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Abstract: Background: The incidence of neurological diseases is increasing throughout the world.
The aim of the present study was to identify nutrition and microbiome factors related to structural
and functional neurological abnormalities to optimize future preventive strategies. Methods: Two
hundred thirty-eight patients suffering from (1) structural (neurodegeneration) or (2) functional
(epilepsy) neurological abnormalities or (3) chronic pain (migraine) and 612 healthy control subjects
were analyzed by validated 12-month food frequency questionnaire (FFQ) and 16S rRNA micro-
biome sequencing (from stool samples). A binomial logistic regression model was applied for risk
calculation and functional pathway analysis to show which functional pathway could discriminate
cases and healthy controls. Results: Detailed analysis of more than 60 macro- and micronutrients
revealed no distinct significant difference between cases and controls, whereas BMI, insulin resistance
and metabolic inflammation in addition to alcohol consumption were major drivers of an overall
neurological disease risk. The gut microbiome analysis showed decreased alpha diversity (Shannon
index: p = 9.1× 10−7) and species richness (p = 1.2 × 10−8) in the case group as well as signifi-
cant differences in beta diversity between cases and controls (Bray–Curtis: p = 9.99 × 10−4; Jaccard:
p = 9.99 × 10−4). The Shannon index showed a beneficial effect (OR = 0.59 (95%-CI (0.40, 0.87);
p = 8 × 10−3). Cases were clearly discriminated from healthy controls by environmental information
processing, signal transduction, two component system and membrane transport as significantly
different functional pathways. Conclusions: In conclusion, our data indicate that an overall healthy
lifestyle, in contrast to supplementation of single micro- or macronutrients, is most likely to reduce
overall neurological abnormality risk and that the gut microbiome is an interesting target to develop
novel preventive strategies.

Keywords: gut–brain axis; neurological health; gut microbiome; nutrition

1. Introduction

Neurological diseases are a leading cause of disability and death worldwide. The
burden of neurological diseases has increased over the past 25 years as a result of demo-
graphic change [1]. Researchers assumed that the number of patients with neurological
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diseases will increase steadily in the coming years, underlining the importance of examin-
ing lifestyle-associated factors for future development of targeted preventive strategies [2].

Modifiable lifestyle factors that cause a neurological disease are very diverse and not
completely investigated. In particular, the influence of nutrition on the development and
progression of neurological diseases is a focus of current research [3]. In addition, the
intestinal microbiome as an additional modifier of nutritional factors has received scientific
attention in neuroscience as a relevant system that transmits nutritional signals into the
human physiology in terms of a “nutrition-microbiome-host metabolic axis”. Indeed, espe-
cially for neurodegenerative diseases, e.g., Parkinson’s disease (PD), researchers currently
assume that the pathology starts in the gut by altering the intestinal autonomous nervous
system [4,5].

In healthy subjects, the gut microbiome contributes to important physiological pro-
cesses, such as protection against pathogens, activation of the immune system, digestion of
food components and production of vitamins [6]. Furthermore, microbes have the ability to
produce different metabolites, such as short-chain fatty acids, neurotransmitters, immune
mediators and hormones [7]. These metabolites reflect a bidirectional communication net-
work, known as the “gut–brain axis”. The diversity of microbes and their metabolites are
thus suspected to influence gut motility and permeability, immune function [8–10], brain
neurochemistry and emotional behaviors [11,12]. Several studies deal with the influence
of microbes in the development and progression of neurological diseases, as well as the
mechanisms involved in the communication between the gut–brain axis.

Preventive effects of dietary components for neuroprotection are also in the current
focus of research. It is suspected that omega-3 fatty acids and vitamin D control the synthe-
sis of serotonin and influence the development and symptom relief of neuropsychiatric
disorders [13]. Dietary vitamin B3 (niacin) has been associated with both gut microbiome
abnormalities and neuronal dysfunction of the central nervous system. In patients with PD,
the precursor nicotinamide riboside of coenzyme NAD (nicotinamide adenine dinucleotide)
may be important for mitochondrial maintenance [14].

In the present study, we examined n = 612 healthy controls and n = 238 human subjects
suffering from different but common neurological disease groups: (1) structural neurolog-
ical abnormalities (SNA; neurodegeneration), (2) functional neurological abnormalities
(FNA; e.g., epilepsy) and (3) chronic pain (CP; e.g., migraine). The aim of the present study
was to identify nutritional and microbiome factors related to structural and functional
neurological abnormalities to optimize future preventive strategies. The reason not to
focus on a specific neuro-disease was due to our aim to identify common nutrition and/or
microbiome factors to preserve neurological health in general, which might be targeted in
the future in preventive educational programs.

2. Materials and Methods
2.1. Study Cohorts and Study Design

For the present investigation, a subpopulation was generated, based on the Food
Chain Plus (FoCus) cohort, which has been previously reported [15,16]. Subjects were
recruited at the University Hospital Schleswig Holstein (UKSH), Campus Kiel (Germany).
Within this project, a total of 2000 subjects were recruited from 2011 to 2015 and combined
to form the cohort. The subjects were randomly recruited by the regional registration office
and further via the obesity outpatient clinic of the Clinic for Internal Medicine I of the
UKSH in Kiel. Five hundred subjects were classified as obese with a BMI over 30 kg/m2.
The subjects underwent a medical phenotyping program that used a medical questionnaire,
anthropometric measurements and analysis of markers in blood samples. Furthermore,
stool samples for analysis were available, and a food frequency questionnaire (FFQ) was
used once to obtain information on nutritional behavior over a time period of 12 months.
The FFQ was used twice in a subsample of 200 study subjects to evaluate the validity of
the FFQ. Informed consent was obtained from all subjects involved in the study. Before its
commencement, the study was approved by the local ethics committee of the Department
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of Medicine of Kiel University (A156-03, 28 July 2011) and was registered under the clinical
trial number DRKS00005285 (Food Chain Plus (FoCus) cohort) at the German Clinical
Trials Register in Cologne.

The first 5-year follow-up was finished in 2020; 819 (57.5%) out of 1424 subjects
completed the first follow-up, 514 subjects declined to re-participate, 44 subjects died
and 47 subjects were addressed unknown. In total, complete data sets of 735 subjects
were available after the first follow-up period. These data are not included in the present
analysis.

2.2. Anthropometric Characteristics

Anthropometric data were assessed during clinical examination by the clinical staff.
Weight was determined to the nearest 0.1 kg using a body composition monitor (Type
BC-418 MA, Tanita Corporation, Tokyo, Japan).

2.3. Medical Questionnaire

A medical questionnaire (version 1. 1 dated 18 July 2011) was presented to the subjects.
As a result, a case–control study population was formed with a total of 850 subjects
(575 women and 275 men) including 238 cases with neurological diseases (184 women and
54 men) and 612 healthy controls (391 women and 221 men). The group of neurological
cases was divided into four subgroups: (1) structural neurological abnormalities (SNA;
neurodegeneration), (2) functional neurological abnormalities (FNA; epilepsy), (3) chronic
pain (CP; migraine) and (4) others (these probands gave information on the presence of
neurological symptoms for which the diagnostic work-up was not completed at the time
of answering the medical questionnaire). Specific neurological diseases were ascertained
during the medical questionnaire and additionally checked by typical medication intake if
the participant reported “I have another neurological disease”.

