our understanding of how CKD affects different body systems

https://hmdb.ca/
https://www.nephroseq.org/
www.kupkb.org
www.padb.org/ckdbd
www.padb.org/ckdbd
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and how stimuli, such as diet, medication, and the microbiome, participate in this complex
interplay [199]. Together, this will bring the field of omics research closer to possible clinical
applications in order to improve patient treatment. Metabolomics especially has great
potential for large-scale utilization in clinical practice; however, its current application
in clinical routines is still limited. Current obstacles, which have to be resolved, include
the development of small-scale measurement devices; extensive validation in external
cohorts; introduction of SOPs for sample collection, storage, preparation, measurement, and
preprocessing; data analysis and interpretation; and unambiguous metabolite identification
as a key prerequisite for the development of targeted measurement kits [200,201].

6. Conclusions

The field of metabolomics already has been of unmeasurable value for nephrology
research. Still, many questions remain and need to be addressed in the future. A first
issue will be to understand the differing metabolite patterns across the diverse spectrum
of kidney diseases, such as metabolic syndrome/diabetes mellitus, glomerular diseases,
and many others; but, within similar phenotypic CKD etiologies, metabolomics also will
help to unravel the mechanisms that differentiate, e.g., slow from fast CKD progressors.
Translation of metabolomics research into routine CKD patient care will pave the way
for novel metabolic biomarkers to evaluate and monitor the efficacy or safety of patient
treatments. Thus, metabolomics studies will support clinical decision making. Eventually,
metabolomics will become an integrated part of CKD diagnostics and will be able to
inform the treating physicians on the rate of CKD progression, adverse risk evaluation,
and other CKD-related comorbidities, such as the stage of metabolic syndrome vs. diabetes
mellitus or others. Thereby, metabolomics will be a pioneering field for individualized
patient treatment.
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36. Stanimirova, I.; Banasik, M.; Ząbek, A.; Dawiskiba, T.; Kościelska-Kasprzak, K.; Wojtowicz, W.; Krajewska, M.; Janczak, D.;
Młynarz, P. Serum metabolomics approach to monitor the changes in metabolite profiles following renal transplantation. Sci. Rep.
2020, 10, 17223. [CrossRef]

37. Luo, S.; Coresh, J.; Tin, A.; Rebholz, C.M.; Appel, L.J.; Chen, J.; Vasan, R.S.; Anderson, A.H.; Feldman, H.I.; Kimmel, P.L.; et al.
Serum Metabolomic Alterations Associated with Proteinuria in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 342–353. [CrossRef]

38. Hasegawa, S.; Inagi, R. Harnessing Metabolomics to Describe the Pathophysiology Underlying Progression in Diabetic Kidney
Disease. Curr. Diab. Rep. 2021, 21, 1–6. [CrossRef]

39. Taherkhani, A.; Farrokhi Yekta, R.; Mohseni, M.; Saidijam, M.; Arefi Oskouie, A. Chronic kidney disease: A review of proteomic
and metabolomic approaches to membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy
biomarkers. Proteome Sci. 2019, 17, 1–18. [CrossRef]

40. Van Stralen, K.; Dekker, F.; Zoccali, C.; Jager, K. Case-Control Studies—An Efficient Observational Study Design. Nephron Clin. Pr.
2010, 114, c1–c4. [CrossRef] [PubMed]

41. Keogh, R.H.; Cox, D.R. Case-Control Studies; Cambridge University Press (CUP): Cambridge, UK, 2014.
42. Wu, I.-W.; Lee, C.-C.; Hsu, H.-J.; Sun, C.-Y.; Chen, Y.-C.; Yang, K.-J.; Yang, C.-W.; Chung, W.-H.; Lai, H.-C.; Chang, L.-C.; et al.

