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Abstract 

Lack of information on innovative agricultural technologies continue to be a major constrain and 

the jinx to low technology adoption among smallholder farmers in developing countries, in 

particular SSA. The low technology adoption among farmers has been identified as one of the root 

causes of low productivity and consequently, inadequate food supply to feed the growing 

population, as well as high incidence of poverty in the developing countries. The lack of 

information is attributed to weakened and ineffective extension services, due to resource 

constraints to employ and equip extension agents to serve the needs of the widely dispersed 

smallholder farmers, who constitute majority of the farming population of the developing countries. 

The emergence of new communication channels such as ICTs offer some prospects to boost 

agricultural extension delivery and lower the barriers to information diffusion among farmers. 

However, not much is known about the impact of the new communication channels on food 

production and welfare via its role in improving farmers’ technology adoption. Much of the 

empirical literature on ICTs’ information diffusion potential tend to focus on impact outcomes such 

as market prices, searching behavior, weather information, crop planning, and transaction costs, 

with very little attention on yields, net returns and knowledge improvement. This study contributes 

to literature by employing the robust copula recursive bivariate probit and mixed-copula 

endogenous switching regression models, to examine the impact of participation in ICT-based 

extension channels on improved technology adoption, specifically the new Rhizobia inoculant 

technology,  and its impact on farmers’ technical knowledge, yields and farm net returns. 

Moreover, adoption of improved technologies is central to productivity enhancement and poverty 

reduction, yet low technology adoption persist among poor smallholder farmers in developing 

countries, which has puzzled researchers and policymakers for decades. This has been attributed 

to lack of understanding about the adoption decision-making behavior of smallholder farmers, 
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leading to inability of policymakers to develop appropriate extension policies that can enhance 

technology adoption. For far too long, empirical researchers have modelled farmers’ technology 

adoption decisions as a binary decision problem. Consequently, important information on farmers’ 

adoption behavior relevant to policy formulation is lost and their adoption decision is misconstrued. 

This study contributes to knowledge on technology adoption by employing a dynamic treatment 

effect model to analyze farmers’ adoption decision-making as a dynamic process, one that 

comprises a series of multiple decisions made over several stages or periods. Thus, bringing out 

the heterogeneities across different population of farmers and returns to technology adoption at 

each adoption stage that can inform appropriate tailor-made extension policies to facilitate 

technology adoption. 

Furthermore, another important issue that compounds the lack of understanding of the farmers’ 

adoption decision-making and the inability to design appropriate extension policies is the 

disconnection between empirical studies that examine adoption of technological packages and 

studies that analyze management practices of those packages. The absence of empirical studies that 

combine the two in a single study, to empirically analyze their interaction effect has been identified 

as a major shortcoming in the technology adoption literature. This knowledge gap has led to the 

neglect of important questions raised in empirical studies about the role of the information channels 

that were used to disseminate information about those technological packages to the potential 

adopters. This study attempts to bridge the knowledge gap by employing the stochastic frontier 

treatment effect with endogenous mediator model, which jointly estimate the impact of technology 

adoption and extension participation, and decompose their interaction into direct and indirect 

effects. The joint analysis of such important inter-related components of the technology adoption 

process could provide further information to guide extension delivery policies aim at enhancing 

technology diffusion and adoption among farmers.  
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Finally, notwithstanding the voluminous literature on the impact of egocentric information 

networks on technology diffusion and adoption among farmers in developing countries, its 

influence on the technical efficiency of farmers appears to be over looked in the literature. This 

study contributes to literature by employing spatial stochastic frontier analysis to investigate the 

impact of egocentric information networks on farmers’ technical efficiency, productivity and its 

distributive mechanisms among farmers in the network. 

The findings reveal that ICT-based extension channels are equally effective as the conventional 

extension channels, and in some instances, outperform them. Similarly, the findings also reveal 

that ICT-based channels lead to higher yields, farm net returns, and knowledge gained, relative to 

conventional extension channels and non-participation in extension programs. These findings 

suggest that investing in ICTs can help in accelerating progress towards the attainment of the SDGs, 

in particular, goals two and five, which seek to achieve zero hunger and provide equal access to 

extension services by all for enhance agricultural productivity. 

Additionally, the results show that farmers who are at advanced stages of technology adoption tend 

to benefit more, compared to farmers at lower stages of adoption. The findings further reveal the 

existence of significant impact heterogeneities across different adoption stages, with the long-term 

benefits of adoption outweighing the short-term benefits. The heterogeneities reveal the existence 

of unrealized potential gains at some stages in the adoption process, in particular, at knowledge 

acquisition and trial stages, which extension policy-makers can target in order to maximize 

adoption impacts and save resources to expand extension outreach to benefit more farmers.    

Furthermore, the results show that the direct impact of technology adoption alone contributes 72 

percent to farm productivity and 73 percent indirectly due to improvement in farmers’ efficiency, 

leading to overall welfare improvement of 77 percent. Similarly, the direct impact of extension 

participation alone contributes 28 percent to farm productivity and 27 percent indirectly due to 
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improvement in farmers’ efficiency, resulting in 23 percent improvement in farmers’ welfare. 

These findings underscore the importance of not only investing resources in extension service 

provision to farmers, but also accompanying it with investment in research development aimed at 

developing new agricultural technologies that are affordable and appropriate to farmers’ 

conditions. 

Lastly, the empirical results show that 19 percent of farmers’ technical inefficiency depend on the 

inefficiency of the farmers from whom they seek farming advice. Similarly, the results show that 

inefficient farmers tend to depend on efficient farmers in their egocentric information networks to 

improve their level of efficiency. The results further show that the level of influence on the 

efficiency of farmers is network specific and differ according to the nature of the social ties between 

farmers in the network. Finally, the findings reveal that failure to account for spatial heterogeneity 

can lead to underestimating technical efficiency of high efficient farmers, while overestimating that 

of medium and low efficient farmers. These findings suggest that identifying central farmers’ in 

egocentric information networks and improving their technical knowledge in a farmer-to-farmer 

extension organization, can contribute to improving the productivity of many farmers. 
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Zusammenfassung 

Der Mangel an Informationen über innovative Agrartechnologien ist nach wie vor eine der meist 

bedeutendsten Problematiken und Gründe dafür, dass Kleinbauern in den Entwicklungsländern, 

insbesondere in Sub-Sahara Afrika (SSA), derartige Technologien nur begrenzt nutzen und 

implementieren. Das niedrige Level der Aneignung derartiger Technologien durch die Landwirte 

wurde als eine der Hauptursachen für die geringe Produktivität und folglich für die unzureichende 

Versorgung mit Nahrungsmitteln zur Ernährung der wachsenden Bevölkerung sowie für die große 

Armut in den Entwicklungsländern identifiziert. Der Informationsmangel wird auf schwache und 

ineffektive Beratungsdienste, sogenannte Extension Services, zurückgeführt, da die Ressourcen für 

die Einstellung und Ausstattung von Beratern, den sogenannten Extension Agents, nicht 

ausreichen, um die Bedürfnisse der oftmals weit verstreut angesiedelten Kleinbauern zu erfüllen, 

die die Mehrheit der landwirtschaftlichen Bevölkerung in den Entwicklungsländern ausmachen.  

Das Angebot an neuen Kommunikationskanälen wie den Information and Communication 

Technologies, den ICTs, bietet Möglichkeiten, die landwirtschaftliche Beratung zu verbessern und 

die Hürden einer effizienten Verbreitung von Informationen unter den Landwirten abzubauen. 

Über die Auswirkungen die diese neuen Kommunikationskanäle aufgrund ihrer zentralen Rolle bei 

der Verbesserung von Wissensverbreitung und somit der Verbreitung neuer Technologien auf die 

Lebensmittelproduktion und die Wohlfahrt der Landwirte haben, ist jedoch derzeit nicht viel 

bekannt. Ein Großteil der empirischen Literatur über das Informationsverbreitungspotenzial der 

ICTs stellt Auswirkungen wie Marktpreise, Suchverhalten, Wetterinformationen, Anbauplanung 

und Transaktionskosten in den Mittelpunkt der Forschung, während auf Erträge, Nettorenditen und 

Wissensverbesserung bisher ein geringerer Fokus gelegt worden ist. Diese Studie trägt zur 

wissenschaftlichen Forschungsliteratur bei, indem sogenannte robust copula recursive bivariate 

probit sowie mixed-copula endogenous switching regression Modelle eingesetzt werden, um die 
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Auswirkungen der Nutzung von ICT-basierten Beratungskanälen auf die Implementierung 

verbesserter Technologien, insbesondere der neuen Rhizobia Impfstofftechnologie, sowie das 

technische Wissen der Landwirte, die Erträge und die Nettorenditen der Betriebe zu untersuchen. 

Darüber hinaus ist die Nutzung verbesserter Technologien von zentraler Bedeutung für die 

Produktivitätssteigerung und die Armutsbekämpfung. Dennoch findet sie unter armen Kleinbauern 

in Entwicklungsländern nach wie vor wenig Anwendung, was Forscher und politische 

Entscheidungsträger seit Jahrzehnten vor ein Rätsel stellt. Diese Problematik wird unter anderem 

auf das mangelnde Verständnis über das Entscheidungsverhalten von Kleinbauern zurückgeführt, 

was dazu führt, dass die politischen Entscheidungsträger nicht in der Lage sind, geeignete 

Beratungsstrategien zu entwickeln, die die Akzeptanz von Technologien verbessern könnten. 

Lange Zeit hat die empirische Forschung die Entscheidungen von Landwirten über die 

Implementierung von Technologien als ein binäres Entscheidungsproblem modelliert. Die Folge 

einer solchen Modellierungsstrategie sind Informationslücken, die entstehen können, sodass 

wichtige Informationen, welche für die Formulierung politischer Maßnahmen relevant sind, 

verloren gehen können und Adoptionsentscheidungen von Landwirten so falsch interpretiert 

werden.  Diese Studie trägt zum Wissensstand über die Adoption von Technologien bei, indem sie 

ein sogenanntes dynamic treatment effect Modell nutzt, um die Entscheidungsprozesse der 

Landwirte bezüglich der Nutzung von neuen Technologien als einen dynamischen Prozess zu 

analysieren. Dieser dynamische Prozess ist dabei charakterisiert durch eine Reihe von 

Mehrfachentscheidungen, die über mehrere Phasen oder Zeiträume getroffen werden. 

Ein weiterer wichtiger Punkt, der das mangelnde Verständnis von den Entscheidungsprozessen der 

Landwirte und die Unfähigkeit, geeignete Beratungsstrategien zu entwerfen, noch verstärkt, ist die 

fehlende Verbindung zwischen empirischen Studien, die die Nutzung von Technologiepaketen 

untersuchen, und Studien, die die Managementpraktiken für diese Pakete analysieren. Das Fehlen 
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von empirischen Studien, die die beiden genannten Aspekte kombinieren, um ihre Wechselwirkung 

empirisch zu analysieren, ist in der Fachliteratur bisher in einem geringen Umfang vertreten. Diese 

Wissenslücke hat dazu geführt, dass wichtige Fragen, die in empirischen Studien über die Rolle 

der Informationskanäle zur Verbreitung von Informationen über Technologiepakete aufgeworfen 

wurden, vernachlässigt worden sind. Die vorliegende Studie versucht, diese Wissenslücke zu 

schließen, indem sie ein sogenanntes stochastic frontier treatment effect Modell mit endogenous 

mediator nutzt, das die Auswirkungen der Adoption neuer Technologien und der Teilnahme an 

Extension Services gemeinsam schätzt und ihre Interaktion in direkte und indirekte Effekte 

aufschlüsselt. Die gemeinsame Analyse dieser wichtigen, miteinander verknüpften Komponenten 

könnte weitere Informationen für die Ausrichtung von Extension Services, die darauf abzielen, die 

Technologieverbreitung und-übernahme unter Landwirten zu fördern, liefern.  

Abschließend ist festzustellen, dass trotz der umfangreichen Literatur über die Auswirkungen 

egozentrischer Informationsnetzwerke auf die Verbreitung und Übernahme von Technologien 

durch Landwirte in Entwicklungsländern ihr Einfluss auf die technische Effizienz der Landwirte 

in der Literatur offenbar übersehen wird. Diese Studie leistet einen Beitrag zur Literatur, indem sie 

die Auswirkungen egozentrischer Informationsnetzwerke auf die technische Effizienz der 

Landwirte, die Produktivität und die Verteilungsmechanismen unter den Landwirten im Netzwerk 

mit Hilfe einer sogenannten spatial stochastic frontier Analyse untersucht. Die Ergebnisse zeigen, 

dass ICT-basierte Beratungskanäle genauso effektiv sind wie die konventionellen 

Beratungskanäle, und in einigen Fällen sogar besser als diese. Ebenso zeigen die Ergebnisse, dass 

ICT-gestützte Kanäle im Vergleich zu konventionellen Beratungskanälen und der Nichtteilnahme 

an Beratungsprogrammen zu höheren Erträgen, netto Farmeinkommen und Wissenszuwachs 

führen. Diese Ergebnisse deuten darauf hin, dass Investitionen in ICTs dazu beitragen können, die 

Verwirklichung der SDGs zu beschleunigen, insbesondere der Ziele zwei und fünf, die darauf 
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abzielen, den Hunger zu beseitigen und allen Menschen gleichen Zugang zu Extension Services zu 

gewähren welche das Potenzial haben die landwirtschaftliche Produktivität zu steigern. Darüber 

hinaus zeigen die Ergebnisse, dass Landwirte, die sich in einem fortgeschrittenen Stadium der 

Technologieeinführung befinden, tendenziell mehr profitieren als Landwirte in einem niedrigeren 

Stadium. Die Forschungsergebnisse zeigen weiter, dass die Auswirkungen in den verschiedenen 

Phasen der Technologieeinführung sehr unterschiedlich sind, wobei die langfristigen Vorteile die 

kurzfristigen Vorteile überwiegen. Die Heterogenität zwischen den Landwirten zeigt, dass in 

einigen Phasen des Adoptionsprozesses, insbesondere in der Phase des Wissenserwerbs und der 

Erprobung, nicht realisierte potenzielle Gewinne existieren, auf die die Entscheidungsträger in der 

Beratung abzielen könnten, um die Auswirkungen der Adoption zu maximieren und Ressourcen 

für eine Ausweitung der Beratungstätigkeiten zu sparen, sodass mehr Landwirte profitieren 

könnten. Darüber hinaus zeigen die Ergebnisse, dass die direkte Auswirkung der 

Technologieanwendung allein 72 Prozent zur landwirtschaftlichen Produktivität beiträgt und 73 

Prozent indirekt durch die Verbesserung der Effizienz der Landwirte, was zu einer 

Gesamtwohlfahrtssteigerung von 77 Prozent führt. In ähnlicher Weise trägt die direkte Auswirkung 

von Extension Services allein 28 Prozent zur landwirtschaftlichen Produktivität bei und 27 Prozent 

indirekt durch die Verbesserung der Effizienz der Landwirte, was zu einer Verbesserung des 

Wohlstands der Landwirte um 23 Prozent führt. Diese Ergebnisse unterstreichen, wie wichtig es 

ist, nicht nur in die Beratung der Landwirte zu investieren, sondern auch in die Forschung, um neue 

landwirtschaftliche Technologien zu entwickeln, die erschwinglich und vor allem geeignet für, und 

angepasst an die Lebensbedingungen der Landwirte sind. 

Abschließend zeigen die empirischen Ergebnisse, dass 19 Prozent der technischen Ineffizienz der 

Landwirte von der Ineffizienz der Landwirte abhängt, von denen sie landwirtschaftliche Beratung 

suchen. Des Weiteren offenbaren die Ergebnisse, dass ineffiziente Landwirte dazu neigen, sich auf 
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Informationen von effizienten Landwirten in ihren egozentrischen Informationsnetzwerken zu 

verlassen, um ihr eigenes Effizienzniveau zu steigern. Die Ergebnisse deuten außerdem darauf hin, 

dass der Einfluss auf die Effizienz der Landwirte netzwerkspezifisch ist und sich je nach Art der 

sozialen Beziehungen zwischen den Landwirten im Netzwerk unterscheidet. Schlussendlich zeigen 

die Ergebnisse, dass eine Nichtberücksichtigung von räumlicher Heterogenität dazu führen kann, 

dass die technische Effizienz hocheffizienter Landwirte unterschätzt und die der mittel- und wenig 

effizienten Landwirte überschätzt wird. Diese Ergebnisse lassen den Schluss zu, dass die 

Identifizierung zentraler Landwirte in egozentrischen Informationsnetzwerken und die 

Verbesserung ihres Fachwissens über ein Landwirt-zu-Landwirt-Beratungssystem dazu beitragen 

kann, die Produktivität vieler Landwirte zu steigern. 

 

 



1 
 

Chapter 1 

 General Introduction 

1.1 Background  

Agriculture contribution to economic growth and development cannot be over emphasized. The 

contribution spanned from supply of food, fiber, timber, to biofuel, which both man and industry 

thrive. With the global population estimated to reach almost 10 billion by 2050 (FAO, 2017), more 

is expected from agriculture to meet the growing needs of the population. To meet this challenge, 

public investment in the agriculture sector is necessary in order to improve agricultural productivity 

and sustainable growth (Timmer, 2014).  

Sadly, public expenditure on agriculture appeared to have dwindled for the past two decades. In 

particular, sub-Saharan Africa (SSA) where public expenditure on agriculture slumped from 5.6 

percent in 1960 – 1970 to 4.0 percent in 2000 – 2009 (FAO, 2017). The underinvestment has led 

to smallholder farmers lacking access to productive resources such as improved seeds, fertilizers, 

pesticides, credit and farm machinery to enhance productivity. Agricultural research and extension 

service delivery also suffered the same fate, resulting in inadequate funding to generate improved 

technologies as well as disseminate information about the improved technologies to farmers. 

However, adequate information and knowledge on improved technologies are necessary 

preconditions for technology adoption, even if it is insufficient (Foster and Rosenzweig, 2010; De 

Janvry et al., 2017). Consequently, farmers in the developing countries and SSA in particular have 

gained a well-documented notoriety for low or non-adoption of improved technologies in the 

literature (e.g., Foster and Rosenzweig, 2010; Duflo et al., 2008; Conley and Udry, 2010; Suri, 

2011) over the years. The lack of adequate extension services have led to farmers using suboptimal 
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or low productive technologies resulting in low productivity (Foster and Rosenzweig, 2010), 

exacerbating food and nutrition insecurity situation in the developing countries.  

Fortunately, recent advancements in information communication technologies (ICTs), present an 

opportunity for more pluralistic and niche-based communication channels that can deliver lower-

cost extension and advisory services to smallholder farmers to enhance technology adoption 

(Norton and Alwang, 2020). The ICTs employ digital tools (such as internet, GPS, drones, radio, 

television, video, mobile phone, virtual networks, etc.) to facilitate the collection, storage, analysis 

and sharing of data, information and knowledge (Deichmann et al., 2016; World Bank, 2016). This 

development has led to what is known in the literature as precision agriculture. Due to the potential 

of ICT based communication channels to combine both public and private financing mechanisms 

(Norton and Alwang, 2020), policy makers in developing countries are currently exploring the 

possibilities of using these tools to facilitate agricultural extension delivery to smallholder farmers.  

However, the current research efforts in this area tend to focus on the role of the new 

communication channels on market prices, weather and input sources information (e.g., Camacho 

and Conover, 2019; Tadesse and Bahiigwa, 2015; Zanello, 2012), to the neglect of its contribution 

to farmers’ technical knowledge, technology adoption, and production activities as well as 

household welfare. Few studies in the literature have considered these areas of interest but the 

results are mixed. While some studies find positive or marginal results, others fail to find any 

statistical significant impact on the studies’ outcomes. Several weaknesses have been attributed to 

the mixed findings, however, the one that stands out is that empirical studies failed to clearly 

delineate information effect from the technology effect (Aker et al., 2016; Bullock et al., 2009). 

The information effect focus the analysis on the channels used to deliver the information, quality 

of the information, timeliness as well as appropriateness and type of information disseminated. 
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Whereas the technology effect tend to focus the analysis on a particular targeted agricultural 

technology, whose outcome is specific and directed at particular group of individuals.  

The present study attempts to address this weakness by examining the new communication 

channels impact on food production and welfare of farm households via its role in the dissemination 

of a specific agricultural technology, the new Rhizobia inoculant among smallholder soybean 

farmers in northern Ghana. Recently, a number of institutions employed a combination of the new 

communication and conventional channels to disseminate information about the new Rhizobia 

inoculant technology to smallholder soybean farmers in northern Ghana. The study considered the 

inoculant dissemination program as appropriate, since it provides the opportunity to delineate the 

information effect from the technology effect for proper identification. Notable institutions that 

were involved in the Rhizobia inoculant technology dissemination program are Centre for 

Scientific and Industrial Research – Savannah Agricultural Research Institute (CSIR-SARI), 

International Institute of Tropical Agriculture (IITA) and the United States Agency for 

International Development (USAID) through the ADANCE Project.  

1.2 Problem statement 

The adoption of improved agricultural technologies is often associated with increased productivity 

and welfare of farm households. This led to the notion that improving smallholder farmers’ 

adoption of improved agricultural technologies will increase productivity and contribute to 

breaking the vicious cycle of poverty as well as food insecurity that engulf developing countries. 

Despite this potential, literature suggest that adoption of improved agricultural technologies is low 

among smallholder farmers in developing countries and in particular SSA, an observation that 

puzzled many researchers for decades (Suri, 2011; Sheahan and Barrett, 2017; Macours, 2019).  
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The technology adoption literature attribute myriads of reasons to this puzzling observation. Some 

of the reasons include procrastination and time-inconsistent preference dependence (Duflo, et al., 

2011), poor infrastructure in rural areas leading to exorbitant transaction cost (Suri, 2011), absence 

of formal agricultural insurance institutions (Karlan et al., 2014), and inappropriate technologies 

that are not well suited to farmers’ local conditions (Emerick et al., 2016). Takahashi et al. (2020), 

note that even if appropriate and profitable technologies exist, they may not be widely diffused 

among farmers, partly, due to ineffective information dissemination systems, as a result of weak 

agricultural extension delivery systems. 

The emergence of new communication channels such as ICTs have significantly revolutionized 

agricultural extension delivery programs for the past four decades (Norton and Alwang, 2020). The 

new communication channels plays significant role in lowering previously existing barriers to 

information diffusion to farmers (World Bank, 2017). However, the empirical studies on the impact 

of the new communication channels tend to focus on outcomes such as market prices, searching 

behavior, weather information, crop planning, and transaction costs, with very little work on 

technology adoption, yields, net returns and knowledge (Nakasone et al. 2014). Few studies that 

considered these outcomes in the literature report mixed findings. For example, while Dzanku et 

al. (2020) found positive results of video documentary on farmers’ technology adoption in Ghana, 

Maredia et al. (2018) found no results of animated-videos on farmers’ technology adoption in 

Burkina Faso. Given the significance of technology adoption, and yields as well as net returns to 

the farm household welfare, it is important that the impact of the new communication channels on 

these farm outcomes be thoroughly investigated to inform further policy decisions on investing in 

these channels. 
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Another grey area of concern is the inadequacy in understanding the behavior of farmers and their 

adoption decisions of new agricultural technologies (Pannell and Claassen, 2020). For years, 

economist have modelled farmers’ technology adoption decisions as a binary decision, which is 

assumed to be instantaneous (Panell and Zilberman, 2020). In the process, important information 

on farmers’ adoption behavior relevant to policy formulation is lost and their decisions are 

misinterpreted, and in the worst case, misunderstood as being irrational or counter intuitive (Besley 

and Case, 1993). Weersink and Fulton (2020) argued that farmers’ adoption decisions should be 

understood as a process with multiple stages in which the final decision to use a new technology 

occurs only after the previous stages are completed. They further argued that current econometric 

models that seek to analyze farmers’ adoption decisions should consider timing of the decisions 

and employ techniques that condition later-stage adoption decisions on previous adoption 

outcomes of the technology. The failure of previous studies to employ this approach have been a 

major contributory factor to the lack of convergence between previous adoption studies, because 

the heterogeneity among farmers at different stages of adoption and different socioeconomic as 

well as biophysical realities that face potential adopters remain hidden in the binary case (Pannell 

and Zilberman, 2020). It is therefore important that the dynamic patterns in farmers’ technology 

adoption decisions be analyzed to shed light on the heterogeneity and stage dependent adoption 

policies to facilitate technology adoption. 

Furthermore, the literature also note disconnection between studies that examine the adoption of 

improved technological packages and studies that analyze management practices of those 

packages. The absence of empirical studies that combine the two in a single study, to empirically 

analyze their interaction effect is a major shortcoming in the technology adoption literature 

(Takahashi et al., 2020). They argued that, this lacuna has led to the neglect of important questions 

raised in empirical studies about the role of the information channels that were used to disseminate 
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those technological packages to the potential adopters. It is therefore argued that these two 

important and inter-related components of the technology adoption process be jointly evaluated to 

guide extension delivery policies for enhanced technology diffusion and adoption among farmers.  

The literature identified resource constraints as the major reason for weak extension service 

delivery systems in developing countries (Blum and Szonyi, 2011). In order to optimize the limited 

resources available for extension delivery programs, farmers’ egocentric information networks 

have been identified as an important and least-cost communication channel that can be leverage 

upon to enhance improved technologies diffusion and adoption among smallholder farmers. The 

potential of egocentric information networks to diffuse information about new technologies leading 

to farmers’ adoption have been extensively explored in the literature (e.g., Beaman and Dillon, 

2018; Di Falco et al. 2018; Fafchamps et al. 2021). However, the weakness of the network channel 

is lack of motivation and dedication, as well as individual willingness to share the right information, 

resulting in low quality information leading to informational imbalance between receiving farmers 

and disseminating farmers (Fafchamps et al. 2021; Kondylis et al. 2017). Recent studies attempt 

to address this weakness by exploring ways to improve the effectiveness of network 

communication channels, through incentivization and training, in order to fully incorporate its 

operations into extension service delivery system, known in the literature as farmer-to-farmer 

extension services (Takahashi et al., 2019; Shikuku and Melesse, 2020). However, the findings are 

mixed, with some finding the use of incentives to have positive impact of the effectiveness and 

quality of information shared (Shikuku et al., 2019), while some studies did not find any 

relationship between incentivization and effectiveness (e.g., Takahashi et al., 2019). One issue that 

is clear in these studies is that, the quality of information shared by the network is a major source 

of concern. Despite this shortcoming, the potential impact of the egocentric network information 
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channels on farmers’ productivity, in terms of its influence on the technical efficiency of farmers, 

appears to be over looked in the literature. Therefore, it is imperative that the role of egocentric 

information networks on farmers’ technical efficiency be investigated, to guide extension policies 

that leverage on network channel to maximize productivity.   

This dissertation attempts to fill these research gaps, using recent survey data of 600 farm 

households conducted between June to August 2018 in northern Ghana. The northern region was 

chosen because it is considered as one of the major food baskets of Ghana. Yet, in terms of extreme 

poverty incidence, it is the second poorest 30.7 percent region in the country (GSS, 2018). Hence, 

could provide the appropriate setting to examine the potential contribution of the new 

communication channels to food productivity and household welfare improvement via its role in 

technology dissemination and adoption.   

1.3 Objectives of the study 

The main objective of this study is to investigate the role of communication channels on food 

production and welfare of farm households in the northern region of Ghana. The specific objectives 

are as follows; 

1. To examine the impact of ICT-based extension channels on improved technology adoption 

and welfare of farm households. 

2. To analyze the impact heterogeneity in returns to adoption of improved agricultural 

technologies by farm households. 

3. To evaluate the joint impact of extension program participation and improved technology 

adoption on productivity, efficiency and welfare of farm households. 

4. To investigate the impact of egocentric information networks on the technical efficiency of 

farm households. 
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1.4 Significance of the study 

The significance of the study is enormous and aimed to provide empirical evidence to inform 

effective extension service delivery policy, towards attainment of the Sustainable Development 

Goals (SDGs), in particular goal two and five, which seek to achieve zero hunger and equal access 

to extension services by all for enhance agricultural productivity. First, by examining the impact 

of ICT-based channels on technology adoption and welfare of farm households, a compelling 

evidence is provided for policymakers to invest in ICT infrastructure in rural farming areas. This 

will enable state agencies and other stakeholders to minimize cost by employing limited but 

specialized staff to transmit agricultural extension information to farmers from centralized 

locations, in order to facilitate productivity and economic growth in the developing countries.   

Moreover, to the extent that ICT-based extension services remove direct person-to-person contact 

from extension service delivery, religious and cultural barriers could be overcomed to promote 

equitable access to extension by all farm households, particularly female farmers living in 

conservative farming communities. This could facilitate the realization of goal five of the SDGs, 

which seeks to empower women through enabled environment for information and communication, 

equal access to appropriate new technology, and timely access to extension services for enhance 

agricultural productivity. 

Also, analysing the dynamic patterns of technology adoption could revealed heterogeneities among 

different population of farmers at various stages of technology adoption, who required special 

attention to facilitate their adoption process. This could provide empirical evidence to support 

extension targeting policies that address specific extension needs to achieve specific adoption 

targets, instead of one fit all extension policies. The policy relevance of extension targeting could 

be enormous, as more resources could be saved and used to expand extension services outreach to 
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benefit more farmers. The study of the joint interaction of communication channels used in 

dissemination of technological packages and the adoption of the technological packages could 

provide further compelling evidence in support of stakeholders’ investment in research and 

development as well as extension services provision. Finally, an investigation into the role of 

egocentric information network could provide valuable empirical evidence to inform the new 

farmer-to-farmer extension delivery organization policy, currently being considered some 

developing countries.    

1.5 Agriculture sector in Ghana 

The agriculture sector is a major contributor to the Ghanaian economy, employing 38.3% of the 

population, second only to the services sector 43.5% and remains the largest employer of the rural 

population 65.2%, compared to urban 11.8% (GSS, 2019). It is also the third highest contributor 

22.2% to the gross national product (GDP) of Ghana, only marginal to the second position the 

industrial sector 22.3% (GSS, 2018). Majority of the farming population 90% are smallholder 

subsistent farmers, who cultivate less than two hectares of land and contribute 80% to the total 

agricultural output of the country (MoFA 2017). The agriculture sector in Ghana is very informal 

and as such, depends heavily on traditional farming method and rain fed agriculture.  

The sector has the potential to expand, given that about 57% of the total land mass of Ghana consist 

of arable lands. However, the sector’s growth has been lagging behind, falling from 6.1% growth 

rate in 2017 to 4.8% in 2018 below its projected growth target of 6.9% in 2019 (MOFA, 2020).  

The agriculture sector in Ghana is divided into four subsectors, which include crop subsector 

(including cocoa), livestock, forestry and logging as well as the fishing subsectors. The key 

agricultural commodities include cocoa, yam, cassava, plantain, maize, groundnuts, cocoyam, rice, 

oil palm, tomatoes, pepper, oranges, onions, sorghum and pineapples. The crops subsector alone 
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lead by cocoa contributes 75% to agriculture GDP of the country, while the rest of the sectors 

contribute 35%.  

The major challenge facing the agricultural sector in Ghana is low over reliance on rainfall 

agriculture due lack of investment in irrigation facilities and modern innovative agricultural 

production technologies. In addition to low investment, poor extension services, aging farmers as 

well as poor soils have led the low productivity of the sector. The extension officer to farmer ratio 

stands at 1:1500, compared to Food and Agricultural Organization (FAO) standard of 1:500 (FAO, 

2018). The inadequate extension services is a major contributory factor to lack of adoption of 

innovative technologies that can enhance the sector’s growth. As a result, majority of the rural folks 

who depend on the sector for their livelihoods continued to live in extreme poverty (GSS, 2018). 

1.6 Agriculture Extension Defined  

The term extension as used in modern days is believed to pre-dates back from 1850 through to 

1867, during the educational development in England to refer to serving the educational needs of 

the growing populates near their homes (Jones and Garforth, 1997). Though, no formally agreed 

definition exists in literature for the term extension, it has been classified based on the functions it 

play in the development process. These classifications include; university extension (or continuing 

education), agricultural extension, rural development extension, health extension services as well 

as industrial extension (Rivera, et al., 2001).  

Agricultural extension obtained its current usage refers to ‘advice given to crop farmers (on pest 

control, watering, flood control, etc.) for mitigating potential loss in taxable revenues from 

farmers’. Similar to the modern ancestral usage of extension, there is no exact agreement in 

literature as to the definitive meaning of agriculture extension and therefore means different things 

to different people (Purcell and Anderson, 1997). Several authors discussing the concept derived 

its meaning based on the goal and purpose they perceive extension to achieve in the agricultural 
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sector. Van den Ban and Hawkins (1996) arrived at five such derived definitions as: (1) transferring 

knowledge from researchers to farmers; (2) advising farmers in their decision-making; (3) 

educating farmers to be able to make similar decisions in future; (4) enabling farmers to clarify 

their own goals and possibilities and to realize them; and (5) stimulating desirable agricultural 

developments (through what they called rural guidance).   However, Feder, et al. (1999) noted that, 

it is helpful to define agriculture extension as a system with a set of functions design to induce 

voluntary change among rural people. They suggested a range of activities in agriculture whose 

meaning can be defined as agricultural extension to include;  (1) transferring technology in multiple 

directions for sustainable agricultural production, transformation and marketing; (2) transferring 

management to mobilize and organize farming, rural groups and communities; and (3) transferring 

capacity to educate, build human resources, and enhance local capacity in areas such as integrated 

pest management, market intelligent, farm management, input, market services and financial 

negotiations.  Among all the definitions of agriculture extension that exist in literature, the most 

amenable to empirical analysis, in the view of this study and which the study adopted, is the recent 

definition offered by Anderson and Feder (2007), who defined agriculture extension as the delivery 

of information inputs to farmers.  

It is argued in the literature (e.g., Rivera and Gustafson, 1991; Jones and Garforth, 1999) certain 

factors act as potential forces that derive changes in the mode and channels that agriculture 

extension delivery can occur. These potential forces are changes in economic and policy climate, 

social context in rural areas, systems knowledge and information technology. With the recent 

advancements in information and communication technology development, this present study 

empirically examined the impact of these new communication channels can influence food 

production and farm household welfare, through its applications in agriculture extension delivery. 
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1.7 Information and Communication Technology (ICT) Defined  

The term information and communication technology (ICT) is very generic in its usage, therefore 

to clarify the term one will have to examine its component terms as it evolves into one concept. 

The root word information colloquially referred to news (that is something new to someone) or 

intelligence. However, its modern usage and application to different fields can be traced back to 

Shannon (1948) and Wiener (1948) both writing in statistical probability at the time. Shannon 

(1948) defines what has now been accepted as the formal definition of information as, “A thing 

used to eliminate the uncertainty of a random thing”. In the spirit of Shannon’s definition and its 

colloquial usage, information can be interpreted to mean any news or intelligence that can assist a 

decision maker to eliminate uncertainties in an uncertain situation (i.e. a stochastic process). 

However, Kullback (1968) notes that, Shannon’s definition of information tends to provide a 

formal description to what Fisher (1925b) earlier refer to as a measure of the knowledge a data (i.e. 

information) discloses or conveys (i.e. communication) about an unknown parameter to a 

statistician. This to information being defined as a processed data use to assist users (i.e. decision-

makers) in making decisions (Chen, 2016).  

The modern usage of information as applied to communication is the reflection of the role 

information plays in communication theory, which formulates a communication system as a 

stochastic or random process (Kullback, 1968). To this extent, communication theorists view the 

art and science of the communication system or process to be the ultimate amount of data 

compressed and transmitted (Cover and Thomas, 2006). Giving rise to the present concept of 

information communication.  

However, for data to be compressed and transmitted (i.e. information communication) either as an 

analog or digital form, there must be a channel available to match the form of the data and its 

output. As the human society develop, new scientific discoveries and advancements led to the 
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evolution of different means (i.e. technologies) of conveying or transferring data (i.e. information 

communication). This evolution made it possible for transferring data from merely as an oral 

message or letters to telegraph, to the telephone and to visuals or audio-visuals electronically with 

minimum or without human intervention (Chen, 2016). The overall effect is what has culminated 

into the concept of information and communication technology (ICT). The development of the ICT 

industry has made it possible for large volumes of information transfer through communication 

networks and the internet, at higher speed, larger scope, more diversified content and intensified 

directivity of message (Chen, 2016). 

ICT tools be viewed as a set of smart tools consisting of both hardware and software. This set of 

tools functions as a competent team of highly disciplined, self-governing artificial agents that 

control, manage and execute commands strictly. ICT tools transmit symbolic objects of text, 

picture/photo, audio, video/audio-visual materials are describe as information objects. ICT tools 

also differ in the quantum and combination of the information objects they can store and convey 

as a signal. The quantum combination of the information objects therefore defines the signal 

strength of an ICT tool and the speed at which it is convey depends on the medium (i.e. either in 

fluids or solids as sound waves or in vacuum as electromagnetic waves) of conveyance. Prominent 

in this category are the ICT tools that convey electromagnetic signals as either visible light signals 

(suitable for conveying picture/photo and video images), radio signals (RF-radio frequency) or an 

integration of both signals.  The most important signal in this category that has revolutionarize the 

ICT industry today and continue to do so is the radio signal. Specific tools in this domain include 

frequency for AM, FM, TV, cellular and satellite transmissions. The broad classification ICT 

products that operate using these ICT tools are what experts refer to as digital information 

resources. ICT digital tools that serve as information resources in the daily life of man are enormous 

and variant. Examples are telephone line for voice messaging and faxing, mobile phones for voice 
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messaging, texting, video, etc, computers, TV, radio, GPS, Satellite, modem, among others 

(Semenov et al. 2005).    

Generically, therefore, any electronic tool or device that is capable of processing, packaging and 

storing data for transmission and retrieval of the data can be described as ICT. This study therefore 

investigated how agricultural production innovations born out of research and transmitted through 

new ICT channels impact farmers technology adoption, knowledge about the technology and farm 

productivity.  

1.8 ICT Applications in Agriculture and Extension Delivery  

ICT since its development has revolutionized the industrial world and improved factor productivity 

in all fields. Empirical studies report successful applications of ICT digital tools in agriculture. 

Most of these studies are based on satellite and telecommunication receiving ICT digital tools and 

with few other tools. This is understandable due to ubiquitous nature of telecommunication 

receiving devices such as mobile phones and satellite receiving devices such as global positioning 

system (GPS) and many more. For instance, GPS-based ICT tools are employ by farmers at field 

level to monitor soil and climatic variables. This data enables farmers to forecast rainfall, 

synchronize land preparation and planting time. Farmers are also able to monitor and quantify soil 

nutrient level such as amount of nitrogen, phosphorus and potassium required for optimum plan 

growth in their fields. This practice has come to be known as precision farming in agriculture or 

precision agriculture. Bullock et al. (2009) studied the use of ICT in providing specific farm level 

data in variable rate technology (VRT) in the Illinois Cornfields of US. The VRT equipment is able 

to reveal major soil nutrients content and amount (e.g. nitrogen application rate) need by the farmer 

to apply on that field as well as forecast weather factors to assist farmers in making decisions. 

Saravanan and Bhattacharjee (2014) studied mobile applications for agricultural extension in India 

and report different applications of ICT in agriculture initiated by both public and private sector. 



15 
 

For instance, they reported a mobile phone based remote control system called Nano Ganesh, use 

for controlling irrigation water pumps by farmers in India to save time, water, energy and increase 

crop yields. It is estimated that between 2000 and 2013 close to forty-three different mobile base 

extension service were operating in India using ICT tools such as SMS (short messaging system), 

IVRS (integrated voice recorded system), pictures, videos, web interfaces and software/mobile 

apps to provide general crop information, weather and market place (Saravanan and Bhattacharjee, 

2014). Also in Ghana, several studies report the use of ICT in agriculture. However, almost all 

evidence of ICT applications in agriculture in Ghana is limited to using radio or mobile phone 

services to obtain market information services (e.g.,  Nyarko et al. 2013; Zanello et al. 2013; etc.) 

1.9 Study area, data collection  

The study area is Northern Ghana. Prior to this study, the Northern Ghana constitutes three regions 

namely Northern, Upper East and Upper West regions. However, following the creation of new 

regions by the Government of Ghana in 2019, the Northern Ghana currently constitutes five 

regions, which includes Northern, North-East, Savanna, Upper East and Upper West regions.  

Specifically, the study area was in the former Northern region. The region covers an area of about 

70,384 square kilometers and is considered the largest region in Ghana in terms of land mass. The 

Northern region shares boundaries with the Upper East and the Upper West regions to the north, 

the Brong-Ahafo and the Volta regions to the south, Togo to the east, and Cote d’Ivoire to the west. 

The land is mostly low lying except in the north-eastern corner with the Gambaga escarpment and 

along the western corridor. The region is drained by the Black and White Volta Rivers and their 

tributaries such as the Nasia and Daka rivers (GSS, 2013).   

The climate of the region is relatively dry, with a single rainy season that begins in May and ends 

in October. The amount of rainfall recorded annually varies between 750 millimeters and 1,050 

millimeters. The dry season starts in November and ends in March/April with maximum 
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temperatures occurring towards the end of the dry season (March - April) and minimum 

temperatures in December and January. The harmattan winds, which occur from December to early 

February, have a considerable effect on temperatures in the region, making them vary between 

140C at night and 400C during the day. Humidity is very low, aggravating the effect of the daytime 

heat. The rather harsh climatic conditions adversely affect economic activity in the region and in 

the health sector, enable cerebrospinal meningitis to thrive, almost to endemic proportions. The 

region also falls in the onchocerciasis zone. Even though the disease is currently under control, a 

vast area is still underpopulated and under-cultivated due to past ravages of river blindness. The 

main vegetation is grassland, interspersed with guinea savannah woodland, characterized by 

drought-resistant trees (GSS, 2013).  

 

 

Figure 1. 1 Map of study area 

Source: Wikipedia (2011; 2017) and Modified by the Author.  
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The three regions of the north (i.e., Northern, Upper East, and Upper West Regions) are among the 

poorest in the country and consistently ranked, in terms of poverty incidence, higher 10% higher 

than the national average. In particular, the Northern region is rated as the second poorest region 

in Ghana with the poverty rate of 61.1% (GSS 2018). The main occupation of the people in the 

region is agriculture (70.6%), who live in predominantly rural areas. In terms of ICT usage, 48.9% 

owns a mobile phone in the region and 55.8% people use mobile phones. However, the region has 

the least ownership of all types of computer in Ghana (GSS 2019). 

The northern region comprises twenty-six (26) districts, of which the study sampled eight districts, 

in order to conduct a survey for this study (see Figure 1.1). The survey was conducted from June 

to August, 2018 (see Appendix 3 for the questionnaire). A random sample of 600 smallholder farm 

households was drawn. The sample was drawn using a multi-stage sampling technique. Based on 

the proportion of beneficiary communities (78%) in the inoculant dissemination program and 

intensity of soybean production in Ghana, northern region was purposively selected. Cluster 

sampling technique was used to zone the region into two clusters, consisting of eastern corridor 

zone (ECZ) and western corridor zone (WCZ). Based on dissemination program participation 

status of districts and intensity of soybean production at the district level within the clusters, eight 

(8) districts, comprising four (4) from each cluster were purposively sampled. From the ECZ: 

Yendi, Saboba, Chereponi and Karaga districts were selected, while in the WCZ: East Mamprusi, 

East Gonja, Savelugu and Kumbungu districts were selected. In consultation with the field officers 

and agriculture extension agents (AEAs) in the selected districts, 5-7 communities were 

proportionally sampled, based on the extension channel received, dissemination program 

participation, and farmer population. One farmer-based organization (FBO) was randomly selected 

from a list of FBOs that were exposed to the inoculant technology and another randomly selected 

from a list of unexposed FBOs for each community.   Using a lottery approach, we randomly drew 
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five farmers from each FBO. After a preliminary interview session with each of the selected 

farmers, using a computer assisted personal interview (CAPI), a list of the farmers’ information 

network members (INMs) was compiled. The CAPI random number generator then used farmers’ 

unique identification numbers to randomly sample three network members from each farmer’s 

INMs and interviewed in a face-to-face session. 

1.10 Structure of thesis 

The dissertation contains six chapters. Chapter one presents the general introduction to the study, 

while chapters two to five contain journal articles. Specifically, chapter two employed copula 

recursive bivariate probit and mixed-copula endogenous switching regression analysis to examine 

the impact of participation in ICT-based extension channels on improved technology adoption 

(e.g., the new Rhizobia inoculant) and its impact on farmers’ technical knowledge, soybean yields 

and farm net returns. Chapter three employed dynamic treatment effect to analyze heterogeneity in 

returns to farmers’ adoption of agricultural technologies with incomplete diffusion, 

conceptualizing technology adoption as a multi-stage decision-making problem, instead of one 

time binary decision. Chapter four employed the stochastic frontier treatment effect with 

endogenous mediator model to simultaneously examine the impact of technology adoption and 

extension participation and decompose the impact into direct and indirect effects. Chapter five used 

spatial stochastic frontier analysis to investigate the impact of egocentric information networks on 

farmers’ technical efficiency, productivity and its distributive mechanisms among farmers in the 

network. Chapter six presents the general summary, conclusions and policy implications of the 

study. 
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Abstract 

This paper examines the impact of ICT-based extension channels on farmers’ adoption of a new 

agricultural technology (Bradyrhizobium inoculant), knowledge gain on the new technology, yields 

and farm net returns. Using recent survey data of 600 smallholder soybean farmers from Ghana, 

we employ copula functions to account for potential selection bias and endogeneity. Standard 

selectivity correction models often employed in the literature rely on multivariate normality (MVN) 

assumption, which is easily violated, especially, when there is tail dependence in the distribution 

of the observed data, thus making the distribution non-normal. The copula functions approach 

allows the modelling of selectivity based on multivariate non-normality to account for this deficit 

in the data, but retaining the MVN as a special case. Our empirical findings reveal that ICT-based 

extension channels are equally effective as the conventional extension channels, and in some 

instances, outperform them. We also find that ICT-based channels lead to higher yields, farm net 

returns, and knowledge gained, relative to conventional extension channels and non-participation 

in extension programs. The current study provides compelling evidence that investing in ICTs can 

help in accelerating progress towards attainment of the Sustainable Development Goals, in 

particular goal two, which seeks to achieve zero hunger.  

Keywords: ICT-based Extension, Inoculant adoption, Welfare, Copulas Functions and Selection 

Bias. 
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2.1 Introduction 

Adoption of improved technologies depends on farmers’ access to good and timely information, as 

well as learning opportunities for those technologies (Hanna et al., 2014; Ashraf et al., 2009). 

Limitations of improved technologies couple with lack of learning opportunities and factors such 

as poverty, poor prices due to high transaction cost and market failure are seen as major 

determinants for non-adoption of otherwise profitable agricultural technologies (Suri, 2011). Lack 

of access to information by farmers is partly attributed to inadequate supply of agricultural 

extension services, stemming from insufficient funding of public extension programs. The reason 

being that, public extension programs have struggled in the past to justify their effectiveness and 

outcomes to warrant continuous provision of public funds (Blum and Szonyi, 2011; Anderson and 

Feder, 2004).  

The development of information and communication technology (ICT) such as internet and 

proliferation of mobile phones among farmers, even in the remotest areas of developing countries, 

can be an important source of information dissemination channels to farmers at a reasonable cost 

(Deichmann et al., 2016). In particular, ICTs can help in accelerating progress towards the 

attainment of the Sustainable Development Goal (SDGs) of zero hunger, by helping farmers to 

increase crop yields and incomes, and improving food and nutrition security while reducing their 

use of energy (Camacho and Conover 2019).  Over the last two decades, the literature (e.g., 

Camacho and Conover 2019; Tadesse and Bahiigwa 2015; Tack and Aker 2014; Zanello 2012; 

Jensen 2007) has been inundated with reports of positive and mixed impacts of various forms of 

ICT tools (e.g. videos, radio, SMS text via mobile phone) on farm operations of smallholder 

farmers in developing countries. For instance, Jensen’s (2007) seminal work on India found that 

mobile phone adoption improved welfare of both fish producers and consumers through the 

elimination of price dispersions and reduction in fish wastage that could have resulted due to lack 
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of sales. In a recent study, Camacho and Conover (2019) studied the use of mobile phone SMS text 

to disseminate price and weather information to farmers in rural Colombia, and found that farmers 

who received SMS text on price and weather information improved their planting and selling 

decisions, compared to farmers who did not. Also in a study of mobile phone-based price 

information on Ethiopian farmers, Tadesse and Bahiigwa (2015) reported little or no searching 

behavior among farmers who participated in the program. By contrast, Aker and Mbiti (2010) and 

Tack and Aker (2014) in their studies on Niger, found mobile phone usage to be associated with 

gains in price dispersion and increased searching behavior among the traders who used mobile 

phones. Similarly, Zanello (2012) found that radio and mobile phone used to disseminate price 

information to farmers resulted in reduction of transaction cost, market participation and food crop 

quantity traded in Ghana. 

Basically, the observation from the empirical literature on ICT deployment in agricultural 

extension services delivery are limited to mobile phones, perhaps, due to its portability and 

convenience to use. Equally important ICT tools such as video, radio, and TV that are at the 

disposal of farmers in rural remote areas receive less attention. Moreover, the empirical studies on 

the impact of ICT-based technology tend to focus on outcomes such as market prices, searching 

behavior, weather information, crop planning, and transaction costs, with very little work on 

technology adoption, yields, net returns and knowledge (Nakasone et al. 2014). Recent studies that 

have examined the impacts of alternative ICT-based extension channels such as video 

documentaries, mediated-videos, animated-videos, and audios (i.e. listening clubs) on the adoption 

of new technologies and farm performance include Dzanku et al. (2020), and Maredia et al. (2018). 

In their study on Ghana, Dzanku et al. (2020) found video documentary to be effective in inducing 

technology adoption and increasing crop yield. However, they did not investigate the impact on 
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farmer technical knowledge gain on the new technology, which they admit as a shortcoming in 

their study.  

The present study seeks to contribute to the literature on the impact of ICT-based agricultural 

extension services, by using cross-sectional data of 600 soybean farmers from northern Ghana, to 

examine the impact of farmers’ participation in ICT-based extension services on technical 

knowledge, yields, farm net returns and adoption of a newly introduced agricultural technology 

(Bradyrhizobium inoculant). This technology is important because, the inoculant is an organic 

agricultural input, identified as a cost-effective alternative for resource-poor farmers in developing 

countries to rehabilitate their depleted soils, by enhancing the build-up of biological nitrogen 

fixation (BNF) organisms in the soil (Giller, 2001). The inoculant has the potential to increase crop 

yields between 20 – 29 percent (Ulzen et al., 2016), which is substantial for resource-poor farmers 

in developing countries. To the extent that we analyze the impact of ICT-based extension services 

on yields and farm net returns, which directly influence farmers’ food security status, the study 

contributes to the literature on measures to enhance the food and nutritional status of farm 

households. 

Our study differs from the previous studies because of the empirical strategy employed and the 

outcomes considered. In particular, we analyze participation in ICT-based extension service as a 

selection process, whereby the expected benefits from participation drive farmers’ participation 

decision. Specifically, we employ the copula functions to account for selection bias, and to capture 

the differential impact of participation on participants and non-participants. Standard selectivity 

correction models used in some studies often rely on the strong multivariate normality (MVN) 

assumption, which is easily violated, especially, when there is tail dependence, and the distribution 

becomes non-normal (Zimmer 2012). In such cases, the copula function approach, which is robust 

to non-normality, is preferable to traditional selectivity correction models such as Heckman 



28 
 

selection, endogenous switching regression, and double selection models, which are based on the 

strong MVN assumption (Smith 2003). 

The rest of the article is organized as follows. Section 2 presents the conceptual framework 

underpinning the study, while sections 3 and 4 present the empirical framework as well as the 

estimation strategy, respectively.  In sections 5 and 6, we present the data and the empirical results, 

respectively. We then discuss the policy implications of our findings and conclusions in section 7.  

2.2 Conceptual Framework 

To ascertain the significance of ICT-based agricultural extension for smallholder farmers’ 

technology adoption behavior and farm performance, we need to understand the drivers of 

technology adoption and farm performance and how information affects these decisions and 

general performance (Deichmann et al. 2016). A farmer’s adoption decision at any point in time 

depends on the information that the farmer receives from extension agents or peers (Abdulai et al., 

2008; Genius et al., 2013; Camacho and Conover, 2019). The information may concern expected 

net benefits obtainable from the given technology (i.e. strategic information), or the recommended 

procedure for using the technology (i.e. technical knowledge). To the extent that farmers mostly 

obtain strategic information through own learning and from their peers, we assume the extension 

channel delivers technical knowledge to farmers. Intuitively, an effective information channel for 

disseminating agricultural innovations to farmers, therefore, is the one that can deliver information 

with high recall probability such that farmers can efficiently apply the technology at the farm level 

with precision. Let ℂ represent an information channel’s capacity, 𝑲 be vector of technical 

information for dissemination to farmers, and 𝒀 be the vector of outcomes (such as knowledge, 

adoption, yields, and net returns) that farmers can obtain, conditional on using the information 

channel. We assume that the information channel mimics the behavior of a discrete, noiseless and 



29 
 

symmetrical memoryless information channel. In line with Cover and Thomas (2006), we specify 

the farmer’s expected net benefits from participation in the channel as below;  

 ℂ = (𝐊, ρ(𝑦|𝑘), 𝒀)           and  𝜌≥ 0       (1) 

where ρ(𝑦|𝑘) is the probability transition matrix that governs the conditional distribution of the 

observed outcome 𝑦, conditional on receiving a discrete unit of information 𝑘. An effective 

information channel is, therefore, the one that maximizes farmers’ conditional outcomes as follows;

          ℂ = max
ρ
(𝑦|𝑘)

𝑰(𝐊;𝒀)       (2) 

where 𝑰(. ) is an indicator function of dependence between the information channel and the 

conditional outcomes (such as knowledge, adoption, yields and net returns). Empirically, the mean 

conditional outcomes of a farmer using any randomly selected extension channel can be estimated 

from the outcomes’ observed probability distribution ρ(y) as; 

ρ(y) = ρ(k)ρ(𝑦|𝑘)         (3) 

where ρ(k) is the probability distribution of the farmer’s decision to use any randomly available 

extension service channel and all others remain as defined earlier. 

2.3 Econometric Specification and Identification Strategy 

2.3.1 Outcome Specification 

The econometric specification of the individual farmer’s conditional mean outcome 𝑌, (in our case 

yields, farm net returns, inoculant knowledge, and inoculant adoption) based on equation (3), can 

be expressed as follows; 

𝑌𝑖 = 𝛼0 + 𝑋𝑖𝛽 + 𝐾ℂ𝛾 + 휀𝑖         (4) 

where 𝑋, is a vector of observed farmers’ characteristics, 𝐾ℂ is an indicator of the information 

channel from which the farmer received his information about a new technology (the new 
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technology in our case is the Bradyrhizobium inoculant technology), 𝛼0 is a constant, 𝛽 and 𝛾 are 

parameters of interest and 휀 is the error term.  

However, when using observational data, a number of econometric issues arise, if we are to 

estimate equation (4) above using ordinary least squares. In particular, the choice of an information 

channel from which the farmer obtains his information from, 𝐾ℂ. As argued in the empirical 

literature (see Foster and Rosenzweig 2010), the choice of information channel by farmers matters 

in the adoption of new technologies, as it relates to raising farmers’ awareness and interest in the 

technology, and their readiness to invest in these technologies. Additionally, due to differences in 

the mode of information delivery by a chosen channel, farmers’ outcome levels may also differ, 

resulting in farmers self-selecting into channels that they perceive will offer the highest benefits, 

resulting in selectivity bias and inconsistent estimation (Heckman, 1979). Another problem is that 

when the conditional outcome involved is binary, the issue of reverse causality may arise due to 

simultaneity problem (Heckman, 1978). To consistently estimate equation (4), we address these 

problems in the sections that follows. 

2.3.2 Identification Strategy 

This section presents the procedure we employ to account for selection bias and potential 

endogeneity in our outcome variables that are continuous, such as yields, farm net returns and 

inoculant knowledge. We consider two available information channels, which include ICT-based 

extension channel (ICT) and Conventional extension channel (CE). We let 𝑗 represent the channel 

indicator, such that an individual farmer’s conditional benefits for choosing a given channel can be 

denoted as 𝑌𝑖𝑗, so that {𝑌𝐼𝐶𝑇 , 𝑌𝐶𝐸}∀𝑌𝑖𝑗; where 𝑌𝐼𝐶𝑇 and 𝑌𝐶𝐸 are farmers’ conditional benefits for 

choosing to participate in either ICT-based or Conventional extension channels, respectively. We 
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can re-specify the conditional outcome equation (4) in terms of the information channel chosen as 

follows; 

 𝑌𝑖𝑗 = 𝛼0 + 𝑋𝑖𝛽 + 𝐷𝑗𝛾 + 휀𝑖𝑗        (5) 

where 𝑋, is a vector of observed farmers’ characteristics, 𝐷𝑗  is a binary participation decision 

indicator, which is equal to 1, if the farmer choose to participate in a given channel and 0 otherwise, 

𝛼0 is a constant, 𝛽 and 𝛾 are parameters of interest and 휀𝑗 is a channel-specific error term. But the 

participation decision may be potentially endogenous as unobserved factors (such as age, gender, 

education, distance to the nearest extension office, availability of electricity, etc) that determine a 

farmer’s participation decision in a given information channel may correlate with that of the 

conditional benefits from participation. Intuitively, a farmer will participate if the conditional net 

benefits for participation is greater than that of non-participation. Let  𝐷𝑗
∗ be a latent indicator of 

the net benefits for participation observed by the econometrician as 𝐷𝑗 , a binary indicator which 

equals 1, if 𝐷𝑗
∗ > 0, the farmer will participate, and 0 otherwise. We can then express the farmer’s 

participation decision in terms of observable characteristics as follows; 

 𝐷𝑗 = 𝑍𝑖𝛿 + 𝜖𝑖𝑗 ,     𝐷𝑗 = 1[𝐷𝑗
∗ > 0] and 𝐷𝑗 = 0[𝐷𝑗

∗ < 0]    (6) 

where 𝑍 is a vector of observed characteristics that directly affect 𝐷𝑗  but not 𝑌𝑗 (variables excluded 

from the model of 𝑌𝑗, i.e., the instruments for identifying 𝐷𝑗 , the participation decision), 𝛿 is a 

vector of parameters and 𝜖𝑗 is the error term. Therefore, for any information channel that is chosen, 

two regimes of conditional outcomes can be observed, which can be expressed as below; 

For ICT-Based Extension Channel: 

Regime 1: 𝑌𝐼𝐶𝑇1 = 𝑋𝑖𝛽 + 𝜇1,   if  𝐷𝑗 = 1[𝐷𝑗
∗ > 0]     

Regime 0: 𝑌𝐼𝐶𝑇0 = 𝑋𝑖𝛽 + 𝜇0,   if  𝐷𝑗 = 0[𝐷𝑗
∗ < 0]        (7) 
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For Conventional Extension Channel: 

Regime 1: 𝑌𝐶𝐸1 = 𝑋𝑖𝛽 + 𝜇1,   if  𝐷𝑗 = 1[𝐷𝑗
∗ > 0]     

Regime 0: 𝑌𝐶𝐸0 = 𝑋𝑖𝛽 + 𝜇0,   if  𝐷𝑗 = 0[𝐷𝑗
∗ < 0]         (8) 

where 𝑌𝐼𝐶𝑇1, and 𝑌𝐶𝐸1, are the conditional benefits from participation in ICT-based and 

Conventional channels respectively, 𝑌𝐼𝐶𝑇0, and 𝑌𝐶𝐸0 are the counterfactual cases for non-

participation, respectively, 𝜇 is the error term and all others remain as defined earlier.  

Also, our interest in this study is to compare the impact of the two information channels. To enable 

us do such comparison, we specify the inter-channel comparison conditional outcomes model as 

follows; 

For ICT-Based versus Conventional Extension Channel: 

Regime ICT: 𝑌𝐼𝐶𝑇 = 𝑋𝑖𝛽 + 𝜇𝐼𝐶𝑇,   if  𝐷𝑗 = 1[𝐷𝑗
∗ > 0]     

Regime CE: 𝑌𝐶𝐸 = 𝑋𝑖𝛽 + 𝜇𝐶𝐸,   if  𝐷𝑗 = 0[𝐷𝑗
∗ < 0]        (9) 

where 𝑌𝐼𝐶𝑇, is the conditional benefits for participating in ICT-based and 𝑌𝐶𝐸, is the  counterfactual 

case, if the farmer chooses to participate in the Conventional channel instead of ICT-Based, 𝜇𝐼𝐶𝑇 

and 𝜇𝐶𝐸 are the error terms, respectively, and all others remain as defined before. 

