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Deutsche Zusammenfassung

Die Arbeit befasst sich mit verschiedenen graphentheoretischen Fragestellungen aus den
Gebieten des Graphstreaming Modells und der Spieltheorie.

In Kapitel 2 wird eine Methode gezeigt, in einem Eulerschen Graphen eine Eulertour
zu finden, wenn nur O(n polylog(n)) RAM zur Verfügung steht, wobei n die Anzahl
der Knoten des Graphen ist. Im Graphstreaming Modell sind die Kanten des Graphen
auf einem Eingabeband gespeichert. Der Stream wird Kante für Kante in den internen
Speicher eingelesen und bearbeitet. Wie in der klassischen Methode zum Finden von
Eulertouren finden auch wir Kreise, die wir graduell zu immer größeren Touren ver-
schmelzen. Das Suchen von Kreisen benötigt nur O(n log(n)) RAM. Dazu speichern wir
pro Knoten nur eine konstante Menge an Variablen, die den letzten Kreis kennzeichnen,
der den Knoten beinhaltet, und angaben zu möglichen Vorgänger- und Nachfolgerknoten.
Da Die Lösung selbst nicht in den Speicher passt, schreiben wir die Eulertour sukzessive
auf ein Ausgabeband. Das Ergebnis ist ein Algorithmus, der das Eingabeband nur einmal
durchläuft und mit O(n log(n)) RAM eine Eulertour in Form einer Nachfolgerfunktion
ausgibt, was in diesem Rahmen optimal ist (siehe [30]).

Im Graphstreaming Modell hat das Speichern der Lösung als Nachfolgerfunktion
einen entscheidenden Nachteil. Die Kanten der Eulertour stehen auf dem Ausgabeband
nicht in der Reihenfolge der Tour. Möchte man die Eulertour mit einem anderen Stream-
ing Algorithmus weiterverarbeiten, kann dies zu Komplikationen führen. Kapitel 3 be-
schäftigt sich daher mit der Aufgabenstellung, eine Eulertour zu finden und die Kanten
in der richtigen Reihenfolge auszugeben. Dazu benötigen wir allerdings ein Streaming
Modell, in dem auch Sortierungen möglich sind. Im sogenannten StrSort Modell von Ag-
garwal et al. werden alternierend Streaming- und Sortierungsdurchläufe durchgeführt.
In einem Streamingdurchlauf wird schrittweise von einem Eingabeband abgelesen und
ein Ausgabeband beschrieben. Dieses Ausgabeband ist das Eingabeband des nächsten
Durchlaufs. In der Sortierungsphase werden die Elemente des Ausgabebandes anhand
einer globalen Halbordnung sortiert. Da dieses Modell um einiges potenter ist, wird der
RAM üblicherweise auf eine logarithmische Größe begrenzt.

Wir präsentieren einen Algorithmus, der einen Hybriden aus Graphstreaming und
StrSort Modell verwendet. Er besteht aus zwei Schritten.

Schritt 1 ist ein einziger Durchlauf des Streams mitO(n log(n)) RAM.Wie im vorigen
Kapitel werden Kreise des Graphen gefunden. Implizit wird ein Baum konstruiert, wobei
jeder Knoten des Baumes für einen Kreis des Graphen steht, und zwei benachbarte
Knoten im Baum stets ein gemeinsamer Knoten der beiden repräsentierten Kreise be-
deutet. In diesem Vorbereitungslauf erhält jede Kante ein Label, dass die Position der
Kante in ihrem Kreis, und die Position des Kreises im repräsentierenden Baum anzeigt.

In Schritt 2 werden in O(log(n)) alternierenden Streaming- und Sortierungsdurch-
läufen nach und nach die Kreise zu immer größeren Touren verschmolzen und die Labels
dementsprechend angepasst, bis schlussendlich die Kanten in der Reihenfolge einer Eu-
lertour stehen.

Kapitel 4 befasst sich mit dem Graphenspiel Cops and Robbers. Auf einem gegebenen



Graphen bewegen sich ein Räuber und einer oder mehrere Polizisten. Natürlicherweise
versuchen die Polizisten, den Räuber zu fangen, der das verhindern will. Eine der neusten
Varianten des Spiels wurde 2018 von Kinnersley und Peterson eingeführt, das sogenannte
Bridge-Burning Cops and Robbers. Abwechselnd ziehen Räuber und Polizisten. Während
eines Zuges kann man auf einem Knoten bleiben oder entlang einer Kante zu einem
benachbarten Knoten gehen. Die Besonderheit des Spiels: Wenn sich der Räuber entlang
einer Kante bewegt, wird diese danach ‘verbrannt’, also vom Graphen entfernt. Dadurch
hat der Räuber die Möglichkeit zu gewinnen, indem er eine Graphenkomponente kreiert,
auf der er sich befindet, und die frei von Polizisten ist. Bei einem Graphen, bei dem
die Polizisten das Spiel bei optimaler Spielweise gewinnen, kann man sich die Capture
Time anschauen, die angibt, wie lange die Polizisten beim Fangen des Räubers höchstens
brauchen.

Wir beweisen eine Vermutung von Kinnersley und Peterson bezüglich der Capture
Time bei nur einem Polizisten. Wir zeigen, dass es Graphen auf n Knoten gibt, bei dem
ein einzelner Polizist bei optimaler Spielweise gewinnt, und dabei eine Capture Time von
Ω(n3) besitzt.

In Kapitel 5 werfen wir mit dem Extreme Vertex Destruction Modell einen Blick
auf die Stabilität von Netzwerken, die von eigennützigen Spielern erstellt wurden. Diese
Graphen- und Spieltheoretische Modellierung von Kliemann et al. betrachtet den Schaden,
den das Entfernen eines Knotens aus einem Netzwerk-Graphen anrichten kann. Dieser
Schaden ist definiert als die Menge der Knotenpaare, die sich nun nicht mehr in der
gleichen Komponente befinden. Die Knoten, bei denen der Schaden maximal ist, wird
Max-Sep Knoten genannt. Im Extreme Vertex Destruction Modell wird einer dieser Max-
Sep Knoten gleichverteilt per Zufall ausgewählt und zerstört.

Kliemann et al. zeigten, dass es Graphen auf n Knoten gibt, die sich im Swap-
Gleichgewicht befinden und einen durchschnittlichen Schaden von Ω(n3/2) haben. Diesen
Wert verbessern wir in diesem Kapitel auf die scharfe Schranke von Ω(n2).



Summary

In this thesis, we take a look at several graph theoretical problems. We present two
streaming algorithms for finding an Euler tour in a graph, prove a tight bound on the
capture time in the Bridge-Burning Cops and Robbers Game and solve an open problem
for the Extreme Vertex Destruction Model.

In Chapter 2, we consider the classical Euler tour problem. An Euler tour of a graph
is a closed trail such that each edge is visited exactly once. Several algorithms are known
for finding them. We take a modern look at this problem in the context of the graph
streaming model. Here, RAM is of size O(n polylog(n)), where n is the number of nodes,
and the graph is given as a stream of its edges. Since large graphs cannot be stored in
this restricted memory space, the usual algorithms are not transferable to this model.
We bypass this hurdle and give a one-pass algorithm for finding Euler tours in the graph
streaming model.

In Chapter 3, we regard a lesser-known streaming model, the so-called StrSort model,
to tackle a downside of our algorithm mentioned above. The algorithm stores an Euler
tour on an output tape in form of a successor function. The order of the edges is given,
but the edges are not actually sorted in the order of the Euler tour. Therefore, further
processing the tour with another streaming algorithm might become difficult. In the
StrSort model, less RAM is given, but the stream is regularly sorted in a global partial
order. We give an algorithm for sorting the edges of a graph according to a found Euler
tour, that has a preparation step in the graph streaming model and a processing step in
the StrSort model.

The traditional game of cops and robbers is the topic of Chapter 4. On a given graph,
cops and robbers move along the edges from node to node. Naturally, the cops try to
capture the robber, who wants to prevent that. We consider one of the newest twists
of this classical game. In the so-called Bridge-Burning Cops and Robbers Game, every
time the robber traverses an edge, this edge is deleted afterwards. The analysis of this
game is a challenge because of the ever-changing graph. We study winning strategies of
a single cop and make statements on the maximum number of turns of such strategies.

In Chapter 5, we study networks formed by selfish agents. The agents (or players)
are represented by the nodes of a graph, where an edge between two nodes implies a
connection between the represented players in the network. When a node is ‘destroyed’,
i.e. the adjacent edges are deleted, the network is damaged and some players lose the
connection to each other. In the Extreme Vertex Destruction Model, we observe the
impact of such a deletion on swap equilibrium graphs and consider their robustness. We
pick and destroy a node in a certain way and make statements on the maximum amount
of damage that can cause on a swap equilibrium graph.
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Chapter 1

Introduction

In this chapter, we give an outline of the different topics considered in this thesis. We
give brief explanations of the problems and previous work, and state our results with
short mentions of our respective approaches.

1.1 Euler Tours in the Graph Streaming Model

In graph theoretical problems, where the size of an instance is of a larger order than the
available RAM size, the graph streaming model, introduced by Feigenbaum et al. [13] is
a popular model to tackle the problem of insufficient memory space. Let G = (V ,E ) be
a graph on n nodes and m edges. The RAM size is determined as O(n polylog(n)), while
the graph itself is given as a stream of its edges. In Chapter 2, we study the problem
of finding an Euler tour in G , i.e. a closed trail containing every edge of E . Our main
result is the first one-pass streaming algorithm computing an Euler tour of G (or stating
that an Euler Tour does not exist) in the form of an edge successor function with only
O(n log(n)) RAM, which is optimal for this setting (e.g. Sun and Woodruff ([30],2015)).
Since the output size of O(m) can be much larger than the RAM size, we use a write-
only tape to gradually output the solution. Our approach is to partition the edges into
edge-disjoint cycles and to merge the cycles until a single Euler tour is achieved. Since
the limited RAM allows the processing of only a constant number of cycles at once,
cycles have to be merged that partially are no longer present in RAM. We solve this
problem with an edge swapping technique, for which storing two certain edges per node
is sufficient to merge tours without having all tour edges in RAM. For the analysis we
consider a successor function on the set of edges and equivalence classes corresponding
to cycles, and give conditions under which the swapping of edge successors leads to a
merging of equivalence classes.

1.2 Euler Tours in the StrSort Model

The algorithm given in Chapter 2 outputs an Euler Tour in form of a successor function.
When the Euler Tour has to be further processed in the Graph Streaming Model, this
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might be impractical. It is only natural to request a graph stream on which the edges are
sorted according to a given Euler Tour, which would significantly improve the value of
the result. In Chapter 3 we consider the problem of computing Euler tours in undirected
graphs and sorting the edges accordingly in the StrSort model, which was introduced by
Aggarwal et al. [1]. Again, the graph is given as a stream of its edges and can only be
read sequentially, but while conducting a pass over the stream we are allowed to write
another stream which will be the input for the next pass. Additionally, items in the
stream are sorted between passes in a global partial order. The model is appropriate for
solving problems in the streaming context, when the size of the output is in the order
of m and the semi-streaming model with O(n log(n)) RAM is too restricted. We give
the first algorithm in the StrSort model and resolve the problem within the following
complexity bounds. In a processing step in the W-stream model, we compute a new
stream of the edges with some additional information, using O(n log(n)) RAM and only
a single pass. In the main step, we show that O(log(n)) passes are required, using only
O(log(n)) RAM, to sort the edges and output the Euler tour in form of consecutive edges.
Let G = (V ,E ) be an undirected graph containing an Euler Tour. Like in Chapter 2,
the underlying idea is the merging of disjoint cycles. This time, we consider an out-tree
~T = (W , ~F ) corresponding to G , where each node of W corresponds to a cycle, and
two nodes in ~T are connected if the corresponding cycles share a common node. This
tree also might be too large for the internal memory. In each sorting step, we want to
merge each node in ~T of odd degree with its predecessor, resulting in a tree of at most
half the size. The according cycles are also merged. In a preprocessing step, we give each
edge of E in the stream the information in which cycle it is, which position it has in
the cycle, and which position it would have after a cycle merge. Storing this additional
information at the start is sufficient to sort the edges according to the tours given by ~T
at each sorting step.

1.3 The Bridge-Burning Cops and Robbers Game

The game cops and robbers as a graph-theoretical problem was introduced in the early
1980s. It is a two player game played on a graph, where one player controls a set of cops
and the other player controls a robber. Cops and robber move along the edges from node
to node. The cops’ objective is to capture the robber, while the robber wants to avoid
that.

Over the years, many variations of this game were studied. An interesting twist
to the concept was given by Kinnersley and Peterson [21] in 2018 with the so-called
bridge-burning cops and robbers. In this variant, every time the robber traverses an edge,
this edge is deleted afterwards. Here, the robber has another method of winning than
prolonging the game indefinitely. He can actually escape by getting on a connected
component without cops. Kinnersley and Peterson looked at the capture time of graphs,
i.e. the maximum number of turns the cops need to win, assuming they can always
capture the robber with the right strategy. For one cop, they showed that for every
n ∈ N there exists a graph on n nodes with a capture time of Ω(n2).
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In Chapter 4, we construct graphs with a capture time of Ω(n3), where n is the
number of nodes. As shown in [21], this bound is tight. Our graphs have a very low
number of nodes with odd degree. With the fact that in every connected component of
a graph, the number of nodes with odd degree is even, we can show that the robber has
very limited options to escape to a different connected component than the cop. With
that, we can proof that a single cop can always win on these graphs. Further, we show
that if the cop steps on certain nodes, the robber wins. Since the cop has to prevent these
nodes, his only choice is to use a path of length linear in n. In fact, we show that the cop
has to walk along the whole path every time he wants the robber to even move from one
node to another. Since the robber is able to move Ω(n2) times, we get a capture time of
Ω(n3).

1.4 Swap Equilibrium Graphs in the Extreme Vertex De-
struction Model

In Chapter 5, we study the extreme vertex destruction model, a network creation game
introduced by Kliemann et al. [22] to determine the robustness of networks formed by
selfish agents. For the sake of terminology, instead of ‘node’ we use the synonym ‘vertex’
in this chapter. The damage a network can experience is simulated by the removal of a
vertex v , i.e. the deletion of all the adjacent edges. It is measured by the separation of v ,
the number of vertex pairs that are no longer connected after v is destroyed. The vertices
with the highest separation are called max-sep vertices. Deleting one of them causes the
highest amount of damage. In the extreme vertex destruction model, a max-sep vertex is
picked uniformly at random and destroyed. The cost of a player is the expected number
of vertices, the player is no longer connected to after the destruction. To check the graph
for stability, players can make a so-called swap. They can delete an adjacent edge and
can instead create another adjacent edge. A graph has a swap equilibrium (SE), if no
single player can reduce his (expected) cost by performing a swap.

Kliemann et al. (2017) showed that there is a family of SE graphs with total cost of
Ω(n3/2), where n is the number of vertices. We prove that SE graphs can be even more
vulnerable by presenting a family of SE graphs with total cost of Ω(n2). Those graphs
consist of four big stars and two rather small stars that are connected to a K4 in the
center. Two vertices of the K4 are the only max-sep vertices. First, we show that those
graphs are indeed SE graphs. Would a vertex perform a swap, it would either increase
the separation of the ‘worse’ max-sep vertex, making it the only max-sep vertex of the
new graph, or it would become a max-sep vertex itself. Either way, a swap would not
lower the cost. Finally, we show that the graphs have an expected separation of Ω(n2).
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Chapter 2

Euler Tours in the Graph Streaming
Model

2.1 Introduction

2.1.1 Euler tours in the graph-streaming model

In the Euler tour problem, we are looking for a closed trail in an undirected graph
G = (V ,E ), where n = |V | and m = |E |, such that each edge is visited exactly once. It
is a well studied graph-theoretic problem with applications in the field of big data. For
example, solving the traveling salesman problem with the well-known Christofides algo-
rithm requires an Euler tour [8]. Further, for de novo genome assembly, large de Bruijn
graphs can be examined with Eulerian paths [27]. For the processing of large graphs, the
graph streaming or semi streaming model introduced by Feigenbaum et al. [13] has been
studied extensively over the last decade. In this model, a graph with n nodes and m
edges is given as a stream of its edges. Random-access memory (RAM, also called inter-
nal memory) is restricted to O(n polylog(n)) edges at a time, see, e.g., the survey [23]
for a detailed introduction. In consequence, the model cannot be applied to problems
where the size of the solution exceeds this amount of memory. Since the size of an Euler
tour is m, which might even be Θ(n2), we need a relaxation of the model that allows
us to store the output separate from the RAM. An obvious solution for this problem is
the addition of a write-only output tape with the sole purpose of storing the Euler tour.
In this setting it is common to output the Euler tour in the form of an edge-successor
function (e.g. [4], [9]).

2.1.2 Previous work

Graph streaming with the usage of an additional output tape resembles the model used by
Grohe et al. [17]. They consider Turing machines with a read/write input tape, multiple
read/write tapes of significantly smaller size, called ‘internal memory tapes’, and an
additional write-only output tape. They count the number of times the head of the
input tape changes it’s direction. This is closely related to the streaming model by
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Feigenbaum et al. since a streaming pass can be remodeled as a run on the input tape
with two direction changes of the head. In a more recent work by François et al. [15],
a read-only input tape and a write-only output tape are considered for the problems of
stream reverting and sorting.

Another related model is theW-streaming model introduced by Demetrescu et al. [10],
which is a relaxation of the classical streaming model. It originated as a more restrictive
alternative to the StrSort model introduced by Aggarwal et al. [29, 1]. At each pass, an
output stream is written, which becomes the input stream of the next pass. Finding an
Euler tour in trees in W-streaming has been studied in multiple papers (e.g., [9]), but
to the best of our knowledge the general Euler tour problem has hardly been considered
in a streaming model so far. However, there are some general results for transferring
PRAM algorithms to the W-streaming model. Atallah and Vishkin [4] presented a PRAM
algorithm for finding Euler tours, using O(log(n)) time and n+m processors. Transferred
to the W-streaming model with the methods from [9], this algorithm computes an Euler
tour in the form of a bijective successor function within p = O(m polylog(n)/s) passes,
where s is the RAM-capacity.

Sun and Woodruff [30] showed that even a one-pass streaming algorithm for verifying
whether a graph is Eulerian needs Ω(n log(n)) RAM. This implies that the minimum
RAM-requirement of a one pass streaming algorithm with additional output tape for
finding an Euler tour also is Ω(n log(n)).

2.1.3 Our contribution

We present the streaming algorithm Euler-Tour for finding an Euler tour in a graph
in form of a bijective successor function or stating that the graph is not Eulerian, us-
ing only one pass, O(n log(n)) bits of RAM and an additional write-only output tape.
This is not only a significant improvement over previous results, but is in the view of
the lower bound of Sun and Woodruff [30] the first optimal algorithm in this setting.
Atallah and Vishkin [4] find edge disjoint tours (in our case cycles) and connect them by
pairwise swapping the successor edges of suitable edges. This idea is easy to implement
without memory restrictions but the implementation gets distinctly more complicated
with limited memory space: We cannot store all cycles in RAM. Therefore, we have to
output edges and their successors before finding resp. processing all cycles. Our idea is to
keep specific edges of some cycles in RAM along with additional information so that we
are able to merge following cycles regardless of their appearance with already processed
tours which likely are no longer present in RAM.

We develop a new mathematical foundation by partitioning the edges into equivalence
classes induced by a given bijective successor function and prove structural properties
that allow to iteratively change this function on a designated set of edges so that the
modified function is still bijective. Translated to graphs this is a tour merging process.
This mathematical approach is quite general and might be useful in other routing sce-
narios in streaming models.
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2.1.4 Organization of the article

In Section 2.2 we give some basic definitions. Our algorithm consists of several subrou-
tines and technical data structures. Therefore, for the reader’s convenience Section 2.3 is
dedicated to an informal and example-based description. Section 2.4 contains the pseudo
code of the algorithm. In Section 2.5, we show the connection of the concepts of Euler
tours and successor functions and then show that the required RAM of the algorithm
does not exceed O(n log(n)) and that the output actually depicts an Euler tour (Theo-
rem 2.2).

2.2 Preliminaries

Let N := {1, 2, . . .} denote the set of natural numbers. For n ∈ N let [n] := {1, . . . ,n}.
In the following, we consider a simple graph G = (V ,E ) without loops where V denotes
the set of nodes and E the set of (undirected) edges. A walk in G is a finite sequence
T = (v1, . . . , v`) of nodes of G with {vi , vi+1} ∈ E for all i ∈ {1, . . . , `−1}. If additionally
every edge is visited at most once, we call it trail. The length of T is `−1. The (directed)
edge set of T is E (T ) := {(vi , vi+1)|i ∈ [`−1]}. We also write e ∈ T instead of e ∈ E (T ).
For a directed edge e we denote by e(1) its first and by e(2) its second component. A trail
T = (v1, . . . , v`) with v1 = v` is called a tour. In tours, we usually do not care about
starting point and end point, so we slightly abuse the notation and write vi+` or vi−` for
a node vi , identifying v0 := v` and v`+1 := v2 and so on. If additionally vi 6= vj holds for
all i , j ∈ [`−1], i 6= j (and ` ≥ 3), we call T a cycle. An Euler tour of G is a tour T with
E (T ) = E . Since in the streaming model the graph is represented as a set of edges, we
often use the edges for the depiction of tours. With ei := {vi , vi+1} for all i ∈ [l − 1], T
can be written as T = (e1, . . . , el ). Here, we also use the slightly abusive index notation.
Note that for the tour T the edges are distinct. For i ∈ [l ], we call ei+1 the successor
edge of ei in tour T . Our algorithm outputs an Euler tour T = (v1, . . . , v|E |, v1) in form
of a successor function, i.e., for every i ∈ [|E |], we output the triple (vi , vi+1, vi+2), where
{vi+1, vi+2} is the successor edge of {vi , vi+1} in T .

