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Abstract: Wetland environments, with their excellent conservation conditions, provide geoarchae-
ological archives of past human activities. However, the subsurface soil is difficult to access due
to high groundwater tables, unstable sediments, and the high cost of excavation. In this study, we
present a ground-based non- and minimal-invasive prospection concept adapted to the conditions
of wetlands. We investigated the Fossa Carolina in South Germany, a canal that was intended in
792/793 AD by Charlemagne to bridge the Central European Watershed. Although the resulting
Carolingian banks and the fairway with wooden revetments are very imposing, archaeological traces
of off-site construction activities have not been identified hitherto. Based on a geophysically surveyed
intensive linear magnetic anomaly parallel to the Carolingian canal, we aimed to prove potential
off-site traces of Carolingian construction activities. In this context, we built up a high-resolution
cross-section using highly depth-accurate direct push sensing and ground-truthing. Our results
showed the exact geometry of the canal and the former banks. Thus, the magnetic mass anomaly
could be clearly located between the buried organic-rich topsoil and the Carolingian banks. The
thermoluminescence dating showed that the position of the magnetic mass anomaly reflected Car-
olingian activities during the construction phases, specifically due to heat exposure. Moreover, we
found hints of the groundwater supply to the 5-metre wide navigable fairway.

Keywords: SQUID magnetic survey; direct push sensing; multi-method prospection; Fossa
Carolina; early middle ages; off-site construction activities; heated sediments; high-resolution
wetland exploration
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1. Introduction
1.1. Challenging Issues in Geoarchaeological Wetland Exploration

Wetlands provide important geoarchaeological archives about past landscape devel-
opment, e.g., [1–3] as well as buried infrastructure and settlements, e.g., [4–6]. However,
unfavourable properties like unstable sediments and a high groundwater table lead to high
costs for direct access by excavations [7–9]. The post-excavation conservation of archae-
ological materials is expensive and complicated as well [10,11]. Thus, there is a demand
for remote, non-invasive, and minimal-invasive exploration approaches for cross-scale,
multi-method, and systematic surveys in wetland geoarchaeology in order to investigate,
but also to monitor, vulnerable archaeological features, e.g., pile dwellings.

In addition, non-invasive geophysical surveys can be conducted from large to small
spatial scales [9] in a cost-saving way in a wide range of combinations. They offer different
sensitivities depending on physical material characteristics, e.g., suspicious values of the
magnetic field strength of fire-affected sediments or striking values of electrical conductivity
of saturated ditch fillings, e.g., [12,13]. However, they need sufficient contrast of the
material characteristics in the subsurface soil [14,15] and ideally, ground truth data for
reliable interpretations [16,17]. In general, for effective conduction and credible results of
non- and minimal-invasive exploration methods, a well thought-out field strategy with the
on-site decision [18] as well as a combination of carefully selected parameters with suitable
sensitivities for the targeted features are necessary [14,19,20].

In terms of ground-truthing, minimally invasive vibracoring provides important
point-by-point insight into the sediments and sampling opportunities, e.g., [21,22], but can
record depths inaccurately, especially in wetlands caused by high compaction rates of the
sediments [23]. Another method that has been applied recently as an alternative to ground
truth [17,24] and for geoarchaeological exploration per se on decametre to sub-metre
scale [16,25,26] is minimal-invasive and depth-accurate direct push sensing [27,28]. The
colour logging tool (e.g., for peat detection [26,29]) and electrical conductivity logging (e.g.,
for sediment unit surveys [24,25]) have proven successful in geoarchaeological studies.

1.2. The Fossa Carolina—Previous Geoarchaeological Findings

The Fossa Carolina is an Early Medieval canal in southern Germany located in the
foothills of the Southern Franconian Alb (Figure 1). The canal was designed in 792 AD and
built in 792/793 AD by Charlemagne, linking the Rhine and Danube river systems and thus
bridging the Central European Watershed, which is confirmed by dendrochronological
dating [4,30] and written sources [30–32]. Small altitude differences (approximately 6 m)
and the short distance between the Altmühl and Swabian Rezat rivers (approximately 2 km
as the crow flies) provided favourable conditions for this project [23,33,34].

The canal is approximately 3 km in length and has a conspicuous s shape (Figure 1c)
in order to minimise the work needed to complete the respective section [35]. According to
dendroarchaeological findings, it is assumed that the work progressed from north to south
towards the summit [36]. However, the southernmost part of the canal was never finished,
as no archaeological remains were detected in the Altmühl floodplain [37]. Written sources
explain this abandonment as being due to unstable trench edges and strong rainfalls [31].
Subsequently, the trenched areas were used as ponds to some extent until they were
completely silted up [23,38].

The construction of the summit canal was designed as a stepped chain of ponds with
approximately 2.5–5 m fairway width [4,29,30,39] and a northward shifted summit [36,39].
Large oak timbers were used for the stabilisation of the canal edges. The canal can be
divided into different sections (Figure 1c). The central section and the west–east section are
still marked by impressive banks from Carolingian excavation works. After a bend to the
north, the banks become more and more shallow in the northern section, and the course of
the canal is hardly to not at all visible in the northernmost north-eastern section [39,40].
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Figure 1. Overview of the Fossa Carolina: (a) Supra-regional perspective. (b) Location of the Central European Watershed
separating the Rhine-Main and the Danube river systems. (c) The different canal sections (orange font) with the Swabian
Rezat and Altmühl Rivers. (Database: European Environment Agency [41], OSM—Open Street Map, Zielhofer et al. [39],
LiDAR data are provided by the Bavarian Land Surveying Office).