Compositional and Functional Adaptations of Intestinal Microbiota and Related Metabolites in CKD Patients Receiving Dietary
Protein Restriction. Nutrients 2020, 12, 2799. [CrossRef]

43. Barrios, C.; Zierer, J.; Würtz, P.; Haller, T.; Metspalu, A.; Gieger, C.; Thorand, B.; Meisinger, C.; Waldenberger, M.;
Raitakari, O.; et al. Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations. Sci. Rep. 2018,
8, 15249. [CrossRef] [PubMed]

44. Eckardt, K.-U.; Bärthlein, B.; Baid-Agrawal, S.; Beck, A.; Busch, M.; Eitner, F.; Ekici, A.B.; Floege, J.; Gefeller, O.; Haller, H.; et al.
The German Chronic Kidney Disease (GCKD) study: Design and methods. Nephrol. Dial. Transplant. 2011, 27, 1454–1460.
[CrossRef]

45. Dienemann, T.; Fujii, N.; Orlandi, P.; Nessel, L.; Furth, S.L.; Hoy, W.E.; Matsuo, S.; Mayer, G.; Methven, S.; Schaefer, F.; et al.
International Network of Chronic Kidney Disease cohort studies (iNET-CKD): A global network of chronic kidney disease cohorts.
BMC Nephrol. 2016, 17, 1–9. [CrossRef]

46. Rinschen, M.M.; Palygin, O.; Guijas, C.; Palermo, A.; Palacio-Escat, N.; Domingo-Almenara, X.; Montenegro-Burke, R.;
Saez-Rodriguez, J.; Staruschenko, A.; Siuzdak, G. Metabolic rewiring of the hypertensive kidney. Sci. Signal. 2019, 12, eaax9760.
[CrossRef] [PubMed]

47. Winkvist, A.; Bärebring, L.; Gjertsson, I.; Ellegård, L.; Lindqvist, H.M. A randomized controlled cross-over trial investigating the
effect of anti-inflammatory diet on disease activity and quality of life in rheumatoid arthritis: The Anti-inflammatory Diet In
Rheumatoid Arthritis (ADIRA) study protocol. Nutr. J. 2018, 17, 44. [CrossRef] [PubMed]

48. Adamska-Patruno, E.; Samczuk, P.; Ciborowski, M.; Godzien, J.; Pietrowska, K.; Bauer, W.; Gorska, M.; Barbas, C.; Kretowski, A.
Metabolomics Reveal Altered Postprandial Lipid Metabolism After a High-Carbohydrate Meal in Men at High Genetic Risk of
Diabetes. J. Nutr. 2019, 149, 915–922. [CrossRef] [PubMed]

49. Beuchel, C.; Becker, S.; Dittrich, J.; Kirsten, H.; Toenjes, A.; Stumvoll, M.; Loeffler, M.; Thiele, H.; Beutner, F.; Thiery, J.; et al.
Clinical and lifestyle related factors influencing whole blood metabolite levels—A comparative analysis of three large cohorts.
Mol. Metab. 2019, 29, 76–85. [CrossRef] [PubMed]

50. Altmaier, E.; Fobo, G.; Heier, M.; Thorand, B.; Meisinger, C.; Römisch-Margl, W.; Waldenberger, M.; Gieger, C.; Illig, T.;
Adamski, J.; et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism.
Eur. J. Epidemiol. 2014, 29, 325–336. [CrossRef]

51. Chua, E.C.P.; Shui, G.; Tian-Guang Lee, I.; Lau, P.; Tan, L.-C.; Yeo, S.-C.; Lam, B.D.; Bulchand, S.; Summers, S.A.;
Puvanendran, K.; et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian
metabolic phenotypes in humans. Proc. Natl. Acad. Sci. USA 2013, 110, 14468–14473. [CrossRef] [PubMed]