2.3 Idea of the algorithm

In this section we explain the new algorithmic idea in a more informal way. First we
describe how merging of subtours can be accomplished without RAM limitation clarifying
why this does not work in the streaming environment. Thereafter we explain our merging
technique, its locality and RAM efficiency.

2.3.1 Subtour merging in unrestricted RAM

Recall that the Euler tour will be presented by a successor function, so for every edge
we will compute the corresponding successor edge in the tour. Let G = (V ,E ) be an
Eulerian graph and T ,T ′ be edge-disjoint tours in G . The tour induces an orientation
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Figure 2.1: Merging tours by swapping two edges

of the edges in a canonical way. If T and T ′ have a common node v , it is easy to merge
them to a single tour: T has at least one in-going edge (u, v) with a successor edge
(v ,w), and T ′ has at least one in-going edge (u ′, v) with a successor edge (v ,w ′). By
changing the successor edge of (u, v) from (v ,w) to (v ,w ′) and the successor edge of
(u ′, v) to (v ,w), we get a tour containing all edges of T ∪T ′ (see Figure 2.1). The same
principle can be applied when merging more than two tours at once. When we have a
tour T and tours T1, . . . ,Tk , k ∈ N, such that T ,T1, . . . ,Tk are pairwise edge-disjoint
and for every j ∈ [k ] there is a common node vj of T and Tj , switching the successor
edges of two in-going edges per node vj as described above creates a tour containing the
edges of T ∪ T1 ∪ · · · ∪ Tk .

We can use this method as a simple algorithm for finding an Euler tour:
a) Find a partition of E into edge disjoint cycles.
b) Iteratively pick a cycle C and merge it with all tours encountered so far which have
at least one common node with C .

Such a merging process certainly converges to a tour covering all nodes, if a subtour
obtained by merging some subtours does not decompose into some subtours again. If we
use a local swapping technique to merge tours, this can very well happen, if swapping is
applied again to some other node of the merged tour (see Figure 2.2). In the RAM model
this problem does not appear, since we can keep all tours in RAM and avoid such fatal
nodes. But in the streaming model with O(n log n) RAM it is far from being obvious
how to implement an efficient tour merging for the following reasons.

1. We cannot keep every intermediate tour in RAM, so we have to regularly remove
some edges together with their successors from RAM, even if we do not know the
edges yet to come. On the other hand, we have to keep edges in RAM which are
essential in later merging steps.

2. Sometimes we have to merge cycles with tours that had already left RAM. There-
fore, we must keep track of common nodes and the related edges.

2.3.2 Subtour merging in limited RAM

We start with an example of four cycles C1, . . . ,C4, all sharing one node v (see Fig-
ure 2.3). Let’s assume that the cycles are in the same order as found by the algorithm.
Let (u1, v), . . . , (u4, v) be the respective in-going edges and (v ,w1), . . . , (v ,w4) be the
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Figure 2.2: Multiple edge-swapping can destroy the merging effect
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Figure 2.3: Successive merging of cycles

respective out-going edges. By swapping the successor edges of (u1, v) and (u2, v) as
explained before, we construct a tour T containing all edges from C1 and C2. We then
merge this tour with C3 swapping the successor edges of (u1, v) and (u3, v). Finally, C4

is merged with T by swapping the successors of (u1, v) and (u4, v). The successor edges
are now as follows:

(u1, v) −→ (v ,w4) (u2, v) −→ (v ,w1)

(u3, v) −→ (v ,w2) (u4, v) −→ (v ,w3)

For i > 1 and cycle Ci , the successor of the edge (ui , v) is edge (v ,wi−1), the out-going
edge of Ci−1. The edge (u1, v) of the cycle C1 has the out-going edge of the last cycle as
its successor edge. The edge (u1, v) is the first in-going edge of v and called the first-in
edge of v . Let us briefly show how this merging can be implemented in the streaming
model with an additional output tape. When C1 is kept in RAM, we store the edge
(u1, v), since we don’t know its final successor edge yet. We also keep the edge (v ,w1)
in RAM, because it will be the successor edge of C2. We call such an edge the potential
successor edge of v .

The crux is that, no matter how many cycles are merged at the node v , we get along
with only two additional edges in RAM at a time: the first-in edge, which will never
change after it is initialized and the recent potential successor, which will be replaced
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every time we merge a new cycle at v . In our example, when merging a cycle Ci for i > 1,
we assign the edge (v ,wi−1) as successor edge of (ui , v) and replace (v ,wi−1) by (v ,wi)
in RAM as potential successor edge of v . All other edges are written on the output tape
with their corresponding successors and don’t have to be stored in RAM. Finally, when
no more cycles with node v occur, we can write (u1, v) together with the recent successor
edge (in our case this is (v ,w4)) on the output tape.

Now, let us consider the more complicated case, where we wish to merge a cycle
C with multiple tours at several nodes. Consider a cycle C and tours T1, . . . ,Tj . Let
v1, . . . , vj , be nodes such that vi belongs to Ti and C for all i . We distinguish between
merging at three types of nodes:

1. For the nodes v1, . . . , vj we swap the successor edges.

2. Nodes in C and in T1 ∪ · · · ∪Tj \{v1, . . . , vj }: as only one successor edge swapping
per tour is needed, these additional common nodes are not used, hence for every
v ∈ T1∪· · ·∪Tj \{v1, . . . , vj } the in-going edge (u, v) of C keeps its successor edge,
so nothing happens here.

3. Nodes in C\(T1 ∪ · · · ∪ Tj ). These nodes are visited by the algorithm for the first
time. Since we might want to merge C with future cycles at these nodes, we store
for every v ∈ C\(T1 ∪ · · · ∪ Tj ) the in-going edge (u, v) of C as first-in edge and
the out-going edge (v ,w) of C as potential successor edge.

At any point of time we store at most one cycle C and two edges per node (a first-in edge
and a potential successor) in RAM, so O(n log n) RAM suffices. Note that the very first
cycle found by the algorithm consists only of type 3 nodes, so every edge will become a
first-in edge.

2.3.3 High level description

For the readers convenience we give a high level description of our algorithm. A detailed
description in pseudo code together with an outline of the analysis and the proof of the
main theorem will follow in the next sections. We denote the set of first-in edges by F .

1. Iteratively:

1.1. Read edges from the input stream until the edges in RAM contain a cycle C .

1.2. If a node v of C is visited for the first time,

a) store the in-going edge (u, v) of C in F (we will process these ≤ n edges
in step 2.),

b) remember the out-going edge (v ,w) as potential successor edge of v .

1.3. Every node v that has already been visited, has thereby been assigned to a
unique tour T with v ∈ C ∩ T . For each tour that shares a node with C ,
choose exactly one common node.
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1.4. For each node v chosen in step 1.3. ‘swap the successors’. That means, we
write the in-going edge e on the output tape and take the recent potential
successor edge of v as successor edge for e. Then, save the out-going edge as
new potential successor edge of v .

1.5. For each edge that has not been stored in F (step 1.2.) or written on the
output tape (step 1.4.) so far, write this edge on the output tape and take as
successor the following edge in C .

1.6. Assign all tours with common nodes together with all newly visited nodes to
a single tour.

2. After the end of the input stream is reached, all edges have either been written on
the output tape or stored in F . For every edge (u, v) ∈ F , write it on the output
tape and take as its successor the potential successor edge of v .

An example of how the algorithm works can be found in the appendix of th chapter.

2.4 The Algorithm and Main Results

2.4.1 The Algorithm in Pseudo Code

To enable a clear and structured analysis, in this section we present the pseudo-code
for our algorithm. For a better understanding it is split up into several procedures that
correspond to the steps from our high level description in Section 2.3.3. Note that these
procedures are not independent algorithms, since they access variables from the main
algorithm. The output is an Euler tour on G , given in the form of a successor function δ∗.
To be more precise, the output is a sequence of triples (v1, v2, s) written on the output
tape with v1, v2, s ∈ V and {v1, v2} ∈ E . Each of these triples represents the information
δ∗((v1, v2)) = (v2, s). If a triple (v1, v2, s) is written on the output tape, we say that
the edge (v2, s) is marked as successor of the edge (v1, v2). For every node v ∈ V we
store the two values s(v) and t(v). If v is considered for the first time, s(v) = t(v) = 0.
Otherwise, s(v) ∈ V indicates that (v , s(v)) is the potential successor edge of v and
t(v) ∈ [n] represents the tour that v is assigned to at the moment.
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Algorithm 1: Euler-Tour
input : Undirected graph G = (V ,E ), edge by edge on a stream S
output: Euler tour on G , i.e. a successor function δ∗, if there is one
1 c := 0; F := ∅; Eint := ∅; for every v ∈ V : s(v) := 0, t(v) := 0;
2 for every edge e on S do
3 Eint := Eint ∪ {e};
4 if Gint = (V ,Eint) contains a cycle C then
5 Merge-Cycle (C );

6 if Eint = ∅ then
7 ERROR: At least one node with odd degree exists;

8 if there exist u, v with t(u) 6= t(v) 6= 0 then
9 ERROR: Graph is not connected;

10 Write-F;

The algorithm searches the stream for cycles (Step 1.1. in our high level description
in Section 2.3.3) and whenever a cycle is found, we will run the procedure Merge-
Cycle on this cycle. Next we state the procedure Merge-Cycle, which implements
the steps 1.2. to 1.6. in Section 2.3.3.

Procedure Merge-Cycle
input : Ordered directed cycle C = (v1, . . . , vk ) of length k
1 New-Nodes ;
2 Construct-J-M;
3 Merge;
4 Write;
5 Update;
6 for every edge e ∈ C do
7 delete e from Eint

Let us now explain all the procedures that are used in Merge-Cycle. The proce-
dure New-Nodes implements step 1.2. from Section 2.3.3. If a node v ∈ C is processed
the very first time by the algorithm, this is indicated by t(v) = 0. If this is the case, we
store the C -edge in-going to v in the set F and define s(v) as the next node on C . So
the edge (v , vi+1) becomes the potential successor of v .

Procedure New-Nodes
1 for i = 1, . . . , k do
2 if t(vi) = 0 then
3 s(vi) = vi+1;
4 F = F ∪ {(vi−1, vi)};
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The procedure Construct-J-M is a realization of step 1.3. in Section 2.3.3. Recall
that the t-values of the nodes represent the tours that we have constructed so far. For
every possible t-value j ∈ [n], we pick exactly one node v with t(v) = j if there is one.
These nodes are stored in J , their t-values are stored in M . The nodes in J are the nodes
we want to use for merging tours. If two nodes have the same t-value, this means they
are already part of the same tour (see Lemma 2.13), so we have to avoid using both of
them for merging.

Procedure Construct-J-M
1 M = ∅; J = ∅;
2 for j = 1, . . . ,n do
3 if exists i ∈ [k ] with t(vi) = j then
4 add exactly one vi with t(vi) = j to the set J ;
5 M = M ∪ {j};

In the procedure Merge, we use the nodes from J to merge all tours that share a
node with the cycle C by edge-swapping (step 1.4. in Section 2.3.3).

Procedure Merge
1 for each vi ∈ J do
2 write (vi−1, vi , s(vi)) on the output tape;
3 s(vi) := vi+1;

In the procedure Write, we take care of all the edges that have not been stored in
F and have not been written on the output tape in the procedure Merge (Step 1.5. in
Section 2.3.3).

Procedure Write
1 for each edge (vi , vi+1) ∈ C that has not been written on the output tape or

added to F do
2 write (vi , vi+1, vi+2) on the output tape;

In the procedure Update we update the t-values to implement step 1.6.. This way we
ensure that the t-values of the nodes still represent the tours they belong to. If M = ∅,
the cycle C has no intersecting nodes with already constructed tours, so it is declared as
a new tour. Otherwise, all nodes from the cycle C and all intersecting tours now belong
to one single tour, represented by the t-value a.
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Procedure Update
1 a := 0;
2 if M = ∅ then
3 c := c + 1;
4 a := c;

5 else
6 a := min(M );

7 for each v ∈ V do
8 if t(v) ∈ M then
9 t(v) := a;

10 for i = 1, . . . , k do
11 t(vi) = a;

Finally, in the procedure Write-F (step 2. in Section 2.3.3), the first-in edges that
have been stored in F during the algorithm are written on the output tape with proper
successors. Note that for each (u, v) ∈ F it holds s(v) 6= 0.

Procedure Write-F
1 for each edge (u, v) ∈ F do
2 write (u, v , s(v)) on the output tape;

2.4.2 Main Results and Proof Idea

For the readers convenience we first sketch the proof idea and new mathematical tech-
niques in the analysis. The goal is to show that the algorithm Euler-Tour works as
claimed, that is, the memory requirement does not exceed the O(n log n) bound and the
output successor function δ∗ determines an Euler tour for the input graph G .

We state the two main results of this paper:

Lemma 2.1. Algorithm Euler-Tour needs at most O(n log n) bits of RAM.

Theorem 2.2. If G is Eulerian, δ∗ determines an Euler tour on G.

The memory estimation is done in Subsection 2.5.2 and is a careful analysis of the
Algorithm Euler-Tour and its subroutines. The main arguments are that at any point
of time we store at most two edges per node (a first-in edge and a potential successor),
the edges of the cycle that is recently processed and a label for every node (its t-value).
The correctness proof turns out to be much more complicated. Every bijective successor
function δ partitions the edges of G into edge-disjoint tours. In this case ‘being in the
same tour’ forms an equivalence relation on the set of edges, which is denoted by ≡δ.
We prove this fact in Theorem 2.6. This allows us to use equivalence classes, when
analyzing the dynamic change of subtours induced by successor functions in an algebraic
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framework. This analysis takes place in Subsection 2.5.3 and is concluded by Theorem 2.2,
which states that the output successor function δ∗ indeed induces an Euler Tour on G .
We start with a successor function δc . In Lemma 2.9 we show that δc is bijective and
that the equivalence classes of the corresponding equivalence relation ≡δc are simply the
directed cycles found during the algorithm Euler-Tour (line 4). Next we construct
a recursive sequence of bijective successor functions δ∗0 , . . . , δ∗N and their corresponding
equivalence classes with δ∗0 = δc and δ∗N = δ∗, where N denotes the total number of
cycles found by the algorithm. The differences from δ∗k+1 to δ∗k basically correspond to
the successor swapping process in the Procedure Merge-Cycle running on the (k+1)-th
cycle found by the algorithm. At this point we need the lemmata 2.12 and 2.13, the crux
of the analysis. Lemma 2.12 ensures that the successor swapping leads to a union of all
involved equivalence classes and finally Lemma 2.13 tells us that all successor functions
from the sequence δ∗0 , . . . , δ∗N are bijective, that the procedure Update works correctly
and that after an edge (u, v) has been processed by Euler-Tour, all processed edges
incident in u or v belong to the same equivalence class. Using that Eulerian Graphs are
connected, the proof of Theorem 2.2 then follows with a few simple arguments, because
by applying Theorem 2.6 it suffices to show that all edges ofG are in the same equivalence
class of the relation ≡δ∗ .

2.5 Detailed Analysis

2.5.1 Subtour representation by equivalence classes

In this subsection we present some basic definitions and results that allow us to transfer
the problem of tour merging in a graph to the notion of equivalence relations on E . This
will facilitate an elegant and clear analysis of our algorithm.

Definition 2.3. (i) Let G = (V ,E ) be an undirected graph. An orientation of the
edges of G is a function R : E → V 2 such that for every edge {u, v} ∈ E either
R({u, v}) = (u, v) or R({u, v}) = (v , u). So R(G) := (V ,R(E )) is a directed
graph. For an oriented edge e = (u, v) we write e(1) := u and e(2) := v .

(ii) Let ~G = (V , ~E ) be a directed graph. A successor function on ~G is a function
δ : ~E → ~E with δ(e)(1) = e(2) for all e ∈ ~E .

(iii) Let ~G = (V , ~E ) be a directed graph with successor function δ. We define the relation
≡δ on ~E as follows: For e, e ′ ∈ E , e ≡δ e ′ :⇔ ∃k ∈ N : δk (e) = e ′, where δk denotes
the k -wise composition of δ.

So e ≡δ e ′ means that e ′ can be reached from e by iteratively applying δ.

Lemma 2.4. Let δ be a bijective successor function on a directed graph ~G = (V , ~E ).
Then ≡δ is an equivalence relation on ~E .

Proof. Reflexivity: Let e ∈ ~E . Since ~E is finite, there exists k ∈ N with the following
property: There exists k ′ ∈ N with k ′ < k and δk (e) = δk

′
(e). Otherwise, all elements
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of the sequence (δ`(e))`∈N would be pairwise distinct, in contradiction to the fact that
there exist only |E | edges. Let k be minimal with this property. Since δ is injective, it
follows that δk−1(e) = δk

′−1(e) and the minimality of k enforces that k ′ − 1 /∈ N. So
k ′ = 1, therefore δk (e) = δ(e) and by the injectivity of δ we have δk−1(e) = e.

Symmetry: Let e, e ′ ∈ ~E with e 6= e ′ and e ≡δ e ′. Then there exists a minimal k ∈ N
with δk (e) = e ′. As shown above, there also exists a k ′ ∈ N with δk

′
(e) = e. Then

k < k ′, because otherwise δk−k ′(e) = δk−k
′
(δk
′
(e)) = δk (e) = e ′, in contradiction to the

minimality of k . It follows that δk ′−k (e ′) = δk
′−k (δk (e)) = δk

′
(e) = e.

Transitivity: Let e, e ′, e ′′ ∈ ~E with e ≡δ e ′ and e ′ ≡δ e ′′. Then there exist k1, k2 ∈ N
with δk1(e) = e ′ and δk2(e ′) = e ′′. So we have δk1+k2(e) = e ′′.

In the following we denote the equivalence class of an edge e ∈ ~E w.r.t. ≡δ by [e]δ.
The following technical lemma is necessary to show in Theorem 2.6 that the equiva-

lence classes of δ always form tours on ~G .

Lemma 2.5. Let ~G = (V , ~E ) be a directed graph with bijective successor function δ and
the corresponding equivalence relation ≡δ. Then we have:

(i) Let e ∈ ~E and k1, k2 ∈ N0 with k1 6= k2 and δk1(e) = δk2(e). Then |k1−k2| ≥ |[e]δ|.

(ii) For all e ∈ ~E we have δ|[e]δ|(e) = e.

Proof. (i): Assume for a moment that there exist e ∈ ~E and k1, k2 ∈ N with δk1(e) =
δk2(e) and 0 < |k1 − k2| < |[e]δ|. Without loss of generality let k1 > k2. We have
δk1−k2(δk2(e)) = δk1(e) = δk2(e) and via induction for every s ∈ N, we get δs(k1−k2)(δk2(e))
= δk2(e). For the set M := {δk (e)|k2 ≤ k < k1}, we have |M | ≤ k1 − k2 < |[e]δ|. But
on the other hand, we also have [e]δ ⊆ M : let e ′ ∈ [e]δ = [δk2(e)]δ and let ` ∈ N
with e ′ = δ`(δk2(e)). Then there exist unique s, r ∈ N0 with 0 ≤ r < k1 − k2 and
` = s(k1 − k2) + r . So

e ′ = δn(δk2(e)) = δr (δs(k1−k2)(δk2(e))) = δr (δk2(e)) = δk2+r (e) ∈ M .

Now, |M | ≤ k1 − k2 < |[e]δ| ≤ |M |, a contradiction.
(ii): Assume that there exists e ∈ ~E with δ|[e]δ|(e) = e ′ 6= e. Define M := {δk (e)|1 ≤

k ≤ |[e]δ|}. Clearly M ⊆ [e]δ.
Case 1: e ∈ M . Then δ0(e) = e = δk (e) for some k with 1 ≤ k < |[e]δ|. By (i) we get

k = |k − 0| ≥ |[e]δ|, a contradiction.
Case 2: e /∈ M . Then |M | < |[e]δ|, By the pigeonhole principle, there exist 1 ≤

k1, k2 ≤ |[e]δ| with δk1(e) = δk2(e) in contradiction to (i).

Theorem 2.6 (Structure Theorem). Let ~G = (V , ~E ) be a directed graph with bijective
successor function δ such that e ≡δ e ′ for all e, e ′ ∈ ~E . Then δ determines an Euler tour
on ~G in the following sense: For every e ∈ ~E the sequence (e(1), δ(e)(1), . . . , δ

|~E |(e)(1))

is an Euler tour on ~G.
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Proof. Let e ∈ ~E . Note that [e]δ = ~E . The sequence (e(1), δ(e)(1), . . . , δ
|~E |(e)(1)) consists

of |~E | edges, namely e, δ(e), . . . , δ|
~E |−1(e). These edges are pairwise distinct, because

otherwise we would have δk1(e) = δk2(e) for some k1, k2 ∈ {0, . . . , |~E | − 1}. Hence
|k1 − k2| < |~E | = |[e]δ| in contradiction to Lemma 2.5 (i). So the sequence is a trail.
By applying Lemma 2.5 (ii), we get e = δ|[e]δ|(e) = δ|

~E |(e), thus the trail is a tour on ~G
and since it has length |~E |, it is an Euler tour on ~G .

Before we start with a detailed memory- and correctness analysis, we show that at
the end of the algorithm, every edge {u, v} ∈ E has been written on the output tape
exactly once, either in the form (u, v) or in the form (v , u).

Lemma 2.7. (i) After each processing of an edge in the algorithm Euler-Tour
(lines 2 to 5), the graph Gint = (V ,Eint) is cycle-free, so |Eint| ≤ n. If all nodes
have even degree in G, after completion of Euler-Tour, Eint = ∅.

(ii) If all nodes have even degree in G, after completion of Euler-Tour every edge
{u, v} ∈ E has been written on the output tape either in the form (u, v , s) or in
the form (v , u, s) for some s ∈ V .