2.3.3 Simultaneity Bias Correction and Participation Decision on Binary Outcomes 

On the other hand, when the conditional outcome 𝑌𝑗 is binary, as in this case (where inoculant 

adoption equals 1 if the farmer adopts and 0 otherwise) and the observed potential endogenous 

participation decision 𝐷𝑗  is also binary, then, the conditional benefits in terms of information 

channel chosen can be expressed as (Han and Vytlacil 2017 and Han and Lee 2019) below; 

For ICT-Based Extension Channel: 

𝑌𝐼𝐶𝑇 = 𝟏[𝑋𝑖𝛽 + 𝐷𝑗𝛾 − 휀𝑖𝑗 ≥ 0], and 𝑌𝐼𝐶𝑇 = 0, Otherwise  

𝐷𝐼𝐶𝑇 = 𝟏[𝑋𝑖𝛽 + 𝑍𝑖𝛿 − 𝜖𝑖𝑗 ≥ 0], and 𝐷𝐼𝐶𝑇 = 0, Otherwise    (10) 
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For Conventional Extension Channel: 

𝑌𝐶𝐸 = 𝟏[𝑋𝑖𝛽 + 𝐷𝑗𝛾 − 휀𝑖𝑗 ≥ 0], and 𝑌𝐶𝐸 = 0, Otherwise 

𝐷𝐶𝐸 = 𝟏[𝑋𝑖𝛽 + 𝑍𝑖𝛿 − 𝜖𝑖𝑗 ≥ 0], and 𝐷𝐶𝐸 = 0, Otherwise    (11) 

where 𝑌𝐼𝐶𝑇 and 𝑌𝐶𝐸 are the binary conditional outcomes from participation (i.e., 𝑌𝐼𝐶𝑇 = 1, if the 

farmer adopts the inoculant, conditional on participating in ICT-based extension channel and 

𝑌𝐼𝐶𝑇 = 0, otherwise; and same goes for 𝑌𝐶𝐸), 𝐷𝐼𝐶𝑇 and 𝐷𝐶𝐸  are the indicators for the farmer’s 

decision to participate in  ICT-based and Conventional extension channels respectively, all other 

variables remain as defined earlier. We follow similar approach as in equation (9) to estimate the 

inter-channel impact for comparison. 

2.4 Estimation Strategy 

Standard selectivity models estimation often rely on multivariate normality (MVN) assumption, 

whereby  𝜇 in the outcome equation and 𝜖 in the participation equation are assumed to be normally 

distributed and uncorrelated (i.e., corr(𝜇, 𝜖) = ρ). But the MVN assumption may break down, 

especially when there is tail dependence, and the distribution becomes non-normal (Zimmer 2012). 

When this happens, traditional selectivity models such as Heckman selection, endogenous 

switching regression, and double selection models, which are based on the strong MVN assumption 

becomes less helpful and unsuitable (Smith 2003). The weakness of the MVN statistical 

assumption on which most selectivity models are based, is well documented in the econometrics 

literature, resulting in many employing generalized parametric procedures (e.g., Lee 1984), semi-

parametric and non-parametric approaches (e.g., Härdle and Manski 1993) to relax the assumption.  

In the context of these difficulties, using alternative multivariate distribution, such as the copula 

approach, that allows for non-normality becomes useful (Smith 2003).  In line with Smith (2003; 

2005), we employ the copula function approach in this study. The copula approach allows the 
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modelling of selectivity based on multivariate non-normality, but retaining the MVN as a special 

case. The copula approach induces a joint distribution by specifying the marginal distribution and 

the function that binds them together (i.e. the copula). Thus, parameterizing the dependence 

structure to capture all the joint behavior (i.e., both observable and unobservable), which then frees 

the location and the scale structures, enabling them to take different distributions (Smith 2003). 

Our estimation strategy in this study is as follows; first, we estimate the impact of the extension 

channels on the continuous outcomes (i.e., yields, farm net returns and inoculant knowledge) using 

the mix-copula2 endogenous switching regression approach (Hasebe 2013). Second, we analyze 

the impact of the extension channels on the binary outcome (i.e., inoculant adoption) using the mix-

copula recursive bivariate probit approach of Mara et al. (2020). Both approaches are estimated 

using full information maximum likelihood approach (FIML). Using mixture of copulas in the 

specifications of the marginal and the joint distributions result in better model fit (Zimmer 2012). 

For parsimonious reasons, we assume a bivariate copula distribution for both the binary and 

continuous outcomes. 

2.4.1 Mixed-Copula Endogenous Switching Regression Specification (MCESR) 

 In line with Hasebe (2013), we let F and f represent the cdf and pdf respectively, 𝐹𝐼𝐶𝑇(𝑌𝐼𝐶𝑇) and 

𝐹𝐶𝐸(𝑌𝐶𝐸) denote marginal cdfs, respectively, and 𝐹𝐼𝐶𝑇,𝐶𝐸(𝑌𝐼𝐶𝑇,𝑌𝐶𝐸) be a bivariate joint cdf of the 

outcomes, which are assumed to have continuous support throughout. The copula function can be 

specified as follows; 

𝐹𝐼𝐶𝑇,𝐶𝐸(𝑌𝐼𝐶𝑇,𝑌𝐶𝐸) = ∁{𝐹𝐼𝐶𝑇(𝑌𝐼𝐶𝑇), 𝐹𝐶𝐸(𝑌𝐶𝐸); 𝜃𝐼𝐶𝑇 𝐶𝐸⁄ } = ∁(𝜇𝐼𝐶𝑇 , 𝜇𝐶𝐸; 𝜃)   

             = ∁(𝜇𝐼𝐶𝑇, 𝜖; 𝜃)    

             = ∁(𝜇𝐶𝐸 , 𝜖; 𝜃)  (12)       

                                                           
2 Mixed-copula as used here refers to the combination of different copulas either from the same family or from different families of copulas, such 

as combining different Archimedean and/or Elliptical family of copulas to avoid misspecification and improve model fit.  



35 
 

where 𝜃 is a dependence parameter, ∁(. ; . ) is a bivariate copula function and all other variables 

remain as defined earlier. With the cdf and pdf established, a parsimonious log-likelihood function 

for the bivariate copula for the endogenous switching regression model can be specified as (Hasebe 

2013); 

𝐿𝐿 = ∏ {
𝜕

𝜕𝜇𝑗

𝑁
𝑖=1 ∁(𝜇𝑗 , 𝜖𝑗; 𝜃𝑗)x𝑓𝑗(𝜖𝑗)}

𝐷𝑗=1[{1 −
𝜕

𝜕𝜇𝑗
∁(𝜇𝑗, 𝜖𝑗; 𝜃𝑗)x𝑓𝑗(𝜖𝑗)}]

𝐷𝑗=0 (13) 

where 𝑓𝑗 is the marginal pdf of the participation equation and all other variables remain as defined.  

In the impact evaluation literature, interest lies in the average treatment effect on the treated (ATT). 

That is, the effect of farmer’s participation on the conditional outcomes. In line with Hasebe (2013), 

we compute the ATT as follows;  

𝐴𝑇𝑇 = 𝐸(𝑌𝑗1 − 𝑌𝑗0|𝑋, 𝐷𝑗 = 1) = 𝑋′𝛽𝑗1 − 𝑋
′𝛽𝑗0 + 𝐸(𝜇𝑗1 − 𝜇𝑗0|𝜖𝑗 > −𝑍′𝛿)  

                                         = 𝐴𝑇𝐸 + 𝐸(𝜇𝑗1|𝜖𝑗 > −𝑍′𝛿) − 𝐸(𝜇𝑗0|𝜖𝑗 > −𝑍
′𝛿) (14) 

where ATE is the average treatment effect, measured as 𝐴𝑇𝐸 = 𝐸(𝑌𝑗1 − 𝑌𝑗0|𝑋
′𝛽𝑗1 , 𝑋

′𝛽𝑗0) =

(𝑋′𝛽𝑗1 − 𝑋
′𝛽𝑗0),  and all other variables remain as defined earlier. 

2.4.2 Mixed-Copula Recursive Bivariate Probit Specification (MCRBP) 

Conversely, we let F and f represent the cdf and pmf (i.e., the probability mass function) 

respectively, 𝐹𝑌𝑗(𝑌𝑗) and 𝐹𝐷𝑗(𝐷𝑗) denote marginal cdfs, respectively, and 𝐹𝑌𝑗,𝐷𝑗(𝑌𝑗,𝐷𝑗) be a 

bivariate joint cdf of the outcomes. Following Trivedi and Zimmer (2017) and Mara et al. (2020), 

the recursive bivariate probit copula can then be expressed as; 

𝐹𝑌𝑗,𝐷𝑗(𝑌𝑗,𝐷𝑗; 𝜃) = ∁ (𝐹𝑌𝑗(𝑌𝑗), 𝐹𝐷𝑗(𝐷𝑗); 𝜃) − ∁ (𝐹𝑌𝑗(𝑌𝑗 − 1), 𝐹𝐷𝑗(𝐷𝑗); 𝜃) 

                        − ∁ (𝐹𝑌𝑗(𝑌𝑗), 𝐹𝐷𝑗(𝐷𝑗 − 1); 𝜃) + ∁ (𝐹𝑌𝑗(𝑌𝑗 − 1), 𝐹𝐷𝑗(𝐷𝑗 − 1); 𝜃)      (15)  
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The log-likelihood (LL) is obtained by taking the natural logarithm of the specification in equation 

(15) and summing over all observations (Trivedi and Zimmer 2017). In line with this, we specify 

the log-likelihood function as follows; 

𝐿𝐿 =∑𝑙𝑜𝑔

𝑁

𝑖=1

[∁ (𝐹𝑌𝑗(𝑌𝑗), 𝐹𝐷𝑗(𝐷𝑗); 𝜃) − ∁(𝐹𝑌𝑗(𝑌𝑗 − 1), 𝐹𝐷𝑗(𝐷𝑗); 𝜃) 

                        − ∁ (𝐹𝑌𝑗(𝑌𝑗), 𝐹𝐷𝑗(𝐷𝑗 − 1); 𝜃) + ∁ (𝐹𝑌𝑗(𝑌𝑗 − 1), 𝐹𝐷𝑗(𝐷𝑗 − 1); 𝜃)]  (16) 

Following Han and Lee (2019), the average treatment effect on the treated (ATT), which measures 

a well identified impact of participation on the conditional binary outcome (i.e. inoculant adoption) 

can be obtained as follows; 

𝐴𝑇𝑇 = 𝐸(𝑌𝑗1 − 𝑌𝑗0|𝑋, 𝐷 = 1) = Pr[𝑌𝑗1 = 1,𝐷𝑗 = 1|𝑋, 𝑍 ] − Pr[𝑌𝑗1 = 0,𝐷𝑗 = 1|𝑋, 𝑍 ]  

                                    = 𝐹𝜀𝑗(𝑋
′𝛽𝑗1 + 𝛿1) − 𝐹𝜀𝑗(𝑋

′𝛽𝑗1)   (17)   

The ATT as expressed in equation (17) is much preferred to the ATT, usually computed in classical 

recursive bivariate estimations of this nature in the literature (e.g. Ma and Abdulai 2017), without 

the inclusion of an instrument for identification. As argued by Han and Lee (2019), without an 

instrument, even if all the predicted probabilities are used to derive the ATT, the bias and lack of 

identification that the ATT suffers can still not be rectified.  

2.5 Data  

2.5.1 Sampling Procedure 

The study employs data from a recent survey of farm households in the northern region of Ghana. 

The survey was conducted from June to August, 2018. The sample was drawn using a multistage 

sampling technique. Based on the proportion of beneficiary communities (78%) in the inoculant 

dissemination extension program and intensity of soybean production in Ghana, northern region 

was purposively selected. Cluster sampling technique was employed to zone the region into two 

clusters, consisting of eastern corridor zone (ECZ) and western corridor zone (WCZ). Based on 
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participation status of districts in the extension program and intensity of soybean production at the 

districts level within the clusters, eight (8) districts, comprising of four (4) from each cluster were 

purposively sampled. From the ECZ, Yendi, Saboba, Chereponi and Karaga districts were selected, 

while in the WCZ, East Mamprusi, East Gonja, Savelugu and Kumbungu districts were selected. 

In consultation with the field officers and agriculture extension agents (AEAs) in the selected 

districts, 5-7 communities were proportionately sampled, based on the extension channel received, 

extension program participation, and farmer population.  One farmer-based organization (FBO) 

was randomly selected from a list of FBOs that participated in the extension dissemination program 

and another randomly selected from a list of FBOs that did not participate in the program.   Using 

a lottery approach, we randomly drew five farmers from each FBO. After a preliminary interview 

session with each of the selected farmers, using a computer assisted personal interview (CAPI), a 

list of the farmers’ information network members (INMs) was compiled. The CAPI random 

number generator then used farmers’ unique identification numbers to randomly sample three 

network members from each farmer’s INMs for interview. A total of 600 farm households, 

consisting of 325 farmers who participated in the inoculant dissemination program and 275 who 

did not participate in the program were interviewed in a face-to-face session. 

2.5.2 Measuring the Farmer Inoculant Knowledge 

The inoculant is a knowledge intensive technology, which requires that farmers understand and 

follow the right procedures of application in order to obtain its full benefits. To measure farmers’ 

knowledge on inoculant application, first, we obtained samples of extension dissemination 

materials (e.g. video documentaries and audio clips, scientific guide on inoculant application and 

instructions on the labels of the inoculant packaging materials) from the frontline organizations 

that were directly involved in the dissemination exercise. Due to space constraints, we present 

detailed description on the structure of the test in Table A1 in the appendix. We synthesized the 
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entire procedure3 into four key thematic sections and examined farmers on it during the survey. 

The four sections are; (1) confirmatory test: where we tested farmers’ ability to physically identify 

at least one brand4 of full packaged inoculant and a placebo and then, raw inoculant sample and a 

placebo. As part of the confirmatory test, we also tested farmers’ ability to identify crops that 

inoculants can be applied on, in order to assess farmers’ knowledge on choosing the appropriate 

inoculant type for the right crop5. (2)Technical recommendation test section, which we further 

divide into two sub-measures. The first sub-measure tested farmers’ ability to identify standard 

quantities and measurements, as well as materials that are required for proper inoculation to start. 

In the second sub-measure, we employed both objective and subjective test procedures to test 

farmers’ knowledge on the correct inoculation process. In the objective test, farmers’ ability to 

demonstrate the inoculation process through recall from memory was tested (i.e., ‘know by 

memory’), while in the subjectivity test, an enumerator mentioned each step in the application 

process and the farmer identified it as either true or false (Kondylis et al. 2015). (3) Precautionary 

measures test: we divide this section into general precautions and specific precautions. The general 

precautions tested farmers’ ability to identify the right and wrong procedures as were contained in 

the extension materials, while the specific precaution test focused on farmers’ inoculant storage 

knowledge. The final section (4) tested farmers’ understanding of the reasoning behind certain 

critical stages in the inoculation process, such as the need to air-dry inoculated seeds instead of sun 

drying. We allocate one point score to each correct answer provided by a farmer to a question in 

each section, except section four, which we score three points, for tasking the cognitive ability of 

                                                           
3 We validated our inoculant knowledge test questions with the frontline organization that carry out the dissemination intervention. 
4 Specific inoculant brands we used for farmer identification are Sarifix, Legumfix, Biofix and Nodumax, the placebo was cow dunk, and a well-

known dairy product packaged similarly as the inoculant for the raw and packaged inoculants respectively. 
5 Different types of the inoculant are made for different leguminous crops such as soya bean, groundnuts, cowpea etc. 
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the farmer. This gives a total score of fifty points, which we convert to a continuous variable on 1 

– 100 point scale. 

2.5.3 Descriptive Statistics and Mean Differences 

The descriptive statistics of our data is presented in Table 1. The table shows that the average soy 

yield of a farmer is 798kg/ha, and on average 780GHC/ha as farm net returns. Average knowledge 

test score of a farmer is 40%, while on average 51% of farmers adopted the inoculant technology. 

The ICT-based extension channels considered in this study is video documentary and radio 

listening clubs. Due to the smaller number of farmers who used the individual channels, we 

combined both the video and the listening club users as one sample for the ICT-based channel, in 

order to generate enough sample power for statistical comparison. Table 1 shows that 30% of our 

total sample of farmers participated in the ICT-based channel. The Conventional channels 

considered are farmer field days and field demonstrations also combined as one channel to obtain 

good sample power for statistical analysis. Table 2.1 shows that 24% of the sample population of 

farmers participated in the Conventional channel. As shown in Table 1, the pool sample of farmers 

(i.e., the AES-Pooled Channel) who participated in either of the extension channels constitute 54%, 

while the remaining 46% did not participate in any of the extension channels, forming the basis for 

the analysis in this study.  
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Table 2. 1 Descriptive Statistics and Variable Definitions 

Variable Definition Mean SD Min Max 

Outcomes      

Yields Soybean yield per hectare (Kg/ha) 798.06 781.51 32.41 5509.42 

Farm Net Returns Gross revenue less variable cost (GHC/ha) 779.82 665.85 75.11 4205.40 

Knowledge Test Score Inoculant knowledge test score (%) 40.105 34.733 0 98 

Adopt-Inoculant  1 If farmer adopts inoculant, Otherwise=0 0.510 0.500 0 1 

Information Channels      

AES-Pooled-Channel 1 If farmer participates in any of the 

extension channels, Otherwise=0 

0.542 0.499 0 1 

ICT-Based-Channel 1 If farmer participates in only ICT-based 

extension Channel, Otherwise=0 

0.305 0.461 0 1 

CE-Channel 1 If farmer participates in only Conventional 

extension Channel, Otherwise=0 

0.237 0.425 0 1 

Control Variables      

Age Age of farmer (years) 41.56 13.32 18 87 

Gender 1 If farmer is male, 0 for female 0.708 0.455 0 1 

Edu Number of years of schooling (years) 2.792 4.687 0 21 

HHize Number of people  5.785 3.045 1 27 

Farmsize Area of land planted with soybean (ha) 5.045 4.371 5.045 4.371 

Labor Total labor used in soy cultivation (Worker-

days/ha) 

7.808 24.23 0.198 274.73 

Laborcost Total cost of person’s day worked per hectare 

(GHC) 

102.062 155.360 23.373 1542.618 

Agrochem Total amount of active ingredient in chemical 

used (kg/ha) 

4 7.186 0 87.22 

Chemcost Total cost of agrochemicals used per hectare 

(GHC) 

57.671 81.830 0 1688.850 

Credit Credit constrain = 0; Otherwise = 1 0.828 0.377 0 1 

FBOmem 1 If farmer is a member of FBO, Otherwise=0     

Resemtech  1 If inoculant usage resembles existing inputs 

usage, Otherwise=0 

34.933 35.22 0 100 

Techdiff 1 If inoculant application process is 

considered difficult, Otherwise=0 

0.278 0.267 0 1 

Location      

WCZ 1 If farmer is in Western Corridor Zone, 

Eastern Corridor Zone = 0 

0.567 0.496 0 1 

Soilqual Soil quality (scale 0 -1) 0.508 0.500 0 1 

Rainfall Amount of rainfall in (%) 61.63 16.24 20 100 

Instruments for Exclusion Restriction     

Distextoff Distance to nearest extension office in (km) 18.90 25.10 0.016 160.93 

Electgrid 1 If community is connected to the national 

grid for electricity supply, Otherwise = 0 

0.512 0.500 0 1 

Ethnicity  1 If dissemination language is in farmer’s 

mother tongue, Otherwise=0  

0.695 0.461 0 1 

Comextoff 1 if  community has extension agent, 

Otherwise = 0  

0.625 0.485 0 1 

Note: SD is standard deviation; Min and Max are minimum and maximum values respectively. 
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Table 2.2 presents the mean difference comparison of the socio-economic characteristics of the 

AES-Pooled sample of farmers (i.e., the AES-Participants) against the characteristics of farmers 

who did not participate in any extension channel at all (i.e., the Non-Participants). Table 2.2 shows 

that the AES-participants have higher yields and farm net returns, compared to Non-Participants, 

although the differences are not statistically significant. Average inoculant knowledge score as well 

as adoption for AES-Participants are statistically higher, compared to that of Non-Participants. On 

average, AES-Participants appear to be predominantly male older farmers living in smaller 

households with little education, compared to Non-Participants. AES-Participants also cultivate 

significantly smaller farms and face low labor demand as well as credit constraints, compared to 

Non-Participants. AES-Participants significantly experience more rainfall shocks but cultivate 

lands with higher soil quality, compared to Non-Participants. On average, AES-Participants live 

closer to the nearest extension office and in communities that are connected to the national 

electricity grid.  

We also compare the mean differences between farmers who participated in ICT-based extension 

to Conventional extension participants (CE-Participants) presented in Table 2.3. There appears to 

be significant differences between the two groups of farmers. Table 2.3 shows that ICT-based 

participants earned significantly higher soy yields and farm net returns from soy production, 

compared to CE-Participants. 
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Table 2. 2 Mean Difference Comparison between AES-Participants and Non-Participants 

Variables  AES-Participants  

(S.E) 

Non-Participants  

(S.E) 

Mean Diff.  

(S.E) 

Yields 805.538 

(44.556) 

789.231 

(45.612) 

16.307 

(64.083) 

Farm Net Returns 792.251 

(39.020) 

765.131 

(37.534) 

27.120 

(54.591) 

Knowledge Score 69.698 

(0.786) 

5.131 

(0.696) 

64.568*** 

(1.068) 

Adopt-Inoculant  0.618 

(0.027) 

0.382 

(0.029) 

0.237*** 

(0.040) 

Gender 0.738 

(0.024) 

0.673 

(0.028) 

0.066* 

(0.037) 

Age 42.557 

(0.794) 

40.389 

(0.722) 

2.168** 

(1.089) 

HHSize 5.566 

(0.166) 

6.044 

(0.187) 

-0.477** 

(0.249) 

Edu 2.754 

(0.260) 

2.836 

(0.283) 

-0.083 

(0.384) 

Farmsize 4.774 

(0.221) 

5.365 

(0.288) 

-0.592* 

(0.358) 

Agrochem 3.666 

(0.327) 

4.395 

(0.510) 

-0.729 

(0.589) 

Chemcost 56.064 

(2.721) 

59.570 

(6.547) 

-3.506 

(6.709) 

Labor 6.253 

(0.925) 

9.645 

(1.857) 

-3.392* 

(1.982) 

Laborcos 93.708 

(6.955) 

111.935 

(11.118) 

-18.228 

(12.718) 

Credit 0.778 

(0.023) 

0.887 

(0.019) 

-0.109*** 

(0.031) 

FBOmem 0.960 

(0.011) 

0.956 

(0.012) 

0.004 

(0.016) 

Resemtech 49.292 

(1.840) 

17.964 

(1.786) 

31.329*** 

(2.588) 

Techdiff 0.265 

(0.025) 

0.343 

(0.047) 

-0.078 

(0.051) 

WCZ 0.545 

(0.028) 

0.593 

(0.030) 

-0.048 

(0.041) 

Rainfall 60.431 

(0.924) 

63.055 

(0.943) 

-2.624** 

(1.327) 

Soilqual 0.645 

(0.010) 

0.598 

(0.013) 

0.046*** 

(0.016) 

Comextoff 0.600 

(0.027) 

0.655 

(0.029) 

-0.055 

(0.040) 

Distextoff 16.836 

(1.274) 

21.257 

(1.645) 

-4.421** 

(2.052) 

Electgrid 0.618 

(0.027) 

0.385 

(0.029) 

0.233*** 

(0.040) 

Ethnicity  0.723 

(0.025) 

0.662 

(0.029) 

0.061 

(0.038) 

No. of Observ. 325 275 
 

Note: *** , ** and * are 1%, 5% and 10% significance level respectively and values in brackets are standard errors. The table contains mean 

difference comparison of the characteristics between farmers who participated in agriculture extension services (AES) and farmers who did not 

participate. The column, Participant, represents farmers who participated in AES, while the column, Non-Participant, represents farmers who did 

not participate in AES at all.   
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Table 2. 3 Mean Difference Comparison between ICT-Based and CE Participants  
Variables  ICT-Based-Participants  

(S.E) 

CE-Participants  

(S.E) 

Mean Diff  

(S.E) 

Yields 887.126 

(67.392) 

700.393 

(52.408) 

186.734** 

(89.367) 

Farm Net Returns 866.251 

(55.813) 

696.884 

(52.067) 

169.367** 

(78.224) 

Knowledge Score 66.667 

(1.090) 

73.606 

(1.040) 

-6.939*** 

(1.540) 

Adopt-Inoculant  0.607 

(0.036) 

0.634 

(0.041) 

-0.027 

(0.054) 

Gender 0.754 

(0.032) 

0.718 

(0.038) 

0.036 

(0.049) 

Age 42.891 

(1.014) 

42.127 

(1.265) 

0.764 

(1.602) 

HHSize 5.667 

(0.197) 

5.437 

(0.282) 

0.230 

(0.334) 

Edu 2.770 

(0.347) 

2.732 

(0.394) 

0.038 

(0.525) 

Farmsize 5.249 

(0.319) 

4.162 

(0.287) 

1.087*** 

(0.441) 

Agrochem 4.511 

(0.514) 

2.578 

(0.327) 

1.933*** 

(0.651) 

Chemcost 63.575 

(4.283) 

46.384 

(2.690) 

17.192*** 

(5.410) 

Labor 7.938 

(1.496) 

4.082 

(0.848) 

3.857** 

(1.856) 

Laborcos 106.392 

(10.969) 

77.361 

(7.136) 

29.031** 

(13.951) 

Credit 0.770 

(0.031) 

0.789 

(0.034) 

-0.018 

(0.047) 

FBOmem 0.967 

(0.013) 

0.951 

(0.018) 

0.017 

(0.022) 

Resemtech 44.590 

(2.284) 

55.352 

(2.942) 

-10.762*** 

(3.666) 

Techdiff 0.286 

(0.034) 

0.239 

(0.036) 

0.046 

(0.050) 

WCZ 0.448 

(0.037) 

0.669 

(0.040) 

-0.221*** 

(0.054) 

Rainfall 59.563 

(1.200) 

61.549 

(1.442) 

-1.986 

(1.863) 

Soilqual 0.635 

(0.014) 

0.657 

(0.15) 

-0.021 

(0.021) 

Comextoff 0.601 

(0.036) 

0.599 

(0.041) 

0.003 

(0.055) 

Distextoff 20.697 

(2.074) 

11.859 

(1.038) 

8.838*** 

(2.526) 

Electgrid 0.623 

(0.036) 

0.613 

(0.041) 

0.010 

(0.054) 

Ethnicity  0.656 

(0.035) 

0.810 

(0.033) 

-0.154*** 

(0.049) 

No. of Observ. 183 142  

Note: *** , ** and * are 1%, 5% and 10% significance level respectively and values in brackets are standard errors. The table contains mean 

difference comparison of the characteristics of farmers who participated in ICT-based extension against farmers who participated in Conventional 

extension. The column, ICT-based Channel, represents the mean characteristics of ICT-based extension participants, while the column, CE Channel, 

represents that of Conventional extension participants.  
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However, in terms of inoculant knowledge test scores, ICT-based participants perform significantly 

lower than CE-Participants. The difference in average inoculant adoption between the two 

extension channels is statistically insignificant. The table also shows that ICT-based participants 

significantly operate larger farms with higher usage of agrochemicals and labor, resulting in higher 

agrochemical and labor cost in production, compared to CE-Participants. Table 3 further reveals 

that ICT-based participants live further away from the nearest extension office, compared to CE-

Participants.  

Though, there appears to be significant differences in yields, farm net returns as well as inoculant 

knowledge scores and adoption between AES-Participants and Non-Participants, as well as ICT-

based and CE extension participants, as discussed above, information on average differences alone 

is inadequate to explain the decisions farmers make, because the average differences do not account 

for other confounding factors that are heterogeneous among farmers in a given population. We 

therefore employ appropriate econometric techniques to further analyze the differences in farmers’ 

extension participation and technology adoption decisions, as one based on a selection process 

taking into account the expected benefits from participation. We present and discuss the empirical 

results in the next section. 

2.6 Empirical Results 

First, we performed an exploratory analysis to choose the best performing copula, using the Akaike 

Information Criteria (AIC) for the binary outcome model and Vuong’s (1989) test for the 

continuous outcome models. Based on the AIC, Student’s-t distribution is chosen as the best copula 

for the marginals of both the ICT-based channel and the Conventional channel (CE). For the pooled 

channel (AES-Pooled) Clayton copula is chosen, while a rotated Gumbel (Gumbel-2700) and 

unrotated Gumbel distributions are chosen for the channel choice and adoption decisions, 

respectively. Due to the binary nature of both the intervention (i.e. farmer’s extension channel 
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choice) and the expected outcome of interest (i.e. farmer’s inoculant adoption decision), a probit 

link function with Bernoulli distribution is employed for the estimation. We report the copula(s) 

chosen at the top row and the selection criteria statistic at the bottom row of tables with the results. 

2.6.1 Determinants of Extension Participation and Inoculant Adoption 

In Table 2.4, we present estimates from the copula recursive bivariate probit (CRBP) model for the 

binary outcome variable, that is, inoculant adoption decision. The estimates represent the 

conditional probabilities of farmers’ adoption of the inoculant technology conditional on 

participation in a given extension channel. Tables 2.5, 2.6 and 2.7 present estimates from the copula 

endogenous switching regression (CESR) model for the continuous outcome variables, that is, 

inoculant knowledge scores, yields and farm net returns, respectively. In the interest of brevity, we 

focus the discussion on Table 2.4, as it covers the determinants of the two decisions, that is, the 

extension channel choice and that of inoculant adoption decisions, respectively. We will, however, 

make reference to the continuous outcomes’ Tables as the need arises for purposes of comparison. 

To begin with, we discuss identification of the recursive bivariate model, as using observational 

data to estimate a binary outcome resulting from a binary decision (such as adoption) is an arduous 

task, because of identification issues arising from endogeneity and selection bias. Marra et al. 

(2020) and Hans and Lee (2019) have demonstrated that this can be overcome in the copula 

framework, with the help of an instrument. In this regard, we use Ethnicity, which determines the 

native spoken language as instrument for identification. It is expected that, if a farmer’s native 

language is used as the language of instruction in a particular extension channel during a 

dissemination program, it can influence the farmer’s choice of participation in that channel, but 

should not correlate with his inoculant adoption decision. As shown in Table 2.4, the coefficient of 

Ethnicity is positive and statistically significant in both the ICT-based and the CE models. We 

observe similar results in the yields and net returns models in Tables 2.6 and 2.7, suggesting that, 
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Ethnicity plays an important role in extension dissemination, particularly, when the extension 

channel involved is not based on person-to-person delivery (such as ICT-based channels) to 

generate farmers’ interest to participate.  

Table 2.4 also shows that the 𝜌𝑠 are negative and statistically significant at 1% level in the ICT-

based and CE models, suggesting that there is positive self-selection into both the extension 

channel choice and the inoculant adoption decisions. Similar pattern of statistical significance is 

observed in Tables 2.5, 2.6 and 2.7. However, whereas the signs of the coefficients indicate 

negative selection for participants, the signs for non-participants are positive in both ICT-based 

and CE channels. Generally, the 𝜌 in the pooled model (i.e. Model 1) shows positive selection on 

participation in extension delivery, suggesting that farmers with below-average yields and net 

returns have a higher probability of participating in the extension delivery programs.   

Identification of the recursive bivariate model also relies on first order stochastic dominance 

(FOSD), whereby the distribution of the correlations between the marginals either show an 

increasing or decreasing concordance (Trivedi and Zimmer 2017; Hans and Lee 2019; Mara et al., 

2020). The results in Table 2.4 show that the coefficient of the Kendall’s tau (𝜏) is negative and 

statistically significant (at 1% level) for both the ICT-based and CE models. The signs of the 

confidence intervals (i.e. the lower and upper bounds) are all negative, suggesting concordance in 

the distributions of the correlations. 
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Table 2. 4 Copula Recursive Bivariate Probit Estimates – Inoculant Adoption (Discrete) 
 Model 1: Clayton [p-b-b] Model 2: Student-t [p-b-b] Model 3: Student-t [p-b-b] Model 4: Gumbel -270° Gumbel [p-b-b] 

Variable AES-Pool Ino-Adoption ICT-Base-Part Ino-Adoption CE-Part Ino-Adoption ICT-vs-CE-Part Ino-Adoption 

 Coeff (S.E) Coeff (S.E) Coeff (S.E) Coeff (S.E) Coeff (S.E) Coeff (S.E) Coeff (S.E) Coeff (S.E) 

Const. 1.491**(0.646) -3.658***(1.067) -0.228(0.652) -3.388***(0.965) 0.311(0.687) -3.904***1.001) -0.492(0.853) -3.529**(1.780) 

AESChannel - 0.317*(0.179) - 1.1202***(0.502) - 1.586***(0.446) - -1.227*(0.668) 

Age -0.049**(0.024) 0.086**(0.037) 0.006(0.023) 0.065**(0.035) -0.054**(0.024) 0.101***(0.037) 0.036(0.029) 0.139***(0.056) 

Age2 0.001***(3.0e-4) -0.001**(4.0e-4) -6.03e-4(2.42e-4) -0.001*(4.0e-4) 0.001***(2.0e-4) -0.001***(4.0e-4) -3.5e-4(3.0e-4) -1.4e-3***(5.7e-4) 

Edu -0.015(0.013) -0.002(0.021) -0.008(0.013) 0.002(0.019) -0.005(0.014) 0.002(0.019) 4.7e-3(0.018) 0.038(0.037) 

Farmsize -0.012(0.023) 0.019(0.039) -0.001(0.023) 0.013(0.036) -0.005(0.031) 0.016(0.036) -0.022(0.040) -0.013(0.065) 

HHSize -0.034*(0.019) -0.003(0.031) -0.009(0.020) 0.001(0.029) -0.028(0.020) 0.003(0.030) 0.026(0.027) 0.062(0.043) 

Gender 0.178(0.128) -0.456**(0.213) 0.131(0.134) -0.415**(0.204) 0.091(0.142) -0.472**(0.209) 0.060(0.182) -0.407(0.343) 

Soilqual 0.501*(0.279) 0.364(0.450) 0.025(0.292) 0.379(0.417) 0.578*(0.317) 0.112(0.443) -0.264(0.421) -0.447(0.748) 

Rainfall -0.006*(0.003) -0.004(0.006) -0.007*(0.004) -0.003(0.005) -2.2e-4(0.004) -0.004(0.005) -0.006(0.005) -0.009(0.008) 

Credit -0.380***(0.147) 0.087(0.239) -0.309**(0.142) 0.158(0.221) 0.091(0.151) 0.057(0.222) -0.113(0.180) -0.055(0.359) 

WCZ -0.107(0.113) -0.132(0.188) -0.395***(0.117) 0.018(0.192) 0.314***(0.130) -0.244(0.175) -0.599***(0.159) -0.413(0.304) 

Laborcos 1.3e-4(0.001) 0.002(0.002) 0.001(0.001) 0.001(0.002) -0.001(0.001) 0.002(0.002) 2.9e-4(0.002) -8.8e-5(0.003) 

Agrochem 0.002(0.016) -0.031(0.029) 0.004(0.014) -0.027(0.025) -0.008(0.032) -0.015(0.025) -0.013(0.041) -0.033(0.052) 

Labor -0.003(0.007) -0.008(0.012) -0.005(0.007) -0.005(0.011) 0.001(0.010) -0.009(0.010) 0.010(0.014) 0.004(0.021) 

Chemcost -1.2e-4(0.001) 0.001(0.002) 0.001(0.001) 0.001(0.001) -0.002(0.003) 0.001(0.001) 0.008**(0.004) 0.002(0.006) 

Ethnicity 0.444**(0.206) - 0.455***(0.190) - 0.342*(0.188) - 0.511(0.333) - 

Distkm -0.004*(0.002) -0.006(0.004) 0.002(0.002) -0.006*(0.004) -0.012***(0.004) -0.001(0.004) 0.011***(0.004) 9.8e-4(0.006) 

Comextoff -0.140 

(0.115) 

-0.026(0.187) -0.055(0.118) -0.017(0.173) -0.109(0.127) 0.003(0.179) 0.126(0.159) 0.170(0.290) 

Electgrid  0.578***(0.109) 3.228***(0.189) 0.396***(0.114) 2.664***(0.408) 0.301***(0.121) 2.776***(0.307) -0.026(0.155) 3.486***(0.581) 

𝜌 5.12e-8***[4.14e-8, 100] -0.712***[-0.932, -0.165] -0.698***[-0.925, -0.179] 1.57***[1.070, 8.100] 

𝜏 2.56e-8***[2.07e-8, 0.980] -0.504***[-0.764, -0.105] -0.492***[-0.752, -0.115] 0.363***[0.061, 0.877] 

LL -500.693 -472.282 -422.974 -248.283 

No. of Observ. 600 600 600 325 

Joint Test Prob = 0.904 0.935 0.983 0.997 

AIC 1079.386 1022.564 923.948 574.566 

BIC 1250.866 1194.044 1095.428 722.135 
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Note: *** , ** and * are 1%, 5% and 10% significance level respectively and values in brackets are standard errors, ‘na’ means not available because the parameter is no analytically computed, 𝜏 is the Kendall’s 

concordance parameter. The alphabets in square brackets are the link functions and its distributions, where p indicates probit and b represents Bernoulli distribution. Each model represents participation in 

different extension channels. Model 1, represents a pool of all extension channels together for assessing general extension participation impact on outcomes, Models 2 and 3 represent participation in ICT-based 

and Conventional extension channels respectively, whereas Model 4 is the inter-channel comparison model, which compares participation in ICT-based extension against participation in Conventional extension 

as the base channel. 
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Table 2. 5 Copula Endogenous Switching Regression Estimates – Knowledge Test Score (%) 
 Model 1: Frank-Clayton [p-n-t] Model 2: Frank-Clayton [p-n-t] Model 3: Frank-Clayton [p-n-t] Model 4: Frank-Clayton [p-n-t] 

Variables  Select AES-Pool Non-Part Select ICT-Part Non-Part Select CE-Part Non-Part Select ICT-Part CE-Part 

 Coeff Coeff Coeff Coeff Coeff Coeff Coeff Coeff Coeff Coeff Coeff Coeff 

Const. 1.316** 

(0.653) 

4.202*** 

(0.018) 

2.262*** 

(0.569) 

-0.690 

(0.679) 

4.522*** 

 (0.070) 

3.059*** 

 (0.604) 

0.294 

(0.219) 

4.592*** 

 (0.322) 

2.980*** 

 (0.411) 

-1.267*** 

(0.096) 

4.590*** 

 (0.194) 

4.164*** 

 (0.195) 

Gender 0.141 

(0.179) 

-0.022*** 

(0.009) 

0.165 

(0.230) 

0.096* 

(0.055) 

-0.008 

(0.044) 

0.112 

(0.250) 

0.041 

(0.107) 

-0.009 

(0.010) 

0.175 

(0.157) 

0.058 

(0.036) 

-0.004 

(0.029) 

-0.025 

(0.024) 

Age -0.048*** 

(0.014) 

-0.0002 

(0.001) 

-0.038*** 

(0.006) 

0.026* 

(0.014) 

-0.002 

(0.004) 

-0.056*** 

(0.002) 

-0.056*** 

(0.007) 

0.002 

(0.002) 

-0.009 

(0.021) 

0.069*** 

(0.011) 

-0.011** 

(0.005) 

-0.001 

(0.001) 

Age2 0.001*** 

(0.0001) 

1.0x10-5 

(1.4x10-5) 

0.0006*** 

(0.0001) 

-0.0002 

(0.0002) 

2.2x10-5 

(4.0x10-5) 

0.001*** 

(4.3x10-5) 

0.001*** 

(0.0001) 

-2.0x10-5*** 

(4.3x10-6) 

0.0002 

(0.0002) 

-0.001*** 

(0.0002) 

0.0001*** 

(4.4x10-5) 

3.0x10-5*** 

(3.4x10-6) 

Edu -0.117** 

(0.061) 

-0.020 

(0.026) 

-0.529*** 

(0.141) 

0.013 

(0.080) 

-0.019 

(0.017) 

-0.263*** 

(0.006) 

-0.132*** 

(0.052) 

-0.008 

(0.018) 

-0.168** 

(0.078) 

0.093** 

(0.048) 

-0.026 

(0.024) 

-0.005 

(0.016) 

Techdiff -0.195*** 

(0.051) 

-0.023 

(0.014) 

0.164 

(0.108) 

0.005 

(0.080) 

-0.026 

(0.034) 

0.249*** 

(0.045) 

-0.190*** 

(0.037) 

0.001 

(0.005) 

-0.090* 

(0.051) 

0.091 

(0.129) 

-0.037 

(0.042) 

0.042 

(0.044) 

Resemtech 0.001 

(0.003) 

-0.0002 

(0.0003) 

0.0001 

(0.007) 

-0.004*** 

(0.001) 

0.0002 

(0.001) 

0.005*** 

(0.002) 

0.005*** 

(0.0001) 

-0.001*** 

(0.0001) 

-0.003 

(0.004) 

-0.005*** 

(0.0005) 

0.001*** 

(0.0001) 

0.0001 

(0.0001) 

Ethnicity 0.365*** 

(0.131) 

0.035*** 

(0.008) 

0.392*** 

(0.090) 

-0.252*** 

(0.067) 

0.091** 

(0.045) 

0.729*** 

(0.090) 

0.672*** 

(0.052) 

-0.091*** 

(0.004) 

0.013 

(0.049) 

-0.515*** 

(0.103) 

0.142*** 

(0.002) 

0.023* 

(0.014) 

FBOmem -1.133** 

(0.584) 

0.012 

(0.018) 

0.139 

(0.385) 

-0.063 

(0.066) 

-0.106* 

(0.058) 

0.188 

(0.319) 

-1.145*** 

(0.345) 

-0.013 

(0.210) 

0.484 

(0.516) 

0.239 

(0.192) 

-0.120 

(0.093) 

0.087 

(0.193) 

WCZ 0.011 

(0.072) 

0.049*** 

(0.003) 

0.121* 

(0.071) 

-0.386*** 

(0.050) 

0.105 

(0.066) 

0.309*** 

(0.031) 

0.391*** 

(0.010) 

-0.061 

(0.045) 

-0.184*** 

(0.021) 

-0.508*** 

(0.054) 

0.113*** 

(0.039) 

0.009 

(0.009) 

Comextoff -0.418*** 

(0.048) 

  -0.111*** 

(0.012) 

  -0.364*** 

(0.127) 

  -0.016 

(0.030) 

  

Electgrid 1.550*** 

(0.244) 

  0.546** 

(0.261) 

  1.179** 

(0.542) 

  0.388*** 

(0.086) 

  

Distextoff -0.005 

(0.006) 

  -0.001 

(0.005) 

  -0.012*** 

(0.003) 

  0.003 

(0.005) 

  

𝑙𝑛𝜎1 𝑙𝑛𝜎0⁄   -1.645*** 

(0.146) 

0.025 

(0.024) 

 -1.308*** 

(0.147) 

0.226*** 

(0.081) 

 -1.705*** 

(0.040) 

0.194*** 

(0.026) 

 -1.361*** 

(0.089) 

-1.774*** 

(0.080) 

𝜌1 𝜌0⁄   -11.835*** 

(0.013) 

1.363*** 

(0.185) 

 2.566*** 

(0.188) 

-1.853*** 

(0.044) 

 1.231*** 

(0.482) 

-2.331*** 

(0.451) 

 2.689*** 

(0.184) 

-0.748*** 

(0.245) 

𝜏1 𝜏0⁄   -4.0x10-6** 

(5.0x10-8) 

-0.149 

(na) 

 -0.867** 

(0.022) 

0.199 

(na) 

 -0.631** 

(0.112) 

0.246 

(na) 

 -0.880** 

(0.019) 

0.083 

(na) 

Wald test (𝜌 = 0) 5315.64***   28.22***   4.30*   29.39***   

LL -327.65   -647.68   -638.41   -125.67   

Sample(N) 600   600   600   600   

Wald chi2(12)      28.13***   28.34***   59.19***   43.65***   

Vuong’s statistic 0.016*** 

(0.003) 

  -0.037*** 

(0.005) 

  0.006*** 

(0.001) 

  -0.004 

(0.005) 

  

Note: *** , ** and * are 1%, 5% and 10% significance level respectively and values in brackets are standard errors, ‘na’ means not available because the parameter is no analytically computed, 𝜏 is the Kendall’s 

concordance parameter. The alphabets in square brackets are the link functions and its distributions, where p indicates probit and n, l, t represents normal, logistic and Student’s t distributions, respectively. 

Each model represent participation in different extension channels. Model 1, represents a pool of all extension channels together for assessing general extension participation impact on outcomes, Models 2 and 
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3 represent participation in ICT-based and Conventional extension channels respectively, whereas Model 4 is the inter-channel comparison model, which compares participation in ICT-based extension against 

participation in Conventional extension as the base channel. 
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Table 2. 6 Copula Endogenous Switching Regression Estimates – Yield (lnKg/ha) 
 Model 1: Frank-Gumbel [p-n-l] Model 2: Frank-Frank [p-n-t] Model 3: Frank-Frank [p-n-t] Model 4: Frank-Gumbel [p-l-l] 

Variables  Select AES-Pool Non-Part Select ICT-Part Non-Part Select CE-Part Non-Part Select ICT-Part CE-Part 

 Coeff. Coff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 

Const. 1.779** 

(0.911) 

4.956*** 

(0.359) 

4.964*** 

(0.494) 

-1.143 

(0.830) 

6.117***                                

(0.178)     

4.939*** 

 (0.225) 

0.199 

(0.361) 

5.117*** 

(0.922) 
4.932*** 

(0.58) 
-1.619*** 

(0.286) 

5.240*** 

 (0.076) 

4.633*** 

 (0.836) 

Gender 0.295 

(0.419) 

0.099*** 

(0.038) 

-0.137*** 

(0.026) 

0.152 

(0.415) 

0.079 

(0.301) 
-0.085*** 

(0.033) 

0.267*** 

(0.086) 

-0.162** 

(0.085) 
0.022 

(0.027) 

-0.019 

(0.062) 

0.228*** 

(0.053) 

0.022 

(0.074) 

Age -.071*** 

(0.022) 

0.009** 

(0.004) 

0.004 

(0.034) 

0.029 

(0.033) 

-0.014** 

(0.007)     
0.003 

(0.008) 

-0.069*** 

(0.010) 

0.029** 

(0.015) 
0.011 

(0.024) 

0.080*** 

(0.010) 

-0.0002 

(0.005) 

0.006 

(0.011) 

Age2 0.001*** 

(0.0003) 

-0.0001 

(0.0001) 

1.2x10-4 

(0.0004) 

-0.0003 

(0.0003) 

0.0001 

(0.0001) 

-4.1x10-5 

(0.0001) 

0.001*** 

(0.0001) 

-0.0003** 

(0.0001) 
-0.0002 

(0.0003) 

-0.001*** 

(0.0001) 

-2.12x10-5*** 

(2.1x10-6) 

-4.31x10-5 

(0.0001) 

HHSize -0.016 

(0.034) 

0.007 

(0.008) 

-0.009*** 

(0.003) 

0.017 

(0.043) 

0.007 

(0.030) 

-0.013*** 

(0.0003) 

-0.040 

(0.031) 

0.007 

(0.017) 
0.013 

(0.010) 

0.044 

(0.078) 

0.018 

(0.020) 

-0.005*** 

(0.002) 

Edu -0.232* 

(0.137) 

-0.092** 

(0.047) 

0.137  

(0.339) 

-0.033 

(0.078) 

-0.098 

(0.142) 

-0.040 

(0.192) 

-0.073 

(0.070) 

-0.086 

(0.077) 
0.010 

(0.227) 

0.140 

(0.200) 

-0.069*** 

(0.022) 

-0.216*** 

(0.083) 

Farmsize 0.018 

(0.019) 

0.223*** 

(0.014) 

0.218*** 

(0.037) 

-0.006 

(0.061) 

0.261*** 

(0.072) 

0.225*** 

(0.023) 

0.061 

(0.142) 

0.299*** 

(0.074) 
0.192*** 

(0.038) 

-0.055 

(0.156) 

0.212*** 

(0.022) 

0.304*** 

(0.015) 

Agrochem -0.029 

(0.019) 

-0.030** 

(0.016) 

-0.059** 

(0.031) 

-0.021 

(0.027) 

-0.028 

(0.045) 

-0.061*** 

(0.017) 

-0.068 

(0.155) 

-0.058*** 

(0.006) 
-0.041*** 

(0.017) 

0.002 

(0.077) 

-0.023*** 

(0.008) 

-0.077 

(0.091) 

Chemcost 0.003 

(0.002) 

0.003 

(0.003) 

0.006*** 

(0.002) 

0.007*** 

(0.001) 

0.001 

(0.003) 

0.006*** 

(0.0001) 

-0.001 

(0.008) 

0.005*** 

(0.002) 

0.005*** 

(0.001) 

0.008*** 

(0.002) 

0.002 

(0.002) 

0.004 

(0.007) 

Labor -0.006*** 

(0.001) 

-0.021*** 

(0.002) 

-0.017*** 

(4.3x10-5) 

0.001 

(0.012) 

-0.022*** 

(0.008) 

-0.017*** 

(0.002) 

-0.014 

(0.013) 

-0.043*** 

(0.017) 

-0.016*** 

(0.0003) 

0.027** 

(0.013) 

-0.019*** 

(0.001) 

-0.044*** 

(0.005) 

Laborcos 0.0004 

(0.001) 

0.002*** 

(0.001) 

0.002*** 

(0.0004) 

0.001 

(0.002) 

0.001 

(0.001) 

0.002*** 

(0.001) 

0.0002 

(0.001) 

0.002** 

(0.001) 

0.002*** 

(0.0004) 

-0.001 

(0.001) 

0.002*** 

(0.001) 

0.003*** 

(0.0001) 

Credit -0.563*** 

(0.054) 

0.035 

(0.107) 

-0.105*** 

(0.007) 

-0.315* 

(0.171) 

0.204 

(0.142) 

-0.049* 

(0.030) 

-0.309 

(0.261) 

0.151 

(0.135) 

-0.0002 

(0.126) 

-0.161 

(0.433) 

0.026 

(0.099) 

-0.007 

(0.027) 

Rainfall -0.004 

(0.005) 

0.001 

(0.001) 

0.0001 

(0.001) 

0.003 

(0.009) 

-0.002*** 

(0.0005) 

0.001 

(0.002) 

0.001 

(0.008) 

0.001 

(0.008) 

-0.002** 

(0.001) 

0.004 

(0.006) 

-0.002*** 

(0.0005) 

0.003 

(0.003) 

Soilqual 0.403*** 

(0.041) 

0.174*** 

(0.017) 

0.287 

(0.315) 

0.062 

(0.089) 

0.037 

(0.103) 

0.336 

(0.293) 

0.543 

(0.523) 

-0.121 

(0.529) 

0.153 

(0.112) 

-0.251 

(0.171) 

0.153 

(0.224) 

0.210*** 

(0.060) 

WCZ -0.293 

(0.187) 

0.005 

(0.013) 

0.114*** 

(0.026) 

-0.678*** 

(0.193) 

0.268 

(0.165) 

0.069*** 

(0.026) 

0.506*** 

(0.059) 

-0.169** 

(0.076) 

-0.013 

(0.039) 

-0.783*** 

(0.138) 

0.086** 

(0.041) 

-0.057 

(0.062) 

Comextoff -0.241*** 

(0.009) 

  0.058 

(0.125) 

  -0.217** 

(0.115) 

  0.337** 

(0.146) 

  

Distkm -0.004 

(0.009) 

  -0.004 

(0.010) 

  -0.006*** 

(0.001) 

  0.009 

(0.012) 

  

Electgrid 0.584*** 

(0.176) 

  0.234 

(0.513) 

  0.415*** 

(0.054) 

  0.048* 

(0.025) 

  

Ethnicity 0.091*** 

(0.033) 

  -0.407*** 

(0.159) 

  0.225 

(0.292) 

  -0.636*** 

(0.141) 

  

𝑙𝑛𝜎1 𝑙𝑛𝜎0⁄   -1.441*** 

(0.032) 

-0.737*** 

(0.096) 

 -0.877*** 

(0.091) 

-0.758*** 

(0.015) 

 -1.015*** 

(0.248) 

-0.662*** 

(0.022) 

 -1.433*** 

(0.025) 

-1.531*** 

(0.188) 

𝜌1 𝜌0⁄   -16.125*** 

(1.017) 

-3.115*** 

(0.399) 

 19.308*** 

(2.476) 

-3.424** 

(1.576) 

 20.343*** 

(0.801) 

-5.077*** 

(0.170) 

 -16.117*** 

(1.006) 

-3.092*** 

(0.141) 
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𝜏1 𝜏0⁄   -9.94x10-8** 

(1.01x10-7) 

0.317 

(na) 

 -0.810 

(na ) 

0.343 

(na) 

 -0.819 

(na) 

 0.462 

(na) 

 -1.0x10-7** 

(-6.3x10-8) 

 0.315 

(na) 

Wald test (𝜌 =

0) 

61.059***   3.5x107***   2.9x105***   478.779***   

LL -360.506   -345.433   -333.281   219.269   

Sample(N) 600   600   600   600   

Wald chi2(18)      30.42**   44.05***   38.41***   37.54***   

Vuong’s statistic 0.038*** 

(0.006) 

  -0.006* 

(0.003) 

  0.008*** 

(0.001) 

  0.006 

(0.004) 

  

Note: *** , ** and * are 1%, 5% and 10% significance level respectively and values in brackets are standard errors, ‘na’ means not available because the parameter is no analytically computed, 𝜏 is the Kendall’s 

concordance parameter. The alphabets in square brackets are the link functions and its distributions, where p indicates probit and n, l, t represents normal, logistic and Student’s t distributions, respectively. 

Each model represent participation in different extension channels. Model 1, represents a pool of all extension channels together for assessing general extension participation impact on outcomes, Models 2 and 

3 represent participation in ICT-based and Conventional extension channels respectively, whereas Model 4 is the inter-channel comparison model, which compares participation in ICT-based extension against 

participation in Conventional extension as the base channel. 
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Table 2. 7 Copula Endogenous Switching Regression Estimates – Farm Net Returns (lnGHC/ha) 
 Model 1: Frank-Gumbel [p-n-l] Model 2 : Clayton-Plackett [p-n-l] Model 3: Frank-Clayton [p-n-t] Model 4: Clayton-Plackett [p-n-l] 

Variables  Select AES-Pool Non-Part Select ICT-Part Non-Part Select CE-Part Non-Part Select ICT-Part CE-Part 

 Coeff. Coff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 

Const. 1.536*** 

(0.775) 

4.796*** 

(0.007) 

4.460*** 

(0.467) 

-1.056 

(0.895) 

5.390*** 

 (0.473) 

4.906*** 

 (0.249) 

0.478 

(0.455) 

4.827*** 

(0.222) 

4.527*** 

 (0.243) 

-1.434 

(1.208) 

5.055*** 

(0.341) 

4.725*** 

 (0.356) 

Gender 0.283 

(0.391) 

0.004 

(0.071) 

-0.046 

(0.060) 

0.113 

(0.221) 

0.074 

(0.084) 

-0.031 

(0.037) 

0.241*** 

(0.102) 

-0.080 

(0.057) 

-0.030 

(0.074) 

-0.002 

(0.261) 

0.014 

(0.131) 

-0.031 

(0.095) 

Age -0.0678** 

(0.019) 

0.007*** 

(0.001) 

0.024* 

(0.014) 

0.044 

(0.032) 

0.004 

(0.014) 

0.004 

(0.009) 

-0.051** 

(0.025) 

0.018*** 

(0.005) 

0.020*** 

(0.006) 

0.089** 

(0.039) 

0.003 

(0.011) 

0.004 

(0.008) 

Age2 0.001*** 

(0.0002) 

-0.0001*** 

(9x10-6) 

-0.0003** 

(0.0001) 

-0.0004 

(0.0003) 

-0.0001 

(0.0001) 

-0.0001 

(0.0001) 

0.001*** 

(0.0002) 

-0.0002*** 

(0.00004) 

-0.0002*** 

(0.0001) 

-0.001*** 

(0.0004) 

-0.00004 

(0.0001) 

-0.0001 

(0.0001) 

HHSize -0.013 

(0.041) 

0.019*** 

(0.007) 

0.001 

(0.003) 

0.017 

(0.032) 

0.005 

(0.009) 

0.004 

(0.006) 

-0.039 

(0.037) 

0.010*** 

(0.003) 

0.017*** 

(0.001) 

0.058 

(0.036) 

0.017* 

(0.009) 

0.014** 

(0.007) 

Edu -0.204* 

(0.121) 

-0.027** 

(0.014) 

0.184 

(0.147) 

0.066 

(0.075) 

0.029 

(0.039) 

0.056 

(0.042) 

-0.178** 

(0.085) 

0.032 

(0.059) 

0.115* 

(0.065) 

0.213 

(0.141) 

-0.001 

(0.064) 

-0.110 

(0.077) 

Farmsize 0.025 

(0.024) 

0.318*** 

(0.022) 

0.272*** 

(0.006) 

0.004 

(0.063) 

0.295*** 

(0.030) 

0.287*** 

(0.036) 

0.059 

(0.103) 

0.416*** 

(0.053) 

0.263*** 

(0.030) 

0.008 

(0.086) 

0.299*** 

(0.043) 

0.395*** 

(0.029) 

Agrochem -0.042* 

(0.024) 

-0.062*** 

(0.005) 

-0.090*** 

(0.011) 

-0.017 

(0.029) 

-0.046*** 

(0.011) 

-0.092*** 

(0.023) 

-0.030 

(0.075) 

-0.115*** 

(0.022) 

-0.069*** 

(0.019) 

-0.020 

(0.032) 

-0.050*** 

(0.010) 

-0.145*** 

(0.056) 

Chemcost 0.004 

(0.003) 

0.003*** 

(0.001) 

0.007*** 

(0.002) 

0.004 

(0.003) 

0.001 

(0.001) 

0.007*** 

(0.001) 

-0.003 

(0.004) 

0.005*** 

(0.001) 

0.006*** 

(0.001) 

0.005* 

(0.003) 

0.002 

(0.001) 

0.006 

(0.004) 

Labor -0.006*** 

(0.001) 

-0.016*** 

(0.001) 

-0.002 

(0.003) 

0.003 

(0.004) 

-0.016*** 

(0.002) 

-0.004 

(0.002) 

-0.014* 

(0.008) 

-0.047*** 

(0.012) 

-0.005*** 

(0.0002) 

0.011 

(0.008) 

-0.017*** 

(0.003) 

-0.036*** 

(0.004) 

Laborcos 0.001 

(0.001) 

-0.0003*** 

(0.0001) 

-0.001 

(0.001) 

-0.0002 

(0.001) 

-0.0002 

(0.0003) 

-0.001* 

(0.0005) 

-0.0002 

(0.0001) 

0.0004 

(0.001) 

-0.001** 

(0.0002) 

-0.001 

(0.001) 

-0.0002 

(0.0004) 

-0.0002 

(0.001) 

Credit -0.554*** 

(0.052) 

0.016 

(0.072) 

-0.095** 

(0.041) 

-0.265* 

(0.158) 

0.060 

(0.055) 

-0.026 

(0.053) 

-0.288 

(0.488) 

0.069 

(0.137) 

-0.0004 

(0.128) 

-0.091 

(0.170) 

-0.002 

(0.051) 

-0.017 

(0.035) 

Rainfall -0.004 

(0.005) 

-0.0002 

(0.0001) 

-0.0001 

(0.0001) 

-0.0003 

(0.003) 

0.0001 

(0.001) 

-0.0004 

(0.001) 

-0.001 

(0.006) 

0.001 

(0.001) 

-0.0003 

(0.001) 

0.002 

(0.005) 

0.0003 

(0.001) 

0.001 

(0.001) 

Soilqual 0.478*** 

(0.142) 

0.031 

(0.080) 

0.104 

(0.075) 

-0.103 

(0.325) 

-0.0003 

(0.147) 

0.175** 

(0.078) 

0.726*** 

(0.222) 

-0.253** 

(0.128) 

0.059 

(0.124) 

-0.626** 

(0.309) 

0.119 

(0.112) 

-0.005 

(0.167) 

WCZ -0.268 

(0.179) 

-0.063*** 

(0.016) 

0.010 

(0.034) 

-0.585*** 

(0.145) 

0.166*** 

(0.053) 

-0.016 

(0.031) 

0.408** 

(0.175) 

-0.123*** 

(0.065) 

-0.100*** 

(0.034) 

-0.688*** 

(0.188) 

0.098* 

(0.058) 

-0.069 

(0.055) 

Comextoff -0.164*** 

(0.063) 

  -0.00004 

(0.107) 

  -0.112 

(0.269) 

  0.107 

(0.103) 

  

Electgrid 0.556** 

(0.246) 

  -0.043 

(0.081) 

  -0.172 

(0.155) 

  -0.041 

(0.206) 

  

Ethnicity 0.045*** 

(0.023) 

  -0.143** 

(0.070) 

  0.107* 

(0.057) 

  -0.446*** 

(0.167) 

  

Distextof -0.0001 

(0.007) 

  -0.003*** 

(0.001) 

  -0.001 

(0.004) 

  -0.005** 

(0.002) 

  

𝑙𝑛𝜎1 𝑙𝑛𝜎0⁄   -1.776*** 

(0.123) 

-1.191*** 

(0.010) 

 -1.459*** 

(0.206) 

-1.161*** 

(0.070) 

 -1.455*** 

(0.212) 

-1.089*** 

(0.044) 

 -1.565*** 

(0.221) 

-1.310*** 

(0.050) 

𝜌1 𝜌0⁄   -15.669*** 

(1.005) 

-3.280*** 

(1.077) 

 -10.718*** 

(2.697) 

-3.156*** 

(0.528) 

 4.607 

(4.278) 

-2.344*** 

(0.788) 

 -9.718*** 

(2.824) 

-8.895*** 

(1.317) 
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𝜏1 𝜏0⁄   -1.57x10-7** 

(1.58x10-7) 

0.331 

(na) 

 na 

(na) 

-0.021** 

(0.011) 

 -0.980** 

(0.082) 

0.247 

(na) 

 na 

(na) 

-0.0001** 

(0.0001) 

Wald test(𝜌 =

0) 

9.274***   3.2x108***   4270.271***   4.6x107***   

LL -245.845   -228.010   -209.999   -131.134   

Sample(N) 600   600   600   600   

Wald chi2(18)      29.12**   34.01***   37.78***   23.62***   

Vuong’s 

statistic 

0.059*** 

(0.005) 

  -0.038*** 

(0.004) 

  0.015*** 

(0.004) 

  -0.064*** 

(0.005) 

  

Note: *** , ** and * are 1%, 5% and 10% significance level respectively and values in brackets are standard errors, ‘na’ means not available because the parameter is no analytically computed, 𝜏 is the Kendall’s 

concordance parameter. The alphabets in square brackets are the link functions and its distributions, where p indicates probit and n, l, t represents normal, logistic and Student’s t distributions, respectively. 