2.4. Dietary Assessment

The recording of dietary behavior and nutrient intake was carried out by a self-
completed, semi-quantitative dietary frequency questionnaire, according to the European
Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam protocol, and ana-
lyzed by EPIC-soft as reported earlier [17,18]. The single nutrient intakes of the subcohort
were compared with the D-A-CH “Reference values for nutritional intake” used in Ger-
many [19]. Main macronutrients (e.g., carbohydrates, fat and protein) were calculated as
energy percent (according to their energy density). Energy-adjusted intakes of all other
nutrients were calculated by adding the mean nutrient intake to the residual derived from
the regression analysis [20]. The data are presented in absolute values or percentages of
energy (E%).

2.5. Biochemical Analyses

Blood samples were obtained by venipuncture after an overnight fast for biochem-
ical analysis of metabolic and inflammatory markers. All markers were analyzed in
the central laboratory of the university hospital in Kiel: C-reactive protein (CRP) and
lipoprotein-a by immunoturbidimetry (Roche/Hitachi cobas c systems; Roche Diagnos-
tics GmbH, Mannheim, Germany), fasting glucose by glucose-hexokinase-ultraviolet test
(Roche/Hitachi cobas c systems, Roche Diagnostics International GmbH, Mannheim, Ger-
many), fasting insulin (ECLIA; Elecsys system; Roche Diagnostics International GmbH,
Mannheim, Germany) as well as interleukin-6 (IL-6) by electrochemiluminescence im-
munoassay (Elecsys® IL-6, cobas systems; Roche Diagnostics International GmbH,
Mannheim, Germany) and triglycerides by enzymatic test (Roche/Hitachi cobas c systems,
Roche Diagnostics International GmbH, Mannheim, Germany). Homeostatic model assess-
ment for insulin resistance (HOMA-IR) was calculated (fasting glucose (mg/dL) × fasting
insulin (µU/mL)/405) to determine insulin sensitivity.
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2.6. Analysis of the Intestinal Microbiome

Currently, the definition of the term microbiome is not actually standardized through
different study designs. For our present work, we decided to use the term microbiome
as described and defined by Berg et al. [21]. Therefore, in our manuscript, microbiome is
defined as the characteristic microbial community of the gut.

For the purpose of gut microbiome analysis, stool samples were collected and stored
at −80 ◦C until further processing. Laboratory work and quality control as well as normal-
ization and taxonomic classification were performed by the Institute of Clinical Molecular
Biology (IKMB), Kiel. As described in detail by Heinsen et al. [22], the microbiome analysis
was divided into sample preparation/extraction, sequencing, amplification, quality control
and bioinformatic analysis.

2.7. DNA Extraction, 16S rDNA Sequencing and Quality Control

In order to identify bacteria within the proband gut microbiomes, DNA sequencing
of the variable regions V1/V2 of bacterial 16S rRNA genes was performed as described
by Kozich et al. [23]. Here, bacterial DNA was automatically extracted using the QIAamp
DNA stool mini kit and the QIAcube technology from Qiagen (Hilden, Germany). After
defrosting, 200 mg from each stool sample were transferred to 0.70 mm Garnet Bead tubes
from Dianova (Hamburg, Germany), then the tubes were each filled with 1.1 mL of stool
lysis buffer (ASL). The SpeedMill PLUS technology (Analytik Jena, Jena, Germany) was
used for bead beating at 50 Hz for 45 s, and finally samples were heated to 95 ◦C for 5 min
and prepared for sequencing following the manufacturer’s protocol. The variable regions
of interest were amplified in a dual-barcoding approach [24] using the primers 27F and
338R in a polymerase chain reaction (PCR); the related products were normalized with the
SequalPrep Normalization Plate Kit (Thermo Fischer Scientific, Waltham, MA, USA) and
pooled equimolarly. Then, 16S rRNA gene sequencing was conducted using the Illumina
MiSeq technology (Illumina Inc., San Diego, CA, USA).

For controlling the quality of the sequencing products, further steps were performed.
Demultiplexing based on 0 mismatches in the barcode sequences was carried out by allow-
ing no mismatches; forward and reverse reads were merged using the FLASH software [25]
with an allowed overlap of reads of 250 to 300 bp. Low-quality sequences were filtered
out by excluding sequences with >5% nucleotides with quality score <30. Chimeras were
identified with the program UCHIME [26] and were excluded from the data set.

2.8. Normalization and Taxonomic Classification

Sequences were clustered into operational taxonomic units (OTUs) with a sequence
identity threshold of 97% using the program UPARSE [27], representing species level. The
SINTAX CLASSIFIER [28] was used to carry out the taxonomic assignment of OTUs. In
total, six different taxonomic levels were analyzed: domain, phylum, class, order, family
and genus. For each sample, 10,000 sequences were randomly selected to form a taxon-by-
sample abundance table.

2.9. Statistical Analysis of the Microbiome Data

Statistical calculations were performed using the program R (version 4.0.2 and 4.0.3; R
Core Team (2021). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.), RStudio
(version 1.3.1093; RStudio Team (2020). RStudio: Integrated Development Environment
for R. RStudio, PBC, Boston, MA, USA. URL http://www.rstudio.com/.) and the R
packages “Microbiome” (version 1.12.0; Leo Lahti et al., microbiome R package. URL:
http://microbiome.github.io) and “pyloseq” (version 1.34.0; phyloseq: An R package
for reproducible interactive analysis and graphics of microbiome census data. Paul J.
McMurdie and Susan Holmes (2013) PLoS ONE 8(4):e61217.). Species richness, alpha
diversity, beta diversity and the core measurable microbiome (CMM) between cases and
controls as well as subgroups were analyzed. Kruskal–Wallis test was used to identify
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overall subgroup differences and Wilcoxon test was used to identify differences between
disease subgroups and controls (as reference group). The CMM included all microbial
taxa at OTU level [29], which showed an average abundance of at least 0.5% of the total
bacteria within the groups. In addition, the CMM included only bacteria that were present
in more than 40% of the samples. Microbiome diversity was assessed by the use of
indices for alpha and beta diversity. OTU abundances in combination without and with
metric and factorial variables were used for modeling a multivariate Hurdle algorithm.
Two-part Hurdle models were chosen in order to handle the excess number of zeros and
overdispersion in the data by evaluating zero and non-zero abundances independently. We
integrated the following potential confounding factors in all analyses with confounders
(medication intake, smoking habits, alcohol, dietary fiber, docosahexaenoic acid, vitamin
B12, vitamin B3, vitamin D, BMI, age and sex). A Venn diagram was created using the
R package “VennDiagram” (version 1.6.20; Hanbo Chen (2018). VennDiagram: Generate
High-Resolution Venn and Euler Plots. R package version 1.6.20. https://CRAN.R-project.
org/package=VennDiagram) to calculate the distribution of OTUs in case and control
groups. The prediction of functional profiles from 16S rRNA data was performed with the
“Tax4Fun” R package (version 0.3.1) [30]. “Tax4Fun” predicts the functional capabilities of
microbial communities based on 16S datasets and is applicable to outputs obtained from
the QIIME application [31] against the SILVA database (version 123) [32]. The “Tax4Fun”
R package was embedded in the “microeco” (version 0.4.0) [33] R package, and linear
discriminant analysis (LDA) scores were computed for features differentially abundant
between healthy controls and neurologic cases using the Linear discriminant analysis
Effect Size (LEfSe) method [34]. LEfSe is an algorithm for high-dimensional biomarker
discovery and explanation to identify genomic features e.g., pathways that can characterize
the differences between biological conditions.