Proof. We start by proving the first part of (i) via induction over the number of already
processed edges. If there are no edges processed so far, then Eint = ∅, so Gint is cycle-
free. Now let k ∈ [|E |] ∪ {0}, let Gk ,Gk+1 denote Gint after k resp. k + 1 edges have
been processed and let Gk be cycle-free. Let e denote the (k + 1)-th processed edge.
When e is added to Gint, it may produce a cycle C . If e does not produce a cycle, then
Gk+1 = Gk ∪ {e} is cycle-free and we are done. If e produces a cycle C , then according
to lines 6, 7 in Merge-Cycle all C -edges are deleted from Eint. Because e ∈ C , we get
Gk+1 = (Gk ∪ {e}) \ C ⊆ Gk and we are done by the induction hypothesis.

Now assume for a moment that Eint 6= ∅ at the end of Euler-Tour. We know that
Gint is cycle-free at this time, so Gint contains a node with odd degree in Gint. Because
we always delete whole cycles, the degree of this node in G has to be odd as well, but
then G is not an Eulerian graph. In this case we might output a message that G does
not contain an Euler tour.

(ii). During the execution of Euler-Tour every edge from E is added to Eint at
some point of time and there is only one way for an edge to be deleted from Eint again,
namely in line 7 of the procedure Merge-Cycle. At that time the edge has either
been written on the output tape by the procedure Merge or Write (in which case
we are done), or it has been added to F in the procedure New-Nodes. In that case it
is written on the output tape in Write-F. Because, according to (i), Eint = ∅ at the
end of Euler-Tour,by then every edge must have been written on the output tape in
exactly one of these ways.

2.5.2 Memory requirement

Proof of Lemma 2.1. We consider the different variables and sets.
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Variable c: c is initialized with 0 and changed in the procedure Update if and only
if M = ∅ at that time. This only happens if in the procedure Construct-J-M for
every node v of the considered cycle, we have t(v) = 0, which means that none of the
cycle nodes was considered before. This case can occur at most n/3 times during the
algorithm, because there are at most n/3 node disjoint cycles in G . So c ≤ n/3 and
log n bits suffice to store c.

Variable s(v): With this variable we store the label of a node, so for fixed v ∈ V ,
log n bits suffice and altogether n log n bits suffice.

Variable t(v): We prove that for any v ∈ V t(v) ≤ n at any time: Assume for a
moment that this is not the case. Let T be the first point of time at which t(v) is set
to a value > n for some v ∈ V . t(v) is only changed in the procedure Update, line 9
or 11. In both cases t(v) is set to a which is either c (line 4) or min(M ) (line 6). We
already showed c ≤ n/3 < n. Hence, by our assumption, min(M ) > n at that time. But
this implies that at the time of construction of M , there already existed a node u ∈ V
with t(u) > n (procedure Construct-J-M, line 3) in contradiction to the choice of T .

Sets Eint,F , J ,M : Because a single element of each of these sets can be stored in
log n bits, it suffices to show that the cardinalities of these sets do not exceed n. For
Eint, this is shown in Lemma 2.7. For J andM , this follows directly from the construction
(procedure Construct-J-M). In the set F , for every node only the first edge entering
this node is stored (procedure New-Nodes, lines 2 and 4), so clearly |F | ≤ n.

2.5.3 Correctness

In this subsection, we prove by a series of lemmas that the output successor function
δ∗ determines an Euler tour on G , provided that G is Eulerian (Theorem 2.2). This is
done with the help of our structure theorem (Theorem 2.6), where bijectivity of δ∗ and
the condition that δ∗ induces only one equivalence class is required. In the following,
we show that these assumptions are true for δ∗ by generating a sequence of bijective
successor functions δ∗0 , . . . , δ∗N such that δ∗N = δ∗ and δ∗i+1 emerges from δ∗i by swapping
of edge successors.

Lemma 2.7 (ii) induces an orientation on E , which we call R∗: For all {u, v} ∈ E ,
we define

R∗({u, v}) :=

{
(u, v) if (u, v) has been written on the output tape
(v , u) if (v , u) has been written on the output tape.

Let C1, . . . ,CN denote the cycles found by the algorithm Euler-Tour (lines 2-5) in
chronological order. We use this ordering only for the sake of analysis. Note that the cycles
C1, . . . ,CN form a partition of ~E . For k ∈ [N ] and a variable x ∈ {s(v), t(v), . . . |v ∈ V },
we denote by xk the value of x after the k -th call of Merge-Cycle. With x0 we denote
the initial value of x .

Definition 2.8. For each i ∈ [N ], let Ci = (v
(i)
1 , . . . , v

(i)
`i

) the cycle supplied to Merge-

Cycle. Define δci : E (Ci) → E (Ci) by δci (v
(i)
j , v

(i)
j+1) := (v

(i)
j+1, v

(i)
j+2) for every j ∈ [`i ]

and define the successor function δc : R∗(E )→ R∗(E ) by δc |E(Ci ) := δci for all i ∈ [N ].
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So δc is the canonical successor function induced by the cycles C1, . . . ,CN .

Lemma 2.9. (i) The successor function δc is bijective.

(ii) For any two edges e, e ′ we have e ≡δc e ′ ⇔ ∃i ∈ [N ] : e, e ′ ∈ Ci .

Proof. (i). We first show that δc is surjective: Let e ∈ R∗(E ). Then e belongs to some
cycle Ck = (v

(k)
1 , . . . , v

(k)
`k

) for some k ∈ [N ]. Hence e = (v
(k)
i , v

(k)
i+1) for some i ∈ [`k ].

Then δ(v (k)i−1, v
(k)
i ) = (v

(k)
i , v

(k)
i+1) = e. Because R∗(E ) is finite, δc is bijective.

(ii). Let e, e ′ ∈ R∗(E ) with e ≡δc e ′ and k ∈ [N ] such that e ∈ Ck . Since δc(E (Ck )) =

E (Ck ), it follows that e ′ ∈ Ck . Hence, there exist i , j ∈ [`k ] with e = (v
(k)
i , v

(k)
i+1) and

e ′ = (v
(k)
j , v

(k)
j+1). W.l.o.g. let i < j and set r := j −i . Then (δc)r (e) = e ′, so e ≡δc e ′.

Let k ∈ {0, . . . ,N }. We consider the time right after the k -th iteration of Merge-
Cycle. For k = 0 this means the very beginning of the algorithm. We call edges from
k⋃

i=1
E (Ci) processed edges, since those edges have already been loaded into Eint and then

have been deleted from there. All processed edges can be divided into two types:

• Type A: The edge has been written on the output tape with a dedicated successor.

• Type B: The edge has been added to F .

These are the only possible cases for processed edges, because an edge which is deleted
from Eint is either written on the output tape or added to F (procedure Write). This
leads to the following definition.

Definition 2.10. For every k ∈ {0, . . . ,N } define the function δk :
k⋃

i=1
E (Ci) →

k⋃
i=1

E (Ci) by

δk ((u, v)) :=

{
e ′ if (u, v) is of type A with successor e ′

(v , s(v)) if (u, v) is of type B

and define δ∗k :=


δk on

k⋃
i=1

E (Ci)

δc on
N⋃

i=k+1

E (Ci).

Note that δ∗0 = δc and δ∗N = δ∗.

Lemma 2.11. Let k , ` ∈ {0, . . . ,N } with k < `. Then for any v , v ′ ∈ V , e ∈ R∗(E ), we
have

(i) If tk (v) = tk (v ′) 6= 0, then t`(v) = t`(v
′).
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(ii) If e ∈ C`, then [e]δ∗k
= [e]δc .

Proof. (i). Let v , v ′ ∈ V with tk (v) = tk (v ′) 6= 0. Assume for a moment that t`(v) 6=
t`(v

′). Then there exists k ≤ k ′ < ` such that tk ′(v) = tk ′(v
′) and tk ′+1(v) 6= tk ′+1(v

′).
Because tk (v) 6= 0 and the t-value of v is never set to 0 after its initialization, tk ′(v) 6= 0.
We take a closer look at the (k ′ + 1)-th call of Merge-Cycle. If for a node its t-value
is changed in this call, it is set to ak ′+1 (line 9 or 11 in Update), so we may assume that
tk ′+1(v) = ak ′+1 6= tk ′+1(v

′). But this implies that tk ′(v) ∈ M or v ∈ Ck ′+1. In the latter
case, since tk ′(v) 6= 0, we also have tk ′(v) ∈ M (procedure Construct-J-M). But then,
tk ′(v

′) = tk ′(v) ∈ M and therefore tk ′+1(v
′) = ak ′+1 = tk ′+1(v), in contradiction to our

assumption.
(ii). Let e ∈ C`. With Lemma 2.9 (ii), we get [e]δc = E (C`). Since ` > k , we

have δ∗k (e ′) = δc(e ′) for any e ′ ∈ C`. Hence, δ∗k (e) = δc(e) and by induction we get
(δ∗k )j (e) = (δc)j (e) ∈ C` for any j ≥ 1, which proves the claim.

The next lemma describes the cycle merging in terms of equivalence classes.

Lemma 2.12. Let ~G = (V , ~E ) be a directed graph with bijective successor function δ
and the related equivalence relation ≡δ. Let r ∈ N and e1, . . . , er ∈ ~E with ei ≡δ ej for
every i , j ∈ [r ]. Let e ′1, . . . , e

′
r ∈ ~E with e ′i 6≡δ e ′j and ei 6≡δ e ′i for every i , j ∈ [r ]. Let δ′

be a successor function on ~G with δ′(e) = δ(e) for every e ∈ ~E \ {e1, . . . , er , e ′1, . . . , e ′r}
and δ′(ei) = δ(e ′i) and δ′(e ′i) = δ(ei) for any i ∈ [r ]. Then, δ′ is bijective and

[e1]δ′ =
r⋃

i=1

[e ′i ]δ ∪ [e1]δ (P1)

[e]δ′ = [e]δ for any e ∈ ~E \ [e1]δ′ . (P2)

Let us briefly explain the meaning of the quite technical notation in this lemma. The
reader may think of e1, . . . , er as edges of the same cycle C . The edges e ′1, . . . , e

′
r are

edges that do not belong to C , but to several tours that share at least one node with
C , such that (ei)(2) = (e ′i)(2) for all i ∈ [r ]. The condition e ′i 6≡δ e ′j reflects the fact that
we have to choose exactly one common node per tour for merging, as already explained
in Section 2.3, see Figure 2.2. We obtain the new successor function δ′ by performing
the successor swapping as described in step 1.4. in Section 2.3.3. (P1) tells us that via
this swapping all associated equivalence classes are merged which means that all affected
tours become one big tour. (P2) makes sure that tours that don’t share nodes with C
are not changed at all.

Proof. First we note that δ′ is bijective, because δ is bijective. We prove the lemma via
induction over r . Let r = 1. To shorten notation, we write e and e ′ instead of e1 and e ′1.
We start with proving

[e]δ′ ⊆ [e]δ ∪ [e ′]δ. (2.1)

We show that for any e ′′ ∈ [e]δ ∪ [e ′]δ, we have δ′(e ′′) ∈ [e]δ ∪ [e ′]δ: Let e
′′ ∈ [e]δ ∪ [e ′]δ.

Then there exists k ∈ N such that e ′′ = δk (e) or e ′′ = δk (e ′). If e ′′ ∈ {e, e ′}, then δ′(e ′′) ∈
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{δ(e), δ(e ′)}. Otherwise δ′(e ′′) = δ(e ′′) = δk+1(e) or δ′(e ′′) = δk+1(e ′), respectively. In
each case we have δ′(e ′′) ∈ [e]δ ∪ [e ′]δ. Since e ∈ [e]δ ∪ [e ′]δ, it follows by induction on n
that (δ′)n(e) ∈ [e]δ ∪ [e ′]δ for any n ∈ N, so [e]δ′ ⊆ [e]δ ∪ [e ′]δ.

Next, we show
[e]δ ∪ [e ′]δ ⊆ [e ′]δ′ . (2.2)

Let e ′′ ∈ [e ′]δ. Then there exists k ∈ {1, . . . , |[e ′]δ|} with e ′′ = δk (e ′). Since by assumption
e /∈ [e ′]δ and by Lemma 2.5 (i) δ`(e ′) 6= e ′ for all ` ∈ {1, . . . , k − 1}, we have

δk (e ′) = δ(δk−1(e ′)) = δ′(δk−1(e ′)) = δ′(δ′(δk−2(e ′))) = · · · = (δ′)
k−1

(δ(e ′)).

Hence, e ′′ = δk (e ′) = (δ′)k−1(δ(e ′)) = (δ′)k−1(δ′(e)) = (δ′)k (e) ∈ [e]δ′ . So we have

[e ′]δ ⊆ [e]δ′ (2.3)

and analogously we get
[e]δ ⊆ [e ′]δ′ , (2.4)

By (2.3) δ(e ′) ∈ [e ′]δ ⊆ [e]δ′ , so [δ(e ′)]δ′ = [e]δ′ and thus using the assumption δ(e ′) =
δ′(e),

[e]δ′ = [δ(e ′)]δ′ = [δ′(e)]δ′ = [e ′]δ′ . (2.5)

Combining (2.3), (2.4), and (2.5), we proved (2.2). With (2.1), (2.2), and (2.5), we have

[e]δ′ ⊆ [e]δ ∪ [e ′]δ ⊆ [e ′]δ′ = [e]δ′ ,

so property (P1) is proven. For the proof of (P2), let e ′′ ∈ ~E with e ′′ 6≡δ e, e ′′ 6≡δ e ′.
Then, δk (e ′′) /∈ {e, e ′′} for all k ∈ N, so we get

δk (e ′′) = δ(δk−1(e ′′)) = δ′(δk−1(e ′′)) = · · · = (δ′)k (e ′′).

But this implies [e ′′]δ = [e ′′]δ′ .
Induction step: Now let r ∈ N and let the claim be true for all k ≤ r ∈ N. Let

e1, . . . , er+1 ∈ ~E with ei ≡δ ej for every i , j ∈ [r + 1]. Let e ′1, . . . , e ′r+1 ∈ ~E with e ′i 6≡δ e ′j
and e ′i 6≡δ ei for every i 6= j ∈ [r+1]. Let δ′ be a successor function on ~G with δ′(e) = δ(e)

for every e ∈ ~E \{e1, . . . , er+1, e
′
1, . . . e

′
r+1} and δ′(ei) = δ(e ′i) and δ

′(e ′i) = δ(ei) for every
i ∈ [r + 1]. We define a successor function δr for ~G by

δr :=

{
δ′ on ~E \ {er+1, e

′
r+1}

δ on {er+1, e
′
r+1}.

With the induction hypothesis applied to δ and δr , we get by (P1)

[e1]δr =

r⋃
i=1

[e ′i ]δ ∪ [e1]δ (2.6)

and by (P2)
[e ′r+1]δr = [e ′r+1]δ. (2.7)
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Now we apply the induction hypothesis to δr and δ′ as follows: We take δr instead of δ,
δ′ remains, r = 1 and e1 resp. e ′1 are replaced by er+1 resp. e ′r+1. Then P1 gives

[er+1]δ′ = [e ′r+1]δr ∪ [er+1]δr . (2.8)

Since e1 ≡δ er+1, we get with (2.6)

er+1 ∈ [er+1]δ = [e1]δ ⊆ [e1]δr ,

which implies
[er+1]δr = [e1]δr . (2.9)

Summarizing, we have

[er+1]δ′
(2.8)
= [e ′r+1]δr ∪ [er+1]δr

(2.9)
= [e ′r+1]δr ∪ [e1]δr (2.10)

(2.6)
= [e ′r+1]δr ∪

( r⋃
i=1

[e ′i ]δ ∪ [e1]δ

)
(2.7)
= [e ′r+1]δ ∪

( r⋃
i=1

[e ′i ]δ ∪ [e1]δ

)
=

r+1⋃
i=1

[e ′i ]δ ∪ [e1]δ. (2.11)

So (P1) is proved, if [er+1]δ′ = [e1]δ′ . By (2.11) [e1]δ ⊆ [er+1]δ′ , so e1 ∈ [er+1]δ′ and hence

[er+1]δ′ = [e1]δ′ . (2.12)

For the proof of (P2), let e ∈ ~E \[e1]δ′ . Since e /∈ [e1]δ′ , by (2.10) and (2.12) e /∈ [e1]δr .
Applying the induction hypothesis to δ and δr , (P2) gives us [e]δr = [e]δ. We know that
[er+1]δ′ = [e1]δ′ , so e /∈ [er+1]δ′ . As above, we apply the induction hypothesis to δr and
δ′ and get [e]δ′ = [e]δr . Altogether, [e]δ′ = [e]δr = [eδ].

Lemma 2.13. Let k ∈ {0, . . . ,N }. Then, δ∗k is bijective and for any (u, v), (u ′, v ′)
∈ R∗(E ), we have

(i) If (u, v), (u ′, v ′) are processed edges, then (u, v) ≡δ∗k (u ′, v ′)⇔ tk (u) = tk (u ′).

(ii) If (u, v) is a processed edge, then tk (u) = tk (v).

(iii) If tk (u) = 0, then (u, v) ≡δ∗k (u ′, v ′)⇔ (u, v) ≡δc (u ′, v ′).

Claim (i) says that the procedure Update works correctly, i.e., that the t-value of
a node (if it isn’t 0) always represents the tour it currently is associated to. Claim (ii)
says that after an edge has been processed, both of its nodes are associated to the same
tour. So, after the algorithm has terminated, every node of G is in the same tour as its
neighbor.
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Proof. We prove all claims via one induction over k . For k = 0 we have δ∗0 = δc which is
bijective (Lemma 2.9). Moreover, no edge has been processed so far, so (i) and (ii) are
trivially fulfilled and (iii) follows directly from δ∗0 = δc .

Now let all of the claims be true for a fixed k ∈ {0, . . . ,N −1}. We start with proving
the bijectivity and (i) for k + 1.

To do so we take a closer look at the (k + 1)-th call of Merge-Cycle. Suppose that
δ∗k 6= δ∗k+1. This change must happen in one of the procedures New-Nodes, Merge or
Write, since these are the only procedures in which edges are written on the output
tape or added to F . First, note that for every edge e written on the output tape during
Write or added to F in New-Nodes it holds δ∗k (e) = δ∗k+1(e):

If e = (v
(k+1)
i , v

(k+1)
i+1 ) is written on the output tape during Write, it is written in

the form (v
(k+1)
i , v

(k+1)
i+1 , v

(k+1)
i+2 ), so δ∗k+1(e) = (v

(k+1)
i+1 , v

(k+1)
i+2 ) = δc(e) = δ∗k (e).

If e = (v
(k+1)
i−1 , v

(k+1)
i ) is added to F during New-Nodes, it becomes a type-B-edge

at this point, so δ∗k+1(e) = (v
(k+1)
i , sk (v

(k+1)
i )). Furthermore, sk+1(v

(k+1)
i ) is set to v

(k+1)
i+1

in line 3, so δ∗k+1(e) = (v
(k+1)
i , v

(k+1)
i+1 ) = δc(e) = δ∗k (e).

So it suffices to consider the procedure Merge: Here we process every node from the
set Jk+1. Let r := |Jk+1|, for instance J = {w1, . . . ,wr}. Each of these nodes wi has been
processed before, hence, there is a unique edge in Ck+1 that points to wi and which we
denote by ei . Moreover, there is a unique edge in Fk pointing to wi and which we denote
by e ′i . Now let i ∈ [r ]. We process wi in two steps:

Step 1: (wi , s(wi)) is marked as successor of ei . So directly after this step, ei and e ′i
share the same successor, while the out-going edge of wi in Ck+1 has lost its predecessor.

Step 2: s(wi) is set to the next node on Ck+1, so that the out-going edge of wi

becomes the successor of e ′i in Ck+1 concerning δ∗k+1.
In these two steps we swapped the successors of ei and e ′i and did not change anything

else, so we get

δ∗k+1(e) = δ∗k (e) for any e ∈ ~E \ {e1, . . . , er , e ′1, . . . , e ′r}

and for any i ∈ [r ]

δ∗k+1(ei) = δ∗k (e ′i) and δ∗k+1(e
′
i) = δ∗k (ei).

Let i , j ∈ [r ] with i 6= j . We have ei ≡δ∗k ej , since ej ∈ Ck+1 = [ei ]δc = [ei ]δ∗k
. We also

have e ′i 6≡δ∗k e ′j , which follows from tk (wi) 6= tk (wj ) (Construct-J-M, line 4) together
with the induction hypothesis. Finally we have ei 6≡δ∗k e ′i , because e ′i /∈ E (Ck+1) =
[ei ]δc = [ei ]δ∗k

.
So we can apply Lemma 2.12 with δ = δ∗k and δ′ = δ∗k+1. This ensures the bijectivity

of δ∗k+1 and for every processed edge e by property P2 we get

e ∈ [e1]δ∗k+1
⇔ e ∈

r⋃
i=1

[e ′i ]δ∗k
∪ [e1]δ∗k

⇔ tk (e(1)) ∈ Mk ∨ e ∈ Ck+1

⇔ tk+1(e(1)) = ak+1,
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where the second equivalence follows with the induction hypothesis: We have

e ∈
r⋃

i=1

[e ′i ]δ∗k
⇔ ∃i ∈ [r ] : e ≡δ∗k e ′i

⇔ ∃i ∈ [r ] : tk (e(1)) = tk ((e ′i)(1))

⇔ ∃i ∈ [r ] : tk (e(1)) = tk ((e ′i)(2)) ∈ Mk

Analogously we get

e /∈ [e1]δ∗k+1
⇔ e /∈

r⋃
i=1

[e ′i ]δ∗k
∪ [e1]δ∗k

⇔ tk (e(1)) /∈ Mk ∧ e /∈ Ck+1

⇔ tk+1(e(1)) = tk (e(1)) 6= ak+1.

Now we are able to complete the proof of (i): Let (u, v), (u ′, v ′) be processed edges.
Case 1: (u, v), (u ′, v ′) ∈ [e1]δ∗k+1

. Then (u, v) ≡δ∗k+1
(u ′, v ′) and t(u) = ak+1 = t(u ′).