1.3. Linear Magnetic Anomaly at the Fossa Carolina

A large-scale superconducting quantum interference device (SQUID) magnetic sur-
vey [42] revealed a conspicuous anomaly parallel to the canal course in the northern and
southernmost north-eastern section (Figure 2). Especially noticeable are the straight course
and the interruptions (Figure 2e). In the grid view (range ± 10 nT/m), the anomaly is
usually approximately between 7 and 8 m wide. The segment lengths vary between ap-
proximately 30 and 80 m. In situ volume magnetic susceptibility (κ) measurements at the
anomaly’s position (core QP2 position in Figure 2b, [43]) revealed the highest values of
approx. 45,000 × 10−6 SI at depths between 135 and 155 cm, where the magnetic mass
anomaly is characterised by black, reddish-brown, and red colours. Further rock-magnetic
laboratory analysis indicated a titanomagnetite/magnetite layer, which required heating
over 700 ◦C [43]. However, to date, there is no reliable stratigraphic positioning of the
anomaly, no age control, and therefore no clear knowledge about its possible origin.

1.4. Aims of this Study

In this study, (i) we aimed to apply an advanced minimal-invasive, multi-method
approach at the buried wetland site to explore the intensive magnetic anomaly. We combine
direct push colour and electrical conductivity logging for a full 2D cross-section beyond
the vertical and lateral borders of the Fossa Carolina and link the data with vibracoring
ground truth data and subsequent laboratory analysis.

Then, we aimed to (ii) reconstruct the chronostratigraphy of the Carolingian canal fills
and adjacent banks in order to determine the exact stratigraphic position of the magnetic
mass anomaly outside the canal course. Doing so will provide chronological control for
what is likely to be the first traces of Carolingian off-site construction activities. Moreover,
we aimed to collect evidence concerning navigability and the potential water supply.
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Figure 2. SQUID and digital elevation model (DEM) analyses in the northern section and north-eastern section (a). The
DEM provides indications of the location of the buried banks in the form of elevation that is slightly visible (b,c). The
magnetic SQUID survey revealed an extensive, intensive magnetic anomaly (d,e,f) [42] parallel to the canal, which can be
divided into segments (1–5) by its interruptions (e). (b–f) Locations of the preliminary vibracoring transect [39] and the
archaeological excavation [4] are marked. (Database: LiDAR data are provided by the Bavarian Land Surveying Office).

2. Geographical Setting of the Fossa Carolina

The Fossa Carolina is located in the foothills of the Franconian Jura escarpment
(Figure 3). The valley floors are characterised by clayey to sandy glacio-fluvial sediments
from the Last Glacial. Holocene fen deposits (Rezat Fen), as well as Holocene flood deposits
in the Altmühl and Rezat floodplains, have built up the present surface [33,44,45].

The geological composition and topography determine the hydrological setting. In
the valley, Middle Jurassic and Miocene clayey sequences sealed the valley bottom. At the
foothill positions, Middle and Upper Jurassic clayey sequences [46] correspond with spring
horizons, e.g., the Swabian Rezat spring [33,44,45]. In the northern section of the canal,
the continuously increasing discharge of the Swabian Rezat river points to a substantial
groundwater supply because tributaries are absent in this zone [47]. These conditions lead
to a high groundwater table that is indicated by the presence of the Rezat Fen and buried
organic-rich topsoil that is widespread [8,16,33].
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3. Methods
3.1. SQUID Magnetic Prospection and Depth Calculation of Intensive Magnetic Anomalies

For the large-scale magnetic prospection (Figure 4), a motorised SQUID measuring in-
strument [48,49] was used. The high-resolution device recorded magnetic subsurface data
with a configuration of 18 SQUID gradiometers and magnetometers. The corresponding
position was localised synchronously by a differential GPS. Precisely georeferenced mag-
netograms of the entire canal area were created [42,50,51]. The recorded linear anomalies
could not always be delineated sharply, for a variety of reasons, such as limited measure-
ment possibilities (Figure 2e, segment 4) or a diffuse signal (Figure 2, segments 1 and 5).
Segment 2 (Figure 2e), the segment that was investigated in our study in detail, is clearly
recognisable. The subsurface distribution of the magnetic sources could be determined by
the maxima of the magnetic information [52,53]. In this study, the un-gridded magnetic
data of several SQUID sensors were used to calculate the depth of the magnetic sources
from which the intense magnetic deviation originate. Calculation basics are the anomaly
maxima and minima recorded by pairs of SQUID sensors [54] and a 1/r3 amplitude de-
pendence from the source-sensor distance r. After the evaluation of the SQUID magnetic
data, we performed high-resolution direct push sensing and laboratory analysis from
depth-corrected vibracoring samples. For age control, we used both thermoluminescence
and radiocarbon dating (Figure 4).
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Figure 4. Multi-method approach used in geoarchaeological exploration at Fossa Carolina wetland
site. We used data from previous investigations (in blue) and newly recorded data (in orange) for our
interpretations (in green).

3.2. Direct Push Sensing

Direct push techniques provide a set of tools for minimal-invasive, depth-accurate in
situ measurements by pushing steel rods equipped with different probes into the unconsol-
idated underground [27,55]. We used 38-millimetre steel rods at the colour logging tool
(CLT) and the electrical conductivity probe (EC) that were driven by a Geoprobe 6610 DT
caterpillar (Figure 5). Based on on-site decisions, our sampling points were placed in
distances of 0.25 to 2 m from each other along the cross-section. The depths were precisely
logged by a potentiometer. For exact localisation, we defined each position using a Topcon
HiPer II DGPS with an accuracy of 10 mm horizontally and 15 mm vertically.