3. Statistics

Statistical analysis of the data on nutritional behavior and medical history was per-
formed using SPSS Statistic Version 22 (SPSS Inc., Chicago, IL, USA). Missing data for
variables were excluded by the “Pairwise deletion” function. The statistical significance
level was set to p < 5 × 10−2. For descriptive general characteristics, data were checked
for normality by using the Kolmogorov–Smirnov test and are presented as means ± stan-
dard deviations (normal distribution) or median and interquartile range (non-normal
distribution). Mann–Whitney U test was used to identify between-group differences. For
categorical variables, a crosstabulation was generated, and the Chi-squared test was ap-
plied using SPSS Statistic Version 22 (SPSS Inc., Chicago, Illinois, USA), R (version 4.0.2
and 4.0.3; R Core Team (2021). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.)
and RStudio (version 1.3.1093; RStudio Team (2020). RStudio: Integrated Development
Environment for R. RStudio, PBC, Boston, MA, USA. URL http://www.rstudio.com/.)
using the “finalfit” package (version 1.0.2; Ewen Harrison, Tom Drake and Riinu Ots
(2020). finalfit: Quickly Create Elegant Regression Results Tables and Plots when Mod-
elling. R package version 1.0.2. https://CRAN.R-project.org/package=finalfit). The
R package “Hmisc” (version 4.50; Frank E Harrell Jr, with contributions from Charles
Dupont and many others. (2021). Hmisc: Harrell Miscellaneous. R package version 4.5-0.
https://CRAN.R-project.org/package=Hmisc) was used to generate correlation matrices.
There are numerous factors that influence the composition of the intestinal microbiome and
the gut–brain axis [7,13,14,35,36]. Thus, we integrated the following potential confounders
in all analyses with confounders (medication intake, smoking habits, alcohol, dietary fiber,
docosahexaenoic acid, vitamin B12, vitamin B3, vitamin D, BMI, age and sex). Multivariate
logistic regression with analyses of odds ratio estimates were computed in R (version 4.0.2
and 4.0.3; R Core Team (2021). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.)
and RStudio (version 1.3.1093; RStudio Team (2020). RStudio: Integrated Development
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Environment for R. RStudio, PBC, Boston, MA, USA. URL http://www.rstudio.com/.)
using the “finalfit” package (version 1.0.2; Ewen Harrison, Tom Drake and Riinu Ots (2020).
finalfit: Quickly Create Elegant Regression Results Tables and Plots when Modelling. R
package version 1.0.2. https://CRAN.R-project.org/package=finalfit). For logistic regres-
sion analyses, some of the used variables were categorized: BMI subgroups were defined by
general WHO standards [37], sex (men/women), medication intake (no/yes) and smoking
habits (never, <3 month, former and current). Alcohol consumption was calculated as
alcohol units per day (1 unit equal to 10 g alcohol), and all further phenotype and nutrition
data were continuous variables.

4. Results
4.1. Characterization of Clinical Biochemistry and Anthropometric Data

The study population included 238 cases with different neurological diseases and
612 healthy controls (for details, please see Table 1).

Table 1. Characterization of the FoCus subcohort according to laboratory analytical and anthropometric factors and
demographic data.

Cases (n = 238) Controls (n = 612) All Subjects (n = 850)

Women 184 (77.3%) a 391 (63.9%) 575 (67.6%)
Men 54 (22.7%) a 221 (36.1%) 275 (32.4%)

Neurological diseases
SNA 15.1%

Parkinson’s disease 1 (0.4%)
Tremor 7 (2.9%)

Restless leg 26 (10.9%)
Multiple sclerosis 2 (0.8%)

FNA 11.3%
Epilepsy 16 (6.7%)
Anxiety 8 (3.4%)

Depression 2 (0.8%)
Sleep disorder 1 (0.4%)

CP 62.2%
Migraine 135 (56.7%)

Pain 12 (5.0%)
Neuropathy 1 (0.4%)

Others 27 (11.3%)
Age, year 48.49 (±13.41) 1 46.73 (±14.68) 47.23 (±14.34)

Weight, kg 100.10 (±33.06) * 84.82 (±26.66) 89.10 (±29.40)
Height, cm 171.18 (±8.41) * 173.57 (±8.88) 173.90 (±8.81)

BMI, kg/m2 34.14 (±10.85) * 28.05 (±8.22) 29.76 (±9.43)
UW 1.8% (4) 1.9% (11) 1.9% (15)
NW 22.4% (50) a 44.5% (253) 38.3% (303)
OW 17.0% (38) a 28.0% (159) 24.9% (197)
OBI 17.0% (38) a 9.7% (55) 11.8% (93)
OBII 11.2% (25) a 4.8% (27) 6.6% (52)
OBIII 30.6% (68) a 11.1% (63) 16.6% (131)

Glucose, mg/dL 95.00 (88.00/105.00) *2 92.00 (87.00/99.00) 93 (87.00/101.00)
Insulin, µU/mL 12.20 (7.30/22.65) * 8.50 (5.80/13.10) 9.30 (6.20/15.30)

HOMA-IR 2.93(1.61/5.79) * 1.99 (1.30/3.08) 2.13 (1.37/3.60)
Triglyceride, mg/dL 119.00 (79.00/168.25) * 87.00 (66.00/125.00) 95.00 (68.75/139.00)

CRP, mg/L 2.60 (0.90/6.40) * 1.10 (0.90/2.80) 1.30 (0.90/3.70)
IL-6, pg/mL 3.65 (2.10/5.43) * 2.60 (1.50/3.80) 2.80 (1.60/4.35)

Lipoprotein-a, mg/L 104.00 (95.00/245.00) * 95.00 (93.10/200.00) 95.00 (95.00/214.25)
a Statistical significance between groups and gender were tested using chi-square test, (p < 5 × 10−2); 1 mean (±SD); 2 median (25th and
75th percentiles); * statistical significance was tested using Mann–Whitney U test, (p < 5 × 10−2). SNA: structural neurological abnormalities;
FNA: functional neurological abnormalities; CP: chronic pain; BMI: body mass index; UW: underweight (BMI < 18.50 kg/m2); NW: normal
weight (BMI 18.50 to 24.99 kg/m2); OW: overweight (BMI 25.00 to 29.99 kg/m2); OBI: obesity class I (BMI 30.00 to 34.99 kg/m2); OBII:
obesity class II (BMI 35.00 to 39.99 kg/m2); OBIII: obesity class III (BMI ≥ 40.00 kg/m2); HOMA-IR index: homeostasis model assessment
of insulin resistance; CRP: C-reactive protein; IL-6: interleukin-6.