Each model represent participation in different extension channels. Model 1, represents a pool of all extension channels together for assessing general extension participation impact on outcomes, Models 2 and 

3 represent participation in ICT-based and Conventional extension channels respectively, whereas Model 4 is the inter-channel comparison model, which compares participation in ICT-based extension against 

participation in Conventional extension as the base channel. 
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The estimates in Table 2.4 also reveal that, the coefficients of the variables representing extension 

channel choice (i.e. AESChannel) are positive and statistically significant in both the ICT-based 

and CE adoption models (at 1% levels respectively), suggesting that extension channel choice 

positively impact on farmers’ inoculant technology adoption decision. In particular, the likelihood 

of inoculant adoption increases by 112% and 159% for ICT-based and CE participants, 

respectively. The magnitude of the changes is consistent with Oreopoulos and Petronijevic (2018) 

observation that person-to-person contact information channels have larger effects on outcomes, 

compared to technology mediated channels. The inter-channel comparison model (i.e. Model 4) 

also shows that farmers who participated in the CE channel are more likely (123%) to adopt the 

inoculant, compared to that of ICT-based. The implication of this finding is that, face-to-face 

communication channels tend to have greater influence on getting farmers to adopt a new 

technology, compared to technology-mediated channels, such as ICT-based extension channels. 

This is intuitive, given the fact that face-to-face channels afford farmers’ the opportunity to learn 

the correct usage of the new technology at first hand and also improve acceptance of the technology 

(Foster and Rosenzweig 2010). In spite of this, the positive effect of the ICT-based channel on 

adoption is consistent with the literature on ICT deployment in agricultural extension delivery (e.g. 

Aker 2011; Dzanku et al., 2020). However, considering that the effect size of the ICT-based 

channel (112%) and that of the inter-channel comparison model (123%) are close, suggests that in 

the presence of resource constraints to undertake face-to-face extension delivery, ICT-based 

channels could be an optimal choice. 

Furthermore, Table 2.4 shows that, farmer’s distance to the nearest extension office plays an 

important role in determining the type of extension channel to choose. For instance, in the ICT-

based and the Inter-channel comparison model (i.e. Model 4), the coefficients are positive and 

significant (at 1% level), suggesting that as the distance of a farmer’s location to the nearest 
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extension office increases by a kilometer, the likelihood of the farmer choosing ICT-based 

extension channel increases by 1.1%. On the other hand, a decrease in distance, increases the 

likelihood of CE choice by same margin (1.2%). A similar observation is made in Tables 2.5, 2.6 

and 2.7. 

Quite interesting is the coefficient of the variable representing connection to national electricity 

grid which is positive and statistically significant (at 1% level) across all models, suggesting that 

availability of electricity increases the likelihood of both participation in ICT-based extension as 

well as inoculant adoption. The positive and significant coefficient on CE participation suggests 

that availability of electricity in rural communities could be a pull factor for extension staff to reside 

in the communities, which could increase farmer’s extension contacts. We find a similar pattern in 

Tables 2.5, 2.6, and 2.7. The results show positive coefficient for farm size in all the outcome 

equations across all models, but only statistically significant for yields and net returns in Tables 

2.5 and 2.6, respectively, indicating that larger farms obtain higher yields and net returns relative 

to smaller farms.    

2.6.2 ICT Impact on Inoculant Adoption, Knowledge Score, Yield and Net Returns 

In this section, we present the treatment effects, which measure the impact of participation in the 

extension channels on farmers’ inoculant adoption, knowledge scores, as well as yields and farm 

net returns. The average treatment effect on the treated (ATT) estimates are presented in Table 2.8, 

consisting of four panels A, B, C and D, each containing estimates for knowledge scores, yields, 

net returns and inoculant adoption, respectively. For the binary outcome (i.e. inoculant adoption), 

the ATT represents the likelihood of inoculant adoption, conditional on participation. 

In terms of knowledge score, the results in Panel A of Table 2.8 shows that, farmers who 

participated in the ICT-based channel have almost twice recall probability (205%) compared to CE 

participants (174%), suggesting that farmers who participated in ICT-based channel perform better 
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in recalling the procedures of inoculant application than CE channel participants. The inter-channel 

comparison model confirms that ICT-based had 42% recall probability than CE farmers. This 

finding is consistent with Maredia et al. (2018) who found that, animated videos induced learning 

on a new technology as compared to conventional information channels, but did not lead to 

significant adoption among farmers in Burkina Faso.  

Table 2. 8 Impact of Extension Channel on Farm Outcomes 

Extension Channel Type If Farmer 

Participate 

(S.E) 

If Farmer did 

not Participate 

(S.E) 

ATT 

Panel A: Inoculant Knowledge Test Score 

AES-Pooled 4.237(0.002) 2.628(0.023) 1.609*** 

ICT-Based 4.822(0.007) 2.777(0.025) 2.046*** 

CE 4.690(0.005) 2.955(0.015) 1.735*** 

ICT-Based vs CE 4.656(0.009) 4.239(0.002) 0.417*** 

Panel B: Yield (lnKg/Ha) 

AES-Pooled 6.604 (0.032) 6.055(0.035) 0.549*** 

ICT-Based 7.777(0.036) 6.269(0.033) 1.508*** 

CE 7.696(0.041) 6.219(0.035) 1.477*** 

ICT-Based vs CE 6.614(0.032) 6.231(0.035) 0.383*** 

Panel C: Farm Net Returns (lnGHC/Ha) 

AES-Pooled 6.402(0.039) 6.070(0.036) 0.333*** 

ICT-Based 7.261(0.038) 6.384(0.037) 0.877*** 

CE 7.088(0.047) 6.231(0.036) 0.857*** 

ICT-Based vs CE 6.925(0.036) 6.262(0.042) 0.663*** 

Panel D: Inoculant Adoption 

AES-Pooled   3.650*** 

[0.600, 9.160] 

ICT-Based   20.340*** 

[1.620, 44.300] 

CE   26.400*** 

[8.500, 46.400] 

ICT-Based vs CE   -13.140*** 

[-33.970, -0.850] 
Note: *** , ** and * are 1%, 5% and 10% significance level respectively, values in brackets and square brackets are standard errors and 95% 

confidence intervals respectively. 
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Table 2.8, panels B and C show that, yields as well as net returns of farmers who participated in 

ICT-based channel increased by 151% and 88%, respectively, compared to 148% and 86% for CE 

channel participants. Again, the inter-channel comparison model shows that, ICT-based 

participants attain 38% and 66% yields and farm net returns, respectively, higher than their CE 

counterparts. Intuitively, these findings imply that, when ICT-based extension channels are able to 

generate acceptance by farmers and get farmers to adopt the technology, then, the impact of 

extension on yields and farm net returns may be equivalent (perhaps even higher) to that of person-

to-person extension contacts can achieve.  

Panel D in Table 2.8 shows that, generally, participation in the extension dissemination program 

lead to an increase in the likelihood of inoculant adoption by 3.7%. However, when we consider 

channel specific impact on adoption, the likelihood increases to 20% and 26% for ICT-based and 

CE channels respectively. Further comparison between the ICT-based and the CE in the inter-

channel model shows that CE extension channel outperforms that of ICT-based channel by 13%, 

suggesting that person-to-person information channels are still better in getting farmers to adopt a 

new technology, compared to technology-mediated channels (Oreopoulos and Petronijevic 2018). 

2.7 Conclusions and Policy Implications 

This study analyzed the effectiveness of ICT-based extension channels in the dissemination of a 

new agricultural technology (Bradyrhizobium inoculant) and its impact on household welfare 

measures such as yields and farm net returns, using recent survey data of 600 farmers from northern 

Ghana. We employed the robust copula functions estimator to account for potential endogeneity 

and selection bias problems. Our empirical results revealed that farmers who chose the services of 

ICT-based extension channel, perform better, in terms of inoculant knowledge gain, yields and 

farm net returns than farmers who chose to participate in conventional extension, and much higher 

than those who did not participate in extension services. However, in terms of the likelihood of 
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adoption of the inoculant technology, conventional extension participants achieved higher impacts 

than ICT-based participants. The channel comparison results, in relation to non-participation, show 

that both ICT-based and conventional extension channels are equally effective on their own accord 

and can be used independently to disseminate new technology information to farmers. However, 

evidence from inter-channel comparison suggests that farmers who reside far away from extension 

agents tend to substitute ICT-based extension for conventional extension services, which in their 

situation may be more beneficial in terms of knowledge gains, yields and farm net returns. Our 

findings further showed that every kilometer increase in distance away from farmers’ location to 

the nearest extension office or the district capital, increases their preferences for ICT-based 

extension channels, compared to conventional extension.  

Our findings offer several policy implications aimed at improving agricultural extension service 

delivery in developing countries. First, the fact that ICT-based extension channel comparatively 

outperformed conventional extension suggests that ICT-based extension services could be a viable 

alternative to conventional extension service provision.  Hence, policy-makers could consider 

investing in expansion of ICT infrastructure such as installation of mobile communication masses 

across farming communities to improve the signal reception strength in these areas in order to 

scale-up the effectiveness of mobile phone, television and radio signals. This will enable state 

agencies and other stakeholders to minimize cost by employing limited but specialized staff to 

transmit agricultural extension information to farmers from centralized locations.  Moreover, to the 

extent that ICT-based extension services remove direct person-to-person contact from extension 

service delivery, religious and cultural barriers could be overcomed so as to promote equitable 

access to extension by all farm households, particularly female farmers living in conservative 

farming communities. Furthermore, the finding that access to electricity exerts a positive effects 

on farmers’ likelihood of participation in ICT-based extension and inoculant adoption suggests that 



60 
 

government investment in rural electrification could complement the digitization of agricultural 

information or extension service delivery to enhance technology adoption, raise agricultural 

productivity, and improve farmers’ incomes, as well as food and nutrition security. 
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Appendix 

Table A 1. Construction of Farmer Inoculant Knowledge Measurement  

No Areas of Inoculant 

Knowledge Test 

(A) 

Measurement 

(B) 

Indicators 

(C) 

Allocated 

Score  

(D) 

1 Confirmatory        

    Subjective measure Know by crop name   

    Objective measure Know by physical identification 2 

2 Technical 

Recommendations 

      

2.1 Standard Recommended 

Measurement  

Subjective measure Materials and Quantities  5 

2.2 Recommended Mode of 

Application 

      

    Subjective measure Farmer recall application 

procedure from memory 

7 

    Objective measure Farmer re-orders application 

procedures list provided by 

enumerator 

7 

3 Precautionary Measures        

3.1 Generic precautions Objective measure Farmer identified Do’s listed by 

enumerator as True/False  

5 

    Objective measure Farmer identified Don’ts listed by 

enumerator as True/False  

7 

3.2 Specific precautions Subjective measure Recommended storage procedures 8 

4 Understanding  Objective measure Reasons for critical actions e.g. 

inoculation and drying.   

3 

Total       50 

Note: The table contains detailed information on the construction of our inoculant knowledge outcome variable. Column A presents information on 

critical components of the inoculation procedure that we examined farmers on; Column B show the type of measurement criteria used in the test; 

Column C presents detailed description of the measurement indicators that were used to elicit information on the critical components of the 

inoculation procedure; while Column D presents marks allocated to each of the test components that farmers were examined on. 
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Abstract 

In this study, we employ a dynamic treatment effect approach to analyze heterogeneity in returns 

to farmers at different stages of adoption of a newly introduced inoculant technology, using a recent 

survey data of 600 soybean farmers from northern Ghana.  Although farmers differ in their returns 

to adoption of new technologies, many empirical studies often fail to account for this heterogeneity. 

The empirical results reveal that farmers who are at advanced stages of adoption appear to, on 

average, more than double their yields and farm net returns, suggesting that the inoculant 

technology may be a game changer in the fight against extreme poverty in the region, where poverty 

is endemic and crop yields are persistently below the average potential yield target. Our findings 

further reveal that extension services as well as efficient input and output markets are key to the 

adoption process, by influencing knowledge acquisition, adoption and continued adoption. Our 

findings also show significant impact heterogeneity at each adoption stage with the long-term 

benefits of the inoculant technology outweighing its short-term benefits.  

 

Keywords: Dynamic Treatment Effect, Multi-stage Decision-making, Impact Assessment, 

Heterogeneity, Inoculant Technology Adoption. 
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3.1 Introduction 

Low agricultural productivity and perennial food insecurity are major global concerns facing low-

income countries, particularly, countries in sub-Sahara Africa (SSA). Central to tackling the 

problem, is increasing crop yields and sustaining gains through adoption of improved agricultural 

technologies (Takahashi et al., 2020). Yet, technology adoption rate among farmers in these 

countries appear to be very low (Suri, 2011; Sheahan and Barrett, 2017; Macours, 2019). While 

some analysts partly attribute the phenomenon to lack of information, low education, credit 

constraints, among other factors, others question the empirical and theoretical adoption models 

used to analyze farmers’ adoption decisions (Feder et al., 1985; Lindner, 1982; Basley and Case, 

1993). In particular, Besley and Case (1993) note that, technology adoption is a dynamic process 

in which farmers make series of decisions over multiple-stages or seasons. Lindner et al. (1982) 

succinctly summarized the adoption process into three broad categories as discovery stage, 

evaluation stage and trial stage. Each stage in the adoption process collects different sets of vital 

information for the farmer to update subsequent decisions. However, classical studies on 

technology adoption mostly consider farmers’ adoption decisions as static, ignoring the dynamic 

processes embedded in farmers’ decision-making. As a result, important information on farmers’ 

adoption behavior relevant to policy formulation is lost and their decisions are misinterpreted. 

Thus, it is not uncommon for analysts to find farmers’ adoption decisions at odds with rationality, 

and sometimes counter intuitive (Besley and Case, 1993).  

This study departs from the classical approach and analyze farmers’ adoption decisions in a 

dynamic framework. Previous studies that examined farmers’ technology adoption decision-

making in a dynamic framework mainly looked at adoption determinants, patterns of diffusion and 

intensity of adoption (e.g. Simtowe et al., 2016; Lambrecht et al., 2014; Abdulai and Huffman, 

2005; Feder and Slade, 1984), while some studies employed it to explain farmers’ learning 
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behavior, risk preferences and uncertainties (Ghadim and Pannell, 1999). The missing link in the 

dynamic adoption literature is the impact of adoption on output levels and other welfare indicators 

such as yields and farm net returns, which underlie farmers’ adoption and continued adoption 

decisions. These indicators also drive adoption patterns and clarify risks and uncertainties that may 

surround a given technology (Besley and Case, 1993; Feder et al., 1985). We contribute to the 

literature by analyzing farmers’ adoption decision-making process as a multi-stage decision 

problem in an impact evaluation framework. One, in which each stage of adoption is characterized 

by different margins of payoffs or gains that accrue to farmers at that stage. We apply this approach 

to analyze farmers’ adoption decisions of a new Rhizobia inoculant technology among 600 soybean 

farmers in northern Ghana, taking into account that farmers’ returns from adoption may be 

heterogeneous and stage dependent. 

Few studies in the technology adoption literature have analyzed heterogeneity in returns to 

adoption of agricultural technologies (Shahzad and Abdulai, 2020; Abdul Mumin and Abdulai 

2021). However, adoption at different stages were not considered. As argued by Heckman et al. 

(2018), individuals differ in their returns to treatment, and failure to account for this heterogeneity 

can lead to confusion in interpreting the estimated effects of treatment, particularly when the 

individuals may be at different stages of treatment. In this study, we employ a dynamic treatment 

effect model to account for heterogeneity in returns to adoption for farmers at different stages of 

adoption. Thus, we analyze the relationship between the farmers’ state of adoption and the final 

outcomes (which in our case, yields and farm net returns) obtained from adoption. The adoption 

stages considered in this study include awareness and knowledge acquisition about the inoculant 

technology, trying the technology, adopting and continuous adoption of the technology. The 

inoculant technology is a recently developed agricultural input by research scientists to improve 

productivity of grain legumes in SSA. The technology exploits the symbiotic relationship of an 
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elite strain of bacteria known as Bradyrhizobium japonica, as an inoculant to enhance nitrogen 

fixation in legumes. One crop that has received much attention in this process is soybean (see van 

Heerwaarden et al., 2018; Chibeba et al., 2018). Field experiments of the inoculant show promising 

results with a potential to increase average soy grain yield by 20 – 29 percent in African soils 

(Chibeba et al., 2018). The technology was recently introduced to smallholder farmers in northern 

Ghana by a number of organizations6 and their partners working together to improve soybean 

production in the region. As a newly introduced technology with incomplete diffusion, it is 

imperative to investigate what factors drive the adoption of the inoculant technology and to what 

extent can information from one stage of adoption decision influence further adoption decisions in 

the process, as well as the impact of adoption on yields and farm net returns.  

Our findings reveal that farmers who are at advanced stages of adoption appear to, on average, 

more than double their yields and farm net returns, suggesting that the new inoculant technology 

have the potential to contribute to poverty reduction in the region, where poverty is endemic and 

crop yields are below the potential yields target. Our findings further reveal that the long-term 

effects are much stronger than the short-term effects, conditional on the markets being able to 

absorb the excess supply that may result from higher yields. Finally, we also found that extension 

services as well as efficient input and output markets are key to the inoculant adoption process, by 

influencing knowledge acquisition, adoption and continued adoption.  

The rest of the paper is organized as follows. Sections 2 and 3 present the theoretical framework 

and empirical specification, while sections 4 and 5 present the identification and estimation strategy 

and the study context, respectively.  Section 6 presents the data used in the study, while section 7 

contains our empirical results. The final section presents conclusions and policy implications of 

the study.  

                                                           
6 Notable organizations farmers identified include CSIR- SARI, IITA and USAID-ADVANCE Project. 
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3.2 Theoretical Framework 

We assume that farmers are risk-neutral and their technology adoption decisions are guided by 

expected net benefits from adoption (Kleemann and Abdulai 2013). Farmers’ adoption decisions 

of a new technology is conceptualized as a decision tree consisting of five decision-making nodes 

along adoption path 𝑇  (see Figure 1A). Let 𝑁 represent a finite adoption decision-making nodes 

along the entire adoption path with a finite decision horizon (𝑠, 𝑠), where 𝑠 is the lowest adoption 

state and 𝑠 is the highest attainable adoption state; 𝐴𝑛(𝑠) be the choice indicator for adoption state 

𝑠 for a farmer at adoption decision-making node 𝑛 and 𝑊𝑛(𝑠) be the expected net benefits for a 

farmer in adoption state 𝑠.   

In line with Heckman et al. (2016), the farmer’s current adoption state 𝑠 net benefits can be 

expressed as follows; 

𝑊(𝑠) = ∑ 𝐴𝑛(𝑠)𝑊𝑛(𝑠)
𝑁
𝑛=1          (1) 

where 𝑊(𝑠) is the current net benefits for a farmer in adoption state 𝑠, and all other notations 

remain as defined earlier.  

Under autonomy, when the discrete choices made by a decision-maker at the decision-making node 

is known to the econometrician, the dynamic discrete choice model can be employed to understand 

the decision-maker’s intertemporal behavior and its consequences (Heckman et al. 2016). We 

assume that the farmer’s adoption state decision at any decision-making node is autonomous. A 

farmer may decide to stop at any adoption state or continue to the next state, if the expected net 

benefits for continuing to the next adoption state is lower than the current adoption state’s net 

benefits. Let ℋ(𝑠) be the individual farmer’s perceived state value of the net benefits for 

continuing to the next adoption state. The individual farmer’s perceived value function for 

continuing to any adoption state 𝑠 along the adoption path  𝑡 can be represented as (Heckman et al. 

2016); 
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𝑉(ℋ(𝑠), 𝑠) = max
𝐴𝑛(𝑡)∈Å(𝑠)

𝐸[∑ 𝛿𝑡−𝑠𝑠
𝑡=𝑠 ∑ 𝐴𝑛(𝑡)𝑊𝑛(𝑡)|ℋ(𝑠)

𝑁
𝑛=1 ]   (2) 

where Å(𝑠) is the set of feasible current and future adoption state choices available to the farmer 

at the decision-making node, 𝛿 is farmer’s assumed discount factor for valuing the perceived net 

benefits across the decision horizon7 and all other notations remain as defined earlier. The farmer’s 

valuation of state net benefits from adoption at any adoption decision-making node consists of the 

current state 𝑠 benefits and that of the future adoption state 𝑠 + 1 benefits, if they continue to the 

next adoption state8. To reflect this relationship in the farmer’s value function at each decision-

making node 𝑛, we follow Heckman et al. (2016) and express the state-specific value function in 

terms of equations 1 and 2 as follows; 

𝑉𝑛(ℋ(𝑠), 𝑠) = 𝑊𝑛(ℋ(𝑠), 𝑠) + 𝛿𝐸[𝑉(ℋ(𝑠 + 1), 𝑠 + 1)|ℋ(𝑠), 𝐴𝑛(𝑠) = 1]   (3) 

where 𝑊𝑛(. , . ) is the farmer’s current adoption state 𝑠 value function and  𝛿𝐸[𝑉(. )] is the farmer’s 

expected value function, if the farmer continue to the next adoption state 𝑠 + 1.  

However, expected net benefits from adoption at any state is latent and cannot be observed, but the 

actual adoption choices made by the farmer can be observed. We let the adoption choice indicator 

𝐴𝑛(𝑠) equal to 1, if a farmer at decision node 𝑛 choses to be in adoption state 𝑠 and 0, otherwise. 

Based on the state-specific perceived net benefits value function, the farmer’s adoption state 

choice9 at any decision-making node 𝑛, can be represented as (Heckman et al. 2016); 

𝐴𝑛(𝑠) = 1 𝑖𝑓 [𝑛 = argmax
𝑗∈{1,…..,𝑁}

{𝑉𝑗(ℋ(𝑠), 𝑠)} ] for  𝑠 < 𝑠; 

 𝐴𝑛(𝑠) = 0, Otherwise    (4) 

                                                           
7 In our calculation of the continuation value we used the Weisbrod’s procedure, which uses the transitional probability as the discount factor. This 

takes away the discretion of assuming any arbitrary discount factor which is hard to observe in reality compounded by the difficulty in assessing its 
heterogeneity among any group of decision makers Fagereng et al. (2020).  
8 This implies that the farmer at each stage of adoption is able to forecast the net benefits of the next stage. 
9 This specification doe not assume any choice decision rules, as such, it neither imposes rational expectation assumption nor forward-looking 

behavior on agents as in traditional discrete choice literature. Hence, agents may be myopic, time inconsistent and may be subjected to surprises 
(Heckman et al., 2016; 2018). 
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As noted by Heckman et al. (2016; 2018), the specification of the decision rule in equation 4 differs 

from conventional decision-making rules in the dynamic discrete choice literature. In the sense 

that, no specific choice rule is assumed, as such it neither imposes rational expectation assumption 

nor forward-looking behavior on agents at any decision node. Hence, agents may be myopic, time 

inconsistent and may be subjected to surprises. For instance, it is possible under a myopic decision 

rule as inherent in the Bellman’s decision rules for a farmer who obtains negative returns at early 

stages of adoption to abandon the technology. Likewise, under a forward-looking behavior as 

inherent in the Euler decision rule for a farmer to continue to adopt the technology with the 

expectation of getting higher returns in the long term, despite obtaining negative returns at the early 

stages of adoption10.  

3.3 Empirical Specifications 

Let 𝑌𝑖 denote the individual farmer’s net benefits from soybeans production and 𝐴𝑖 be the indicator 

for the farmer’s inoculant adoption choice decision. Empirically, equation 4 can be expressed as 

the farmer’s expected outcomes from the inoculant adoption choice decision as follows;  

𝑌𝑖 = 𝛼𝑖 + 𝜌𝑖𝐴𝑖 + 𝛾𝑖𝑋𝑖 + 𝑈𝑖                   (5) 

where  𝑋𝑖 is a vector of observed characteristics (farm and household level characteristics); 𝜌𝑖 and 

𝛾𝑖 are vectors of parameter of interest, 𝛼𝑖 is a constant and 𝑈𝑖 is an error term.  

Conventional static adoption decision analysis often treats 𝐴𝑖 to be a single binary decision (e.g., 

Kleemann and Abdulai 2013). However, farmers tend to evaluate the performance of the 

technology over many seasons before making final adoption decision. As such, the adoption 

decision indicator 𝐴𝑖 may not be a onetime binary decision, but several binary decisions across 

many seasons or transitions. In this setting, we assume that the farmer’s adoption decision follows 

                                                           
10 We thank an anonymous reviewer for making this suggestion on the theoretical explanation of the decision-making mechanisms. 
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a dynamic process. One in which the farmer is assumed to make finite adoption decisions in an 

irreversible sequential order over multiple-stages.  

Let ℐ = {1,… , �̅� − 1}∀𝑁 be a set of all possible terminal adoption states, and 𝑆 = {1,… , �̅�} denote 

an ordered set of all stopping states (i.e. all states that a farmer is observed to make a stop during 

the process) with �̅� as the highest attainable state. A farmer at each node makes a binary decision, 

either to remain at node j  (𝑗 ≠ 0) or transit to the next node 𝑗 + 1(𝑗 ≠ 𝑗 + 1)  and 𝑗 ∈ ℐ. We 

assume the farmer operates in a time stationary decision environment and past choices reveal the 

farmer’s transition decisions. Let D represent a finite set of all possible transition decisions that a 

farmer can make over the decision horizon 𝐷𝑗 ∈ D, 𝐷𝑠 is the farmer’s stopping state decision for 

all 𝑠 ∈ 𝑆, and 𝑄𝑗 is history of all states the farmer visited and assumed to be binary (i.e. 𝑄𝑗 = 1 if 

the farmer visits a state, otherwise 𝑄𝑗 = 0).  We fixed 𝐷𝑗 = 0 (𝐷𝑠 ≠ 1), if a farmer at j does not 

stop but moves to  𝑗 + 1  and 𝐷𝑗 = 1 (𝐷𝑠 = 1), if the farmer stops at state 𝑗 (Heckman et al. 2016; 

2018). 

The farmer must make a transition decision, either to remain at 𝑗 or move from 𝑗 to 𝑗 + 1. We 

assume that net benefits differ from state to state, and the farmer compares the current state benefits 

to the net benefits of moving to the next state, before making a transition decision. We specify the 

farmer’s transition decision (𝐷𝑗) as follows;  

𝐷𝑗 = {
0,  𝑖𝑓  𝜤𝒋 ≥ 0,  𝑗 ∈ ℐ = {1,… , �̅� − 1}

1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     
} for 𝑄𝑗 = 1,     𝑗 ∈ ℐ = {1,… , �̅� − 1}     (6) 

where 𝜤𝒋 is the indicator of the farmer’s perceived state-specific value function for a farmer 

considering a move from j(𝑗 ≠ 0) to 𝑗 + 1.  

At each adoption state, the perceived value function 𝜤𝒋 is assumed to cross a threshold value for the 

farmer to move from one state to another. To understand the farmer’s choice decision at each 
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adoption state, we specify the empirical state-specific value function 𝜤𝒋  in a separable model as 

(Heckman et al., 2016; 2018); 

𝜤𝒋 = ∅𝑗(𝒁) − 𝜂𝑗,      𝑗 ∈ ℐ = {1,… , �̅� − 1}      (7) 

where 𝒁 is a vector of observed characteristics that includes an instrument for identification not 

included in 𝑋𝑖, and 𝜂𝑗 is the unobserved factors that affect the farmer’s transitional ability. 

Due to observed and unobserved factors that characterize different adoption transitions, each 

transition decision that the farmer makes has a range of potential outcomes. By indexing the state-

specific potential outcomes as  𝑘 (where 𝑘 ∈ 𝑲𝒔 and 𝑲𝒔 is a set of all possible outcomes), a farmer 

at adoption state s potential outcomes from inoculant adoption can be denoted as 𝑌𝑠
𝑘. The individual 

farmer’s state-specific potential outcomes equation for any adoption state can then be expressed in 

a separable model as (Heckman et al. 2016; 2018); 

   𝑌𝑠
𝑘 = 𝜏𝑠

𝑘(𝑿) + 𝑈𝑠
𝑘,  𝑘 ∈ 𝑲𝒔,  s ∈ 𝑆𝑠      (8) 

where 𝑌𝑠
𝑘 is the state-specific potential outcome, 𝑿 is a vector of observed characteristics that 

determine the outcome at a particular state; 𝜏𝑠
𝑘 is a parameter of interest and 𝑈𝑠

𝑘 is state-specific 

unobserved factors. Conditional on the number of adoption states that a farmer visits during the 

transitional process, the observed potential outcome common across all adoption states (𝑌𝑘) 

visited, can be expressed in a switching regression framework (Quant, 1972) as follows; 

𝑌𝑘 = (∑ 𝐷𝑠𝑌𝑠
𝑘

𝑆∖{�̅�} )(1 − 𝐷0) + (𝑌0
𝑘)𝐷0       (9) 

where 𝐷𝑠 is the stopping decision indicator, 𝐷0(i.e., for 𝐷𝑠 ≠1) is the transition decision indicator; 

𝑌𝑠
𝑘 is as defined earlier and 𝑌0

𝑘 is the counterfactual outcome, if the farmer decides to remain at the 

current adoption state. 
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3.4 Impact Identification and Estimation Strategy  

The identification of dynamic technology adoption decisions must take into consideration 

heterogeneity in observed and unobserved farmer characteristics (Fagereng et al., 2020; Benhabib 

et al., 2019; Gabaix et al., 2016). In particular, farmers’ differ in wealth endowment, which is 

potentially endogenous to their transitional ability. Let 𝜽 denote finite dimensional vector of 

farmer’s unobserved wealth endowments (e.g. financial ability for farm investment) that can be 

proxied by observables (e.g. household assets, livestock holding, and non-farm income sources) in 

a measurement equation. Intuitively, the financial ability of a farmer determines the scale of farm 

operations and investment in production inputs. Thus, generating a potential correlation between 

the farmer’s transition decision and the potential outcomes11. We re-specify both the state-specific 

value function and the potential outcome equations (7 and 8, respectively) controlling for 

unobserved wealth endowment as below;  

𝜤𝒋 = ∅𝑗(𝒁) + 𝜽
′𝜆𝑗 − 𝑣𝑗,        𝑗 ∈ ℐ = {1,… , �̅� − 1}     (10) 

 𝑌𝑠
𝑘 = 𝜏𝑠

𝑘(𝑿) + 𝜽′𝜓𝑠
𝑘 + 𝜔𝑠

𝑘,   𝑘 ∈ 𝑲𝒔,  s ∈ 𝑆𝑠     (11) 

where 𝜆𝑗 and 𝜓𝑠
𝑘  are vectors of parameters of interest, respectively; 𝑣𝑗  and 𝜔𝑠

𝑘 are the error terms, 

respectively, 𝒁  and 𝑿 are as defined previously.    

We assume there could be problems with measurement errors, because  𝜽 is not directly observed, 

but proxied with observable indicators. Let 𝐌 be a system of measurement equations that link a 

vector of 𝑁𝑀 measurement indicators of 𝜽 to equations (10 and 11). Parsimoniously, the 

measurement equation 𝐌 can be specified as below (Heckman et al., 2016; 2018); 

                                                           
11 First, 𝜽 correlates with the unobservable factors in the outcome equation as a result of heterogeneities in returns to farmers’ wealth endowment, 
due to differences in levels of investment in their scale of production and intensity of input use. We approximate this correlated effect in a linear-

in-parameter factor model as (𝑈𝑠
𝑘 = 𝜃′𝜓𝑠

𝑘 + 𝜔𝑠
𝑘).  Second, 𝜽 also correlates with the unobservable factors in the transitional choice decision, due to 

inadequate financial ability to undertake further investment in the production cycle. This correlated effect is also approximated in a linear-in-

parameter factor model as (𝜂𝑗 = −(𝜃′𝜆𝑗 − 𝑣𝑗)) (see Heckman et al., 2016; 2018) for more details.  
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𝐌 = ϕ(𝑿, 𝜽, 𝒆) = (
𝑀1
⋮

𝑀𝑁𝑀

) = (

𝛷1(𝑋, 𝜃, 𝑒1)
⋮

𝛷𝑁𝑀(𝑋, 𝜃, 𝑒𝑁𝑀)
)       (12)  

where 𝑿, is a vector of observed variables, 𝜽 is a vector of endowment factors and 𝒆 is a vector of 

error terms that ensure orthogonality (𝒆 ∥ 𝑋, 𝑍, 𝜃, 𝑣, 𝜔) with the error terms in equations (10) and 

(11) (Heckman et al., 2016;2018).  

By conditioning on (𝑫𝒊, 𝑴𝒊, 𝑿𝒊, 𝒁𝒊), a parsimonious maximum likelihood function (ℒ)12 for an 

individual farmer can be specified as follows; 

ℒ = ∏ 𝑓(𝑖 𝒀𝒊, 𝑫𝒊,𝑴𝒊|𝑿𝒊, 𝒁𝒊)   

     = ∏ ∫𝑓𝑌(𝒀𝒊|𝐷𝑖𝑖 , 𝑋𝑖, 𝑍𝑖, 𝜃)𝑓𝐷(𝑫𝒊,𝑴𝒊|𝑋𝑖, 𝑍𝑖 , 𝜃)𝑓𝑀(𝜽)𝑑𝜽    (13) 

where 𝑓𝑌(. ), 𝑓𝐷(. ), and 𝑓𝑀(. ) are the probability density functions for the potential outcomes, 

adoption decision and the measurement equations, respectively and all other notations remain as 

earlier defined.  

Equation 13 consists of three components, which are estimated simultaneously in a factor structural 

discrete choice model. The factor model 𝑓𝑀(. ) is estimated in the first-stage and in the second-

stage, the adoption decision model 𝑓𝐷(. ) is estimated with the inclusion of an instrument (𝑍) to 

account for selection bias and a factor score (𝜃) predicted from the measurement model in the first-

stage to account for unobserved ability or wealth endowment effect on the farmer’s adoption 

decision. In the final stage, the potential outcomes (i.e., both the treated case and the counterfactual 

case) model 𝑓𝑌(. ) is estimated conditional on the first two stages. 

 

 

                                                           
12 We do not intend to reproduce the full likelihood equation as captured in Heckman et al. (2016; 2018), so interested readers can please see 

Heckman et al. (2016; 2018) for the full specification of the likelihood function as well as the measurement equation. 
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3.4.1 Estimation of Treatment Effects  

In this section, we provide the econometric relationship between the treatment and the outcomes. 

The treatment refers to the various transitional states, while the outcomes are the state-specific 

benefits13. Let 𝑇𝑗
𝑘 denote farmer-specific treatment effect for being at state j. The 𝑇𝑗

𝑘 of an 

individual farmer selected at random from the population of 𝑄𝑗 = 1 with characteristics; 𝑿 =

𝑥, 𝒁 = 𝑧, 𝜽 = �̅�, making a decision whether to transit from 𝑗 to 𝑗 + 1 or remain at 𝑗 can be 

represented as; 

𝑇𝑗
𝑘= (𝑌𝑘|𝑿 = 𝑥, 𝒁 = 𝑧, 𝜽 = �̅�, 𝑄𝑗 = 1,  𝐹𝑖𝑥 𝐷𝑗 = 0) − (𝑌𝑘|𝑿 = 𝑥, 𝒁 = 𝑧, 𝜽 = �̅�, 𝑄𝑗 = 1,  𝐹𝑖𝑥 𝐷𝑗 = 1) (14)  

The population-level average treatment effect (ATE) for farmers at state 𝑗, conditional on (𝑄𝑗 =

1) and integrating over the vector of 𝑿 = 𝑥, 𝒁 = 𝑧, 𝜽 = �̅�, is obtained as below;  

𝐴𝑇𝐸𝑗
𝑘≔ ∫⋯∫𝐸(𝑇𝑗

𝑘[𝑌𝑘|𝑿 = 𝒙, 𝒁 = 𝒛, 𝜽 = �̅�]) 𝑑𝐹𝑋,𝑍,𝜃(𝒙, 𝒛, �̅� |𝑄𝑗 = 1)      (15)   

The same procedure is followed to obtain the treatment effect for both treated (ATT) and untreated 

(ATUT) farmers at each transition state.  

Unlike the classical treatment effect models, the total effect at the individual-level can be 

decomposed into two components. First, is the direct effect of making a transition from 𝑗 to 𝑗 + 1 

and second, is the continuation effect for going beyond 𝑗 + 1  to 𝑙 (where 𝑙 is the subsequent states 

after 𝑗 + 1), which evaluates the long-term  impact informing farmer’s transition decisions 

(Heckman et al., 2016; 2018). The continuation effect (𝐶𝑗+1
𝑘 ) component of the treatment effect is 

                                                           
13 Note that fixing is different from conditioning. Its use here is to make it possible to derive the counterfactual outcome of not making a transition, 

which is necessary because the farmer has made a transition and is therefore not available at the counterfactual state to make the decision (see 
Heckman et al., 2016; 2018). 
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derived by conditioning on (𝑄𝑗 = 1), of the population of farmers at 𝑗 + 1, using the law of iterated 

expectations as follows14; 

𝐸𝑋,𝑍,𝜃(𝐶𝑗+1
𝑘 ) = 𝐸𝑋,𝑍,𝜃[∑ {𝐸�̅�−1

𝑙=𝑗+1 (𝑌𝑙+1
𝑘 − 𝑌𝑙

𝑘|𝑿 = 𝑥, 𝒁 = 𝑧, 𝜽 = �̅�, 𝑄𝑙+1 = 1,  𝐹𝑖𝑥 𝑄𝑗+1 = 1) 

. 𝑃𝑟 (𝑄𝑙+1 = 1|𝑿 = 𝑥, 𝒁 = 𝑧, 𝜽 = �̅�, 𝑄𝑗 = 1,  𝐹𝑖𝑥 𝑄𝑗+1 = 1)}|𝑄𝑗 = 1]   (16) 

where 𝑃𝑟 is the transitional probability of moving beyond 𝑗 + 1 to 𝑙 (where 𝑙 is the subsequent 

states after 𝑗 + 1).  The average marginal treatment effect (AMTE), which offers more in-depth 

into the decision-making behavior of a decision-maker is also obtained as below;  

𝐴𝑀𝑇𝐸𝑗
𝑘≔∭𝐸[𝑇𝑗

𝑘(𝑌𝑘|𝑿 = 𝑥, 𝒁 = 𝑧, 𝜽 = �̅�)]𝑑𝐹𝑋,𝑍,𝜃(𝑥, 𝑧, �̅� |𝑄𝑗 = 1, |𝛪𝑗| ≤ 휀) (17) 

The economic intuition of the AMTE is that, it represents a fair measurement of the ex post gross 

marginal benefits of moving from one adoption state to the next state for a population of farmers 

at a decision-making node, who may be indifferent in their transition decision (|𝛪𝑗| ≤ 휀) (Heckman 

et al., 2016; 2018). Thus, the AMTE represents an empirically well identified marginal benefits 

from adoption that an indifferent farmer considers before making an adoption transition decision15.  

3.5 Context of Study 

Soil fertility constitutes a critical production input in agriculture and plays an important role in the 

welfare of poor subsistent agricultural societies (Kim and Bevis 2019; Kleemann and Abdulai 

2013). With about 90 percent of the farming population in Ghana being subsistent and cultivating 

less than two hectares of land (MoFA 2017), degradable soil conditions present a major challenge 

to food productivity and farm livelihoods. In particular, when 80 percent of Ghana’s total 

                                                           
14 The direct effect is the expected net benefits that accrues to a farmer for transiting to the next adjacent adoption decision node such as (from j to 

j+1). Whereas the continuation effect is the expected net benefits that accrues to a farmer for transiting beyond the next adjacent adoption decision 

node such as (transiting from j to j+1, to  j+2, to j+3, …to j+l) and so on. 
15 The AMTE is different from local average treatment effect (LATE), in the sense that, LATE is not define for any specific margin of choice and 
also depends on the population of instrument compliers to measure treatment effect. 
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agricultural output depends on this category of farmers (MoFA 2017). To maintain the productive 

capacity of soils in Ghana, scientific research organizations such as the International Institute of 

Tropical Agriculture (IITA) and the Council for Scientific and Industrial Research-Savannah 

Agricultural Research Institute (CSIR-SARI) and their partner organizations introduced the 

Rhizobia inoculant technology to smallholder grain legume farmers. One key crop that is targeted 

among other crops is soybean. The crop is targeted due to its potential to undergo sustainable 

intensification and ability to provide high amount of protein and other essential amino acids useful 

for consumption by humans, animals and for biofuel (Heerwaarden et al., 2018; Chibeba et al., 

2018; Foyer et al. 2018). The inoculant technology is an organic input containing isolates of an 

elite strain of bacterial (Bradyrhizobium japonicum) and an organic carrier material (Lupwayi, et 

al., 2000). The inoculant technology is seen as a cost-effective alternative to rehabilitating poor 

soils by enhancing the build-up of biological nitrogen fixation (BNF) organisms in the soil (Giller, 

2001).  

The inoculant technology is expected to cost-effectively improve smallholder farmers’ welfare by 

sustainably increasing productivity, while minimizing cost of production, compared to inorganic 

inputs such as mineral fertilizers, which is sometimes priced out of reach for most smallholder 

farmers. The inoculant dissemination program was centered in the three regions (Northern, Upper 

East and Upper West) of northern Ghana, due to their soybean production potential in the country 

as well as the high incidence of extreme poverty situation in these parts of the country. The northern 

region where this study is focus on is second poorest (30.7%) region in the country in terms of 

extreme poverty incidence followed by the Upper East region (27.7%) with the Upper West region 

(45.2%) ranking first in the country (GSS, 2018). With soybean being a cash crop, it is expected 

that increase in productivity will lead to increase in the household income, which can contribute to 
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poverty reduction for the poor households who depend on agriculture for income as well as food 

and nutrition security.  

3.6 Survey Procedure and Data Source  

We use primary data from a recent survey of farm households in the northern region of Ghana, 

which was conducted from June to August 2018. The sample was drawn using a multi-stage 

sampling technique. The northern region was purposively selected because it is a major soybean 

growing hub in the country and also happens to be the largest beneficiary of the agricultural 

extension program that disseminated the novel inoculant technology. Cluster sampling technique 

was employed to zone the region into two clusters, consisting of eastern corridor zone (ECZ) and 

western corridor zone (WCZ). Based on the districts participation in the dissemination program 

and intensity of soybean production in the districts within the clusters, eight (8) districts, 

comprising four (4) from each cluster were purposively sampled. From the ECZ, Yendi, Saboba, 

Chereponi and Karaga districts were selected, while in the WCZ, East Mamprusi, East Gonja, 

Savelugu and Kumbungu districts were selected. In consultation with the field officers and 

agriculture extension agents (AEAs) in the selected districts, five to seven communities were 

proportionally sampled, based on the dissemination channel received, program participation and 

farmer population. Because the dissemination program was implemented through farmer-based 

organization (FBO), one FBO was randomly selected from a list of treated FBOs for each treated 

community and another randomly selected FBO from a list of untreated FBOs for each untreated 

community. Using a lottery approach, we randomly drew five farmers from each FBO. After a 

preliminary interview session with each of the selected farmers, using a computer assisted personal 

interview (CAPI), a list of the farmers’ information network members (INMs) in the community 

was compiled. The CAPI random number generator then used farmers’ unique identification 

numbers to randomly sample three network members from each farmer’s INMs for interview. A 
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total of 600 farm households, consisting of 325 participants and 275 non-participants, were 

interviewed in a face-to-face session. 

We also collected detailed data on the farm household inoculant usage, capital assets, participation 

in nonfarm income generation activities and livestock value, in addition to socio-demographic and 

farm characteristics.  Table 3.1 presents definition and descriptive statistics of the variables used 

in the analysis.   

 

Table 3. 1 Descriptive Statistics 
Variables  Definition and Measurement Mean(SD) 

Outcome variables  

Yield  Soybean yield per hectare (kg/ha) 829.64 

(888.24) 

Farm Net Returns Gross revenue less variable cost (GHC/ha) 840.26 

(762.11) 

 

Decision variables 

 

Aware  Farmer is aware of inoculant = 1; Otherwise = 0 0.84 

(0.37) 

Acknow  Farmer acquire knowledge on inoculant = 1; Otherwise = 0 0.66 

(0.47) 

Tryout Farmer first use of inoculant = 1; Otherwise = 0 0.32 

(0.47) 

Adopt Farmer second use of inoculant = 1; Otherwise = 0 0.265 

(0.44) 

Cont-Adopt Farmer use inoculant at least for the third time = 1; Otherwise = 0 0.26 

(0.44) 

 

Control variables 

 

Gender Male = 1; Female = 0 0.71 

(0.46) 

Age Number of years  41.56 

(13.32) 

HHize Number of people  5.78 

(3.05) 

Edu Years of schooling 2.79 

(4.69) 

Farmsize Number of hectares  5.05 

(4.37) 

Agrochem Amount of active ingredient in gram used per hectare 4.00 

(7.19) 

Agrochemcost Total cost of agrochemicals used per hectare (GHC) 57.67 

(81.83) 

Labor  Person’s day worked per hectare 7.81 

(24.23) 

Laborcost Total cost of person’s day worked per hectare (GHC) 102.06 

(155.36) 

Extcont At least one prior extension visit before inoculant = 1; Otherwise = 

0 

0.54 

(0.50) 

Credit Credit constrain = 0; Otherwise = 1 0.83 
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Variables  Definition and Measurement Mean(SD) 

(0.38) 

 

 

District  fixed effects 

 

WCZ District is in the Western Corridor Zone = 1; Eastern Corridor 

Zone = 0 

0.57 

(0.50) 

 

Measurement variables 

 

lnendwt Log monetary value of household capital asset endowment in 

(GHC) 

7.27 

(1.79) 

Asset_index Household physical assets index  82.93 

(122.59) 

Nonfarminco Farmer engaged in non-farm work = 1; Otherwise = 0 0.63 

(0.48) 

Livestock Household livestock value (TLU) 1.18 

(2.44) 

 

 

Plot level fixed effects 

 

Rainfall Amount of rainfall in (%) 61.63 

(16.24) 

Soil Soil quality (scale 0 -1) 0.623 

(0.20) 

 

Instruments 

 

Elradsig Electricity and radio signal are in farmer’s community = 1, 

Otherwise = 0 

0.95 

(0.23) 

Comextoff Presence of extension agent in farmer’s community = 1; Otherwise 

= 0  

0.63 

(0.49) 

Distexttof Distance to nearest extension office/district capital in (km) 18.86 

(23.53) 

Minac Mode of inoculant acquisition: Purchase = -1; Gift = 1 and Not 

Available = 0 

0.26 

(0.67) 

Unculand Household have at least 1ha of uncultivated land = 1; Otherwise = 

0 

0.67 

(0.47) 

Commarkt Presence of local market in farmer’s community = 1; Otherwise = 

0  

0.19 

(0.39) 

Observations (N)  600 

(Continued from above) 

Notes: The table shows the definition, measurement and descriptive statistics of the farm households. With the inoculant technology  

being new to farmers, we employed a hybrid coding structure of Cooper’s et al. (2011) to give it direction for policy relevance. 

Therefore, farmers who acquire the technology without paying anything is coded as positive (+1), while those who purchased it are 

coded negative (-1), and none availability as zero (0).  

 

 

A mean difference comparison in Table 3.A1 in the Appendix, reveals significant differences in 

socio-economic characteristics between the dissemination program participants and non-

participants. In particular, program participants significantly differ in gender, age, previous 

extension contacts, soil quality conditions, and mode of inoculant acquisition, compared to non-

participants. Program participants also appear to have shorter distances to the nearest extension 
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office and have amenities such as electricity and radio signals in their communities. However, it 

appears program participants operate smaller farms, use less labor, experience lower level of 

rainfall and live in smaller households, compared to non-participants.  

Using recall information from our cross-sectional survey, we constructed a dynamic multi-stage 

adoption data, which is used for this analysis. In the absence of a longitudinal data, farmers’ recall 

information may be used to approximate the dynamic pattern of the adoption process (Besley and 

Case, 1993). We asked farmers the year they first heard of the inoculant technology and the year 

they first used the technology on their own farms. We also conducted an inoculant knowledge test 

and obtained farmers’ inoculant knowledge test scores, a threshold of which we use to proxy for 

passive information acquisition (i.e. knowledge acquisition) in the adoption process. We took 

information on farmers’ active participation in any field trial/demonstration on the use of the 

inoculant technology. Farmers who participated in field trial/demonstration are deemed to have 

tried the technology16 and, therefore said to have acquired active information. Past studies that 

looked at adoption as a dynamic process failed to distinguish between the role play by active 

information acquisition and passive information acquisition. Intuitively, each of these modes of 

information acquisition may generate different learning outcomes and impacts on the adoption 

process (Feder and Slade, 1984). Exploiting farmers’ repeated inoculant usage history and time 

differentials among farmers in our data, we constructed five (5) ordered nodes of farmers’ 

sequential adoption decisions17, based on the synthetic cohort assumption (SCA)18. 

Table 3.2 shows the sub-samples and characteristics of farmers at each cohort across the various 

stages of inoculant adoption. About 84% farmers are at awareness stage, 66% at knowledge 

acquisition stage, 32% at the trial stage, 27% and 26% at adoption and continued adoption stages, 

respectively.   

                                                           
16 Farmers who use the inoculant only once is also considered as trial even without participation in field demonstration exercise. 
17 See the farmers’ adoption decision tree in Appendix A.1. 
18 The SCA is a standard practice in the dynamic discrete-choice literature (Heckman et al., 2016; 2018). 
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Table 3. 2 Comparison of Farmer Characteristics by Adoption Stages 
Variables  Aware 

Mean(SE) 

Acknow 

Mean(SE) 

Tryout 

Mean(SE) 

Adopt 

Mean(SE) 

Cont-Adopt 

Mean(SE) 

Yield 0.33*** 

(0.11) 

0.04 

(0.08) 

0.17** 

(0.09) 

0.30*** 

(0.09) 

0.40*** 

(0.09) 

Farm Net Return 0.12 

(0.01) 

-0.05 

(0.08) 

-0.14* 

(0.08) 

-0.15* 

(0.08) 

0.04 

(0.08) 

Gender (Male=1) -0.03 

(0.05) 

0.10 

(0.04) 

0.06 

(0.04) 

0.06 

(0.04) 

-0.10** 

(0.04) 

Age 2.33 

(1.48) 

3.05*** 

(1.14) 

1.19 

(1.17) 

1.28 

7(1.23) 

3.51*** 

(1.24) 

HHSize -0.38 

(0.34) 

-0.16 

(0.26) 

-0.46* 

(0.27) 

-0.19 

(0.28) 

0.58* 

*(0.28) 

Edu -0.01 

(0.05) 

0.03 

(0.04) 

0.05 

(0.04) 

0.08* 

(0.04) 

-0.03 

(0.05) 

Farmsize 0.004 

(0.49) 

-0.42 

(0.38) 

-0.66* 

(0.38) 

-0.61 

(0.40) 

0.04 

(0.41) 

Agrochem 0.07 

(0.80) 

-0.57 

(0.62) 

-0.75 

(0.63) 

-0.87 

(0.66) 

-0.16 

(0.67) 

Agrochemcost -8.14 

(9.11) 

-5.33 

(7.06) 

-3.75 

(7.20) 

-7.49 

(7.57) 

-1.03 

(7.65) 

Labor -1.81 

(2.70) 

-3.12 

(2.09) 

1.00 

(2.13) 

1.92 

(2.24) 

-0.88 

(2.27) 

Laborcost -6.03 

(17.31) 

-22.72* 

(13.38) 

8.79 

(13.66) 

12.34 

(14.36) 

-3.57 

(14.53) 

Extcont 0.62*** 

(0.05) 

0.80*** 

(0.03) 

0.18*** 

(0.04) 

0.08* 

(0.05) 

0.19*** 

(0.05) 

Credit -0.07 

(0.04) 

-0.08*** 

(0.03) 

-0.02 

(0.03) 

-0.02 

(0.04) 

-0.04 

(0.04) 

Rainfall -3.26* 

(1.81) 

-2.45* 

(1.40) 

0.40 

(1.43) 

0.52 

(1.50) 

-1.50 

(1.52) 

Soil 0.02 

(0.02) 

0.02 

(0.02) 

0.03 

(0.02) 

0.03 

(0.02) 

0.01 

(0.02) 

WCZ -0.09* 

(0.06) 

-0.02 

(0.04) 

0.06 

(0.04) 

0.04 

(0.05) 

0.03 

(0.05) 

Comextoff -0.12** 

(0.05) 

-0.02 

(0.04) 

0.06 

(0.04) 

0.06 

(0.05) 

-0.002 

(0.05) 

Distextoff -6.46** 

(2.79) 

-4.38** 

(2.16) 

-6.82*** 

(2.19) 

-8.16*** 

(2.30) 

-5.24** 

(2.34) 

Elradsig -0.02 

(0.03) 

0.01 

(0.00) 

-0.01 

(0.02) 

-0.01 

(0.02) 

0.004 

(0.02) 

Commarkt -0.01 

(0.04) 

-0.02 

(0.03) 

-0.08*** 

(0.03) 

-0.08** 

(0.04) 

0.05 

(0.04) 

Minac 0.31*** 

(0.07) 

0.14*** 

(0.06) 

0.46*** 

(0.06) 

0.58*** 

(0.06) 

-0.32*** 

(0.06) 

Unculand -0.07 

(0.05) 

-0.04 

(0.04) 

-0.08* 

(0.04) 

-0.08* 

(0.04) 

-0.06 

(0.04) 

Asset_index 15.46 

(13.65) 

-2.87 

(10.59) 

6.14 

(10.78) 

4.89 

(11.35) 

7.46 

(11.46) 

Nonfarminco -0.03 

(0.05) 

0.01 

(0.04) 

0.03 

(0.04) 

0.07 

(0.05) 

0.04 

(0.05) 

Livestock 0.18 

(0.27) 

0.19 

(0.21) 

0.11 

(0.21) 

0.06 

(0.23) 

0.14 

(0.23) 

Endwt 318.74 

(1425.30) 

369.43 

(1104.36) 

89.70 

(1124.92) 

196.64 

(1183.99) 

2145.04 

(1193.10) 

Sub-Samples 504 397 189 159 154 
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Notes: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. The table shows the differences 

in mean comparison of farmers at various binary decision nodes (e.g. Aware vs Unaware, Acquire knowledge vs No-Knowledge, Tryout vs No-

Tryout, Adopt vs Non-Adopt, Continued-Adoption vs Discontinued-Adoption).  

 

Farmers at each cohort also appear to differ significantly in their observed characteristics.   

Figure 3.1 shows the diffusion and adoption curves of the inoculant from 2014 to 2018, the self-

reporting period covered in the survey. As seen in Figure 3.1, no farmer in our sample either heard 

or used the inoculant technology in 2014. It appears the dissemination program intensified in 2015 

and peaked in 2016, when many farmers became aware of the technology. Within this period, 

adoption was slow until 2017, when most farmers begun using the inoculant, an indication that 

diffusion of the inoculant technology may still be incomplete and farmers may be at different stages 

in the adoption process, justifying our argument to depart from the classical approach.  

 

 

Figure 3. 1 Inoculant Technology Diffusion and Adoption in Northern region, 2014 – 2018. 
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3.7 Empirical Results 

3.7.1 Determinants of Adoption Transition Decisions 

Table 3.3 presents the results on factors that determine farmers’ decision to transit from one 

adoption state to the other. The table contains estimates from two generalized continuation ratio 

models with a probit link (Model 1 and 2). Note that the continuation ratio model, unlike 

proportional odd models, estimates the conditional probability of being above a particular adoption 

state given that a farmer has attained that particular adoption state (Liu and Bai, 2019; Bauldry et 

al., 2018; Fullerton and Xu, 2016). Model 1 assumes that farmers and adoption states are 

homogenous in characteristics and in benefits across states, respectively (implying the parallel 

line/proportional-odd assumption). As such, model 1 constraint coefficients across all transitions 

to be equal. In model 2, we relax the parallel line assumption and allow farmer characteristics and 

adoption states to differ due to heterogeneity that exist in farmer characteristics and benefits 

accruing to farmers at different adoption states. The specification in model 2 is important because 

when farmers make sequential adoption decision, but is misspecified as a dichotomous decision, 

this can lead to serious statistical bias and inconsistent estimates (Buis, 2017; Williams, 2016). A 

log-likelihood ratio test (reported below in the last row of table 3) between the two models shows 

that model 2 is a better specification of the farmers’ adoption decision-making process, compared 

to model 1. We therefore restrict the discussion of our results to model 2 estimates, since that is 

more consistently estimated. 

Before delving into a discussion of the individual predictors, we first comment on the threshold-

crossing index describing the adoption transition behavior of farmers, as captured in equation (6) 

of the empirical specification and the average transitional probability. We report estimates of the 

threshold indices and the average transitional probabilities in the lower part of Table 3.3. As shown 

in the Table, the threshold estimates in model 1 are positive and significantly different from zero 



86 
 

(at 5% and 1% level, respectively) across all the adoption states, suggesting that adoption states are 

heterogeneous and farmers move from lower benefits adoption states to higher benefits states.  

Table 3. 3 Determinants of Adoption States Transition Decision 
Variables All States Acknow Tryout Adopt Cont-Adopt 

 Model 1 Model 2 Model 2 Model 2 Model 2 

Coeffs. (S.E) Coeffs. (S.E) Coeffs. (S.E) Coeffs. (S.E) Coeffs. (S.E) 
Gender (Male=1) -0.14 

(0.10) 

-0.37 

(0.23) 

-0.16 

(0.17) 

0.08 

(0.18) 

-0.60** 

(0.22) 

Age 0.04** 

(0.02) 
0.09** 

(0.04) 
0.06** 

(0.03) 
0.03 

(0.03) 
-0.05 
(0.04) 

Age2 -3-e4* 

(2-e4) 

-0.001 

(0.001) 

-0.001** 

(3-e4) 

-3-e4 

(3-e4) 

0.001 

(0.001) 
HHSize 0.01 

(0.01) 

-0.01 

(0.03) 

0.03 

(0.02) 

0.002 

(0.03) 

-0.05 

(0.05) 

Edu 0.11 

(0.09) 

0.39* 

(0.2) 

0.30* 

(0.17) 

-0.04 

(0.17) 

-0.53** 

(0.28) 

Farmsize -0.01 

(0.02) 

-0.02 

(0.04) 

-0.03 

(0.03) 

-0.02 

(0.04) 

0.03 

(0.05) 
Agrochem 0.002 

(0.01) 

0.01 

(0.02) 

0.01 

(0.03) 

0.003 

(0.03) 

-0.09 

(0.06) 

Agrochemcost -0.001 
(0.001) 

-0.001 
(0.001) 

-0.003 
(0.003) 

7-e6 
(0.003) 

0.004 
(0.01) 

Labor 0.01 

(0.01) 

0.02** 

(0.01) 

0.01 

(0.01) 

0.01 

(0.01) 

-0.002 

(0.01) 
Laborcost -0.001 

(0.001) 

-0.003* 

(0.001) 

-0.001 

(0.001) 

-0.001 

(0.001) 

0.002 

(0.002) 

Extcont 0.98*** 

(0.09) 
2.53*** 

(0.29) 
0.54*** 

(0.15) 
0.94*** 

(0.17) 
1.35*** 

(0.38) 

Credit -0.078 

(0.097) 

-0.191 

(0.324) 

-0.001 

(0.177) 

-0.106 

(0.183) 

-0.107 

(0.253) 
Rainfall 0.001 

(0.002) 

-0.004 

(0.01) 

0.01 

(0.004) 

0.002 

(0.01) 

-0.01* 

(0.01) 

Soil 0.44** 

(0.20) 
0.78* 

(0.45) 
0.19 

(0.37) 
0.24 

(0.30) 
0.17 

(0.64) 

WCZ 0.19** 

(0.08) 
0.42** 

(0.22) 
0.09 

(0.15) 
0.04 

(0.16) 
0.67*** 

(0.23) 

Distextof -0.01*** 

(0.002) 

-0.01 

(0.003) 

-0.01*** 

(0.003) 

0.01 

(0.004) 

-0.01 

(0.01) 
Comextoff 0.08 

(0.08) 

0.08 

(0.20) 

0.11 

(0.14) 

0.03 

(0.16) 

-0.32 

(0.25) 

Elradsig 0.07 
(0.14) 

-0.35 
(0.35) 

0.23 
(0.28) 

0.01 
(0.33) 

5.93*** 

(0.62) 

Minac 0.11* 

(0.06) 

0.66*** 

(0.13) 

0.42*** 

(0.08) 

-0.07 

(0.08) 

-0.50*** 

(0.12) 
Unculand -0.23*** 

(0.09) 

-0.25 

(0.21) 

-0.17 

(0.14) 

-0.22 

(0.15) 

0.10 

(0.22) 

Commarkt 0.05 
(0.10) 

0.23 
(0.25) 

0.25 
(0.18) 

-0.23 
(0.19) 

0.24 
(0.30) 

Thre-index (𝐼) 0.33 

(0.48) 

1.340 

(1.21) 

1.68** 

(0.83) 
1.38 

(0.97) 
5.35*** 

(1.35) 
LL -733.399 -651.463    

Wald Chi2      182.31*** 676.60***    

LR Test χ2(2) 163.87***     

Trans. Prob.  0.895 

[0.191] 

0.672 

[0.156] 

0.916 

[0.140] 

0.774 

[0.314] 

Observ. (N) 536 536    

Note: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are robust standard errors, while values in square brackets are standard 

deviations. The table shows estimates from the generalized continuation-ratio probit model as represented by equation (6) in the empirical specification, which measures 

the conditional probability [𝑃𝑟 (𝑰𝒋 < 𝑰𝒋+𝟏|𝑿 = 𝑥, 𝒁 = 𝑧, 𝜽 = �̅�, 𝑄𝑗 = 1 )] of a farmer moving from adoption state j to j+1.  
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Compared to model 2, the threshold estimates of model 1 are generally downward bias, indicating 

that agents make sequential adoption decisions. All the threshold indices across the two models are 

positive. Specifically, the threshold for farmers at the knowledge acquisition state to move to trial 

state is 1.3, and 1.7 for farmers at trial state to move to adoption state, 1.4 for farmers at adoption 

state to move to continued adoption. Interestingly, the threshold for farmers at the continued 

adoption state increases sharply to 5.3, suggesting that farmers’ may have high expectations of 

benefits in order to continue their adoption of the inoculant after field and own trials. Lambrecht et 

al. (2014) in their study of mineral fertilizer adoption in Eastern Congo made similar observation 

that farmers’ expectations of potential returns increase after trials, arguing that such expectations 

may have negative influence on continued adoption. Intuitively, what this means is that, farmers’ 

perception of gaining an additional unit benefit is very high in arriving at an adoption decision. A 

finding which is consistent with optimizing behavior of farmers in adoption of new agricultural 

technologies in the literature (see Abdulai and Huffman, 2005). Again the fact that, the threshold 

index is monotonic across adoption states indicates heterogeneity in state-specific marginal 

benefits, a phenomenon that is also consistent with sorting behavior among agents (Bui, 2017; 

Lindeboom and van Doorslaer, 2004). To the extent that agents sort on gains, implies that farmers’ 

adoption decision is sequential, as captured in our dynamic specification, rather than dichotomous, 

as often assumed in classical adoption models (see Buis, 2017; Mare, 2006; 2011). 