3.2.1. Colour Logging Tool (CLT)

We used colour measurements to differentiate sediments and analyse archaeological
structures [26,29,56]. The Soil Colour Optical Screening Tool (SCOST™; Dakota Technolo-
gies, Fargo, ND, USA) recorded the colours in a range of 350–1000 nm and provided
numerical colour values (RGB, XYZ, Munsell) in the visible range. A control unit sent
white light via a fibre optic cable to the sapphire window in the probe, and then a detector
measured the reflections over an adjusted time interval of approximately 300 ms. We
used a propulsion of approximately 2 cm/s. A Spectralon and standardised white and
black colours were used to calibrate the system before and after each measurement. OST
Software (Dakota Technologies) recorded the colour values and generated a. jpg raster file
from the RGB colour values. For post-processing, we calculated additional values of the
CIE 1976 (L*a*b*) [57] colour space and applied the Wavelet filter to the data (Daubechies,
Daublet 4) to smooth outliers [26,58].

We recorded 82 direct push colour logs with 0.25 to 0.5 m spacing. During the
measurement and post-processing, we observed a variety of brightnesses in the central
part of the cross-section (approx. between AN_CLT_74 to 43, from the surface to a depth of
approx. 415.5 m a.s.l.), which probably reflected the wetness of the sediments. In general,
the adhesion of sediment to the sapphire window can be excluded because of the high
pressure exerted on the probe.

In our study, we displayed the .jpg raster images of each probe and adapted their
width for a merged visualisation in the figure.
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3.2.2. Electrical Conductivity Logging (EC)

The EC probe (SC-500; Keijr Engineering Inc., Geoprobe Systems, Salina, KS, USA) was
used for the differentiation of sediment units. The probe is equipped with four electrodes
in a Wenner array with a vertical alignment and a fixed distance of 2 cm. This enabled the
analysis of layers with thicknesses ranging from 5 to 10 cm [59–61]. The probe measured
the specific electrical resistivity, which is inversely expressed as the specific electrical
conductivity in mS/m in fixed 1.5-centimetre steps [62,63].

The values represent a sum parameter of the sediment properties of grain size, fluid
saturation, chemical properties, and salinity of the pore fluid [63,64]. In saturated sediments,
relatively high values usually indicate fine-grained sediments, such as clay, and lower
values indicate coarser-grained sediments, such as silt, sand, and gravel [62,63].

We added spacing between the individual electrical conductivity logs from 0.5 to 3 m.

3.3. Vibra-Coring

We used vibracoring for the ground-truthing and sediment sample recovery. The open
cores (60 mm diameter, 1 m length) were driven by an Atlas Copco Cobra Pro motorised
hammer and localised with the Topcon HiPer II DGPS. In the field, we documented
sediment properties, soil horizons, and reductive-oxidative properties using the KA5 soil
mapping guide [65] and Munsell colours [66]. We sampled sediment sequences with an
eye to stratigraphical changes as well as in equidistant 5-centimetre steps and corrected the
sample depths by matching core sequences with depth-accurate direct push RGB colour
logs (Figure S1).

3.4. Laboratory Analysis
3.4.1. Grain Size Analysis

We used grain size distributions to identify sedimentological units and to interpret the
related depositional processes. To remove organic components from the sample, we added
hydrogen peroxide (H2O2, 50 mL, 35%) to 10 g of air-dried fine sediment (<2 mm). To
dissolve sediment aggregates, we added sodium pyrophosphate (Na4P2O7, 10 mL, 0.4 N)
and treated the sample in an ultrasonic bath (45 min). The sand fraction was analysed
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by sieve analysis and the clay silt fraction by X-ray granulometry (XRG, Micromeritics
Sedigraph III 5120). The grain size classes followed the KA5 soil mapping guide [65] in µm:
coarse sand (cSa)—630 to < 2000, medium sand (mSa)—200 to 630, and fine sand (fSa)—63
to 200; coarse silt (cSi)—20 to 63, medium silt (mSi)—6.3 to 20, and fine silt (fSi)—2 to 6.3;
and coarse clay (cCl)—0.6 to 2, medium clay (mCl)—0.2 to 0.63, and fine clay (fCl)—<0.2.

3.4.2. Geochemical and Rock Magnetic Sediment Analysis

We used elemental analysis by the vario EL cube (Elementar) to analyse the total con-
tent of sulphur, carbon, and nitrogen (CNS) to specify and divide the sediment stratigraphy.
Furthermore, we used a Scheibler calcimeter (Eijkelkamp) to quantify inorganic carbon
content. To calculate the organic carbon, we subtracted the inorganic carbon from the total
carbon. We used laboratory measurements of volume-specific low-frequency magnetic
susceptibility (κ, 0.465 kHz, 10−6 SI) to detect magnetic anomalies within the recovered
cores. Then, we filled plastic cubes with the sediment and used a Bartington MS3 equipped
with an MS2B dual-frequency sensor [67,68].

3.5. Age Control Measurements
3.5.1. Thermoluminescence (TL) Dating

Two samples were taken from the magnetic mass anomaly for TL dating because this
is the most suitable luminescence method for heated material [69–71].

The samples were taken from an opaque core liner (core BK5) at depths of 135–140 cm
(KG-TL1) and 150–155 cm (KG-TL2) and were subsequently prepared under subdued
red light in the luminescence preparation room of the Institute of Geography at Leipzig
University. Sample preparation included sieving with meshes with widths of 90 and
200 µm, treatments with 10% and 30% HCl for calcium carbonate destruction, and with
10% and 37% H2O2 over 14 days to destroy organic matter. Subsequently, the fine grain
fraction (4–11 µm) was separated according to Stoke’s Law in Atterberg settling tubes.