http://www.rstudio.com/
https://CRAN.R-project.org/package=finalfit
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In total, data of 575 (67.6%) women and 275 (32.4%) men were used for analysis.
The overall mean age was 47.23 ± 14.34 years, and the groups were not significantly
different in age. The mean BMI was significantly higher in the cases than in the controls
(p < 1 × 10−3). According to the guideline values for evaluating body weight in relation
to height (BMI < 25 kg/m2), the mean BMI values of the cases and controls were above
the limit of abdominal normal weight [37]. One third of the cases were morbidly obese
(Table 1), whereas approx. 45.0% of the controls showed a normal weight. More controls
were overweight when compared to cases, but cases were more obese (Table 1). Among
cases, BMI was evenly distributed between different neurological abnormalities (data
not shown). Furthermore, cases were characterized by significantly higher levels of glu-
cose (p < 1 × 10−3), insulin (p < 1 × 10−3), HOMA-IR index (p < 1 × 10−3), triglycerides
(p < × 10−3), CRP (p < 1 × 10−3), IL-6 (p < 1 × 10−3) and lipoprotein-a levels (p < 1 × 10−3)
compared to the controls (Table 1). Neurological cases showed a higher prevalence (19.1%;
p < × 10−3) of diabetes (all types), high blood lipids (36.4%; p < 1 × 10−3), hypertension
(55.3%; p < 1 × 10−3), inflammatory bowel disease (6.8%; p < 1 × 10−3) and inflammatory
bowel syndrome (7.7%; p < 1 × 10−3).

4.2. Characterization of Micro- and Macronutrients

According to official recommendations, the protein intake should be 10–15% of the
total energy requirement (E%) [19]. In our cohort, total protein intake of all subjects was
within the range of the reference values (Table 2). There were no significant differences
between groups in total protein (Table 2) and amino acid intake (Table S1). The total study
population had a higher median total fat intake (Table 2) than recommended (reference
value for total fat intake is 30 E% [19]). The intake of saturated and polyunsaturated fatty
acids (ω-6 andω-3) was also above the reference values (7 E%, 2.5 E% and 0.5 E% [19,38])
in cases and controls. In addition, there were significant differences between groups in
intakes of polyunsaturated fatty acids (p < 1 × 10−2) and octadecadienoic acid/linoleic
acid (p < 1 × 10−2) (Table 2). The results show that all subjects had an inadequate total
carbohydrate intake below the recommendation of 55 E% [19] (Table 2). Furthermore,
there was a significant difference between cases and controls regarding total carbohydrate
intake (p < 2 × 10−2) (Table 2). Dietary fiber intake was below the recommendation of
30 g/day in cases and controls [19] (Table 2). Both groups covered only 69% of the daily
recommended dietary fiber intake, but cases and controls were not significantly different
(Table 2). Alcohol intake of the entire study population was 2.2 E%, with higher alcohol
consumption in controls when compared to cases (p < 1 × 10−3) (Table 2), but both groups
were below the guideline values considered safe for health [19]. Salt intake was below
the reference value of 6 g/day (Table 2) and not significantly different between cases and
controls. The micronutrient intake showed that the median calcium intake was inadequate
and below the reference value of 1000 mg/day (Table 2) [19]. This was also true for vitamin
B9 (total folic acid) and vitamin B5 (pantothenic acid) [19]. Only vitamin D intake was
significantly different between cases and controls (p < 5 × 10−2) (Table 2), but intake was
within the recommendation (3–4 µg/day) of dietary vitamin D intake [19].
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Table 2. Characterization of energy adjusted macro- and micronutrient intake between the groups.

Cases (n = 223) Controls (n = 568) All Subjects (n = 791)

Protein total, E% 14.52 (13.04/15.89) 1 14.38 (12.96/15.79) 14.42 (12.98/15.85)
Essential amino acids, g/day 34.87 (28.48/41.37) 37.12 (33.60/41.43) 37.23 (33.65/41.29)

Arginine, g/day 4.17 (3.65/4.73) 4.09 (3.61/4.57) 4.11 (3.63/4.59)
Cysteine, g/day 1.01 (0.92/1.10) 0.99 (0.91/1.09) 1.00 (0.91/1.09)

Tyrosine, g/d 2.70 (2.41/2.93) 2.67 (2.41/2.96) 2.68 (2.41/2.95)
Methionine, g/d 1.60 (1.44/1.80) 1.61 (1.43/1.81) 1.61 (1.44/1.81)

Phenylalanine, g/d 3.18 (2.60/3.71) 3.31 (3.04/3.61) 3.33 (3.04/3.60)
Tryptophan, g/day 0.86 (0.77/0.94) 0.86 (0.78/0.94) 0.86 (0.77/0.94)

Fat total, E% 42.05 (37.74/45.25) 41.29 (37.42/44.55) 41.43 (37.60/44.82)
Saturated fatty acids, E% 36.86 (28.80/44.04) 37.74 (29.52/47.02) 37.22 (29.25/46.20)

Short-chain fatty acids, E% 0.81 (0.65/1.02) 0.86 (0.66/1.07) 0.84 (0.66/1.05)
Medium-chain fatty acids, g/d 0.76 (0.65/0.90) 0.80 (0.66/0.92) 0.79 (0.66/0.91)

Long-chain fatty acids, E% 37.57 (33.92/40.43) 36.79 (33.36/39.89) 36.90 (33.58/40.03)
Polyunsaturated fatty acids, E% 7.37 (5.93/8.47) * 7.04 (5.74/7.93) 6.86 (5.80/8.14)

Octadecadienoic acid/linoleic acid, (g/day) 14.28 (12.17/16.61) * 13.53 (11.54/15.74) 13.70 (11.70/16.02)
Octadecatrienoic acid/linolenic acid, (g/day) 1.95 (1.79/2.28) 1.93 (1.76/2.25) 1.93 (1.77/2.26)

Eicosatetraenoic acid/arachidonic acid,
(g/day) 0.18 (0.15/0.22) 0.18 (0.15/0.22) 0.18 (0.15/0.22)

Docosahexaenoic acid, (g/day) 0.18 (0.13/0.26) 0.20 (0.13/0.27) 0.19 (0.13/0.26)
Monounsaturated fatty acids, E% 14.38 (13.00/16.02) 14.37 (12.86/15.75) 14.38 (12.91/15.79)

Carbohydrate total, E% 42.99 (38.98/46.98) * 41.46 (38.37/45.78) 41.79 (38.55/46.08)
Monosaccharides, g/day 49.00 (37.77/62.00) 47.83 (35.91/59.79) 48.12 (36.50/60.34)