Case 2: (u, v) ∈ [e1]δ∗k+1
, (u ′, v ′) /∈ [e1]δ∗k+1

. Then (u, v) 6≡δ∗k+1
(u ′, v ′) and t(u) =

ak+1 6= t(u ′).
Case 3: (u, v) /∈ [e1]δ∗k+1

, (u ′, v ′) ∈ [e1]δ∗k+1
. Analog to case 2.

Case 4: (u, v), (u ′, v ′) /∈ [e1]δ∗k+1
. Then tk+1(u) = tk (u), tk+1(u

′) = tk (u ′) and with P2
of Lemma 2.12 we get [(u, v)]δ∗k+1

= [(u, v)]δ∗k
and [(u ′, v ′)]δ∗k+1

= [(u ′, v ′)]δ∗k
. So

(u, v) ≡δ∗k+1
(u ′, v ′)⇔ (u, v) ≡δ∗k (u ′, v ′)

⇔ tk (u) = tk (u ′)⇔ tk+1(u) = tk+1(u
′).

(ii). Let (u, v) be a processed edge. If (u, v) ∈ Ck+1, then at the end of Merge-
Cycle both t(u) and t(v) are set to the same value a. If (u, v) /∈ Ck+1, then (u, v)
already was a processed edge before. By induction hypothesis (ii) we have tk (u) = tk (v)
and applying Lemma 2.11(i) we get tk+1(u) = tk+1(v).

(iii). Let u ∈ V with tk+1(u) = 0. That means that u is not processed in the first k+1
calls of Merge-Cycle. Hence, (u, v) ∈ E (C`) for some ` > k + 1. Lemma 2.11(ii) gives
[(u, v)]δ∗k+1

= [(u, v)]δc , therefore we get (u ′, v ′) ∈ [(u, v)]δ∗k+1
⇔ (u ′, v ′) ∈ [(u, v)]δc .

Finally, we prove Theorem 2.2.

Proof of Theorem 2.2. According to Theorem 2.6, it suffices to show that δ∗ is bijective
and that e ≡δ∗ e ′ for any e, e ′ ∈ R∗(E ). Remember that δ∗ = δ∗N , so by Lemma 2.13 δ∗

is bijective. For the second property, let e, e ′ ∈ R∗(E ) with e = (u, v) and e ′ = (u ′, v ′).
If G is Eulerian, it is connected, so there exists a u-u ′-path P in G . For every edge on
P , either the edge itself or the corresponding reversed edge has been processed during
the algorithm Euler-Tour. By Lemma 2.13 (ii), tN (x ) = tN (y) for all nodes x , y of
P , hence, tN (u) = tN (u ′) and by Lemma 2.13 (i), we get e ≡δ∗N e ′. Since δ∗N = δ∗, we
are done.
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2.6 Conclusion

We have presented a one-pass algorithm with O(n log(n)) RAM for finding Euler tours
in undirected graphs in the graph streaming model with an additional write-only output
tape. This gives two possible directions for future work.

• Are there other well suited graph-theoretical problems, where the size of a solution
exceeds O(n polylog(n)) RAM but which can be solved in the graph streaming
model with an additional output tape?

• Can our technique of linking tours to equivalence classes be useful for other routing
problems?
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2.7 Appendix

potential successor edge

first-in edge

unprocessed edge

On the following two pages we present a working example
for the method Merge-Cycle that corresponds to the
steps 1.2. to 1.6. in our high level description. Note that
every node has at most one in-going first-in edge and one
out-going potential successor edge at a time.

T1

T2

T3 C

A cycle C has been found.

T1

T2

T3 C

Step 1.2. For every new node the in-going
edge becomes a first-in edge and the outgo-
ing edge becomes a potential successor.

T1

T2

T3 C

Step 1.3. For each intersecting Tour
T1,T2,T3 we choose one common node.

T1

T2

T3 C

Step 1.4. The successors of the chosen nodes
are swapped with potential successor edges.
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T1

T2

T3 C

Step 1.5. For the rest of the edges the suc-
cessor stays the same.

T1

Step 1.6. The tours and the cycle have been
merged to one tour.
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Chapter 3

Euler Tours in the StrSort Model

3.1 Introduction

In the last chapter we gave an overview of the definition and some applications of Euler
tours. We showed how to handle the Euler tour problem in the graph streaming model.
Our algorithm found an Euler tour and stored it in form of a successor function on an
output tape. This can be disadvantageous if the solution has to be further processed in
another streaming algorithm, since the edges are not actually in the right order on the
output tape. In applications we want the edges to be sorted on the stream, which cannot
be done in semi-streaming. This problem calls for a relaxation of the graph streaming
model.

3.1.1 StrSort and W-stream models

Aggarwal et al. [29, 1] presented a less restrictive streaming model, called StrSort-model.
It consists of alternating streaming and sorting passes. A streaming pass consists of a
Turing machine with local memory of size M and two tapes. On one tape, the Turing
machine reads a sequence S = x1, . . . , xk of k ∈ N items. On the other tape, an output
stream is written. On both tapes, the Turing machine can move only left-to-right. In a
sorting pass, a Turing machine with a global partial order sorts items on a tape according
to this order and returns the sorted items as output.

Definition 3.1. StrSort(pStr, pSort,M ) is the class of functions computable by the com-
position of up to pStr streaming passes and pSort sorting passes, each with memory M ,
where:

• the local memory is maintained between streaming passes

• streams produced at intermediate stages are of length O(a), where a is the length
of the input stream.

Using only O(polylog(n)) memory space and O(polylog(n)) passes is sufficient for
solving some graph problems in this streaming model, such as minimum spanning tree,
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maximal independent set and mincut [29]. A more recent paper concerns the construction
of spanners in weighted graphs [11]. This motivates the following definition of Aggarwal
et al. of the class PL-StrSort :

Definition 3.2. PL-StrSort := ∪k StrSort (O(logk n),O(logk n),O(logk n))

Demetrescu et al. [10] showed for a few graph problems (e.g. single source shortest
paths in directed graphs) that the sorting steps are not necessary. In the so-called W-
stream model, which uses only the streaming steps (i.e. StrSort(pStr, 0,M )), they show a
tradeoff between internal memory and streaming passes for undirected connectivity and
single-source shortest paths in directed graphs.

3.1.2 Previous results

In the RAM model, finding Euler tours in polynomial time is relatively easy, and various
algorithms are known. But the problem gets significantly more complicated considering
big data graphs in streaming or external memory models. Sun and Woodruff [30] showed
that a one-pass algorithm for computing an Euler tour would need Ω(n log(n)) RAM.
Atallah and Vishkin [4] gave an algorithm for computing the successor function of an
Euler tour in PRAM with running time O(log(n)) and n + m processors. Since PRAM
algorithms can be transferred to W-streaming [9], this result implicitly gives an algorithm
solving the Euler tour problem in O(m polylog(n)/s) number of passes with s bits of
RAM. Further, Demetrescu et al. [9] showed an upper bound of O(n log(n)/s) passes for
finding Euler tours in the very special case of a tree (by doubling the tree edges). But
to the best of our knowledge no algorithm for computing sorted Euler tours in general
graphs in a streaming model has been presented so far.

3.1.3 Our contribution

We give a 2-step StrSort-algorithm EulerStr for finding an Euler tour in a graph G =
(V ,E ) with n := |V | and m := |E |. The first and preprocessing step is a single pass
W-stream algorithm with memory space O(n log(n)), a common bound in the semi-
streaming context. In this step we compute an input stream of edges supplying additional
information, thus call them information edges. The second and main step is a PL-StrSort
algorithm with O(log(n)) alternating streaming and sorting passes and O(log(n)) mem-
ory space. The stream length will be O(m log(n)) the whole time. We output the edges
in the order given by the computed Euler tour.

A standard technique to compute Euler tours is to start with (sub-)tours and to
merge them. The merging step becomes efficient when we represent the tours through
vertices of a suitable tree. Unfortunately, its size can be Ω(m), thus it exceeds the memory
space in streaming models. Our technical innovation is to construct the tree keeping only
O(n log(n)) data in RAM, steadily outsourcing processed data on the output stream,
and finally to use the tree structure for an efficient sorting of the edges. Our result might
be a basis for solving other problems in combinatorial optimization under the big data
issue where Euler tours are needed in subprocedures. The open question arising from our
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result is whether or not the problem can be solved solely within polylogarithmic RAM
and passes (PL-StrSort algorithm).

3.2 Preliminaries

For k ∈ N let [k ] := {1, . . . , k}. Let G = (V ,E ) be an undirected graph with vertex
set V and edge set E . A walk of length k is a sequence v1, . . . , vk+1 of vertices, where
ei := {vi , vi+1} ∈ E for all i ∈ [k ]. For simplification, we omit the vertices and denote
the walk by the sequence of edges e1, . . . , ek . A trail is a walk without repeating edges,
i.e. for all i , j ∈ [k ]: i 6= j ⇔ ei 6= ej . A tour is a trail with the property v1 = vk+1, i.e. a
closed trail. An Euler tour is a tour that uses each edge in E exactly once. A graph that
contains an Euler tour is called Eulerian. A path is a walk without repeating vertices or
edges. A cycle is a tour with vi 6= vj for all i , j ∈ [k ].

A rooted tree is a tree in which one vertex r is designated as a root. In a rooted
tree, the depth of a vertex v is the length of the unique path to its root. The vertex u
adjacent to v which is on the v -r -path is called predecessor of v . If for a vertex w , the
vertex v is the predecessor of w , then w is called a successor of v . For a directed edge
~e = (u, v), u is called the tail, and v the head of ~e.

Definition 3.3 (Out-tree). An out-tree is a rooted, directed tree, where all edges point
to the respective successor.

The input stream consists of the m edges of G , given in arbitrary order.

3.3 General idea of EulerStr

3.3.1 Tour merging in the RAM model

There are two ways to represent an Euler tour. In the graph-theoretic representation the
edges are given in the order of the tour, while a weaker form is to give only a successor
function, which for an edge returns its successor edge w.r.t. the Euler tour (e.g. [4]). Our
goal is to compute the Euler tour in the graph-theoretic sense. Let us first explain the
basic idea of creating and merging cycles in the RAM model. In Section 3.3.2, we will
show why this direct approach fails in a streaming model and present our algorithmic
innovation. Let G = (V ,E ) be an undirected Eulerian graph. First, we partition E into
edge-disjoint tours C1, . . . ,Cq (q ∈ N) with lengths l1, . . . , lq . For each tour, we choose a
direction in which the tour is traversed. According to these directions, all edges become
directed. Let Ci = e1i , . . . , e

li
i and Cj = e1j , . . . , e

lj
j be tours with a common vertex v . It

is easy to merge these tours and get the edges in the right order: let esi be the edge of
Ci with head v . If the tail of e1j is v , the edges of Cj can be inserted in Ci right after
the edge esi , so the resulting tour is e1i , . . . , e

s
i , e

1
j , . . . , e

lj
j , e

s+1
i , . . . , e lii . This can be done

iteratively, and since an Eulerian graph is connected, the result finally is a simple tour.
During the merging we must ensure that in each step both tours share a vertex v and
one of the tours starts with v .
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To get an order in which we merge the tours by inserting edges, we construct an
out-tree ~T = (W , ~F ), where W = {w1, . . . ,wq} and for all i , j ∈ [q ] : (wi ,wj ) ∈ ~F ⇒ Ci

and Cj share a common vertex in G (see Figure 3.1). Again, such a tree exists, because
G is connected. If wj is the predecessor of wi in ~T , we call Cj the predecessor tour of Ci

and Ci a successor tour of Cj .

C5

C3

C2

C4

C1

w1

w2

w4w3

w5

Figure 3.1: Partition G into tours C1, . . . ,C5 with a corresponding out-tree ~T .

We merge tours along ~T . Let wr be the root of ~T . For every i ∈ [q ]\{r} we sort the
edges of Ci such that the tail of the first edge is a common vertex of the predecessor
tour. Once this is done, we can iteratively merge the tours along the edges of ~T as
described above (see Figure 3.2). After each step, ~T can be updated accordingly. During
the merging process, the tail of the first edge of every intermediate tour does not change,
and every intermediate tour still has a common vertex with the predecessor tour, so the
required conditions are fulfilled all the time.

High level description of tree-merging:

1. Partition the graph G into edge disjoint tours C1,. . . ,Cq .

2. Create a rooted tree ~TG , where each vertex wi represents a cycle Ci of G . Having
an edge {wi ,wj } in ~TG implies that the tour Ci and Cj share a common vertex in
G .

3. Iteratively merge adjacent vertices in ~TG , while merging the represented tours
in G .

3.3.2 Tour merging within limited memory

Our goal is to design an algorithm which uses one W-streaming pass with O(n log(n))
RAM followed by additional StrSort passes with only O(log(n)) RAM. Thus, we have
to use our first pass as efficient as possible. Finding edge disjoint tours with O(n log(n))
space is fairly easy. When n edges are in local memory, the subgraph formed by those
edges is guaranteed to contain at least one cycle/tour. So iteratively, up to n edges can
be stored in local memory and a tour can be delivered. There are fundamental problems
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C5

C3

C1

w1

w ′2

w3

w5

C ′2
e0

e4

e1

e3
e7e8

e9 e6 e2e5

Figure 3.2: Merging of C2 = e0, e1, e2, e3, e4, e5 and C4 = e6, e7, e8, e9 to get a new tour
C ′2 = e0, e6, e7, e8, e9, e1, e2, e3, e4, e5

of transferring the tree merging algorithm to the streaming environment, in particular
steps 2 and 3.

• (Tour Number Problem) The number of tours found can be Θ(n2), therefore
the edges of ~T would occupy Θ(n2 log(n)) memory space. Hence, parts of ~T
have to be output during the first streaming step and before the out-tree can be
constructed.

• (Efficient Sorting Problem) For inserting a tour Ci in the predecessor tour
Cj , sorting steps with a global partial order will be used. The edges of Ci have
to receive labels such that during a sorting step they are placed right behind the
correct edge of Cj with a common vertex as head.

We will resolve the first problem by only keeping O(n) edges of ~T in RAM and
output the other edges immediately. For the second problem, we will assign to each edge
a label using additional memory space on the output stream during the W-stream step.
The hard work and core of this paper is to design efficient algorithms for both problems
and to prove their correctness.

Before we can state the algorithm, we introduce appropriate data structures, the
graph labeling mentioned above and the notion of so called information edges.

Definition 3.4 (Graph labeling). On the output stream, we identify an edge eki of a
tour Ci with length li with a 6-tuple

eki := (vki , v
k+1
i , i , k , ī , k̄) for k ∈ {1, . . . , li}, where (3.1)

• {vki , vk+1
i } ∈ E and ī , k̄ ∈ {0} ∪ [m].

• When walking along Ci , eki is passed from vki to vk+1
i .

• If ī = 0 = k̄ : k is the placement of eki in Ci , i.e. eki is the k -th edge of tour Ci .

Let us briefly explain the effect of graph labeling for tour merging. Let Cj be the
predecessor tour of Ci and ek

′
j be the edge of Cj behind which the tour Ci has to be
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inserted. Let the fifth and sixth entry of all edges of Ci and Cj have the value 0. Relabel
the edges eki of Ci to (vki , v

k+1
i , j , k ′, i , k). After sorting the edges lexicographically by

the last four entries, Ci is directly behind ek
′

j on the stream, so Ci and Cj are merged
correctly. Now, since all edges are in one common tour, they have to be relabeled again.

Note that this labeling technique only works when the labels of Cj are not changed
at the same time. Hence, during a merging step we only change labels of tours whose
representing vertices in the out-tree have odd depth. This way, every predecessor tour
in a tour merging has unchanged labels. With an out-tree of height h ≤ m we need
O(log(h)) merging steps.

Now, we explain how the 6-tuples for graph labeling are updated by transferring
values from one item to a target item. This holds also for the information edges intro-
duced shortly. For the relabeling of the edges with only O(log(n)) RAM, we use a basic
technique in the StrSort environment. Let xa = (la , va) and xb = (la , va) be items on
the stream with labels la , lb and values va , vb . To change the value of xb to va , we can
create an additional item y = (la , lb , 0). After sorting by label and using the first label
of y , xa and y are consecutive on the stream, so even with O(log(n)) RAM we can read
both items, store the value va in the third entry of y and then output xa = (la , va) and
y = (la , lb , va). After another sorting step, where the second label of y is used, xb and y
are consecutive on the stream. Now, we can read both items and change xb to (lb , va).

As additional items we use the edges of our out-tree ~T in a modified version, called
‘information edges’ in contrast to the graph edges of G .

Definition 3.5 (Information edge). For a tour Cj and its predecessor tour Ci , the
information edge f ji is defined as follows:

f ji := (i , j , di , v , pi , o) (3.2)

• di ∈ {∗} ∪ {0, . . . ,m}, v ∈ V , pi ∈ {∗} ∪ [m] and o ∈ {0, 1}.
• f ji represents the edge {wi ,wj } ∈ ~T and if o = 0, then wi is the predecessor of wj

in ~T . If o = 1, then wi is the successor of wj in ~T .

• If di 6= ∗, then di is the depth of wi in ~T .

• v is a common vertex of Ci and Cj in G.

• If pi 6= ∗, then pi is the placement of the edge in Ci which has v as its head.

f ji has the labels i , j and v for transmitting values between edges of Ci and Cj , and
can transmit the needed value pi to Cj if di is an even number, i.e. if the merging is
actually taking place. If a value is not known, the related entry is marked with a ‘∗’. The
W-stream step and generation of information edges is presented in the following section.

3.4 The W-stream step

In this section, we describe the one pass W-stream step within O(n log(n)) memory.
A detailed example is given in the appendix of the chapter. In this pass, we want to
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partition the Eulerian graphG into edge-disjoint cycles and output the edges according to
Definition 3.4. Additionally, we create the out-tree ~T and output the related information
edges according to Definition 3.5. However, there will be two points that need a constant
number of additional StrSort passes with O(log(n)) RAM. First, we cannot convert the
tree in RAM into an out-tree until the tree is completed. But the tree might not fit
into RAM as only O(log(n)) memory is available. We solve this problem by outputting
information edges of ~T that are guaranteed to be leaf edges. These edges will miss the
information about the depth of the predecessor. Second, when creating an edge of T ,
we do not know yet which vertex will be the predecessor or successor in ~T . Since we
have to constantly output tours before the out-tree is constructed, these tours will not
be sorted and it may happen that the first edge does not begin with a common vertex
of the predecessor tour.

Let C1, . . . ,Cq be the tours found by our algorithm in this order. For i ∈ [q ] let Gi

denote the subgraph of G consisting of the union of the tours C1, . . . ,Ci . Let {v1, . . . , vn}
be the vertices of G . For each j ∈ [n], we store the following values in RAM:

• firj ∈ [m] is the label of the first tour that contains vj , i.e. vj /∈ Gfirj−1 and
vj ∈ Gfirj .

• compj ∈ [n] is the label of the connected component of vj in the current sub-
graph Gi . It will be updated in each iteration step.

We start with an empty tree T . We give a high-level description of the algorithm (for
the pseudo-code see the appendix).

W-stream algorithm

1. Initialization: T := ∅, G0 := ∅, i := 1

2. Iteratively do, until the input stream is empty:

2.1. Read the input stream until n edges are stored in RAM.
2.2. Find a tour and call it Ci .
2.3. Check if Ci fulfills one of the following conditions (Gi := Gi−1 ∪ Ci):

• Ci contains a vertex that is not in Gi−1.
• Gi has fewer connected components than Gi−1.

2.4. If one of those conditions is fulfilled:
2.4.1. Add the vertex wi to T .
2.4.2. For each connected component in Gi−1 sharing vertices with Ci : choose

such a vertex vj , create {wi ,wfirj } in T and store vj as common vertex of
Ci and Cfirj .

2.5. If those conditions are not fulfilled:
2.5.1. Pick one vertex vj of Ci and output the information edge (firj , i , ∗, vj , ∗, 0)

2.6. Output the edges of Ci according to Definition 3.4 and set i := i + 1.
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3. Repeat steps 2.2. to 2.6. for the remaining edges until no more cycles can be found.

4. Let q be the number of cycles found in step 2.2. If at this point, edges of G remain
in RAM, or if Gq is not connected, state that G is not Eulerian.

5. Convert T into an out-tree ~T and output the edges of ~T as information edges
(6-tuples).

Now, we prove that the W-stream algorithm gives the required output within
O(n log(n)) RAM (Theorem 3.8). First, we need two technical lemmata.

Lemma 3.6. If G is an Eulerian graph, the W-stream algorithm outputs a partition of
G into edge-disjoint tours. If G is not Eulerian, the algorithm will state this fact.

Proof. It is well known that G is Eulerian iff the graph is connected and every vertex
has even degree. Since in a tour every vertex has even degree, G is Eulerian iff Gq is
connected and every vertex in G\Gq has even degree. The algorithm notices by the values
comp1, . . . , compn if Gq is connected. At the end of the algorithm, either G\Gq = ∅ and
G is Eulerian, or G\Gq 6= ∅ and there is still an edge left in RAM. In the former
case, every edge of G was written on the stream exactly once, so C1, . . . ,Cq is indeed a
partition of G . In the latter case, no more tours can be found in G\Gq , hence a vertex
in G\Gq has a degree of 1. But then, not every vertex in G\Gq has even degree and G
is not Eulerian.

Lemma 3.7. For every i ∈ [q ] and every k , l ∈ [i ] with k 6= l , the tours Ck and Cl are
connected in Gi iff after the i-th iteration wk and wl are connected in T .

Proof. We prove this statement by induction over i . It holds for i = 1. So, let the
statement be true for arbitrary but fixed i ∈ [q − 1]. Let k , l ∈ [i + 1] with k 6= l . Let
us assume that Ck and Cl are connected in Gi+1. We have two cases. If Ck and Cl were
already connected in Gi , then by the induction hypothesis wk and wl were connected
in T after iteration i , so they are still connected after iteration i + 1 since no edges
are deleted in T . If Ck and Cl were not connected in Gi , wk and wl were in different
connected components in iteration i . Since the connected components of Ck and Cl are
connected by Ci+1 in Gi+1, in step 2.4.2. of iteration i+1, edges are created in T between
wi+1 and the connected components of wk and wl , so wk and wl are connected in T after
iteration i + 1.