In tandem with the luminescence samples, dose rate samples were taken from the core.
The sample material from KG-TL1 was taken from its surroundings. Given that sample
KG-TL2 was located near a stratigraphical border, one sample was taken from the light-
coloured material above (156–140 cm; DL-1) and another from the dark-coloured material
below (170–158 cm; DL-2). Both equivalent dose (De) and dose rate determinations were
carried out in the luminescence laboratory of the Curt-Engelhorn-Centre of Archaeometry
(Mannheim, Germany).

The De was measured with blue thermoluminescence (multiple aliquots according
to Aitken [72]) using a Risø TL-DA-20 device equipped with a combination of BG3 and
BG39 (both 3-millimetre thick) filters and a 90Sr/90Y β-source (0.079 Gy/s). The a value
was determined with a 241 Am α-source (0.116 Gy/s).

The sediment dose rates (contents of the radioactive elements U, Th, and K) were
measured with low-level γ–spectrometry using a Canberra GCW4023 high-purity Germa-
nium well detector. The water content of the samples was determined gravimetrically by
weighing the samples before and after drying at 105 ◦C for 24 h. The cosmic dose rate
was calculated according to Prescott and Hutton [73], assuming a density of the overlying
sediments of 1.6 g/cm3.

Possible anomalous fading of the samples was checked by measuring five irradiated
and five not irradiated aliquots of every sample and comparing those results with identical
measurements of the same number of aliquots after a storage time of approximately
6 weeks.

3.5.2. Radiocarbon Dating

Seeds, charcoal, wood fragments, and organic soil bulk samples were radiocarbon
dated. The samples with the MAMS laboratory code were analysed at the Curt-Engelhorn-
Centre of Archaeometry (Mannheim, Germany) with an accelerator mass spectrometry
(AMS) type MICADAS [74]. The sample with the KIA laboratory code was analysed at the
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Leibniz Laboratory for Radiometric Dating and Stable Isotope Research at Kiel University
using the type HVE 3MV Tandetron 4130 accelerator mass spectrometer (AMS) [75]. We
calibrated all samples consistently with the INTCAL 13 dataset [76].

3.5.3. Age Control by Archaeological Findings

An adjacent archaeological excavation in 2013 (for location, see Figure 2) provided a
high-resolution stratigraphy and age control [4] by archaeological finds like ceramics and
horseshoe and the dendrochronological dating of oak timber, as well as by radiocarbon
dating of short-lived botanical remains. We used these chronostratigraphic findings to
refine our understanding of the canal-fill stratigraphy within our recently conducted direct
push cross-section.

4. Results and Interpretation
4.1. SQUID Magnetic Survey and Depth Modelling of the Intensive Magnetic Anomaly

The SQUID magnetic survey (Figure 2) reveals a linear and intensive magnetic
anomaly that accompanies the canal course. We modelled the depth of the anomaly
at six positions by performing approximately 30 depth calculations (see 3.1 Section) out of
the SQUID data set (Figure 6). The results range between 1.0 and 1.8 m below the surface.
However, most calculations yield similar depth values of approximately 1 m, indicating a
persistent subsurface layer in the underground (Figure 6b).
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4.2. Chronostratigraphical Units of the Fossa Carolina Cross-Section

We generated a high-resolution 2D cross-section with the direct push colour and
electrical conductivity logging as well as vibracoring ground-truthing, which shows dif-
ferent subsurface units in a vertical and lateral direction (Figures 7 and 8 and Table S1
(Supplementary Materials)).
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The lowermost Unit I is characterised by brownish colours up to approximately 414 m
a.s.l. and shows a horizontally bedded stratigraphy with relatively low electrical conductiv-
ities (<20 mS/m). According to core BK18 (412.06–412.96 m a.s.l., Figure 8b), predominantly
sandy sediments appear. The CNSand inorganic carbon record is heterogeneous but rela-
tively low and slightly enhanced values of the low-frequency magnetic susceptibility were
measured. Furthermore, the unit is nearly plant fragment free. The record was interpreted
as sandy valley fills of the Pleistocene or Early Holocene below the canal.

Unit II is characterised by greyish colours in the lower part up to approximately
415 m a.s.l., brownish colours in the upper part, and a dark brown to black layer at
approximately 416.5 m a.s.l. It shows a horizontally bedded stratigraphy, with electrical
conductivities generally higher (<60 mS/m) than those of Unit I. We drilled vibracoring
BK3 at the position of the intensive magnetic anomaly or rather at the margin of the
canal structure (Figures 7 and 8a). In Unit II, 416.03–416.57 m a.s.l., we recorded sandy to
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loamy sediments with several finer-grained layers. The rising values of low-frequency
magnetic susceptibility, organic carbon content, and CNS are striking. The values of the
Luminosity (L) show bright colours in the lower part and dark colours with minimal
values at the transition to the overlying Unit III-a. The cross-section within Unit II shows
a reductive–oxidative layering that could have been affected by the groundwater table.
The increase in carbon content along with low Luminosity (L) values in the uppermost
part indicates a buried topsoil layer. A striking increase in the red–green ratio (a), as well
as in low-frequency magnetic susceptibilities, indicate an impact of heating in this zone
(Figure 8a). Thus, this layer corresponds with the intensive magnetic anomaly that was
detected during the SQUID survey (Figures 2 and 6). The modelled level of approximately
416.9 m a.s.l. is comparable to the elevation of the magnetic mass anomaly at approximately
416.6 m a.s.l. Radiocarbon dating (Table 1) of an organic bulk sample from the fossil
topsoil on the level of the magnetic mass anomaly provided a middle Holocene age of
the soil formation. For chronological control of the magnetic mass anomaly, we chose to
use thermoluminescence dating (TL). The TL dating of the magnetic mass anomaly or,
respectively, the dating of the intensively heated sediment (part of Unit II and Unit III-a
above) yielded a Carolingian age (Tables 2 and S2, Figure S2).