Fructose, g/day 26.33 (20.75/34.50) 25.47 (19.75/33.59) 25.63 (20.02/33.81)
Galactose, g/day 4.23 (4.05/4.57) 4.20 (4.05/4.46) 4.21 (4.06/4.50)
Glucose, g/day 21.85 (16.69/27.43) 21.46 (15.89/26.13) 21.57 (16.25/26.56)

Dietary fiber total, g/day 21.62 (18.91/26.47) 21.38 (18.67/25.22) 21.51 (18.75/25.55)
Soluble fiber, g/day 7.14 (6.03/8.47) 6.94 (5.99/8.14) 6.96 (6.00/8.21)

Insoluble fiber, g/day 14.67 (12.69/17.61) 14.33 (12.52/16.97) 14.47 (12.55/17.22)
Alcohol, E% 1.10 (0.42/2.80) * 2.56 (1.02/5.10) 2.18 (0.72/4.58)

Table salt, g/day 5.54 (4.93/6.08) 5.46 (4.97/5.99) 5.48 (4.96/6.03)
Calcium, mg/day 865.60 (749.60/1016.90) 852.30 (737.10/989.50) 857.50 (740.50/995.90)

Vitamin B1 (thiamine), mg/day 1.76 (1.61/1.86) 1.73 (1.61/1.85) 1.74 (1.61/1.85)
Vitamin B12 (cobalamin), µg/day 5.50 (4.40/6.40) 5.70 (4.50/6.70) 5.50 (4.40/6.70)
Vitamin B2 (riboflavin), mg/day 1.51 (1.32/1.69) 1.48 (1.33/1.67) 1.49 (1.33/1.68)

Vitamin B3 (niacin), mg/day 14.21 (12.13/16.75) 14.77 (12.46/17.19) 14.64 (12.33/17.00)
Vitamin B5 (pantothenic acid), mg/day 4.55 (3.79/5.45) 4.59 (3.81/5.63) 4.58 (3.80/5.54)

Vitamin B6 (pyridoxine), mg/day 1.55 (1.40/1.75) 1.56 (1.40/1.73) 1.55 (1.40/1.74)
Vitamin B7 (biotin), µg/day 45.20 (40.30/49.80) 44.70 (39.90/50.50) 44.90 (40.00/50.50)

Vitamin B9 (free folic acid equivalent), µg/day 110.30 (94.80/130.70) 112.20 (95.30/125.70) 110.80 (95.20/126.50)
Vitamin B9 (free folic acid), µg/day 87.60 (72.10/100.00) 84.60 (71.10/96.10) 84.30 (71.70/96.80)
Vitamin B9 (total folic acid), µg/day 275.00 (248.90/312.40) 276.20 (249.90/305.50) 276.00 (249.80/308.30)
Vitamin C (ascorbic acid), mg/day 123.37 (98.28/162.98) 118.09 (95.73/157.92) 119.25 (96.36/158.86)

Vitamin D (calciferols), µg/day 3.70 (2.70/4.90) * 4.40 (2.90/5.20) 3.90 (2.80/5.10)
Vitamin E (tocopherol equivalent), mg/day 14.08 (11.61/15.80) 13.69 (12.28/15.23) 13.80 (12.36/15.39)

Vitamin K (phylloquinone), µg/day 314.50 (274.90/357.00) 305.30 (271.60/337.90) 306.80 (271.90/342.50)
1 Median (25th and 75th percentiles); * statistical significance was tested using Mann–Whitney U test; (p < 5 × 10−2).
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5. Neurological Cases and Microbiome

In total, data on the microbiome analysis of 688 subjects were available. These were
223 cases and 465 controls. Disease subgroups were also used for microbiome analyses.

5.1. Core Measurable Microbiome (CMM)

A CMM of 186 operational taxonomic units (OTUs) was identified for controls and
149 OTUs for cases. Merging both groups resulted in 191 OTUs. The merged OTUs for
the subgroups accounted for 375 OTUs in total. The CMM was assignable to five phyla:
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia.

A Venn diagram (Figure S1) showed that there was an overlap of 144 OTUs of differ-
ential abundance in cases and controls. Cases presented 5 OTUs (mainly Proteobacteria)
that were solely observed in this group, whereas 42 OTUs were solely observed in healthy
controls (mainly Firmicutes).

We used hurdle models for further analysis of CMM differences between cases and
controls and for the identification of potential marker species. A basic model without
potential confounding variables showed that 51 OTUs were significantly (p < 5 × 10−2)
different between the cases and controls. The main phylum was Firmicutes (41 OTUs) and
the minor amounts were Bacteroidetes (6 OTUs) and Proteobacteria (4 OTUs). Cases showed
a decreased (p < 5 × 10−2) count in all OTUs except three OTUs of Proteobacteria (family:
Enterobacteriaceae). After adjustment for the number of OTUs (FDR correction) and potential
confounders (medication intake, smoking habits, alcohol, dietary fiber, docosahexaenoic
acid, vitamin B12, vitamin B3, vitamin D, BMI, age and sex), there were no longer significant
differences observed between cases and controls in OTUs, either in the count or in the
binomial part of the hurdle model.

Hurdle models were also analyzed in the subgroups. Models both without and with
potential confounders showed no significant differences between subgroups in OTUs,
either in the count or in the binomial part of the hurdle models.

5.2. Differences in Alpha Diversity between Neurological Cases and Healthy Controls

With respect to the alpha diversity measures, cases presented significantly lower
species richness (p = 1.2 × 10−8; Figure 1A), Shannon index (p = 9.1 × 10−7; Figure 1B) and
higher evenness (p = 6.3 × 10−8; Figure 1C), presenting a lower variation in abundances
between different taxa within the cases than controls.

Spearman correlation analyses showed that alpha diversity indices were correlated
to potential confounders (Figure 2). These confounders were subsequently included in
logistic regression models to evaluate their impact on the observed significant differences
in alpha diversity between cases and controls.

Species richness, Shannon index and evenness remained significantly different be-
tween cases and controls (p = 1.95 × 10−4; p = 1.81 × 10−3 and p = 1.47 × 10−4) even after
using an ANOVA with potential confounders (medication intake, smoking habits, alcohol,
dietary fiber, docosahexaenoic acid, vitamin B12, vitamin B3, vitamin D, BMI, age and sex).
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Wilcoxon test; p < 5 × 10−2).
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10−6; Figure 3C). When compared to the reference group (= control), CP showed signifi-
cantly lower species richness (p = 7.3 × 10−8; Figure 3A), Shannon index (p = 7.5 × 10−6; Figure 
3B) and a higher evenness (p = 3.1 × 10−7; Figure 3C). Species richness, Shannon index and 
evenness remained significantly different between subgroups (p = 8.59 × 10−4; p = 1.25 × 
10−3 and p = 2.04 × 10−5) after using an ANOVA with potential confounders (medication 
intake, smoking habits, alcohol, dietary fiber, docosahexaenoic acid, vitamin B12, vitamin 
B3, vitamin D, BMI, age and sex). 

