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Developing climbing robots for smooth vertical surfaces (e.g., glass) is one of the most
challenging problems in robotics. Here, the adequate functioning of an adhesive foot is an
essential factor for successful locomotion performance. Among the various technologies
(such as dry adhesion, wet adhesion, magnetic adhesion, and pneumatic adhesion), bio-
inspired dry adhesion has been actively studied and successfully applied to climbing
robots. Thus, this review focuses on the characteristics of two different types of foot
microstructures, namely spatula-shaped and mushroom-shaped, capable of generating
such adhesion. These are the most used types of foot microstructures in climbing robots
for smooth vertical surfaces. Moreover, this review shows that the spatula-shaped feet are
particularly suitable for massive and one-directional climbing robots, whereas mushroom-
shaped feet are primarily suitable for light and all-directional climbing robots.
Consequently, this study can guide roboticists in selecting the right adhesive foot to
achieve the best climbing ability for future robot developments.

Keywords: bio-inspired climbing robots, smooth vertical surfaces, adhesive foot, spatula-shaped, mushroom-
shaped

1 INTRODUCTION

Bio-inspired climbing robots have been widely studied over the past 10 years. [Daltorio et al. (2005);
Unver et al. (2005); Daltorio et al. (2006); Daltorio et al. (2007a); Daltorio et al. (2007b); Santos et al.
(2008); Sameoto et al. (2008); Menon et al. (2008); Daltorio et al. (2008); Wile et al. (2008b); Wile et al.
(2008a); Daltorio et al. (2009); Li et al. (2012); Seitz et al. (2014); Tavakoli and Viegas (2015); Elbadawi
et al. (2018); Schiller et al. (2019); Srisuchinnawong et al. (2019)]. An essential factor for climbing robots is
adhesion [Silva et al. (2008)], a fundamental phenomenon in nature. Some animals can walk or climb
vertical terrains and ceilings using adhesive feet, such as ladybugs, flies, spiders, and geckos. Biological
adhesion can be classified into two types: wet and dry. Insects produce a liquid secretion from their feet to
adhere to a substrate [Peisker and Gorb (2012); Kovalev et al. (2013); Peisker et al. (2014); Gilet et al.
(2018)]. Gastropods adhere to a surface by generating a thin layer of pedal mucus on surfaces [Denny
(1980a); Denny (1980b); Denny (1981)]. Harvestmen use viscoelastic fluids to capture small arthropods
such as springtails [Wolff et al. (2014);Wolff et al. (2016)]. In particular, the viscoelastic fluids provide wet
adhesion. By contrast, the dry adhesion in spiders and geckos is achieved by deformable setae with
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substrates, which generates an intermolecular adhesion force
between the setae and surfaces [Arzt et al. (2003); Tian et al.
(2006); Bhushan (2008); Autumn et al. (2014)]. In addition to
deformable setae, Autumn et al. (2002) demonstrated that van
der Waals forces are also responsible for the dry adhesion of
gecko setae. The pads of beetles and flies are divided into setae
with flat tips that resemble mushroom shapes or spatulate shapes.
The pads of geckos and spiders consist of lamellae, subdivided into
setae branches. Furthermore, the terminal element branches are
widened and flattened at the tip, making them look like spatula
shapes [Peressadko andGorb (2004);Wolff andGorb (2012a);Wolff
and Gorb (2012b); Wolff and Gorb (2012c); Autumn et al. (2014);
Wohlfart et al. (2014);Wolff andGorb (2015); Frost et al. (2018)]. As
the body of the animal increases, the terminal elements of the hairy
attachment pads increase in number and density [Arzt et al. (2003);
Figure 1]. This allows a more significant number of setae to touch
the surface and create a substantial real area of contact. In other
words, the real contact area and adhesion strength increase when the
dimensions of the terminal elements decrease and their density
increase.

Recently, several types of artificial adhesive feet have been
developed based on bio-inspiration studies, such as mechanical
adhesion (gripping), pneumatic adhesion (suction cups), magnetic
adhesion (permanent magnet), and dry adhesion (elastomer
adhesive) [Daltorio et al. (2006); Kim et al. (2008); Hu et al.
(2009); Seitz et al. (2014); Hawkes et al. (2015); Xu et al. (2016);
Jiang and Xu (2018)]; Elbadawi et al. (2018); Chattopadhyay and
Ghoshal (2018). In particular, bio-inspired dry adhesion has been
actively studied and applied to climbing robots on smooth vertical
surfaces. Therefore, in this review, we focus on bio-inspired adhesive
feet for such surfaces. In this regard, two different widely used types
of adhesive feet exist spatula-shaped feet (Kim et al. (2008)) and
mushroom-shaped feet [Peressadko and Gorb (2004); Daltorio et al.
(2006)], both approaches are synthetic reversible adhesive tapes.
Each method has advantages and disadvantages depending on the
robot’s mass, climbing direction, attachment, detachment, and
reusability. A review of current approaches of these two types of

adhesives could guide future improvement of robots climbing up
smooth vertical surfaces.