Table 1. Stratigraphy position and dating of the fossil topsoil below the magnetic mass anomaly by radiocarbon dating.

Unit
Sample Sedimentology Dating

m a.s.l.
(mid) Sample Sediment Feature Lab No. Type Material 14C [yr BP] 13C cal 2σ

II 416.41
KG-N-QP-2

994
(150–163 cm)

Sandy fluvial
deposit (faAh)

Fossil top-
soil/magnetic
mass anomaly

KIA-50451 14C Bulk
sample 4976 ± 19 BP −26.2 ± 0.4 ‰ 3907–3663 cal BC

Table 2. Stratigraphic position and dating of the magnetic mass anomaly by thermoluminescence dating. Sample KG-TL2
from the core BK5 (same position as BK3) was intensively heated and provided reliable dating of the magnetic mass anomaly.

Unit
Sample Sedimentology Dating

m a.s.l. (mid) Sample Sediment Feature Lab No. Type Dating AD/BC

II 416.51 KG2 (BK5
150–155 cm)

Flood loam of
the Rezat River

Fossil topsoil/magnetic
mass anomaly MAL 10461 TL 1.21 ± 0.25 ka * 811 ± 250 AD

* related to 2021.

On top of the buried soil (above Unit II), a dark brownish sediment cover is presented
(Unit III-a), which is directly adjacent to the trough structure (Unit III-d and III-e). In
the core BK3, Unit III-a (416.57–417.40 m a.s.l.) presents coarser sediments with dark
brown to dark yellowish-brown colours (Figure 8a) as well as hydromorphic oxidation and
reduction features. CNS and the organic and inorganic carbon content are low. However,
low-frequency magnetic susceptibility reaches its maximum at 416.49–416.79 m a.s.l.,
accompanied by the red–green ratio (a) maximum. The unit displays the sediments
of the Carolingian excavation works that are preserved as buried banks; furthermore,
the lower part of the unit was impacted by heat. The units are disrupted within the
central section (10–24 m on the profile) of the NW–SE transect by inhomogeneous Unit
III-b, which shows greyish and brownish colours below 412.9 m a.s.l. In the core BK
18, the Unit III-b (412.96–413.29 m a.s.l.) is characterised by the first appearance of plant
fragments (described in the field), whereas the values of CNS and low-frequency magnetic
susceptibility are low. The EC-values increase up to >50 mS/m. Along with a slightly
fining upward trend, this could represent a first backfill process of bank material.

On the south-eastern side of Unit III-d, a wedge-shaped interruption (Unit III-c) is
situated. This represents early backfill sediments as well, which were also radiocarbon
dated to Carolingian times (Table 3).
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Table 3. Chronostratigraphy of the canal infill in the northern section by radiocarbon dating from the 2013 excavation—
Schnitt 1 [4,77] and vibracoring transects 407 and QP [39].

Unit

Sample
Sedimentology Chronology

Dating

m a.s.l.
(mid) Location Sample/

Name
Lab No.

(MAMS) Material Dating
Via

14C [yr BP] 13C Cal 2σ Reference

IV (low) 415.81 Excavation 37 Flood loam of
the Rezat River

15th–16th
century

29839 Seed Bulk 323 ± 19 −24 AD
1492–1643 [77]

IV (low) 415.6 407 407-1 18374 Charcoal Core 410 ± 16 −29 AD
1441–1488 [39]

III-e 415.81
Excavation

19 Channel filling:
silty-clayey,
limnic facies

11th/12th–
15th/16th

century

29838 Seed Bulk 959 ± 22 −27 AD
1021–1155 [4]

III-e 415.35 50/51 29846 Seed Bulk 900 ± 20 −27 AD
1042–1206 [4]

III-d 415.93 Excavation 86
Peat grow-

ing/sapropel
layer

9th–10th
century 29843 Wood Bulk 1230 ± 20 −25 AD

693–878 [77]

III-d 415.85 Excavation 6
peat grow-

ing/sapropel
layer

9th–10th
century 29837 Wood Bulk 1228 ± 20 −27 AD

694–879 [77]

III-d 415.34 Excavation 43
First channel

fills from
excavation

8th–9th
century 29840 Wood Bulk 1099 ± 21 −30 AD

892–990 [77]

III-d 414.89 Excavation 56/58
First channel

fills from
excavation

8th–9th
century 29847 Wood bulk 1246 ± 20 −26 AD

682–865 [77]

III-d 414.5 Excavation 68
First channel

fills from
excavation

8th–9th
century 29842 Wood Bulk 1238 ± 21 −25 AD

688–872 [77]

III-d 414.5 Excavation 58
First channel

fills from
excavation

8th–9th
century 29841 Seed Bulk 1180 ± 21 −29 AD

772–937 [77]

III-d 414.35 Excavation 102
First channel

fills from
excavation

8th–9th
century 29844 Seed Bulk 1217 ± 20 −28 AD

719–884 [77]

III-d 414.3 Excavation 104
First channel

fills from
excavation

8th–9th
century 29845 Seed Bulk 1228 ± 23 −27 AD

692–881 [77]

III-b 414.17 QP QP_1
First channel

fills from
excavation

8th–9th
century 18372 Charcoal Core 1338 ± 17 −31 AD

650–758 [39]