Figure 2. Spearman correlations between alpha diversity indices, phenotype, health and nutrition
data of all subjects (* p < 5 × 10−2, ** p <1 × 10−2 and *** p < 1 × 10−3). Continuous variables:
species richness (SpecRich), evenness, Shannon index (Shannon), age (in years), BMI (in kg/m2),
fiber (g/day), docosahexaenoic acid (DHA, g/day), vitamin B12 (VB12, µg/day), vitamin B3 (VB3,
mg/day), vitamin D (VD, µg/day) and alcohol (as percentage of energy) and categorial variables:
medication (intake: no (2)/yes (1)) and smoking habits (never (1), <3month (2), former (3) and current
(4)) and sex (men (1)/women (2)).

5.3. Differences in Alpha Diversity between Neurological Subgroups and Healthy Controls

Alpha diversity in subgroups was overall significantly different in species rich-
ness (p = 1.7 × 10−7; Figure 3A), Shannon index (p = 1.5 × 10−5; Figure 3B) and even-
ness (p = 3.6 × 10−6; Figure 3C). When compared to the reference group (=control), CP
showed significantly lower species richness (p = 7.3 × 10−8; Figure 3A), Shannon index
(p = 7.5 × 10−6; Figure 3B) and a higher evenness (p = 3.1 × 10−7; Figure 3C). Species
richness, Shannon index and evenness remained significantly different between subgroups
(p = 8.59 × 10−4; p = 1.25 × 10−3 and p = 2.04 × 10−5) after using an ANOVA with potential
confounders (medication intake, smoking habits, alcohol, dietary fiber, docosahexaenoic
acid, vitamin B12, vitamin B3, vitamin D, BMI, age and sex).
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(reference group = control); p < 5 × 10−2). SNA: structural neurological abnormalities; FNA: functional 
neurological abnormalities; CP: chronic pain and others (= these probands gave information on the 

Figure 3. Alpha diversity and evenness differences between neurological subgroups and controls
displayed through three indices (A) species richness, (B) Shannon index and (C) evenness (Pilou);
(spot = outlier, overall and pairwise significance was tested by Kruskal–Wallis and Wilcoxon test (ref-
erence group = control); p < 5 × 10−2). SNA: structural neurological abnormalities; FNA: functional
neurological abnormalities; CP: chronic pain and others (= these probands gave information on the
presence of neurological symptoms for which the diagnostic work-up was not completed at the time
of answering the FoCus questionnaire).
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5.4. Difference in Beta Diversity between the Neurological Cases, their Subgroups and
Healthy Controls

Figure 4 visualizes the beta diversity based on principal coordinate analysis (PCoA).
Dissimilarity matrices were calculated for abundance of OTUs according to Bray–Curtis and
for presence/absence of OTUs according to Jaccard. To establish significance of differences
between the groups, a permutation analysis of variance (PerMANOVA) was performed.
The analyses according to Bray–Curtis showed a significant difference in beta diversity
between cases and controls (p = 9.99 × 10−4; r2 = 0.55%; Figure 4A) as well as for Jaccard
(p = 9.99 × 10−4; r2 = 1.61%; Figure 4B). Using the neurological subgroups, Bray–Curtis
and Jaccard analyses showed a significant difference in beta diversity between subgroups
(p = 9.99 × 10−4; r2 = 1.05%; Figure 4C and p = 9.99 × 10−4; r2 = 2.25%; Figure 4D).
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Figure 4. Differences between controls and cases in principal coordinate analysis (PCoA) without confounding factors in
(A) Bray-Curtis and (B) Jaccard beta diversity and between neurological subgroups in (C) Bray–Curtis and (D) Jaccard
beta diversity (permutation analysis of variance (PerMANOVA); all were significantly different with p < 5 × 10−2). SNA:
structural neurological abnormalities; FNA: functional neurological abnormalities; CP: chronic pain and others (=these
probands gave information on the presence of neurological symptoms for which the diagnostic work-up was not completed
at the time of answering the FoCus questionnaire).
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In addition, the beta diversity of the intestinal microbiome was adjusted for different
confounders by constrained ordination analysis. Differences in beta diversity between
cases and controls were calculated and adjusted for medication intake, smoking habits,
alcohol, dietary fiber, docosahexaenoic acid, vitamin B12, vitamin B3, vitamin D, BMI, age
and sex and group membership (cases/controls and respective subgroups). Bray–Curtis
and Jaccard both showed significant differences in adjusted beta diversity between cases
and controls as well as subgroups (see Tables 3 and 4).

Table 3. Bray–Curtis and Jaccard adjusted beta diversity between the neurological cases and healthy controls.

Bray–Curtis Jaccard

R2 p-Value Significance R2 p-Value Significance

Medication regularly 4.04 × 10−3 9.99 × 10−4 *** 6.74 × 10−3 9.99 × 10−4 ***
Smoking habits 3.26 × 10−3 9.99 × 10−4 *** 3.77 × 10−3 9.99 × 10−4 ***

Alcohol 1.78 × 10−3 1.47 × 10−1 - 1.96 × 10−3 1.28 × 10−1 -
Dietary fiber 3.44 × 10−3 9.99 × 10−4 *** 3.35 × 10−3 2.99 × 10−3 **

Docosahexaenoic acid 2.12 × 10−3 3.10 × 10−2 * 2.20 × 10−3 8.19 × 10−2 -
Vitamin B12 2.57 × 10−3 9.99 × 10−4 *** 2.77 × 10−3 1.19 × 10−2 *
Vitamin B3 2.06 × 10−3 3.99 × 10−2 * 2.12 × 10−3 1.08 × 10−1 -
Vitamin D 1.69 × 10−3 2.01 × 10−1 - 1.79 × 10−3 2.00 × 10−1 -

BMI 4.13 × 10−3 9.99 × 10−4 *** 4.61 × 10−3 9.99 × 10−4 ***
Age 4.10 × 10−3 9.99 × 10−4 *** 4.99 × 10−3 9.99 × 10−4 ***
Sex 2.63 × 10−3 2.99 × 10−3 ** 2.42 × 10−3 3.40 × 10−2 *

Group membership 3.31 × 10−3 9.99 × 10−4 *** 1.03 × 10−2 9.99 × 10−4 ***

Statistical significance was tested using permutation analysis of variance (PerMANOVA); (* p < 5 × 10−2, ** p < 1 × 10−2 and
*** p < 1 × 10−3).

Table 4. Bray–Curtis and Jaccard adjusted beta diversity between the neurological subgroups and healthy controls.