2 BIO-INSPIRED ADHESIVE FEET ON
CLIMBING ROBOTS

Synthetic adhesive feet inspired by animals are suitable for
climbing robots. Using adhesive feet, robots can walk on steep

FIGURE 1 | Terminal elements of the hairy attachment pads of a beetle,
fly, spider, and gecko. The heavier animals show finer spatula structures
[courtesy of Nate Abbott for the image of the gecko and modified from Arzt
et al. (2003) for images fo the spatula-like terminal elements].

FIGURE 2 | (A) The comparison of shear forces between each spatula
size of the carbon-nanotube-based synthetic gecko tapes, natural gecko foot,
StickyBot I, and the 9 g climber in a 0.16 cm2 area [Ge et al. (2007); Santos
et al. (2008); Hawkes et al. (2015)] (B) Characteristics of adhesive
materials with spatula-shaped and mushroom-shaped microstructures.
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slopes and vertical surfaces (Figure 2). These surfaces determine
the adhesion technologies for the feet, such as magnetic adhesion
on ferromagnetic surfaces, mechanical gripping on trees/pipes,
and suction/dry adhesion on glass [Chattopadhyay and Ghoshal
(2018)]. Spatula-shaped and mushroom-shaped feet are most
commonly used in climbing robots, e.g., StickyBot [Santos et al.
(2008)], StickyBot I; [Kim et al. (2008)], StickyBot III [Hawkes
et al. (2011)], Geckobot [Unver et al. (2005)], Gecko-Inspired Soft
Robot [Schiller et al. (2019)], Abigaille I [Menon et al. (2008)],
Abigaille II [Li et al. (2012)], Tailless Gecko Robot
[Srisuchinnawong et al. (2019)], 9 g climber [Hawkes et al.
(2015)], Mini-WhegsTM7 [Daltorio et al. (2006)], Waalbot II
[Murphy et al. (2011)], Wall and Ceiling Climbing Quadruped
Robot [Ko et al. (2017)], and Gecko-Inspired Climbing Robot
[Shao et al. (2020)]. Thus, this review mainly focuses on bio-
inspired adhesive feet for smooth vertical surfaces such as glass.

2.1 Spatula-Shaped
A synthetic dry adhesive inspired by geckoes, directional polymer
stalks (DPSs), was designed and manufactured to create a
directional adhesive similar to that in gecko feet. DPSs are
made from polyurethane (Innovative Polymers, IE-20 AH
polyurethane, 20 Shore-A hardness, E ≈ 300 kPa). DPSs
comprise an array of micro-spatula-shaped polymer features
[Kim et al. (2008); Figure 2B]. The spatula-shaped feet are
soft materials that are marginally sticky. Moreover, geometric
properties were determined empirically, drawing considering the
shapes of gecko setae. Moreover, the DPSs make contact without
a high normal preload. The sharp and thin tip shape of the DPS is
designed to create a softer sufficient stiffness when pulled parallel
to the terrains [Kim et al. (2008)]. The adhesion disappears by
pushing or lifting against the shear force. The adhesion force
depends on the polymer type, adequate direction, and size of the
spatulas. If we consider the spatula size in these robots, Stickybot I
have a larger size (380 μm) than the 9 g climber (100 μm) [Kim
et al. (2008); Hawkes et al. (2015)]. Stickybot I could not lift over
100% of its body weight [Hawkes et al. (2015)] while, the 9 g
climber could climb up a smooth vertical surface while hoisting
1000% of its body weight [Hawkes et al. (2015)]. In contrast to the
aforementioned robot spatula-shaped foot, the natural gecko foot
has about half a million setae, each of which contains hundreds to
thousands of spatulas. The spatulas have an average diameter of
200 nm and an estimated adhesion force of 0.4 μN[(Autumn et al.
(2000); Persson and Gorb (2003); Ge et al. (2007)]. Carbon-
nanotube-based synthetic gecko tapes consist of thousands of
synthetic spatulas with an average diameter of approximately
8 nmwhich can generate strong adhesion forces. They can adhere
more than a natural gecko foot nearly ten times (∼ 100 Ncm−2)
[Ge et al. (2007); Qu et al. (2008); Schaber et al. (2015)]. We
observe that a smaller size of the spatulas allows for a higher
adhesion, as shown in Figure 2A. Furthermore, the feet can be
reconditioned by cleaning with soap and water [Kim et al.
(2008)]. Therefore, they can be continuously used several times.