Unit III-d presents a trough-shaped sediment fill, which shows blackish colours up
to 415 m a.s.l. as well as dark brown colours up to the top of Unit III-e. In core BK 18
(413.29–415.09 m a.s.l.), Unit III-d consists of organic material with fine-grained clastic
sediments that show a fining upward trend and colours between black and dark grey.
Furthermore, organic carbon rises to its maximum, which positively correlates with the
red–green ratio (a) and inversely with Luminosity (L). The EC values stagnate at approx.
60 mS/m. Further upwards, within Unit III-e (415.09–416.96 m a.sl. in BK18), the grain size
becomes coarser, and the colours become brighter, ranging from black to dark yellowish-
brown. Hydromorphic oxidation and reduction features appear. The organic carbon
strongly decreases, and low-frequency magnetic susceptibility stagnates at a low level.
Unit III-d and III-e represent the canal fill, featuring dark-coloured organic-rich sediments
from ponding. The much higher EC values (approximately 60 mS/m) in the central part
of the cross-section (Unit III-d and III-e) represent relatively fine-grained canal fills. For
the chronology of the canal fills (Unit III-d to III-e), published radiocarbon ages were
considered (Table 3), which were predominately age controls from the archaeological
excavation located at a distance of 270 m to the north [4,30,77]. Accordingly, the peat
deposits of Unit III-d and Unit III-e increased over the approximate 200 years after the
canal’s construction until approximately 1000 AD. Subsequently, fine-grained sediments
were deposited by ponding during the High and Late Middle Ages. These filled up the
canal to the level of the fossil topsoil.

The uppermost Unit IV shows brownish colours with suspiciously relatively low
electrical conductivities (<30 mS/m). Core BK18 (416.96–417.96 m a.s.l.) and core BK3
(417.40–418.03 m a.s.l.) reveal fine-grained loamy sediments. The values of CNS and low-
frequency magnetic susceptibility slightly increase. Unit IV (Tables 3 and 4) is ubiquitous in
the landscape inside as well as outside of the canal, which becomes impressively apparent
in the direct push colour transect (Figure 7b). It consists of both alluvial and colluvial
sediments deposited since the Late Middle Age, according to archaeological age control.
This indicates an intensively used landscape.
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Table 4. Chronostratigraphy for the Rezat flood loam (Unit III) above the remains of the Fossa Carolina in the northern
section by archaeological dating and dendrochronology (from 2013 excavation—Schnitt 1 [4,77]).

Unit
Sample

Sedimentology
Chronology

Dating Via Dating Referencem a.s.l.
(mid) Location Sample/Finding

Name Time Span

IV (up) - Excavation -
Flood loam of the

Rezat River

19th–20th
century Findings Archaeological

findings [4]

IV (mid) 415.75 Excavation 33, 34/35 16th–17th
century

Dendrochronology,
findings

Dendrochronology
1631 ± 8,

horseshoes
[4]

IV (low) 415.81 Excavation 37 15th–16th
century Findings Ceramic [77]

5. Discussion
5.1. A Multi-Method Approach with High-Resolution Direct Push Sensing

Non- and minimal-invasive survey methods play an important role in the investi-
gation of archaeological wetland sites when excavations are difficult or undesirable for
conservation reasons. Sound approaches require sensitive and complementary methods for
the recording of archaeological features at different spatial scales. In this context, we focus
on the significance of the results of the SQUID magnetic survey and the high-resolution
direct push sensing (Figure 9).
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This paper reports on a large-scale magnetic SQUID survey [51] undertaken to
identify an archaeological structure (Figure 2), i.e., the large-scale intense magnetic
anomaly described above. Further, depths of the magnetic mass anomalies were mod-
elled (Figures 6 and 9) in different segments, offering a third dimension to the data set.
This approach has already provided valuable insights concerning circular ditch systems [78],
the interpretation of buried walls [79], and potential hydro-engineering structures in the
subsurface [16]. The results of magnetic depth modelling allowed the spatial upscaling
by tracking the estimated elevation of anomalies in different segments and sections over
longer distances (Figure 6). However, this modelling has an uncertainty of several decime-
tres, so spatial coupling of the intensive magnetic anomaly segments over larger distances
could only be approximated. Therefore, ground-truthing was required. Here, direct push
sensing yielded high-resolution data concerning buried geoarchaeological structures along
both horizontal and vertical axes. Direct push colour logging was utilised to determine
the precise position of the magnetic mass anomaly within the stratigraphy of the valley
fills and intercalated canal remains (Figure 7). This advanced the previous application of
direct push colour logging as point-by-point-insight for the extension of sedimentological
descriptions [25,58,80]. Additionally, direct push electrical conductivity sensing resulted
in a highly depth-accurate dataset that noticeably improved the spatial significance of
common, non-invasive ERT applications e.g., [22,37,81]. Thus, there is a high methodologi-
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cal potential for future combinations of depth-accurate direct push electrical conductivity
logging as point-by-point ground-truthing with ERT data sets [17,24,82,83].

Finally, we showed that the selection of a complementary combination of methods
(Figure 9) is the key to a reliable multi-method, non- to minimal-invasive approach in
wetland geoarchaeology.

5.2. Origin of the Magnetic Mass Anomaly

The SQUID magnetic survey showed an intensive anomaly running parallel to
the canal (Figure 6) in the northern and north-eastern sections. Such linear structures
in magnetic surveys usually indicate anthropogenic features, e.g., pathways, walls, or
ditches [79,84,85]. However, natural linear structures, such as naturally filled gullies,
are also known, especially in the vicinity of the Fossa Carolina [16]. The magnetic mass
anomaly exhibits a reddish colouring within an intermediate stratigraphical position be-
tween the buried mid-Holocene soil (top of Unit II) and the covering Carolingian bank
deposits (Unit III-a) (Figure 7b). The TL dating offers a Carolingian age of the heating
process. In further segments of the intensive magnetic anomaly, its level was estimated as
being close to the former surface of the buried soil (Figure 6). Thus, based on the location
and dating, its characterisation as a remnant of the canal construction site is very likely.
Due to its stratigraphical position below the excavation material, its formation at a rather
early point in the construction process—or at least before digging ended—seems probable.