Bray–Curtis Jaccard

R2 p-Value Significance R2 p-Value Significance

Medication regularly 3.95 × 10−3 9.99 × 10−4 *** 5.99 × 10−3 9.99 × 10−4 ***
Smoking habits 3.26 × 10−3 9.99 × 10−4 *** 3.69 × 10−3 9.99 × 10−4 ***

Alcohol 1.76 × 10−3 1.64 × 10−1 - 1.82 × 10−3 1.99 × 10−1 -
Dietary fiber 3.65 × 10−3 9.99 × 10−4 *** 3.67 × 10−3 1.99 × 10−3 **

Docosahexaenoic acid 2.10 × 10−3 2.99 × 10−2 * 2.29 × 10−3 5.39 × 10−2

Vitamin B12 2.56 × 10−3 3.99 × 10−3 ** 2.67 × 10−3 2.49 × 10−2 *
Vitamin B3 2.16 × 10−3 2.59 × 10−2 * 2.37 × 10−3 3.49 × 10−2 *
Vitamin D 1.69 × 10−3 2.16 × 10−1 - 1.74 × 10−3 2.32 × 10−1 -

BMI 4.29 × 10−3 9.99 × 10−4 *** 4.79 × 10−3 9.99 × 10−4 ***
Age 4.07 × 10−3 9.99 × 10−4 *** 4.92 × 10−3 9.99 × 10−4 ***
Sex 2.77 × 10−3 1.99 × 10−3 ** 2.52 × 10−3 3.29 × 10−2 *

Group membership 8.09 × 10−3 9.99 × 10−4 *** 1.71 × 10−2 9.99 × 10−4 ***

Statistical significance was tested using permutation analysis of variance (PerMANOVA); (* p < 5 × 10−2, ** p < 1 × 10−2 and
*** p < 1 × 10−3).

5.5. Prediction of Functional Profiles

The Linear discriminant analysis Effect Size (LEfSe) algorithm, emphasizing both
statistical and biological relevance, was used for biomarker discovery of functional profiles.
The following results of the functional pathway analysis as assessed by LEfSe were based
on 16S rRNA sequencing; thus, the results should be understood as predictive results.
According to LEfSe analysis, more than 2/3 of the functional profiles were associated with
metabolism in general and genetic information processing (Figure 5A). The linear discrimi-
nant analysis (LDA) effect size method was applied to compare functional profiles between
controls (dark grey) and cases (light grey). The bar plot lists the significantly differential
metabolic pathways based on effect size (LDA score (log 10) of 3). Enriched profiles in
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controls (negative LDA score) included translation, metabolism of cofactors and vitamins,
methane metabolism, energy metabolism as well as genetic information processing. The
enriched profiles in cases (positive LDA score) were environmental information processing,
signal transduction, two component system and membrane transport. The results of the
LDA scores are presented in Figure 5B.
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Figure 5. Results of the relative abundance (in %) of level 1 (A) functional pathways and (B) linear discriminant analysis
(LDA) effect size (LEfSe) plot of functional pathways identified in the gut microbiomes of cases and controls. The threshold
for the logarithmic discriminant analysis (LDA) score was 3 (p < 5 × 10−2). Figures and calculations were assessed by the
“microeco” package (version 0.4.0) with the “Tax4Fun” package included in RStudio (version 0.3.1).

The LDA effect size method was also applied to compare functional profiles between
subgroups. SNA was the only subgroup that showed significantly differential metabolic
pathways based on effect size (LDA score (log 10) of 3), which were different from controls.
Enriched profiles in SNA were lipid metabolism, infectious diseases, human diseases,
carbohydrate metabolism, ABC transporter, membrane transport, two component system,
signal transduction and environmental information processing (Figure S2).

5.6. Calculation of the Risk to Develop Neurological Diseases

A binomial logistic regression was performed to determine the effect of medication
intake, smoking habits, alcohol, dietary fiber, docosahexaenoic acid, vitamin B12, vitamin
B3, vitamin D, BMI, age and sex and Shannon index as a marker of alpha diversity and
richness to predict the likelihood of contracting neurological diseases. All variables were
included in a multivariate logistic regression model, and the following variables contributed
significantly as shown by Forest plot (Figure 6) in predicting neurological diseases. Vitamin
D and vitamin B12 were excluded from this Forest plot due to extreme odds ratios and
corresponding confidence intervals. The following variables entered the multivariate
model: Shannon index (p = 8 × 10−3), obese BMI subgroups (OBI: p = 2 × 10−3; OBII:
p = 4 × 10−3 and OBIII: p = 1 × 10−2), medication intake (p = 1 × 10−3) and increased
units of alcohol consumption (p = 3 × 10−3). Shannon index had a beneficial effect and
reduced the relative risk to develop a neurological disease by −41.0% as well as alcohol
consumption (−28.0%), whereas obesity (2.14- to 2.99-fold higher risk) and medication
intake (3.5-fold higher risk), as a marker for presence of non-neurological diseases, had
unbeneficial effects.
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Figure 6. Forest plot showing the odds ratios with corresponding 95% confidence interval and p-values of variables used
in a multivariate regression model. Twelve variables were included in the calculation, but vitamin D and vitamin B12
were excluded from this Forest plot due to their extreme odds ratios and corresponding confidence intervals. Reference
category was the healthy control group. Figure and calculations were assessed by the “finalfit” package (version 1.0.2) for R
in RStudio (version 1.3.1093) with p < 5 × 10−2. NW: normal weight (BMI 18.50 to 24.99 kg/m2); OW: overweight (BMI
25.00 to 29.99 kg/m2); OBI: obesity class I (BMI 30.00 to 34.99 kg/m2); OBII: obesity class II (BMI 35.00 to 39.99 kg/m2);
OBIII: obesity class III (BMI ≥ 40.00 kg/m2). Reference category was at all times the first category of the corresponding
categorical variable.

6. Discussion

The present study aimed to identify common nutritional and microbiome signatures
in structural and functional neurological abnormalities as well as chronic pain in order
to develop future targeted preventive strategies. By detailed examination of macro- and
micro-nutritional intake as well as 16S rRNA gut microbiome sequencing in a cohort of
238 cases with different neurological abnormalities and 612 controls, we found that (1) BMI,
(2) dietary alcohol consumption and (3) gut microbiome species richness and diversity are
the most relevant lifestyle modifiable factors contributing to the risk for the development
of structural and functional neurological abnormalities. In addition, age was identified
as the most, but not significantly important, non-modifiable factor. During the following
discussion, a wide range of references will be based on results in PD and AD patients due to
the fact that for migraine or epilepsy patients, the database-entered studies in these patients’
groups are very rare in comparison to PD or AD (https://pubmed.ncbi.nlm.nih.gov/
(accessed on 19 July 2021)).

https://pubmed.ncbi.nlm.nih.gov/
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Of interest in our cohort, we found that the average BMI was higher in the cases than
in the healthy controls, which was unexpected because particularly in PD patients, a higher
risk of developing malnutrition is reported even in early stages of the disease. On the
other hand, obesity may also be promoted due to immobility and reduced total energy
expenditure in neurological diseases. Patients with neurological abnormalities such as
PD, epilepsy or restless leg syndrome also suffer more frequently from sleep disorders,
which are known to promote weight gain and loss of fat-free mass [39]. Furthermore, in
addition to BMI, our neurological cases were characterized by significantly higher levels of
glucose, fasting insulin and HOMA levels, indicating insulin resistance. In that respect, it is
important to mention that patients with PD [40] or epilepsy often suffer from undiagnosed
insulin resistance or show a higher risk of developing type 2 diabetes [41], and that obese
subjects were affected by PD twice as often as those with normal weight [40], fitting with
our results.