Table 3.3 also reports the average transition probability at each adoption state. The transition 

probability measures the chances of agents passing through a particular transition. Intuitively, it 

implies that, the more agents pass through a particular transition indicates that the differences in 

benefits are higher between those that pass and those who fail to pass (Buis, 2017). The results 

show that, on average 90% of farmers at awareness state pass through to knowledge acquisition 

state and 67% of farmers at knowledge acquisition state pass through to the trial state, meaning that 
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more farmers are exposed to the inoculant technology. The table further reveals that 92% of trial 

farmers pass to adoption state, and 77% of the farmers at adoption state pass to continued adoption 

state. Also, because benefits differ between farmers who attain a particular adoption state and those 

who did not, means, at each stage farmers can learn more about average benefits of the new 

technology from other farmers. In this way, the probability of more farmers adopting the new 

technology increases due to learning, as information acquisition and adoption decisions of new 

agricultural technologies are often jointly determined (Abdulai et al., 2008). The high average 

transition probabilities at the knowledge acquisition and trial states underscore the importance of 

extension information provision and promotion campaigns in the diffusion and adoption process 

of new agricultural technologies, as echoed in the literature (Takahashi et al., 2020; Anderson and 

Feder, 2007). 

We now turn our attention to the individual predictors. In Table 3.3, a positive coefficient of a 

predictor is interpreted as the conditional probability of being at a particular adoption state and 

moving beyond to a higher state where margins of benefits are perceived to be greater, while the 

reverse is true for a negative coefficient (Liu and Bai, 2019; Bauldry et al., 2018; Buis, 2017). The 

results in Table 3.3 show that the coefficient of prior extension contact (Extcont) is positive in all 

adoption states (significant at 1% level), suggesting that farmers who have access to adequate 

extension services are more likely to be aware and knowledgeable in the inoculant technology, 

compared to farmers with less previous extension contacts. A finding that is consistent with the 

argument that knowledge-intensive agricultural technologies require skilled extension staff to 

facilitate the adoption process (Takahashi et al., 2020; Issahaku and Abdulai, 2019).  

Table 3.3 shows that mode of inoculant acquisition (Minac) plays a role in farmers’ adoption 

decisions. The results reveal that farmers who acquire the inoculant as a free gift are more likely to 

move from awareness state through to trial state but are less likely to get to adoption and continued 
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adoption states. Indicating that, free distribution of new divisible technologies to farmers during 

dissemination programs have high probability in creating awareness, getting farmers to acquire 

knowledge and trying the technology, but may not lead to adoption and continued adoption. 

Conversely, farmers whose mode of acquisition is by purchase have high probability of getting to 

continued adoption, compared to farmers who had free inoculant or have no access to inoculant 

supply, indicating that input markets to ensure constant supply of the inoculant to farmers may be 

indispensable in getting farmers into adoption and continued adoption states. This finding agrees 

with Shiferaw et al. (2015), who found input supply constraints to be responsible for non-adoption 

of improved groundnut variety among adoption-willing farmers in Uganda.  

Table 3.3 shows that farmer location has positive effects across adoption transition states. The 

results reveal that farmers located in the western corridor zone (WCZ), which is closer to the 

regional capital, have high probability of moving beyond knowledge acquisition state to continued 

adoption state, compared to farmers in the eastern corridor zone (the base category). The results 

further show that decrease in distance (Distextof) to the nearest extension office, increases the 

likelihood of farmers moving beyond trial and adoption states to continued adoption state. This 

suggests that farmers who are close to the district or the regional capital may have better 

infrastructure and access to information, compared to their counterparts who may be remotely 

located. A finding that is in line with Suri’s (2011) suggestion that removing supply and 

infrastructure constraints may be cost-effective way to facilitate adoption of improved agricultural 

technologies among farmers.  

Table 3.3 also shows that soil quality plays an important role in farmers’ adoption decisions. 

Because the inoculant technology is an organic product with huge potential of maintaining good 

soil structure and fertility (van Heerwaarden et al., 2018), farmers who perceived the quality of soil 

in their farm plots to be fertile or good are more likely (significant at 1% level) to move beyond 
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inoculant knowledge acquisition state to adoption and continued adoption states19. The coefficient 

of rainfall at the continued adoption state is negative (significant at 10% level), indicating that 

inadequate rainfall may negatively influence farmers’ continued adoption decision, a finding 

similar to that of Shahzad and Abdulai (2020), who found average daily rainfall to have negative 

influence on farmers’ adoption decision of climate-smart farm practices in Pakistan.   

The results in Table 3.3 also highlight the importance of farmers’ socioeconomic characteristics on 

their adoption decisions. The results show that the coefficient representing age is positive and 

significant in all adoption states, except at the continued adoption state, while the squared term 

have negative and statistically significant coefficient across all adoption states, but positive at the 

continued adoption state. This finding suggests that at younger ages, an increase in age increases 

the probability of adoption, with the maximum effect occurring at approximately 46 years, while 

at older ages, the probability of adoption decreases with increasing age.  However, once adoption 

takes place, older farmers who are more experienced are likely to benefit from the new technology 

more than younger farmers and therefore more likely to sustain their adoption. This finding 

corroborates Lambrecht et al. (2014), who found older and more experienced farmers to be more 

efficient and better judges of expected returns than less experienced younger farmers, resulting in 

higher continued adoption rates of mineral fertilizer among older farmers in Eastern Congo. Table 

3.3 also shows that education is positive in the transition decision of farmers from awareness to 

knowledge acquisition and trial states (significant at 10% level respectively), but negative at 

adoption and continued adoption states (significant at 1% level), suggesting that increasing levels 

of education increases the probability of learning about the new technology at the early stages in 

the technology adoption or diffusion process, and declines at later stages after farmers have learnt 

                                                           
19 Majority of the farmers in our sample were the indigenous land owners and not renters, hence, this observation is consistent with economic 
theory of owner-operated lands as farmers have the obligation to maintain productivity of their lands into the future. 
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more about the new technology. The results in Table 3 also reveal that access to at least one hectare 

of uncultivated (Unculand) land is important in the adoption of newly introduced technologies. 

Farmers without extra land are less likely to try a new technology or adopt immediately, but are 

more likely to be in continued adoption state once the technology is well diffused and farmers learn 

from the trials of others. Intuitively, this makes sense as risk averse farmers may be reluctant to 

commit their only productive lands to the new technology, compared to farmers who have access 

to extra land available.    

3.7.2 Impact on Returns to Inoculant Adoption   

In this section, we present results of the estimates of the transition stages on the outcome variables. 

The impact of inoculant adoption on yields and farm net returns are presented in Tables 3.4 and 

3.5, respectively. These results are obtained from the third-stage estimates of equation (13) (i.e., 

𝑓𝑌(. )) of our factor structural model20. The estimated impacts represent the observed cases that the 

farmer makes a transition to a particular stage and the counterfactual case that the farmer did not 

make the transition. Hence, the results are the average effects on yields and farm net returns at each 

adoption state that the farmer attained. For brevity, we focus the discussion on the impact on yields 

(Table 3.4) and extend it to the farm net returns (Table 3.5). Both Tables 3.4 and 3.5 show positive 

and statistically significant impact of inoculant adoption on yields and farm net returns, 

respectively, across all adoption states. The results in Table 3.4 reveal that, on average, the yields 

for farmers who used the inoculant for the first season (i.e. at the trial state) was 108kg/ha of 

soybeans, with the yields increasing to 151kg/ha and 191kg/ha for farmers who used it for at least 

two seasons (i.e. at the adoption state) and farmers who used it for at least three seasons (i.e. at the 

continued adoption state), respectively. We observe a pattern of marginal incremental benefits as 

                                                           
20 We report the first-stage, the second-stage and the third-stage estimates in the appendix (see Tables 3A.1&3A.2 in Appendix A.2&A.3), they do 
not contribute much to the current discussion. Note that the outcome variables are log values. 
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farmers move from one adoption state to the other, suggesting that farmers may still be learning 

about the inoculant technology and the benefits are heterogeneous, depending on the adoption state 

of the farmer.  

  

Table 3. 4 Impact on Yield (kg/ha) 

Treatment Effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4) 

ATE† 0.66***  

(0.29) 

0.94*** 

(0.03) 

1.35*** 

(0.04) 

1.73*** 

(0.07) 

ATE 0.73*** 

(0.03) 

1.08*** 

(0.03) 

1.51*** 

(0.05) 

1.91*** 

(0.08) 

ATT 0.75*** 

(0.03) 

1.06*** 

(0.04) 

1.45*** 

(0.06) 

2.08*** 

(0.11) 

ATUT 0.34*** 

(0.13) 

1.11*** 

(0.06) 

2.06*** 

(0.13) 

1.70*** 

(0.13) 
AMTE† 1.58*** 

(0.07) 

1.60*** 

(0.08) 

1.57*** 

(0.08) 

1.69*** 

(0.09) 

AMTE 1.96*** 

(0.07) 

1.87*** 

(0.09) 

1.77*** 

(0.10) 

2.09*** 

(0.13) 
Note: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. The Table show the estimates 

of the treatment effects (without continuation values) of the adoption process on soybeans net returns. ATE is the average treatment effects for 

farmers at each adoption state; 
𝐴𝑇𝐸†

 is the average treatment effects for the full population of farmers; ATT is the average treatment effects for 

farmers who chose to transit to a higher adoption state; ATUT is the average treatment effects for farmers who chose not to transit to a higher 

adoption state. The average marginal treatment effect (AMTE) is the average effects for farmers at an adoption transition state who are indifferent 

between transiting to a higher level adoption state or not. 
𝐴𝑀𝑇𝐸†

 is the average marginal  effects for the full population of farmers who are 

indifferent between transiting to a higher level adoption state or not.    
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Table 3. 5 Impact on Farm Net Returns (GHC/ha) 

Treatment Effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4) 

ATE† 0.43*** 

(0.03) 

0.46*** 

(0.03) 

0.48*** 

(0.04) 

0.51*** 

(0.05) 

ATE 0.50*** 

(0.02) 

0.56*** 

(0.03) 

0.51*** 

(0.04) 

0.49*** 

(0.04) 

ATT 0.54*** 

(0.02) 

0.51*** 

(0.03) 

0.47*** 

(0.04) 

0.62*** 

(0.06) 

ATUT 0.02 

(0.05) 

0.67*** 

(0.04) 

0.85*** 

(0.13) 

0.34*** 

(0.06) 
AMTE† 0.48*** 

(0.05) 

0.49*** 

(0.06) 

0.49*** 

(0.06) 

0.58*** 

(0.07) 

AMTE 0.60*** 

(0.04) 

0.50*** 

(0.05) 

0.45*** 

(0.05) 

0.67*** 

(0.07) 
Note: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. The Table show the estimates 

of the treatment effects (without continuation values) of the adoption process on soybeans net returns. ATE is the average treatment effects for 

farmers at each adoption state; 
𝐴𝑇𝐸†

 is the average treatment effects for the full population of farmers; ATT is the average treatment effects for 

farmers who chose to transit to a higher adoption state; ATUT is the average treatment effects for farmers who chose not to transit to a higher 

adoption state. The average marginal treatment effect (AMTE) is the average effects for farmers at an adoption transition state who are indifferent 

between transiting to a higher level adoption state or not. 
𝐴𝑀𝑇𝐸†

 is the average marginal  effects for the full population of farmers who are 

indifferent between transiting to a higher level adoption state or not.    

 

This finding is consistent with van Heerwaarden et al. (2018) who found average yields to be in 

the range of 102 – 180kg/ha in an on-farm experimental trials of the inoculant across ten countries 

in sub-Sahara Africa (with Ghana included). On the other hand, average farm net returns for 

farmers at the trials state is 56GHC/ha, 51GHC/ha at the adoption state and 49GHC/ha at the 

continued adoption state (see Table 3.5), suggesting that early adopters of the inoculant benefit 

more in terms of revenue due to marginal increase in their yields in those seasons. This observation 

is consistent with the literature on diffusion and adoption of new technologies, where early adopters 

tend to get the greatest returns, thereby triggering the race to high order adoption (e.g. Karshenas 

and Stoneman, 1993).  

Table 3.4 further shows that the average marginal treatment effect (AMTE) for farmers at various 

margins of indifference deciding whether to make the next transition or remain where they are, in 

terms of yields, is 187kg/ha for farmers at the trial state, 177kg/ha at the adoption and 209kg/ha at 
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the continued adoption state. It can be observed in Table 3.5 that, with farm net returns, the AMTE 

is 50GHC/ha for farmers at the trial state, 45GHC at the adoption state and 67GHC/ha at the 

continued adoption state. The AMTE estimates for both outcome measures are positive across all 

adoption states and significant at the 1% level, suggesting that farmers with unobserved factors 

(such as wealth endowment) that increase their ability to make further adoption transitions stand to 

gain more from such transitions. In other words, farmers who tried the inoculant technology and 

have the financial ability to continue to use the inoculant stand to benefit more from their continued 

adoption.  We also observe from the results in Tables 3.4 and 3.5 that the impact gap is wider for 

yields compared to that of farm net returns, which can be attributed to differences in prices faced 

by farmers (both input and output prices), timing and place of sales.  

Figures 3.2 and 3.3 present the distributions of impacts at the sub-population level of farmers at 

each adoption state. We find that farmers who are observed to make a transition at each adoption 

state (that is, the treated case – TT) obtain higher yields and farm net returns, compared to if the 

same farmers did not make the transition (that is, the untreated case –TUT). The results reveal that 

the impact distributions at the sub-population means for both outcomes are positive and above the 

sub-population means at zero. Examining the pattern of the impact distributions at the sub-

population means reveal an interesting finding. In particular, we observe positive pattern of 

selection on gains (i.e. TT>ATE>TUT) at the knowledge and continued adoption states, and 

negative or reverse pattern of selection (i.e. TUT>ATE>TT) at the trial and adoption states21. These 

findings suggest two heterogeneous group of farmers. One group that would have benefited more 

from further investment in the inoculant adoption, but, due to low levels of unobserved factors 

(such as wealth endowment) are unable to make transitions beyond trial and adoption states (i.e. 

                                                           
21 Selection on gains in this literature refers to a case where farmers who have higher or lower values of unobserved ability (i.e., unobserved factors 

such as wealth endowment that poses a resistance to a farmer to make a transition) to transit obtain higher than average (positive selection on gain) 
or lower than average (negative or reserve selection on gain) net benefits from making an adoption transition. 
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the negative selection on gains group). The second group (i.e. the positive selection on gains group) 

with high level of unobserved factors, and low benefits from the inoculant adoption which suggests 

that the inoculant technology may be more beneficial to poor farmers. These findings imply that, 

there are still unrealized potential gains to be made from the inoculant dissemination program, 

suggesting that policies aimed at promoting trial and adoption of the technology among farmers 

may still be necessary to achieve the desired impact.   

 

 

Figure 3. 2 Treatment Effect Distributions at each Adoption Transition (Sub-population 

Level) – Yield (Kg/ha) 

Note: ACK=Knowledge Acquisition State; TRY=Trial State; ADO=Adoption State; CON=Continued Adoption State; TT 

represents Treated State; TUT represents Untreated State. ATE=Average Treatment Effect Curve; ATT=Average Treatment 

Effect on the Treated Curve; ATUT=Average Treatment Effect on the Untreated Curve. 
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Figure 3. 3 Treatment Effect Distributions at each Adoption Transition (Sub-population 

Level) – Net Returns (GHC/ha). 

Note: ACK=Knowledge Acquisition State; TRY=Trial State; ADO=Adoption State; CON=Continued Adoption State; TT 

represents Treated State; TUT represents Untreated State. ATE=Average Treatment Effect Curve; ATT=Average Treatment Effect 

on the Treated Curve; ATUT=Average Treatment Effect on the Untreated Curve. 
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3.7.3 Long-term Impact of Returns to Inoculant Adoption 

In this section, we present results derived from the estimates of equation (16) in the empirical 

specification in Tables 3.6 and 3.7 for yields and farm net returns respectively. The results represent 

the long-term impact of technology adoption, which approximate ex-post valuation of opportunities 

that farmers’ current adoption decisions open up for them. As noted by Besley and Case (1993), 

current adoption choices have future consequences and have to be taken into consideration when 

analyzing farmers’ adoption choices. Intuitively, farmers who try a technology are more likely to 

adopt, and those who adopt conditional on the benefits, are more likely to sustain their adoption. 

This valuation of the dynamic impact of opportunities constitutes the long-term forecast of benefits 

informing farmers’ adoption decisions, but is often overlooked in traditional technology adoption 

impact studies.  

The results in Tables 3.6 and 3.7 show similar patterns in the distribution of benefits, similar to 

those computed without the inclusion of the continuation values presented in Tables 3.4 and 3.5. 

All the estimated coefficients are positive and statistically significant at 1% level, indicating that 

farmers’ valuation of expected long-term benefits at each adoption state is important in the adoption 

decisions they make. The estimates of ATE presented in row 2 of Table 3.6, suggest that the 

average total effect on yields for farmers at the trial state is 204kg/ha. Similarly, the effects for 

farmers at the adoption and continued adoption states are 298kg/ha and 329kg/ha, respectively. In 

terms of farm net returns, presented in Table 3.7, we find average total effect to be 91GHC/ha for 

farmers at the trial state, 85GH/ha at adoption state and 78GHC/ha at continued adoption state.  
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Table 3. 6 Impact on Yield Estimates with Continuation Values (kg/ha) 

Treatment Effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4) 

ATE† 1.09*** 

(0.04) 

1.76*** 

(0.07) 

2.55*** 

(0.10) 

2.93*** 

(0.13) 

ATE 1.14*** 

(0.04) 

2.04*** 

(0.06) 

2.98*** 

(0.11) 

3.29*** 

(0.14) 

ATT 1.17*** 

(0.04) 

2.02*** 

(0.07) 

2.83*** 

(0.11) 

3.57*** 

(0.19) 

ATUT 0.78*** 

(0.19) 

2.09*** 

(0.10) 

4.33*** 

(0.20) 

2.95*** 

(0.13) 
AMTE† 6.64*** 

(0.40) 

7.65*** 

(0.36) 

7.68*** 

(0.39) 

7.55*** 

(0.40) 

AMTE 8.19*** 

(0.35) 

9.01*** 

(0.36) 

8.61*** 

(0.39) 

8.80*** 

(0.64) 
Note: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. The Table show the estimates 

of the total dynamic treatment effects (Including continuation values) of the adoption process on soybean yields. ATE is the average treatment effects 

for farmers at each adoption state; 
𝐴𝑇𝐸†

 is the average treatment effects for the full population of farmers; ATT is the average treatment effects 

for farmers who chose to transit to a higher adoption state; ATUT is the average treatment effects for farmers who chose not to transit to a higher 

adoption state. The average marginal treatment effect (AMTE) is the average effects for farmers at an adoption transition state who are indifferent 

between transiting to a higher level adoption state or not. 
𝐴𝑀𝑇𝐸†

 is the average marginal  effects for the full population of farmers who are 

indifferent between transiting to a higher level adoption state or not.    
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Table 3. 7 Impact on Farm Net Returns Estimates with Continuation Values (GHC/ha) 

Treatment Effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4) 

ATE* 0.66*** 

(0.05) 

0.71*** 

(0.06) 

0.76*** 

(0.08) 

0.79*** 

(0.10) 

ATE 0.77*** 

(0.04) 

0.91*** 

(0.04) 

0.85*** 

(0.07) 

0.78*** 

(0.08) 

ATT 0.86*** 

(0.04) 

0.82*** 

(0.05) 

0.76*** 

(0.07) 

0.99*** 

(0.01) 

ATUT -0.14 

(0.19) 

1.09*** 

(0.07) 

1.67*** 

(0.21) 

0.52*** 

(0.11) 

AMTE* 2.70*** 

(0.32) 

2.71*** 

(0.35) 

2.66*** 

(0.35) 

3.16*** 

(0.40) 

AMTE 3.56*** 

(0.22) 

2.98*** 

(0.27) 

2.59*** 

(0.27) 

3.95*** 

(0.39) 
Note: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. The Table show the estimates 

of the total dynamic treatment effects (Including continuation values) of the adoption process on soybeans net returns. ATE is the average treatment 

effects for farmers at each adoption state; 
𝐴𝑇𝐸†

 is the average treatment effects for the full population of farmers; ATT is the average treatment 

effects for farmers who chose to transit to a higher adoption state; ATUT is the average treatment effects for farmers who chose not to transit to a 

higher adoption state. The average marginal treatment effect (AMTE) is the average effects for farmers at an adoption transition state who are 

indifferent between transiting to a higher level adoption state or not. 
𝐴𝑀𝑇𝐸†

 is the average marginal  effects for the full population of farmers 

who are indifferent between transiting to a higher level adoption state or not.    

 

Tables 3.6 and 3.7 also show that the total AMTE estimates at all adoption states are positive and 

statistically significant at 1% level. In particular, the results reveal that total AMTE for farmers at 

the margin of trial is 901kg/ha, 861kg/ha for farmers at the margins of adoption and 880kg/ha for 

farmers at the margins of continued adoption. These estimates are close to the experimental results 

of van Heerwaarden et al. (2018), who found average total yield of 1343kg/ha obtained by 

inoculant users in an on-farm experiment in ten countries of sub-Sahara Africa (with Ghana 

included). A plot of the full distributions of the total treatment effects at both population and sub-

population levels reveal similar distributions of impacts22 and selection on gains pattern among the 

farmers. The implication of this finding is that, there exists potential long-term benefits from 

adoption of inoculant technology, as farmers’ yields and farm net returns appear to more than 

                                                           
22 See Appendix A.5, A.6 and A.7 for population level and sub-population level distributions, respectively. 
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double, compared to the short-term benefits. This observation resonates with the benefits stream of 

organic agricultural inputs that have long-term impacts on improving soil fertility23.  

3.7.4 Robustness Check 

The validity of our treatment effects hang on proper identification of the unobserved wealth 

endowment effect on farmers’ transitional ability, as expressed in the factor model in equation (12) 

of the empirical specification. In the interest of brevity, we discuss the distributions of the 

unobserved factors as well as the heterogeneity of the factors across each adoption state, but present 

the results in the appendix, by way of robustness check. Figure 3A.6 presents the mixture of two 

normal distributions of the unobserved wealth endowment for farmers at each of the adoption state 

(see Appendix A.8). The results show evidence of sorting into adoption states by unobserved 

wealth endowment, with this endowment having significant impact on the distributions of farm 

outcomes. The distributions around the zero mean confirm our findings of the existence of two 

heterogeneous group of farmers based on selection on gains. That is, the negative and positive 

selection on gains groups of farmers.   

Figure 3A.7 in Appendix A.9 presents the distributions of the unobserved wealth endowments for 

farmers at each adoption state. We observe that the distributions of the endowment is 

heterogeneous across each adoption state, indicating that farmers’ wealth endowment may play an 

important role in moving them from one adoption state to the next adoption state. 

Finally, Table 3A.3 presents results of exogeneity test for the instrumental variables (IVs) 

employed as the exclusion restriction variables for identification of farmers’ adoption choice 

decisions at each adoption state as expressed in equation (7) of the empirical specifications. In line 

with Heckman et al. (2018), we employed state dependent instrumental variables to identify each 

                                                           
23 See Appendix A.4 for mean plot of AMTE and ATE compared for both outcomes. 
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autonomous adoption decision, while controlling for farmer’s wealth endowment at each adoption 

state. We assume that different adoption states are identified by different instruments that are 

important to that state. As seen in Table 3A.3, the Anderson-Rubin (AR) test statistic of the IVs in 

both the yields and the farm net returns models are not statistically significant at any conventional 

level, indicating that the IVs use for the exclusion restriction satisfy the exogeneity requirement 

and that the instruments do not have direct influence on yields and farm net returns, except through 

the different states of adoption that they identify.         

3.8 Conclusions and Implications                

In this study, we address the question of what drives the dynamic pattern of farmers’ technology 

adoption and its diffusion over time or space. Using farm level data of soybean farmers in Ghana, 

we analyzed technology adoption as a multi-stage dynamic decision problem in an impact 

evaluation framework. We employed dynamic treatment effects model, a novel procedure, to 

examine heterogeneity in returns to adoption of newly introduced technologies, focusing on the 

newly introduced inoculant technology. Our findings reveal new insights into the role of 

information in farmers’ adoption decisions, the distribution of returns in the entire chain of the 

adoption process, and factors that influence continued adoption, or otherwise, of new agricultural 

technologies. Consistent with Besley and Case (1993), we find substantial impact heterogeneity at 

each adoption state, which we contend drive the adoption process. Our results showed that contact 

to extension agents is key to the adoption process, by influencing knowledge acquisition, adoption 

and continued adoption. We also found that although free distribution of newly developed divisible 

agricultural technologies to farmers during dissemination programs increases farmer awareness, 

knowledge acquisition, trial and take up, it does not guarantee continued adoption as argued by 

Lambrecht et al. (2014). In contrast, we found that the existence of efficient input markets tend to 

drive the probability of continued adoption. We also observed that farmers who live closer to the 
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distribution centers, had higher probability of continuous adoption of the new technology, a finding 

that confirms the significance of improving agricultural markets to ensure that farmers gain access 

to improved varieties. Our impact analysis revealed that the long-term effects are much stronger 

than the short-term effects, conditional on the markets being able to absorb the excess supply that 

may result from higher yields. We therefore conclude that the diffusion and continued adoption of 

the new inoculant technology is contingent on gains from adoption, as well as efficient input and 

output markets. Finally, the fact that our findings reveal the existence of untapped potential gains 

from some stages of adoption, implies that our approach can enable policy-makers identify 

different sub-population of farmers, who require special attention during extension program 

implementation, to be targeted in order to maximize the impact. The extension policy targeting 

approach will save resources and expand the outreach to benefit more farmers, thus increasing 

productivity at least cost.    
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Appendix 

Table 3A. 1 Comparison of Program Participants and Non-Participants 
Variables  Participants 

Mean(SE) 

Non- Participants 

Mean(SE) 

Mean Diff 

(SE) 

Yield 6.28 

(0.05) 

6.24 

(0.06) 

0.03 

(0.08) 

Farm Net Return 6.313 

(0.05) 

6.42 

(0.05) 

-0.10 

(0.07) 

Gender 0.74 

(0.02) 

0.67 

(0.03) 

0.066* 

(0.04) 

Age 42.56 

(0.79) 

40.39 

(0.72) 

2.17** 

(1.09) 

HHSize 5.57 

(0.17) 

6.04 

(0.19) 

-0.47** 

(0.25) 

Edu 0.35 

(0.03) 

0.36 

(0.03) 

-0.01 

(0.04) 

Farmsize 4.77 

(0.22) 

5.37 

(0.29) 

-0.59* 

(0.36) 

Agrochem 3.67 

(0.33) 

4.40 

(0.51) 

-0.72 

(0.59) 

Agrochemcost 56.06 

(2.72) 

59.57 

(6.55) 

-3.51 

(6.71) 

Labor 6.25 

(0.93) 

9.65 

(1.86) 

-3.39* 

(1.98) 

Laborcos 93.71 

(6.96) 

111.94 

(11.12) 

-18.23 

(12.72) 

Extcont 1.94 

(0.06) 

0.70 

(0.07) 

1.25*** 

(0.09) 

Credit 0.78 

(0.02) 

0.89 

(0.02) 

-0.11*** 

(0.03) 

Rain 60.43 

(0.92) 

63.06 

(0.94) 

-2.62** 

(1.33) 

Newsoil 0.65 

(0.01) 

0.60 

(0.01) 

0.05*** 

(0.02) 

WCZ 0.55 

(0.03) 

0.59 

(0.03) 

-0.05 

(0.04) 

Comextoff 0.60 

(0.03) 

0.66 

(0.03) 

-0.06 

(0.04) 

Distextoff 16.84 

(1.27) 

21.26 

(1.65) 

-4.42** 

(2.05) 

Elradsig 0.96 

(0.01) 

0.92 

(0.02) 

0.04** 

(0.02) 

Commarkt 0.17 

(0.02) 

0.21 

(0.03) 

-0.04 

(0.03) 

Minac 0.31 

(0.04) 

0.21 

(0.04) 

0.10* 

(0.05) 

Unculand 0.66 

(0.03) 

0.68 

(0.03) 

-0.03 

(0.04) 

Asset_index 85.91 

(6.09) 

79.42 

(8.22) 

6.49 

(10.05) 

Nonfarminco 0.63 

(0.03) 

0.64 

(0.03) 

-0.01 

(0.04) 

Livestock 1.3 

1(0.15) 

1.04 

(0.13) 

0.27 

(0.20) 

Endwt 5963.89 

(768.67) 

5325.29 

(688.29) 

638.60 

(1048.41) 
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No. of Observations 325 275  
Notes: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. The table shows the 

differences in mean comparison of farmers who participated in the inoculant dissemination program against farmers who did not participate.  
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Appendix A.1  

 

 

 

 

Figure 3A. 1 Farmers’ Adoption Decision Tree. The figure illustrates a conceptualized 

farmers’ sequential adoption decision problem analyze in this study.  

In the first stage, farmers normally become aware of the technology and begin searching for information on 

it. The second stage is where farmers collect further information on expected gains and technical information 

on how to use the technology, thus, becoming knowledgeable in the technology. In the third stage, farmers 

tryout the technology and/or observe trials of other farmers to evaluate the technology’s performance. The 

fourth stage is where farmers make the decision to adopt or not to adopt, while the final stage describe 

farmers’ continued adoption or dis-adoption decision of the technology (see Simtowe et al., 2016; 

Lambrecht et al., 2014). 
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Appendix A.2  

Table 3A. 2 Estimates of Choice Decisions and Yield (lnKg/ha). 
 Acknow Tryout Adopt Cont-Adopt 

Variables  Choice  Acknow   No-Acknow Choice Trial No-Trial Choice Adopt No-Adopt   Choice Cont-Adopt  Dis-Adopt 

Const. -1.302 

(1.105) 

4.551*** 

(0.389) 

4.050*** 

(0.558) 

-1.153 

(0.742) 

3.994*** 

(0.478) 

4.371*** 

(0.383) 

-1.995***  

(0.805) 

4.328*** 

(0.450) 

4.412*** 

(0.366) 

-2.729*** 

(0.769) 

4.250*** 

(0.559) 

4.321*** 

(0.346) 
Gender -0.184 

(0.192) 

0.010 

(0.073) 

-0.037 

(0.010) 

0.166 

(0.142) 

0.072 

(0.089) 

-0.040 

(0.074) 

0.220 

(0.150) 

0.049 

(0.080) 

-0.059 

(0.072) 

-0.345*** 

(0.140) 

0.070 

(0.097) 

0.032 

(0.069) 

Age 0.063 
(0.040) 

0.027** 

(0.012) 
0.035* 

(0.020) 
0.013 

(0.024) 
0.027* 

(0.015) 
0.031*** 

(0.013) 
0.049*  

(0.026) 
0.013 

(0.015) 
0.031*** 

(0.012) 
0.084*** 

(0.026) 
0.024 

(0.018) 
0.025** 

(0.012) 

Age2 -0.001 
(4x10-4) 

-3.0x10-4** 

(1.0x10-4) 
-4.0x10-4* 

(3.0x10-4) 
-1.0x10-4 

(2x10-4) 
-2.0x10-4 

(2.0x10-4) 
-3.0x10-4*** 

(1.0x10-4) 
-4.0x10-4 

(3.0x10-4) 
-1.0x10-4 

(2.0x10-4) 
-3.0x10-4*** 

(1.0x10-4) 
-0.001*** 

(3x10-4) 
-2.0x10-4 

(2.0x10-4) 
-3.0x10-4** 

(1.0x10-4) 

HHSize 0.020 

(0.028) 

-0.003 

(0.010) 

-0.004 

(0.014) 

-0.024 

(0.020) 

0.018 

(0.014) 

-0.006 

(0.010) 

-0.005 

(0.021) 

0.017 

(0.011) 

-0.005 

(0.010) 

0.021 

(0.019) 

0.001 

(0.012) 

-0.008 

(0.010) 
Edu 0.109 

(0.190) 

-0.045 

(0.072) 

0.112 

(0.093) 

0.220 

(0.134) 

0.026 

(0.085) 

-0.043 

(0.074) 

0.330*** 

(0.141) 

-0.019 

(0.076) 

-0.042 

(0.070) 

0.175 

(0.140) 

-0.127 

(0.097) 

-0.011 

(0.066) 

Farmsize 0.012 
(0.030) 

0.207*** 

(0.014) 
0.204*** 

(0.016) 
-0.054** 

(0.027) 
0.221*** 

(0.019) 
0.195*** 

(0.012) 
-0.063** 

(0.030) 
0.214*** 

(0.017) 
0.199*** 

(0.012) 
0.020 

(0.025) 
0.193*** 

(0.020) 
0.208*** 

(0.012) 

Agrochem -0.002 

(0.019) 

-0.041*** 

(0.014) 

-0.013 

(0.009) 

0.007 

(0.018) 

-0.020 

(0.019) 

-0.009 

(0.008) 

0.010 

(0.021) 

-0.029* 

(0.015) 

-0.011 

(0.008) 

-0.008 

(0.019) 

-0.077*** 

(0.023) 

-0.013* 

(0.007) 
Agrochcost -3.0x10-4 

(0.002) 

0.004*** 

(0.001) 

0.001 

(4.0x10-4) 

2.0x10-4 

(0.001) 

0.001 

(0.002) 

0.001 

(4.0x0-4) 

-2.0x10-4 

(0.001) 

0.003* 

(0.002) 

0.001 

(4.0x10-4) 

4x10-4 

(0.001) 

0.007*** 

(0.002) 

0.001 

(4.0x10-4) 

Labor 0.017* 

(0.010) 
-0.023*** 

(0.004) 
-0.018*** 

(0.005) 
0.009 

(0.007) 
-0.017*** 

(0.004) 
-0.027*** 

(0.004) 
0.014* 

(0.007) 
-0.015*** 

(0.003) 
-0.028*** 

(0.004) 
-0.005 
(0.007) 

-0.012** 

(0.005) 
-0.024*** 

(0.004) 

Laborcost -0.003** 

(0.002) 

0.003*** 

(0.001) 

0.002*** 

(0.001) 

-3.0x10-4 

(0.001) 

0.002*** 

(0.001) 

0.004*** 

(0.001) 

-0.001 

(0.001) 

0.002*** 

(0.001) 

0.004*** 

(0.001) 

0.001 

(0.001) 

0.003*** 

(0.001) 

0.003*** 

(0.001) 
Extcont 3.087*** 

(0.496) 

-0.550* 

(0.304) 

-0.081 

(0.489) 

0.152 

(0.431) 

0.265 

(0.292) 

-0.056 

(0.210) 

-0.087 

(0.443) 

0.448* 

(0.238) 

-0.112 

(0.211) 

0.386 

(0.424) 

0.825*** 

(0.306) 

-0.238 

(0.189) 

Credit 0.025 
(0.257) 

-0.110 
(0.075) 

0.088 
(0.133) 

0.117 
(0.151) 

-0.108 
(0.095) 

-0.110 
(0.084) 

0.096 
(0.160) 

-0.080 
(0.084) 

-0.124 
(0.082) 

-0.104 
(0.155) 

0.106 
(0.099) 

-0.161** 

(0.078) 

Rainfall 0.002 

(0.005) 

0.004** 

(0.002) 

-0.005* 

(0.003) 

2.0x10-4 

(0.004) 

0.006*** 

(0.002) 

2.0x10-4 

(0.002) 

-0.001 

(0.004) 

0.005** 

(0.002) 

4.0x10-4 

(0.002) 

-0.003 

(0.004) 

-0.003 

(0.002) 

0.004** 

(0.002) 
Soil  -0.358 

(0.419) 

0.121 

(0.163) 

0.642*** 

(0.204) 

0.230 

(0.296) 

0.213 

(0.179) 

0.286* 

(0.168) 

0.231 

(0.315) 

0.285* 

(0.162) 

0.217 

(0.159) 

0.188 

(0.311) 

0.339 

(0.211) 

0.303** 

(0.148) 

WCZ -0.020 
(0.179) 

-0.041 
(0.063) 

0.074 
(0.088) 

0.190 
(0.124) 

-0.088 
(0.078) 

0.046 
(0.065) 

0.078 
(0.135) 

0.017 
(0.070) 

-0.012 
(0.063) 

0.029 
(0.129) 

-0.036 
(0.088) 

0.005 
(0.059) 

Endwt (𝜽) -0.042 

(0.048) 

-0.082** 

(0.039) 

0.015 

(0.025) 

-0.033 

(0.053) 

0.053 

(0.037) 

-0.026 

(0.025) 

-0.019 

(0.054) 

0.057* 

(0.030) 

-0.026 

(0.025) 

-0.021 

(0.052) 

0.094*** 

(0.038) 

-0.036 

(0.023) 
Distextof -0.001 

(0.003) 

  -0.008*** 

(0.003) 

  -0.013*** 

(0.004) 

  -0.005* 

(0.003) 

  

Comextoff 0.097 

(0.174) 

           

Elradsig -0.607** 

(0.006) 

           

Minac    0.636*** 

(0.086) 

  0.816*** 

(0.092) 

  -0.417*** 

(0.084) 

  

Unculand    -0.216* 

(0.121) 
        

Commarkt          0.308**    
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(0.170) 

LL -4698.88   -4847.53   -4786.02   -4809.42   
Obs (N) 600   600   600   600   

Wald chi2(17-

18)      

47.05***   78.28***   101.97***   55.53***   

Note: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. In this table, the first column at each stage contains coefficients and standard errors of the 

individual binary choice decision of the sequential adoption model, the second and third columns at each stage contain coefficients and standard errors of the effect of making choice on farmer yield and its 

counterfactual, respectively. We included instrumental variables at each stage to control for selection bias. The instrumental variables are distance to nearest extension office (Distextof), presence of an 

extension agent in the community (Comexttoff), availability of electricity or radio signal in the community (Elradsig), availability of inoculant (Minac), availability of uncultivated land to the farmer. (Unculand) 

and presence of local market in the community (Commarkt). 
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Appendix A.3 

Table 3A. 3 Estimates of Choice Decisions and Farm Net Revenue (lnGHC/ha). 
 Acknow Tryout Adopt Cont-Adopt 

Variables  Select Acknow No-Acknow Select Trial No-Trial Select Adopt  No-Adopt   Select Cont-Adopt Dis-Adopt 

Const. -1.306 
(1.105) 

5.022*** 

(0.226) 
4.783*** 
(0.336) 

-1.169 
(0.740) 

4.980*** 
(0.287) 

4.968*** 
(0.231) 

-2.009*** 

(0.803) 
4.791*** 
(0.332) 

5.002*** 
(0.216) 

-2.768*** 

(0.778) 
5.063*** 
(0.390) 

4.970*** 
(0.208) 

Gender -0.184 

(0.192) 

0.005 

(0.042) 

-0.010 

(0.060) 

0.166 

(0.141) 

0.071 

(0.054) 

0.042 

(0.045) 

0.220 

(0.150) 

-0.034 

(0.059) 

0.022 

(0.043) 

-0.344*** 

(0.140) 

0.118* 

(0.067) 

-0.035 

(0.041) 
Age 0.063 

(0.040) 

0.004 

(0.007) 

0.019 

(0.012) 

0.013 

(0.024) 

0.004 

(0.009) 

0.012 

(0.008) 

0.049* 

(0.026) 

0.007 

(0.011) 

0.012 

(0.007) 

0.084*** 

(0.026) 

-0.005 

(0.012) 

0.013* 

(0.007) 

Age2 -0.001 

(4.0x10-4) 

-4.0x10-5 

(1.0x10-4) 

-2.0x10-4* 

(1.0x10-4) 

-1.0x10-

4(2x10-4) 

-1.0x10-4 

(1.0x10-4) 

-1.0x10-4 

(1.0x10-4) 

-4.0x10-

4(3.0x10-4) 

-1.0x10-4 

(1.0x10-4) 

-1.0x10-4* 

(1.0x10-4) 

-0.001*** 

(3.0x10-4) 

1.0x10-5 

(1.0x10-4) 

-1.0x10-4* 

(1.0x10-4) 

HHSize 0.020 
(0.028) 

0.004 
(0.006) 

0.005 
(0.008) 

-0.024 
(0.020) 

0.009 
(0.008) 

0.001 
(0.006) 

-0.005 
(0.021) 

0.013 
(0.008) 

-2.0x10-4 

(0.006) 
0.021 

(0.019) 
0.013 

(0.009) 
-0.002 
(0.006) 

Edu 0.109 

(0.109) 

-0.023 

(0.042) 

0.068 

(0.056) 

0.221 

(0.134) 

0.056 

(0.051) 

-0.038 

(0.045) 

0.331*** 

(0.141) 

0.093* 

(0.056) 

-0.042 

(0.042) 

0.174 

(0.140) 

-0.045 

(0.067) 

-0.009 

(0.039) 
Farmsize 0.012 

(0.030) 

0.266*** 

(0.008) 

0.229*** 

(0.010) 

-0.054** 

(0.027) 

0.282*** 

(0.027) 

0.234*** 

(0.007) 

-0.063** 

(0.030) 

0.283*** 

(0.012) 

0.235*** 

(0.007) 

0.020 

(0.025) 

0.265*** 

(0.014) 

0.247*** 

(0.007) 

Agrochem -0.002 
(0.019) 

-0.068*** 
(0.008) 

-0.028*** 
(0.005) 

0.007 
(0.018) 

-0.055*** 

(0.011) 
-0.031*** 
(0.005) 

0.010 
(0.021) 

-0.056*** 
(0.011) 

-0.031*** 
(0.005) 

-0.008 
(0.019) 

-0.094*** 
(0.016) 

-0.033*** 
(0.004) 

Agrochcost -3.0x10-4 

(0.002) 

0.005*** 

(0.001) 

0.001*** 

(3.0x10-4) 

2.0x10-

4(0.001) 

0.004*** 

(0.001) 

0.001*** 

(3.0x10-4) 

-2.0x10-

4(0.001) 

0.004*** 

(0.001) 

0.002*** 

(3.0x10-4) 

4.0x10-

4(0.001) 

0.007*** 

(0.001) 

0.002*** 

(3.0x10-4) 
Labor 0.017* 

(0.010) 

-0.012*** 

(0.003) 

-0.009*** 

(0.003) 

0.009 

(0.007) 

-0.008*** 

(0.002) 

-0.013*** 

(0.003) 

0.014** 

(0.007) 

-0.006*** 

(0.003) 

-0.013*** 

(0.003) 

-0.005 

(0.007) 

-0.002 

(0.004) 

-0.012*** 

(0.002) 

Laborcost -0.003** 

(0.002) 
3.0x10-4 

(3.0x10-4) 
2.0x10-4 

(4.0x10-4) 
-3.0x10-

4(0.001) 
0.004 

(0.001) 
0.001* 

(4.0x10-4) 
-0.001 
(0.001) 

-0.001* 
(4.0x10-4) 

0.001** 
(3.0x10-4) 

0.001 
(0.001) 

-4.0x10-4 
(0.001) 

4.0x10-4 

 (3.0x10-4) 

Extcont 3.090*** 

(0.496) 

-0.021 

(0.177) 

-0.406 

(0.295) 

0.176 

(0.424) 

-0.066 

(0.170) 

-0.027 

(0.125) 

-0.059 

(0.435) 

0.047 

(0.169) 

-0.021 

(0.123) 

0.458 

(0.431) 

0.118 

(0.211) 

-0.043 

(0.115) 
Credit 0.025 

(0.257) 

-0.009 

(0.044) 

0.070 

(0.080) 

0.117 

(0.151) 

-0.037 

(0.057) 

0.025 

(0.051) 

0.096 

(0.160) 

-0.055 

(0.062) 

0.017 

(0.048) 

-0.103 

(0.155) 

0.091 

(0.068) 

-0.046 

(0.047) 

Rainfall 0.002 
(0.005) 

-3.0x10-4 
(0.001) 

-0.001 
(0.003) 

2.0x10-

4(0.004) 
0.001 

(0.001) 
1.0x10-4  
(0.001) 

-0.001 
(0.004) 

2.0x10-4  
(0.002) 

3.0x10-4  
(0.001) 

-0.003 
(0.004) 

-0.001 
(0.002) 

4.0x10-4  
(0.001) 

Soil  -0.358 

(0.419) 

0.031 

(0.094) 

0.188 

(0.123) 

0.230 

(0.296) 

0.126 

(0.108) 

0.029 

(0.101) 

0.230 

(0.315) 

0.203* 

(0.120) 

0.012 

(0.094) 

0.187 

(0.311) 

0.070 

(0.146) 

0.075 

(0.088) 
WCZ -0.020 

(0.179) 

-0.064* 

(0.037) 

-0.025 

(0.053) 

0.191 

(0.124) 

-0.063 

(0.047) 

-0.025 

(0.039) 

0.079 

(0.135) 

-0.019 

(0.052) 

-0.042 

(0.037) 

0.031 

(0.129) 

-0.134** 

(0.061) 

-0.024 

(0.035) 

Endwt (𝜽) -0.041 
(0.048) 

0.005 
(0.03) 

-0.008 
(0.015) 

-0.030 
(0.052) 

-0.0002 
(0.022) 

-0.005 
(0.015) 

-0.015 
(0.052) 

0.006 
(0.021) 

-0.003 
(0.015) 

-0.012 
(0.053) 

0.013 
(0.026) 

-0.002 
(0.014) 

Distextof -0.001 

(0.003) 

  -0.008*** 

(0.003) 

  -0.013*** 

(0.004) 

  -0.005* 

(0.003) 

  

Comextoff 0.097 

(0.174) 

           

Elradsig -0.607** 

(0.303) 
           

Minac    0.636*** 

(0.086) 

  0.817*** 

(0.092) 

  -0.416*** 

(0.084) 

  

Unculand    -0.216* 

(0.121) 
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Commarkt          0.308** 

(0.152) 

  

LL -4380.24   -4539.54   -4504.98   -4524.94   

Obs.(N) 600   600   600   600   

Wald 
chi2(17-18)      

47.12***   78.31***   101.95***   55.65***   

Note: *** , ** and * are 1% , 5% and 10% significance levels respectively; values in brackets are standard errors. In this table, the first column at each stage contains coefficients and standard errors of the 

individual binary choice decision of the sequential adoption model, the second and third columns at each stage contain coefficients and standard errors of the effect of making choice on farmer yield and its 

counterfactual, respectively. We included instrumental variables at each stage to control for selection bias. The instrumental variables are distance to nearest extension office (Distextof), presence of an extension 

agent in the community (Comexttoff), availability of electricity or radio signal in the community (Elradsig), availability of inoculant (Minac), availability of uncultivated land to the farmer. (Unculand) and 

presence of local market in the community (Commarkt). 
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Appendix A.4: Average Marginal Treatment Effect (AMTE) and Average Treatment Effect (ATE) Compared. 

 

Figure 3A. 2 Mean Plot of Average Marginal Treatment Effect across Adoption Transitional States (panel (a) and (b) represent 

distributions of yield (Kg/ha) and farm net returns (GHC/ha), respectively.  

Note: We see in figure 3A.2 that the AMTE, which is treatment effect conditional on individual unobserved essential heterogeneities (such as wealth endowment) 

outweighs the average treatment effect (ATE), suggesting that farmers sort on gains and benefitted from their individual heterogeneities. 
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Appendix A.5: Population Level Treatment Effect Distribution with Continuation Values. 

 

 

Figure 3A. 3 Treatment Distribution across Adoption Transitional States (panel (a) and (b) 

represent distributions of yield (Kg/ha) and farm net returns (GHC/ha), respectively.  

Note: ACK=Knowledge Acquisition State; TRY=Trial State; ADO=Adoption State; CON=Continued Adoption State; TTCV 

represents Treated State Continuation Values. 

Note: Figure 3A.3 shows the long-term impact distribution around its own mean at each adoption state at the 

population level without conditioning on making a transition. It can be seen, that the long term impact of farmer at 

adoption and continued adoption states are marginally distributed around the same mean but visibly ahead of that of 

knowledge and trial states.  
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Appendix A.6: Sub-Population Level Treatment Effect Distribution with Continuation Values.

 

 

 

Figure 3A. 4 Treatment Effect Distributions with Continuation Values at each Adoption 

Transition (Sub-population Level) – Yield (Kg/ha) 

Note: ACK=Knowledge Acquisition State; TRY=Trial State; ADO=Adoption State; CON=Continued Adoption State; TTCV 

represents Treated State Continuation Values; TUTCV represents Untreated State Continuation Values. ATE=Average Treatment 

Effect Curve; ATT=Average Treatment Effect on the Treated Curve; ATUT=Average Treatment Effect on the Untreated Curve. 

Note: Figure 3A.4, presents long-term impact distribution of inoculant adoption on yield at the sub-population level. 

The distribution at each adoption state is marginally above the sub-population mean of zero. However, the treatment 

effect on the untreated visibly dominates that of the treated but both distributions are towards the right of the mean, 

indicate positive long term impact of the inoculant adoption.  



117 
 

Appendix A.7: Sub-Population Level Treatment Effect Distribution with Continuation Values. 

 

 

 

Figure 3A. 5 Treatment Effect Distributions with Continuation Values at each Adoption 

Transition (Sub-population Level) – Farm Net Returns (GHC/ha). 

Note: ACK=Knowledge Acquisition State; TRY=Trial State; ADO=Adoption State; CON=Continued Adoption State; TTCV 

represents Treated State Continuation Values; TUTCV represents Untreated State Continuation Values. ATE=Average Treatment 

Effect Curve; ATT=Average Treatment Effect on the Treated Curve; ATUT=Average Treatment Effect on the Untreated Curve. 

Note: Figure 3A.5 presents long-term impact distributions of inoculant adoption on farm net returns at the sub-

population level. We see a similar pattern of distribution as that of the yield in the figure above.  
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Appendix A.8: Robustness Checks for Sorting on Gains 

 

Figure 3A. 6 Mixture of Two Normals Distributions of the Unobserved Wealth Endowment 

(panel (a) and (b) represent distributions of yield (Kg/ha) and farm net returns (GHC/ha), 

respectively. 

Note: Figure 3A.6 presents the distribution of the observed resistance to treatment across each adoption state. 

Cornelissen et al. (2018) note that the selection on gains pattern (i.e. evidence of sorting) have a known relationship 

between the distributions of the unobserved resistance to treatment and the treatment effects, when plotted. As seen in 

figure A6, we observe that as the unobserved resistance to treatment decreases, gains (or treatment effect) from 

adoption increases and as the unobserved resistance to treatment increases, gains from adoption decreases, indicating 

a negative selection on gains (i.e. TUT>ATE>TT). 
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Appendix A.9: Identification  

 

Figure 3A. 7 Distribution of Unobserved Factors across States (panel (a) and (b)) represent 

distributions of yield (Kg/ha) and farm net returns (GHC/ha), respectively.  

Note: The Figure shows the distribution of wealth endowments across each adoption transition state. As can 

be seen all factors differ across each state, indicating that the factor models that we estimate for each of the 

adoption state is well identified.  
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Appendix A.10: Instrumental Variables (IVs) Exogeneity Test for Exclusion Restriction 

Table 3A.3 presents the results of exogeneity test for the instrumental variables (IVs) employed as 

the exclusion restriction variables for identification of farmers’ adoption choice decisions at each 

adoption state as expressed in equation 7 of the empirical specifications. In line with Heckman et 

al. (2018), we employed state dependent instrumental variables to identify each autonomous 

adoption decision, while controlling for farmer’s wealth endowment at each adoption state. We 

assume that different adoption states are identified by different instruments that are important to 

that state.  

In the awareness state, we employed both district and community level instruments to identify this 

critical state of adoption. The district level instrument, distance to the nearest extension office 

Distextof and the community level instrument, presence of extension agent in the community 

Comexttoff are the instruments used for the exclusion restriction. It is expected that supply and 

diffusion of information as reflected by intensity of information campaigns and extension activities 

both district wide and at the individual community level will increase the probability of farmers’ 

awareness (Lambrecht et al. 2014), but should have no direct effect on yields and farm net returns 

except through awareness. As seen in Table 3A.3, the Anderson-Rubin (AR) test statistic of the 

IVs in both the yields and farm net returns models are statistically insignificant at any conventional 

level, indicating that the IVs use for the exclusion restriction satisfy the exogeneity requirement 

and that the instruments do not have direct influence on yields and farm net returns, except through 

awareness.      

At the knowledge acquisition state Acknow, cost of searching for information is expected to 

increase the probability of knowledge acquisition (Lambrecht et al. 2014 and Abdulai et al. 2008; 

Feder and Slade 1984), but should have no direct influence on yields or farm net returns except 

through knowledge acquired. Since ICT channels were included in the inoculant dissemination 

program, the presence of electricity as well as good signals for wire communication increase the 

likelihood of the farmer’s community being targeted by program implementers, thereby increasing 

the farmer’s probability to cheaply acquire knowledge. Therefore, in addition to distance and 

presence of extension agent, we included the presence of electricity and good signals for wire 

communication Elradsig as the exclusion restriction instrument for knowledge acquisition state. 

The results in Table 3A.3 show that the AR test statistic is statistically insignificant in both the 

yields and farm net returns models, suggesting that IVs satisfy the minimum exogeneity 

requirement for exclusion restriction. 

In the Trial state, we employed farm household’s ownership of uncultivated land Unculand and 

mode of inoculant acquisition Minac in addition to distance to the nearest extension office Distextof 

as instruments for exclusion restriction. It is expected that smallholder farmers who have no access 

to additional land will not cultivate their only productive land to a newly introduced technology, 

due to the risk of failure. However, access to additional land increases farmer’s probability to try 

new technologies (Feder et al., 1985). Also farmers whose mode of obtaining the new technology 

is through gift as part of promotion campaigns increases their probability of trial. Furthermore, 

farmers who live in close proximity to extension are more likely to be targeted for either on-farm 

or off-farm extension activities, hence increasing their propensity to try the new technology. We 
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assume that these instruments have no direct influence on yields and farm net returns except 

through increase in farmer’s propensity to try the technology. The AR test statistic in Table 3A.3 

is not statistically significant at any conventional level for both yields and farm net returns models, 

suggesting that the instruments satisfy the exogeneity requirement for exclusion restriction.  

At the adoption and continuous adoption states, distance to nearest extension office Distextof, mode 

of inoculant acquisition Minac and the presence of local market in the community Commarkt are 

employed as the exclusion instruments. It is expected that in addition to proximity to extension and 

mode of acquisition of the inoculant technology, the presence of a community market in the 

farmer’s locality increase farmer’s continuous access to information, inoculant and complimentary 

inputs supply as well as market for farm outputs due to increase yield from adoption. Thus, 

increasing the farmer’s probability to adopt and continue to adopt. The AR test statistic in Table 

3A.3 show that the test statistic is statistically insignificant at any conventional level of confidence, 

suggesting that except through increasing the farmer’s propensity to adopt and continue use of the 

technology the instruments have no direct influence on farmer’s yields and farm net returns. 

Table 3A. 4 Anderson – Rubin (AR) IV Exogeneity Test for Exclusion Restriction 

Outcome  Adoption State AR Test Statistic P-Value 

Panel A    

Yield Awareness 8.349 0.331 

 Acknow 8.450 0.399 

 Trial 11.823 0.334 

 Adopt 10.825 0.293 

 Cont-Adopt 22.754 0.204 

Panel B    

Farm Net Returns Awareness 0.007 0.997 

 Acknow 0.135 0.990 

 Trial 2.313 0.707 

 Adopt 0.722 0.779 

 Cont-Adopt 5.369 0.497 

No. of observation(N)  600  

Note: 100,000 bootstrap replications were used in estimation of the AR-test statistic. 
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Abstract 

Examining the welfare impact of agricultural development interventions that incorporate diffusion 

of improved production technologies to farmers within extension delivery programs can be 

challenging, because of the difficulty in ascertaining the individual impacts of the production 

technology and the extension delivery program. Using recent farm level data from extension 

dissemination program of legume inoculant technology in Ghana, we employ a novel approach to 

investigate, simultaneously, the impact of the inoculant technology adoption and the extension 

program participation on farmers’ productivity, efficiency and welfare. We decompose each of 

these impact measures into subcomponents whose causal paths can be traced to both the adoption 

of the production technology and the extension delivery program. We find that improved 

technology adoption alone contributes 72% directly to farm productivity and 73% indirectly due 

to improved farmer efficiency, leading to 77% improvement in farmers’ welfare. On the other hand, 

extension delivery program participation alone contributes 28% directly to farm productivity and 

27% indirectly due to improved farmer efficiency, resulting in 23% improvement in farmers’ 

welfare.  

 

Keywords: Stochastic Frontier Analysis, Mediation Analysis, Treatment Effect, Impact 

Assessment, Inoculant Technology Adoption. 

 

JEL: C26, D24, O13, Q16, Q18. 
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4.1 Introduction 

The increasing global food demand calls for adoption of new agricultural technologies to increase 

food production. Similar concerns in the past led to the introduction of the green revolution, a 

policy that advocated for intensifying the use of high yielding varieties, mineral fertilizers and 

tractors among smallholder farmers in developing countries (Pingali, 2012). Although the policy 

led to an increase in agricultural productivity and food supply, it also contributed to environmental 

impacts such as degraded lands, impoverish soils and adverse climatic conditions due to reactive 

nitrogen released from agriculture production activities (Pingali 2012; Zhang et al., 2015). Increase 

in food production cannot be achieved without sufficient nitrogen supply, as nitrogen allows 

farmers to increase crop production per unit area of land (Zhang et al., 2015).  To mitigate the 

effect of pollution from reactive nitrogen while ensuring sufficient food production, a new 

paradigm shift is required (Mutuma et al., 2014; Zhang et al., 2015).  

The Integrated Soil Fertility Management (ISFM) is one of such new approaches employed to 

promote soil fertility enhancing technologies for resource-poor farmers in developing countries 

(Crowley and Carter, 2000).  A technology promoted under the program among smallholder 

soybean farmers in northern Ghana is the legume inoculant technology. The soybean is targeted 

due to its potential to undergo sustainable intensification, its industrial value and nutritional quality 

(Heerwaarden et al., 2018; Foyer et al. 2018). The inoculant technology is an organic input 

containing isolates of an elite strain of bacterial (Bradyrhizobium japonicum) and organic carrier 

material (Lupwayi, et al., 2000). The inoculant technology is seen as cost-effective alternative to 

rehabilitating poor soils by enhancing the build-up of biological nitrogen fixation (BNF) organisms 

in the soil (Giller, 2001). Empirical evidence of potential productivity gains from inoculant is 

reported in the literature (see Rurangwa et al., 2018; Heerwaarden et al., 2018; Chibeba et al., 

2018). Notably, grain yield of soybean increased by 20 – 29 percent in Mozambique (Chibeba et 
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al., 2018) and 12 – 19 percent in the northern region of Ghana (Ulzen et al., 2016), relative to 

uninoculated fields. Yield response to inoculant significantly varies across agro-ecological zones 

in Africa and depend on agronomic practices and varietal promiscuity to the strain of the Rhizobia 

in the inoculant (Heerwaarden et al., 2018).  To improve efficiency, organizations involved in the 

dissemination of the inoculant technology employ several innovative extension methods24 to school 

farmers on good agronomic and crop management practices on the inoculant technology.   