http://doi.org/10.1038/s41588-019-0567-8
http://www.ncbi.nlm.nih.gov/pubmed/31959995
http://doi.org/10.1021/pr201036j
http://www.ncbi.nlm.nih.gov/pubmed/22204613
http://doi.org/10.1681/ASN.2015010107
http://doi.org/10.1093/ndt/gft217
http://doi.org/10.1681/ASN.2014111099
http://doi.org/10.1038/s41598-020-74245-z
http://doi.org/10.2215/CJN.10010818
http://doi.org/10.1007/s11892-021-01390-8
http://doi.org/10.1186/s12953-019-0155-y
http://doi.org/10.1159/000242442
http://www.ncbi.nlm.nih.gov/pubmed/19797931
http://doi.org/10.3390/nu12092799
http://doi.org/10.1038/s41598-018-33507-7
http://www.ncbi.nlm.nih.gov/pubmed/30323304
http://doi.org/10.1093/ndt/gfr456
http://doi.org/10.1186/s12882-016-0335-2
http://doi.org/10.1126/scisignal.aax9760
http://www.ncbi.nlm.nih.gov/pubmed/31822592
http://doi.org/10.1186/s12937-018-0354-x
http://www.ncbi.nlm.nih.gov/pubmed/29678183
http://doi.org/10.1093/jn/nxz024
http://www.ncbi.nlm.nih.gov/pubmed/31049566
http://doi.org/10.1016/j.molmet.2019.08.010
http://www.ncbi.nlm.nih.gov/pubmed/31668394
http://doi.org/10.1007/s10654-014-9910-7
http://doi.org/10.1073/pnas.1222647110
http://www.ncbi.nlm.nih.gov/pubmed/23946426


Metabolites 2021, 11, 460 25 of 30

52. Suhre, K.; Shin, S.Y.; Petersen, A.K.; Mohney, R.P.; Meredith, D.; Wagele, B.; Altmaier, E.; Gram, C.; Deloukas, P.; Erdmann, J.; et al.
Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011, 477, 54–60. [CrossRef]

53. Smith, L.; Villaret-Cazadamont, J.; Claus, S.P.; Canlet, C.; Guillou, H.; Cabaton, N.J.; Ellero-Simatos, S. Important Considerations
for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions. Metabolites 2020, 10, 104.
[CrossRef] [PubMed]

54. Barton, R.H.; Waterman, D.S.; Bonner, F.W.; Holmes, E.; Clarke, R.; Nicholson, J.; Lindon, J.; the PROCARDIS Consortium. The
influence of EDTA and citrate anticoagulant addition to human plasma on information recovery from NMR-based metabolic
profiling studies. Mol. BioSyst. 2009, 6, 215–224. [CrossRef] [PubMed]

55. Jiménez, B.; Holmes, E.; Heude, C.; Tolson, R.F.; Harvey, N.; Lodge, S.L.; Chetwynd, A.J.; Cannet, C.; Fang, F.; Pearce, J.T.M.; et al.
Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by 1H NMR
Spectroscopy in a Multilaboratory Trial. Anal. Chem. 2018, 90, 11962–11971. [CrossRef]

56. Von Schlippenbach, T.; Oefner, P.J.; Gronwald, W. Systematic Evaluation of Non-Uniform Sampling Parameters in the Targeted
Analysis of Urine Metabolites by 1H,1H 2D NMR Spectroscopy. Sci. Rep. 2018, 8, 4249. [CrossRef] [PubMed]

57. Soininen, P.; Kangas, A.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in
Cardiovascular Epidemiology and Genetics. Circ. Cardiovasc. Genet. 2015, 8, 192–206. [CrossRef]

58. Percival, B.C.; Grootveld, M.; Gibson, M.; Osman, Y.; Molinari, M.; Jafari, F.; Sahota, T.; Martin, M.; Casanova, F.;
Mather, M.L.; et al. Low-field, benchtop NMR spectroscopy as a potential tool for point-of-care diagnostics of metabolic
conditions: Validation, protocols and computational models. High Throughput 2019, 8, 2. [CrossRef]