2.2 Mushroom-Shaped
The mushroom-shaped adhesive microstructure (MSAMS)—
inspired by the attachment systems of beetles from the family

Chrysomelidae—was made from polyvinyl siloxane (PVS)
with a hexagonal patterning height of approximately
100 μm and a base diameter of 60 μm. The adhesive covers
almost half of the contact area of the material [Gorb S. et al.
(2007); Figure 2B]. The MSAMS makes contact with the
preload along the normal force axis and can be detached
by the peeling technique at some angles [Shao et al. (2020)].
The adhesion of MSAMS has approximately twice the pull-off
force of surface without MSAMS (flat surface) made from the
same material, while both were independent of the preload.
The MSAMS has more repeatability than flat specimen in the
peel strength [Gorb S. et al. (2007)]. A demonstration of its
potential showed that a 20 cm × 20 cm tape supported a
weight of approximately 70 kg [Heepe et al. (2012)]. The
MSAMS also provides adhesion underwater [Heepe et al.
(2012); Heepe and Gorb (2014); Ko et al. (2017)] and has
no directional adhesion [Murphy et al. (2011); Seibel et al.,
2020)]; therefore, it is one of the most used methods for
smooth vertical surface climbing robots. Furthermore, the
tape can be reconditioned by cleaning with soap and water
[Gorb S. N. et al. (2007)]. Therefore, it can be continuously
used multiple times.

3 DISCUSSION

Spatula- and mushroom-shaped microstructures can be used
on both even and uneven, clean surfaces because of their
flexibility [Kim et al. (2008); Gorb S. et al. (2007)]. The
attachment system of spatula-shaped feet is very simple.
They require only shear force to attach to surfaces [Hawkes
et al. (2015)]. By contrast, mushroom-shaped feet require a
slight initial normal force to attach to surfaces [Kim et al.
(2008); Shao et al. (2020)]. The detachment mechanism of the
spatula-shaped microstructure is also straightforward. The
adhesion force disappears when the feet are pushed or lifted
against the shear force. The system in mushroom-shaped feet
is more complicated than the spatula-shaped. The former
requires a specific peeling angle for detachment [Shao et al.
(2020)].

Furthermore, the climbing direction of the spatula-
shaped feet is limited to one-directional adhesion;
therefore, robots can climb up to 90 and 110° depending
on the foot orientation [Santos et al. (2008)]. In contrast,
mushroom-shaped feet provide all-directional adhesion;
hence, robots can climb on the ceiling [Murphy et al.
(2011); Ko et al. (2017)]. The reusability of the spatula-
shaped feet is impressive. Some Stickybot feet with a spatula-
shaped structure have been continuously used for over
6 months without significant performance loss [Kim et al.
(2008)]. In addition, cleaning the feet with soap and water
before use can recondition the adhesion ability [Kim et al.
(2008)]. However, mushroom-shaped feet are relatively less
reusable. The detachment system damages the structure
from time to time [Gorb S. et al. (2007)]. However,
cleaning the feet before use could also recondition the
adhesion ability (Figure 2B).
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4 CONCLUSION

Both spatula-shaped feet and mushroom-shaped feet have
advantages and disadvantages. The substrate surface, robot
mass, climbing direction, adhesion force, and reusability are
the primary factors to consider when choosing adequate feet.
Spatula-shaped feet are suitable for heavy climbing robots as they
provide an adhesion force on a shear force axis. In contrast,
mushroom-shaped feet provide an adhesion force on the normal
force axis. For instance, the 9 g climber could climb while hoisting
1 kg up on a smooth vertical surface [Hawkes et al. (2015)], while
the maximum slope climbing angle of the tailless gecko robot
(500 g) was 70° [Srisuchinnawong et al. (2019)]. Moreover, the
mushroom-shaped feet could climb in all directions because the
foot structure provides all-directional adhesion [Murphy et al.
(2011); Li et al. (2012)]. However, spatula-shaped feet provide
only one direction of adhesion. If robots intend to adhere to
overhanging surfaces or ceilings, they should have the ability to
change their foot orientation [Santos et al. (2008)]. Finally,
reusability is also essential. In this regard, spatula-shaped feet

have apparently higher reusability [Gorb S. et al. (2007); Kim et al.
(2008)]. However, cleaning the feet before use can restore the
adhesion ability of both types of microstructure.
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