Now, let us assume that Ck and Cl are not connected in Gi+1. Then, they were not
connected in Gi and Ci+1 is vertex disjoint with the connected component of Ck or Cl .
Hence, in step 2.4.2. of iteration i + 1, an edge from wi+1 to the connected component of
wk or wl will not be created in T , and since wk and wl are not connected after iteration
i (induction hypothesis), they are not connected after iteration i + 1.

Theorem 3.8. Let G be an Eulerian graph.

a) The set of information edges returned by the W-stream algorithm form an out-tree
~T ∗ on vertices w1, . . . ,wq such that for every edge in ~T ∗ the represented tours have
a common vertex.
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b) The W-stream algorithm never uses more than O(n log(n)) RAM.

Proof. a) SinceG is Eulerian,G = Gq by Lemma 3.6 and becauseG as an Eulerian graph
is connected, Gq is connected as well. Hence, by Lemma 3.7 the graph T is connected
after iteration q . Furthermore, edges are created in T only in step 2.4.2., and only one
edge per connected component to a new vertex. Hence, no cycle is created in this step.
So, T is a tree after iteration q and ~T is an out-tree at the end of the algorithm. The
only edges missing in ~T are the information edges outputted in step 2.5.1. Every tour
not represented in ~T has exactly one information edge with a neighbor in ~T , so only leafs
are missing in ~T . We define the expanded graph ~T ∗ consisting of the vertices w1, . . . ,wq

and all information edges. ~T ∗ is also a tree, because only leafs are added to ~T . Since an
information edge f ji with i , j ∈ [q ] was only created in step 2.5.1. or in step 2.4.2., when
the represented tours Ci and Cj have a common vertex, we are done.

b) A vertex is only created in T if one of the conditions in step 2.3. is fulfilled. This
cannot happen more than 2n times, so T only needs O(n log(n)) RAM. Additionally,
we store the two values firi and compi per vertex vi and up to n edges for finding a tour.
Furthermore, we need a constant number of variables (for more details see the pseudo
code in the appendix). Altogether, O(n log(n)) RAM is sufficient for the algorithm.

3.5 The PL-StrSort algorithm

In this section, we explain in detail how to use the information edges for merging the
tours. Note that at this point we are entering the StrSort model and are restricted to
O(log(m)) = O(log(n)) RAM. As mentioned in the previous section, we have to address
a few problems:

1. The tree ~T ∗ was created at the end of the W-stream algorithm, so most tours were
output before their predecessor tours were determined. The orders of their graph
edges have to be changed, so that the tail of the first edge is a common vertex of
the predecessor tour.

2. The information edges with no vertex contained in T were output before the rooted
tree ~T was created, so they miss the information about the depth of the predecessor
in ~T ∗.

3. All information edges lack the last information: the position of the graph edge of
the predecessor tour, behind which the successor tour will be inserted.

Problem 3 can be tackled as follows. The algorithm will iteratively merge tours and
update information edges according to a new rooted tree ~T ∗∗ with height about half
the height of the original tree ~T ∗. At that point, the information edges will miss the
information about graph edge positions again.

Further, we will present StrSort algorithms using O(1) passes and O(log(n)) RAM
for each of the problems 1 and 2 in the following subsections. As explained in Section
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3.3.2, the sorting steps are used to place edges needing information next to edges having
that information, and both are held in RAM for the information transfer during the next
streaming step.

3.5.1 Rotating Tours

Let Cj be a tour with wj ∈ ~T ∗. Let dj be the depth of wj in ~T ∗. If dj > 0, then wj has
a predecessor wi in ~T ∗. The information edge f ji contains a common vertex v of Ci and
Cj , but the order of Cj stored in the graph edges was not changed according to v during
the W-stream algorithm. The order of Cj will be changed as follows:

Procedure RotCirc

1. Sort the graph edges by tour label and placement, and the information edges by
successor tour s.t. in the stream a tour Cj is stored directly behind the information
edge f ji with second entry j .

2. While streaming a tour Cj : store v from f ji , count the number lj of edges in the
tour, and find the placement p of the edge with v as its tail.

3. Create a 3-tuple gj := (j , p, lj ) as additional item on the stream. With the next
tour go to step 2.

4. Sort in the same way as in step 1. Place each 3-tuple in front of the related tour.

5. In the next streaming step, after reaching gj , store lj and p.

6. For k ∈ {1, . . . , lj }: read edge ekj := (vkj , v
k+1
j , j , k , 0, 0) and output (vkj , v

k+1
j , j , ((k−

p) mod lj ) + 1, 0, 0).

7. Delete p, lj and gj . Choose the next tour and go to step 5.

3.5.2 Information edges and depth

Let Cj be a tour with wj /∈ T . Then, there is exactly one information edge with second
entry j . Let Ci be the stored predecessor tour and f ji be the associated information edge.
Then, wi ∈ T and the third entry of f ji is ‘∗’. We need the depth di of wi in ~T ∗. If wi

is the root of ~T ∗, then di = 0. Otherwise, wi has a predecessor wk in ~T ∗. Then, the
information edge concerning {wi ,wk} contains the depth dk of wk and di = dk + 1. With
two streaming steps, one sorting step and f ji = (i , j , ∗, v , ∗, 0) for some v ∈ V , we will
get the needed information dk from f ik if it is available:

Procedure InfoDepth

1. Change f ji = (i , j , ∗, v , ∗, 0) to (j , i , ∗, v , ∗, 1), i.e. change predecessor and successor
of all information edges with ∗ as third entry.



40 CHAPTER 3. EULER TOURS IN THE STRSORT MODEL

2. Sort the information edges lexicographically according to the successor and the
orientation (i.e. second and sixth entry).

3. If before (j , i , ∗, v , ∗, 1) there is no edge with second entry i and without ∗ as third
entry, output a depth of 0, i.e. (i , j , 0, v , ∗, 0).

4. If there is such an edge, e.g. (k , i , dk , v , ∗, 0), then for all edges (j , i , ∗, v , ∗, 1) with
i as second entry, output (i , j , dk + 1, v , ∗, 0).

3.5.3 The merging step

We proceed to the merging step and its analysis.

Lemma 3.9. According to the W-stream algorithm and the two preparation steps Rot-
Circ and InfoDepth, the graph edges and information edges have the following prop-
erties:

a) The set of edges of G is partitioned into q ∈ N tours. For each i ∈ [q ] the tour Ci of
length li is represented by the li graph edges e ji = (v ji , v

j+1
i , i , j , 0, 0) for j ∈ [li − 1]

and e lii = (v lii , v
1
i , i , li , 0, 0).

b) ~T ∗ = (W ∗, ~F ∗) with W ∗ := {w1, . . . ,wq} is an out-tree and it holds ((wi ,wj ) ∈
~F ∗ ⇔ there exists an information edge with first entry i and second entry j ).

c) For i , j ∈ [q ] let f ji be an information edge. Then it has the form f ji = (i , j , di , v , ∗, 0),
where wi is the predecessor of wj in ~T ∗, di is the depth of wi and v is a common
vertex of Ci and Cj . Furthermore, v1j = v .

Proof. a) By Lemma 3.6, the graph is partitioned into edge-disjoint tours. The specific
form of the graph edges is achieved by steps 2.2. and 2.6. of the W-stream algorithm.

b) By Theorem 3.8 ~T ∗ is an out-tree. The first and second entries of the information
edges are determined by the direction of these edges in steps 2.5.1. and 5. and are correct
according to Definition 3.4.

c) After the W-stream algorithm, the first and second entry of f ji are correct by part
b). That may have changed during InfoDepth, but these changes were undone at the
end of this procedure. There are two cases to consider:

• f ji was output in step 5. of the W-stream algorithm. Here, the out-tree ~T was
created beforehand and the depth of the predecessor vertex was stored in the
information edge. The common vertex was stored in step 2.4.2. and output with
f ji in step 5.

• f ji was output in step 2.5.1. of the W-stream algorithm. There, the common vertex
was also output. Furthermore, f ji received di during InfoDepth. The information
edge was used in RotCirc to sort the tour such that the tail of the first edge is
the vertex v . Hence, v1j = v .
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Let h be the height of ~T ∗. Let us informally describe the StrSort algorithm. It
will modify graph edges and information edges s.t. the properties stated in Lemma 3.9
are fulfilled and the out-tree represented by the information edges has height bh/2c.
The number of graph edges will stay the same, still representing the edges of G . After
O(log(h)) = O(log(n)) iterations of the algorithm, the underlying out-tree has a height
of 0, so the graph edges form a single tour, i.e. an Euler tour of G .

We will consider an iteration step in our StrSort algorithm. We say that a tour Ci has
even (odd) depth if the representative vertex wi in ~T ∗ has even (odd) depth. Likewise,
we say that an information edge has even (odd) depth when the predecessor vertex
has even (odd) depth. For information edges f and f ′, f ′ will be called the predecessor
edge of f in ~T ∗ if the successor vertex of f ′ is the predecessor vertex in f . During one
iteration, every tour Ci with odd depth will be inserted in its predecessor tour. Therefore,
the information edges of odd depth will not be used for the merging process, since its
successor tour has even depth. Instead, they will be updated for the next iteration. The
high-level description of the algorithm is:

Algorithm Merge-Tour:

1. Updating the information edges of odd depth.

2. Transmitting the new coordinates to the edges of the tours with odd depth.

3. Relabeling the newly formed tours.

We state the subroutines 1 to 3:

Updating the information edges of odd depth For the update of an information
edge f ji of odd depth, two values have to be changed:

• The depth changes from di to (di − 1)/2. This is done at the end of the iteration
in order to prevent conflicts.

• The predecessor vertex of f ji changes, since the represented tour has odd depth and
will be merged with his predecessor tour. Therefore, the predecessor vertex of the
predecessor vertex in ~T ∗ will be the new predecessor vertex of f ji .

Let f ji = (i , j , di , v , ∗, 0) be the successor edge of information edge f ik = (k , i , dk , v
′, ∗, 0).

f ji needs k as its new first entry. First, we switch the values i and j of f ji and change the
last entry to 1. Then, we sort lexicographically according to the second and sixth entry of
the information edges. In this way, every information edge with predecessor i is directly
behind f ik , and the value k can be transmitted during the following streaming step.
Finally, the modified edges regain their original first and second entry. The procedure is
as follows.
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Procedure InfoUpdate

1. For all information edges f ji = (i , j , di , v , ∗, 0) with odd di : change edge to (j , i , di , v , ∗, 1).

2. Sort in the following way:

• Information edges are placed in front of graph edges.

• Information edges: (i1, j1, di1 , v1, ∗, o1) is in front of (i2, j2, di2 , v2, ∗, o2) iff(
(j1 < j2) or (j1 = j2 and o1 < o2) or (j1 = j2 and o1 = o2 and i1 < i2)

)
.

• The order of the graph edges does not matter.

3. Stream: For every information edge (i , j , di , v , ∗, 0) (with 0 as last entry):

3.1. Store i in RAM and output (i , j , di , v , ∗, 0).

3.2. As long as information edges of form (i ′, j , dj , v
′, ∗, 1) are read, output the

information edge (i , i ′, dj , v
′, ∗, 0) instead.

Transmitting the new coordinates An information edge f ji = (i , j , di , v , ∗, 0) with
even di needs to find a graph edge of tour Ci with the head v . Therefore, the sorting
step makes use of the values i and v to place f ji directly behind a suitable graph edge eki
in order to transmit the value k . In another sorting step, f ji is placed in front of the tour
Cj , so in the following streaming step the edges of Cj can receive the values i and k and
be modified as explained in Section 3.3.2. The following is a more detailed description.

Procedure Transmit

1. Sort in the following way:

• Place information edges with odd depth in the front and in arbitrary order.

• Information edges with even depth: (i1, j1, di1 , v , ∗, 0) is in front of (i2, j2, di2 , v
′, ∗, 0)

iff
(
(i1 < i2) or (i1 = i2 and v < v ′)

)
.

• Graph edge and information edge with even depth: (v ji , v
j+1
i , i , j , 0, 0) is in

front of (i ′, j ′, di ′ , v
′, ∗, 0) iff

(
(i < i ′) or (i = i ′ and v

(j+1)
i ≤ v ′)

)
.

• Graph edges: (v ji , v
(j+1)
i , i , j , 0, 0) is in front of (v j

′

i ′ , v
j ′+1
i ′ , i ′, j ′, 0, 0) iff

(
(i <

i ′) or (i = i ′ and v j+1
i < v j

′+1
i ′ ) or (i = i ′ and v j+1

i = v j
′+1

i ′ and j < j ′)
)
.

2. Stream: For every graph edge (v ji , v
j+1
i , i , j , 0, 0):

2.1. Read all information edges of even depth until the next graph edges follows.

2.2. For each such information edge (i ′, j ′, di ′ , v
′, ∗, 0), output (i ′, j ′, di ′ , v

′, j , 0)
instead.

3. Sort the following way:
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• Graph edges: (v ji , v
j+1
i , i , j , 0, 0) is in front of (v j

′

i ′ , v
j ′+1
i ′ , i ′, j ′, 0, 0) iff

(
(i < i ′)

or (i = i ′ and j < j ′)
)
.

• Information edges: (i1, j1, di1 , v , p1, 0) is in front of (i2, j2, di2 , v
′, p2, 0) iff (j1 <

j2).

• Information edge, graph edge: (i ′, j ′, di ′ , v
′, p, 0) is in front of (v ji , v

j+1
i , i , j , 0, 0)

iff (j ′ ≤ j ).

4. Stream: For every information edge (i ′, j ′, di ′ , v
′, p, 0) with even di ′ :

4.1. Store i ′ and p in internal memory, delete the information edge without output.

4.2. As long as graph edges (v ji , v
j+1
i , i , j , 0, 0) are read, output (v ji , v

j+1
i , i ′, p, i , j )

instead.

Relabeling the newly formed tours After a lexicographical sorting of the graph
edges by the last four entries, the tour merging is done and the edges of the newly formed
tours are consecutively placed on the stream. The first edge of each tour kept its tour
label, since successor tours are always inserted behind an edge. Therefore, we can use
this label and a counter c to relabel the following edges. The procedure is as follows:

Procedure Relabel

1. For each graph edge of the form (v , v ′, i , 1, 0, 0) (with fourth entry 1):

1.1. Set counter c := 2.

1.2. Store i and output the edge.

1.3. Do the following until a graph edge is read that does not have i as third entry:

1.3.1. Read the next graph edge (it has the form (v̄ , v̄ ′, i , x , j , y)) and output
(v̄ , v̄ ′, i , c, 0, 0) instead. Then set c := c + 1

Lemma 3.10. After an iteration step of algorithm Merge-Tour, the properties stated in
Lemma 3.9 are fulfilled for an out-tree ~T ∗∗ with height bh/2c, where h is the height of
the original out-tree ~T ∗.

Proof. Property a): The only change of the graph edges in algorithmMerge-Tour happens
during the tour merging. Since the merging of tours results in tours, G is still partitioned
into edge-disjoint tours. The graph edges have the required form due to step 1.3.1. in
Relabel.

Property b): When merging connected vertices in a tree, the result is still a tree. The
out-tree ~T ∗ changed during the algorithm in the following way: Each vertex with odd
depth is merged with its predecessor. Therefore, for each vertex with even depth in ~T ∗,
the new predecessor in ~T ∗∗ is the predecessor of the predecessor in ~T ∗.

We show that ~T ∗∗ is represented correctly by the remaining information edges. We
consider the following two cases.
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• Let wi be a vertex in ~T ∗ with even depth di ≥ 2. After the W-stream algorithm,
there was exactly one information edge with i as its second entry. This information
edge was not deleted in step 4.1. of Transmit. The first entry changed in step 3.2.
of InfoUpdate such that the correct predecessor of wi in ~T ∗∗ is displayed. Since
second entries in information edges do not change in the StrSort algorithm of
Section 3.5.3, there is still only this information edge with i as its second entry.

• Let wj be a vertex in ~T ∗ with odd depth. This vertex is merged with its predecessor
and is not a vertex in ~T ∗∗. The unique information edge with second entry j is
deleted in step 4.1. of Transmit.

Therefore, the only information edges left after algorithm Merge-Tour are the ones that
correctly represent the edges of the out-tree ~T ∗∗.

Property c): Let f ji be an information edge associated with the tours Ci and Cj after
algorithm Merge-Tour. Then, Ci contains the tour that was the predecessor tour of Cj

after the W-stream step, so Ci also contains their common vertex v . Furthermore, the
information of the depth was updated in step 3.2. of InfoUpdate. Therefore, the form
of f ji is correct. Since the first edge of Cj did not change, Cj is still in an order such that
the tail of the first edge is v .

Let h ≥ 1 be the height of ~T ∗. For the vertices with depth h, the corresponding
information edges have a depth of h − 1. If h is even, then h − 1 is odd and at the end
of the iteration step the depth of these information edges changes to ((h − 1)− 1)/2, so
the height of ~T ∗∗ is (h − 2)/2 + 1 = h/2 = bh/2c. If h is odd, then these vertices are
merged with their predecessors and do not exist in ~T ∗∗. In this case, the depth of the
predecessors changes to ((h − 2)− 1)/2, so the height of ~T ∗∗ is (h − 3)/2 + 1 = bh/2c.

Altogether, all properties of Lemma 3.9 are fulfilled for the out-tree ~T ∗∗ with height
bh/2c.

Theorem 3.11. a) After O(log(n)) iterations of algorithm Merge-Tour, the order of
the graph edges on the output stream represents an Euler tour on the graph G.

b) The StrSort algorithms use O(log(n)) RAM.

c) The stream never exceeds a length of O(m log(n)).

Proof. a) Lemma 3.10 states that after every iteration of algorithm Merge-Tour, the
properties of Lemma 3.9 are fulfilled with an out-tree of about half of the original height.
After O(log(h)) = O(log(m)) = O(log(n)) iterations, the out-tree consists of only one
vertex. Hence, the represented tour contains every graph edge and is therefore an Euler
tour.

b) Every streaming step only stores a constant number of graph or information edges
simultaneously in RAM, each of size O(log(n)). Hence, O(log(n)) RAM is used.

c) After the W-stream algorithm, there are m graph edges and at most m information
edges with O(log(n)) memory space each. The only time additional items are created
during the StrSort algorithms is in RotCirc, step 3. There are at most m additional
items of size O(log(n)). Therefore, the stream never exceeds a length of O(m log(n)).
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3.6 Conclusion

We have presented an algorithm for finding Euler tours in undirected graphs in the
StrSort model. It uses a single pass preparation step with O(n log(n)) memory space,
followed by a PL-StrSort algorithm. Considering this result, various open questions arise:

• Can the preparation step be replaced by an StrSort algorithm using O(log(n))
passes and memory space? In this case, the Euler tour problem could be solved
entirely by a PL-StrSort algorithm. However, as indicated by Ruhl [29], finding
cycles with a StrSort algorithm might be difficult.

• Are there more problems where a single pass with larger RAM enables it to be
solved by a PL-StrSort algorithm? Such a step might be a useful addition to the
StrSort model.
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3.7 Appendix
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w2 w1 w3
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Figure 3.3: Partition into tours and created tree.