Our goal in this study is to simultaneously assess the impact of the inoculant technology adoption 

and the extension participation on farmers’ productivity and efficiency. Usually, agricultural 

development programs such as the inoculant dissemination program often have a dual goal of 

inducing an upward shift in the production frontier and promoting better management, which 

incorporates two potentially endogenous treatments in a single program (Bravo-Ureta, 2014). The 

treatment of a new superior technology and that of building human capital, each having the 

potential to influence both the technology frontier function and the inefficiency function 

independently (Huang and Liu, 1994; Kumbhakar et al., 2009). However, empirical studies often 

overlook the double treatment endogeneity, most often addressing one of them, and subsuming the 

other into distributional assumptions of the model. For instance, in Dinar et al. (2007) study on the 

impact of extension service in Greece, extension participation is analyzed as performing a dual 

role, an input in the production function and a factor narrowing the technology gap, exerting direct 

and indirect effects in the production process. Their approach implicitly assumed homogeneous 

technology and fail to account for selection bias in the extension participation. In the event that 

farmers self-select into an extension program or adopt superior production technology, the direct 

and indirect effects due to heterogeneity in technology or enhanced farmer capacity will be 

                                                           
24 The extension channels employ are video documentaries, radio listening clubs, on-farm and off-farm trials, field days, brochures, use of community 
volunteers. 
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unaccounted for and the impact will be incomplete. Other studies following the seminal work of 

Dinar et al. (2007) employ a mixed multi-stage approach to address the issue of selectivity and 

technology heterogeneity (e.g. Bravo-Ureta, et al., 2012; Villano et al., 2015; Abdulai and Abdulai, 

2016; De los Santos-Montero and Bravo-Ureta, 2017; Abdul-Rahaman and Abdulai, 2018; Bravo-

Ureta, et al., 2020). Even though the mixed multi-stage approach accounts for selection bias, it fails 

to account for the direct and indirect impacts that heterogeneous production technologies may have 

on both the production frontier and the efficiency function. The mixed multi-stage approach also 

attempts to address technology heterogeneity among production units by estimating group-specific 

frontiers for different groups of production units and further use the group frontiers to obtain the 

meta-frontier for comparison. However, because the maximum likelihood estimates of the 

predicted group-specific frontier is neither known a prior nor estimated relative to the same 

frontier, some degree of biasness in this approach is unavoidable and difficult to ascertain (Huang 

et al., 2014). Moreover, as indicated by Triebs and Kumbhakar (2018), the approach subsumes 

observed variables like extension service with the potential to augment the farmer’s managerial 

ability in the inefficiency parameter of the model. On the contrary, the managerial ability does not 

only influence the inefficiency function but also the technology frontier, resulting in non-neutrality 

of the production function (Huang and Liu, 1994; Triebs and Kumbhakar 2018). Also, the 

endogeneity issues address in the mixed multi-stage approach center mainly on the feedback 

between the technology choice and the production model residuals, but not on accounting for 

endogeneity, which could separately and simultaneously affect the technology frontier and the 

production inefficiency function (Chen et al., 2020).  

The present study attempts to fill the gap and contribute to the above literature on impact 

assessment and technical efficiency, using survey data of 600 farm households from northern 

Ghana. Specifically, we employ the stochastic frontier model with endogenous treatment and 
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mediator effect (Chen et al., 2020), to estimate the impact of dual purpose development 

interventions, and to decompose the impact into direct and indirect effects. This novel approach 

brings together mediation analysis25, treatment effect and that of the stochastic frontier models in 

a single framework. Using this approach, we are able to disentangle the dual purpose development 

interventions’ impact into four components. That is, the direct effects on the technology frontier, 

the indirect effects on the technology frontier that go through the mediator, the direct effects on the 

technical inefficiency, and the indirect effects on the technical inefficiency that go through the 

mediator. Our approach departs from the conventional approaches in the literature (e.g. Bravo-

Ureta, et al., 2012; Villano et al., 2015; Abdulai and Abdulai, 2016; De los Santos-Montero and 

Bravo-Ureta, 2017; Bravo-Ureta et al., 2020), in which a conventional SPF model that corrects for 

sample selection bias is estimated. In particular, we estimate a treatment effect model using the 

stochastic frontier regression framework, while addressing endogeneity from selection bias, 

endogenous treatment and mediator variables. We also account for treatment heterogeneities 

among production units.  

The rest of the paper is organized as follows: In sections 2 and 3, we present the conceptual and 

empirical framework and empirical identification of causal impact respectively, section 4 discusses 

the empirical specification and the estimation procedure, while section 5 describes the data and 

descriptive Statistics. The empirical results are presented in section 6, while section 7 contains the 

conclusion and policy implications. 

4.2 Conceptual and Empirical Framework 

In agriculture, new production technologies such as high yielding varieties, complementary inputs 

like fertilizer, or as in our case, the inoculant technology have the potential to shift the production 

                                                           
25 The mediation analysis is also known as the Baron-Kenny models in the statistics literature. 
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frontier upwards. Also farmers who receive extension services or technical training on the new 

technology may experience further shift in the production frontier upwards by reducing production 

inefficiencies. The two shifts envisage two potentially endogenous treatments in a single 

agricultural development intervention that incorporates dissemination of new production 

technologies and training of farmers. First, adoption of a new superior technology that affects both 

the production frontier function and the inefficiency function (Kumbhakar et al., 2009), and 

extension training that builds human capital with the potential to influence both the production 

frontier function and the inefficiency function (Huang and Liu, 1994; Triebs and Kumbhakar, 

2018).  

To represent both frontiers, let 𝑌 denote individual farmer i observed output under a given 

technology and 𝑋 be a vector of observed covariates. We express the farmer’s observed output in 

a conventional stochastic frontier form (Kumbhakar and Lovell, 2000) as; 

𝑌 = 𝑌∗ − 𝑢,    𝑢 ≥ 0      (1) 

where 𝑌∗, is the unobserved stochastic frontier that may be influenced directly by the new 

technology and indirectly by extension training and 𝑢 ≥ 0, is the unobserved production 

inefficiency assumed to be randomly distributed, which may be influenced directly by extension 

training and indirectly by the new technology. The expression in equation 1 indicates that 𝑌∗ and 

𝑢 are two distinct unobserved random components, which can be separately identified. In line with 

Chen et al. (2020), we stochastically express each unobserved function in terms of observed 

covariates in a system of equations as follows; 

𝑌 = {
𝑌∗ = ℎ(𝑋, 𝛽ℎ) + 𝑣

𝑢 = 𝑔(𝑋, 𝛽𝑔) + �̃�
 and      (2)   

𝐸[𝑌∗|𝑋] = ℎ(𝑋, 𝛽ℎ), and  𝐸[𝑢|𝑋] = ℎ(𝑋, 𝛽𝑔),  𝐸[𝑣|𝑋] = 0 , 𝐸[�̃�|𝑋] = 0    
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where 𝑋 is a vector of covariates, ℎ(. ) is the frontier function with parameter vector 𝛽ℎ and 𝑔(. ) 

is a non-negative inefficiency function with parameter vector 𝛽𝑔, while 𝑣 and �̃� are error terms 

assumed to be independently and identically distributed. 𝐸[. ] is the expectation operator which 

identifies the conditional mean expectations of the equations in the system. To relate the effect of 

the production frontier and the inefficiency to observed farmer-specific potential outcome, given 

his observed characteristics and inputs, we express equation 1 in terms of its conditional mean 

representation as follows; 

𝐸[𝑌|𝑋] = ℎ(𝑋, 𝛽ℎ) − 𝑔(𝑋, 𝛽𝑔)      (3) 

By letting 𝑌1 to be the potential outcome of a farmer who adopts the technology (i.e. the inoculant 

technology) and 𝑌0 be the potential outcome, if the same farmer did not adopt, then, the average 

treatment effect on the treated (ATT) for adopters can be specified as; 

𝐴𝑇𝑇 = 𝐸(𝑌1 − 𝑌0|𝐷 = 1) = 𝐸(𝑌1|𝐷 = 1) − 𝐸(𝑌0|𝐷 = 1)    (4) 

where 𝐷 is a binary adoption indicator, with 𝐷 = 1 if the farmer adopts and 0 otherwise.  

4.3 Impact Identification Strategy 

In observational data situation like ours, evaluating the impact of the inoculant dissemination 

program on farmers’ welfare and the shifts in the production technology and inefficiency functions 

may suffer serious identification problems, resulting in biased estimates. However, with good and 

valid instruments, it is possible to categorize the whole population into a well identified mutually 

disjoint sub-population of adopters who are compliers of the instrument (Imbens and Angrist, 1994; 

Angrist et al., 1996).  

In our setting, we use rural electrification as the most likely exogenous instrument that can identify 

various sub-population of inoculant adopters. Given that the rhizobia in the inoculant survive 

within a temperature limit of about 250C, it requires a controlled temperature storage facility. 
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Hence, it is expected that farmers who live in communities connected to the national grid of 

electricity supply may have access to the technology, compared to their counterparts who live in 

communities without electricity supply. If we let 𝑍1 represent an instrumental variable (IV) that 

takes a value of 1, if the farmer’s village is connected to national electricity grid, and 0 otherwise, 

the propensity of a farmer adopting the technology can be specified in the following latent variable 

(i.e., 𝐷∗) discrete choice model; 

𝐷∗ = 𝛾𝑧1𝑍1 + 𝛾𝑥𝑋 + 𝑈𝐷,  with 𝐷 = {
1, 𝑖𝑓 𝐷∗ ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  and   

𝐷 = 1(𝛾𝑧1𝑍1 + 𝑋𝛾𝑥 + 𝑈𝐷 ≥ 0)               (5) 

where 𝐷 is a discrete adoption decision indicator, with 𝐷 = 1 if the farmer adopts inoculant and 0 

otherwise, 𝑋 is a vector of covariates, 𝛾 is the parameter of interest and 𝑈 is the error term.  

Naturally, it is expected that the effect of extension service participation (i.e. the managerial skills) 

is mainly observed after the farmer adopts the technology on which the extension training is based 

on. That is, when the farmer uses or adopts the inoculant technology. As such, the extension 

functions as a post-adoption mediator and can be modelled as a function of adoption. With a 

potentially endogenous binary mediator, such as the extension service participation in this case, the 

mediation effect can be identified with a continuous exogenous variable with known distribution 

and whose level differs with adoption status (Fr�̈�lich and Huber, 2017; Chen et al., 2020). In this 

circumstance, we rely on farmer’s distance to the nearest extension office as a possible exogenous 

continuous instrument. We expect that farmer’s propensity to participate in extension service 

programs increases as the distance decrease and decreases as the distance increase. If we let 𝑍2 be 

a continuous instrumental variable (IV) whose distribution26 and level decrease as mediation takes 

                                                           
26 See Figure A1 in the appendix for the plot of the distribution of the continuous IV 𝑍2, showing both properties of increasing and decreasing 

propensities, as a necessary condition for identification. 
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the value of 1, and increase as mediation goes to 0, then, the propensity of a farmer who adopts the 

technology to also participate in the extension program can be expressed in a latent variable (i.e., 

𝑀∗) model as follows; 

𝑀∗ = 𝛼𝑑𝐷 + 𝛼𝑧2𝑍2 + 𝑋𝛼𝑥 + 𝑈𝑀,  with 𝑀𝑖 = {
1, 𝑖𝑓 𝑀∗ ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and    

𝑀 = 1(𝛼𝑑𝐷 + 𝛼𝑧2𝑍2 + 𝑋𝛼𝑥 + 𝑈𝑀 ≥ 0)      (6) 

where 𝑀 is a binary mediation indicator, with 𝑀 = 1 if the farmer participates in extension 

program and 0 otherwise, 𝐷 is the adoption status indicator, 𝑋 is a vector of covariates, 𝛼 is the 

parameter of interest and 𝑈 is the error term.  Considering altogether equations 5 and 6, (which 

identify both the potentially endogenous adoption and extension decisions), suggest that the post-

mediation potential outcome 𝑌 is a function of 𝐷 and 𝑀, pre-supposing that, the post-mediation 

potential outcome can be represented as 𝑌(𝐷,𝑀(𝐷)). Where 𝑀(𝐷) is the mediator function whose 

effect depends on the adoption status of the farmer.  

Given a binary adoption indicator (i.e., D(1), D(0)) and a binary IV (𝑍1 ∈ {0,1}),  four potential 

outcomes representing  four mutually disjoint sub-population of farmers can be identified as 

follows (Angrist et al., 1996; Imbens and Angrist, 1994); 

(𝐷(1), 𝐷(0)) =

{
 

 
(1,1),   𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑎𝑘𝑒𝑟𝑠,
(1,0),   𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑟𝑠 (𝑪),
(0,1),              𝑑𝑒𝑓𝑖𝑒𝑟𝑠,
(0,0),   𝑛𝑒𝑣𝑒𝑟 𝑡𝑎𝑘𝑒𝑟𝑠.

      (7) 

where 𝑪 is an indicator of instrument compliers, who are induced to adopt the technology based on 

the instrument. This sub-population of farmers, no matter the circumstance, does not change 

adoption status with the assigned status by the instrument (Angrist et al. 1996). Due to this known 

behavior, their potential impact better approximates that of causal estimates from a full compliance 

experimentation. Therefore, by conditioning on the observed covariates of farmers 𝑋 and  their 
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complier status 𝑪, the average treatment effect on the treated as expressed in equation 4 can be 

identified (Chen et al., 2020) as follows; 

𝐶𝐿𝐴𝑇𝐸 = 𝐸[𝑌(1,𝑀(1))|𝑋 = 𝑥, 𝑪] − 𝐸[𝑌(0,𝑀(0))|𝑋 = 𝑥, 𝑪]  (8)   

where 𝐶𝐿𝐴𝑇𝐸 is the conditional local average treatment effect. Also, because the levels of the 

continuous instrumental variable for identifying the mediation effect varies with adoptions status, 

it is possible to decompose the unconditional local average treatment effect into direct and indirect 

effects as in Chen et al. (2020);  

𝐶𝐷𝐿𝐴𝑇𝐸 = 𝐸[𝑌(1,𝑀(1))|𝑋 = 𝑥, 𝑪] − 𝐸[𝑌(0,𝑀(1))|𝑋 = 𝑥, 𝑪]   (9) 

𝐶𝐼𝐿𝐴𝑇𝐸 = 𝐸[𝑌(0,𝑀(1))|𝑋 = 𝑥, 𝑪] − 𝐸[𝑌(0,𝑀(0))|𝑋 = 𝑥, 𝑪]   (13) 

where 𝐶𝐷𝐿𝐴𝑇𝐸 is the conditional direct local average treatment effect and the 𝐶𝐼𝐿𝐴𝑇𝐸 is the 

conditional indirect local average treatment effect. Conversely, the unconditional average treatment 

effect can also be derived from the conditional local average treatment effects, by conditioning on 

only the sub-population of farmers who are compliers as follows;  

𝐿𝐴𝑇𝐸 = 𝐸[𝐶𝐿𝐴𝑇𝐸(𝑋)|𝑪] = 𝐸[𝑌(1,𝑀(1))|𝑪] − 𝐸[𝑌(0,𝑀(0))|𝑪] (11) 

𝐷𝐿𝐴𝑇𝐸 = 𝐸[𝑌(1,𝑀(1))|𝑪] − 𝐸[𝑌(0,𝑀(1))|𝑪]     (12) 

𝐼𝐿𝐴𝑇𝐸 = 𝐸[𝑌(0,𝑀(1))|𝑪] − 𝐸[𝑌(0,𝑀(0))|𝑪]     (13) 

where LATE is the local average treatment effect which captures the total effect, while DLATE 

and ILATE are direct and indirect local average treatment effects respectively, that capture the 

impact due to technology adoption and mediation.  
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4.4 Empirical Specification and Estimation 

A farmer’s propensity to participate in extension services (i.e. the potential mediation model) may 

correlate with his inoculant adoption decision (i.e. the potential treatment model) either due to 

observed or unobserved factors. We assume that the error terms are independently and identically 

distributed and follow a bivariate normal distribution. In line with Chen et al. (2020), we specify 

the joint extension participation and inoculant adoption decisions as a bivariate probit, with a 

bivariate normal distribution and CDF 𝐹𝑈𝑀,𝐷(. , . , 𝜌𝑚𝑑) as follows; 

𝑃(𝑀,𝐷|𝑍1, 𝑍2, 𝑋, 𝜂), and  [
𝑈𝑀
𝑈𝐷
] |(𝑍1, 𝑍2, 𝑋)~𝑁 ([

𝑈𝑀
𝑈𝐷
] , [

1 𝜌𝑚𝑑
𝜌𝑚𝑑 1

])  (14)    

where 𝜂 ≡ (𝛼𝑑, 𝛼𝑧2 , 𝛼𝑥, 𝛾𝑧1 , 𝛾𝑥, 𝜌𝑚𝑑) is a maximum likelihood estimator of a vector of parameters. 

In a first-stage estimation, a bivariate probit model is estimated to control for selection bias from 

both observables and unobservables. To unify the impact assessment and mediation analysis within 

the stochastic frontier analysis framework, we represent the frontier function of Aigner et al. (1977) 

and Meeusen and van den Broeck (1977) in the form of Chen et al. (2020), for 𝑑, 𝑑′ ∈ {0,1}27, as 

follows; 

 𝑌(𝑑,𝑀(𝑑′)) = ℎ̆(𝑑,𝑀(𝑑′), 𝑋, 𝛽𝑑𝑗
ℎ ) − �̆�(𝑑,𝑀(𝑑′), 𝑋, 𝛽𝑑𝑗

𝑔
) + 𝑈𝑌(𝑣(𝑑,𝑀(𝑑

′)) + �̃�(𝑑,𝑀(𝑑′)))  (15) 

where ℎ̆(𝑑,𝑀(𝑑′), 𝑋) and �̆�(𝑑,𝑀(𝑑′), 𝑋) are potential frontier and non-negative potential 

inefficiency functions, respectively; 𝑋 is a vector of covariates; 𝛽 is a parameter of interest; while  

𝑣(𝑑,𝑀(𝑑′)) and �̃�(𝑑,𝑀(𝑑′)) are potential random error terms. The binary adoption indicator is 

𝐷 = 𝑑, 𝑑′ ∈ {0,1} and 𝑗 =  𝑀(𝑑′) is the mediator function whose distribution varies with adoption 

                                                           
27 The observed binary adoption decision indicator 𝑑 varies as 𝑑′, taking the value of 1, if a farmer adopts the inoculant technology and 0, 

otherwise. 
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status. The conditional mean expectation of equation (15) combines the potential output model and 

the potential mediator model as; 

𝐸[𝑌(𝑑,𝑀(𝑑′))|𝑋, 𝑪] = ℎ𝑑′(𝑋, 𝛼𝑚, 𝛽𝑑𝑗
ℎ ) − 𝑔𝑑′(𝑋, 𝛼𝑚, 𝛽𝑑𝑗

𝑔
)  and  (16) 

𝐸[𝑣(𝑑,𝑀(𝑑′))|𝑋, 𝑪] = 0, 𝐸[�̃�(𝑑,𝑀(𝑑′))|𝑋, 𝑪] = 0, and 𝐸[𝑀(𝑑′)|𝑋, 𝑪] = 𝑚𝑑′(𝑋, 𝛼𝑚) 

where 𝑚𝑑′(. ) is a non-negative function of the potential mediator model in {0,1} with a parameter 

vector 𝛼𝑚. To reflect variations in the distribution of the non-negative potential mediator model as 

the adoption indicator takes the value within {0,1} in the estimated parameters of interest, we 

rewrite equation 16 as; 

𝐸[𝑌(𝑑,𝑀(𝑑′))|𝑋, 𝑪] = ℎ𝑑′(𝑋, 𝛼𝑚, 𝛽𝑑1
ℎ , 𝛽𝑑0

ℎ ) − 𝑔𝑑′(𝑋, 𝛼𝑚, 𝛽𝑑1
𝑔
, 𝛽𝑑0

𝑔
)  (17) 

We estimated the parameters in equation (17) using a two-stage weighted nonlinear least squares 

(WNLS) method. Let the individual farmer’s observed outcome (Y), extension service 

participation (M), inoculant adoption (D) and covariates (X) be a weighted random vector 𝑊 ≡

(𝑌,𝑀,𝐷, 𝑋) with sample size N, and 𝛽𝑑 ≡ (𝛽𝑑1
ℎ , 𝛽𝑑0

ℎ , 𝛽𝑑1
𝑔
, 𝛽𝑑0

𝑔
) be an arbitrary vector space of a 

weighted nonlinear least squares estimator (WNLSE) observed as 𝑏𝑑 ≡ (𝑏𝑑1
ℎ , 𝑏𝑑0

ℎ , 𝑏𝑑1
𝑔
, 𝑏𝑑0
𝑔
). The 

parameter space can be expressed as the minimizer of the weighted mean square error (MSE) of 

the observed outcomes of interest (Fr�̈�lich and Huber, 2014; Chen et al., 2020) as follows; 

𝛽𝑑 ≡ argmin
𝑏𝑑∈𝛽𝑑

∑ 𝐸[𝑤(𝑑, 𝑑′, 𝛼𝑤)(𝑌 − ℎ𝑑′(𝑋, 𝛼𝑚, 𝑏𝑑1
ℎ , 𝑏𝑑0

ℎ ) + 𝑔𝑑′(𝑋, 𝛼𝑚, 𝑏𝑑1
𝑔
, 𝑏𝑑0
𝑔
)2]𝑑′=0,1   (18) 

where 𝑤(𝑑, 𝑑′, 𝛼𝑤) ≡ 𝑤(1,1, 𝛼𝑤), 𝑤(1,0, 𝛼𝑤), 𝑤(0,1, 𝛼𝑤), and 𝑤(0,0, 𝛼𝑤) is a weighted function 

of (𝐷, 𝑍1, 𝑍2, 𝑋), with a parameter vector 𝛼𝑤 obtained from the first-stage estimation. The 

weighting function 𝑤(𝑑, 𝑑′, 𝛼𝑤) accounts for heterogeneities within the production units that may 

be due to observed and unobserved firm-specific factors influencing production (or outcomes, 

which in our case is yield and farm net returns). The WNLS is estimated using the generalized 
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method of moment (GMM) approach. The generalized moment-based approach overcomes the 

restrictiveness in forcing the traditional parametric family of production functions (such the Cobb-

Douglas, Translog, and others) in assuming specific distributions, which is sometimes 

inappropriate leading to modelling bias and misleading conclusions (Giannakas et al., 2003; Vidoli 

and Ferrara 2015; Ferrara and Vidoli 2017; Ferrara 2020).  

4.5 Data and Descriptive Statistics  

The present study uses farm level data obtained from a recent survey conducted in the northern 

region of Ghana from June to August 2018. The sample was drawn using a multi-stage sampling 

technique. Based on the proportion of beneficiary communities (78%) in the inoculant 

dissemination program and intensity of soybean production in Ghana, northern region was 

purposively selected. Cluster sampling technique was used to zone the region into two clusters, 

consisting of eastern corridor zone (ECZ) and western corridor zone (WCZ). Based on 

dissemination program participation status of districts and intensity of soybean production at the 

district level within the clusters, eight (8) districts, comprising four (4) from each cluster were 

purposively sampled. From the ECZ: Yendi, Saboba, Chereponi and Karaga districts were selected, 

while in the WCZ: East Mamprusi, East Gonja, Savelugu and Kumbungu districts were selected. 

In consultation with the field officers and agriculture extension agents (AEAs) in the selected 

districts, 5-7 communities were proportionally sampled, based on the extension channel received, 

dissemination program participation, and farmer population. One farmer-based organization (FBO) 

was randomly selected from a list of FBOs that were exposed to the inoculant technology and 

another randomly selected from a list of unexposed FBOs for each community.   Using a lottery 

approach, we randomly drew five farmers from each FBO. After a preliminary interview session 

with each of the selected farmers, using a computer assisted personal interview (CAPI), a list of 

the farmers’ information network members (INMs) was compiled. The CAPI random number 
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generator then used farmers’ unique identification numbers to randomly sample three network 

members from each farmer’s INMs for interview. A total of 600 farm households, consisting of 

325 inoculant exposed farmers and 275 unexposed farmers, were interviewed in a face-to-face 

session. The data collected include inoculant adoption status, dissemination program participation 

status, household demographic characteristics, location characteristics, input used, crop yield and 

farm net returns, plot level precipitation and soil quality.  

Definitions and summary statistics of the variables used in the empirical analysis are presented in 

Table 4.1. It shows that 54% of our sampled farmers participated in the inoculant extension 

program. Table 4.1 also shows that 51% of farmers adopted the inoculant with an average yield of 

830kg/ha soybeans and net returns of 840GHC/ha. The population of farmers in our sample are 

quite young with an average age of 42 years and predominantly male farmers 71%, with very low 

level of education, averaging 3 years of schooling.     

As shown in Table 4.1, average land cultivated to soybeans is 5ha, using an average total labor 

supply of 8persons hours per day/ha and 4kg/ha of agrochemicals in the process. It further shows 

that 57% of the farmers are located in the western corridor zone. Table 4.1 again, shows that 51% 

of the farmers live in communities that are connected to the national grid of electricity supply, and 

located at an average distance of 19km to the nearest extension office and 2km to the nearest 

market. In terms of inoculant knowledge test score, Table 4.1 reveals that farmers obtain an average 

of 56% inoculant knowledge score from participating in the dissemination program.  
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Table 4. 1 Definition and Summary Statistics 
Variable Definition Mean SD Min Max 

Outcomes      

Yield Soybean yield per hectare (lnKg/ha) 829.64 888.24 32.41 5703.87 

Farm Net Return Gross revenue less variable cost (lnGHC/ha) 840.26 762.11 75.11 4229.89 

Treatment Variable      

Adopt-Inoculant  1 If farmer adopts inoculant, Otherwise=0 0.510 0.500 0 1 

Mediator Variable      

AES-Part 1 If farmer participated in dissemination 

program, Otherwise=0 

0.542 0.499 0 1 

Production Inputs      

Land Area of land planted with soybean (ha) 5.045 4.371 5.045 4.371 

Labor Total labor used in soy cultivation (Worker-

days/ha) 

7.808 24.23 0.198 274.73 

Agrochem Total amount of active ingredient in chemical 

used (kg/ha) 

4 7.186 0 87.22 

Chemdumy 1 If farmer uses agrochemical, Otherwise=0 0.025 0.156 0 1 

Improvar 1 If farmer uses improve seed variety, 

Otherwise=0 

0.700 0.459 0 1 

Creditconst 1 If farmer is not credit constrained, 

Otherwise=0 

0.828 0.377 0 1 

Farmer-Specific 

Characteristics 

     

Age Age of farmer (years) 41.56 13.32 18 87 

Gender 1 If farmer is male, 0 for female 0.708 0.455 0 1 

Edu Years of schooling  2.792 4.687 0 21 

Location      

WCZ 1 If farmer is in Western Corridor Zone, Eastern 

Corridor Zone = 0 

0.567 0.496 0 1 

Distmarket Distance to nearest market (km) 2.362 4.137 0.100 50.10 

Soilqual 1 If soil quality is good, Poor soil quality=0   0.508 0.500 0 1 

Rainfall Amount of rainfall in (%) 61.63 16.24 20 100 

Instrumental Variables      

Distextoff (𝑍2) Distance to nearest extension office in (km) 18.90 25.10 0.016 160.93 

Electgrid (𝑍1) 1 If community is connected to the national grid 

for electricity supply, Otherwise = 0 

0.512 0.500 0 1 

Other Control Variables      

Testscore Inoculant knowledge test score (%) 56.091 23.75 2 98 

Resemtech  1 If inoculant usage resembles existing inputs 

usage, Otherwise=0 

34.933 35.22 0 100 

Techdiff 1 If inoculant application process is considered 

difficult, Otherwise=0 

0.278 0.267 0 1 

Dislang  1 If dissemination language is in farmer’s 

mother tongue, Otherwise=0  

0.695 0.461 0 1 

Comextoff 1 if  community has extension agent, Otherwise 

= 0  

0.625 0.485 0 1 

Note: SD is standard deviation; Min and Max are minimum and maximum values respectively. 
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4.6 Empirical Results 

First, we present the results of the first-stage bivariate probit estimates, as the identification of the 

model hinges on it and present the estimates in the appendix due to space limitation28. Next, we 

present and discuss estimates of the weighted nonlinear least-squares, estimated via the generalized 

method moments procedure.  

4.6.1 First-Stage Bivariate Probit Estimates 

Table 4A.2 presents estimates from the bivariate probit model. The model is used to account for 

selection bias and for identification of the instrumental variable (IV) regression. Table 4A.2 shows 

that, both the extension participation model (i.e. the mediation model) and the adoption model are 

highly correlated due to unobserved heterogeneities. The p-value for the null hypothesis shows that 

𝜌𝑚𝑑 is significantly different from zero (at 1% level), indicating that farmers’ extension 

participation and inoculant adoption decisions may be correlated due to unobserved 

heterogeneities. However, the sign for 𝜌𝑚𝑑 is negative, suggesting that farmers are likely to 

substitute adoption of new technologies (such as the inoculant) with knowledge acquisition from 

extension participation (Huth and Allee 2002). This observation is intuitive, because extension 

services and adoption of improved technologies tend to enhance farmers’ production efficiency 

(Huang and Liu, 1994; Kumbhakar et al., 2009; Triebs and Kumbhakar, 2018). The significance 

of 𝜌𝑚𝑑 also suggests that farmers may have self-selected into the extension program or adoption 

of the inoculant technology.  

Table 4A.2 also shows that, the two instrumental variables are both significantly different from 

zero (at 1 % level). In particular, distance to the nearest extension office (𝑍2), which is used to 

identify extension program participation, is negative and significant at 1% level. More importantly, 

                                                           
28 Although the covariates in the bivariate probit model can be considered as determinants of inoculant adoption and extension participation, we 

focus on its identification properties, because the primary interest in this study is for proper model identification, and not to model determinants of 
participation and adoption decisions. 
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farmer’s community connection to the national electricity grid (𝑍1), which we used to identify the 

inoculant adoption model, is positive and highly significant at 1% level. This implies that one 

percent increase in rural electrification of communities, increases the likelihood of inoculant 

adoption by 320%. Intuitively, this makes sense, because the rhizobia used in formulating the 

inoculant survive in a particular temperature range (250C), which stands to reason that, 

communities with access to constant electricity supply could well operate cold storage facilities. 

As a result, farmers in such communities may have access to the inoculant, hence, are more likely 

to adopt, compared to farmers living in communities without constant electricity supply (Dzanku 

et al., 2020). Our finding of positive effect of community electricity connectivity on farm 

households’ production activities is consistent with existing literature on rural electrification 

impact on households’ economic activities (see Thomas et al., 2020; IEG-World Bank, 2008; 

Cabraal et al., 2005; Martins, 2005). It is, however, unique by linking rural electrification to 

agricultural technology adoption.   

The validity of the instrument for identification of local average treatment effect in our IV 

regression estimation strategy requires that the instrument be monotonic increasing function of the 

level of the instrumental variable (𝑍1), and the level of the treatment (D) (see Chen et al., 2020). 

As shown in Table 4A.2, both the instrument in the treatment model and the treatment indicator D 

in the mediation model have positive signs and highly significant (at 1% conventional level), 

suggesting that our instrument is valid and strong. Intuitively, what it means is that, inoculant 

adoption increases with increasing extension participation and community electricity connectivity.  
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4.6.2 Determinants of Technology and Inefficiency Frontiers 

Tables 4.2 and 4.3 present factors that affect the production technology and inefficiency frontiers 

with respect to yield (lnKg/ha), for the case scenario that farmers’ adopt the inoculant technology 

with mediation and the counterfactual scenario of non-adoption nor mediation, respectively (see 

Tables 4.4 and 4.5, for that of farm net returns). The factors explain the observed yield and net 

returns variabilities in each scenario among farmers with different adoption and mediation 

conditions in our sample. For the sake of brevity, we focus the discussion on the yield, which can 

be extended to that of the net returns.  

The model estimated is a weighted nonlinear least-squares regression using generalized method of 

moment. As such, it does not represent any specific conventional production function model, and 

as such does not depend on any functional form distribution assumptions. Though we estimate a 

nonlinear regression model with most of the covariates being log and log-squares, the parameter 

estimates can be interpreted as in a linear regression estimates (Chen et al., 2020). Our approach 

of estimating the stochastic production frontier is akin to that of the generalized additive models 

(GAMs) approach that fits a response variable on a sum of smooth functions of explanatory 

variables in a regression context with normal distribution (Ferrara, 2020; Ferrara and Vidoli 2017). 

This specification is preferred to the conventional functional form specifications, due to its 

flexibility in relaxing the need to impose perfect linearity condition on the underlying stochastic 

frontier function between the explanatory variables and the outcomes of interest (Ferrara, 2020). 

Each Table contains two columns corresponding to two different adoption scenarios. In Table 4.2, 

column one contains estimates for the case of adoption with mediation (i.e. AdoptersM), henceforth, 

mediated-adopters (MA).  
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Table 4. 2 Adoption with Mediation – (Weighted Nonlinear Least-Squares) – Yield 

(lnKg/Ha) 

Variables AdoptersM  
(d, M(d'))=(1,1) 

Non-AdoptersN 
(d, M(d'))=(0,0) 

Coeff.(S.E) Coeff.(S.E) 

Age 0.009*(0.005) 0.021(0.016) 

Gender 0.096(0.128) 0.350(0.379) 

Edu 0.017(0.046) 0.204**(0.095) 

Edusq -0.003(0.003) -0.016***(0.006) 

lnland 0.717***(0.101) 0.098(0.332) 

lnlaborsq 0.037***(0.012) -0.042(0.045) 

lnagrochem -0.031(0.023) 0.328***(0.113) 

Chemdumy -0.440(1.487) 1.244(1.497) 

Improvar -0.168(0.158) -0.516(0.408) 

WCZ -0.073(0.138) -1.384***(0.336) 

Distmarket -0.005(0.017) -0.008(0.041) 

Soilqual 0.341***(0.115) 0.506(0.378) 

Rainfall -0.008***(0.003) -0.007(0.012) 

Creditconts -0.194(0.123) -0.006(0.542) 

Tsresid -0.652***(0.179) -4.271***(0.936) 

Const. 5.604***(0.458) 264.037***(54.392) 

Inefficiency   

𝛽(𝑡𝑠)
𝑔

 -10.281***(4.284) -0.015***(0.006) 

𝛽(0)
𝑔

 0.457***(0.171) 5.786***(0.207) 

Observ. (N) 306 294 
Note: ***, **, and * are 1%, 5%, and 10% level of significance; Values in brackets are standard errors. Columns one and two 

represents farmers who participate in the extension program and adopt the inoculant (i.e. AdoptersM = Mediated-Adopters, 

abbreviated as (MA)) and farmers who neither participate nor adopt the inoculant (i.e. Non-AdoptersN = Non-Mediated-Non-

Adopters, abbreviated as (NM-NA)), respectively. 
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Table 4. 3 Adoption without Mediation – (Weighted Nonlinear Least-Squares) – Yield 

(lnKg/Ha) 

Variables AdoptersN 

(d, M(d'))=(1,0) 

Non-AdoptersM 

(d, M(d'))=(0,1) 

Coeff.(S.E) Coeff.(S.E) 

Age -0.0003(0.020) 0.019(0.015) 

Gender 0.490*(0.280) 1.050**(0.524) 

Edu -0.051(0.107) -0.593***(0.208) 

Edusq 0.004(0.006) 0.046***(0.017) 

lnland 0.958***(0.291) 0.862***(0.363) 

lnlaborsq -0.021(0.032) -0.067(0.066) 

lnagrochem 0.100*(0.060) -0.246**(0.126) 

Chemdumy -0.156(13.989) -12.237(7.661) 

Improvar 0.411(0.449) -0.211(0.536) 

WCZ 0.441(0.477) -1.510***(0.474) 

Distmarket -0.003(0.025) -0.065(0.055) 

Soilqual 0.635***(0.267) 1.201***(0.496) 

Rainfall 0.002(0.011) -3.3-e5(0.014) 

Creditconts -0.518(0.374) 0.810(0.697) 

Tsresid -0.223***(0.077) -3.403***(0.933) 

Const. 5.595***(1.227) 102.035***(2.270) 

Inefficiency   

𝛽(𝑡𝑠)
𝑔

 -7.980***(2.112) -0.016**(0.008) 

𝛽(0)
𝑔

 0.080(0.247) 4.862***(0.025) 

Observ. (N) 306 294 
Note: ***, **, and * are 1%, 5%, and 10% level of significance; Values in brackets are standard errors. Columns one and two 

represents farmers who did not participate in the extension program but adopt the inoculant (i.e. AdoptersN = Non-Mediated-

Adopters, abbreviated as (NM-A)) and farmers who participate in the extension program but did not adopt the inoculant (i.e. Non-

AdoptersM, abbreviated as M-NA)), respectively. 
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Table 4. 4 Adoption with Mediation – (Weighted Nonlinear Least-Squares) – Farm Net 

Returns (lnGHC/Ha) 

Variables AdoptersM  
(d, M(d'))=(1,1) 

Non-AdoptersN 

(d, M(d'))=(0,0) 

Coeff.(S.E) Coeff.(S.E) 

Age 0.002(0.002) -0.065*(0.037) 

Gender -0.157***(0.062) -0.635(0.754) 

Edu -0.005(0.019) 0.231(0.205) 

Edusq 0.0002(0.001) -0.009(0.014) 

lnland 1.108***(0.042) 1.185*(0.674) 

lnlaborsq -0.009(0.006) 0.154*(0.091) 

lnagrochem -0.016(0.010) -0.094(0.141) 

Chemdumy -0.366(0.464) -3.434(3.090) 

Improvar -0.094(0.066) 1.078(0.921) 

WCZ -0.103*(0.057) 0.001(0.674) 

Distmarket -0.006(0.006) 0.028(0.074) 

Soilqual 0.007(0.051) 0.373(0.761) 

Rainfall -0.006***(0.002) -0.013(0.022) 

Creditconts -0.013(0.053) 6.478***(1.315) 

Tsresid 0.014(0.071) -15.578***(3.401) 

Const. 5.699***(0.236) 254.477***(53.500) 

Inefficiency   

𝛽(𝑡𝑠)
𝑔

 -8.430**(3.616) -0.007***(0.001) 

𝛽(0)
𝑔

 -0.538***(0.091) 5.730***(0.209) 

Observ. (N) 306 294 
Note: ***, **, and * are 1%, 5%, and 10% level of significance; Values in brackets are standard errors. Columns one and two 

represents farmers who participate in the extension program and adopt the inoculant (i.e. AdoptersM = Mediated-Adopters, 

abbreviated as (MA)) and farmers who neither participate nor adopt the inoculant (i.e. Non-AdoptersN = Non-Mediated-Non-

Adopters, abbreviated as (NM-NA)), respectively. 
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Table 4. 5 Adoption without Mediation – (Weighted Nonlinear Least-Squares) – Farm Net 

Returns (lnGHC/Ha) 

Variables AdoptersN 

(d, M(d'))=(1,0) 

Non-AdoptersM 

(d, M(d'))=(0,1) 

Coeff.(S.E) Coeff.(S.E) 

Age -0.009(0.007) -0.085***(0.030) 

Gender 0.202**(0.088) -5.664***(1.270) 

Edu -0.003(0.034) 0.161(0.325) 

Edusq 0.0001(0.004) 0.006(0.027) 

lnland 1.136***(0.104) 1.962***(0.649) 

lnlaborsq -0.024**(0.010) -0.029(0.137) 

lnagrochem 0.012(0.019) -0.362*(0.195) 

Chemdumy -0.193(4.158) -11.631(16.412) 

Improvar 0.095(0.148) -5.725***(1.211) 

WCZ 0.238*(0.139) -0.531(0.935) 

Distmarket 0.001(0.008) 0.011(0.095) 

Soilqual 0.146*(0.088) -2.129**(0.920) 

Rainfall -0.001(0.003) 0.011(0.029) 

Creditconts -0.336***(0.129) -6.223***(1.693) 

Tsresid -0.493**(0.232) -2.509(2.121) 

Const. 5.557***(0.480) 96.343***(30.533) 

Inefficiency   

𝛽(𝑡𝑠)
𝑔

 -15.551*(8.707) -0.040***(0.008) 

𝛽(0)
𝑔

 -1.720***(0.647) 4.441***(0.426) 

Observ. (N) 306 294 
Note: ***, **, and * are 1%, 5%, and 10% level of significance; Values in brackets are standard errors. Columns one and two 

represents farmers who did not participate in the extension program but adopt the inoculant (i.e. AdoptersN = Non-Mediated-

Adopters, abbreviated as (NM-A)) and farmers who participate in the extension program but did not adopt the inoculant (i.e. Non-

AdoptersM, abbreviated as M-NA)), respectively. 

 

This category represent the scenario that farmers participated in the extension program and also 

adopted the inoculant technology, while column two represents the counterfactual case scenario 

for farmers who neither participated in the extension program nor adopted the inoculant 

technology, henceforth refer to as non-mediated-non-adopters (NM-NA). In Table 4.3, column one 

represents the case scenario of farmers, who did not participate in the extension program but 

adopted the inoculant technology (i.e. AdoptersN), hereafter, non-mediated-adopters (NM-A), 

whereas column two represents the counterfactual case of farmers who participated in the extension 
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program but did not adopt the inoculant technology (i.e. Non-AdoptersM), hereafter refer to as 

mediated-non-adopters (M-NA).  

The estimates for the constant term in Table 4.2 captures the effect of unobserved farmer-specific 

characteristics on the production function, are all positive and statistically significant across all 

farmers. These results suggest that farmers may have certain unobserved characteristics that 

enhance or limit their ability to push the production frontier upward, irrespective of the superiority 

of the production technology being employed. Similar trend is observed in Table 4.3. The results 

also show that observed farmer-specific characteristics such as education, gender and age have 

significant impact in shifting the production frontier of farmers. In particular, for NM-NA farmers, 

education is positive and significant at 5% level, while education square is negative and significant 

1% level, suggesting that an increase in education pushes the production frontier of this category 

of farmers upwards, with the maximum effect occurring at 2 years of schooling. On the other hand, 

education is negative and significant at 1% level for M-NA farmers, while that of the squared term 

is positive, suggesting that this category of farmers  require more years of schooling, in order for 

education to have positive impact on their production frontier. 

Also in Table 4.2, gender (i.e. being a male farmer) has positive coefficient across all farmers, but 

statistically significant (at 10% and 5% levels) for only NM-A and M-NA farmers respectively, 

suggesting that being a male farmer within our study area generally improve ones’ productivity. 

This observation may be due to the fact that male farmers in most parts of developing countries 

have better access to family labor, quality land and other resources than female farmers, a finding 

that is in line with Gebre et al. (2019) in their study of gender differences in agricultural 

productivity among maize farmers in Ethiopia. However, the reverse is observed for the net returns 

in Tables 4.4 and 4.5, suggesting that in terms of net returns, female farmers’ are able to push their 

net returns frontier upwards, compared to their male counterparts. This observation is intuitive as 
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female farmers are more likely to have good marketing skills, compared to their male counterparts, 

as such are more likely to bargain for good prices. 

Table 4.2 also shows that among the conventional inputs (land, labor, agrochemicals and improved 

seed variety), land has the highest effect on the production frontier. Land is positive and statistically 

significant at 1% level across all category of adopters (except NM-NA which is not statistically 

significant), suggesting that a unit increase in land cultivated to soybean under the inoculant 

technology leads to increase in yields ranging between 72kg/ha to 96kg/ha across various category 

of farmers. Similar but greater effect is observed in terms of net returns per hectare of land (see 

Tables 4.4 and 4.5). The results further reveal that the effect of labor on the production frontier is 

positive and statistically significant at 1% level for MA farmers, suggesting that this group of 

farmers benefited from labor availability.  

Also in Tables 4.2 and 4.3, the quantity of agrochemicals used is positive and significant at 1% and 

10% for NM-NA and NM-A farmers respectively, indicating that the quantity of agrochemicals 

applied to control weeds shifts the production frontier of this category of farmers upwards. It is 

possible that some farmers may not have used agrochemicals, which if not accounted for could bias 

the results. Following Battese (1997), we included a dummy variable for chemical usage and did 

not find any statistical significant effect at any conventional level. 

In addition to the conventional and farmer-specific characteristics, we also controlled for 

environmental and geographical factors using zonal dummies, plot level soil quality and 

precipitation. The results reveal that the zonal dummy which indicates whether the farmer is located 

in the western corridor zone (WCZ) or eastern corridor zone (base category) is negative across all 

category of adopters but statistically significant for NM-NA and M-NA farmers only, suggesting 

that the eastern corridor zone has high potential for soybean production, compared to the WCZ, 

since being in that zone shifts the production frontier upwards relative to being in WCZ.  Tables 



147 
 

4.2 and 4.3 also reveal that soil quality at the farm level plays significant (at 1% level of statistical 

significance) role in shifting the production frontiers upwards across all category of adopters. The 

results further show that insufficient precipitation at the plot level significantly shifts the production 

frontier downwards. In particular, that of MA (at 1% level of significance), a finding which is 

consistent with adverse effects of rainfall on productivity in the literature. 

In the last two rows of Tables 4.2 and 4.3, we present estimates of post-mediation factor(s) that 

influence farmers’ level of (in)efficiency in the usage of the inoculant technology that could have 

great impact on yields obtained from adoption. We conducted an inoculant technical knowledge 

quiz and use the test scores to proxy the post-mediation factors in the inefficiency frontier function. 

As shown in the Tables, the coefficient of a constant only inefficiency frontier model (represented 

as 𝛽(0)
𝑔

) is positive and statistically significant at 1% level across all adopters, suggesting that 

adopting the inoculant technology without sufficient technical knowledge on its usage makes 

farmers highly inefficient and less beneficial. On the other hand, the coefficient of the inefficiency 

model, with inoculant knowledge test score (represented as 𝛽(𝑡𝑠)
𝑔

) is negative and statistically 

significant at 1% level across all adopters, indicating that adopting the technology with sufficient 

technical knowledge increases farmers’ production efficiency (i.e. reduces farmers’ inefficiency). 

Similar results pattern is obtained for net returns in Tables 4.4 and 4.5. This finding learns credence 

to Dzanku et al. (2020), who argued that effective application of the inoculant technology requires 

knowledge on proper storage and inoculation procedures in order to replicate the effective 

experimental results of the inoculant technology by farmers.  

4.6.3 Impact of Mediation and Inoculant Adoption on Productivity, Efficiency and Welfare  

In this section, we report estimates of the treatment effects derived in equations 11 – 13. The results 

for yields and farm net returns are presented in Tables 4.6 and 4.7, respectively. Focusing on Table 
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4.6, the first column contains total impact of program participation on the farm household’s 

welfare, decomposed into welfare contribution coming directly from adoption of new technology 

and indirectly from participation in the extension program. The second column contains total 

impact of inoculant adoption on the production frontier of inoculant adopters’ relative to non-

adopters, decomposed into the portion due directly to technological change which shifts the 

observed production frontier closer to the ideal production frontier (i.e. the potential yield frontier), 

and indirectly due to improvement in adopters’ technical knowledge in shifting the production 

frontier. The estimates in the third column represent the total impact on the production efficiency 

of inoculant adopters relative to non-adopters, decomposed into efficiency gained due to 

technological change and indirectly due to improvement on inoculant adopters’ technical 

knowledge.  

The results in column one of Table 4.6 show that, the total treatment effect (measured as the local 

average treatment effect (LATE)) on yields is positive and statistically significant at the 1% level. 

Specifically, the impact on yield is 52kg/ha (and 46GHC/ha for net returns), suggesting that farmers 

who participate in the extension program and adopt the inoculant technology increased their yields 

(and net returns), compared to if they had neither participate in the extension program nor adopt 

the inoculant technology.  
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Table 4. 6 Productivity, Efficiency and Welfare Estimates on Soybean Yield - (lnKg/ha) 

Impact on: Welfare  Technology Frontier  Inefficiency Frontier 

LATE LATEh LATEg 

52.296***(0.496) -203.283***(1.987) -256.086***(2.333) 

   

DLATE DLATEh DLATEg 

40.218***(0.427) -145.942***(1.633) -186.199***(2.010) 

   

ILATE ILATEh ILATEg 

12.071***(0.281) -57.884***(1.337) -69.915***(1.579) 
Note: *** indicates 1% level of significance; Values in brackets are bootstrapped standard errors from 1,000 re-samples. LATE is 

local average treatment effect, representing the total effect of participation in the extension dissemination program and inoculant 

adoption; DLATE is direct local average treatment effect, representing the component of the total effect that comes from inoculant 

adoption; ILATE is indirect local average treatment effect, representing the component of the total effect that comes from extension 

participation. 

 

 

 

 

 

Table 4. 7  Productivity, Efficiency and Welfare Estimates on Net Returns – (lnGHC/ha) 

Impact on: Welfare  Technology Frontier  Inefficiency Frontier 

LATE LATEh LATEg 

46.026***(0.573) -185.568***(2.333) -231.511***(2.245) 

   

DLATE DLATEh DLATEg 

26.478***(0.492) -124.835***(1.998) -151.354***(2.402) 

   

ILATE ILATEh ILATEg 

19.543***(0.466) -60.683***(1.418) -80.189***(1.805) 
Note: *** indicates 1% level of significance; Values in brackets are bootstrapped standard errors from 1,000 re-samples. LATE is 

local average treatment effect, representing the total effect of participation in the extension dissemination program and inoculant 

adoption; DLATE is direct local average treatment effect, representing the component of the total effect that comes from inoculant 

adoption; ILATE is indirect local average treatment effect, representing the component of the total effect that comes from extension 

participation. 
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This finding implies that farmers who have access to constant electricity supply and extension 

information achieve higher welfare benefits, compared to farmers who do not have access to both 

electricity and extension information.  

A decomposition of the welfare benefits due to mediation indicate that 77% (i.e. DLATE = 

40kg/ha) of the welfare benefits, in terms of marginal gains in yield, can be attributed to the farm 

household’s adoption of improved technology (i.e. the inoculant), while 23% (ILATE = 12kg/ha) 

is due to the farm household’s participation in inoculant extension dissemination program. 

The total treatment effect on the production frontier in column two of Table 4.6 shows that, the 

technological change led to a reduction in the yield gap between the production frontier of adopters 

and that of the best production frontier by 203kg/ha. In order words, farmers who participate in the 

extension program and adopt the inoculant technology increased their yields by 203kg/ha, which 

agrees with Ulzen et al. (2018) who reported that farmers’ soybean yield increased by 200kg/ha 

with inoculant application in northern Ghana. Further decomposition of the impact on the shift of 

the production frontier shows that 72% (i.e. DLATEh =146kg/ha) is due to adoption of the improved 

technology, while 28% (ILATEh = 58kg/ha) of the shift is due to enhancement in farmers’ technical 

knowledge on the improved technology usage. Intuitively, the total effect is an interaction of 

adoption of the improved technology and technical knowledge in the management of the new 

technology that leads to realization of the full potential of the technology. This finding is in line 

with Takahashi et al. (2020), who in a recent review of the literature on technology adoption and 

extension, highlight the need to collaborate the two in a single study.  

In column three of Table 4.6, the total effect on the technical efficiency shows that improvement 

in technical efficiency of farmers led to an increase in yield of about 256kg/ha. This indicates that 

farmers who participate in the extension program and adopt the inoculant technology are able to 

cut down their inefficiency up to 256kg/ha (i.e. yield that would have been lost due to inefficiency) 
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by adopting improved technology with technical knowledge. The marginal gain due to technical 

efficiency appears to outweighs that of yield at the production frontier (i.e. 203kg/ha). This finding 

is consistent with the argument by Huang and Liu (1994) that farmers who acquire technical 

knowledge on a new technology prior to adoption of the technology tend to benefit more. A 

decomposition of the total effect of technical efficiency shows that 73% (i.e. DLATEg =186kg/ha) 

of the improvement comes from the farmer’s adoption of improved technology, while 27% (ILATEg 

= 70kg/ha) comes from technical knowledge on the technology, implying that the synergic effect 

of better technology and technical knowledge is required for farmers to be fully technically 

efficient. However, greater proportion of technical efficiency is achieved by adopting improved 

technology, which is consistent with Kumbhakar et al. (2009) argument that some technologies 

inherently make the farmer efficient or inefficient. We find similar patterns of impact on the 

production technology frontier and the technical efficiency frontier in the net returns model 

presented in Table 4.7. 

4.6.4 Production and Technology Gap Profiles 

In Figures 4.1 and 4.2, we present the conditional (i.e. condition on being a complier) mean yield 

estimates in deciles across various sub-population of adopters at the production technology and 

technical inefficiency frontiers, respectively (see Figures 4A.2 and 4A.3 in the appendix for farm 

net returns). This is important in characterizing the production and technology gap between the 

sub-population of adopters and non-adopters, since adoption of an improved technology may 

induce inequalities in the production structures of farmers, due to heterogeneity in production 

technology and technical efficiency of farmers at the respective frontiers.  Recent literature in the 

stochastic frontier analysis employ quantile regression to profile the production and technology 

gap among firms for structural analysis (e.g. Lai et al., 2020; Huang et al., 2017). However, the 

quantile regression approach is somehow restrictive as it allows for characterization of firms only 
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at the quantile means and not at the individual firm level means, as in the case of standard regression 

(Fortin et al. 2011), the approach employed in this paper.  

 

Figure 4. 1 Yield Gap Profile at the Production Technology Frontier (Kg/Ha). 
Where H-11, H-00 and H-01 01 indicates mediated-adopters, non-mediated-non-adopters and mediated-non-adopters, 

respectively at the production technology frontier function of yield. The figure illustrates the yield gap profile in deciles of farmers 

operating at different production technology frontiers, compared to farmers at the best production frontier operating at zero 

technological inefficiency. 

 

                                   

Figure 4. 2 Yield Gap Profile at the Inefficiency Frontier (Kg/Ha). 
Where G-11, G-00 and G-01 indicates mediated-adopters, non-mediated-non-adopters and mediated-non-adopters, 

respectively at the technical inefficiency function of yield. The figure illustrates the yield gap profile in deciles of 

farmers operating at different levels of technical inefficiency, compared to farmers operating at zero technical 

inefficiency. 
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Figure 1shows that, the yield distance of farmers who participate in the extension program and 

adopt the inoculant technology – (i.e. the MA farmers (H-11)) at every decile is more closer to 

zero, compared to farmers who neither participate in the extension program nor adopt the 

technology (i.e. the NM-NA farmers (H-00)). Similarly, the MA farmers yield gap is also narrower, 

compared to farmers who participate in the extension program but did not adopt inoculant (i.e. the 

M-NA farmers (H-01)), suggesting that the yield gap of farmers who participate and adopt the 

inoculant technology is more closer to farmers producing soybeans at the best production 

technology frontier.  

Also in Figure 4.2, the conditional mean plot of the yield at the technical efficiency frontier shows 

that, the average yield distance of MA farmers (G-11) at every decile is almost on the zero line, as 

compared to that of NM-NA (G-00) and M-NA (G-01) farmers respectively, indicating that farmers 

who participate in the extension dissemination program and adopt the inoculant are technically 

more efficient than farmers who neither adopt nor participate in the dissemination program. 

However, a comparison of the yield distance at both the production frontier and the technical 

efficiency frontier between farmers who participated in the extension dissemination program but 

did not adopt the inoculant (i.e. the M-NA farmers – (H-01 and G-01)) is also lower, when 

compared to that of NM-NA farmers (i.e. H-00 and G-00), suggesting that, extension participation 

even without adoption of a new technology may still be effective in improving farmers’ efficiency. 

We find similar production and technical efficiency profile patterns in the net returns estimates 

presented in Figures 4A.2 and 4A.3. 

Figures 4.3 and 4.4 show the full conditional mean yield distributions for MA farmers (H-11) in 

panel (a), compared to NM-NA farmers (H-00) in panel (b) and also that of M-NA (H-01) farmers 

in panel (a), compared to NM-NA (H-00) farmers in panel (b), respectively.  
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(a) Mediated-Adopters                                     (b) Non-Mediated-Non-Adopters  

Figure 4. 3 Comparison of Yield (Kg/Ha) Distributions at the Technology Frontier – Direct 

Effect  

 

 

 

(a) Mediated- Non-Adopters                           (b) Non-Mediated-Non-Adopters 

Figure 4. 4 Comparison of Yield (Kg/Ha) Distributions at the Technology Frontier – 

Indirect Effect 
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The mean yield distribution at the production technology frontier of MA farmers is much lower, 

and appears to be densely skewed to the left (i.e. towards zero), compared to that of the distributions 

of NM-NA and M-NA farmers. This finding in an indication that a greater percentage of the yield 

variability among the farmers may be attributed to technology heterogeneity, which greatly 

minimizes the yield distance between farmers who participate in the extension program and adopt 

the technology and those who did not. Similar pattern of distribution is observed in respect of the 

farm net returns in Figures 4A.4 and 4A.5 in the appendix. 

 Conversely, the mean yield distribution at the technical efficiency frontier in Figures 4.5 and 4.6 

show that the distribution for MA farmers (i.e. G-11) is also densely skewed to the left (i.e. towards 

zero), compared to that of NM-NA (i.e. G-00) and M-NA (G-01) farmers, respectively. These 

results indicate that conditional on participating in the extension dissemination program and 

adopting the inoculant technology, all else being equal, greater percentage of yield variability at 

the frontiers may be due to random noise rather than technical inefficiency. We observed similar 

distribution patterns in the net returns in Figures 4A.6 and 4A.7 in the appendix. 
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(a) Mediated-Adopters                                     (b) No-Mediated-Non-Adopters  

Figure 4. 5 Comparison of Yield (Kg/Ha) Distributions at the Inefficiency Frontier – Direct 

Effect 

 

 

(a) Mediated- Non-Adopters                           (b) No-Mediated-Non-Adopters 

Figure 4. 6 Comparison of Yield (Kg/Ha) Distributions at the Inefficiency Frontier – 

Indirect Effect 
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4.6.5 Robustness Check 

By way of checking the robustness of our finding, we conduct further analysis and report the results 

in the appendix due to space constrains. First, we re-estimate a probit model for the binary adoption 

decision variable with our instrumental variable (IV) – community connection to national 

electricity grid (𝑍1). This is to check the validity for the propensity of instrument compliers to adopt 

the inoculant away from the bivariate probit. Since it is possible that the statistical significance of 

(𝑍1) in the bivariate probit model may have been driven by the presence of the mediator variable 

or its instrument. As shown in Table 4A.3, the IV (𝑍1) is positive and statistically significant at 1% 

level with the magnitude of the coefficient slightly larger than the bivariate counterpart, suggesting 

that the significance of the instrument is not driven by any other factor. The significant and positive 

sign of the instrument propensity indicates that the instrument is valid and strong enough to be able 

to identify local average treatment effect.  

In Table 4A.4, we also present a mixture of two normal distribution estimates for our continuous 

IV – distance to the nearest extension office (𝑍2) used to identify the mediation effect on adoption. 

The intuition behind the identification property of the continuous IV to observe its mediation effect 

on adoption is that, along the IV’s full distribution, it should be plausible to either observe an 

increasing or decreasing distribution as the probability to participate and adopt increases or 

otherwise (Fr�̈�lich and Huber, 2017; Chen et al., 2020). Figure 4A.1 in the appendix shows that 

the instrument met the pre-requisite condition, for identification of the mediation effect to be 

observed.   

Table 4A.4 reports the estimates obtained from the estimation of the distributions at the instrument 

means. As shown in Table, both the first mean (𝜇1) and the second mean (𝜇2) of the mixture 

distribution are statistically significant (at 1% level) and have the expected signs. The first mean is 

negative, suggesting that as distance to nearest extension office decreases, the probability of a 
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farmer participating in the extension program and adopting the inoculant increases, resulting in the 

impacts observed in this study. The mixing probability function (𝑓(𝑝)) of the distribution is also 

positive and statistically significant at 1% level, suggesting that the instrument is a monotonic 

increasing function in participation and adoption, which is also a necessary condition for local 

average treatment effect identification in the IV regression (Chen et al., 2020; Thomas et al., 2020). 

The significant and positive sign of the instrument propensity function indicates that the instrument 

is valid and strong enough to be able to identify local average treatment effect, and that our LATE 

estimates reported in this study are not driven by any incidental variable or matrix. The GMM 

model estimated is also just or exactly identified, assuming an identity weighting matrix as the 

initial weighting matrix.  

Finally, we present the unconditional (i.e. conditional on observed and unobserved factors but not 

only on being a complier) mean estimates of the individual sub-population level distributions of 

the two outcomes in Figure 4A.8 panel (a) and (b) of the technical (in)efficiency gap profile of 

farmers in deciles. The results confirm the robustness in the mean distributions of the farm 

production structure reported in this study. In fact, the unconditional estimates in Figure 4A.8 show 

that, given observed and unobserved farmer-specific characteristics, some farmers within the 1 – 6 

deciles perform efficiently above the best technical efficiency frontier in the population in the yield 

model in panel (a), and across all deciles in the net returns model in panel (b). 

4.7 Policy Implications and Conclusions  

Analyzing the welfare impacts of improved agricultural technologies and extension delivery 

programs can be challenging, because either of them can lead to welfare gains. The approach often 

employed in empirical analysis is to focus on one component and subsume the other in statistical 

distributional assumptions. In this study, we employ a new approach that evaluates simultaneously 

the two components and decomposes the welfare impacts attributable to each of the two 
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components. We use recent farm level data of soybean farmers who participated in the extension 

dissemination program of legume inoculant technology in Ghana. We investigate, simultaneously, 

the impact of the inoculant technology adoption and the extension program participation on 

farmers’ productivity, efficiency and welfare. We also decompose each of these impact measures 

into subcomponents whose impact paths can be traced to inoculant technology adoption, extension 

delivery that enhances farmers’ technical knowledge, and the program participation decision.  