59. Leenders, J.; Grootveld, M.; Percival, B.; Gibson, M.; Casanova, F.; Wilson, P.B. Benchtop Low-Frequency 60 MHz NMR Analysis
of Urine: A Comparative Metabolomics Investigation. Metabolites 2020, 10, 155. [CrossRef]

60. Edgar, M.; Percival, B.C.; Gibson, M.; Jafari, F.; Grootveld, M. Low-field benchtop NMR spectroscopy as a potential non-stationary
tool for point-of-care urinary metabolite tracking in diabetic conditions. Diabetes Res. Clin. Pr. 2021, 171, 108554. [CrossRef]

61. Dona, A.C.; Jiménez, B.; Schäfer, H.; Humpfer, E.; Spraul, M.; Lewis, M.R.; Pearce, J.T.M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K.
Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-Scale Metabolic Phenotyp-
ing. Anal Chem. 2014, 86, 9887–9894. [CrossRef]

62. Lodge, S.; Nitschke, P.; Leng Loo, R.; Kimhofer, T.; Bong, S.-H.; Richards, T.; Begum, S.; Spraul, M.; Schaefer, H.; Lindon, J.C.; et al.
Low Volume in Vitro Diagnostic Proton NMR Spectroscopy of Human Blood Plasma for Lipoprotein and Metabolite Analysis:
Application to SARS-CoV-2 Biomarkers. J. Proteome Res. 2021, 20, 1415–1423. [CrossRef] [PubMed]

63. Tveite Bjerrum, J.T. Metabonomics: Methods and protocols. Methods Mol. Biol. 2015, 1277. Available online: https://mosys.
univie.ac.at/publications/books/metabolomics-methods-and-protocols/ (accessed on 15 July 2021).

64. Zacharias, H.U.; Hochrein, J.; Klein, M.; Samol, C.; Oefner, P.; Gronwald, W. Current Experimental, Bioinformatic and Statistical
Methods used in NMR Based Metabolomics. Curr. Metab. 2013, 1, 253–268. [CrossRef]

65. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2006, 26, 51–78.
[CrossRef] [PubMed]

66. Suhre, K.; Meisinger, C.; Döring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M.V.; Gall, W.E.; Weinberger, K.; et al.
Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting. PLoS ONE 2010, 5, e13953.
[CrossRef]

67. Almstetter, M.F.; Oefner, P.J.; Dettmer, K. Comprehensive two-dimensional gas chromatography in metabolomics. Anal. Bioanal.
Chem. 2012, 402, 1993–2013. [CrossRef]

68. François, I.; Sandra, K.; Sandra, P. Comprehensive liquid chromatography: Fundamental aspects and practical considerations—A
review. Anal. Chim. Acta 2009, 641, 14–31. [CrossRef]

69. Zhang, X.W.; Li, Q.H.; Di Xu, Z.; Dou, J.J. Mass spectrometry-based metabolomics in health and medical science: A systematic
review. RSC Adv. 2020, 10, 3092–3104. [CrossRef]

70. Amberg, A.; Riefke, B.; Schlotterbeck, G.; Ross, A.; Senn, H.; Dieterle, F.; Keck, M. NMR and MS Methods for Metabolomics
BT—Drug Safety Evaluation: Methods and Protocols. Methods Mol. Biol. 2017, 1641, 229–258.

71. Beckonert, O.; Keun, H.C.; Ebbels, T.; Bundy, J.; Holmes, E.; Lindon, J.; Nicholson, J. Metabolic profiling, metabolomic and
metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703.
[CrossRef]

72. Van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations:
Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [CrossRef]

73. Vettukattil, R. Preprocessing of Raw Metabonomic Data. Adv. Struct. Saf. Stud. 2015, 1277, 123–136. [CrossRef]
74. Tian, H.; Li, B.; Shui, G. Untargeted LC–MS Data Preprocessing in Metabolomics. J. Anal. Test. 2017, 1, 187–192. [CrossRef]
75. Wallmeier, J.; Samol, C.; Ellmann, L.; Zacharias, H.U.; Vogl, F.C.; Garcia, M.; Dettmer, K.; Oefner, P.J.; Gronwald, W.;