In the present analysis, the cases with neurological abnormalities were also character-
ized by higher CRP, IL-6 levels and lipoprotein-a levels compared to the healthy control
group. Neuropathological and neuroradiological studies suggest that a common cause of
many neurological diseases is thought to be neuroinflammation of the brain [42]. Infections,
trauma, and/or toxins from food can promote neuroinflammatory processes. This activates
immune cells such as microglia. As a result, cytokines and chemokines such as IL-1β, IL-6
and TNF-α are released [43].

Patients with neurological diseases such as PD or migraine often suffer from abdomi-
nal discomfort. Conversely, in a case–control study, the prevalence of headache was higher
in patients with inflammatory bowel disease when compared to controls (46% vs. 7%), and
another study from Brazil showed that headache was the most common neurologic mani-
festation in IBD patients with inflammatory bowel disease [44,45]. Unger et al. reported
that a reduced number of short-chain fatty acids (SCFAs) and an altered composition of the
intestinal microbiome in stool samples from PD patients were detectable [46]. A random-
ized study showed that the Mediterranean diet had a particularly positive effect on the
diversity of microbes producing SCFAs [47]. A high-fiber diet based on the Mediterranean
diet can thus positively influence the number of microbes and the production of SCFAs,
thereby reducing abdominal discomfort. In that respect, it should be mentioned that dietary
fiber intake was below the recommendation of 30 g/day in our cohort, with no difference
between cases and controls. Hence, low fiber intake, by promoting abdominal discomfort,
might negatively affect the course of the disease in PD but is unlikely to be causative.

It is important to note that gut microbiota composition plays a major role in the
gut–brain axis and is related to two mechanisms: indirect signaling and direct connection
with the vagus nerve. Dysbiosis of the microbiome could alter the protective functions of
the blood–brain barrier [48,49]. Thus, the composition of the intestinal microbiome was
compared on the basis of fecal samples obtained from cases with neurological disease and
healthy controls. In terms of alpha diversity, cases showed a lower Shannon index, as well
as a reduced species richness, compared to controls. There were also differences between
cases and controls in terms of beta diversity even when adjusted for different potential
confounders, such as BMI. In a study using similar methods, independent researchers
investigated to what extent the intestinal microbiome differed between PD patients and
a healthy control group in northeastern China [50]. PD patients showed reduced species
richness and beta diversity, as well as reduced abundance of several taxa, compared to
the healthy control group [50], comparable to what we found in the present study. It has
to be mentioned that another study by Li et al. [51] showed a tendency of higher Chao1
and Shannon index in the group with PD compared to the healthy control group, which is
in contrast to our study. However, the study by Li et al. [51] was only related to PD and
not to different neurological diseases. Because we aimed to identify common factors in
nutrition and microbiome related to neurological abnormalities, we did not focus only on
PD, which might explain the different findings. Mainly predictive results of functional
analyses showed that cases with neurological abnormalities could be discriminated by



Nutrients 2021, 13, 3743 18 of 21

four functional pathways from healthy controls. These pathways included, e.g., adenosine
triphosphate (ATP)-binding cassette (ABC) transporters, phosphoenolpyruvate (PEP)-
dependent phosphotransferase system (PTS) or different signaling pathways, e.g., nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB), wingless/integrase 1 (wnt)
or vascular endothelial growth factor (VEGF) signaling. Adenosine, for example, plays a
role in different functions throughout the brain, e.g., metabolism, cell signaling, neuronal
signaling and inflammation [52], and it is also involved in migraine [53]. The signaling
pathways are all known to be involved in neurological diseases, especially in migraine.
NF-κB, for example, is a main player in regulating nerve function [54], and furthermore,
the inflammatory NF-κB pathway is known to interact with wnt signaling [55], whereas
VEGF is an important proinflammatory mediator, and an inhibition of signaling led to pain
decrease [56]. Migraine is one of the most prevalent neurological diseases, and VEGF, for
example, stimulates nitric oxide synthase and therefore increases nitric oxide levels [57].
Thus, the observed predictive functional pathways are in line with previous findings.

While in our study we were able to identify nutritional and microbiome factors
as potential indicators for neurological abnormalities, our study has some limitations to
consider. The EPIC 12-month FFQ used is suitable due to its high compliance and computer
readability, especially for the survey of larger samples, as in our FoCus study. However,
its use is also associated with limitations. For correct answering, a very good memory
of the subjects is necessary. Furthermore, the response behavior is influenced by dietary
habits and social trends. It cannot be excluded that under- and overreporting of food
has occurred [58]. In addition, baseline data were obtained from the subjects by means
of self-completed questionnaires on lifestyle and medical issues. The data are based on
self-reporting by the subjects and may therefore be subject to inaccuracy.

In summary, the results of our multivariate binomial logistic regression indicate
that especially obesity associated with insulin resistance and metabolic inflammation is
related to structural and functional neurological abnormalities as well as chronic pain.
We observed an obesity-driven higher risk to develop neurological abnormalities, e.g.,
a higher BMI increased the relative risk up to 2.99-fold. This is in line with findings
that obesity adversely affects the central nervous system and, in particular, cognitive
function. Meta-analyses have shown a strong relationship between obesity and neurological
diseases [59]. There is also evidence that obesity doubles the risk of Alzheimer’s disease
in comparison to normal-weight subjects, and that obesity in midlife predicts greater risk
of dementia in future [35,59–62]. Alcohol consumption showed a beneficial effect in our
logistic regression model. This fits the widely accepted theory that light-to-moderate
alcohol intake is beneficial, while excessive drinking increases the risk of dementia [63,64].
On the other hand, one should keep in mind that a low alcohol consumption in subjects
with neurological diseases could be more the consequence than the cause of neurological
diseases. In our study population, 17.2% showed risky alcohol intake.

In conclusion, our data suggest that an overall healthy lifestyle might be more impor-
tant in respect to developing preventive neurological strategies compared to single dietary
compounds, e.g., PUFA. In addition, the observed differences in alpha and beta diversity
showed that the gut microbiome might be used as a future preventive target through nondi-
gestible food components (prebiotics) and the supplementation of bacteria (probiotics).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13113743/s1, Figure S1: Venn diagram of OTU occurrence in cases and controls (overlap of
144 OTUs, 5 OTUs (mainly Proteobacteria) and 42 OTUs (mainly Firmicutes) only observed in cases
and controls). Figure S2: Linear discriminant analysis (LDA) effect size (LEfSe) plot of functional
pathways identified in the gut microbiome of subgroups and controls. The threshold for the LDA
score was 3 (p < 5 × 10−2). Figures and calculations were assessed by the “microeco” package
(version 0.4.0) with the “Tax4Fun” package included in RStudio (version 0.3.1). SNA: structural
neurological abnormalities. Table S1: Supplemental characterization of energy adjusted macro- and
micronutrient intake between the groups.
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