Our findings revealed that investing in either development of improved agricultural technologies 

such as the inoculant or intensifying extension delivery programs lead to increased productivity, as 

well as efficiency and welfare gains. We also found that the contribution of adoption of improved 

agricultural technologies alone (i.e. inoculant adoption) can improve farm productivity by 72%, 

productivity gain due to improved farmer efficiency by 73%, and improvement in welfare by 77%. 

On the other hand, extension delivery program participation alone improved productivity by almost 

28%, productivity gain due to improved farmer efficiency by 27%, and improvement in welfare by 

23%. Although the results suggest that improved agricultural technologies impact is greater than 

extension delivery, we found that the synergic effect of the two is far greater than the individual 

effects.  

Our findings show that investment in research development aimed at developing new agricultural 

technologies for farmers in developing countries such as Ghana can contribute to poverty 

alleviation. In the same vain, our results confirm the significance of improving farmers’ access to 

extension services, given that extension agents provide farmers with detailed knowledge on new 

technologies. Our findings also reveal the significance of rural electrification in enhancing the 

diffusion of new agricultural technologies, suggesting that state sponsored rural electrification 

programs will go a long way to contribute to the adoption of new agricultural technologies, thereby 

increasing farm incomes and reducing rural poverty. This will also facilitate the deployment of new 
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channels of extension delivery via information and communication technologies (ICT) channels 

which mostly use electricity for effective functioning. As argued in this study, investment in rural 

electrification will also drive the development and expansion in rural enterprises such as sales of 

agro-inputs and perishable agro-based products, which must be stored under specific storage 

conditions. 
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Appendix 

Tables 

Table 4A. 1 Comparison of Adopters and Non-Adopters 
Variables  Adopters 

Mean(S.E) 

Non-Adopters 

Mean(S.E) 

Mean Diff 

(S.E) 

Yield 962.35(53.453) 691.53(47.57) 270.82***(71.75) 

Farm Net Return 802.20(40.586) 879.87(47.37) -77.67(62.21) 

Age 43.133(0.727) 39.929(0.803) 3.205***(1.081) 

Gender 0.696(0.026) 0.721(0.026) -0.025(0.037) 

Edu 2.853(0.271) 2.728(0.271) 0.125(0.383) 

Land 4.88(0.235) 5.214(0.270) -0.332(0.357) 

Labor 7.649(1.980) 7.973(1.327) -0.323(1.980) 

Agrochem 3.726(0.343) 4.286(0.481) -0.560(6.685) 

Chemdumy 0.029(0.010) 0.020(0.008) 0.009(0.013) 

Improvar 0.706(0.026) 0.694(0.027) 0.012(0.037) 

Creditconst 0.797(0.023) 0.861(0.020) -0.063**(0.031) 

WCZ 0.565(0.028) 0.568(0.029) -0.003(0.041) 

Distmarket 2.372(0.261) 2.352(0.212) 0.020(0.338) 

Soilqual 0.542(0.029) 0.473(0.029) 0.070*(0.041) 

Rainfall 61.503(0.924) 61.769(0.953) -0.265(1.327) 

Comextoff 0.621(0.028) 0.629(0.028) 0.008(0.040) 

Distextoff 15.78(1.155) 22.07(1.694) -6.295***(2.037) 

Electgrid 0.941(0.013) 0.949(0.013) -0.008(0.019) 

Testscore 61.692(1.647) 48.979(2.157) 12.713***(2.666) 

Resemtech 38.824(2.017) 30.884(2.027) 7.939***(2.860) 

Techdiff 0.307(0.015) 0.247(0.016) 0.060***(0.022) 

Dislang 0.725(0.026) 0.663(0.028) 0.062*(0.038) 

Comextoff 0.621(0.028) 0.629(0.028) -0.008(0.040) 

Observ. (N) 306 294  

Note: ***, **, and * are 1%, 5%, and 10% level of significance; Values in brackets are standard errors. 
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Table 4A. 2 Participation and Adoption Decisions (First-Stage Bivariate Probit Estimates) 

Variables AES-Participation (M) 

Coeffs.(S.E) 

Inoculant-Adoption (D)  

Coeffs.(S.E) 

Const. -3.061***(0.487) -1.407**(0.611) 

Age 0.022***(0.005) 0.007(0.007) 

Gender 0.365***(0.152) -0.397**(0.204) 

Edu 0.014(0.048) -0.017(0.058) 

Edusq -0.003(0.003) 0.0003(0.004) 

lnland -0.167(0.110) 0.003(0.135) 

lnlaborsq -0.015(0.019) 0.011(0.024) 

Creditconst -0.502***(0.179) -0.009(0.231) 

lnagrochem 0.013(0.032) -0.028(0.040) 

Chemdumy 0.059(0.454) 0.664(0.552) 

Improvar 0.016(0.141) -0.008(0.180) 

WCZ -0.209(0.137) -0.127(0.179) 

Distmarket -0.008(0.015) 0.004(0.020) 

Soilqual 0.619***(0.140) 0.229(0.172) 

Rainfall -0.006(0.004) -0.003(0.005) 

lntestsq 2.275***(0.200) -0.038(0.202) 

Tsresid -2.861***(0.221) 0.023(0.209) 

Adopt-inoculant (D) 1.657***(0.160) - 

Electgrid (𝑍1) - 3.200***(0.186) 

Distextoff (𝑍2) -0.041***(0.013) - 

𝜌𝑚𝑑 -0.715***(0.189)  

Wald test of 𝜌𝑚𝑑=0 18.27***  

LL -359.078  

Wald Chi-sq 543.22***  

Observ.(N) 600 

Note: ***, **, and * are 1%, 5%, and 10% level of significance; Values in brackets are standard errors. 
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Table 4A. 3 Estimates of Treatment Instrument Propensity (𝒁𝟏) – Electricity (Dummy) 

Variables Inoculant-Adoption 

Coeffs.(S.E) 

Age 0.007(0.007) 

Gender -0.406**(0.207) 

Edu -0.026(0.059) 

Edusq 0.001(0.004) 

lnland 0.015(0.136) 

lnlaborsq 0.010(0.025) 

lnagrochem -0.044(0.041) 

Chemdumy 0.759(0.572) 

Improvar 0.030(0.182) 

Creditconst -0.044(0.231) 

WCZ -0.159(0.180) 

Distmarket 0.003(0.021) 

Soilqual 0.190(0.172) 

Rainfall -0.002(0.005) 

lntestsq -0.019(0.047) 

Tsresid -0.018(0.211) 

Const -1.390**(0.646) 

Z1_inst 3.207***(0.189) 

LL -131.894  

Wald Chi-sq  567.75*** 
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Table 4A. 4 A Mixture-of-Normal Distribution for Mediation Instrument (𝒁𝟐)  

Parameter Distextoff(km) 

Coeffs.(S.E) 

𝜇1 -1.8030***(0.1865) 

𝜎1 1.0123***(0.0539) 

𝜇2 6.6236***(1.4828) 

𝜎2 1.7470***(0.1083) 

𝑓(𝑝) 1.3012***(0.2895) 

  

 

 

Figures 

 

Figure 4A. 1 Probability Density Distribution for Identification of Treatment Sub-

populations. 
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Figure 4A. 2 Net Returns Gap Profile at the Production Technology Frontier (GHC/Ha). 

Where H-11, H-00 and H-01 indicate inoculant adoption with mediation, non-adoption non-mediation and non-adoption with 

mediation, respectively at the production Technology frontier function of yield. The figure illustrates the yield gap profile in deciles 

of farmers operating at different production technology frontiers, compared to farmers at the best production frontier operating at 

zero technological inefficiency. 

 

 

Figure 4A. 3 Net Returns Gap Profile at the Technical Inefficiency Frontier (GHC/Ha). 
Where H-11, H-00 and H-01 indicate inoculant adoption with mediation, non-adoption non-mediation and non-

adoption with mediation, respectively at the Technical inefficiency function of yield. The figure illustrates the yield 

gap profile in deciles of farmers operating at different levels of technical inefficiency, compared to farmers operating 

at zero technical inefficiency. 
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(a) Adoption with Mediation                           (b) No-Adoption No-Mediation 

Figure 4A. 4 Comparison of Net Returns (GHC/Ha) Distributions at the Technology 

Frontier – Direct Effect  

 

 

(a) No-Adoption with Mediation                      (b) No-Adoption No-Mediation 

Figure 4A. 5 Comparison of Net Returns (GHC/Ha) Distributions at the Technology 

Frontier – Indirect Effect 
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(a) Adoption with Mediation                            (b) No-Adoption No-Mediation 

Figure 4A. 6 Comparison of Net Returns (GHC/Ha) Distributions at the Inefficiency 

Frontier – Direct Effect. 

 

 

(a) No-Adoption with Mediation                    (b) No-Adoption No-Mediation 

Figure 4A. 7 Comparison of Net Returns (GHC/Ha) Distributions at the Inefficiency 

Frontier – Indirect Effect. 
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(a) Yield (Kg/Ha)                                                 (b) Net Returns (GHC/Ha) 

Figure 4A. 8 Unconditional Mean Gap Profiles at the Inefficiency Frontiers.  
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Chapter 5 

Do Egocentric Information Networks Influence Technical Efficiency of Farmers? Empirical 

Evidence from Ghana 

Sadick Mohammed and Awudu Abdulai 

Department of Food Economics and Consumption Studies, University of Kiel, Germany  

This article is under review in the: Journal of Productivity Analysis 

Abstract 

We investigate the impact of farmers’ egocentric information network on technical efficiency and 

its distribution in the network, using observational data of 600 farmers from northern Ghana. We 

exploit community detection algorithms to endogenously identify homogeneous network 

communities with known structures to account for spatial heterogeneity, in a spatial stochastic 

frontier model that controls for social selection bias. The empirical results reveal that at the global 

network level, farmers’ technical efficiency strongly correlate with that of farmers in their 

egocentric networks. Our findings also show that farmers who are technically less efficient tend to 

depend on the more efficient farmers in their networks to improve efficiency. We further find that 

failure to account for spatial heterogeneity can lead to underestimating technical efficiency of high 

(efficiency score >0.6) performing farmers, while overestimating that of medium (efficiency scores 

between 0.36 – 0.5) and low (efficiency scores between 0.1– 0.35) performing farmers. The 

findings suggest that identifying central farmers’ in egocentric networks and improving their 

technical knowledge in a farmer-to-farmer extension organization, can contribute to improving the 

productivity of many farmers. 

Keywords: Egocentric information network, Stochastic frontier analysis, Spatial heterogeneity, 

Technical efficiency, Technology adoption. 

JEL: C45, D83, D85, O13 Q16 
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5.1 Introduction 

Inadequate information on innovative agricultural technologies continue to be a major constrain 

and the jinx to low technology adoption among smallholder farmers in developing countries (Foster 

and Rosenzweig 2010; Suri 2011). The low technology adoption among farmers has been identified 

as one of the root causes of low productivity and high poverty incidence among smallholder farmers 

(Takahashi et al. 2020). Weak and ineffective extension services due to resource constraints to 

employ and equip extension agents to serve the needs of the widely dispersed smallholder farmers, 

who constitute majority of the farming population of the developing countries accounts for the 

inadequate information (Blum and Szonyi 2011). 

The use of farmers’ personal information networks is viewed as a potential information channel to 

leverage the limited number of extension agents to aid in the diffusion of information on improved 

technologies to farmers (Beaman and Dillon 2018; Valente 1996). The process of using personal 

information networks to diffuse information about new technologies or products in order to 

accelerate adoption or improve organizational performance is described in the literature as the 

network interventions approach (Valente 2012). One strategy of the network interventions 

approach that has become popular among development practitioners and organizational managers 

is the segmentation strategy. This strategy is cost effective and efficient, as it relies on passing the 

new information to an identified group of persons who act as change agents rather than trying to 

reach individual farmers (Fafchamps et al. 2021; Valente 2012). A major area of application of the 

segmentation strategy of the network intervention approach in agricultural development is the use 

of the lead farmer concept in peer-to-peer agricultural extension delivery.  

The potential of farmers’ networks to diffuse information about new technologies, due to social 

learning have been extensively explored in the literature within the last decade (Bandiera and 

Rasul, 2006; Conley and Udry, 2010; Banerjee et al., 2013; Beaman and Dillon, 2018; Di Falco et 
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al., 2018). For instance, Kondylis et al. (2017) found that contact farmers’ personal information 

networks played a significant role in the diffusion and adoption of sustainable land management 

practices among farmers in central Mozambique. In a similar study, Beaman and Dillon (2018) 

found that personal information networks played an important role in the diffusion, adoption as 

well as technical knowledge on new compost making technology among farmers in Mali. However, 

evidence suggest that there is strong correlation of knowledge gain on a given technology by 

farmers who learn from their personal information networks with those from whom they learn 

(Fafchamps et al., 2021). To the extent that farmers’ knowledge correlate with their personal 

information networks, implies that the likelihood of farmers’ technical (in)efficiency to correlate 

with that of the peers from whom they learn could be equally high. This may be due to factors such 

as informational inadequacies, willingness to share information, common shocks and differing 

absorptive capacity among individual farmers (Kondylis et al., 2017; Boschma, 2005). 

Recent spate of studies have considered the potential correlation of technical efficiencies between 

contagious production units in the literature. For example, among neighboring electricity and 

chemical firms (e.g., Orea and Álvarez 2019; Kutlu et al. 2020), provincial and regional 

administrative units (e.g., Tsionas and Michaelides 2016; Gude et al. 2018; de Graaff 2020), 

airports and transportation terminals (e.g., Pavlyuk 2019), sport teams (e.g., Horrace and Jung 

2018) and wine industries (e.g., Fusco and Vidoli 2013; Vidoli et al. 2016). In agricultural 

production, the influence of geographical and economic proximity on farmers’ efficiency have also 

been considered. Examples include Druska and Torrace (2004) study on rice farmers in Indonesia, 

Schmidt et al. (2009) on regional farms in Brazil, Areal et al., (2012) on dairy farms in England 

and Wales, as well as Billé et al. (2018) study on olive farms in Italy. However, the form of 

contiguity considered by almost all these studies is based on geographical location, position, or 

distance (i.e. physical contiguity) between the production units or farms. The physical contiguity 
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approach is based on the assumption that farmers embedded in social communities learn from their 

peers, given the similar environmental and social factors they face and the socio-economic 

relationships they share, thus creating a local terroir effect (Vidoli et al. 2016; Billé et al. 2018). 

However, while the physical contiguity approach may account for environmental, climatic and 

edaphic factors in the production system, it is insufficient to address the issue of informational 

inadequacies among interacting farmers that lead to learning. Despite, the voluminous literature on 

the impact of the information networks on adoption of new technologies and yields, there is paucity 

of knowledge on how the network contributes to technical (in)efficiency in the production 

functions of the individual farmers who constitute the information network. This is important 

because the position of farmers in a network who are first to receive information about a new 

technology have distributional consequences among members in the network (e.g., Banerjee et al. 

2013; Beaman and Dillon 2018).  

The present study attempts to fill the knowledge gap on how information networks influence 

farmers’ technical (in)efficiency. Specifically, we use a unique survey data of 600 soybean farmers 

to investigate the influence of farmers personal information networks (i.e., the egocentric 

networks) on their technical (in)efficiency and its distributive mechanisms in the network, while 

controlling for social selection bias. We estimate a spatial stochastic frontier analysis (SSFA) 

model that accounts for unobserved spatial heterogeneity, which presents a potential source of 

endogeneity in efficiency analysis and could bias the estimates (Kutlu et al. 2020; Qu and Lee 

2015). The present study contributes to the literature by incorporating social network structure into 

efficiency analysis, using stochastic frontier analysis. To the best of our knowledge, this is the first 

attempt to consider the impact of social interactions in efficiency analysis. 
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The rest of the paper is organized as follows; sections 2 and 3 discuss the conceptual framework 

and the estimation strategy of the study, respectively. We then discuss the data and the empirical 

results in sections 4 and 5 respectively, while section 6 presents the conclusions of the study.  

5.2 Conceptual Framework 

5.2.1 Spatial Stochastic Frontier Analysis with Social Network Dependence 

We assume that farmers are homogeneous in regards to their production technology. Let 𝑌𝑖 denote 

individual farmer’s soybean output and 𝑋𝑖 be a vector of production factors. The farmer’s 

production function can be specified as follows; 

𝑌𝑖 = 𝑙𝑛(𝑓(𝑋𝑖; 𝛽𝑖)) + 𝑣𝑖 − 𝑢𝑖 ,         and 𝑢𝑖 ≥ 0, [𝑖 =1,…,n]  (1) 

where 𝑌𝑖 is a vector of log outputs (yield) of an individual farmer, 𝑋 is a vector of production 

factors, 𝛽 is a vector of parameters of interest, 𝑢 represent the inefficiency term, and 𝑣 the random 

error term, assumed to be iid with; 𝑣~𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2𝑰) and 𝑢~𝑖𝑖𝑑 𝑁+(0, 𝜎𝑢

2𝑰),  where 𝑰 is an identity 

matrix.  

The productivity performance of farmers producing under any given technology, without external 

influence on the farmers’ technical abilities can be estimated from equation 1. However, when a 

farmer obtains technical knowledge of a given technology from other farmers through information 

exchange, the possibility of the farmer’s technical ability to be influenced by informational 

inadequacies from the farmers they exchange information with becomes higher (Fafchamps et al. 

2021; Kondylis et al. 2017). Hence, analysis of the farmer’s productivity under any technology that 

ignores the influence of the informational inadequacies of other farmers in the farmer’s production 

function, could suffer a potential bias, due to the unobserved informational inadequacies.  

To account for the influence of other farmers’ informational inadequacies in the production 

function of the farmer; let 𝑔𝑓 represent village level farmer information network with 𝑔𝑓(𝑔𝑓 =

1,… , G𝐹𝑁)  ∈ GF, where GF is a set of all farmer information networks across 𝑁 villages. 
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Furthermore, let 𝑤𝑖𝑗 represent the link that exists between farmer 𝑖 and 𝑗 (𝑖 ≠ 𝑗), defined as 𝑤𝑖𝑗 =

1, if farmer 𝑖 shares agricultural information with farmer 𝑗, otherwise 𝑤𝑖𝑗 = 0 , and 𝑤𝑖𝑗 ∈ 𝑾𝒊𝒋, 

where 𝑾𝒊𝒋 is the social contiguity matrix (or adjacency matrix). The social contiguity matrix is 

assumed to be undirected (i.e., 𝑤𝑖𝑗 = 𝑤𝑗𝑖) and 𝑖 cannot share information with 𝑖 (i.e., 𝑤𝑖𝑖 ≠ 1). In 

line with Fusco and Vidoli (2013) and Vidoli et al. (2016), we re-specify (suppressing the 

subscript) equation 1, as a spatial stochastic frontier model that accounts for the interdependency 

of the farmer’s inefficiency on the information network as follows; 

𝑙𝑛𝑌 = 𝑙𝑛(𝑓(𝑋; 𝛽)) + 𝑣 − (𝑰 − 𝜌𝑾)−1�̃�    (2) 

where 𝑾 is the adjacency matrix of the network, 𝜌 is the spatial lag parameter (𝜌 ∈ [0,1]), 𝑣 and 

�̃� are the random error and latent unknown terms respectively, assumed to be distributed as 

𝑣~𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2𝑰) and �̃�~𝑖𝑖𝑑 𝑁(0, 𝜎�̃�

2𝑰), respectively. The inefficiency term 𝑢 in equation 1 is 

expressed as 𝑢 = (𝑰 − 𝜌𝑾)−1, and assumed to be distributed as 𝑢~ 𝑁+(0, [(𝑰 − 𝜌𝑾)−1(𝑰 −

𝜌𝑾′)−1]𝜎�̃�
2). 

Similar specification has been employed in the stochastic frontier analysis literature (e.g., Areal et 

al. 2012), however, the specification employed here, is the one by Fusco and Vidoli (2013) and 

Vidoli et al. (2016). This specification is preferred, because, it adopts a one-stage estimation 

procedure which makes it more efficient and easy to compare with the standard stochastic frontier 

analysis with the spatial stochastic frontier analysis for consistency, since the spatial stochastic 

frontier model converges to the standard stochastic frontier model when 𝜌 = 0. Furthermore, 

because the specification limits the analysis to only the inefficiency term in the stochastic frontier 

model, there is substantial reduction in the model’s complexity (Vidoli et al. 2016).  
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5.2.2 Identification and Endogeneity Issues of Spatial Heterogeneity 

One of the challenges in distinguishing spatial dependence from spatial heterogeneity is that, the 

latter arises due to structural changes, which is unobserved. That is, clusters (or spatial regimes) 

that are observed in reality varies in structure (i.e., they are non-homogeneous) over geographical 

or social space, resulting in the inverse problem (Anslin 2010). Spatial heterogeneity presents a 

potential source of endogeneity in efficiency analysis (Kutlu et al. 2020; Qu and Lee 2015). 

Accounting for this problem is always a challenge. In particular, when employing geographical 

based proximity measures as the weighting matrix (i.e., the contiguity matrix) because such 

measures do not easily change in reality. Another reason for the challenge is that, the identification 

problem is centered on the contiguity matrix. Recently, Billé et al. (2018) suggest employing a 

computer-based algorithm that can endogenously identify, in a data-driven approach, spatial 

homogeneous regimes or clusters from observed real-world spatial data, as a way to account for 

spatial heterogeneity. Following this approach, let �̃� represent the contiguity matrix of a 

homogeneous specific network community that can be identified from observed real-world 

information network data. By substitution, equation 2 can be re-specified, in terms of the specific 

network community adjusted contiguity matrix, as follows; 

𝑙𝑛𝑌 = 𝑙𝑛(𝑓(𝑋; 𝛽)) + 𝑣 − (𝑰 − 𝜌(�̃�))−1�̃�     (3)   

where �̃� is a structurally adjusted weighting matrix for a homogeneous network community, and 

all other notations remain as defined earlier.  
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5.2.3 Impact of Spatial Effects on Productivity Performance 

To assess the benefits farmers derive from the information network, we employ the structural 

imbalance distance measure expressed in Vidoli et al. (2016), as well as Fusco and Vidoli (2013) 

as follows;  

 𝑑𝑖∆�̂� =
�̂�𝑆𝐹𝐴𝑖−�̂�𝑆𝑆𝐹𝐴𝑖

�̂�𝑆𝐹𝐴𝑖
∗ 100, ∀𝑖= 1,… ,𝑁    (4) 

where �̂�𝑆𝐹𝐴𝑖 and �̂�𝑆𝑆𝐹𝐴𝑖 are the predicted efficiencies at the standard stochastic frontier model and 

the spatial  stochastic frontier model for individual farmer 𝑖  and  𝑑𝑖∆�̂� is a distance measure of 

efficiency difference between the two models. A negative difference indicates improvement in 

efficiency (the reverse is true for efficiency loss) performance from the network, while the 

magnitude measures the extent of gains or otherwise from the network (Fusco and Vidoli 2013). 

5.2.4 Distributive Mechanisms of Gains in Egocentric Networks 

In this section, we estimate the determinants of efficiency gains and its distribution among farmers 

within an information network and across different networks. This is important for an informed 

policy on agriculture extension service delivery that employ network structures for technology 

information dissemination. In the spatial stochastic frontier analysis literature, contextual 

environmental factors are normally regressed on the efficiency distance measure (i.e., 𝑑𝑖∆�̂�) and 

the coefficients interpreted as determinants. Given that the information network is composed of 

individual farmers sampled from a cross-section of smaller units of personal information networks 

and pooled together to form the village network (see Figure A1 in Appendix for a sample village 

network), makes it highly hierarchical. As such, we employ the spatial effect Cox proportional 

hazard model with individual level covariate adjustment, which is more appropriate (Bai et al. 

2020; Banerjee and Dey 2005). In addition, the distribution of benefits within a social network is 
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assumed to be nonlinear within the framework of social proximity and social embeddedness theory 

(Boschma 2005).  

To this end, we follow the approach of Bai et al. (2020), which estimates a generalized additive 

spatial effect Cox model by employing a spatial smoothing function to adjust for individual farmer 

and network characteristics. Specifically, we estimate a spatial survival time-event Cox model, 

which is more appropriate for smaller number of units (Banerjee and Dey 2005). In addition, the 

interpretation of the sign of the distance measure of benefit 𝑑𝑖∆�̂�, makes it amenable to survival 

analysis. We convert 𝑑𝑖∆�̂�  to a binary event occurrence variable in which the negative sign 

indicating positive gains on efficiency performance is equal to 1 (implies the farmer benefits from 

efficiency gain due to the network) and 0, otherwise. Next, the individual farmer predicted mean 

efficiency score from the SSFA model (i.e., �̂�𝑆𝑆𝐹𝐴𝑖) representing the efficiency level then becomes 

the survival time variable in the estimation. That is, the level of technical efficiency at which the 

individual farmer is said to have benefited, as a result of being member of the information network. 

In line with Bai et al. (2020), the generalized additive spatial effect Cox model for individual farmer 

𝑖  in information network 𝑔𝑓 is specified as follows;  

𝜆𝑖(𝑔𝑓) = 𝜆0(𝑔𝑓) 𝑒𝑥𝑝{𝑿𝒊𝜷𝒊 + 𝑠𝑖}   =  𝜂𝑖 = 𝑿𝒊𝜷𝒊 + 𝑠𝑖   (5) 

where 𝜆𝑖(. ) is the benefit hazard function of farmer 𝑖 in network  𝑔𝑓, 𝑋 is a vector of observed 

factors that determine the farmer’s spatial efficiency gains and its distribution across individual 

networks, 𝑠 is a network-specific structural property. However, because the network-specific 

structural property has been accounted for in the adjusted weighting matrix (i.e., �̃�), in order to 

ensure identification, we assume 𝑠𝑖 in equation (5) to be equal to zero in the estimation.  
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5.3 Estimation Strategy 

We estimate both equations 2 and 3 using maximum likelihood estimation procedure implemented 

in the R software (R Core Team 2017), by combining the packages offered by Fusco and Vidoli 

(2013) and Pavlyuk (2019). Equation 5 is estimated using partial likelihood estimation approach 

also in the R package offered by Bai et al. (2020). To ensure identification within the framework 

of the social network analysis, we account for social selection bias in all the models estimated by 

controlling for correlated peer effects and contextual effects (Manski 1993)29. A parsimonious 

empirical model we estimate can be specified as follows; 

𝑦𝑖,𝑔𝑓
= 𝑥𝑖𝛽𝑖 + 𝛾𝑝 + 𝜃𝑐 + 𝜏𝑑 + 휀𝑖  (6) 

where 𝑦 is the outcome variable (in this case, log yields and  spatial efficiency performance gains) 

of farmer 𝑖 in network 𝑔𝑓, 𝑥 is a vector of observed farm characteristics, 𝑝, 𝑐 and 𝑑 denote farmer’s 

peers, village and district level indicators, respectively, 𝛽 is a parameter of interest, 𝛾, 𝜃, 𝜏 is a 

vector of peer, community, as well as district level fixed-effects, respectively that may correlate 

with the observed characteristics of the farmer and 휀 is a composite error term, defined as (휀 = 𝑣 −

(𝑰 − 𝜌𝑾)−1�̃�). The efficiency calculation for each farmer follows the approach of Jondrow’s et al. 

(1982) as expressed in Fusco and Vidoli (2013)30. 

5.4 Context and Data 

5.4.1 Study Context  

The study context is northern Ghana, where over the last decade scientific research organizations 

such as the International Institute of Tropical Agriculture (IITA) and the Council for Scientific and 

Industrial Research-Savannah Agricultural Research Institute (CSIR-SARI) and their partner 

                                                           
29 The endogenous effect due to reflection problem of Manski (1993) does not apply in our context, since we are not estimating a spatially lagged 

output model. 
30 We refer readers interested in the likelihoods specifications to the relevant references cited in this work for details. 
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organizations employed Farmer Based Organizations (FBOs) concept to disseminate a new 

agricultural technology (known as the Rhizobia inoculant) to smallholder grain-legume farmers. 

The organizations used conventional extension approaches (e.g., field visits, on-farm and off-farm 

demonstrations, etc) as well as innovative communication channels such as Radio Listening Clubs 

(RLCs) and Video Documentaries (VDs) to disseminate and offer technical training to farmers 

through the FBOs in three regions (Northern, Upper East and Upper West) of northern Ghana. 

Members of the FBOs, then, become the initial farmers to disseminate or share their knowledge 

with other farmers in their communities to facilitate adoption of the new inoculant technology. 

Thus, the dissemination program sought to use the farmers’ personal information (i.e., the 

Egocentric) networks to diffuse and promote adoption of the Rhizobia inoculant technology. This 

approach could generate unobserved spatial heterogeneity, in the performance of the technology 

across the population due to differences in individual disseminating farmers’ cognitive proximity 

(Boschma 2005) and willingness to share knowledge on the new technology (Di Falco et al. 2018).  

5.4.2 Survey of Farm Households  

Our data is from a recent survey of farm households in the northern region of Ghana. The survey 

was conducted from June to August, 2018. The sample was drawn using a multistage sampling 

technique. Based on the proportion of beneficiary communities (78%) in the inoculant 

dissemination program and intensity of soybean production in Ghana, northern region was 

purposively selected. Cluster sampling technique was employed to zone the region into two 

clusters, consisting of eastern corridor zone (ECZ) and western corridor zone (WCZ). Based on 

participation status of districts in the dissemination program and intensity of soybean production 

at the districts level within the clusters, eight (8) districts, comprising of four (4) from each cluster 

were purposively sampled. From the ECZ, Yendi, Saboba, Chereponi and Karaga districts were 

selected, while in the WCZ, East Mamprusi, East Gonja, Savelugu and Kumbungu districts were 
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selected. In consultation with the field officers and agriculture extension agents (AEAs) in the 

selected districts, 5 – 7 communities were proportionately sampled, based on dissemination 

program participation and the extension channel employed, as well as farmer population.  One 

farmer-based organization (FBO) was randomly selected from a list of FBOs that participated in 

the dissemination program and another randomly selected from a list of FBOs that did not 

participate in the program, to compose the observed intervention network pool. We then employed 

a two-stage random sampling technique detailed in the next section below to sample 600 farm 

households, used for this analysis. 

5.4.3 Data on Egocentric Networks  

An egocentric network sampling technique is employed to sample members of Ego-Alter networks 

(see Krivitsky and Morris 2017; Schweinberger et al. 2020). Similar approaches have been 

employed in the literature (e.g. Badham et al. 2021; Yen et al. 2016; Cai et al. 2015) to sample real 

world networks in empirical studies. A two-stage random sampling technique is employed to 

sample members of the egocentric networks. In stage one, using a lottery approach, we randomly 

drew five farmers (as the Egos - seed or focal farmers) from each FBO in the observed intervention 

network pool. Following an initial interview with the Egos, using computer assisted personal 

interview (CAPI), a list of each farmer’s information network members (INMs) was compiled as 

the Alters. In the second stage, the CAPI random number generator used farmers’ unique 

identification numbers to randomly sample three Alters from each Ego’s Alter list for interview. 

The total number of Egos and Alters for each village is 20, resulting in 20 x 20 undirected social 

contiguity matrix (i.e. 𝑾𝒊𝒋 = 𝑾𝒋𝒊) for each sampled village or community.  In order to avoid 

missing links due to missing information, a major problem confronting studies that employ sampled 

social networks, the data used for this analysis is restricted to five villages per district, totaling 30 

villages across six districts (East Mamprusi, East Gonja, Savelugu, Kumbungu, Yendi and Karaga), 
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where we have full data on both the Egos and the Alters. A total undirected social contiguity matrix 

size for this analysis is 600 x 600 block matrix, representing the aggregate village networks for the 

sampled farm households.   

5.4.4 Network Community Detection 

Based on network ecology theory and in line with Billé et al. (2018), we employ three computer 

software algorithms (i.e., Clauset et al., 2004; Newman and Girvan, 2004; Pons and Latapy, 2006) 

to identify three homogeneous virtual network communities with known structural properties, from 

observed real-world egocentric network data. The virtual network community approach is often 

employed as a pseudo experimental design in the network intervention literature to overcome data 

challenges that threatens identification and valid statistical inferences. Recent applications of this 

approach in the social network literature include; Simpson (2020), who use observed real-world 

egocentric network data of Cai et al. (2015;) in Stochastic Actor-Oriented Models (SAOM - a 

simulation based algorithm), to study the relationship between farm size and social ties formation 

among rice farmers in China. In technology adoption, Valente and Yon (2020) use similar approach 

as in the current paper, to study diffusion of health practices in social networks, while others 

employed purely simulation studies based on observed real-world network data to study network 

structure on adoption behavior, knowledge transfer and productivity (see e.g., Badham et al. 2021; 

Beaman et al. 2021). Though not in the context of social network but in productivity analysis, Billé 

et al. (2018), employed geographically weighting and adaptive weight smoothing algorithms 

(Cleveland and Delvin 1988; Polzehl and Spokoiny, 2000) to study spatial regimes in olive farm 

technologies in Italy. It is noteworthy to point out that, these applications are not in the context of 

technical efficiency analysis, as in the form employed in the current study. 
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In this study, we denote the three virtual network communities constructed as T0, T1 and T2, each 

using a specific algorithm. The algorithms employed are based on modularity31 maximization 

procedure, which optimizes a global criterion over all possible clustering in the network for 

community detection (Li et al. 2021; Geng et al. 2019). Clauset’s et al. (2004) algorithm is 

employed to detect T1 communities. The algorithm identifies virtual network communities around 

farmers (or edges) with high eigenvector centrality measure (i.e., a measure of social importance 

in the network community) from the observed real-world network data. Intuitively, the T1 is 

assumed to correspond to choosing a lead farmer in a community based on the farmer’s social 

importance. Newman and Girvan (2004) algorithm is employed to detect T2 communities. This 

algorithm identifies virtual network communities around farmers with high betweeness centrality 

(i.e., a measure of power based on being a bridge for other farmers to pass through for information 

in the network) measure in the observed real-world network data. Intuitively, the T2 is assumed to 

correspond to choosing a lead farmer in a community based on the farmer’s power derived from 

being a bridge to access information. The edge-eigenvector and edge-betweeness community 

structures have received wide empirical application in the literature (e.g., Beaman and Dillon, 

2018; Beaman et al. 2021; Fafchamps et al. 2021), due to their importance in information diffusion 

required for technology adoption. In order to identify the effects of network community structure 

on the economic outcomes of interest, we employed the algorithm of Pons and Latapy (2006) to 

construct a third network community T0, which assumes a randomly distributed centrality measure 

in the network, as the virtual control community for comparison. This algorithm provides an iid 

situation for comparison, since it identifies virtual network communities based on the assumption 

that, the virtual communities observed in the network are randomly formed, and do not necessarily 

                                                           
31 Modularity, is defined as a natural division of network nodes into densely connected subgroups (Newman and Girvan 2004). 
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form around any influential farmer (or node) within the network. Intuitively, the T0 is assumed to 

correspond to randomly choosing any farmer in the community to be a lead farmer for the 

community. After identifying homogeneous network communities with known network structural 

properties around influential farmers in the network, we then construct a network-specific 

contiguity matrices (�̃�) for each network community. The influence of three social ties or network 

properties namely; transitivity, degree-centrality and eccentricity, are analyzed for each detected 

network community. These social ties are chosen based on their importance and wider application 

in technology adoption studies using social networks in the literature (e.g., Beaman et al. 2021; 

Fafchamps et al., 2021; Simpson, 2020; Beaman and Dillon, 2018). Table 5.1 presents the layout 

of the adjusted matrices and the social ties.  

 

Table 5. 1 Adjusted weighting matrices 

  Network Community Structure 

Centrality Measure  T0 

(Random) 

T1 

(Edge-eigenvector) 

T2 

(Edge-betweeness) 

Transitivity �̃�1 �̃�2 �̃�3 

Degree-Centrality �̃�4 �̃�5 �̃�6 

Eccentricity �̃�7 �̃�8 �̃�9 

Note: �̃� denotes the adjusted weighting matrix for the respective community.  

 

By iterative substitution, each adjusted matrix (�̃�) is then employed in the estimation of equation 

3 of the empirical specifications to account for spatial heterogeneity effect, while the global 

contiguity matrix (𝑾) from the observed real-world network data is used to account for spatial 

dependence at the global network level, as expressed in equation 2.  
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5.4.5 Descriptive Statistics  

Table 5.2 presents descriptive statistics of the data32. Average soybean yield of a farmer is 

830kg/ha, cultivating on average 5ha of land to soybean and using an average labor of 8worker 

days/ha. About 51% of the farmers used inoculant, averaging 14g/ha, of which 70% of the farmers 

also used improved soybean seed variety. Average age of farmers in the sample is 42 years, who 

are predominantly male farmers (71%) with average years of schooling of 3years, living in an 

average of 6 member households.  

Table 5.2 also presents the average network structural properties. Note that because the algorithms 

employed to construct the virtual network communities are based on the modularity maximization 

procedure, they are interpreted as modularity measures of the respective network communities. The 

three virtual communities are therefore described in terms of their modularity measures. The table 

shows that, average modularity of T1 communities is 0.324, indicating that at least 32% of links in 

the information network is formed around an agriculturally important (i.e., successful farmer or 

past award winning farmer) farmer in the network. Average modularity of T2 communities, is 

0.332, indicating that at least 33% of links in the information networks is formed around powerful 

farmers (i.e., farmers serving as bridges for others to pass through for information). Average 

modularity of T0 communities is 0.318, suggesting that about 32% of links in the network may be 

formed around any randomly chosen farmer within the networks. Table 5.2 further shows that, 

average transitivity (which measures the structural strength of ties or links in the network or 

cohesion) of the global network is 0.471, suggesting that at least 47% of farmers (or adjacent 

vertices) are connected together. Average eccentricity, which measures the shortest path distance 

(or geodesic) from the farthest node to any other node within a network is 2.7, meaning on average 

                                                           
32 See Table A1 in the Appendix for the full descriptive statistics of the data. 
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a farmer in the network need to take 3 steps to reach the farthest farmer within the network, which 

is very short and easier for information flow within the network. Average degree-centrality of a 

network is 0.242, implying that at least a randomly chosen farmer in the network is connected to 

24% of the farmers within the network.  

Table 5. 2 Definition and Summary Statistics. 
Variable Definition Mean SD Min Max 

Panel A: Farmer and Farm Level Factors     

Yield Soybean yield per hectare (Kg/ha) 829.64 888.24 32.41 5703.87 

Age Age of farmer (years) 41.56 13.32 18 87 

Gender 1 If farmer is male, 0 for female 0.71 0.46 0 1 

Edu Years of schooling  2.79 4.69 0 21 

Hhsize Number people in a household 5.79 3.05 1 27 

Land Total area of land planted with soybean (ha) 5.05 4.37 1 22 

Labor Total labor used in soy cultivation (Worker-

days/ha) 

7.81 24.23 0.20 274.73 

Agrochem Total amount of active ingredient in chemical 

used (kg/ha) 

4.00 7.19 0 87.22 

Chemdumy 1 If farmer uses agrochemical, Otherwise=0 0.03 0.16 0 1 

Amtinouse Total amount of inoculant used (kg/ha) 13.91    18.35 0 118.93 

Inodumy 1 If farmer uses agrochemical, Otherwise=0 0.51              0.50           0 1 

Improvar 1 If farmer uses improve seed variety, 

Otherwise=0 

0.70 0.46 0 1 

Creditconst 1 If farmer is not credit constrained, 

Otherwise=0 

0.83 0.38 0 1 

Extcont Number of extension contacts 1.37 1.22 0 5 

Distmkt Distance to nearest market (km) 2.36 4.14 0.10 50.10 

Soil 1 If soil quality is good, Poor soil quality=0   0.51 0.50 0 1 

Rain Amount of rainfall in (%) 61.63 16.24 20 100 

Elgrid  1 If community is connected to the national 

grid for electricity supply, Otherwise = 0 

0.51 0.50 0 1 

Panel B: Network Structural Characteristics     

Random Structure (T0) Average modularity of intervention 

communities 

0.324 0.059 0.197 0.404 

Edge-eigenvector Centrality 

(T1) 

Average modularity of intervention 

communities 

0.318 0.053 0.160 0.397 

Edge-betweeness Centrality 

(T2) 

Average modularity of intervention 

communities 

0.332 0.067 0.151 0.424 

Transitivity Average transitivity of a network 0.471 0.034 0.391 0.530 

Eccentricity Average shortest path distance from the farthest 

nodes in the network 

2.718 0.063 2.5 2.75 

Degree-Centrality Average centrality of the network based on 

degree connections 

0.242 0.059 0.137 0.421 

Note: SD is standard deviation; Min and Max are minimum and maximum values respectively (See Appendix Table 

A5). 
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5.5 Empirical Results 

This section presents estimates based on equations 2, 3, 4, and 5 in the empirical specifications, 

representing spatial dependence, spatial heterogeneity, efficiency gains from spatial heterogeneity, 

as well as determinants of efficiency gains and the distribution of the efficiency gains among 

farmers within the social space. For brevity, we focus the discussion on the parameter estimates 

that are germane to the objective set out in this study. However, the bulk of the estimates in respect 

of each equation is attached as appendix (see Appendix Table 5A.1) in order to save space but will 

be referred to, when the need arises.   

5.5.1 Spatial Dependence of Efficiency 

In Figure 5.1, Panels (a) and (b) present the global Moran’s I plot of the residuals in the SFA and 

SSFA models, respectively. This is a correlation test for spatial dependence between the individual 

farmer’s inefficiency and the inefficiency of the farmers in the information network, as expressed 

in equation 2 of the empirical specifications. This test is performed based on the residuals obtained 

from estimating equation 2 with the adjacency matrix (𝑾𝒊𝒋) that defines the social contiguity or 

proximity of a farmer to other farmers in the observed real-world network. Panel (a) of Figure 5.1 

shows a Moran’s plot of the residuals from the SFA model, assuming no spatial dependence 

between the farmer’s inefficiency and the inefficiency of farmers in their information network (i.e., 

𝜌 = 0). As reported below in Panel (a), the Moran’s statistic (Moran’s I = 0.092, p-value = 0.0001) 

is positive and statistically significant at the 1% level, indicating that the assumption of no spatial 

dependence as implied by the SFA model is rejected, in favor of SSFA. Figure 5.1 also shows a 

dense distribution of the residuals in the first quadrant of the Moran’s plot in Panel (a), suggesting 

that highly inefficient farmers are more likely to be connected to highly inefficient farmers. The 

intuition is that inefficient farmers seek farming advice from peers who themselves are inefficient, 

thus, low quality advice leading to low performance. This finding is line with Fafchamps et al. 
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(2021), who found that knowledge of farmers tend to correlate with their peers from whom they 

seek farming advice.  

  

(a) SFA Model 

(Moran’s I = 0.092, p-value = 0.000, LR = 51.96, 

p-value = 0) 

(b) SSFA Model  

(Moran’s I = 0.018, p-value = 0.220, 𝜌 = 0.188, 

LR = 57.74, p-value = 0) 

Figure 5. 1 Comparing the effect of spatial dependence on correlations of residuals 

distribution. 

Notes: SFA and SSFA represent stochastic frontier analysis and spatial stochastic frontier analysis models, 

respectively; LR represents the statistic of the likelihood ratio test. 

 

The rejection of no spatial dependence means that we have to estimate a SSFA model to account 

for the dependence. Panel (b) of Figure 5.1 presents the Moran’s plot for the SSFA model 

accounting for spatial dependence. As shown in Panel (b), the presence of spatial dependence (i.e., 

𝜌 ≠ 0) could not be rejected (𝜌 = 0.188, LR = 57.74, p-value = 0.000). The rho is positive and 

statistically significant, suggesting that, at global level 19% of the farmer’s inefficiency depends 

on the efficiency of the farmers from whom they seek farming advice. In terms of model fit, the 

LR (likelihood ratio) shows that the SSFA model outperformed the standard SFA, indicating that 
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accounting for spatial dependence significantly improves the fit of the farmer’s production 

function. The corresponding Moran’s statistic (Moran’s I = 0.018, p-value = 0.220) is not 

statistically significant at any conventional level, indicating that the SSFA model has sufficiently 

accounted for the spatial dependence. The distribution of the residuals in Panel (b) also shows that, 

the gap between the mean plot (i.e., the solid line) is now very close to the line of origin (i.e., the 

dash line), compared to Panel (a), suggesting that spatial dependence has been sufficiently 

addressed.  

5.5.2 Spatial Heterogeneity in Efficiency   

In Table 5.3, we present estimates based on equation 3 of the empirical specifications in three 

panels B, C, and D, representing transitivity, degree-centrality and eccentricity interventions, 

respectively, assigned to the three virtual network communities (i.e., T0, T1 and T2). Each panel 

contains three models, with each model representing a specification with a different network-

specific structure used to construct the adjusted weighting matrix (i.e., �̃�) employed in the 

estimation of the model. The criteria for identification is that, after accounting for spatial 

heterogeneity, the spatial dependence structure as captured by 𝜌 should vary according to the 

changing network structure (Anselin 2010). In addition, after accounting for spatial heterogeneity 

the local level spatial dependence as captured by the local33 Moran’s I  statistic becomes 

statistically zero, such that the SSFA and the SFA models’ parameters converges and the model is 

consistently estimated (Fusco and Vidoli 2013, Vidoli et al. 2016).  

Panel A in Table 5.3 presents the global model for comparison. The global model only accounts 

for spatial dependence (as discussed in the previous section above) and not spatial heterogeneity. 

Hence, serves as a benchmark for detection of observed changes in the spatial dependence structure 

                                                           
33 The local Moran’s I statistic converges to the Local Indicators for Spatial Association (LISA) statistic after accounting for local or network 

level spatial dependence structure (Anselin 1995). 



193 
 

due to changes in the network-specific structure. We also present the local Moran’s and kernel 

density plots of the model residuals, as well as the efficiency scores predicted at the production 

frontier in Figures 5.2 and 5.3, respectively.  The local Moran’s plot illustrates the effect of spatial 

heterogeneity on the distribution of the model residuals, while the kernel density plot illustrates the 

effect of accounting for spatial heterogeneity on the estimated farmers’ technical efficiency. In the 

interest of brevity, we report only the model parameters that are common to this discussion, and 

place the full estimates of all the models in Table 5A.2 in the Appendix.
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Table 5. 3 Summary estimates from the stochastic frontier models 
Model Matrix 

  
SFA 

  
 

   
SSFA 

   
  

�̃� 𝝈𝒖𝒔𝒇𝒂
𝟐  𝝈𝒗𝒔𝒇𝒂

𝟐  𝝀𝒔𝒇𝒂 𝑰𝒔𝒇𝒂 �̂�𝑠𝑓𝑎 𝑳𝑹𝒔𝒇𝒂 𝝈𝒖𝒔𝒔𝒇𝒂
𝟐  𝝈�̃�

𝟐  𝝈𝒗𝒔𝒔𝒇𝒂
𝟐  𝝀𝒔𝒔𝒇𝒂 𝑰𝒔𝒔𝒇𝒂 𝝆 �̂�𝑠𝑠𝑓𝑎 𝑳𝑹𝒔𝒔𝒇𝒂 

Panel A: Adjacency Matrix               

Global 

Model 

𝑊0 0.470*** 0.039*** 3.488 0.092*** 0.630 51.96*** 0.463*** 0.1% 0.039*** 11.97 0.018 0.188 0.63 57.74*** 

Network-Specific Structure Models             

Panel B: Transitivity             

Model 1 �̃�1 0.470*** 0.039*** 3.488 -0.002 0.630 51.96*** 0.470*** 0.3% 0.037*** 12.54 -0.001 -0.000 0.63 53.94*** 

Model 2 �̃�2 0.470*** 0.039*** 3.488 -0.004 0.630 51.96*** 0.418*** 0.1% 0.047*** 8.88 -0.002 -0.000 0.64 65.08*** 

Model 3 �̃�3 0.470*** 0.039*** 3.488 -0.004 0.630 51.96*** 0.453*** 0.1% 0.041*** 11.00 -0.006 -0.000 0.63 56.56*** 

Panel C: Degree-Centrality            

Model 4 �̃�4 0.470*** 0.039*** 3.488 -0.007 0.630 51.96*** 0.376*** 0.2% 0.058*** 6.50 -0.002 -0.000 0.66 63.43*** 

Model 5 �̃�5 0.470*** 0.039*** 3.488 0.002 0.630 51.96*** 0.461*** 0.1% 0.037*** 12.41 0.001 -0.000 0.63 62.62*** 

Model 6 �̃�6 0.470*** 0.039*** 3.488 -0.009 0.630 51.96*** 0.419*** 0.2% 0.046*** 9.09 -0.002 -0.000 0.64 67.07*** 

Panel D: Eccentricity             

Model 7 �̃�7 0.470*** 0.039*** 3.488 -0.014 0.630 51.96*** 0.471*** 0.1% 0.038*** 12.41 -0.014 -0.000 0.63 52.71*** 

Model 8 �̃�8 0.470*** 0.039*** 3.488 0.009 0.630 51.96*** 0.473*** 0.2% 0.036*** 13.01 0.001 -0.000 0.63 57.17*** 

Model 9 �̃�9 0.470*** 0.039*** 3.488 0.009 0.630 51.96*** 0.399*** 0.3% 0.054*** 7.38 0.004 -0.000 0.65 52.10*** 

Notes: *, ** and *** are 10%, 5% and 1% level of significance. The Table presents estimates from equations 2 and 3 in Panel (A) and Panels (B, C and D), respectively. 

Panel A, presents estimates of the global model employed to account for spatial dependence, while the estimates in Panels B, C and D, present estimates on the network 

properties (transitivity, degree-centrality and eccentricity, respectively) that characterized the social ties among farmers within the egocentric information network 

community. Each of the three models represents a specific network community (T0, T1 and T2, respectively) employed to account for spatial heterogeneity. SFA and 

SSFA are the stochastic frontier analysis and the spatial stochastic frontier analysis, respectively.     
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Panel B of Table 5.3 contains three models 1, 2, and 3, each representing estimates obtained from 

equation 3, based on the adjusted matrices (𝑾�̃�, 𝑾�̃�, and 𝑾�̃�, respectively) for virtual communities 

T0, T1 and T2, respectively, characterized by high transitivity. The results in Panel B show that 

the coefficient of the spatial dependence parameter 𝜌, across all the three models are negative, 

compared to the positive coefficient in the global model. The negative coefficient suggests that the 

changes in the network-specific structure has lead to changes in the spatial dependence structure. 

In particular, the Moran’s I statistic is also negative and not statistically significant, implying that 

all forms of observed and unobserved spatial heterogeneity have been addressed. The models (i.e., 

Models 1 – 3) that account for spatial heterogeneity in terms of the LR also perform better than the 

global model. The negative signs in all the models of both the SFA and SSFA indicate that the 

parameters are also consistently estimated. The implication of the negative spatial dependence 

structure suggests that less technically efficient (or highly inefficient) farmers are more likely to 

depend on more technically efficient (or less inefficient) farmers in their information network for 

farming advice. Intuitively, inefficient farmers tend to seek farming advice from highly efficient 

peers, since quality advice contributes to better performance. This finding is consistent with the 

lead farmer concept employed in farmer-to-farmer extension delivery systems (see Kondylis et al. 

2017; Shikuku et al. 2019). We also observe that all the network communities have similar effects 

on the spatial dependence structure, meaning that no matter the nature of influence (i.e., social 

importance or power) of the most central farmer in the network community, the effect will be the 

same, as long as there is social cohesion (i.e., high transitivity) among farmers in the network 

community.  

However, in terms of the proportion of the individual farmer’s inefficiency variance (i.e., 𝜎�̃�
2) that 

is attributable to the inefficiency of the farmers in their information network, the randomly chose 

network communities (i.e., Model 1), accounts for higher variance (0.3%), compared to Models 2 
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and 3, respectively. The finding is an indication that randomly chosen lead farmers increases the 

level of inefficiency within the network, compared to those chosen based on social importance or 

power within the network community. This observation may be due to the fact that randomly 

chosen lead farmers, unlike others who have social importance or recognition to maintain, may 

require some material motivation in order to spend time to share quality information with peers, 

hence, the higher inefficiency observed among farmers in that network community. This 

observation is also in line with Shikuku’s et al. (2019) finding that information sharing of randomly 

chosen lead farmers with their peers is weak, because of the absence of a private motivating factor, 

compared to lead farmers chosen based on the farmers’ social importance in the village.  

In terms of average efficiency score, Model 2 outperforms both Models 1 and 2, indicating that 

lead farmers chosen based on social importance of the farmer increases efficiency among farmers 

in the village. Intuitively, choosing best performing or award winning farmers within a community 

as lead farmers for extension delivery enhances learning and performance by other farmers, a 

finding that is in line with Shikuku et al. (2019) and Fafchamps et al. (2021). 

Panel C in Table 5.3 also presents the results of Models 4, 5, and 6, each representing estimates 

based on the matrices (𝑾�̃�, 𝑾�̃�, and 𝑾�̃�, respectively) for virtual communities T0, T1, and T2, 

respectively, characterized by farmer with high degree-centrality. The results show similar negative 

rho coefficients and statistically insignificant Moran’s I statistic across all the three models, 

compared to the global model, indicating that changes in the network-specific structures lead to 

changes in the spatial dependence structure. The negative spatial dependence emphasize the earlier 

findings that less efficient farmers learn from more efficient farmers in order to improve their 

performance.  

In terms of its impact on extension delivery organization, the choice of the lead farmer is important. 

For example, we observe that Model 4 which assumes choosing the lead farmer randomly, gives 
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higher average efficiency (i.e., �̂�𝑠𝑠𝑓𝑎) 66%, compared to any other model, suggesting that choosing 

a lead farmer randomly in a network community characterized by high proportion of popular 

farmers (i.e., degree-centrality) leads to higher performance. This observation highlights synergies 

in information sharing among farmers, needed for tacit social learning at the local level. The finding 

that the proportion of popular farmers within the network community structure has positive effect 

on efficiency is consistent with the social theory in diffusion studies, whereby the proportion of 

adopters of a new technology or behavior in a network influences the adoption decisions of other 

network members (see, Granovetter 1973).  

Also informative is the positive sign of the local Moran’s I statistic in Model 5, which chooses a 

lead farmer based on social importance within the network community. The positive sign suggests 

that highly efficient farmers also share agricultural information or farming advice with peers who 

are equally technically efficient, to maintain their performance level (Kondylis et al., 2017). This 

observation is an indication of mutual relationship in information sharing among farmers in an 

information network.  

Panel D of Table 5.3 presents the results of Models 7, 8, and 9, representing estimates based on the 

matrices (𝑾�̃�, 𝑾�̃�, and 𝑾�̃�, respectively) for virtual communities T0, T1, and T2, respectively, 

characterized by high eccentricity (i.e., shorter social distances or close proximity). The results in 

Panel D are consistent with that of panels B and C, in terms of the negative coefficients in the 

spatial dependence structure, compared to the global model. The results of Model 9 show that, 

average efficiency score of farmers in high betweeness-centrality communities is 67%, suggesting 

that in network communities characterized by powerful farmers, shorter social distances among all 

network members increases efficiency. This indicates that close social proximity in farmers’ 

information networks may have high influence on members’ efficiency, due to effective 

communication. However, in terms of inefficiency variance, it also accounts for higher (0.3%) 
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variation of the inefficiency among farmers in the network community, suggesting that increasing 

proximity could equally have greater consequences on inefficiency, in case the network is 

dominated by highly inefficient farmers.  

We also observed a positive coefficient of the local Moran’s I statistic in Models 8 and 9 

respectively, suggesting that network communities formed around socially important and powerful 

farmers that maintain shorter social distance to all farmers within the network community, generate 

more mutual information sharing among farmers, compared to randomly structured network 

communities. 

Furthermore, Figure 5.2 shows that the residual distributions in the SSFA models that account for 

spatial heterogeneity are now more even (i.e., Panels B, C and D), compared to the residual 

distribution in the global model (i.e., Panel A). We explore the effects of accounting for spatial 

heterogeneity on average efficiency score of the farmer. Figure 5.3 presents a kernel density plot 

of average efficiency scores predicted from all the nine models (i.e., Models 1 – 9), compared to 

the efficiency scores from the global model. The results in Figure 5.4 reveal that failure to account 

for spatial heterogeneity lead to underestimating the efficiency of high (i.e., efficiency score >0.6) 

performing farmers, while overestimating that of medium (i.e., efficiency scores ranging 0.36 – 

0.5) and low (i.e., efficiency scores ranging 0.1 –  0.35) performing farmers.  
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(a) Base Model (𝑊) (b) Model 1 (�̃�1) 

  

(c) Model 2 (�̃�2) (d) Model 3 (�̃�3) 
 

Figure 5. 2 Comparing the effect of spatial heterogeneity on the distribution of residuals. 

Notes: The Base Model accounts for spatial dependence, while Models 1-3 account for spatial heterogeneity using the 

adjusted social contiguity matrices �̃�1, �̃�2 and �̃�3, representing matrices constructed using the pairing of the random 

walk modularity (i.e., Modwalk) and transitivity, the eigenvector modularity (i.e., Modledeigen) and transitivity, as 

well as the betweeness modularity (i.e., Modbetwn) and transitivity in the adjusted social contiguity matrix. 
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Figure 5. 3 Effect of spatial heterogeneity on farmers technical efficiency scores. 

Notes: SSFA represents spatial stochastic frontier analysis model, while the 𝑊s represent the social contiguity 

matrices used in the estimation of the models to account for spatial effects. So, SSFA_W presents the base model 

estimated using 𝑊; SSFA_W1 represents model 1 estimated using the adjusted matrix �̃�1, SSFA_W2 for model 2 using 

�̃�2, SSFA_W3 for model 3 using �̃�3, SSFA_W4 for model 4 using �̃�4, SSFA_W5 for model 5 using �̃�5, SSFA_W6 for 

model 6 using �̃�6, SSFA_W7 for model 7 using �̃�7, SSFA_W8 for model 8 using �̃�8, SSFA_W9 for model 9 using �̃�9. 

 

 

5.5.3 Impact on Efficiency Gains and Distributive Mechanisms   

We now examine the impact of information networks on farmers’ productivity, in terms of 

technical efficiency improvement (or otherwise), in the production process. Figure 5.4 presents the 

productivity gains in classes (both inter-class and intra-class) percentiles across all the models (i.e., 

Models 1 – 9), in comparison to the global model that accounts for spatial dependence and not 

spatial heterogeneity. Generally, Figure 5.4 reveals strong heterogeneity in both inter-class and 

intra-class distribution of productivity gains among farmers within and across each information 
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network, suggesting that farmers’ benefits differ according to individual influence in the network 

as well as the structural characteristics of the network community. 

 In particular, the figure shows that when the information network is characterized by high 

transitivity (i.e., social cohesion) productivity gains are higher (10th to 60th percentiles) in 

eigenvector centrality communities (i.e., dW2), compared to the betweeness centrality communities 

(10th to 50th) (i.e., dW3). However, the productivity gains are much lower (10th to 30th) in random 

communities (i.e., dW1), compared to the edge-eigenvector and betweeness centrality 

communities, respectively, suggesting that benefits differ according to the network structure 

(Beaman and Dillon 2018).  

Also, the intra-class distribution of productivity gains follows similar pattern within the network 

community, suggesting that farmers’ benefits differ according to individual influence or position 

within the network. This observation is also consistent with the literature on the distribution of 

economic benefits in embedded social relationships (Tan and Reddy 2021; Beaman and Dillon, 

2018). The highest population of farmers are within the (10th percentile) productivity class across 

all network communities, with the population of farmers decreasing as the productivity class size 

increases, suggesting that productivity gains may be higher among smaller groups (or cliques) of 

farmers, compared to larger groups. This finding is in line with Vidoli et al. (2016) as well as Di 

Falco et al. (2018), who found an inverse relationship between productivity gains and size of the 

farmer’s network.  
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Figure 5. 4 Inter-class and Intra-class distributions of average efficiency gains in egocentric 

network communities.  

Notes: The estimates are based on equation 4. The dW0 denotes gains calculated based the global model, while dW1 

– dW9 denote gains calculated based on Models 1 – 9, respectively. The bars at each model indicates percentiles, 

while comparison within a model is intra-class and between models is inter-class. 

 

On the other hand, in high degree-centrality (i.e., high popularity) networks, productivity gains are 

higher (10th to 60th percentile) in randomly communities (i.e., dW4), compared to betweeness-

centrality (i.e., dW6) and eigenvector-centrality (i.e., dW5) communities, respectively. This finding 

suggests that in random communities the distribution of benefits may depend more on the 

individual farmer characteristics than the structure of the information network. By intuition, in 

communities with high number of influential farmers, productivity gains from the information 

network could be evenly distributed among farmers with at least a weakest link to the influential 

farmer, compared to other network communities. This finding is consistent with Beaman and 

Dillon (2018), who found high compositing knowledge in randomly structured network 
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communities of male farmers with high centrality influence in the network, compared to other 

farmer network structures in Mali.  