Besides the red colouring, we know from the rock magnetic analysis [43] that the sedi-
ments contain titanomagnetite, which only forms in the presence of very high temperatures
(700 ◦C). It is found primarily in magmatic rocks [86,87] or secondarily as a product of the
weathering of basaltic rocks [88]. Neither exists in the area—see [44,45]— which leads to
the assumption that it represents an anthropogenic feature.

Furthermore, the red colour might indicate fire exposure, which would also be sup-
ported by the rock magnetic analysis. A forest clearing fire at the beginning of the con-
struction work would be a possibility, but these usually only generate temperatures of
approximately 300–400 ◦C [87,88], too low for the formation of titanomagnetite [43]. Fur-
thermore, the heating by fire decreases strongly from the surface to the depth into the
sediments [89], which does not fit the red colouration and increased volume magnetic
susceptibility over a depth range of approximately 20 cm, which might indicate deep and
intense heating. Additionally, there is no evidence for charcoal in the recovered sediments,
which could argue against there having been a fire at this place. Another mechanism
could be an anthropogenic input of burnt material, e.g., to stabilise a parallel path for the
construction site. This could explain the slight embedding (Figure 7b) of the sediments
and their width of approximately 2 m (Figure 2), which is similar to the width of towpaths
mentioned in other canal studies [90]. Additionally, remains of iron smelting and ceramics
from the Early and High Middle Ages were found diffusely distributed during the inspec-
tion of adjacent areas [91]. These suggest the occurrence of activities in the near vicinity
that might have produced heated sediments without any relation to the canal. However,
the SQUID magnetic survey shows discontinuous segments that do not always run in
alignment (Figure 2), which speaks against a path. Furthermore, neither ceramic nor iron
was found in the recovered sediments of the magnetic mass anomaly.

Thus, we were able to firmly characterise the magnetic mass anomaly as an an-
thropogenic structure to the Carolingian canal, but we could not present a conclusive
interpretation of the sediment of the magnetic mass anomaly.

5.3. New Hints about the Hydro-Engineering Concept and Navigability

Even after numerous studies, questions about the canal summit, water supply, and
navigability have not been conclusively answered. The results of this study provide new
information about the overall concept.

The direct push colour logs document the canal bottom as being at approximately
413.2 m a.s.l. This is significantly lower than the canal bottom as identified in the 2013
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excavation to the north (414.05 m a.s.l. [4]) and significantly higher than the bottom in the
west–east section (Figure 1) (approx. 412 m a.s.l. [29]), which is 550 m further southwest
(as the crow flies). Hence, there is evidence that the summit of the canal must have been
further to the north than previously documented by Zielhofer et al. [39].

The direct push colour logs also provide new insights into the hydro-engineering
concept of the canal. The cross-section shows a significant colour change (Figure 7b, Unit
II) from greyish colours (below approximately 415 m a.sl.) to yellowish-brown colours
(above). This points to the groundwater-dependent reductive and oxidative zone [92] and
thus at least to a (semi-stable) groundwater level. Furthermore, the buried organic-rich and
boggy topsoil detected at approx. 416.5 m a.s.l. indicate at the very least a semi-terrestrial
environment with long-term wet conditions at the Carolingian surface. Since the canal
bottom (Unit III-b), at approximately 413.2 m a.s.l., is approximately 1.5–2 m lower than
the reductive–oxidative boundary and 3–4 m lower than the organic-rich buried topsoil, an
ample groundwater supply at the study site’s canal section would be likely.

Furthermore, the direct push colour cross-section (Figure 7b) provides information on
the canal geometry (Unit III-b, III-d and III-e). At the level of approximately 414 m a.s.l.
(position AN_CLT_39), an edge appears on the south-eastern side, which points to a lateral
or rather vertical boundary of the canal. This might point to oak timber revetments, which
are well known from the excavations further north [4]. Using the top level of the timbers as
the maximum water elevation (approx. 414 m a.s.l.), the canal has a depth of approximately
1 m and a width of approximately 5 m. This would have been suitable for Carolingian
cargo scows [93,94] and therefore suggests navigability in this section. Furthermore, the
latter dimension is in line with the computed canal width of approximately 5.2–5.3 m at
the excavation site of 2013 [4].

Consequently, our results indicate a navigable section with potential for high ground-
water supply that could have fed the summit zone of the Carolingian canal with water.
This could be the answer to the lack of water supply structures described in studies [16].

5.4. Construction Site Remains at Early Medieval Buildings

For a large-scale construction site like the Fossa Carolina that involved hundreds
or even thousands of workers, one would expect considerable remains of infrastructure
and activities in the immediate area of the canal trench. The range of possible remains of
the canal construction site covers several functional groups: traces of transportation and
mobility infrastructure (e.g., wooden trackways, paved roads, and river crossings), traces of
earthworks (e.g., pits and excavated earth), traces of landscape modifications (e.g., drainage
ditches, channel engineering, and terrain levelling), traces of processing and craft activities
(e.g., activity areas with finds and features associated with carpenters and metalworkers,
huts and roofs to provide shelter, lumberyards for timber, and production waste such as
wood chips), traces of lodging and supplies for the workforce (e.g., temporary cabins, tents,
fireplaces, food waste, and food containers), and traces of surveying (e.g., postholes made
by range rods).