Example of the W-stream step Figure 3.3 gives an example on a graph with vertices
v1, . . . , v9. Assume that the tours found are C1, . . . ,C5 in that order. C1 is the first
tour containing v5, so a vertex w1 in T is created. We set firi := 1 and compi := 1
for i ∈ {5, 7, 8} and output the expanded edges (v5, v7, 1, 1, 0, 0), (v7, v8, 1, 2, 0, 0) and
(v8, v5, 1, 3, 0, 0). C2 is the first tour containing v6 and shares the vertex v7 with C1 (this
information is stored in fir7), so comp6 := 1, comp9 := 1 and w2 is created in T with edge
{w1,w2}. Furthermore fir6 := 2 and fir9 := 2, because v6 and v9 are used for the first time.
Additionally, the expanded edges (v6, v7, 2, 1, 0, 0), (v7, v9, 2, 2, 0, 0) and (v9, v6, 2, 3, 0, 0)
are output. With C3, we set firi := 3 for i ∈ [4] and have a new connected component in
G3 with compi = 3 for i ∈ [4]. We place a vertex w3 in T without additional edges and
output the expanded edges. C4 connects the components ‘1’ and ‘3’. For each component
a common vertex of C4 is chosen. Vertices v1 and v5 are selected with comp5 = 1 and
comp1 = 3. We create a vertex w4 and since fir5 = 1 and fir1 = 3, we connect the
vertex with edges {w4,w1} and {w4,w3} in T . Again, we output the expanded edges.
The tour C5 contains only vertices previously used and does not connect components
in G4, so there is no additional vertex in T . However, we select the vertex v2, and
since fir2 = 3, we output the information edge (3, 5, ∗, v2, ∗, 0). Finally, we output the
edges (v2, v4, 5, 1, 0, 0), (v4, v6, 5, 2, 0, 0) and (v6, v2, 5, 3, 0, 0). Now, T can be rooted and
directed, e.g. with root w4. In this case, the following information edges are outputted
at the end of the algorithm: (4, 1, 0, v5, ∗, 0), (4, 3, 0, v1, ∗, 0) and (1, 2, 1, v7, ∗, 0).
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The W-stream algorithm in pseudo code
Algorithm 2: Algorithm tour-find

input : Undirected graph G = ({v1, . . . , vn},E ) with edges in arbitrary order,
m := |E |

output: m graph edges and q information edges for q ≤ m

1 compi := ∗ for all i ∈ [n];
2 firi := ∗ for all i ∈ [n];
3 cir := 0;
4 s := false, scr := false ; // indicates if vertex in T will be or is

created
5 sedge := ∗ ; // indicated potential edge in T
6 svert := ∗ ; // indicated common vertex in G
7 T := (W ,F ), W := ∅,F := ∅;
8 Scomp := {0} ; // keeps track of conn. comp. concerning current tour
9 comp∗ := ∗;

10 repeat
11 read stream until (n edges are in internal memory) or (end of stream);
12 find tour C = vi1 − e1i − · · · − vili − e lii − vi1 with vertices vi ′1 , . . . , vi ′l′

(li , l ′ ∈ N) in internal memory;
13 if there is no such tour, return ’graph is not Eulerian’ ;
14 cir := cir + 1;
15 new-test(C ) ; // does C contain a new vertex? -> s
16 comp-test(C ) ; // does C connect components? -> s
17 if s = false then
18 output information edge (sedge, cir, ∗, vsvert , ∗, 0);
19 sort C , s.t. C = vi1 − e1 − · · · − vili − eli − vi1 with vi1 = vsvert ;

20 for j:=1 to li -1 do
21 output graph edge (vij , vij+1 , cir, j , 0, 0);

22 output graph edge (vili , vi1 , cir, li , 0, 0);
23 delete C from internal memory;
24 s := false, scr := false, sedge := ∗, svert := ∗, Scomp := {0}, comp∗ := ∗;
25 until (end of stream) and (no edges in internal memory);
26 for i:=1 to n-1 do
27 if compi 6= compi+1 then
28 return ’graph is not Eulerian’

29 write T as rooted tree;
30 for every wi ∈W , let di be the depth of wi in T ;
31 for every information edge (i , j , ∗, v , ∗, 0) in internal memory output information

edge (i , j , di , v , ∗, 0);
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Algorithm 3: Algorithm new-test

1 for j:=1 to l ′ do
2 if firi ′j = ∗ then
3 s := true;
4 firi ′j := cir;

5 else
6 if sedge = ∗ then
7 sedge := firi ′j ;
8 svert := i ′j ;
9 Scomp := Scomp ∪ {compi ′j };

10 comp∗ := compi ′j

11 if s = true then
12 create vertex wcir, W := W ∪ {wcir};
13 if sedge 6= ∗ then
14 create edge {wcir,wsedge}, F := F ∪ {{wcir,wsedge}};
15 create information edge (sedge, cir, ∗, vsvert , ∗, 0);

16 else
17 for j:=1 to l ′ do
18 compi ′j := cir

When the algorithm tour-find finds a tour Ci in line 12, it is tested, if Ci uses a
vertex of G for the first time (new-test) or connects connected components in Gi−1
(comp-test). In new-test, the lines 2-4 test if a vertex is used for the first time. If
this is the case, s indicates that a new vertex wi is created in the tree T . Lines 6-10 test
if the tour uses a vertex used by a tour Cj before. If wi is created, an edge {wi ,wj } is
stored and an information edge is output (lines 11-15). Scomp keeps track of the connected
components in Gi−1 touched by Ci . If Ci only uses new vertices, there will be a new
connected component in Gi . This is noted in lines 17-18. Algorithm comp-test starts
if Ci uses a vertex used before. Let Ak be the connected component of that vertex in
Gi−1. In comp-test it is tested if Ci uses vertices which are not in Ak and not used for
the first time. If this happens for the first time, and there is not already a vertex wi in
T , such a vertex is created in line 4-8 with the necessary graph and information edge.
Otherwise, just the graph and information edge is output. In lines 13-15 the variables
compk are updated. If after new-test and comp-test there is still no vertex wi in T ,
in line 18 of tour-find an information edge is output. The third entry is ’∗’, indicating
that Ci has no representative in T . In lines 20-21, the tour is output such that the tail
of the first edge is a common vertex of the tour noted in the information edge. The
connectivity of G is tested in lines 26-28. Finally the rooted tree is built, and the stored
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Algorithm 4: Algorithm comp-test

1 if comp∗ 6= ∗ then
2 for j:=1 to l’ do
3 if compi ′j 6= comp∗ then
4 if s = false then
5 s := true;
6 create vertex wcir, W := W ∪ {wcir};
7 create edge {wcir,wsedge}, F := F ∪ {{wcir,wsedge}};
8 create information edge (sedge, cir, ∗, vsvert , ∗, 0);

9 if compi ′j /∈ Scomp then
10 create edge {wcir,wfiri′

j
}, F := F ∪ {{wcir,wfiri′

j
}};

11 create information edge (firi ′j , cir, ∗, vi ′j , ∗, 0);
12 Scomp := Scomp ∪ compi ′j ;

13 for k:=1 to n do
14 if compk ∈ Scomp\{comp∗} then
15 compk := comp∗;

information edges are updated and output.
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Chapter 4

The bridge-burning Cops and
Robbers Game

4.1 Introduction

4.1.1 Cops and Robbers

Cops and robbers is a two player full information game played on a graph G . One player
controls a set of cops, while the other player controls a single robber. At the start of the
game, player 1 places all cops on different nodes of G . After that, player 2 places the
robber on a node not occupied by a cop. Then, the game proceeds with alternate turns
for the cops and the robber. At a cops’ turn, each cop can either move from his position
along an edge to a neighboring node or stay in position. At a robber’s turn, the robber
also can move to a neighboring node or stay in position. If at someone’s turn a cop is on
the same node as the robber, the robber is captured. If the cops can capture the robber in
a finite number of turns, they win the game. Otherwise the robber wins. A graph which
optimally played is won by the cops is called cop-win graph.

Cops and robbers is a well-studied graph-theoretical problem. The game was intro-
duced in the early 1980s. Some of the first results ([25],[28]) characterized graphs on
which one cop is able to capture a robber. In 1984, Aigner and Fromme ([2]) considered
the minimum number of cops on a graph to capture a robber, the so-called cop number
of a graph. Another interesting aspect of the game was introduced by Bonato et al. ([6]).
The capture time of a cop-win graph states the minimum number of turns the cops need
to win the game, independent of the strategy chosen by the robber. I.e. it is the number
of turns the cops need to capture the robber, if he tries not to be captured for as many
turns as possible. We refer to [18] for a survey of the traditional cops and robbers game.

During the decades, countless different variations of the game were created. In the
context of mobility for example, the cops can be restricted to one moving cop per
turn([26], [5]), the robber can move faster than the cops ([14]) or the robber is able
to move anywhere in one turn as long as there is a path with no cops on it([24]). We
refer to [7] for a wider view on the subject. One of the newest variations is the bridge-
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burning cops and robbers game.

4.1.2 Burning Bridges

Kinnersley and Peterson ([21], 2018) introduced an interesting variant of cops and rob-
bers, called bridge-burning cops and robbers. Here, whenever the robber traverses an edge,
this edge is deleted from the graph afterwards. In this variant, there are two ways for the
robber to win: either he creates and enters a connected components without cops or a
situation occurs where the ‘best move’ for the cops and the robber is to stay in position
and thereby the cops do not catch the robber.

Kinnersley and Peterson determined the cop number cb of trees, grids, tori and hy-
percubes for the bridge-burning cops and robbers game. They also looked at the capture
time captb(G) of graphs G with a cop number of 1. First, they gave a simple argu-
ment for the fact that every graph G on n nodes with cb(G) = 1 has a capture time
of captb(G) = O(n3). Then, they showed that for every n ∈ N there exists a graph G
on n nodes with cb(G) = 1 and captb(G) = Ω(n2). For l ∈ N, we define the notation
[n] := {1, . . . , l}. Let n ∈ N and k ,m ∈ N such that n = k(m + 2) and m(k − 1) is even.
Consider the graph G = (V ,E ) defined as follows. The set of nodes V consists of the
sets U := {ui : i ∈ [k ]}, W := {wi : i ∈ [k ]}, and Sj := {s ji : i ∈ [m]} for j ∈ [k ]. G |U
is a complete subgraph. G |S1∪···∪Sk

is a complete k -partite subgraph. Additionally, for
every i ∈ [k ] and every s ∈ Si we have (ui , s) ∈ E and (ui ,wi) ∈ E .

S1

S3 S2

u1

u3 u2

w2w3

w1

Figure 4.1: Graph with capture time of O(n2) (k = 3, m = 2)
.
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Basically, the cop’s strategy is to move along the nodes in U to force the robber to
move along an Euler tour in S1∪ · · · ∪Sk until all those edges are deleted and the robber
can no longer move.

Finally, Kinnersley and Peterson conjectured that the upper bound of n3 for the
capture time of graphs with a cop number of 1 is tight, i.e. there are graphs on n nodes
with a capture time of Ω(n3) (Conjecture 5.3 in [21]). In such a graph, the robber would
not move every turn, but would wait a linear number of turns each time before moving.
Therefore, we are looking for a graph such that on the one hand the robber can stay in
position for a long period of time without being captured and on the other hand the cop
can ‘leave the robber alone’ for a couple of turns without the robber isolating himself in
the meantime.

In 2020, Herrman et al. [19] proved tight bounds for the game with multiple cops.
They showed that there is a constant C such that for every k ≥ 3 and n sufficiently
large, there is a graph Gn on n nodes such that with k cops Gn is a cop-win graph and
has a capture time of

captb(Gn) ≥ C
nk+2

kk+2
.

They leave the conjecture of Kinnersley and Peterson as an open problem.

4.1.3 Our Contribution

We prove the conjecture of Kinnersley and Peterson, i.e. we find a function f : N → N
with f ∈ Ω(n3) and for every n ∈ N construct a graph Gn on n nodes with cb(Gn) = 1
and captb(Gn) ≥ f (n). We limit the options for the robber’s starting position by creating
an immediate threat he has to take care of. Furthermore, most of the nodes will have
even degree, so that the robber cannot easily isolate himself by creating a connected
component. Similar to [21], we also give a possible escape route for the robber that the
cop has to defend. Thereby we limit the cop’s options as well. Altogether, we have a
subgraph on which the robber cannot isolate himself and a path of size Θ(n) which the
cop has to traverse every time he wants the robber to move.

4.2 Graphs with high capture time

Again, for l ∈ N, we use the notation [l ] := {1, . . . , l}. For a graph G = (V ,E ), let
v ∈ V and S ⊆ V . The distance between v and S is defined as

dist(v ,S ) := min{dist(v ,w)|w ∈ S}. (4.1)

Bonato et al. ([6]) define the capture time captb(G) of a game on a graph G with cop
number b with b cops and one robber as the minimum number of turns over all possible
games, assuming that the robber is trying to avoid being captured for as long as possible.

We define our graph G∗ = (V ∗,E ∗) with the desired properties. If not stated oth-
erwise, n := |V ∗| will be the number of nodes and m := |E ∗| will be the number of
edges.
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Figure 4.2: Graph G∗.

Definition 4.1 (Graph G∗ for 8|n). Let n ≥ 72 such that n = 8k for some k ∈ N.
We define the graph G∗ = (V ∗,E ∗) on |V ∗| = n nodes as follows. The set of nodes V ∗

consists of

• the sets A := {ai : i ∈ [n4 ]} and B := {bi : i ∈ [n4 ]},

• the sets {pi : i ∈ [n8 ]}, {qi : i ∈ [n8 ]} and {ri : i ∈ [n−164 ]},

• the nodes x1, x2, p∗ and q∗.

E ∗ is the set of the following edges.

• For all ai ∈ A, bj ∈ B with i , j ∈ [n4 ]: (ai , bj ) ∈ E ∗, the induced subgraph G∗|A∪B
is a complete bipartite graph.

• For all i ∈ [n4 ]: (ai , p n
8
) ∈ E ∗ and (bi , q n

8
) ∈ E ∗.

• For all v ∈ A ∪ B ∪ {p n
8
, q n

8
}: (r n−16

4
, v) ∈ E ∗.

• For all i ∈ [n8 − 1]: (pi , pi+1) ∈ E ∗ and (pi , pi+1) ∈ E ∗, i.e. we have paths P := p1-
p2-· · · -p n

8
and Q := q1-q2-· · · -q n

8
.
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• For all i ∈ [n−164 − 1]: (ri , ri+1) ∈ E ∗, i.e. we have a path R := r1-r2-· · · -r n−16
4

.

• {(r1, x1), (x1, x2), (x2, r n−16
4

)} ⊂ E ∗.

• {(p1, q1), (p1, r1), (q1, r1), (p∗, p1), (q∗, q1)} ⊂ E ∗.

Definition 4.2 (Graph G∗ for 8-n). Let n > 72 such that n = 8k + l for some k ∈ N
and l ∈ [7]. The graph G∗ = (V ∗,E ∗) on |V ∗| = n nodes is defined similar to the graph
G∗8k , with additional nodes p∗1 , . . . , p

∗
7 and additional edges (p1, p

∗
1), . . . , (p1, p

∗
l ).

Proposition 4.3. Let k ∈ N≥8 and l ∈ [7]. If the cop has a strategy to win the game on
G∗8k , he has a strategy to win the game on G∗8k+l with the same capture time.

Proof. Assume that the cop has a strategy to win the game on G∗8k . In this strategy,
he will start on p1 or a neighbor of p1, because otherwise the robber could start on p1
and move to p∗ on his first move, removing the edge (p1, p

∗) and winning, because he
is on a different connected component than the cop. Thus, if the robber starts on p∗,
he will get captured after one or two moves of the cop. This happens analogously if the
robber starts on a node p∗i for i ∈ [l ]. If the robber does not start on one of the nodes in
p∗, p∗1 , . . . , p

∗
l , the cop can use the same strategy as on G∗8k , ignoring the nodes p∗1 , . . . , p∗l

and winning in the same number of turns as in G∗8k , because the robber will never visit
one of the nodes in p∗1 , . . . , p

∗
l during the game. Otherwise, he could have visited the

node p∗ instead. Thus, he would have won the game on G∗8k , a contradiction.

Observation 4.4. The only nodes in G∗ with odd degree are p∗ and q∗.

Proof. p∗ and q∗ have odd degree. For v ∈ A ∪ B , deg(v) = n
4 + 2. We have deg(p n

8
) =

n/4 + 2 = deg(q n
8
), deg(r n−16

4
) = 2 · n4 + 4 and deg(u) = 4 for u ∈ {p1, q1, r1}. The only

nodes left have a degree of 2. Therefore, all nodes in V ∗\{p∗, q∗} have even degree.

First, we state a basic result frequently used in graph theory, for example in the proof
of Tutte’s theorem.

Lemma 4.5. Let G be a graph and H be a connected component of G. The number of
nodes in H with odd degree is even.

The next lemma shows the importance of the robber’s starting position. During the
game edges are deleted, so the graph G∗ may split into connected components.

Lemma 4.6. In the bridge-burning cops and robbers game on G∗, let the starting position
of the robber be a node v ∈ V ∗\{p1, q1, p∗, q∗}. As long as he does not visit a node in
{p1, q1}, the robber’s current position is on the same connected component as v .

Proof. Since the robber does not start on a node in {p, q , p∗, q∗}, as long as he does not
visit p1 or q1, the edges (p∗, p1), (q∗, q1) and (p1, q1) will never be deleted. Therefore,
the connected components during the game played on G∗ are the same as on the graph
Ḡn := (V ∗,E ∗ ∪ (p∗, q∗)), where we add the edge (p∗, q∗) to G∗. By Observation 4.4,
there are no nodes in Ḡn with odd degree. Now, consider the following three situations
during the game.
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a) When every node has even degree, the robber’s position is v and he moves to a
node u, the edge (u, v) is deleted and v and u have odd degree.

b) If v and the robber’s current position u 6= v are the only nodes with odd degree
and the robber moves to a node u ′ 6= v , the edge (u, u ′) is deleted, u has even
degree and u ′ has odd degree. So again, v and the robber’s current position are
the only nodes with odd degree.

c) If v and the robber’s current position u 6= v are the only nodes with odd degree
and the robber moves to v , the edge (u, v) is deleted, every node has even degree
and v is the robber’s current position.

• The game starts with a)

• a) leads to b) or c)

• b) leads to b) or c)

• c) leads to a)

So, aside from not moving, these are the only kinds of possible moves for the robber.
Hence, as long as the robber does not visit p1 or q1, only two cases occur during the
game:

• When the robber is on v , he is in the same connected component as v .

• When the robber is on a node u 6= v , these two nodes are the only ones with
odd degree. With Lemma 4.5, we get that u and v are in the same connected
component.

As mentioned earlier, there are two possibilities for the robber to win. He can either
escape by getting on a different connected component than the cop, or he wins because
both he and the cop stops moving for the rest of the game, a so called stalemate. During
the game, the cop has to make sure that the robber cannot isolate himself. He will have to
‘guard’ certain nodes, i.e. prevent the robber from accessing certain nodes. For example,
in the beginning of the game, the cop has to guard p1 and q1, so that the robber cannot
escape to p∗ or q∗. On the other hand, the cop cannot just stay in position to guard
these nodes, because that would end up in a stalemate.

The following lemma shows, that it is possible for the cop to guard a clique and still
prevent a stalemate.

Lemma 4.7. Let G be a graph and K be a clique in G. Let the cop’s position be a node
u ∈ K and robber’s position be a node v /∈ K . Assume that the robber can isolate himself,
i.e. get to a different connected component than the cop, only if he first reaches one of
the nodes in K . Then, the cop wins.
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Proof. Let G ∈ (V ,E ). The strategy of the cop is to guard the nodes in K while avoiding
a stalemate. He will move in a way such that he is always closer to K than the robber,
so that the robber cannot get to a node in K without getting captured. Also his moves
will force the robber to move, avoiding a stalemate.

To be more precise, the strategy for the cop is to force the robber to move to a node
v ′ /∈ K , so that the general assumption of the lemma still holds. Since every time the
robber moves an edge is deleted, the robber can only move a finite number of times. But
since by the action of the cop the robber was not able to move to a node in K , he is not
on a different connected component than the cop, so the robber did not win. Hence, at
some turn the robber is unable to make such a move and the cop wins simply by walking
to the robber’s position on a shortest path from K .

If it is robber’s turn, he cannot move to a node in K , because he would be caught in
the cop’s next turn, as K is a clique.

So, let us consider a cop’s turn. Let P be the set of paths from a node of K to v .
Let Pk ∈ P be a path of minimal length l(Pk ) with k ∈ K being the unique node of K
in P. We devise the following strategy for the cop. First, the cop moves to k . Then, at
every cop’s turn

• while the robber stays at v , the cop moves towards the robber along Pk ,

• if the robber moves away from v , the cop moves along Pk towards k .

Obviously, the robber has to move at some turn, otherwise the cop would simply walk
to the robber and catch him. So we can assume that the robber will move in some turn.
After the robber moved, his distance from K is at least l(Pk ) − 1, while the cop has a
distance from K of at most l(Pk )− 1, as he is currently not at v . Since it is cop’s turn
now, he can reach K before the robber. The robber is not able to reach a node in K
without getting captured afterwards, because by that time the cop is already on k , and
k is connected to every node in K . Therefore, when the cop returns to k , the robber
is not in K and the general assumption of the lemma is still satisfied. Since we are in
the bridge-burning game, and after every move of the robber an edge is deleted, after at
most |E | turns the cop catches the robber and wins.

We can now prove the main result stating a winning strategy for the cop.

Theorem 4.8. There is a winning strategy for the cop for the bridge-burning cops and
robbers game played on G∗.

Proof. We let the cop start on the node r1 and consider the different starting positions
of the robber.

Case 1: If the robber starts at the neighboring nodes p1, q1, r2 or x1, the cop moves there
in his first turn and wins.

Case 2: Let the robber start at a node pi with 2 ≤ i ≤ n
8 − 1. The case qi is analogous.

Define the paths Pp := p1-p2-· · · -pi and Px := p1-r1-x1-x2-r n−16
4

-p n
8
-p n

8
−1-· · · -pi .
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Figure 4.3: Case 2, Paths Pp and Px .

a) If l(Pp) ≥ l(Px ), the cop moves towards pi along Px until the robber moves
for the first time. We can assume that the robber moves before the cop reaches
pi , otherwise the cop wins. So, the cop has not reached pi .
(i) If the robber moves to pi−1, the cop moves to p1 along Px . Since l(Pp) ≥

l(Px ) and the cop is not at pi , he can reach p1 before the robber. Also, the
edge (pi , pi−1) is deleted, so the robber can only move along Pp towards
p1. Hence, after reaching p1, the cop can simply walk along Pp to capture
the robber.

(ii) If the robber moves to pi+1, the cop moves to p1 along Px . He can reach
p1 before the robber can reach one of the nodes p1 or q1, because the edge
(pi , pi+1) is deleted and all shortest paths from pi+1 to any of these nodes
use the path Px . After the robber’s move, exactly the nodes pi , pi+1, p∗

and q∗ have odd degree and the robber’s position is pi+1. Lemma 4.6
states that as long as the robber does not visit p1 or q1, he will always
be in the same connected component as pi . Since the edge (pi , pi+1) is
deleted, p1, q1 and pi will be in the same component as long as the robber
does not delete any of the edges (q∗, q1), (q1, p1), (p∗, p1) or in Pp . As
long as the cop is in the same connected component as p1 and q1, he is
in the same connected component as pi , so by Lemma 4.6 he is in the
same connected component as the robber. So, as long as the cop is in the
same connected component as p1 and q1, the only chance for the robber
to get to a different connected component than the cop is to reach p1 or
q1, and thereafter isolate himself by walking to p∗, q∗ or p2. Now, with
the cop on p1 and the robber not on a node in the clique K := {p1, q1},
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the assumptions of Lemma 4.7 are fulfilled. By Lemma 4.7 the cop wins
the game.

b) If l(Pp) ≤ l(Px ), the cop moves towards pi along Pp until the robber moves
for the first time.
(i) If the robber moves to pi−1, the edge (pi , pi−1) is deleted and the cop can

continue to walk towards the robber and captures him.
(ii) If the robber moves to pi+1, we are in a case similar to case a(ii). Again,

the robber can only get to a different connected component than the cop
if in some turn he gets to a node in K := {p1, q1}. Since l(Pp) ≤ l(Px ),
the cop is closer to K and can move to p1. When he arrives at p1, the
robber does not move to a node in K , otherwise he would be captures in
the next turn. So, the assumptions of Lemma 4.7 are fulfilled and the cop
wins.
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Figure 4.4: Case 3, Paths Rr and Rx

Case 3: Let the robber start at a node ri with 2 ≤ i ≤ n−16
4 − 1. This case is similar to the

case above with r1 instead of p1. Here, we have the paths Rr := r1-r2-· · · -ri and
Rx := r1-x1-x2-r n−16

4
-r n−16

4
−1-· · · -ri . Here, if the robber moves to ri+1, the only

nodes with odd degree are p∗, q∗, ri and ri+1. After that, he can only reach one of
the nodes p∗, q∗ or ri , if he can reach p1, q1 or r1. So, this case is similar to Case
2 with the clique K = {p1, q1, r1}. Again, the cop can establish the assumptions of
Lemma 4.7 and win the game.