Furthermore, Figure 5.4 reveals that in high eccentricity (i.e., shortest distance) networks, 

productivity gains are higher (10th  – 70th percentiles) in betweeness centrality communities (i.e., 

dW9), compared to eigenvector centrality (i.e., dW8) and random (i.e., dW7) communities, 

respectively. This finding indicates that in high eccentricity network communities, an individual 

farmer’s benefits from the network depends on their close proximity to farmers who serve as the 

information bridges to other farmers in the network community. This observation is intuitive as 

farmers with more knowledge on a technology are more likely to devote more attention to very 

close relations during information sharing, compared to any other farmers. Hence, effective 

communication occurs leading to high efficiency gains (Beaman and Dillon 2018; Akerlof 1997).  

In addition, Figure 5.4 reveals that failure to account for spatial heterogeneity confounds farmers’ 

productivity gains, as the global model (i.e., dW0) suggests equal productivity gains (10%) for all 

farmers in the information network, contrary to the heterogeneous classes of gains observed across 

all models. This finding supports recent literature (e.g., Shikuku et al. 2020; Shikuku et al. 2019; 

Kondylis et al. 2017) criticizing the lead farmer concept of extension delivery, where all farmers 

in the community are assumed to benefit equally from the lead farmer. Thus, implicitly overlooking 

the fact that benefits may differ according to the lead farmer’s social influence in the community 

as well as the mode by which the lead farmer was chosen for the community34. 

 

 

 

                                                           
34 See Appendix 7 for more discussion on the distributive mechanisms. 
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5.5.4 Determinants of productivity gains in farmer information networks 

In this section, we discuss the control variables from the Spatial Cox survival model in equation 5 

of the empirical specifications, as factors influencing the likelihood of farmer’s information 

network to contribute to productivity improvement of members of the network. Note that the 

coefficients discussed here are log hazard ratios from the spatial survival model. We interpret 

coefficients close to 1 as non-contribution to productivity gains, less than 1 as positive contribution 

to productivity gains and greater than 1, means negative contribution to productivity gains (i.e. 

productivity losses) (Sullivan, 2021). It is significant to note that the estimates discussed here are 

not determinants of (in)efficiency as in the spatial stochastic frontier analysis (SSFA) model. Due 

to space constraints, we attach the estimates of the SSFA models in the appendix (see Table 5A.2 

in the Appendix), since their contribution to explaining the aggregate network behavior in this 

context is less important. The purpose of this discussion is to identify factors influencing 

productivity gains from farmers’ egocentric networks, in order to inform extension delivery 

policies that leverage on such networks to reach farmers for technology adoption and productivity 

performance.  

Table 5.4 reports estimates from the spatial Cox proportional hazard model. The table presents 

estimates from all the nine models (Models 1 – 9), compared to the global model. For brevity, we 

focus the discussion on the network level (i.e., the village level) factors that determine productivity 

gains from the network, since that is the target unit for policy action. We report the individual 

farmer level factors and district fixed effects in Table 5A.3 in the Appendix. 

Panel B in Table 5.4 shows that the coefficient of average age (Vage) of farmers in the network is 

statistically significant and positive, suggesting that age density at the network does not contribute 

to explaining productivity gains from the network, though age may be important at the individual 

level.   
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Table 5. 4 Spatial Cox proportional hazard estimates 
 Global Model  

(𝑊0) 

Model 1  

(�̃�1) 

Model 2 

(�̃�2) 

Model 3 

(�̃�3) 

Model 4 

(�̃�4) 

Model 5 

(�̃�5) 

Model 6 

(�̃�6) 

Model 7 

(�̃�7) 

Model 8 

(�̃�8) 

Model 9 

(�̃�9) 

Variable Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Vage 0.074* 

(0.039) 

0.108** 

(0.047) 

0.056* 

(0.032) 

0.074** 

(0.036) 

0.079*** 

(0.033) 

0.133*** 

(0.036) 

0.059 

(0.036) 

0.040 

(0.041) 

-0.033 

(0.038) 

-0.043 

(0.032) 

Vgender -0.036 

(0.502) 

1.762*** 

(0.580) 

0.461 

(0.406) 

0.629 

(0.439) 

0.315 

(0.393) 

-1.265*** 

(0.484) 

0.711* 

(0.416) 

-0.184 

(0.507) 

-1.093** 

(0.520) 

1.393*** 

(0.420) 

Vedu -0.036 

(0.064) 

-0.471*** 

(0.086) 

-0.190*** 

(0.059) 

-0.229*** 

(0.066) 

-0.137*** 

(0.056) 

-0.105* 

(0.062) 

-0.165*** 

(0.059) 

-0.024 

(0.058) 

-0.228*** 

(0.067) 

-0.111** 

(0.050) 

Vhhsize 0.556*** 

(0.178) 

-0.385* 

(0.222) 

0.439*** 

(0.144) 

0.665*** 

(0.171) 

0.241* 

(0.134) 

-0.182 

(0.152) 

0.367*** 

(0.154) 

-0.519*** 

(0.172) 

0.540*** 

(0.174) 

0.615*** 

(0.153) 

Vextcont 0.259 

(0.435) 

2.735*** 

(0.700) 

0.080 

(0.364) 

1.497*** 

(0.371) 

0.115 

(0.330) 

0.441 

(0.336) 

0.415 

(0.328) 

0.782* 

(0.474) 

0.380 

(0.422) 

0.475 

(0.326) 

Vimpvar -0.901* 

(0.533) 

-2.623*** 

(0.579) 

-0.192 

(0.436) 

-0.445 

(0.495) 

-0.334 

(0.416) 

-0.967** 

(0.486) 

0.225 

(0.443) 

-1.880*** 

(0.523) 

0.345 

(0.506) 

0.162 

(0.424) 

Vinouse -2.555** 

(1.202) 

2.061 

(1.771) 

-2.500*** 

(1.014) 

-6.297*** 

(1.145) 

-3.320*** 

(1.017) 

-6.611*** 

(1.143) 

-4.786*** 

(1.092) 

-0.824 

(1.476) 

-2.500** 

(1.273) 

-1.985** 

(0.937) 

Velgrid 0.921 

(1.843) 

-2.795 

(2.565) 

2.074 

(1.539) 

7.487*** 

(1.784) 

3.343** 

(1.599) 

5.705*** 

(1.895) 

5.147*** 

(1.728) 

2.304 

(2.335) 

4.338** 

(1.879) 

1.514 

(1.406) 

Vdistmkt 0.170*** 

(0.072) 

0.207*** 

(0.074) 

0.086 

(0.059) 

0.058 

(0.069) 

0.035 

(0.060) 

0.250*** 

(0.066) 

0.098 

(0.063) 

0.071 

(0.072) 

0.166*** 

(0.070) 

0.017 

(0.057) 

Vfarmsize -0.062 

(0.053) 

-0.004 

(0.047) 

-0.040 

(0.039) 

-0.057 

(0.046) 

-0.069* 

(0.040) 

-0.056 

(0.053) 

-0.096** 

(0.048) 

-0.102** 

(0.051) 

-0.146*** 

(0.056) 

-0.041 

(0.041) 

Vsoil 5.623*** 

(1.928) 

11.290*** 

(2.234) 

4.921*** 

(1.697) 

7.142*** 

(2.006) 

6.903*** 

(1.785) 

4.121** 

(1.770) 

6.782*** 

(1.893) 

6.704*** 

(1.904) 

1.744 

(1.899) 

3.058** 

(1.550) 

Vrain -0.047* 

(0.027) 

0.019 

(0.029) 

-0.034 

(0.022) 

-0.013 

(0.023) 

-0.013 

(0.022) 

-0.005 

(0.026) 

-0.015 

(0.024) 

0.003 

(0.028) 

-0.001 

(0.027) 

0.014 

(0.021) 

LRT (df=570) 56.45** 164.7** 64.25** 131.9** 70.61** 144.7** 95.47** 76.62** 66.2** 50.11** 

Mean Beneficiaries 45.50% 44.67% 64.83% 53.67% 68.33% 54.17% 59.83% 50.00% 49.50% 71.50% 

Observ.(N) 600 600 600 600 600 600 600 600 600 600 

Notes: *, ** and *** are 10%, 5% and 1% level of significance. The Table presents estimates from equation 5. Column 1, presents estimates of the global model 

employ to account for spatial dependence, while each of Columns 1 – 9 respectively, presents estimates on the network properties (transitivity, degree-centrality and 

eccentricity, respectively) that characterizes the social ties among farmers within the egocentric information network community. Each of the three models represents 

a specific network intervention community (T0, T1 and T2, respectively) employed to account for spatial heterogeneity.  



206 
 

This implies that benefits distribution in egocentric networks is mutual for all ages of farmers, who 

constitute the network. This observation is intuitive as people who share information benefits from 

each other’s pool of diverse experiences.   

The results in Panel B also show that the coefficient of average education (Vedu) of farmers in the 

network is negative and statistically significant (at 1% level), suggesting that density of educated 

persons in egocentric networks contributes positively to productivity gains of members of the 

network. The implication is that, the more educated persons in the farmer’s egocentric network, 

the more productive the network becomes and vice versa. This is intuitive, as a network with high 

density of educated farmers means high cognitive proximity among members, a major requirement 

needed for accurate communication and effective information sharing in embedded social networks 

(Boschma 2005). 

In Panel B of Table 5.4, gender (i.e., male = 1) distribution in the network shows a mixed effect. 

For instance, in network communities with high transitivity (i.e., Models 1 – 3), the density of male 

farmers in the egocentric networks does not contribute to explaining productivity gains of members 

in the network, compared to individual farmer level. Similar observation is made in high degree-

centrality networks, particularly, in random and edge-betweeness network communities. However, 

in high eccentric network communities, the coefficient of gender is negative and statistically 

significant, suggesting that male farmers are more likely to obtain productivity improvement in the 

network, compared to female farmers in the network. This implies that the distribution of gender 

in information networks may have distributional inequalities, due to difference in social distances 

between male and female farmers, which is likely to affect the close proximity required for 

effective communication and information sharing.  

Furthermore, Panel B of Table 5.4 shows that the density of average number of extension contacts 

(Vextcont) of farmers in the network do not contribute to explaining productivity gains, rather, it is 
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the individual farmer’s number of extension contacts that is important (in Panel A of Table 5.4). 

This is intuitive, as farmer’s may not have to depend on the information network for farming 

advice, once all farmers have equal access to extension services, thus, underscoring the importance 

of egocentric networks in closing the information gap, stemming from inadequate extension staff 

to meet the needs of farmers.  

In addition, the results in Panel B of Table 5.4 show that, the density of farmers using improved 

technologies such as improved crop variety (Vimpvar) and yield enhancement inputs (e.g., rhizobia 

inoculant – Vinouse) in the network have positive and statistically significant contribution to 

productivity gains for farmers in the network. This observation suggests that targeting egocentric 

networks in technology adoption programs will not only enhance diffusion of the technology but 

will also improve the performance of the technology, due to the potential of farmers to learn from 

the experiences of other farmers in their network communities.  

In Panel B of Table 5.4, the coefficient of farm size is negative across all models, suggesting that 

either at individual or network level, farm size has positive and significant contribution to 

productivity gains, an observation that is consistent with applied economics literature. This 

observation is in line with Simpson (2020), who also observed positive relationship between farm 

size and agricultural landholding among rice farmers’ egocentric networks in China.  

On the other hand, the results in Panel B of Table 5.4 show that, poor soil conditions (i.e., Vsoil) 

and lack of amenities such as availability of electricity (i.e., Velgrid) at the village level, have 

negative and significant contribution to productivity gains (i.e., productivity losses) across the 

network communities.  

Furthermore, the bottom row of Table 5.4 also reports the mean population of farmers that will be 

affected, in terms of productivity gains, due to extension policy based on each of the network 

community and the centrality measure, compared to the global model. The results in the table reveal 
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that in network communities characterized by high transitivity (i.e., Models 1 – 3), eigenvector 

centrality communities have larger (65%) impacts, compared to betweeness centrality 54% and 

random (45%) communities, respectively. This finding suggests that in egocentric networks with 

high social cohesion among farmers, organizing extension delivery program around farmers with 

high eigenvector centrality (i.e., most successful farmers) in the community will be more beneficial 

to majority of farmers in the community, compared to high betweeness centrality farmers (i.e., 

powerful farmers). However, randomly chosen farmers in the community for extension delivery 

program will be less beneficial to majority of farmers in the community, compared to the two 

centrality measures.  

In network communities with high degree-centrality (i.e., Models 4 – 6), the impact is larger in 

random communities (68%), compared to betweeness-centrality communities (60%) and 

eigenvector-centrality communities (54%), respectively. This finding suggests that in egocentric 

networks with highly popular farmers, organizing extension delivery program around randomly 

chosen farmers in the community will be more beneficial to majority of farmers in the community, 

compared to the two centrality measures. However, choosing either farmers with high betweeness-

centrality or eigenvector-centrality will still benefit more than half of the population of farmers in 

the community. 

However, the largest (72%) impact occurs in betweeness-centrality communities characterized by 

high eccentricity, compared to all network communities. This finding suggests that in egocentric 

networks of farmers with shorter social distances organizing extension delivery program around 

farmers with high betweeness-centrality may provide higher outreach to almost all farmers in the 

community, compared to both eigenvector-centrality and random farmers. However, choosing 

farmers either randomly or based on eigenvector-centrality will still benefit about half of the 

population of farmers in the community. 
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5.5.5 Robustness Checks 

As robustness checks for the spatial heterogeneity observed in this study, we ignore the assumption 

that the information network is structured around either farmers with high eigenvector-centrality 

or betweeness-centrality in the community and assume a random community structure. Panels E 

and F of Table 5A.4 in the Appendix present the results of two models (i.e., Models 10 and 11) on 

the robustness checks. Panel E report estimates of Model 10, which accounts for spatial 

heterogeneity based on adjusted weighting matrix (𝑾𝟏�̃�) focusing on transitivity and degree-

centrality, while Panel F reports that of Model 11 estimated based on (𝑾𝟏�̃�) focusing on degree-

centrality and eccentricity of a random community structure. The results show that our findings are 

robust, as both the coefficient of the spatial dependence structure and the LISA statistic both have 

the negative signs, which is consistent with the random communities in Models 1, 4, and 7 of panels 

B, C and D, respectively. The LR statistics are also statistically significant at the 1% level, 

suggesting that the SSFA models accounting for spatial heterogeneity provide better fit of the 

farmers’ production function.  

In Figure 5A.2, we present kernel density plots of average efficiency scores predicted from models 

10 and 11 (i.e., Models 10 – 11), compared to the efficiency scores from the global model, as 

robustness check of the effects of failure to account for spatial heterogeneity on farmers’ efficiency 

scores as observed in this study. The results in Figure 5A.2 reveal the same patterns of 

underestimating high performing farmers, while overestimating that of low and medium 

performing farmers. Indicating that the findings as observed in this study is consistent and robust. 

All estimates on the robustness checks are reported the appendix, in order to save space.  

 

 

 



210 
 

5.6 Conclusions  

In this study, we investigate the impact of farmers’ egocentric information networks on technical 

efficiency in the production functions of farmers and its distributive mechanisms in the networks. 

Using community detection algorithms in a data-driven approach, based on observed real-world 

egocentric networks data of 600 soybean farmers from Ghana, we account for unobserved spatial 

heterogeneity on farmers’ technical efficiency.  

The empirical results generally reveal that farmers’ technical (in)efficiency strongly correlate with 

that of farmers in their egocentric networks, suggesting that farmers who share farming information 

with inefficient farmers are more likely to be inefficient, compared to those who share information 

with highly efficient farmers. This also indicate farmers’ readiness to learn from high performing 

peers in their egocentric networks in order to improve their own performance.  

The results show that the egocentric network level of influence on technical (in)efficiency of 

farmers is network-specific and differ according to the nature of the social ties or influence between 

farmers in the network. The empirical results further reveal that network communities formed 

around farmers with social importance increases efficiency among farmers in the community 

through information sharing with highly efficient farmers in the network. Furthermore, the findings 

reveal that in networks of farmers with high degree-centrality, randomly structured relationship in 

the network, have greater impact on efficiency, compared to any other network community. These 

network communities generate synergies in information sharing among farmers, needed for tacit 

social learning at the local level. The findings also reveal mutual information sharing among highly 

efficient farmers in an information network, implying that technically efficient farmers also share 

agricultural information or farming advice with peers who are equally efficient so as to maintain 

their level of efficiency.  We find that the density of educated persons in egocentric networks 

contributes positively to productivity gains of farmers in the network. 
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In terms of organizing extension delivery around farmers’ egocentric networks, this study find that 

in highly social cohesion networks organizing extension delivery around farmers with high 

eigenvector-centrality in the community increases the efficiency of majority farmers, compared to 

farmers with high betweeness-centrality. Furthermore, we find that organizing extension delivery 

around randomly chosen farmers in highly cohesive networks decreases the number of farmers that 

will benefit from the network. In addition, the findings further reveal that in egocentric networks 

with highly popular farmers organizing extension delivery around randomly chosen farmers’ 

increases efficiency of majority of the farmers in the community, though choosing either 

betweeness-centrality or eigenvector-centrality farmers still benefits more than half of the 

population of farmers in the community. Finally, we find that in egocentric networks of farmers 

with shorter social distances organizing extension delivery program around farmers with high 

betweeness-centrality increases the efficiency of almost the entire population of farmers in the 

community, though choosing farmers either randomly or based on eigenvector-centrality also 

benefits about half of the population of farmers in the community. 

The study generally conclude that identifying central farmers’ in egocentric networks and 

improving their technical knowledge in a farmer-to-farmer extension organization, can leverage 

the limited extension agents, to improve productivity of many farmers. 
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Appendix 

Tables 

Appendix 1: Peer, Village and District Level Data. 

Table 5A. 1 Definition and Summary Statistics  
Variable Definition Mean SD Min Max 

Panel C: Average Peer Level Factors     

Page Peers average age in years 41.56 13.33 18          87 

Pgender Average proportion of male peers  0.71 0.45 0 1 

Pedu Peers average years of schooling  2.79 4.69           0         21 

Phhsize Peers average household size 5.79 3.05 1 27 

Pland Peers average area of land planted with 

soybean (ha) 

5.05 4.37 1 22 

Plabor Peers average total labor used in soy cultivation 

(Worker-days/ha) 

7.81 24.23 0.20 274.73 

Pochem Peer average total amount of active ingredient 

in chemical used (kg/ha) 

4 7.19 0 87.22 

Pamtino Peers average total amount of inoculant used 

(g/ha) 

13.91    18.35 0.0001 118.93 

Pinousdumy Average proportion of peers that used inoculant 0.51 0.50 0 1 

Pvar Average proportion of peers using improved 

variety 

0.70 0.46 0 1 

Pcredit Average proportion of peers with not credit 

constraint 

0.83 0.34 0 1 

Psoil Average proportion of peers with good quality 

soil 

0.62 0.20 0.25 1 

Prain Average percentage of rainfall received by 

peers 

61.63 16.24 20 100 

Panel D: Average Village Level Factors     

Vage Village average farmer age in years 41.56 4.15 32.25 52.85 

Vgender Village average proportion of male farmers  0.71 0.22 0.15 1 

Vedu Village average years of schooling 2.79 1.54 0.45        5.75 

Vhhsize Village average household size 5.79 1.18 4.25        9.45 

Vland Village average area of land planted with 

soybean (ha) 

5.05 1.66 2.20 9.90 

Vlabor Village average total labor used in soy 

cultivation (Worker-days/ha) 

7.81 9.70 1.001 54.59 

Vchem Village average total amount of active 

ingredient in chemical used (kg/ha) 

4 2.12 1.10 11.69 

Vamtino Village average total amount of inoculant used 

(kg/ha) 

13.91    3.97 4.96 19.82 

Vinouse Village proportion of farmers that use the 

inoculant 

0.51              0.14 0.25 0.75 

Vimpvar Village proportion of farmers that use improve 

variety 

0.70 0.19 0.30 1 

Vcredit Village proportion of farmers that are not credit 

constraint 

0.83 0.14 0.40 1 

Vextcont Village average number of extension contacts 1.37 0.27 0.9 2 

Vdismkt Village average distance to nearest market (km) 2.36 1.36 0.45 5.82 
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Vsoil Village average proportion farmers with good 

soil quality    

0.62 0.08 0.48 0.80 

Vrain Village average rainfall in percent 61.63 6.90 49 74 

Velgrid  Proportion of villages connected to the national 

grid for electricity 

0.51 0.10 0.35 0.70 

Panel E: Average District Level Factors     

Dage District average farmer age in years 41.56 2.64 38.65 46.79 

Dgender District average proportion of male farmers  0.71 0.14 0.51 0.85 

Dedu District average years of schooling 2.79 0.90 1.44        4.04 

Dhhsize District average household size 5.79 1.04 4.94 8.01 

Dland District average area of land planted with 

soybean (ha) 

5.05 0.59 4.39       6.01 

Dlabor District average total labor used in soy 

cultivation (Worker-days/ha) 

7.81 3.62 3.18 15.03 

Dchem District average total amount of active 

ingredient in chemical used (kg/ha) 

4 0.81 3.24    5.37 

Damtino District average total amount of inoculant used 

(kg/ha) 

13.91    1.16 12.09 15.06 

Dinous District proportion of farmers that use inoculant 0.51 .05 0.44          0.6 

Dvar District proportion of farmers that use improve 

variety 

0.70 0.07 0.62         0.82 

Dcredit District proportion of farmers that are not credit 

constraint 

0.83 0.08 0.72         0.95 

Dsoil District average proportion farmers with good 

soil quality    

0.62 0.06 0.52 0.72 

Drain District average rainfall in percent 61.63 6.13 52.6 69.2 

Delecgrid Proportion of farmers in districts connected to 

the national grid for electricity 

0.51 0.05 0.47          0.60 

Ddismkt  2.36 0.52 1.599       2.77 

Note: SD is standard deviation; Min and Max are minimum and maximum values respectively. 
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Appendix 2: Full estimates from the spatial stochastic frontier (SSFA) models. 

Table 5A. 2 Spatial Stochastic Frontier 

 Global Model  

(𝑾𝟎) 

Model 1  

(�̃�𝟏) 

Model 2 

(�̃�𝟐) 

Model 3 

(�̃�𝟑) 

Model 4 

(�̃�𝟒) 

Model 5 

(�̃�𝟓) 

Model 6 

(�̃�𝟔) 

Model 7 

(�̃�𝟕) 

Model 8 

(�̃�𝟖) 

Model 9 

(�̃�𝟗) 

Variable Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Const. 1.575 

(2.062) 

0.540 

(0.742) 

-1.052 

(1.346) 

0.340 

(2.261) 

-2.283*** 

(0.774) 

0.778 

(1.166) 

0.813 

(3.110) 

-1.099 

(1.369) 

0.573 

(1.931) 

-0.259 

(1.292) 

lnagchem -0.058 

(0.097) 

-0.063 

(0.096) 

-0.046 

(0.098) 

-0.068 

(0.097) 

-0.054 

(0.100) 

-0.076 

(0.095) 

-0.061 

(0.096) 

-0.057 

(0.097) 

-0.065 

(0.095) 

-0.013 

(0.098) 

lnland 1.266*** 

(0.131) 

1.292*** 

(0.129) 

1.267*** 

(0.133) 

1.292*** 

(0.134) 

1.254*** 

(0.133) 

1.289*** 

(0.128) 

1.289*** 

(0.131) 

1.302*** 

(0.132) 

1.259*** 

(0.129) 

1.256*** 

(0.134) 

lnlabor 0.164*** 

(0.066) 

0.162*** 

(0.066) 

0.138** 

(0.067) 

0.167*** 

(0.067) 

0.140** 

(0.069) 

0.149** 

(0.066) 

0.158*** 

(0.067) 

0.135** 

(0.067) 

0.149** 

(0.066) 

0.130** 

(0.068) 

lnamtinouse -18.443** 

(2.046) 

-18.79*** 

(1.485) 

-18.35*** 

(1.828) 

-18.84*** 

(2.189) 

-18.94*** 

(2.113) 

-17.67*** 

(3.352) 

-18.57*** 

(4.222) 

-18.70*** 

(1.469) 

-19.15*** 

(2.673) 

-20.20*** 

(3.826) 

lnagchemsq 0.067 

(0.047) 

0.072 

(0.047) 

0.065 

(0.049) 

0.075 

(0.048) 

0.068 

(0.050) 

0.084* 

(0.047) 

0.072 

(0.047) 

0.076 

(0.048) 

0.071 

(0.047) 

0.043 

(0.049) 

lnlandsq -0.284*** 

(0.120) 

-0.311*** 

(0.116) 

-0.280** 

(0.120) 

-0.309*** 

(0.123) 

-0.305*** 

(0.120) 

-0.314*** 

(0.113) 

-0.311*** 

(0.122) 

-0.322*** 

(0.118) 

-0.280*** 

(0.118) 

-0.268** 

(0.120) 

lnlaborsq -0.035 

(0.023) 

-0.035 

(0.023) 

-0.032 

(0.023) 

-0.036 

(0.023) 

-0.030 

(0.024) 

-0.035 

(0.023) 

-0.035 

(0.023) 

-0.030 

(0.023) 

-0.033 

(0.022) 

-0.025 

(0.024) 

lnamtinoussq 3.339*** 

(0.373) 

3.39*** 

(0.269) 

3.305*** 

(0.334) 

3.396*** 

(0.404) 

3.407*** 

(0.377) 

3.172*** 

(0.617) 

3.357*** 

(0.770) 

3.363*** 

(0.263) 

3.456*** 

(0.487) 

3.645*** 

(0.693) 

Rain 0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

Impvar 0.014 

(0.038) 

0.018 

(0.038) 

0.025 

(0.039) 

0.018 

(0.039) 

0.021 

(0.040) 

0.028 

(0.038) 

0.017 

(0.038) 

0.014 

(0.039) 

0.018 

(0.038) 

0.018 

(0.040) 

Soil 0.149* 

(0.090) 

0.120 

(0.091) 

0.123 

(0.091) 

0.120 

(0.091) 

0.132 

(0.093) 

0.139 

(0.088) 

0.120 

(0.095) 

0.113 

(0.091) 

0.122 

(0.091) 

0.121 

(0.092) 

Chemdumy 0.094 

(0.125) 

0.092 

(0.125) 

0.074 

(0.126) 

0.087 

(0.125) 

0.106 

(0.126) 

0.090 

(0.123) 

0.100 

(0.127) 

0.098 

(0.125) 

0.106 

(0.127) 

0.116 

(0.130) 

Extcont -0.009 

(0.013) 

-0.009 

(0.013) 

-0.010 

(0.014) 

-0.010 

(0.014) 

-0.011 

(0.014) 

-0.008 

(0.013) 

-0.009 

(0.014) 

-0.007 

(0.014) 

-0.008 

(0.014) 

-0.010 

(0.014) 

Creditcostr 0.007 

(0.045) 

0.007 

(0.045) 

0.025 

(0.045) 

0.004 

(0.045) 

0.002 

(0.046) 

0.024 

(0.045) 

0.012 

(0.045) 

0.017 

(0.046) 

0.011 

(0.045) 

0.002 

(0.046) 

Dismkt -0.003 

(0.004) 

-0.004 

(0.004) 

-0.004 

(0.004) 

-0.005 

(0.004) 

-0.005 

(0.004) 

-0.005 

(0.004) 

-0.004 

(0.005) 

-0.004 

(0.004) 

-0.004 

(0.004) 

-0.004 

(0.004) 

Inousedumy 28.39*** 

(3.107) 

28.99*** 

(2.244) 

28.40*** 

(2.785) 

29.10*** 

(3.314) 

29.33*** 

(3.223) 

27.38*** 

(5.043) 

28.62*** 

(6.426) 

28.94*** 

(2.220) 

29.54*** 

(4.055) 

31.17*** 

(5.803) 
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Plabor 0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

0.001 

(0.002) 

Pochem -0.015 

(0.009) 

-0.016* 

(0.009) 

-0.014 

(0.010) 

-0.016* 

(0.010) 

-0.014 

(0.010) 

-0.018** 

(0.009) 

-0.016* 

(0.009) 

-0.017* 

(0.010) 

-0.015 

(0.009) 

-0.009 

(0.010) 

Pamtino -0.138*** 

(0.017) 

-0.140*** 

(0.009) 

-0.134*** 

(0.015) 

-0.139*** 

(0.019) 

-0.138*** 

(0.014) 

-0.128*** 

(0.026) 

-0.138*** 

(0.033) 

-0.136*** 

(0.009) 

-0.142*** 

(0.021) 

-0.149*** 

(0.028) 

Pland 0.093** 

(0.044) 

0.102*** 

(0.042) 

0.091** 

(0.044) 

0.101** 

(0.045) 

0.106*** 

(0.044) 

0.106*** 

(0.041) 

0.102** 

(0.045) 

0.107*** 

(0.043) 

0.092** 

(0.043) 

0.083** 

(0.044) 

Vlabor -0.003 

(0.003) 

-0.003 

(0.003) 

-0.002 

(0.003) 

-0.001 

(0.003) 

-0.001 

(0.003) 

-0.005* 

(0.003) 

-0.004 

(0.003) 

0.002 

(0.003) 

-0.004 

(0.003) 

0.001 

(0.003) 

Vland 0.038 

(0.026) 

0.039* 

(0.022) 

0.039 

(0.029) 

0.026 

(0.024) 

-0.016 

(0.028) 

0.029 

(0.025) 

0.037 

(0.024) 

-0.018 

(0.024) 

0.026 

(0.023) 

-0.038 

(0.028) 

Vchem 0.013 

(0.019) 

0.011 

(0.016) 

0.001 

(0.017) 

0.013 

(0.016) 

0.045** 

(0.020) 

0.016 

(0.017) 

0.019 

(0.016) 

0.018 

(0.019) 

0.024 

(0.016) 

0.043*** 

(0.017) 

Vsoil -1.030* 

(0.552) 

-1.002*** 

(0.329) 

-1.392*** 

(0.421) 

-0.893* 

(0.527) 

-1.154*** 

(0.380) 

-0.386 

(0.400) 

-1.015 

(0.683) 

-0.912** 

(0.435) 

-1.104** 

(0.473) 

-1.068** 

(0.460) 

Vrain 0.001 

(0.008) 

-0.001 

(0.006) 

0.000 

(0.007) 

-0.006 

(0.007) 

-0.005 

(0.007) 

0.006 

(0.006) 

0.001 

(0.007) 

-0.007 

(0.007) 

-0.002 

(0.007) 

-0.012* 

(0.007) 

Vamtino 0.000 

(0.006) 

-0.001 

(0.005) 

0.001 

(0.005) 

0.000 

(0.005) 

-0.008 

(0.006) 

0.002 

(0.005) 

-0.001 

(0.005) 

-0.012* 

(0.006) 

0.002 

(0.005) 

0.002 

(0.006) 

Vdismkt 0.025 

(0.020) 

0.026 

(0.017) 

0.006 

(0.019) 

0.014 

(0.018) 

-0.001 

(0.019) 

0.008 

(0.018) 

0.028 

(0.017) 

0.003 

(0.017) 

0.019 

(0.018) 

0.023 

(0.018) 

Vvar 0.086 

(0.143) 

0.081 

(0.115) 

0.070 

(0.131) 

0.076 

(0.129) 

0.083 

(0.134) 

-0.030 

(0.136) 

0.062 

(0.135) 

0.244* 

(0.143) 

0.028 

(0.119) 

0.093 

(0.129) 

Dland 0.213 

(0.165) 

0.278*** 

(0.108) 

0.320*** 

(0.126) 

0.233 

(0.155) 

0.372*** 

(0.114) 

0.312*** 

(0.034) 

0.287 

(0.202) 

0.185 

(0.126) 

0.276** 

(0.146) 

0.015 

(0.133) 

Dlabor -0.047* 

(0.027) 

-0.052*** 

(0.013) 

-0.071*** 

(0.019) 

-0.054* 

(0.029) 

-0.077*** 

(0.016) 

-0.030*** 

(0.006) 

-0.050 

(0.039) 

-0.071*** 

(0.021) 

-0.057** 

(0.025) 

-0.085*** 

(0.022) 

Dchem -0.403* 

(0.152) 

-0.461*** 

(0.071) 

-0.521*** 

(0.103) 

-0.442*** 

(0.155) 

-0.580*** 

(0.075) 

-0.417*** 

(0.073) 

-0.486** 

(0.221) 

-0.407*** 

(0.099) 

-0.494*** 

(0.139) 

-0.465*** 

(0.097) 

Damtino 0.234** 

(0.119) 

0.260*** 

(0.053) 

0.332*** 

(0.085) 

0.277** 

(0.128) 

0.401*** 

(0.076) 

0.174*** 

(0.028) 

0.264 

(0.169) 

0.361*** 

(0.095) 

0.286*** 

(0.108) 

0.436*** 

(0.092) 

Drain 0.022 

(0.019) 

0.031*** 

(0.009) 

0.043*** 

(0.013) 

0.036* 

(0.019) 

0.052*** 

(0.010) 

0.023*** 

(0.003) 

0.025 

(0.026) 

0.046*** 

(0.014) 

0.031* 

(0.017) 

0.043*** 

(0.013) 

sigmau2_dmu 0.463*** 

(0.061) 

0.470*** 

(0.056) 

0.418*** 

(0.052) 

0.453*** 

(0.062) 

0.376*** 

(0.049) 

0.461*** 

(0.048) 

0.471*** 

(0.073) 

0.419*** 

(0.048) 

0.473*** 

(0.064) 

0.399*** 

(0.054) 

sigmav2 0.039*** 

(0.013) 

0.037*** 

(0.011) 

0.047*** 

(0.012) 

0.041*** 

(0.014) 

0.058*** 

(0.012) 

0.037*** 

(0.009) 

0.038*** 

(0.016) 

0.046*** 

(0.010) 

0.036*** 

(0.013) 

0.054*** 

(0.013) 

LL  -347.84 -349.739 -344.172 -348.428 -344.996 -345.399 -350.355 -343.175 -348.124 -350.658 
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Notes: *, ** and *** are 10%, 5% and 1% level of significance. Column 1, presents estimates of the global model employ to account for spatial dependence, while 

each of Columns 1 – 9 respectively, presents estimates on the network properties (transitivity, degree-centrality and eccentricity, respectively) that characterizes the 

social ties among farmers within the egocentric information network community. Each of the three models represents a specific network intervention community (T0, 

T1 and T2, respectively) employed to account for spatial heterogeneity. The Table presents the full SSFA estimates from equations 2 and 3, respectively.    
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Appendix 3: Individual farmer controls and district fix effects.  

Table 5A. 3 Spatial Cox proportional hazard estimates 

 Global Model  

(𝑾𝟎) 

Model 1  

(�̃�𝟏) 

Model 2 

(�̃�𝟐) 

Model 3 

(�̃�𝟑) 

Model 4 

(�̃�𝟒) 

Model 5 

(�̃�𝟓) 

Model 6 

(�̃�𝟔) 

Model 7 

(�̃�𝟕) 

Model 8 

(�̃�𝟖) 

Model 9 

(�̃�𝟗) 

Variable Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Panel A: Farmer’s Own Characteristics 

       

Age 0.004 

(0.005) 

-0.002 

(0.005) 

0.002 

(0.004) 

-0.002 

(0.005) 

0.001 

(0.004) 

-0.003 

(0.005) 

-0.002 

(0.004) 

0.000 

(0.005) 

0.002 

(0.005) 

0.002 

(0.004) 

Gender(Male=1) -0.098 

(0.165) 

-0.185 

(0.174) 

-0.134 

(0.138) 

-0.130 

(0.150) 

-0.133 

(0.132) 

-0.135 

(0.147) 

-0.164 

(0.143) 

-0.067 

(0.160) 

-0.161 

(0.153) 

-0.184 

(0.128) 

Edu 0.014 

(0.015) 

0.002 

(0.017) 

0.015 

(0.013) 

0.008 

(0.015) 

0.003 

(0.013) 

0.008 

(0.015) 

0.006 

(0.014) 

-0.008 

(0.015) 

0.004 

(0.016) 

0.008 

(0.012) 

Hhsize 0.023 

(0.022) 

0.017 

(0.025) 

-0.004 

(0.019) 

-0.021 

(0.022) 

0.001 

(0.018) 

-0.010 

(0.022) 

0.002 

(0.020) 

0.023 

(0.022) 

-0.013 

(0.023) 

-0.001 

(0.018) 

Creditr 0.195 

(0.177) 

0.286* 

(0.168) 

0.055 

(0.143) 

0.273 

(0.167) 

0.177 

(0.144) 

-0.247 

(0.157) 

0.170 

(0.154) 

-0.073 

(0.161) 

-0.130 

(0.166) 

0.074 

(0.138) 

Elgrid 0.398 

(0.303) 

0.366 

(0.348) 

0.553** 

(0.247) 

0.541** 

(0.279) 

0.241 

(0.241) 

0.192 

(0.261) 

0.499** 

(0.257) 

-0.025 

(0.318) 

0.244 

(0.278) 

0.226 

(0.226) 

Distmkt -0.013 

(0.018) 

0.023 

(0.014) 

0.004 

(0.013) 

0.011 

(0.014) 

0.005 

(0.013) 

0.025** 

(0.013) 

0.000 

(0.014) 

-0.004 

(0.018) 

0.010 

(0.014) 

0.002 

(0.013) 

Impvar 0.238 

(0.150) 

0.070 

(0.152) 

0.067 

(0.122) 

0.072 

(0.138) 

0.103 

(0.120) 

-0.102 

(0.137) 

0.157 

(0.132) 

0.251* 

(0.144) 

-0.023 

(0.143) 

0.018 

(0.113) 

Farmsize -0.050*** 

(0.018) 

-0.013 

(0.017) 

-0.025* 

(0.014) 

-0.010 

(0.014) 

-0.009 

(0.013) 

-0.035** 

(0.015) 

-0.020 

(0.014) 

0.014 

(0.015) 

-0.010 

(0.015) 

-0.009 

(0.013) 

Inouse -0.293 

(0.310) 

-0.519 

(0.348) 

-0.874*** 

(0.254) 

-0.982*** 

(0.286) 

-0.650*** 

(0.247) 

-0.324 

(0.269) 

-0.971*** 

(0.265) 

-0.090 

(0.322) 

-0.065 

(0.284) 

-0.474** 

(0.231) 

Rain 0.003 

(0.004) 

-0.013*** 

(0.005) 

0.001 

(0.004) 

-0.003 

(0.004) 

-0.002 

(0.004) 

0.002 

(0.004) 

0.000 

(0.004) 

-0.001 

(0.004) 

-0.001 

(0.004) 

-0.001 

(0.004) 

Soil -0.219 

(0.349) 

0.499 

(0.349) 

0.056 

(0.286) 

0.402 

(0.323) 

0.095 

(0.280) 

-0.021 

(0.333) 

0.131 

(0.305) 

0.164 

(0.332) 

0.181 

(0.347) 

0.190 

(0.276) 

Extcont -0.010 

(0.053) 

0.009 

(0.051) 

-0.013 

(0.044) 

-0.017 

(0.048) 

0.010 

(0.043) 

-0.048 

(0.049) 

-0.034 

(0.046) 

-0.001 

(0.051) 

-0.062 

(0.051) 

-0.008 

(0.042) 

Panel C: District Fixed Effects 

        

Emamp(2) 0.646*** 

(0.399) 

-0.217 

(0.404) 

0.907*** 

(0.316) 

1.005*** 

(0.351) 

0.963*** 

(0.314) 

-0.300 

(0.462) 

1.024*** 

(0.353) 

-0.468 

(0.369) 

0.367 

(0.376) 

0.461 

(0.293) 

Karaga(3) -1.655*** 

(0.421) 

-0.045 

(0.542) 

-1.056*** 

(0.353) 

-1.823*** 

(0.436) 

-0.528 

(0.354) 

-0.150 

(0.372) 

-0.741* 

(0.407) 

0.740* 

(0.411) 

-1.684*** 

(0.451) 

-1.164*** 

(0.364) 

Kumbungu(4) -0.092 

(0.563) 

-2.503*** 

(0.660) 

-0.216 

(0.463) 

-1.301*** 

(0.525) 

-0.087 

(0.452) 

0.633 

(0.542) 

-0.189 

(0.507) 

-0.497 

(0.528) 

-0.434 

(0.533) 

-0.794* 

(0.426) 

Savelugu(5) 0.596 

(0.473) 

-0.885** 

(0.468) 

0.661* 

(0.389) 

-0.100 

(0.418) 

0.256 

(0.393) 

-0.595 

(0.523) 

0.445 

(0.431) 

-0.753 

(0.458) 

-0.474 

(0.457) 

0.159 

(0.355) 
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 Global Model  

(𝑾𝟎) 

Model 1  

(�̃�𝟏) 

Model 2 

(�̃�𝟐) 

Model 3 

(�̃�𝟑) 

Model 4 

(�̃�𝟒) 

Model 5 

(�̃�𝟓) 

Model 6 

(�̃�𝟔) 

Model 7 

(�̃�𝟕) 

Model 8 

(�̃�𝟖) 

Model 9 

(�̃�𝟗) 

Variable Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Coeff. 

(S.E) 

Yendi(6) -0.266 

(0.337) 

-1.821*** 

(0.425) 

-0.250 

(0.283) 

-1.187*** 

(0.325) 

-0.658*** 

(0.281) 

0.208 

(0.346) 

-0.454 

(0.310) 

-1.246*** 

(0.305) 

0.327 

(0.341) 

-0.278 

(0.257) 

LRT (df=570) 56.45** 164.7** 64.25** 131.9** 70.61** 144.7** 95.47** 76.62** 66.2** 50.11** 

Mean Beneficiaries 273 

(45.50%) 

268 

(44.67%) 

389 

(64.83%) 

322 

(53.67%) 

410 

(68.33%) 

325 

(54.17%) 

359 

(59.83%) 

300 

(50.00%) 

297 

(49.50%) 

429 

(71.50%) 

Observ.(N) 600 600 600 600 600 600 600 600 600 600 

Notes: *, ** and *** are 10%, 5% and 1% level of significance. Column 1, presents estimates of the global model employ to account for spatial dependence, while 

each of Columns 1 – 9 respectively, presents estimates on the network properties (transitivity, degree-centrality and eccentricity, respectively) that characterizes the 

social ties among farmers within the egocentric information network community. Each of the three models represents a specific network intervention community (T0, 

T1 and T2, respectively) employed to account for spatial heterogeneity. The Table presents estimates from equation 5.  
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Appendix 4 

Table 5A. 4 Robustness Checks 

Model Matrix 
  

SFA 
  

 
   

SSFA 
   

  
�̃� 𝝈𝒖𝒔𝒇𝒂

𝟐  𝝈𝒗𝒔𝒇𝒂
𝟐  𝝀𝒔𝒇𝒂 𝑰𝒔𝒇𝒂 �̂�𝑠𝑓𝑎 𝑳𝑹𝒔𝒇𝒂 𝝈𝒖𝒔𝒔𝒇𝒂

𝟐  𝝈�̃�
𝟐  𝝈𝒗𝒔𝒔𝒇𝒂

𝟐  𝝀𝒔𝒔𝒇𝒂 𝑰𝒔𝒔𝒇𝒂 𝝆 �̂�𝑠𝑠𝑓𝑎 𝑳𝑹𝒔𝒔𝒇𝒂 

Network-Specific Structure Models              

Panel E: Transitivity and Degree-Centrality           

Model 10 �̃�10 0.470*** 0.039*** 3.488 -0.006 0.630 51.96*** 0.391*** 0.4% 0.053*** 7.38 -0.002 -0.000 0.65 68.23*** 

Panel F: Degree-Centrality and Eccentricity           

Model 11 �̃�11 0.470*** 0.039*** 3.488 -0.008 0.630 51.96*** 0.402*** 0.3% 0.051*** 7.93 -0.002 -0.000 0.65 62.91*** 

Notes: *, ** and *** are 10%, 5% and 1% level of significance. Each of Panels E and F respectively, presents estimates on different combinations the network 

properties (transitivity, degree-centrality and eccentricity, respectively) that characterizes the social ties among farmers within the a randomly formed egocentric 

information network community. Each of the model (10 and 11) represents a specific random network intervention community, respectively, employed to account for 

spatial heterogeneity. The Table presents estimates from equation 3 in Panels E and F, respectively.   
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List of Figures 

Appendix 5   

 
 

(a) Network in Village 1 (b) Network in Village 2 

 
 

(c) Network in Village 3 (d) Network in Village 4 

 

 

(e) Network in Village 5  

Figure 5A. 1 Sampled Information networks  

Notes: Each network represents Egos and their Alters sample in a single village. It can be observed that each of the 

networks shows a different structural relationship from the other. 
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Appendix 6: Robustness Checks 

 

 

Figure 5A. 2 Effect of spatial heterogeneity on farmers technical efficiency scores. 

Notes: SSFA represents spatial stochastic frontier analysis model, while the 𝑊s represent the social contiguity 

matrices used in the estimation of the models to account for spatial effects. So, SSFA_W presents the base model 

estimated using 𝑊; SSFA_W10 represents model 10 estimated using the adjusted matrix �̃�10, SSFA_W11 for model 

11 using matrix �̃�11. 

 

 

 

Figure 5A. 3 Inter-class and Intra-class distributions of average efficiency gains in 

egocentric network communities.  

Notes: The estimates are based on equation 4. The dW0 denotes gains calculated based the global model, while dW10 

and dW9 denote gains calculated based on Models 10 and 11, respectively. The bars at each model indicates 

percentiles, while comparison within a model is intra-class and between models is inter-class. 
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Appendix 7: Threshold Distribution of Efficiency Gains in Egocentric Networks. 

As noted in the literature (e.g., Di Falco et al. 2018; Boschma 2005), the benefits stream from 

economic relationships embedded in social relationships increases up to a threshold, after which 

adverse impacts arise, due to either lock-in effect or distributive pressure from an increased 

network size. On this basis, generalizing the behavior of the individual farmers’ productivity gains 

distribution to be that of the entire network behavior will bias the findings. 

Figures A3, A4 and A5 present estimates explaining the general behavior of productivity gains’ 

distribution mechanisms in the network communities. The results are derived from equation 5 in 

the empirical specifications. Each figure contains four panels (Panels (a – d)) and each panel 

represents a specific network community structure based on the model from which the estimates 

are obtained, with all models (Models 1 – 9) compared to the global model (Panel (a)). In general, 

all the figures reveal substantial heterogeneity in the threshold probability distribution of 

productivity gains across all the network communities. 

Panel (d) in Figure A3 shows that, in high transitivity networks, the probability threshold for 

positive productivity gains is highest (0.4 or 40%) in network communities structured around 

powerful farmers, compared to the structure around important farmers (35%)  and randomly chosen 

farmers (0.30) in Panels (c and b), respectively.  

In networks characterized by farmers with high degree-centrality, Panel (b) in Figure A4 shows 

that, the probability distribution threshold is highest (0.8 or 80%) in network communities 

structured around randomly chosen farmers, compared to socially or agriculturally important 

farmers 64% and powerful farmers 25% in Panels (c and d), respectively.  

For high eccentric network communities, Panels (d and c) in Figure A5 reveal that, the probability 

threshold increases up to (1.0 or 100%) in communities structured around powerful farmers and 

socially or agriculturally important farmers, respectively, and to some extent in networks structured 

around randomly chosen farmers 97% in Panel (b). 

However, in comparison to the global Model in Panel (a), the results show that failure to account 

for spatial heterogeneity underestimates the threshold probability (0.24 or 24%) across all models.  
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(a) Global Model (𝑊0) (b) Model 1: T0 - Transitivity (�̃�1) 

  

(c) Model 2: T1 - Transitivity (�̃�2) (d) Model 3: T2 - Transitivity (�̃�3) 
 

Figure 5A. 4 Probability threshold distribution of efficiency gains of an egocentric 

information network. 

Notes: Each figure explains the efficiency gains distributive mechanism (or behavior) for given network community.   
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(a) Global Model (𝑊0) (b) Model 1: T0 - Degree-Centrality (�̃�4) 

  

(c) Model 2: T1 - Degree-Centrality (�̃�5) (d) Model 3: T2 - Degree-Centrality (�̃�6) 
 

Figure 5A. 5 Probability threshold distribution of efficiency gains of an egocentric 

information network. 
Notes: Each figure explains the efficiency gains distributive mechanism (or behavior) for given network community.   
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(a) Global Model (𝑊0) (b) Model 1: T0 - Eccentricity (�̃�7) 

  

(c) Model 2: T1 - Eccentricity (�̃�8) (d) Model 3: T2 - Eccentricity (�̃�9) 
 

Figure 5A. 6 Probability threshold distribution of efficiency gains of an egocentric 

information network. 
Notes: Each figure explains the efficiency gains distributive mechanism (or behavior) for given network community.   
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Chapter 6 

Summary, Conclusions and Policy Implications 

 Food availability all times and places is central to human development and a primary indicator of 

welfare. However, developing countries led by sub-Saharan Africa suffer perennial food insecurity 

due to low agricultural productivity. Central to boosting agricultural productivity is increasing crop 

yields and sustaining productivity gains, through the adoption of improved or new agricultural 

technologies, that mitigate the effects of climate change, enhances productive capacity of the soil 

and maximizes the genetic potential of crops and livestock by smallholder farmers. Spate of 

evidence show that, technology adoption is far below desired levels in the developing countries, 

partly, due to inadequate or lack of good and timely information as well as knowledge about 

existing new technologies that are necessary preconditions for technology adoption. The lack of 

information can be attributed to weak and ineffective extension services stemming from resource 

constraints to serve the needs of the widely dispersed smallholder farmers. This motivated the need 

to investigate the potential of other available communication channels (such video documentaries, 

radio listening clubs, etc) to leverage extension delivery to smallholder farmers, in order to increase 

technology adoption as well as bolster food production and welfare. The study, therefore, 

contributes to literature by assessing the impact of communication channels on food production 

and household welfare, using evidence from an ICT-led inoculant dissemination among 

smallholder soybean farmers in northern Ghana.  

First, the study examined the impact of participation in information communication technology 

(ICT) based extension channels (henceforth, ICT-based) on farmers’ technology adoption and 

welfare, compared to conventional extension channels. Next, the study analyzed the dynamics of 

technology adoption and its heterogeneous impact on different sub-population of farmers at 
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multiple phases of technology adoption, who may be targeted by specific extension policies, in 

order to facilitate and sustain their adoption.   

The study then simultaneously assessed the dual impact of extension participation and improved 

technology adoption on farm productivity, efficiency and welfare, decomposing each impact 

measure into subcomponents that can be attributed to both improved technology adoption and the 

extension participation. The study concluded by investigating the influence of farmers’ egocentric 

information networks (i.e., personal social network contacts) on technical efficiency of farm 

productivity and its distribution mechanisms among members of the network.    

6.1 Summary of empirical methods 

The study employed novel impact assessment empirical methods that are robust to model miss-

specification, identification, as well as simultaneity and endogeneity problems often encountered 

in impact assessment studies using observational data. Specifically, the study employed copula 

functions, dynamic treatment effect, and stochastic frontier treatment effect with endogenous 

mediator, as well as spatial stochastic frontier analysis. 

Chapter two of the study employed copula recursive bivariate probit and mixed-copula endogenous 

switching regression analysis to examine the impact of participation in ICT-based extension 

channels on improved technology (i.e., the Rhizobia inoculant) adoption and its impact on farmers’ 

technical knowledge, yields and farm net returns. The copula recursive bivariate probit was used 

for the binary outcome measure inoculant adoption, while mixed-copula endogenous switching 

regression analysis was used for the continuous outcome measures knowledge gains, yields and 

farm net returns. Both models employed two-stage estimation approach, where in the first-stage 

instrumental variables (IVs) were included to account for self-selection and omitted variable bias, 

while the second-stage estimated the potential outcomes. Standard selectivity correction models 

such as Heckman selection, endogenous switching regression, and double selection models, used 
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in the literature to overcome selectivity bias relies on strong multivariate normality assumption for 

identification. However, the multivariate normality assumption is easily violated, when there is tail 

dependence in the distribution of at least one variable. The copula approach allows the modelling 

of selectivity based on multivariate non-normality assumption, but retaining the normality 

assumption as a special case. The copula approach induces a joint distribution by specifying the 

marginal distribution and the function that binds them together (i.e. the copula). Thus, 

parameterizing the dependence structure to encapsulate observable and unobservable factors, 

which then frees the location and the scale structures, enabling them to take different distributions. 

In particular, the copula recursive bivariate probit employed by the study is novel in the literature, 

in that, it employs additional instrumental variable different from the first-stage instrumental 

variables to identify binary outcomes in the second-stage, further improving the identification 

properties of the model. Thus, avoiding the identification problems that the classical recursive 

binary probit approach used in the literature suffers. 

In chapter three, the study employed the dynamic treatment effect approach in a discrete setting to 

analyze heterogeneity in returns to farmers’ technology adoption in a multi-stage decision 

framework. The dynamic treatment effect approach employed by the study was recently developed 

and relied on the synthetic cohort assumption to construct a dynamic setting from observational 

data, based on series of observed discrete decisions made by the farmer or the agent. Using state 

specific instrumental variables, the study estimated discrete factor structural choice model for each 

discrete adoption decision-making state, in a joint three-stage process. In the first-stage, a factor 

model was estimated to proxy unobserved wealth endowment heterogeneity that could potentially 

be endogenous to the adoption state transitional ability of farmers. In the second-stage, each 

discrete adoption state decision model was estimated with the inclusion of instrumental variables 

relevant to that state, in order to account for selection and omitted variable bias, as well as inclusion 
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of the factor score predicted from the measurement model in the first-stage to account for 

unobserved ability or wealth endowment effect on the farmer’s decision. The potential outcomes 

for both treatment effect of the treated (TT) and the untreated (TUT) were estimated in the third-

stage conditional on the first and second stages. The DTE calculated both short-term and long-term 

impacts measures for average treatment effect (ATE), average treatment effect on the treated (ATT) 

and average treatment effect on the untreated (ATUT), as well as average marginal treatment effect 

(AMTE) for various sub-population of farmers. The study then estimated a generalized 

continuation ratio ordered probit model, as a measure of covariance between adoption state gains 

and the farmer’s transition decision as well as factors influencing farmer’s transition decision. 

Contrary to classical technology adoption studies that consider farmers’ adoption decisions as 

static, ignoring the dynamic processes embedded in farmers’ decision-making, the study 

recognized that farmers’ technology adoption consist of multiple phases of decision-making that 

may span over several seasons or stages. As such, different population of farmers may be at 

different states in the adoption process, and therefore returns from technology adoption as well as 

policy strategies required to propel farmers at each state may be heterogeneous.  

In chapter four, the study employed the stochastic frontier treatment effect with endogenous 

mediator model, which jointly estimated the impact of technology adoption and extension 

participation, and decomposed the impact into direct and indirect effects. Analyzing welfare 

impacts of improved technology adoption and extension participation can be challenging, because 

either of the two can lead to welfare gains. The approach employed by the study was recently 

developed and combined mediation analysis, treatment effect and stochastic frontier analysis 

within a single framework. In particular, the study addressed potential endogeneity from selection 

and omitted variable bias in both the adoption decision (i.e., the endogenous treatment) and the 

participation decision (i.e., the mediator) models, using binary recursive probit analysis in the first-
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stage. In the second-stage, a stochastic frontier regression that account for treatment heterogeneities 

among production units was then estimated via generalized method of moment (GMM) approach 

to obtain the potential outcomes. The impact was then calculated and decomposed into the direct 

effects on the technology frontier and the indirect effects on the technology frontier that go through 

the mediator, as well as the direct effects on technical efficiency and indirect effects on technical 

efficiency that go through the mediator. The impact measures computed were local average 

treatment effect (LATE) decomposed into direct local average treatment effect (DLATE) and 

indirect local average treatment effect (ILATE).     

Chapter five, used spatial stochastic frontier analysis to investigate the impact of egocentric 

information networks on farmers’ technical efficiency, productivity and its distributive 

mechanisms among farmers in the network. A major challenge in the literature is the difficulty in 

distinguishing the effect of spatial dependence, which results from the interdependence of the 

farmer’s inefficiency on the egocentric information network, and spatial heterogeneity due to 

differences in network structures, which is unobserved and varied across networks (known as the 

inverse problem in the literature). The study employed a two-stage estimation process to address 

both spatial dependence and spatial heterogeneity, while accounting for social selection bias by 

controlling for both network contextual and location fixed-effects that may influence the 

probability of link formation as well as productivity. In the first-stage, the study employed spatial 

stochastic frontier model that specified the stochastic inefficiency term as a spatial error model 

(SEM), decomposing the inefficiency term into two parts, one that is directly due to the farmer’s 

own inefficiency and the second part that is indirectly due to the farmer’s egocentric information 

network (i.e., spatial dependence). In the second-stage, the study employed a data-driven approach, 

which used three different community detection algorithms to construct three artificial network 

communities with known structures and included in the stochastic frontier SEM model to account 
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for spatial heterogeneity. Finally, due to the hierarchical nature of the egocentric networks, the 

study employed an additive spatial survival cox model to examine the distributive mechanisms of 

productivity benefits in egocentric information networks. 

6.2 Summary of results 

In chapter two, the empirical results show that ICT-based extension channels, perform better, in 

terms of inoculant knowledge gain 205%, yields 151% and farm net returns 88%, compared to 

conventional extension channels 42%, 148% and 86%, respectively. However, in terms of the 

likelihood of adoption, conventional extension channels had higher impacts on adoption, compared 

to ICT-based channels. The results suggest that both ICT-based and conventional extension 

channels are equally effective and can be used independently to disseminate information about new 

agricultural technologies to farmers. Furthermore, inter-channel comparison between ICT-based 

and conventional extension channels show that farmers who reside far away from extension agents 

tend to substitute ICT-based extension channels for conventional extension.  

The study in chapter three, showed that high impact heterogeneity exists among farmers at different 

adoption states, the pursuit of which may be driving farmers adoption transition decisions. The 

study observed that farmers at advanced adoption states, on average, obtained yields and farm net 

returns that were more than twice that of the previous adoption states. Also, the study found that 

extension contact was central to the adoption process, through its influence on knowledge 

acquisition leading to adoption and continued adoption. The study found that free distribution of 

newly developed divisible agricultural technologies, such as the inoculant, to farmers during 

dissemination programs increased farmer awareness, knowledge acquisition, trial and take-up, but 

does not guarantee continued adoption. Rather, the existence of efficient input markets tend to drive 

the probability of continued adoption. Furthermore, the results revealed that the stronger the 

farmer’s anticipation of long-term benefits from adopting a particular technology, the higher the 
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probability to continue their adoption of the technology, which is conditional on the markets being 

able to absorb the excess supply that may result from higher yields. Finally, the results revealed 

that there exist unrealized potential gains for farmers, who reach trial adoption states but could not 

continue to further adoption states, suggesting that different population of farmers may require 

different policy strategies to sustain their adoption. 

In chapter four, the study revealed that both adoption of improved agricultural technologies and 

extension participation had varied influence on productivity, efficiency and welfare gains, 

however, the former’s influence outweighed the latter. The adoption of improved technology alone 

raised farm productivity by 72%, farmer efficiency by 73%, and improvement in welfare by 77%. 

On the other hand, extension participation alone improved productivity by 28%, farmer efficiency 

by 27%, and improvement in welfare by 23%. Although the results suggest that the adoption of 

improved agricultural technology impact was greater than extension delivery, the study found that 

the synergic effect of the two was far greater than the individual effects. The study further revealed 

that rural electrification positively affects technology diffusion and adoption, through storage of 

agro-inputs and perishable agro-based products, which must be stored under specific storage 

conditions. 

The study in chapter five showed that, farmers’ technical efficiency strongly correlate with that of 

farmers in their egocentric information networks. Specifically, the study found that 19 percent of 

farmer’s technical inefficiency emanates from their colleague farmers from whom they take 

farming advice, all things being equal. In addition, the study found that farmers who share farming 

information with technically efficient farmers, all things being equal, were more likely to be 

technically efficient. Though the study found mutual interdependency between technically efficient 

farmers, inefficient farmers were found to be more dependent on efficient farmers in their 

egocentric information networks, compared to efficient farmers. Thus, indicating that inefficient 
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farmers were ready to learn from high performing peers in their egocentric information networks. 

The study revealed that to a large extent, the level of the egocentric information network influence 

on the technical efficiency of farmers was network-specific and varied according to the nature of 

social ties between farmers in the network community. For instance, network communities 

characterized by farmers with high eigenvector centrality and transitivity (i.e., social important 

farmers and social cohesion) experienced the highest increased efficiency, compared to other social 

ties. In terms of the number of farmers, study found that egocentric information networks 

characterized by high eccentricity and high betweeness centrality (i.e., shorter social distance and 

powerful information bridge farmers) have the potential to reach more farmers 72%, compared to 

all egocentric network communities. The study also found that the density of educated farmers in 

the egocentric information networks contributes positively to the networks impact on productivity 

gains of farmers in the network. 

6.3 Policy implications 

The fact that ICT-based extension channel comparatively outperformed conventional extension 

suggests that ICT-based extension services could be a viable alternative to conventional extension 

service provision. Hence, policy-makers should consider investing in expansion of ICT 

infrastructure such as installation of mobile communication masses across farming communities to 

improve the signal reception strength in these areas in order to scale-up the effectiveness of mobile 

phone, television and radio signals. This will enable state agencies and other stakeholders to 

minimize cost by employing limited but specialized staff to transmit agricultural extension 

information to farmers from centralized locations. Moreover, to the extent that ICT-based extension 

services remove direct person-to-person contact from extension service delivery, religious and 

cultural barriers could be overcomed, in order to promote equitable access to extension services by 

all farm households. In particular, female farm households living in conservative farming 
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communities with strict socio-cultural and religious norms in the developing countries. 