The extent and provability of these functional groups are rather different. Due to
the scale of the construction site and the wet and boggy conditions, considerable traces
of transportation, especially wooden trackways for pedestrian and wheeled transport,
seem rather likely. Such trackways, with a typical width of 2–4 m, were typically made of
brushwood and hurdle, woven wooden panels, or more advanced timber constructions
with transverse logs or planks, substructures, and fillings of sand or peat [95,96]. Early
Medieval examples such as the eigth-century wooden trackway in the Klempsau bog
(northern Germany), which is contemporary to the Fossa Carolina, feature a stratigraphy
of up to 2 m composed of new sand and turf fillings and plank layers, which were placed
on top of each other [95]. Archaeological investigation of the 8th century Kanhave canal
(Denmark) and the Roman Fossa Corbulonis (Netherlands) have discovered (tow)paths
made of artificially filled turf and sods that ran parallel to the canal trench [90,97]. Several
other Roman canals feature similar (tow)paths made of wood, earth, and field stones [98,99].
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In the immediate area of the Fossa Carolina, one would expect significant traces of
processing and craft activities as well as of lodging and supply of the workforce. While
the internal organisation of the construction site and workforce are unknown, there are
different possibilities. On the one hand, it can be assumed that the village of Graben, located
on the south side of the central section (Figure 1), sits on the site of a former construction
camp and thus covers its traces. Diffusely distributed Early Medieval iron melting remains
and ceramic sherds in the near west–east section could support this supposition [91].
Additionally, the SQUID magnetic survey showed several other anomalies in the canal
environment [51] that could indicate traces; these have not yet been investigated. On
the other hand, it is possible that tool maintenance, accommodation, and provisioning
did not take place in close proximity to the construction site but in surrounding Early
Medieval settlements, such as Dettenheim and Weißenburg. These places must have
had road communication, storage facilities, and shelter, as well as workshops, such as
smitheries [91,100–102]. Therefore, it is unsurprising that there are very few archaeological
records in this area. Systematic aerial archaeology, fieldwalking, and shovel pit testing in
meadows have not yielded noteworthy features or finds such as 8th-century ceramics, iron
tools, personal belongings, or any other material remains [37,91,103–105]. Furthermore,
direct push sensing gives another explanation. The dated Carolingian surface and thus
potential findings are covered by an approximately 1 metre-thick layer (Unit IV) of alluvial
and colluvial sediments (Figure 7). However, remains of half-finished timbers and diverse
wood waste at the bottom of the excavated canal trench point to the fact that at least some
portion of the work took place in the trench itself. This might contribute to a lack of surface
finds in the surrounding areas [30]. Furthermore, the formation of the archaeological record
of the construction site remains is rather complex and the poor preservation of organic
objects under aerobic near-surface conditions, as well as their limited recognisability due
to colluvial coverage, have to be taken into account [106–108].

As we are almost exclusively talking about woodworking and earthwork at the Fossa
Carolina, the range of possible archaeological remains outside the construction pit is
rather limited. Like the Fossa Carolina and in sharp contrast to sites with evidence of
stonemasonry, lime burning, or glassmaking [109–114], other large-scale earthworks of the
Early Middle Ages such as the Offa’s Dyke, the Danewerk, and the Kanhave canal have
yielded a very limited range of finds and features that may be interpreted as construction
site remains e.g., [115–117].

6. Conclusions

A ground-based, non-invasive, magnetic SQUID survey revealed an intensive and
linear magnetic anomaly in the northern section of the Fossa Carolina that cannot be clearly
associated with the canal to which the anomaly runs parallel. (i) This paper documents
the approach that was used and the specific results that support this contention. First, a
minimal-invasive and highly spatial resolved direct push cross-section was conducted
using dense colour and electrical conductivity logs with spacings up to 0.25 m. The direct
push data were combined with depth-corrected cores, dating, and laboratory analysis. This
methodology fills the gap between selective coring activities and large-scale non-invasive
geophysical prospection techniques in wetlands. (ii) The magnetic mass anomaly was
found to lie directly above the Carolingian surface and below the Carolingian bank de-
posits. There was evidence that the sediments of the structures had been heated to an
extremely high temperature, and TL dating provided a compatible Carolingian age of
811 ± 250 AD. Thus, our study identified verifiable traces of construction activities outside
the canal trench itself. For the spatially upscaled interpretation, depth modelling of the
anomaly from SQUID data indicates its stratigraphic positioning close to the Carolingian
surface level in the northern and north-eastern sections of the canal. This underpins its
clear association with the context of the Carolingian canal. Furthermore, we present new
indications for a sophisticated hydro-engineering concept of the canal. The direct push
data suggest a geometry with a width of approximately 5 m and a depth of approximately
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1 m for the waterway and gives hints for an ample groundwater supply in the summit
zone of the canal course. We have determined the bottom level of the canal at approxi-
mately 413.2 m a.s.l. This is almost 1 m deeper than in the excavated section further north
and therefore indicates that the summit of the canal was further north than previously
recorded in former studies. Finally, this paper describes a multi-method approach that rep-
resents a promising advancement of ground-based non- and minimal-invasive prospection
techniques for geoarchaeological investigation and monitoring in wetland environments.

Supplementary Materials: Contains all numerical data that were used. The following material is
available online at https://www.mdpi.com/article/10.3390/rs13224647/s1. Figure S1: Depth corr
colour 9.0, Figure S2: Hans TL both-samples-II, Table S1: Thermoluminescence ages and fading
results of samples KG-1 and KG-2, Table S2: Selected field results of the cores BK3 and 18: Munsell
colour and pedological properties.
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