Case 4: When the robber starts at x2, the cop moves to x1 and forces the robber to move
to r n−16

4
and delete the edge (x2, r n−16

4
). Now, the cop returns to r1 and the case is
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again similar to Case 3 with K := {p1, q1, r1}.

Case 5: Let the robber start at a position in v ∈ Ṽ := A ∪ B ∪ {p n
8
, q n

8
, r n−16

4
}. In the

first three cop turns, the cop moves to r n−16
4

. The robber can prevent that if he
starts at r n−16

4
, moves to x2 and deletes the edge (x2, r n−16

4
). But then, he would

be captured in x2 in the following turn. So, we may assume that the cop reached
r n−16

4
. In these three turns, at most two edges incident to r n−16

4
were deleted by

the robber, say (u, r n−16
4

), (w , r n−16
4

) with u,w ∈ Ṽ .

Since u and w have a degree of at least 18 and the robber deleted at most two edges
in Ṽ , there are u ′,w ′ ∈ Ṽ such that (u, u ′), (w ,w ′), (u ′, r n−16

4
) and (w ′, r n−16

4
) were

not deleted. The situation is as seen in Figure 4.6.

Every node in Ṽ is a neighbor of r n−16
4

, u ′ or w ′, with r n−16
4

being the neighbor

of every node in Ṽ \{u,w}. Now, the strategy for the cop is basically to walk back
and forth the three nodes r n−16

4
, u ′ and w ′, thereby forcing the robber to constantly

move, while simultaneously preventing the robber from walking to r n−16
4

. Since that
way the robber can’t reach r n−16

4
without getting captured, he cannot use the edge

(r n−16
4
, x2). When the robber flees to the path P , using the edge (p n

8
, p n

8
−1), the

cop can intercept the robber by moving to p1 via (r n−16
4
, x2), (x2, x1), (x1, r1) and

(r1, p1), and then start walking on path P until he reaches the robber. When the
robber flees along the path Q or R, the cop can intercept the robber in a similar
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Figure 4.6: Case 5, the cop moves back and forth the nodes u ′, r n−16
4

and w ′

way.

At every turn, the strategy of the cop is as follows.

– If the robber is at a neighboring node, move to that node and capture him.
– If the robber is at u, move to u ′ along the shortest path.
– If the robber is at w , move to w ′ along the shortest path.
– If the robber is at a node in Ṽ \{u,w}, move to r n−16

4
along the shortest path.

– If the robber uses one of the paths P ,Q or R, walk to r1 along the shortest
path and then intercept the robber.

Note that except for the last point, a shortest path of the strategy is of length at
most 2. As described above, when the robber uses one of the paths P ,Q or R, and
the cop walks that path in the opposite direction, the cop captures the robber.
Also, the cop is always at r n−16

4
or a neighbor of r n−16

4
, so the robber can never

move to r n−16
4

without getting captured. Hence, altogether the robber cannot reach
p1 or q1.

By Lemma 4.6, the robber will always be in the same connected component as v ,
his starting node. We will show that the cop will always be in the same component
as v . Because the cop’s strategy forces the robber to move at least every other turn
(dist(u ′,w ′) ≤ 2), and both stay in the connected component C of v , after at most
2 · |C | turns the cop captures the robber or forces him to use a path P , Q or R,
which also results in a cop’s win.

If (v , r n−16
4

) still exists, the robber will not be able to delete this edge, because he
cannot move to r n−16

4
without getting captured, since the cop is always on r n−16

4
,
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u ′ or w ′. Hence, if (v , r n−16
4

) still exists, the cop is always in the same connected
component as v . So, let us assume that (v , r n−16

4
) was deleted in the first two

robber’s turns. I.e. v ∈ {u,w}, say v = u. The robber cannot delete (u ′, r n−16
4

)

without getting captured, because again the cop is too close to the node r n−16
4

. For
the robber to move from u to u ′ and delete (u, u ′), the cop has to have a distance
from u ′ of at least 2. That can only happen, if the cop is on w ′. But the cop only
moves to w ′, if the robber is on w . As soon as the robber leaves w , according to
the cop’s strategy the cop will leave w ′ and walk to either u ′ or r n−16

4
. Therefore,

the robber cannot delete the edge (u, u ′) without getting captured in the following
turn. Also, the robber cannot delete the edge (u ′, r n−16

4
), because he cannot reach

r n−16
4

without getting captured. Thus, v = u is always in the same connected
component as r n−16

4
and as the cop.

Finally, we prove a high capture time of G∗ by devising a robber’s strategy.

Theorem 4.9. G∗ has a capture time of at least capt(G∗) ≥ (n4 − 1) · ((n4 − 2)2 − 1).

Proof. If the cop’s starting position has a distance to p1 of at least 2, the robber could
start at p1 and isolate himself in the next turn by moving to p∗. Analogously, cop’s dis-
tance to q1 has to be at most 1. So, cop’s starting position must be a node in {p1, q1, r1}.

Let us define the strategy for the robber. First, we let the robber start in x2. In his
first turn, he moves to r n−16

4
and deletes the edge (x2, r n−16

4
). Now, the distance of the

cop to the induced subgraph G∗|A∪B is at least min{l(P), l(Q), l(R)}+1 ≥ n
8 −1+1 ≥ 9.

So, after 7 additional moves by the robber, the cop’s position will still not be a node in
A ∪ B or a neighbor of A ∪ B . Therefore, the robber can make the following moves. He
is aiming for the deletion of the edges (r n−16

4
, p n

8
) and (r n−16

4
, q n

8
):

1. Move to p n
8
and delete the edge (r n−16

4
, p n

8
).

2. Move to a n
4
and delete the edge (p n

8
, a n

4
).

3. Move to r n−16
4

and delete the edge (a n
4
, r n−16

4
).

4. Move to q n
8
and delete the edge (r n−16

4
, q n

8
).

5. Move to b n
4
and delete the edge (q n

8
, b n

4
).

6. Move to r n−16
4

and delete the edge (b n
4
, r n−16

4
).

7. Move to a1 and delete the edge (r n−16
4
, a1).

After this sequence, the cop is not on a node in A∪B or a neighbor of A∪B , hence
he is somewhere in P ∪Q ∪ R ∪ {x1, x2, p∗, q∗}.



62 CHAPTER 4. THE BRIDGE-BURNING COPS AND ROBBERS GAME

bn
4

b2

a1

a2

a3

an
4

......
... ...

qn
8

rn−16
4

r1

pn
8

...
...

q∗p∗

q1p1

x1

x2

q2

q3

q4

q5

p2

p3

p4

p5

r2

r3

r4

r5 Q

b3

A B

R

b1

deleted edge

P

Figure 4.7: Graph G∗ after robber’s first 8 moves

Before stating the final part of robber’s strategy, we elucidate the general idea behind
the strategy. The path R is almost twice as long as the paths P or Q . If the cop would
move to the node r n−16

4
−1, while the robber is in A∪B , the distance of the robber to p∗

is lower than the distance of the cop to p∗, therefore the robber could walk to p∗ and
isolate himself. So, using the path R is not beneficial for the cop and we can ignore this
path. Also, we can ignore the nodes x1 and x2 for the cop, since the edge (x2, r n−16

4
) was

deleted by robber’s first move. See Figure 4.8 for the essential parts of the graph.
The idea for the robber is not to move except the cop is on a neighboring node, or

when the robber can win. When the robber is on a1, for the cop to catch the robber, he
has to move to a neighboring node, i.e. a node in B ∪ {r n−16

4
, p n

8
}.

If at some point the cop moves to a node in B ∪ {r n−16
4
}, the robber would move

to p n
8
. At this point, because the edge (r n−16

4
, p n

8
) was deleted, the robber is not on a

neighboring node of the cop. Also, the distance from the cop to p∗ is by 2 higher than
the distance from the robber to p∗. Hence, the robber could now just walk to p∗ on P
and isolate himself without the cop being able to interfere. Basically, when the cop comes
too far around from one side, the robber can escape on the other side.

Therefore, when the robber is on a1, the only way for the cop to reach a1 without
losing is by moving to p n

8
. At this point, the robber can move to e.g. b1 (see figure 4.9).

This situation is similar to the one above. If the cop would move from p n
8
to a node in A,

the robber can move to q n
8
, and then walk to q∗ on the path Q , without being hindered

the cop. Reaching q∗, he is isolated and thereby wins the game. So, for the cop to get
to b1, he has to walk to q n

8
all the way on P and Q . As soon as the cop reaches q n

8
, the

robber simply moves to e.g. a2 and the same situation occurs.
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Figure 4.8: Essential parts of the graph.

With that strategy, the cop will keep walking back and forth between p n
8
and q n

8

along the paths P and Q . Each time, it will take the cop l(P) + 1 + l(Q) = n
4 − 1 turns.

The robber only has to move when the cop reaches p n
8
resp. q n

8
, so the robber only has

to move only once after n
4 − 1 turns. When he can make Θ(n2) such moves on A∪B , it

will take the cop Θ(n3) turns to catch the robber.
Let C := A ∪ B\{a n

4
, a n

4
−1, b n

4
, b n

4
−1}. Since G∗|C is a complete bipartite graph,

every node in G∗|C has n
4 − 2 neighbors. n

8 ∈ N, so n
4 − 2 is even. Hence, every node in

G∗|C has even degree. Thus, there is an Euler tour T := ai1-bj1-ai2-bj2-· · · -aik -bjk -ai1
in G∗|C with k := n2

32 − n
2 + 2, since G∗|C has (n4 − 2)2 = n2

16 − n + 4 edges. The robber
will move along the Euler tour T every time he is forced to move by the cop.

Now, we will continue with the details of robber’s strategy. As described above, 8
turns have passed. Robber’s moves 1. to 8. were possible regardless of cop’s moves,
because cop’s distance to the robber initially was at least n

8 ≥ 9. As mentioned above,
after robber’s 8th move, the cop’s position will not be a node in A ∪ B or a neighbor of
A ∪ B . Hence, it will be in P ∪ Q ∪ R ∪ {x1, x2, p∗, q∗}\{p n

8
, q n

8
, r n−16

4
}. The remaining

robber’s strategy is as follows. Below, we will explain, why this strategy is possible.
At every robber’s turn:

a) If the robber is in A and the cop is in P ∪Q ∪R ∪ {x1, x2, p∗, q∗}\{p n
8
, r n−16

4
}, he

does not move.

b) If the robber is in B and the cop is in P ∪Q ∪R ∪ {x1, x2, p∗, q∗}\{q n
8
, r n−16

4
}, he

does not move.

c) If the robber is in A and the cop is at p n
8
, he moves to the next node in the Euler
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Figure 4.9: Cop on p n
8
, robber moved to b1.

tour T .

d) If the robber is in B and the cop is at q n
8
, he moves to the next node in the Euler

tour T .

e) If the robber is in A and the cop is in B ∪ {r n−16
4
}, for the rest of the game he

walks on the path P to the node p∗, then never moves again.

f) If the robber is in B and the cop is in A ∪ {r n−16
4
}, for the rest of the game he

walks on the path Q to the node q∗, then never moves again.

g) If c) or d) cannot be fulfilled because the Euler tour is finished, he does not move
for the rest of the game.

The only cases, where the robber is not in A ∪ B are e) or f), where he left A on
path P resp. B on path Q . There, the rest of robber’s strategy is stated, too. Further, it
cannot happen that the cop moves to A (resp. B), when the robber is still there, because
the robber would have moved the turn before, according to c) or e) (resp. d) or f)).
Therefore, all possible cases are covered.

Let the robber be in A∪B , and w.l.o.g. be in A. We consider the cases a), c), e) and
g).

Case a) When the cop is in P ∪ Q ∪ R ∪ {x1, x2, p∗, q∗}\{p n
8
, r n−16

4
}, he is not on

a neighboring node of the robber. So, when the robber does not move, he will not get
captured in the following turn.
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Case c) When the cop is at p n
8
and the robber moves to a node in B , the cop is no

longer on a neighboring node of the robber, so the robber will not get captured in the
following turn.

Case e) When the cop is in B ∪ {r n−16
4
}, we have the situation illustrated in Figure

4.8. The robber will move to p n
8
. Because the edge (r n−16

4
, p n

8
) was deleted in the first 8

moves of the robber, cop and robber have a distance of 2. Since (r n−16
4
, x2) was deleted

by the first move of the robber, the cop has a distance of at least l(Q) + 1 + 2 = n
8 + 2 to

p∗, while the robber has a distance of l(P) + 1 = n
8 to p∗. The cop is too far away from

the robber and the node p∗. Thus, the robber can follow the strategy stated in case e)
and walks to p∗ without being intercepted by the cop.

Case g) When c) is not an option anymore, i.e. when the robber finished walking on
T , he stops to move entirely. In this case, the robber will get captured by the cop in at
most n − 1 additional turns.

Cases b), d) and f) work analogously.
If the robber is in A and the cop is in P ∪Q ∪R∪{x1, x2, p∗, q∗}\{p n

8
, r n−16

4
}, the cop

wants to walk to the robber without causing case e), where then he would lose as shown
above. So he must walk to the robber via the node p n

8
and without entering nodes in

B∪{r n−16
4
}. That is only possible by walking along the path P . But then, we are in case c).

Similarly, when the robber is in B and the cop is in P∪Q∪R∪{x1, x2, p∗, q∗}\{q n
8
, r n−16

4
},

the cop wants to walk to the robber preventing case f). The only way is to walk to the
robber via the node q n

8
and without entering nodes in A∪{r n−16

4
}. That is only possible

by walking along the path Q . But this is case d).
As shown in Figure 4.8, the cop will avoid the cases e) and f) by moving from p n

8
to

q n
8
, back and forth along the paths P and Q . Every time the cop reaches p n

8
or q n

8
, the

robber moves once along the Euler tour T . Otherwise, the robber does not move. Each
time, the cop needs l(P) + 1 + l(Q) = n

4 − 1 turns to get from p n
8
to q n

8
or vice versa.

With this strategy, the robber moves along T once every n
4 − 1 turns. T has (n4 − 2)2

edges.
So, altogether, the game takes at least (n4 −1) ·((n4 −2)2−1) turns, hence capt(G∗) =

Ω(n3).

Since the function f : N→ N,n 7→ (n4 − 1) · ((n4 − 2)2 − 1) is in Ω(n3), Theorem 4.8
and 4.9 give the desired result.

Corollary 4.10. There is a function f : N → N with f ∈ Ω(n3) such that for every
n ∈ N there is a graph G on n nodes with cb(G) = 1 and captb(G) ≥ f (n).

4.3 Suggestions for future work

We refer to [21] for open problems regarding the bridge-burning cops and robbers game,
such as finding necessary and sufficient characteristics for graphs with a cop number of
1 (similar to [25] and [28] for the traditional game) and determining the cop number of
specific classes of graphs.
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We think that the consideration of multiple cooperating robbers might be of interest
and suggest the following additions to the game.

• Player 2 controls a set of robbers.

• If it is the robbers’ turn, each robber can either move from his position along an
edge to a neighboring node or stay in position. After the turn every edge used by
at least one robber is deleted.

• If the cops can capture at least one robber in a finite number of turns, they win
the game.

With this setup, long paths are no longer possible for graphs with a low cop number,
since two or more robbers can easily isolate themselves. This might result in graphs with
interesting characteristics.



67

Chapter 5

Swap Equilibrium Graphs in the
Extreme Vertex Destruction Model

5.1 Introduction

In this chapter, we take a look at the extreme vertex destruction model, a special kind
of network creation game. Network creation games are a game- and graph-theoretic ap-
proach of analyzing the properties of networks created by a set of selfish performing
agents in distinction from a centralized formed network. The players of this game are
represented by the vertices of a graph. The game has only one turn, in which each player
chooses a subset of the other players, the players he wants to connect to. After the turn,
the edges of the graph are formed according to the rules of the specific game, for example
an edge between two vertices is created if at least one of the represented players chose the
other player in his turn. Finally, each player obtains a certain cost (or utility) depending
on the rules of the game and the resulting graph. This cost could for example be the
sum of distances to the other players in the graph.

The concept of a network forming by agents choosing to create and delete edges was
introduced by Jackson and Wolinsky [20] in 1996 to study social and economic networks
in terms of stability and efficiency. The network creation game itself was introduced by
Fabrikant et al. [12] in 2003. In their setting, players could buy edges, and their costs
of the players were determined by the number of bought edges and a function over
the distances to the other players. They studied Nash equilibria, graphs in which no
single player would be strictly better off by changing the strategy. An alternative for this
concept was given by Alon et al. [3] in 2010 in the form of a so-called swap equilibrium
(SE). A graph is called a swap equilibrium if no single player can strictly improve the
cost by removing one of the incident edges and creating a new incident edge to some
other player. The advantage over Nash equilibria lies in the reduced size of the strategy
space, that does not grow exponentially with the number of players. Therefore, finding
such equilibria is more manageable.

In 2017, Kliemann et al. [22] studied with the vertex destruction model a cost function
representing the robustness of SE graphs. With a certain probability distribution, one
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vertex is chosen and ‘destroyed’, i.e. all its incident edges are deleted. The number of
separated vertex pairs after a vertex v is destroyed is called the separation of v . The
cost of a player is the expected number of vertices he is separated from after the vertex
destruction. They considered two types of probability distributions. The uniform vertex
destroyer picks a vertex uniformly at random. The extreme vertex destroyer considers
the set of so-called max-sep vertices and picks one of them uniformly at random. A
vertex is a max-sep vertex if it has maximum separation over all vertices in the graph.
The destruction of one of these vertices would cause the maximum amount of damage
to a network. They showed that that an SE that is a tree and only has one max-sep
vertex, has less than 8 vertices. They also presented a family of SE graphs with total
cost of Ω(n3/2), where n is the number of vertices, showing the possible inefficiency of
such graphs.

Kliemann et al. stated the following conjectures for the extreme vertex destruction
model:

• There is only a finite number of SE graphs with exactly one max-sep vertex.

• There is only a finite number of SE trees.

• There is a family of SE graphs with total cost of Ω(n2), where n is the number of
vertices. This bound is tight.

The first two conjectures were tackled by Glazik [16] in 2019. He showed that an SE
graph with exactly one max-sep vertex can only be a path of length 2 or 4 and that
there are no SE trees on 6 or more vertices.

5.1.1 Our Contribution

We prove the third conjecture of Kliemann et al. and show that there is a family of SE
graphs with a social cost of Ω(n2), which is asymptotically optimal.

5.2 Preliminaries

Since proving the conjectures of Kliemann et al. was a joint work with Glazik, the
definitions in this section are similar to those used in [16].

For n ∈ N, let [n] := {1, . . . ,n}. Let G = (V ,E ) be a graph and H ⊆ V be a set of
vertices. We write H for the induces subgraph

(
H ,E ∩

(
H
2

))
.

Let n ∈ N≥3 and let Gn be the set of all connected graphs on n vertices.

Definition 5.1 (Swap). Let G = (V ,E ) ∈ Gn be a connected graph and s = (a, b, c)
with a, b, c ∈ V a triple of vertices of G such that {a, b} ∈ E and {a, c} /∈ E . Denote
by Gs the graph that is obtained from G by removing {a, b} and inserting {a, c}. If Gs

is a connected graph, we call s a swap.
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Next, we give the definition of a swap equilibrium. Therefor we consider the cost
function of a general network creation game. The cost function will later be defined as
the expected number of vertices a player is no longer connected to after the destruction
of a vertex.

Definition 5.2 (Cost function and swap equilibrium). A cost function C : Gn × V −→
R, (G , v) 7→ C(G , v) assigns to each pair of a graph G ∈ Gn and vertex v ∈ V a cost
C(G , v) ∈ R.

A graph G ∈ Gn is called a Swap equilibrium (SE) if C(G , a) ≤ C(Gs , a) for all
swaps s = (a, b, c), i.e. if no single player can strictly reduce his cost by performing a
swap.

For defining the cost function used in the extreme vertex destruction model, we first
need to clarify the vertex destroyer, which is used to assign each vertex in a graph a
certain probability that it is picked and destroyed.

Definition 5.3 (Vertex destroyer). A vertex destroyer D maps each graph G ∈ Gn to a
probability measure D(G , ·) on the vertices V of G.

In the extreme vertex destruction model, only vertices will be considered whose de-
struction causes maximum damage to the network. The amount of total damage is defined
as separation. The damage caused to a single player is called relevance, and the cost for
a player is defined as the expected damage caused to him. These terms will be clarified
in the following definitions.

Definition 5.4 (Relevance and separation). For u, v ∈ V , define

Ru(v) := {w ∈ V |u lies on every v -w -path in G}.

The relevance of u ∈ V for v ∈ V is defined as

relG,u(v) := relu(v) := |Ru(v)|.

Given a vertex destroyer D, the cost for a player v in G is defined as

C(G , v) :=
∑
u∈V

relu(v)D(G , u).

The separation of v ∈ V is defined as

sepG(v) :=

∣∣∣∣∣ ⋃
u∈V
{(u,w)|w ∈ Rv (u)}

∣∣∣∣∣ =
∑
u∈V

relv (u).

As mentioned earlier, the separation sepG(v) of a vertex v ∈ V in a graph G ∈ Gn is
the number of (ordered) vertex pairs that after the destruction of v , i.e. the deletion of
all adjacent edges, are no longer in the same connected component. The relevance relu(v)
of u for v is the number of vertices that are in a different connected component than v
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after the destruction of u. Therefore, the cost C(G , v) of a player v in a graph G is the
expected number of players he is no longer connected to after a vertex u is randomly
chosen with probability D(G , u) and destroyed.