GCKD Study Investigators. Quantification of Metabolites by NMR Spectroscopy in the Presence of Protein. J. Proteome Res.
2017, 16, 1784–1796. [CrossRef]

76. McHugh, C.E.; Flott, T.L.; Schooff, C.R.; Smiley, Z.; Puskarich, M.; Myers, D.D.; Younger, J.G.; Jones, A.E.; Stringer, K.A.
Rapid, Reproducible, Quantifiable NMR Metabolomics: Methanol and Methanol: Chloroform Precipitation for Removal of
Macromolecules in Serum and Whole Blood. Metabolites 2018, 8, 93. [CrossRef] [PubMed]

http://doi.org/10.1038/nature10354
http://doi.org/10.3390/metabo10030104
http://www.ncbi.nlm.nih.gov/pubmed/32178364
http://doi.org/10.1039/b907021d
http://www.ncbi.nlm.nih.gov/pubmed/20024083
http://doi.org/10.1021/acs.analchem.8b02412
http://doi.org/10.1038/s41598-018-22541-0
http://www.ncbi.nlm.nih.gov/pubmed/29523811
http://doi.org/10.1161/CIRCGENETICS.114.000216
http://doi.org/10.3390/ht8010002
http://doi.org/10.3390/metabo10040155
http://doi.org/10.1016/j.diabres.2020.108554
http://doi.org/10.1021/ac5025039
http://doi.org/10.1021/acs.jproteome.0c00815
http://www.ncbi.nlm.nih.gov/pubmed/33491459
https://mosys.univie.ac.at/publications/books/metabolomics-methods-and-protocols/
https://mosys.univie.ac.at/publications/books/metabolomics-methods-and-protocols/
http://doi.org/10.2174/2213235X113019990001
http://doi.org/10.1002/mas.20108
http://www.ncbi.nlm.nih.gov/pubmed/16921475
http://doi.org/10.1371/journal.pone.0013953
http://doi.org/10.1007/s00216-011-5630-y
http://doi.org/10.1016/j.aca.2009.03.041
http://doi.org/10.1039/C9RA08985C
http://doi.org/10.1038/nprot.2007.376
http://doi.org/10.1186/1471-2164-7-142
http://doi.org/10.1007/978-1-4939-2377-9_10
http://doi.org/10.1007/s41664-017-0030-8
http://doi.org/10.1021/acs.jproteome.7b00057
http://doi.org/10.3390/metabo8040093
http://www.ncbi.nlm.nih.gov/pubmed/30558115


Metabolites 2021, 11, 460 26 of 30

77. Zacharias, H.U.; Rehberg, T.; Mehrl, S.; Richtmann, D.; Wettig, T.; Oefner, P.J.; Spang, R.; Gronwald, W.; Altenbuchinger, M.
Scale-Invariant Biomarker Discovery in Urine and Plasma Metabolite Fingerprints. J. Proteome Res. 2017, 16, 3596–3605. [CrossRef]
[PubMed]

78. Altenbuchinger, M.; Rehberg, T.; Zacharias, H.U.; Stämmler, F.; Dettmer, K.; Weber, D.; Hiergeist, A.; Gessner, A.; Holler, E.;
Oefner, P.J.; et al. Reference point insensitive molecular data analysis. Bioinformatics 2017, 33, 219–226. [CrossRef] [PubMed]

79. Lin, W.; Shi, P.; Feng, R.; Li, H. Variable selection in regression with compositional covariates. Biometrika 2014, 101, 785–797.
[CrossRef]

80. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Allison, P.; Karu, N.; et al.
HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [CrossRef] [PubMed]