Furthermore, the finding that access to electricity exerts a positive effects on farmers’ likelihood 

of participation in ICT-based extension and inoculant adoption, suggests that policymakers 

investment in rural electrification could facilitate the extension delivery digitization to boost 

technology adoption, agricultural productivity, incomes, as well as food and nutrition security. 

Finally, findings that there still exist untapped potential gains at some adoption states to be realized, 

implies that in technology diffusion and adoption policymakers should consider identifying and 

targeting different sub-population of farmers, who require special attention during extension 

program implementation, in order to maximize the program impact. The extension targeting policy 

will save resources and expand the outreach to benefit more farmers, thus increasing productivity 

at least cost.  

Furthermore, findings that both extension participation and improved technology adoption show 

positive impact on productivity, efficiency and welfare, indicate that policymakers should invest 

in extension and research development aimed at developing new agricultural technologies in order 

to enhance food productivity and incomes of farm households. In addition, because the key IV (i.e., 

community connection to national electricity grid) used to identify the impacts show positive 

significant results, suggest that policymakers’ investment on rural electrification in developing 

countries will go a long way to contribute to the adoption of new agricultural technologies, thereby 

increasing farm incomes and reducing rural poverty. The investment in rural electrification will 

also drive the development and expansion in rural enterprises such as sales of agro-inputs and 

perishable agro-based products, which must be stored under specific storage conditions. Finally, 

the investment in rural electrification will also facilitate the deployment of new channels of 

extension delivery via information and communication technologies (ICT) channels, as a long-term 

strategy to cut down public expenditure on extension delivery. 
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Finally, the findings that egocentric information networks play a critical role in influencing 

farmers’ technical efficiency, implies that identifying central farmers’ in egocentric networks and 

improving their technical knowledge in a farmer-to-farmer extension organization, can leverage 

the limited extension agents, to improve productivity of many farmers. 
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Appendices 

Appendix 1: Household Survey Questionnaire   

     

  

Part I: Survey Instrument (A) 

Introduction: 

This survey is part of a comprehensive study aim at “Assessing the impact of ICT-Based 

Agricultural Extension Services on farmer knowledge, adoption, productivity, household welfare 

and farmers’ willingness to pay for the service in Ghana.” The study is purely academic leading 

to an award of a PhD and does NOT intend to gather data on respondents for purposes of 

commerce, taxation, security or any other interest as to the detriment of the person, business, and 

human rights of respondents. I will therefore like to assure you of full anonymity and will not under 

any circumstance disclose any specific information attributed to you or your associates. Despite 

these assurances, you have the right to recuse yourself from taking part in the survey, if you think 

is necessary to do so. However, if you decide to go ahead and participate, it is my great pleasure to 

thank you for accepting to contribute to agricultural development policies of the country by offering 

yourself to be interviewed for purposes of generate data to this noble course. Once again, I thank 

you very much for participating.     
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SECTION A: TRACKING INFORMATION 

A.1: Questionnaire Identification: 

Questionnaire 
Number 

Start 
Time 

End 
Time 

Enumerator’s Identity Code Date 

     

Net Time    

 

A.2: Household Identification: 

House 
Number 

Household 
Code 

Respondent’s 
Name 

Contact 
Number 

GPS Coordinates 

    Longitude Latitude Altitude 

 
 

  

Project Status Inoculant Usage Status Respondent Type 

Participant = [1] 
 
Non-Participant = [0] 

User = [1] 
 
Non-User = [0] 

Principal Respondent = [1] 
 
Principal Respondent’s Spouse = [2] 
 
Principal Respondent’s Network = [3] 

 

A.3: District Identification: 

District Name District Code GPS Coordinates 

  Longitude Latitude Altitude 

 
 

  

 

A.4: Regional Identification: 

Region Name Region Code GPS Coordinates 

  Longitude Latitude Altitude 
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SECTION B: BACKGROUND OF RESPONDENT AND HOUSEHOLD INFORMATION 

B: Background of respondent (A) 

Status of Respondent in 

Household 

Biographical Data Socio-economic Data 

Ba.1a. Head: Yes=[1]; No=[2] 

Ba.1b. If not head, relationship 

to household head: [    ] 

Ba.2a. Do you have any title in 

the community? 

[Yes=1]/[No=2] 

Ba.2b. If yes, 

specify…………………… 

Ba.3. Sex: Male=[1]; 

Female=[2] 

Ba.4. Age (yrs.): [    ] 

Ba.5a. Marital status: [   ] 

Ba.5b. If male and married, 

specify # of wives: [    ] 

Ba.6. Religion: [    ] 

Ba.7. Years of schooling: [    ] 

Ba.8. Form of education: [    ] 

Ba.9. Ethnicity: [     ] 

Relationship to HH: 1=Wife, 2=husband, 3=Sibling, 4=Relative, 5=Father-in-Law, 6=Mother-in-Law, 7= Other 

relations (specify)……………………  

Religion: 1=Islam, 2=Christianity, 3=ATR, 4=Others (specify)……………  

 Marital Status: 1=Married, 2=Single, 3=Divorce, 4=Widow/Widower 

Form of Education: 1=Formal, 2=Non-formal education, 3= Islamic/Arabic 4=None, 5=Others (specify)……… 

Ethnicity: 1=Dagomba, 2=Gonja, 3=Vagla, 4=Dagaati, 5=Wali, 6=Sissala, 7=Guru, 8=Kasen, 9=Bulu, 

10=Kusasi, 11=Fulani, 12=Konkomba, 13=Binmoba, 14=Mamprusi, 15=Nanumba, 16=Bassari, 17=other 

(specify)………… 

 

 

B.10. Household Members Distribution (B) 

HH Population 

Summary 

Male 

Memb

ers 

Ages 

(yrs) 

Yrs of 

schooling 

Female 

Members 

Ages 

(yrs) 

Yrs of 

Schooling 

Total #of Males: [       ] 1st      1st      

Total #of Females:[      ] 2nd      2nd      

Total HH Size: [         ] 3rd      3rd      

  4th      4th      

  5th      5th      

  6th      6th      

  7th      7th      

  8th      8th      

  9th      9th      

  10th      10th      
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B: Household Migration Information (C) 

Bc.11. Within the last two years, has someone (including yourself) travel into the house from a 

different community or out of the house to a different community? Please provide your answers in 

the table below. 

Travel Type  
#of People: [            ]  

Frequency of 
Travel (# of 
Times)  

Destination of 
Travel 

Have they 
returned? 
[Yes=1]/[No=2] #of Male #of 

Female 

Move into the 
house from 
different 
community 

     

Move out of the 
house to 
different 
community 

     

Travel Destination Codes: 1=Community within the district, 2=Community in a different district within the same 
region, 3=Community in a different district in a different region 

 

B: Household Occupation Information (D) 

Bd.12a. Is farming your major occupation? [Yes=1]/[No=2] 

Bd.12b. If farming is not your major occupation, please complete the table below. 

Name of Major Occupation Income/Month (GHC) 

  

Bd.13. Aside your major occupation, which other minor occupation(s) do you engage in for a 

living? (Please give details of your other minor occupation(s) in the table below). 

No.  Occupation Yes=[1] 

No=[2] 

Income per 

Week 

(GHC/wk) 

1 Pito /Akpeteshi Brewing    

2 Palm Oil Processing   

3 Sheabutter/groundnut oil extraction   

4 Mining (quarrying, gold winning, etc)   

5 Corn Dough processor   

6 Charcoal/firewood selling   

7 Artisan (blacksmith, carpentry, tailoring, Mason, 

construction work, etc) 

  

8 Livestock/Fish farming    

9 Basket weaving/ Pottery    

10 General trade in agricultural produce   

11 Smock weaving    

12 General trade in non-agricultural produce    

13 Agro-inputs (Sell cutlasses, hoe, fertilizer, etc)   
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14 Farm Hand     

15 Hire out equipment (tractor, bullock, donkey, etc)   

16 Butcher    

17 Gari Processing   

19 Petty trading/Retailing/Trader   

20 Teaching   

21 Crop farming   

22 Rural Telecommunication service (e.g mobile money, etc)   

23 Others (specify)……………………   

 

B: Households Resource Endowment (E) 

Be.14. I will like to know which of the following productive assets do your household possess? 

(Please provide your answer in the table below) 

Item 
 

Yes=1 
No=2 

How 
many 
(Number) 

How much can you buy 
one of these items 
currently (GHC) 

Who has more control 
over the assets in the 
household? 
Males=[1] Females=[0] 

Large livestock (oxen, cattle)     

Small livestock (goats, pigs, 
sheep) 

    

Poultry (Chickens, Ducks, 
Turkeys, Pigeons) 

    

Fish pond or fishing 
equipment 

    

Farm equipment (non-
mechanized) e.g. Cutlass, 
hoe, bullock, etc 

    

Farm equipment 
(mechanized) e.g. tractor, 
plough, Sheller/Thresher, 
etc 

    

Nonfarm business 
equipment 

    

House (and other 
structures) that are rented 
out to tenants 

    

Large consumer durables 
(fridge, TV, sofa) 

    

Small consumer durables 
(radio, cookware) 

    

Cell phone     

Means of transportation 
(bicycle 

motorcycle, car)  
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Be.15. Please I will like to know, whether in the past two years you have borrowed money from 

any source to assist your farming. Please provide details of your borrowing(s) in the table below. 

Have you 
applied 
for credit 
in the 
last 
2years? 
Yes=1 ; 
N=2 

If yes, 
what was 
the 
purpose 
for the 
credit? 

From 
which 
lending 
source? 

Outcome of 
credit 
application 
(Yes, I got 
all=1; 
Yes, I got but 
not all=2;  
No, I did not 
get=3) 

How much 
did you 
apply for? 
(GHC) 

How much did 
you get (GHC) 

Did you apply 
for more? 
Yes=1; No=2 

       

       
Purpose of Credit Codes: 1=To farm, 2=To trade, 3=To buy a capital asset, 4=To buy food for the house, 5=To 
pay school fees, 6=To meet health needs, 7=Other (specify)…………. 
Lending Source Codes: 1=Bank, 2=NGO, 3=MFI, 4=Money lender, 5=Friend/Relative, Other (specify)……… 

 

Be.16. I like to know how you access land for your farming. Please provide your answer in the 

table below. 

No.  Farm Land Land Size 

(acres) 

Type of land 

ownership: 

(1) Owner cultivated  

(2) Rented  

(3) Cultivated on 

share crop agreement 

(4) Borrowed 

1 What is the total land size available to you for 

farming? 

  

2 What portion of the land is currently 

cultivated? 

  

3 What portion of the land is fallowing?   

4 What portion of your land is still virgin 

(uncultivated) 

  

 Other land not used for agricultural purposes 

(pieces, residential or commercial land) 

  

5 If land is owner cultivated, which of the 

following best describe your ownership? 

(1) Family owned  

(2) Community owned  

(3) Personal ownership by purchase  

(4) Borrowed  

(5) Other (specify)………………… 

6 If land is borrowed or share cropped, what are 

the terms of agreement? 

(1) Borrowed for a period for free   

(2) Share crop/income from sale 1:1    

(3) Share crop/income from sale 2:1 

(Land lord: tenant)    
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(4) Share crop/income from sale 1:2  

(Land lord: tenant)  

(5) Other (specify) ......................... 

 Costing of Land 

7 If land rented or purchased, how much do you 

pay for year?  

GHC: [                      ] 

8 If leased, specific number of years and how 

much? 

Duration (Yrs.): [      ] and Amount 

GHC: [                    ] 

9 If owner cultivated, how much could you have 

paid for it? 

GHC: [               ] or  Bags that could 

have been given to owner:[               ] 

10 Will you consider making a permanent 

investment such planting trees on the land you 

currently cultivate? 

Yes=[1]; No=[2] 

 

B: Summary of Respondent Farming History (F) 

 Bf.17. For the past two seasons, what crop(s) did you cultivate? Please provide your answers in 

the table below. 

No. Crop 
Type 

Crop  Name of Variety  Plot 
Size/# of 
Acres 

Cropping System 
[Mixed=1]/[Mono=2] 

Season (1): 2016 

      

      

      

      

      

      

      

Season (2): 2017 

      

      

      

      

      

      

      
Crop Type Codes: 1=legume grains, 2=cereal grains and 3=roots and tubers, 4=vegetable 
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 
10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)……….  
Soyabean Varieties Code: 1=Afayak, 2=Janguma, 3=Salintuaya, 4=Quarshie, 5=Others (specify)…………. 
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SECTION C: RESPONDENT FBO MEMBERSHIP INFORMATION  

C.18. Please in the table below, I will like to know your involvement in group activities in the 

community. 

Group 
Membership 

Is there any 
of these 
groups in this 
community 
or nearby 
community? 
(Yes=1; No=2)  

Are you a 
member 
of the 
group? 
(Yes=1; 
No=2) 

If a member, what is 
the total membership 
(# of People) 

How old is 
the group? 
(# of 
Years) 

How long 
have you 
been in the 
group? (# of 
Years) 

 
 
Total: [            ] 

   #of Male #of 
Female 

  

Producer-Base 
FBOs, e.g. 
(Agricultural / 
livestock/ 
fisheries 
producer’s 
group, etc.)  

      

Market and 
Value Addition-
Based FBOs, e.g. 
(marketing 
groups, 
processing, etc) 

      

Water users’ 
group 

      

Forest users’ 
group 

      

Credit or 
microfinance 
group  

      

Mutual help or 
insurance group  

      

Civic groups 
(improving 
community) or 
charitable group 
(helping others) 

      

Local 
government 

      

Religious group       

Other (specify)       
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C.19a. Sometime ago some groups from communities in this district were selected to benefit from 

an extension service support; please I will like to know whether your FBO/group was among those 

selected? Yes= [1];N =[2] 

(Please if the answer to C.19a is no, go to question number C.25a). 

C.19b.If yes to (19a) above, please complete the table below.  

Which type of 
extension Service did 
your group receive? 

Number of 
Sessions 
Participated 

Number of 
Sessions Not-
Participated 

Length of 
Time/Session 

How was the 
venue of the 
sessions that 
you 
participated?  
(Enclose 
Venue=1; Open 
Venue=2) 

     

     

     
Extension Service Types: 1=Video Documentary, 2=Radio Listening, 3=Face-to-Face (Field days and 
Demonstrations) Contact, 4= Video Documentary, Radio Listening and Face-To-Face combined, 5=Video 
Documentary and Radio Listening combined, 6=Video Documentary and Face-To-Face combined, 7=Radio 
Listening and Face-To-Face combined, 8=Other (specify)…… 

 

C.20. Please, how will you rate the noise level of the venue(s) in which the sessions you 

participated was held? 

Very High=4 High=3 Low=2 Very Quiet =1 

[         ] [         ] [         ] [         ] 

 

C.21. Please, how will you rate the clarity level of the video/radio content in the sessions that you 

participated? 

Very High=4 High=3 Low=2 Not Clear =1 

[         ] [         ] [         ] [         ] 

 

C.22. Which of these observations/opinions do you share concerning the sessions that you 

participated in? 

No. observations/opinions Level of Agreement: (1= 
strongly disagree , 

disagree=2, partly agree=3, 
agreed=4, strongly 

agree=5) 

Video Documentary  

 The people in the video did not appear to be in real farming 
situation. 

 

 I did not understand the language the people in the video were 
speaking. 

 

 There were breakages in the video  
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 The pictures in the video were blurred   

 There were plenty people at the venue where I watch the video 
and so I could not see and hear very well 

 

 I was sick and so could not pay attention  

 I have hearing problem personally and so did not hear the people 
in the video very well 

 

Radio Listening Club  

 I did not understand the language the people in the radio were 
speaking. 

 

 There were breakages in the radio transmission  

 There were plenty people at the venue where I did the listening 
and so I could not hear very well. 

 

 I was sick and so could not pay attention  

 I have hearing problem personally and so did not hear the people 
in the radio very well 

 

Field Demonstrations/Field Days  

 I have hearing problem personally and so could not hear the very 
well 

 

 I was sick and so could not pay attention  

 I did not understand the language they were speaking.  

 There were plenty people so I could not hear and see very well.  

C.23. Since benefiting from the extension service, how many people have you shared the 

inoculant information with? [       ] 

C.24. How many farmers have come to ask you about the inoculant? [       ] 

C.25a. Has your group ever received support from any organization in the last two years? 

Yes=[1]; No=[2] 

C.25b. If yes, which organization?........................................................................................ 

C.26. What form of support did you receive? (Give details of the support received in the table 

below) 

Form of Support Yes=1; 
No=2 

What was the purpose of the 
support? 

How long did 
the support 
last? 
(Months) 

How long did 
you 
participate? 
(Months) 

Training     

Extension services     

Input credit     

Cash credit     

Watch videos     

Listened to radio     
Purpose Code: 1=New input use, 2=Processing, 3=Animal rearing, 4=Others (specify)………………. 
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SECTION D: INOCULANT INFORMATION 

D: Farmer Awareness of Inoculant and Usage (A) 

Da.27a. Have you heard of a new product called inoculant? Yes = [1] ;  No = [2] 

Da.27b. Which year did you first heard of it? [           ] 

Da.27c. If yes to Da.27a above, give details about how you heard of the inoculant by completing 

this table below.  

Source 

Y

e

s

=

1 

N

o

=

2 

Loc

atio

n of 

Sour

ce  

(Wit

hin 

Com

muni

ty=1 

Outs

ide 

Com

muni

ty=2

) 

Dista

nce 

to the 

sourc

e 

Where did 

you first 

come to 

contact 

with the 

Source 

(s)? 

How many 

minutes/days 

did you spend 

with the source 

in your first 

contact? 

Since your first 

contact with the 

source (s), how 

many times did 

you contact the 

source (s) again? 

How 

long did 

the 

subsequ

ent 

contacts 

with 

source 

last? 

Input 

dealer               

Friend               

Family 

member               

Trader               

FBO               

Agric 

T.O               

SARI 

Extensio

n 

Service               

Radio 

Set               

Radio 

from a 

mobile 

phone               

Radio 

from 

internet               

TV               
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Video 

from a 

mobile 

PHONE               

Video 

from a 

mobile 

VAN               

Video 

set               

Video 

from 

internet               

Poster/F

lier               

NGO               

Internet 

Website               

Tractor 

operator               

 Others               

 

Da.28a. Have you used the inoculant? Yes = [1] ;  No = [2] 

Da.28b. If yes, when did you start using the inoculant? [              ] 

Da.29. If you have not used the inoculant, do you have the intension to use it in future?   Yes = [1] 

;  No = [2] 

Da.30a. If no, why……………………………………………………………………………… 

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

 

Da.30b. If yes, why do you intend to use it?............................................................................. 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

 

(If no to question number Da.28a above attend to Da.29, Da.30a and Da.30b, and then skip to the 

next section). 

 

 

 

 

 



252 
 

Da.31. If yes to Da.28a, please provide your inoculant usage details in the table below. 

Year Crop  

Crop 

Variety 

Qty of 

Inoculant 

Purchased (# 

of packets) - A 

Unit 

Cost 

(GHC) - 

B 

Auxiliary 

Material 

Cost 

(GHC) - C  

Qty of 

Inoculant 

Used (# of 

packets) 

Qty of 

Inoculant 

Left (# of 

packets) 

             

             

             

             

             

How long did you keep the inoculant before using it? (Days)…………………………… 
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 

10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)……….  
Soyabean Varieties Code: 1=Afayak, 2=Janguma, 3=Salintuaya, 4=Quarshie, 5=Others (specify)…………. 

 

Da.32a. Do you still use the inoculant? Yes = [1] ;  No = [2] 

Da.32b. If no, why have you stop using it?............................................................................ 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

Da.33. If surplus inoculant was left as indicated in (column 8) of the table (Da.31) above, what did 

you do to the remaining inoculant (if any)?  

a). Give out to somebody  

b). Re-sold 

c). Stored for future use  

d). Nothing remained  

e). Other (specify……………….) 

 

Da.34a. How will you describe your crop yield in the year that you use the inoculant to your 

previous yield without the inoculant?  

a). Very high, b). High, c). Normal, d). Low, e). Very low 
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Da.34b. Please provide details of your yield using the inoculant compare to previous yield without 

using inoculant in the table below   

Year/Se

ason Crop 

Crop 

Variety 

Plot Size 

(Acres)  

(Was it included 

in the # of plots 

given in the 

summary? 

[Yes=1;No=2]) 

Total 

Yield 

(bags)  

Qty 

Given 

Out 

(bags) 

Qty 

Sold 

(bags) 

Qty 

Cons

umed 

(bags

) 

 With Inoculant  

 Year 1               

                

                

                

                

 Year 2               

        

        

        

        

 Previous Yield Without Using Inoculant   

 Year 1               

        

        

        

        

 Year 2        

        

        

        

        

        
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 

9=cassava, 10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)……….  
Soyabean Varieties Code: 1=Afayak, 2=Janguma, 3=Salintuaya, 4=Quarshie, 5=Others (specify)…………. 

 

 

 

 

 

 

 

 



254 
 

Da.34c. If you sold portion or the entire yield as in (column 7) in the table (Da.34b) above, please 

provide details of the sale(s) in the table below 

Year/Se

ason Crop 

Period 

of Year 

Sold 

(Month

) 

Qty 

Sold 

(bags) 

Unit 

Price 

(GHC) 

Total 

Sales 

(GHC) 

Point of 

Sale 

(Fill in 

code 

below) 

Distanc

e to 

Market 

(Miles) 

Market

ing 

Cost 

(GHC) 

 Year 1              

               

               

         

 Year 2              

               

         

         

         
Points of Sale: Farmer’s farm=1, Farmer’s house=2, Own village market=3, Neighbouring community market=4, 

District capital market=5, Regional capital market=6, Distant market=7, FBO=8, NGO=9, Private company=10 

 

Da.35. After using the inoculant, which other additional agro-input(s) did you use on that farm 

during that season? (Please provide details of other additional agro-inputs used on the farm in the 

table below) 

 

Crop Agro-Input Name 

Qty (# of 

bags or 

litres) 

Unit Cost 

(GHC)/bag 

or litre 

Auxiliary 

Cost (GHC) 

Total Cost 

(GHC) 

 Year 1 

          

          

          

          

      

 Year 2 

      

      

      

      

      
Input Codes: 1=NPK, 2=SA, 3 Urea, 4=Weedicides, 5=Field pesticide, 6=Storage pesticides, 7=Organic (Animal 

manure, Biochar, Manure), 8=Inoculant, 9=Other (specify)………. 

Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 

10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)………. 

 



255 
 

Da.36. How will you compare the cost of using the inoculant in your farm production to that of 

fertilizer? 

a). Very Cheap, b). Cheap, c). Costly, d). Very Costly, e). Don’t Know  

 

Da.37. How much cost in terms of labour did you spend on the following activities on the farm that 

you use the inoculant on? (Please provide details in the table below).  

 Farm Labour Use History 

Cro
p 

Activi
ty 

Family Labour Hired/Communal Labour 

  Male Female Male Female 

  # of 
Perso
ns 

# of 
days 
work
ed 

# of 
Perso
ns 

# of 
days 
work
ed 

# of 
Perso
ns 

# of 
days 
work
ed 

Price/d
ay 

# of 
Perso
ns 

# of 
days 
work
ed 

Price/d
ay 

 Year 1 

            

            

            

            

            

            

            

            

            

 Year 2 

            

            

            

            

            

            

            

            
Activity Codes: 1=Initial Land Preparation (clearing/ stumping), 2=Manual Ploughing/Ridging, 3=Planting/sowing, 
4=1st Herbicide/weedicide application, 5=1st Manual Weeding, 6=1st Fertilizer application, 7=2nd 
Herbicide/weedicide application, 8=2nd Manual Weeding, 9=2nd Fertilizer application, 10=Pesticides/Fungicides 
application, 11=Harvesting, 12=Primary processing, 35=Bagging, 14=Transportation, 15=Feeding, 16=Other 
(specify)………. 
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Da.38. What mechanization services did you use on the farm that you used the inoculant? Please 

provide details of the services in the table below. 

Tractor and Mechanization Services 

Crop Activity Mechanization 
Service Type 

Unit Price (GHC) Total Units Equipment 
Ownership 
(Farmer’s 
Own=1 
Hired=2) 

 Year 1 

      

      

      

      

      

 Year 2 

      

      

      

      

      

      
Activity Codes: 1=Ploughing/Ripping, 2=Harrowing, 3=Harvesting, 4=Primary processing, 5=Transportation 
Services Codes: 1=Tractor, 2=Bullock/drawn animals, 3=Moto-King, Combine Harvester, 4=Sheller/Thrasher, 
5=Other (specify)………. 

 

 

D: Inoculant Knowledge Test (B)  

(This section is to be completed for Participant and inoculant User as well as dealers and 

researcher, trainers of inoculant) 

 

Db.39. How many types of inoculants (according to the legume type) do you know of? [      ] 

Db.40. Which of these crops seeds can the inoculant be applied directly on?  

No. Crop Correctly identified=1; Wrongly identified=0 

1 Cowpea  

2 Soya beans  

3 Groundnuts  

4 Maize  

5 Rice  

6 Yam  

7 Sorghum  

8 Millet  

9 Others (specify….)  
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Db.41a. If you see an inoculant can you identify it? Yes=[1]; [No=[2] 

Db.41b. If yes, which of these sachets contain an inoculant? (Note inoculant types plus a placebo 

inoculant to be provided, as specimen, for physical identification test). 

No.  Specimen Correctly identified=1; Wrongly identified=0 

1 Specimen A  

2 Specimen B  

3 Specimen C  

4 Specimen D  

Total   

 

Db.42. What quantity of inoculant is recommended for an acre of land?  

Number Packets: [            ] or  in Kilograms: [             ] 

 

Db.43. What is the recommended quantities of the items/materials use in the preparation and 

application of the inoculant? (Please provide your answers in the table below). 

No. Recommended Item/Material  Recommended Quantity Required 

1 Water  

2 Sticker or Sugar  

3 Inoculant  

4 Seeds  

Total   

 

Db.44. Can you described how you used the inoculant in your farm? (Please follow the steps as 

was described to you or by the person that taught you how to use the inoculant)  

I…………….………………………………………………………………………………….. 

…………………………………………………………………………………………………… 

II………………………………………………………………………………………………… 

…………………………………………………………………………………………………… 

III…………………………………………………………………………………………………. 

……………………………………………………………………………………………………. 

……………………………………………………………………………………………………. 

IV……………….……………………………………………………………………………… 

…………………………………………………………………………………………………… 

V……….………………………………………………………………………………………… 

…………………………………………………………………………………………………… 

VI………………………………………………………………………………………………… 
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…………………………………………………………………………………………………… 

VII……….……………………………………………………………………………………… 

…………………………………………………………………………………………………… 

…………………………………………………………………………………………………… 

Db.45. Which of the following statement(s) is or are true about inoculant preparations for 

application? 

No. Statement  True=1; False=0 

1 Do not soak the seeds to wet before inoculation.  

2 Do not dry the inoculated seeds for less than 30mins to 1hr.  

3 Do not sun-dry the inoculated seeds.  

4 Moisten the seeds before inoculation.  

5 Avoid exposing the inoculant to heat   

6 Do not mix inoculated seeds with fertilizer or any chemical  

7 Do not plant inoculated seeds when the soil is dry and hot  

8 Preferably, plant inoculated seeds in the late afternoon or when the 
weather is cool 

 

9 Do not use expire inoculants to inoculate your seeds  

10 Check the label to ensure that you use the appropriate type of inoculant 
to inoculate your seeds 

 

11 Follow the right procedure to properly  inoculate your seeds  

12 Use inoculant with improved seeds for better results  

Total   

Db.46. Why is it recommended to carry out the following activities in the preparation and 

application of the inoculant? Please provide your answers in the table below. 

No. Recommended Activity Reason(s) 

 Air-dry inoculated seeds under a shade or 
environment. 

 
 
 

 Using a sticker or (sugar solution) to 
moisten seeds before inoculation. 

 
 
 

 Adequately dry inoculated seeds before 
sowing. 

 
 
 

D: Perceptions and Usage Experiences (C) 

Dc.47. What positive thing(s) have you observed on your farm or have you heard from those who 

have used the inoculant that have been attributed to the inoculant? 

 

………………………………………………………………………………………………… 

…………………………………………………………………………………………………. 

…………………………………………………………………………………………………. 
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Dc.48. What negative thing(s) have you observed on your farm or have you heard from those who 

have used the inoculant that have been attributed to the inoculant? 

…………………………………………………………………………………………………… 

…………………………………………………………………………………………………… 

…………………………………………………………………………………………………….. 

…………………………………………………………………………………………………….. 

 

Dc.49. In your observation or opinion, how can you compare fertility levels of fields/plots on which 

the inoculant has been used previously to fields/plots on which fertilizer has been used previously? 

Please provide your comparison in the table below. 

Input Type Old Field/Plot Fertility Status 

Fertility levels 
deteriorates after 
sometime=1 

Fertility levels 
enhances after 
sometime=2  

Don’t Know=3 

Fertilizer       

Inoculant     

 

Dc.50. Does the inoculant application have any negative effect on any of the following?  

No.  Areas of Perceived effects Yes=1; No=2 

1 Seed germination  

2 Soil fertility  

3 Plot weed level  

4 Pest and diseases in the plot  

5 Any other (specify)….  

 

Dc.51. What long-term effect(s) do you foresee the inoculant use to have on: 

(i) Farm lands?………………………………………………………………………… 

……………………………………………………………………………………… 

……………………………………………………………………………………… 

(ii) Humans/Animals?.............................................................................................. 

……………………………………………………………………………………… 

……………………………………………………………………………………… 

(iii) Any other (specify)………………………………………………………………… 

……………………………………………………………………………………… 
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Dc.52a. Which of the following constitute the recommended order for the application of the 

inoculant according to what you have heard from or being taught by the person(s)?  

Recommended Procedure Step: [1, 2, 3, 4, 5, 6, 7] 

Measure 1 kg ( or 1/2 Olonka) of the seeds to be inoculated in 
an appropriate basin/container 

[      ] 

Moisten the seeds with a sticker solution and stir uniformly [      ] 

Add about 5 g (or l leadcap of a mineral water bottle) of the 
inoculants to the moistened seed in the container 

[      ] 

Stir again gently and uniformly until the seeds are fairly evenly 

coated with the inoculants 

[      ] 

Spread the seeds on a sheet of canvas material and air-dry in a 
shade 

[      ] 

Allow inoculated seeds to dry for at least 30 minutes to 1 hour 

for inoculants to adequately stick onto the surface of the seeds 

[      ] 

Seeds can now be sown like the ordinary seeds [      ] 

 

Dc.52b. Which of the follow represents the recommended procedure for storing unused or left-over 

inoculant? 

No Recommended Procedure for Storage  True=1; False=0 

1 If opened tier to close tightly/cealed before storage  

2 Store in a fridge  

3 Store in any cold place  

4 It is not good to store inoculant in a defreezer or freezing 
conditions 

 

5 Avoid storage that are expose to heat  

6 Do not make store inoculant tend to ice block  

7 Do not store inoculated seeds   

8 Store the inoculant under temperatures not above 40 degrees   

Total   
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Dc.53. Which of the following opinion(s) do you share about the use of the inoculant? 

No.      

Opinions or Observations 

(1= strongly disagree , 
disagree=2, partly agree=3, 
agreed=4, strongly agree=5) 

1 The process of applying the inoculant is very difficult. [    ] 
2 The process of applying the inoculant is consistent 

with how traditionally people or our grandfathers use 

to add some blessings to their seeds before sowing 

them on the field. [    ] 
3 I have previously had extension contact on the use of 

the inoculant [    ] 
4 The questions on the knowledge test for the inoculant 

usage in this survey was very difficult for my 

understanding [    ] 
 

D: Cropping System Information (D) 

Dd: Inter-Cropping (A)  

Dda.54a. Did you inter-crop the field that you applied the inoculant on? Yes=[1]; No=[2] 

 

(If no to question number Dda.54a, please skip and go to Ddb.55) 

 

Dda.54b. If yes to Dda.54a, please provide details of the other crop(s) performance in the table 

below. 

Year Crop 

Crop 

Variety 

Farm Size 

(Acres) 

Total 

Yield 

(bags) 

Qty Given 

Out (bags) 

Qty 

Sold 

(bags) 

Qty 

Consumed 

(bags) 

                

                

                
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 

10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)……….  

 

Dda.54c. Please, if you sold portion or the entire yield as in (column 7) in table (Dda.54b) above, 

provide details of the sale(s) in the table below. 

Year Crop 

Period 

of Year 

Sold 

(Month

) 

Qty 

Sold 

(bags) 

Unit 

Price 

(GHC) 

Total 

Sales 

(GHC) 

Point of 

Sale 

(Fill in 

the code 

below) 

Distanc

e to 

Market 

(km) 

Market

ing cost 

(GHC) 

         

         
Points of Sale: Farmer’s farm=1, Farmer’s house=2, Own village market=3, Neighbouring community market=4, 

District capital market=5, Regional capital market=6, Distant market=7, FBO=8, NGO=9, Private company=10 
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Dd: Crop Rotation (B) 

Ddb.55a. Do you practice cropping rotation? Yes=[1]; [No=[2] 

 

Ddb.55b. If yes to Ddb.55a, did you rotate in the field(s) that you applied the inoculant on the 

previous year with any crop? Yes=[1]; [No=[2] 

(If no to question number Ddb.55b, please skip and go to E.59) 

  

Ddb.55c.If yes to Ddb.55a, please provide yield details in the table below. 

Year Crop 

Crop 

Variety 

Farm Size 

(Acres) 

Total 

Yield 

(bags) 

Qty Given 

Out (bags) 

Qty 

Sold 

(bags) 

Qty 

Consumed 

(bags) 

                

        

        
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 

10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)……….  

 

 

Ddb.55b. Please, if you sold portion or the entire yield as in (column 7) in table (Ddb.55a) above, 

provide details of the sale(s) in the table below. 

Year Crop 

Period of 

Year 

sold 

(Month) 

Total 

Qty Sold 

(bags) 

Unit 

Price 

(GHC) 

Point of 

Sale (Fill 

in code 

below) 

Distance 

to 

Market 

(Km) 

Marketi

ng cost 

(GHC) 

             

             

             

        
Points of Sale: Farmer’s farm=1, Farmer’s house=2, Own village market=3, Neighbouring community market=4, 

District capital market=5, Regional capital market=6, Distant market=7, FBO=8, NGO=9, Private company=10 

 

Ddb.56. What input types did you use on the rotated crops in that year? Please provide your 

answers in the table below. 

Rotated Crop Inputs Use History 

Crop Agro-Input Name 

Qty (# of 

bags or 

litres) 

Unit Cost 

(GHC)/bag 

or litre 

Auxiliary 

Cost (GHC) 

Total Cost 

(GHC) 

          

          

      
Input Codes: 1=NPK, 2=SA, 3 Urea, 4=Weedicides, 5=Field pesticide, 6=Storage pesticides, 7=Organic (Animal 

manure, Biochar, Manure), 8=Inoculant, 9=Other (specify)………. 

Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 

10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)………. 
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Ddb.57. How much cost in terms of labour did you spend on the following activities on the rotated 

crop field that year? (Please provide details in the table below).  

 

Rotated Crop Labour Use History 

Cro
p 

Activi
ty 

Family Labour Hired/Communal Labour 

  Male Female Male Female 

  # of 
Perso
ns 

# of 
days 
work
ed 

# of 
Perso
ns 

# of 
days 
work
ed 

# of 
Perso
ns 

# of 
days 
work
ed 

Price/d
ay 

# of 
Perso
ns 

# of 
days 
work
ed 

Price/d
ay 

            

            

            

            

            

            

            

            
Activity Codes: 1=Initial Land Preparation (clearing/ stumping), 2=Manual Ploughing/Ridging, 3=Planting/sowing, 
4=1st Herbicide/weedicide application, 5=1st Manual Weeding, 6=1st Fertilizer application, 7=2nd 
Herbicide/weedicide application, 8=2nd Manual Weeding, 9=2nd Fertilizer application, 10=Pesticides/Fungicides 
application, 11=Harvesting, 12=Primary processing, 35=Bagging, 14=Transportation, 15=Feeding, 16=Other 
(specify)………. 
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 
10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)………. 

 

Ddb.58. What mechanization services did you use on the rotated crop farm that year? Please 

provide details of the services in the table below. 

Rotated Crop Tractor and Mechanization Services 

Crop Activity Mechanization 
Service Type 

Unit Price (GHC) Total Units Equipment 
Ownership 
(Farmer’s 
Own=1 
Hired=2) 

      

      

      

      

      

      
Activity Codes: 1=Ploughing/Ripping, 2=Harrowing, 3=Harvesting, 4=Primary processing, 5=Transportation 
Services Codes: 1=Tractor, 2=Bullock/drawn animals, 3=Moto-King, Combine Harvester, 4=Sheller/Thrasher, 
5=Other (specify)………. 
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SECTION E: DIFUSION IN SOCIAL NETWORKS 

E.59. Which of the following membership category best describe your living status in this 

community? 

Category Yes 
=1; 
No=2 

If not born here, how 
long have you been 
living here? 

If not born here, how 
many times do you 
visit your original 
place of abode 
within a year? 

If not born here, 
how often do you 
call someone in 
your original place 
of abode to talk 
about farming? 
(Always=4; 
Sometimes=3; Very 
Rare=2; Never=1) 

I was born in this 
community 

    

My family migrated 
to this community  

    

I am a visiting 
farmer/trader in this 
community 

    

I am from a different 
community but 
works in this 
community 

    

I am from a different 
community but 
married to a man in 
this community 

     

Others (specify)……     
 

 

E.60. Please I will like to know more about your friends and family in this community. 

How many members of your family lives in this 
community? 

How many of your friends live in this 
community? 

  
 

 

E.61a. Do you know any farmer using the inoculant? Yes=[1]; No=[2] 

 

E.61b. If yes to E.61a, please complete the table below. 

# of farmers known using the 
inoculant? 

Are they still using the 
inoculant? Yes=[1]; No=[2]; 
Don’t Know=[3] 

If no, why have they stop? 
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E.62. Please kindly provide me the name of persons you normally share farming ideas or discuss 

farming matters with in this community. (Please provide list of persons in the table below) 

No. Name of Person Location of Person 
(Village and House 
name) 

What is your 
Relationship with the 
Person 

1    

2    

3    

4    

5    

6    

    
Relationship Codes: 1=Family member, 2=Friend, 3=Association member, 4=House neighbor, 5=Farm neighbor, 
6=Schoolmate, 7= Colleague in the same house, 8=In-Law, 9=Others (specify)….. 

 

E.63. I will like to know more about your interactions with the persons in the table (E.62) above. 

(Please provide details about your interactions in the table below). 

Name of 
Person 

Place of 
interaction 

Frequency of 
interaction 
(Every day=6, 
Every week=5, 
Every Two 
Weeks=4, 
Every 
Month=3, 
Every Year=2, 
Once in 
While=1) 

How often do 
you discuss 
farming issues 
with the 
person(s)? 
(Always=4; 
Sometimes=3; 
Very Rare=2; 
Never=1) 

What score out of 5 
will you give to 
things that the 
person ever told you 
about and it turns 
out to be true or 
correct. (Scale: 1 – 5; 
where 1 is least true 
and 5 is highly true) 

How long 
have you 
known the 
person (no. 
of years) 

1st person      

2nd person      

3rd person      

4th person      

5th person      

      
Place of interaction Codes: 1=market, 2=mosque/church, 3=party office/shade, 4=outdoorings/weddings, 
5=funerals, 6=journeying on a same vehicle, 7=football park/watching venue, 8=on the farm, 9=on the way to the 
farm, 10=Home visit, 11=Others(specify)……………… 

 

E: Farmer Information Networks (A) 

Ea.64a. Are you aware that in this community, some people had the opportunity to watch a video, 

(or attend field day or demonstration or listen to radio) about the inoculant? Yes=[1]; No=[2] 

 

 

 

 

 



266 
 

Ea.64b. If yes to E.64a, can you identify some of them by completing the table below? 

No. Name of Person Location of Person 
(Village and House 
name) 

What is your 
Relationship with the 
Person 

1    

2    

3    

4    

5    

6    

7    

    
Relationship Codes: 1=Family member, 2=Friend, 3=Association member, 4=House neighbor, 5=Farm neighbor, 
6=Schoolmate, 7= Colleague in the same house, 8=In-Law, 9=Others (specify)….. 

 

Ea.65. I will like to know more about your interactions with the persons you have identified in 

the table above. Please provide details about your interactions in the table below). 

Name of 
Person 

Place of 
interaction 

Frequency of interaction 
(Every day=6, Every week=5, Every Two 
Weeks=4, Every Month=3, Every Year=2, 
Once in While=1) 

How often do you 
discuss farming 
issues with the 
person(s)? 
(Always=4; 
Sometimes=3; Very 
Rare=2; Never=1) 

1st person    

2nd person    

3rd person    

4th person    

5th person    

6th person    

7th person    

    
Place of interaction Codes: 1=market, 2=mosque/church, 3=party office/shade, 4=outdoorings/weddings, 
5=funerals, 6=journeying on a same vehicle, 7=football park/watching venue, 8=on the farm, 9=on the way to 
the farm, 10=Home visit, 11=Others(specify)……………… 

 

Ea.66. Has any of these persons shared the information that he/she heard or saw about the 

inoculant from the video or radio with you? Yes=[1]; No=[2] 

Ea.67a. Have you asked any of these persons about the inoculant before? Yes=[1]; No=[2] 
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Ea.67b. If yes to Ea.67a, from which of these persons identified in the table above have you heard 

it from? (Please provide details of what you heard from them in the table below). 

Name of 
Person 

Yes=1; No=2 How long have 
you known the 
person (no. of 
years) 

What score out of 5 will you give to things 
that the person ever told you about and it 
turns out to be true or correct. (scale: 1 – 5; 
where 1 is least true and 5 is highly true) 

1st person    

2nd person    

3rd person    

4th person    

5th person    

6th person    

7th person    

8th person    

9th person    

10th person    
 

SECTION F: SOIL AND CLIMATE INFORMATION 

F.68. How can you describe the general fertility of the land on which you have been cultivating 

for the past two seasons?  

Very Fertile=1 Fertile=2 Somehow Fertile=3 Not Fertile=4 

[         ] [         ] [         ] [         ] 

 

F.69. How will you describe striga (Bochaa) situation on your field of cultivation for the past two 

seasons? 

Very severe=5 Severe=4 Somehow 
severe=3 

Not severe=2 No Bochaa=1 

[         ] [         ] [         ] [         ] [         ] 

 

 

F.70. How will you rate the amount of rainfall in your farming area for the past two seasons? 

Please provide your rating ranging from a score of 1, very poor to a score of 5, very high in the 

table below. 

Very poor=1 Poor=2 Somehow Good=3 Good=4 Very Good=1 

[         ] [         ] [         ] [         ] [         ] 
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F.71. Does the community has the following amenities? Yes=[1]; No=[0] 

Electricity Phone 
Reception 

Radio 
Reception 

TV 
Reception 

Market Agric. T.O Distance to 
district 
capital (Km) 

[         ] [         ] [         ] [         ] [         ]   

 

 

 

SECTION G: FARM PRODUCTION INFORMATION FOR ONLY NON-

PARTICIPANTS 

(Please refer to question number (Bf.17) list of crops given by the respondent and complete the 

tables below for Non-Participant and Non-User farmers) 

G.72.What number of bags did you obtain from your farm(s)? Please provide your answers in the 

table below. 

Farm Output History 

No  Crop Crop 
Variety 

Farm Size (# 
of Acres) 

Total Yield 
(bags) 

Qty Sold 
(bags) 

Qty 
Consumed 
(bags) 

Qty Given out 
(for labour & 
primary 
processing) 
(bags) 

Year 1 

        

        

        

        

        

        

        

        

        

        

Year 2 

        

        

        

        

        

        

        

        
Crop Type Codes: 1=legume grains, 2=cereal grains and 3=roots and tubers, 4=vegetable 
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 
10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)……….  

 

G.73. Please, if you sold portion or the entire yield as in (column 6) in table (G.71) above, provide 

details of the sale(s) in the table below. 
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Year/Sea

son Crop 

Period of 

Year 

sold 

(Month) 

Total 

Qty Sold 

(bags) 

Unit 

Price 

(GHC) 

Point of 

Sale (Fill 

in code 

below) 

Distance 

to 

Market 

(Km) 

Marketi

ng cost 

(GHC) 

             

        

        

        

        

        
Points of Sale: Farmer’s farm=1, Farmer’s house=2, Own village market=3, Neighbouring community market=4, 

District capital market=5, Regional capital market=6, Distant market=7, FBO=8, NGO=9, Private company=10 

 

 

G.74. What input type(s) did you use on your crops? Please provide your answers in the table 

below. 

Farm Input Use History 

Inpu
t 

1st Crop=[      ] 2nd Crop=[       ] 3rd Crop=[       ] 4th Crop=[       ] 5th Crop=[       ] 

 Qty/Acr
e 

Unit 
Price 
(GHC
) 

Qty/Acr
e 

Unit 
Price 
(GHC
) 

Qty/Acr
e 

Unit 
Price 
(GHC
) 

Qty/Acr
e 

Unit 
Price 
(GHC
) 

Qty/Acr
e 

Unit 
Price 
(GHC
) 

           

           

           

           

           
Input Codes: 1=NPK, 2=SA, 3 Urea, 4=Weedicides, 5=Field pesticide, 6=Storage pesticides, 7=Organic (Animal 
manure, Biochar, Manure), 8=Inoculant, 9=Other (specify)………. 
Crop Codes: 1=soya bean, 2=groundnut, 3=cowpea, 4=maize, 5=sorghum, 6=millet, 7=rice, 8=yam, 9=cassava, 
10=potato, 11=tomato, 12=onion, 13=sesame, 14=Other (specify)……….  
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G.75. How much labour (including yourself) did you use on the farm(s)? Please provide your 

answers in the table below. 

Farm Labour Use History 

Cro
p 

Activit
y 

Family Labour Hired/Communal Labour 

  Male Female Male Female 

  # of 
Person
s 

# of 
days 
worke
d 

# of 
Person
s 

# of 
days 
worke
d 

# of 
Person
s 

# of 
days 
worke
d 

Price/da
y 

# of 
Person
s 

# of 
days 
worke
d 

Price/da
y 

            

            

            

            
Activity Codes: 1=Initial Land Preparation (clearing/ stumping), 2=Manual Ploughing/Ridging, 3=Planting/sowing, 
4=1st Herbicide/weedicide application, 5=1st Manual Weeding, 6=1st Fertilizer application, 7=2nd 
Herbicide/weedicide application, 8=2nd Manual Weeding, 9=2nd Fertilizer application, 10=Pesticides/Fungicides 
application, 11=Harvesting, 12=Primary processing, 35=Bagging, 14=Transportation, 15=Feeding, 16=Other 
(specify)………. 

 

 

G.76. What mechanization services did you use on the farm(s)? Please provide details of the 

services in the table below. 

Tractor and Mechanization Services 

Crop Activity Mechanization 
Service Type 

Unit Price (GHC) Total Units Equipment 
Ownership 
(Farmer’s 
Own=1 
Hired=2) 

      

      

      

      
Activity Codes: 1=Ploughing/Ripping, 2=Harrowing, 3=Harvesting, 4=Primary processing, 5=Transportation 
Services Codes: 1=Tractor, 2=Bullock/drawn animals, 3=Moto-King, Combine Harvester, 4=Sheller/Thrasher, 
5=Other (specify)………. 

77a. Do you have any opinion or comment to add to this study? [Yes=1]/[No=2] 

77b. If yes, state comment…….……………………………………………………… 

END OF INTERVIEW 

THANK YOU FOR TAKING PART IN THIS SURVEY 

 

           



271 
 

 PART II: WTP FOR ICT-BASED AGRICULTURAL EXTENSION SERVICES 

Survey Instrument (B)  Date:………………………………… 

Region:………… District…………….Community………………….. House 

Number………………………Tel:……………………… 

Gender: [M] / [F]    Category: Participant [  ]  Non-Participant [  ]     Questionnaire Number: [       ]     

Enumerator’s Code: [       ] 

 

Introduction: 

 Imaging a situation where there exist very few or inadequate agricultural extension agents available to offer 

technical advices on good farming practices to farmers or deliver to farmers new techniques that can help increase 

their yield or farm output. Imagine that a certain organization wants to use modern technologies (e.g. mobile 

phones, videos, etc.) to offer technical advisory services and new techniques of farming to farmers at a cost. The 

system to offer this service to farmers is known as Agricultural Extension Services (AES). This is to bring 

agricultural extension services to farmers and facilitate farmers acquisition of new techniques of farming and 

good agronomic practices (GAPs) just like our mobile phones has shorten the distance between us and our friends 

and families across the world. There exist AES in other parts of the world and some parts of the country. This 

study is to help the organization know much about what farmers in this region will want the AES system to be 

and how much farmers in this region can afford to pay for such a service.  

 

The CT-Script 

However, similar studies have been conducted among farmers elsewhere and in some parts of this region to find 

out how much they were willing to pay for the AES usage. Some of the farmers quoted prices as high as GHC9 

– GHC10/month, some quoted GHC7 – GHC8/month and others quoted as low as 20pesewas – GHC1/month. 

To some people, it seems that some of the prices that were quoted by the farmers in those parts of the region were 

not being very realistic. I want you to be very honest and realistic and look at the three (3) different types of the 

AES systems provided in the tables that follow from the next pages and decide which AES system you will be 

willing to pay for. I will like to draw your attention to the need for you to be very realistic in your choice and do 

not think that after all you will not be ask to remove money now. Who knows, in the near future you will be 

confronted with the reality of the service and you will have to pay. So please I entreat you to be very realistic in 

your choice of AES system type according to their cost of service provision and how much you will be willing to 

pay. Thank you in advance for taken your precious time to help contribute to the study that will help inform 

agricultural policies in the country. 

I will like to assure you that the information you provide will be confidential and will not be attributed to you in 

anyway as may to harm you. 
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(C1/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C]  
 

AES-A 

 
 

AES-B 

 
 

AES-C 

 
 

NONE 

CHOICE SET-1 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of the 

service  
   

 

Information Specificity and Usefulness of 
the service  

 

100% Technical Knowledge 

and GAPs 

 

100% General Information 

 

50% Technical 

Knowledge + 50% 

General Information 

Accessibility of the service  

 

 

 

Information accuracy and trust level of 

the service  
 

 

 

Cost of service delivery (GHS/Month)  
 

 

 

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

22Msgs/Month 24HRS X 3/Week
3-8HRS + 2Msgs/Day

Farmer Can See and Hear
Farmer Can Only Read Message Farmer Can Only Hear but 

Cannot See
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1. (C2/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C]  
 

AES-A 

 
 

AES-B 

 
 

AES-C 

 
 

NONE 

CHOICE SET-2 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of 

the service  
 

 

 

 

Information Specificity and Usefulness 
of the service  

 

50% Technical Knowledge 

+ 50% General Information 

 

100% General Information 

 

100% Technical Knowledge 

and GAPs 

Accessibility of the service  
 

 

 

Information accuracy and trust 

level of the service  
 

 

 

Cost of service delivery 

(GHS/Month)   

 

 

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

 

24HRS X 3/Week
3-8HRS + 2Msgs/Day

22Msgs/Month

Farmer Can See and Hear Farmer Can Only Hear but 
Cannot See

Farmer Can Only Read Message
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2. (C3/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C]  
 

AES-A 

 
 

AES-B 

 
 

AES-C 

 
 

NONE 

CHOICE SET-3 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of 

the service  

 

 

 

 

Information Specificity and 
Usefulness of the service  

 

100% General Information 

 

100% Technical Knowledge 

and GAPs 

 

50% Technical Knowledge 

+ 50% General Information 

Accessibility of the service  

 

 

 

Information accuracy and trust 

level of the service  
 

 

 

Cost of service delivery 

(GHS/Month)  
 

 

 

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

 

22Msgs/Month
3-8HRS + 2Msgs/Day

24HRS X 3/Week

Farmer Can See and Hear
Farmer Can Only Read Message Farmer Can Only Hear but 

Cannot See
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3. (C4/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C]  
 

AES-A 

 
 

AES-B 

 
 

AES-C 

 
 

NONE 

CHOICE SET-4 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of the 

service  

 

 

 

 

Information Specificity and Usefulness of 
the service  

 

50% Technical Knowledge + 

50% General Information 

 

100% Technical Knowledge 

and GAPs 

 

100% General 

Information 

Accessibility of the service  

 

 

 

Information accuracy and trust level 

of the service  
 

 

 

Cost of service delivery (GHS/Month)  
 

 

 

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

 

22Msgs/Month
3-8HRS + 2Msgs/Day

24HRS X 3/Week

Farmer Can See and Hear
Farmer Can Only Read Message Farmer Can Only Hear but 

Cannot See
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4. (C5/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C] 

 
AES-A 

 
AES-B 

 
AES-C 

 
 

NONE 

CHOICE SET-5 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of 

the service  

 

 

 

 

Information Specificity and Usefulness 
of the service  

 

100% Technical Knowledge 

and GAPs 

 

50% Technical Knowledge 

+ 50% General Information 

 

100% General Information 

Accessibility of the service  

 

 

 

Information accuracy and trust 

level of the service  
 

 

 

Cost of service delivery 

(GHS/Month)  
 

 

 

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

 

22Msgs/Month 24HRS X 3/Week
3-8HRS + 2Msgs/Day

Farmer Can Only Hear but 
Cannot See

Farmer Can Only Read Message
Farmer Can See and Hear
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5. (C6/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C]  
 

AES-A 

 
 

AES-B 

 
 

AES-C 

 
 

NONE 

CHOICE SET-6 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of the 

service  
 

 

 

 

Information Specificity and Usefulness 
of the service  

 

100% Technical Knowledge 

and GAPs 

 

100% General Information 

 

50% Technical Knowledge 

+ 50% General Information 

Accessibility of the service  
 

 

 

Information accuracy and trust level 

of the service  
 

 

 

Cost of service delivery 

(GHS/Month)  
 

 

 

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

 

3-8HRS + 2Msgs/Day
24HRS X 3/Week 22Msgs/Month

Farmer Can Only Hear but 
Cannot See

Farmer Can Only Read Message
Farmer Can See and Hear



278 
 

6. (C7/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C]  
 

AES-A 

 
 

AES-B 

 
 

AES-C 

 
 

NONE 

CHOICE SET-7 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of the 

service  
 

 

 

 

Information Specificity and Usefulness of 
the service  

 

50% Technical Knowledge + 

50% General Information 

 

100% General Information 

 

100% Technical Knowledge 

and GAPs 

Accessibility of the service  

 

 

 

Information accuracy and trust level 

of the service  
 

 

 

Cost of service delivery (GHS/Month)  
 

  

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

 

24HRS X 3/Week 22Msgs/Month
3-8HRS + 2Msgs/Day

Farmer Can See and Hear Farmer Can Only Hear but 
Cannot See

Farmer Can Only Read Message
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7. (C8/C8). Please examine the three (3) different AES system types below, each with its own characteristics and cost of delivery. 

BLOCK [A]  [B]  [C]   
  
AES-A 

  
  
AES-B 

  
  
AES-C 

 
 

NONE 

CHOICE SET-8 

AES SERVICE ATTRIBUTES 

Reliability and Responsiveness of the 

service  

 

 

 

 

Information Specificity and Usefulness of 
the service  

 

100% Technical Knowledge 

and GAPs 

 

100% General Information 

 

50% Technical Knowledge + 

50% General Information 

Accessibility of the service  

 

 

 

Information accuracy and trust level 

of the service  
 

 

 

Cost of service delivery (GHS/Month)  
 

 

 

Which AES system will you be 

willing to pay for? 

[   ] [   ] [   ] [   ] 

 

24HRS X 3/Week 22Msgs/Month
3-8HRS + 2Msgs/Day

Farmer Can See and Hear Farmer Can Only Hear but 
Cannot See

Farmer Can Only Read Message
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8. How often did you consider the following attributes of the AES system types before you finally make the choices that you made? 

No. Attributes Never Rarely Sometimes Always 

1 Reliability and Responsiveness of the service  [    ] [    ] [    ] [    ] 

2 Information Specificity and Usefulness of the service  [    ] [    ] [    ] [    ] 

3 Accessibility of the service  [    ] [    ] [    ] [    ] 

4 Information accuracy and trust level of the service  [    ] [    ] [    ] [    ] 

5 Cost of service delivery  [    ] [    ] [    ] [    ] 

 

9. Please rate the AES attributes from ‘1’ to ‘10’, where ‘1’ is the least important attribute of the AES system to you and ‘10’ as the 

most important attribute of the AES system to you.  

No. Attributes Rating Scores: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 

1 Reliability and Responsiveness of the service  [    ] 

2 Information Specificity and Usefulness of the service  [    ] 

3 Accessibility of the service  [    ] 

4 Information accuracy and trust level of the service  [    ] 

5 Cost of service delivery  [    ] 

 

 

10. Please indicate to what extend do you agree or otherwise of the following statements? 

N

o. Attributes 

Level of Agreement: (1= strongly disagree , disagree=2, partly agree=3, 

agreed=4, strongly agree=5) 

1 All the attributes of the AES system types were important 

in my choice decisions  [    ] 

2 I understood fully the choice task I was faced with  [    ] 

3 I understood more than half of the choice task I was faced with  [    ] 

4 I understood less than half of the choice task I was faced with  [    ] 

5 I was very realistic in making the choices as I will do in a 

real world situation [    ] 
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11. How do you perceived the current agricultural extension delivery in the country or region to be? Please indicate your perception 

by agreeing to or otherwise of the following statements 

No.      

Attributes 

Level of Agreement: (1= strongly disagree , 

disagree=2, partly agree=3, agreed=4, 

strongly agree=5) 

1 I always get the extension agent anytime I want him/her  [    ] 

2 The extension agent always bring me new ways of farming [    ] 

3 The extension agent always bring the same old ways of farming [    ] 

4 Most of the things the extension agent always tell me fail to happen [    ] 

5 The extension agent is very important and useful to me in my farming [    ] 

6 The extension agent has been very helpful to me in my farming [    ] 

7 Most of the information the extension agent tells me is always too late for me to use [    ] 

8 I don’t always get the extension agent because I don’t have anything to give 

him/her  [    ] 

9 I don’t always get the extension agent because I am too far away from where 

he/she is located  [    ] 

10 I don’t always get the extension agent because I think the extension agents are 

inadequate  [    ] 

11 I don’t always get the extension agent because I don’t need his/her services in my 

farming [    ] 

12 In the last 2 farming seasons, how many times have you had contact with the agricultural extension agent? Season 1 [        ]; Season 2 [          

] 

13 Do you have a mobile phone?   Yes = [1] ;  No = [2] 

14 Have you ever use a phone to call an extension officer?   Yes = [1] ;  No = [2] (if yes, go to the next question below) 

15 Within last two seasons, how many times have you called an extension officer with a phone?  Season 1 [        ];  Season 2 [          ] 
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12. How often do undertake the following activities? 

No. Activity Never Rarely Sometimes Always 

1 Purchasing mobile phone credit [    ] [    ] [    ] [    ] 

2 Mobile money transfer [    ] [    ] [    ] [    ] 

3 Mobile money receipt [    ] [    ] [    ] [    ] 

4 Purchasing of Video CD [    ] [    ] [    ] [    ] 

5 Purchasing Music CD [    ] [    ] [    ] [    ] 

6 Listening to radio [    ] [    ] [    ] [    ] 

7 Watching video [    ] [    ] [    ] [    ] 

8 Watching TV [    ] [    ] [    ] [    ] 

9 Search internet for information [    ] [    ] [    ] [    ] 

10 Have you ever bought anything online or using text message [    ] [    ] [    ] [    ] 

 

13. How many times do you undertake the following activities in a week or month? 

No. Activity Number of Times 

1 Purchasing mobile phone credit   

2 Mobile money transfer   

3 Mobile money receipt   

4 Purchasing of Video CD   

5 Purchasing Music CD   

6 Listening to radio   

7 Watching video   

8 Watching TV   

9 Search internet for information  

10 Have you ever bought anything online or using text message  
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14. Background data 

Status of Respondent in Household Biographical Data Socio-economic Data 

1. Head: Yes=[1]; No=[2] 

2. If not head, relationship to household head: [    ] 

3a. Do you have any title in the community? Yes=[1]; 

No=[2] 

3b. If yes, specify…………………… 

4. Sex: Male=[1]; Female=[2] 

5. Age (yrs.): [    ] 

6a. Marital status: [   ] 

6b. If male and married, specify # of wives: [    

] 

7. Religion: [    ] 

8. Years of schooling: [    ] 

9. Form of education: [    ] 

10. Ethnicity: [     ] 

Relationship to HH: 1=Wife, 2=husband, 3=Sibling, 4=Relative, 5=Father-in-Law, 6=Mother-in-Law, 7= Other relations (specify)……………………  

Religion: 1=Islam, 2=Christianity, 3=ATR, 4=Others (specify)……………  

 Marital Status: 1=Married, 2=Single, 3=Divorce, 4=Widow/Widower 

Form of Education: 1=Formal, 2=Non-formal education, 3= Islamic/Arabic 4=None, 5=Others (specify)……… 

Ethnicity: 1=Dagomba, 2=Gonja, 3=Vagla, 4=Dagaati, 5=Wali, 6=Sissala, 7=Guru, 8=Kasen, 9=Bulu, 10=Kusasi, 11=Fulani, 12=Konkomba, 13=Binmoba, 

14=Mamprusi, 15=Nanumba, 16=Bassari, 17=other (specify)………… 

15. Please I may like to know your opinion or concern on this study that you may want to share with us 

…………………………………………………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………………………………………………... 

THANK YOU FOR YOUR PARTICIPATION 
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