81. Vogl, F.C.; GCKD Study Investigators; Mehrl, S.; Heizinger, L.; Schlecht, I.; Zacharias, H.U.; Ellmann, L.; Nürnberger, N.;
Gronwald, W.; Leitzmann, M.F.; et al. Evaluation of dilution and normalization strategies to correct for urinary output in
HPLC-HRTOFMS metabolomics. Anal. Bioanal. Chem. 2016, 408, 8483–8493. [CrossRef] [PubMed]

82. Waikar, S.S.; Sabbisetti, V.S.; Bonventre, J.V. Normalization of urinary biomarkers to creatinine during changes in glomerular
filtration rate. Kidney Int. 2010, 78, 486–494. [CrossRef]

83. Stevens, L.A.; Levey, A.S. Measured GFR as a Confirmatory Test for Estimated GFR. J. Am. Soc. Nephrol. 2009, 20, 2305–2313.
[CrossRef] [PubMed]

84. Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpi-Sarda, M.; Llorach, R.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C.
Comparison of 24-h volume and creatinine-corrected total urinary polyphenol as a biomarker of total dietary polyphenols in the
Invecchiare InCHIANTI study. Anal. Chim. Acta 2011, 704, 110–115. [CrossRef] [PubMed]

85. Curhan, G. Cystatin C: A Marker of Renal Function or Something More? Clin. Chem. 2005, 51, 293–294. [CrossRef] [PubMed]
86. Warrack, B.M.; Hnatyshyn, S.; Ott, K.-H.; Reily, M.; Sanders, M.; Zhang, H.; Drexler, D.M. Normalization strategies for

metabonomic analysis of urine samples. J. Chromatogr. B 2009, 877, 547–552. [CrossRef]
87. Chen, Y.; Shen, G.; Zhang, R.; He, J.; Zhang, Y.; Xu, J.; Yang, W.; Chen, X.; Song, Y.; Abliz, Z. Combination of Injection Volume

Calibration by Creatinine and MS Signals’ Normalization to Overcome Urine Variability in LC-MS-Based Metabolomics Studies.
Anal. Chem. 2013, 85, 7659–7665. [CrossRef]

88. Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system
based on UNIX pipes. J. Biomol. NMR 1995, 6, 277–293. [CrossRef]

89. Ravanbakhsh, S.; Liu, P.; Bjordahl, T.C.; Mandal, R.; Grant, J.R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, X.; Luchinat, C.; et al.
Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE 2015, 10, e0124219. [CrossRef]

90. Madrid-Gambin, F.; Oller-Moreno, S.; Fernandez, L.; Bartova, S.; Giner, M.P.; Joyce, C.; Ferraro, F.; Montoliu, I.; Moco, S.; Marco, S.
AlpsNMR: An R package for signal processing of fully untargeted NMR-based metabolomics. Bioinformatics 2020, 36, 2943–2945.
[CrossRef] [PubMed]

91. Vu, T.N.; Valkenborg, D.; Smets, K.; Verwaest, K.A.; Dommisse, R.; Lemière, F.; Verschoren, A.; Goethals, B.; Laukens, K. An
integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinform. 2011,
12, 405. [CrossRef]

92. Hoffmann, N.; Stoye, J. ChromA: Signal-based retention time alignment for chromatography–mass spectrometry data. Bioinfor-
matics 2009, 25, 2080–2081. [CrossRef] [PubMed]

93. Wang, S.-Y.; Ho, T.-J.; Kuo, C.-H.; Tseng, Y.J. Chromaligner: A web server for chromatogram alignment. Bioinformatics 2010,
26, 2338–2339. [CrossRef] [PubMed]

94. Lommen, A. MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data
Preprocessing. Anal. Chem. 2009, 81, 3079–3086. [CrossRef] [PubMed]

95. Katajamaa, M.; Oresic, M. Processing methods for differential analysis of LC/MS profile data. BMC Bioinform. 2005, 6, 179.
[CrossRef]
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