Since we are mostly talking about a specific graph, we will write seps(u) instead of
sepGs (u) and relsu(v) instead of relGs ,u(v).

The expected total cost is called social cost.

Definition 5.5 (Social cost). The social cost of a graph G is defined as

SC(G) =
∑
v∈V
C(G , v).

Now, we can define the extreme vertex destroyer. The extreme vertex destroyer
chooses and destroys one of the vertices with maximum separation uniformly at ran-
dom.

Definition 5.6. A vertex v is called a max-sep vertex if sep(v) ≥ sep(u) for all u ∈ V .
Let MS(G) be the set of all max-sep vertices in G. The extreme vertex destroyer Dev is
defined by

Dev(G , v) =

{
1/|MS(G)| if v ∈ MS(G)

0 else.

To determine the separation of a vertex by counting separated vertex pairs can often
get complicated. As alternative, Glazik [16] uses the notion of so-called flaps. The v -flaps
of a vertex v are the connected components resulting from a destruction of v . The set of
these connected components is defined as F(v). With the flaps of v , the separation can
be computed the following way.

Proposition 5.7. Let G = (V ,E ), v ∈ V and F(v) = {A1, . . . ,Ak} for some k ∈ N.
Then,

(i) For every i ∈ [k ] and every u ∈ Ai it holds relv (u) = n − |Ai |.

(ii) sepG(v) = n2 − 1−∑k
i=1 |Ai |2.

Proof. By definition of the flaps, for every i ∈ [k ] and u ∈ Ai we have Rv (u) = V \ Ai ,
so we get relv (u) = n − |Ai | and (i) is proved. With relv (v) = n − 1, we get

sepG(v) =
∑
u∈V

relv (u)

= relv (v) +

k∑
i=1

∑
u∈Ai

relv (u)

= n − 1 +

k∑
i=1

∑
u∈Ai

(n − |Ai |)
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= n − 1 +
k∑

i=1

|Ai |(n − |Ai |)

= n − 1 + (n − 1)n −
k∑

i=1

|Ai |2

= n2 − 1−
k∑

i=1

|Ai |2.

5.3 A lower bound for the social cost of SE

Let N ∈ N arbitrary. In this section we give an example for an SE graph G on n ≥ N
vertices and a social cost SC(G) = Ω(n2). Note that this is asymptotically maximal,
since the social cost of each graph on n vertices is bounded by

∑
u∈V (n − 1) < n2. An

illustration of such a graph G is given in Figure 5.1. We start with an auxiliary lemma.

Lemma 5.8. For k ∈ N with k ≥ 10 define

λ(k) := 1
2

(√
11k2 + 4k + 5− 3k − 3

)
µ(k) := 1

2

(√
11k2 + 4k − 3− 3k − 1

)
and let Ik ⊆ R be the interval Ik := (λ(k), µ(k)). Then for k0 ∈ N≥10 Ik0 or Ik0+1 contains
an integer `.

Proof. First note that for the derivative λ′, we have

λ′(k) =
1

2

(
11k + 2√

11k2 + 4k + 5
− 3

)
→
√

11− 3

2
for k →∞.

So for k ≥ 7, λ′(k) ∈ (0.15, 0.16). On the other hand, µ(k) − λ(k)
k→∞−→ 1, so for

k ≥ 6 we have µ(k) − λ(k) ∈ (0.9, 1). Now let k0 ≥ 10. Then, λ(k0) > 0. Because
λ′(k) ∈ (0.15, 0.16) for all k ∈ [k0, k0 + 1], by the mean value theorem we get that
λ(k0 + 1) ∈ (λ(k0) + 0.15, λ(k0) + 0.16) ⊂ (λ(k0), µ(k0)) = Ik0 . Since

µ(k0 + 1) > λ(k0 + 1) + 0.9 > λ(k0) + 0.15 + 0.9 = λ(k0) + 1.05,

the set Ik0 ∪ Ik0+1 forms an interval (λ(k0), µ(k0 + 1)). Its length is at least 1.05 and
therefore contains an integer `.

Remark 5.9. For k ≥ 10 we have λ′(k) ∈ (0.15, 0.16), so λ(k) ∈ (0.15k , 0.16k). Simi-
larly, it holds µ′(k) ∈ (0.15, 0.16), so µ(k) ∈ (0.15k , 0.16k).
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Definition 5.10. For k , ` ∈ N define the graph Gk ,` = (V ,E ) depicted in Figure 5.1 as
follows. The base is a K4 with vertices named u, v ,w0 and w ′0. The vertices w0 and w ′0
are connected to k − 1 leaves each, named w1, . . . ,wk−1 and w ′1, . . . ,w

′
k−1, respectively.

The vertex u is connected to two stars; one star with center x0 and leaves x1, . . . , xk−1
and the other star with center y0 and leaves y1, . . . , y`−1. The vertex v is analogously
connected to two stars with vertices named x ′0, x

′
1, . . . , x

′
k−1 and y ′0, y

′
1, . . . , y

′
`−1. In total,

Gk ,` contains n := 4k + 2`+ 2 vertices.

k − 1 leaves

k − 1 leavesk − 1 leaves k − 1 leaves

l − 1 leaves l − 1 leaves

w0

u

w′0

v

x0

y0

x′0

y′0

Figure 5.1: SE graph Gk ,` with high social cost.

Theorem 5.11. For k ∈ N with k ≥ 353 and ` ∈ Ik ∩ N the graph Gk ,` is an SE on
n = 4k + 2`+ 2 vertices and SC(Gk ,`) > 0.41n2 = Ω(n2).

Proof. First we prove that v and u are the only max-sep vertices. We compute the
separation of the different vertices using Proposition 5.7 (ii) and the fact that n =
4k + 2`+ 2:

sep(u) = n2 − 1−
(
k2 + `2 + (n − k − `− 1)2

)
= n2 − 1− k2 − `2 − n2 − k2 − `2 − 1 + 2nk + 2k`+ 2n − 2k`− 2k − 2`

= 2n (k + `+ 1)− 2k2 − 2`2 − 2k`− 2k − 2`− 2

= 2 (4k + 2`+ 2) (k + `+ 1)− 2k2 − 2`2 − 2k`− 2k − 2`− 2

= 8k2 + 8k`+ 8k + 4k`+ 4`2 + 4`+ 4k + 4`+ 4

− 2k2 − 2`2 − 2k`− 2k − 2`− 2
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= 6k2 + 2`2 + 10k`+ 10k + 6`+ 2 (5.1)

sep(w0) = n2 − 1−
(
k − 1 + (n − k)2

)
= n2 − 1− k + 1− n2 + 2nk − k2

= 2nk − k2 − k

= 2 (4k + 2`+ 2) k − k2 − k

= 8k2 + 4k`+ 4k − k2 − k

= 7k2 + 4k`+ 3k (5.2)

sep(y0) = n2 − 1−
(
`− 1 + (n − `)2

)
= n2 − 1− `+ 1− n2 + 2n`− `2

= 2n`− `2 − `
= 2 (4k + 2`+ 2) `− `2 − `
= 8k`+ 4`2 + 4`− `2 − `
= 3`2 + 8k`+ 3` (5.3)

For symmetry reasons we have sep(v) = sep(u), sep(y ′0) = sep(y0) and sep(x0) =
sep(x ′0) = sep(w0) = sep(w ′0). By assumption ` ∈ I ∩ N, so ` > λ(k). A straightfor-
ward calculation gives

sep(u)− sep(w0) = 2`2 + 6k`+ 7k + 6`+ 2− k2

> 2(λ(k))2 + 6kλ(k) + 7k + 6λ(k) + 2− k2

= 2

(
1

2

(√
11k2 + 4k + 5− 3k − 3

))2

+ 6k

(
1

2

(√
11k2 + 4k + 5− 3k − 3

))
+ 7k

+ 6k

(
1

2

(√
11k2 + 4k + 5− 3k − 3

))
+ 2− k2

= 2 · 1

4

((√
11k2 + 4k + 5

)2
+ (−3k − 3)2

)
+ 2 · 1

4
·
(

2
√

11k2 + 4k + 5 (−3k − 3)
)

+ 3k
√

11k2 + 4k + 5 + 3k (−3k − 3) + 7k

+ 3
√

11k2 + 4k + 5 + 3 (−3k − 3) + 2− k2

=
1

2

(
11k2 + 4k + 5

)
+

1

2
(−3k − 3)2 +

√
11k2 + 4k + 5 (−3k − 3)

+ 3k
√

11k2 + 4k + 5− 9k2 − 9k + 7k
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+ 3
√

11k2 + 4k + 5− 9k − 9 + 2− k2

=
√

11k2 + 4k + 5 (−3k − 3 + 3k + 3)

+
1

2

(
11k2 + 4k + 5

)
+

1

2
(−3k − 3)2

− 9k2 − 9k + 7k − 9k − 9 + 2− k2

=
11

2
k2 + 2k +

5

2
+

1

2

(
9k2 + 9 + 2 · 3k · 3

)
− 9k2 − 9k + 7k − 9k − 9 + 2− k2

=
11

2
k2 + 2k +

5

2
+

9

2
k2 +

9

2
+ 9k

− 9k2 − 9k + 7k − 9k − 9 + 2− k2

=

(
11

2
+

9

2
− 9− 1

)
k2 + (2 + 9− 9 + 7− 9) k +

(
5

2
+

9

2
− 9 + 2

)
= 0

With Remark 5.9 we have l ∈ Ik ⊂ (0.15k , 0.16k). Thus it holds ` < k and

sep(w0) = 7k2 + 4k`+ 3k > 4k`+ 3`2 + 4k`+ 3` = sep(y0).

In total we have sep(u) > sep(w0) > sep(y0). Because all leaves have a smaller separation,
u and v are the only max-sep vertices in Gk ,`.

We turn to the SE property and show that none of the possible swaps is profitable.
Denote

A := {u} ∪ {xi |i ∈ {0, . . . , k − 1}} ∪ {yi |i ∈ {0, . . . , `− 1}
B := {v} ∪ {x ′i |i ∈ {0, . . . , k − 1}} ∪ {y ′i |i ∈ {0, . . . , `− 1}
W := {wi |i ∈ {0, . . . , k − 1}} ∪ {w ′i |i ∈ {0, . . . , k − 1}}.

For a compact argumentation we need the following lemma based on the notations
developed in the proof so far. After the lemma and its proof we will continue the proof
of the theorem. We consider certain swaps that result in a unique max-sep vertex.

Lemma 5.12. Let z , z̄ with z /∈ {u, v , x0, x ′0, y0, y ′0,w0,w
′
0} be vertices in Gk ,`.

i) If s = (z , z̄ , a) is a swap such that a ∈ A (resp. a ∈ B) and u (resp. v) becomes
the only max-sep vertex of Gs

k ,`, then the swap is not profitable for z .

ii) If s = (z , z̄ , a) is a swap such that a ∈ {wi |i ∈ {0, . . . , k − 1}} (resp. a ∈ {w ′i |i ∈
{0, . . . , k − 1}}) and w0 (resp. w ′0) becomes the only max-sep vertex of Gs

k ,`, then
the swap is not profitable for z .

Proof. Since u and v are the only max-sep vertices of Gk ,`, we have C(Gk ,`, z ) =
relGk,`,u(z )/2 + relGk,`,v (z )/2. Note that relGk,`,u(z ) < n and relGk,`,v (z ) < n. If z ∈ A,
then relGk,`,v (z ) = |B | = k + `+ 1, hence C(Gk ,`, z ) < n/2 + (k + `+ 1)/2. If z ∈ B ∪W ,
then relGk,`,u(z ) = |A| = k + `+ 1, hence C(Gk ,`, z ) < (k + `+ 1)/2 + n/2
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k − 2 leaves

k − 1 leavesk − 1 leaves k − 1 leaves

l leaves l − 1 leaves

w0

u

w′0

v

x0

y0

x′0

y′0

Figure 5.2: Lemma 5.12: example of swap s = (z , z̄ , a)

With l < 0.16 and k ≥ 353 we have C(Gk ,`, z ) < (n +k + l +1)/2 = (5k +3l +3)/2 ≤
5
2k + 3

2(0.16k + 1) < 3k .
i) Let a ∈ A and let u be the only max-sep vertex of Gs

k ,`. Then C(Gs
k ,`, z ) =

relGs
k,`,u

(z ). We have a ∈ A, so in Gs
k ,`, u is on the unique path between z and each

vertex in B ∪W \{z} (see Figure 5.2). |B ∪W \{z}| > 3k , therefore C(Gs
k ,`, z ) > 3k .

Hence, the swap would not be profitable for z .
ii) Let a ∈ {wi |i ∈ {0, . . . , k − 1}} and let w0 be the only max-sep vertex of Gs

k ,`.
Then C(Gs

k ,`, z ) = relGs
k,`,w0(z ). We have a ∈ {wi |i ∈ {0, . . . , k − 1}}, so in Gs

k ,`, w0 is
on the unique path between z and each vertex in A ∪ B ∪ {w ′i |i ∈ {0, . . . , k − 1}}\{z}.
|A ∪ B ∪ {w ′i |i ∈ {0, . . . , k − 1}}\{z}| > 3k , therefore C(Gs

k ,`, z ) > 3k . Hence, the swap
would not be profitable for z . �

Now, consider all possible swaps, grouped by the vertex who performs the swap.

• xi , i ∈ {1, . . . , k − 1}: Let i ∈ {1, . . . , k − 1}. All swaps performed by xi are of the
form s = (xi , x0, a) for some vertex a.

– For a = xj for some j ∈ [k − 1] \ {i}, only the paths from xi to the other
vertices change. Now, these paths contain xj . Therefore, the separation of xj
increases to n2 − 1 − (n − 2)2 − 1 = 4n − 6 (Proposition 5.7 (ii)), while the
separations of the other vertices stay the same. Hence, u and v remain the
only max-sep vertices and all costs stay the same.

– For a ∈ {u}∪{yj |j ∈ {0, . . . `−1}}, again only the paths from xi to the other
vertices change. So, for a ∈ {yj |j ∈ {0, . . . `−1} the increase in separation is at
most linear in n and thereby insignificant compared to the separations of u and
v . In Gk ,`, u is on the path from xi to the vertices in X := W ∪B∪{u}∪{yj |j ∈
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{0, . . . ` − 1} with |X | = 3k + 2l + 2, In Gs
k ,`, u is on the path from xi

to at least the vertices in Y := W ∪ B ∪ {u} ∪ {xj |j ∈ {0, . . . ` − 1} with
|Y | = 4k + l + 2 > |X |, since l < 0.16k . Hence, the relevance of u for xi
increases, so the separation of u increases and u becomes the only max-sep
vertex in Gs

k ,`. By Lemma 5.12 (i), the swap is not profitable for xi .
– For a ∈ B , the relevance of v for xi increases, since in Gs

k ,`, v lies on the paths
from xi to the vertices in A ∪W , while in Gk ,` v only lies on the paths from
xi to B . The relevance of u for xi decreases, since in Gs

k ,`, u only lies on the
paths from xi to the vertices in A, while in Gk ,` u lies on the paths from xi
to W ∪ B ∪ {u}. So, the separation of u for decreases, while the separation
of v increases. Hence, u becomes the only max-sep vertex in Gs

k ,`. By Lemma
5.12 (i), the swap is not profitable for xi .

– Let a ∈ W , w.l.o.g. a = wj for some j ∈ {0, . . . , k − 1}. We show that w0 is
the only max-sep vertex of Gs

k ,`, so the swap is not profitable by Lemma 5.12
(ii). For j 6= 0 we have with Proposition 5.7 (ii) as {xi , a} is now a component,

k − 1 leaves

k − 1 leavesk − 2 leaves k − 1 leaves

l − 1 leaves l − 1 leaves

wjxi w0

u

w′0

v

x0

y0

x′0

y′0

Figure 5.3: Swap s = (xi , x0, a) with a ∈W

seps(w0) = n2 − 1− ((k − 2) + 22 + (n − k − 1)2)

= 2n(k + 1)− k2 − 3k − 4

= 7k2 + 4k`+ 9k + 4` (5.4)

For visualization of the following arguments, see Figure 5.3. Only the paths
from xi to the other vertices change with the swap s. For the vertices, that
are leaves in Gk ,` and Gs

k ,`, i.e. z ∈ Z := {xh |h ∈ {1, . . . , i − 1, i + 1 . . . , k −
1}} ∪ {yh |h ∈ {1, . . . , ` − 1}} ∪ {x ′h |h ∈ {1, . . . , k − 1}} ∪ {y ′h |h ∈ {1, . . . , ` −
1}} ∪ {w ′h |h ∈ {1, . . . , k − 1}} ∪ {wh |h ∈ {1, . . . , k − 1}\{j}}, z lies in Gk ,`
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and Gs
k ,` only on the xi -path to z , so the relevance of z for xi , and thereby

the separation of z does not change. The relevance of u for xi decreases, since
in Gs

k ,`, u only lies on the paths from xi to the vertices in A, while in Gk ,` u
lies on the paths from xi to the vertices in W ∪B ∪ {u}. The relevance of x0
for xi decreases, since in Gs

k ,`, x0 only lies on the paths from xi to the vertices
in {xh |h ∈ {0, . . . , i − 1, i + 1 . . . , k − 1}}, while in Gk ,` x0 lies on the paths
from xi to more than the vertices in W ∪ B ∪ {u}. So, the separations of u
and x0 decrease. The relevance of z ∈ {v , x ′0, y0, y ′0,w ′0} for xi stays the same,
because z lies on the xi -paths to the exact same vertices in Gk ,` and Gs

k ,`. So,
the separation of z stays the same.
Therefore, for all vertices b ∈ V \ {w0,wj } the separation does not increase
by swap s, since the relevance of b for xi either decreases or stays the same.
So, since u is a max-sep vertex in Gk ,`, we have seps(b) ≤ sep(b) ≤ sep(u)
and because ` < µ(k), we get with 5.1 and 5.4, as ` < µ(k),

seps(w0)− sep(u) = 7k2 + 4kl + 9k + 4l

−
(
6k2 + 2l2 + 10kl + 10k + 6l + 2

)
= k2 − 2`2 − 6k`− k − 2`− 2

> k2 − 2µ(k)2 − 6kµ(k)− k − 2µ(k)− 2

= k2 − 2 ·
(

1

2

(√
11k2 + 4k − 3− 3k − 1

))2

− 6k · 1

2

(√
11k2 + 4k − 3− 3k − 1

)
− k

− 2 · 1

2

(√
11k2 + 4k − 3− 3k − 1

)
− 2

= k2 − 1

2

(
11k2 + 4k − 3

)
− (−3k − 1)

√
11k2 + 4k − 3

− 1

2
(−3k − 1)2 − 3k

√
11k2 + 4k − 3

− 3k (−3k − 1)− k −
√

11k2 + 4k − 3 + 3k + 1− 2

= k2 − 11

2
k2 − 2k +

3

2
+ (3k + 1)

√
11k2 + 4k − 3

− 9

2
k2 − 3k − 1

2
− 3k

√
11k2 + 4k − 3

+ 9k2 + 3k − k −
√

11k2 + 4k − 3 + 3k + 1− 2

= (3k + 1− 3k − 1)
√

11k2 + 4k − 3

+

(
1− 11

2
− 9

2
+ 9

)
k2 + (−2− 3 + 3− 1 + 3) k

+

(
3

2
− 1

2
+ 1− 2

)
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= 0.

Hence

seps(w0) > sep(u) > sep(b) > seps(b) for all b ∈ V \{w0}.

Thus, w0 is the only max-sep vertex of Gs and the swap is not profitable by
Lemma 5.12 (ii). Finally note that

sep(xi ,x0,w0)(w0) = sep(xi ,x0,wj )(w0) + 2

for every j ∈ [k − 1], because here the deletion of w0 would also separate xi
and wj , so the same argument applies for a = w0.

• yi , i ∈ [`−1]: Let i ∈ [`−1]. All swaps performed by yi are of the form s = (yi , y0, a)
for some vertex a.

For a = xj and j ∈ {0, . . . , k − 1} or a ∈ W , the swap is not profitable with the
same arguments as in the case of the swap (xi , x0, a), a ∈ W . The cases a = u or
a ∈ B are analog to the cases (xi , x0, u) and (xi , x0, a), a ∈ B respectively.

• wi , i ∈ [k − 1]: Let i ∈ [k − 1]. All swaps performed by wi are of the form s =
(wi ,w0, a) for some vertex a.

If a = wj for j ∈ [k−1], the only change is that wj is added to every wi -path (except
the wi -wj -path). So, the separation of wj increases by 2(n−2), while the separations
of the other vertices stay the same. So, u and v are still the only max-sep vertices
after the swap. Also, because of the argument above, relGk,`,wi (u) = relGs

k,`,wi (u)

and relGk,`,wi (v) = relGs
k,`,wi (v), thus the swap is not profitable for wi . The case

a = w ′j , j ∈ {0, . . . , k − 1} is analog to the case (xi , x0, a), a ∈ W and the cases
a ∈ A and a ∈ B are both analog to the case (xi , x0, a), a ∈ B .

• x0: All swaps performed by x0 are of the form s = (x0, u, a) for some vertex a.

– The arguments for the cases a ∈W and a = x ′j , j ∈ {0, . . . `− 1} are similar
to the case (xi , x0, a), a ∈W and the case (xi , x0, a), a = x ′j , j ∈ {0, . . . `− 1}.
The separation of w0 (or w ′0, respectively) increases even stronger than in that
case.

– For a = y ′j , j ∈ {0, . . . , ` − 1}, see Figure 5.4. The separation of u decreases,
since u is no longer on the paths from the vertices in {xh , h ∈ {0, . . . , k − 1}}
to the vertices in W ∪B . The swap increases the separation of v , since before
the swap v was on the paths from the vertices in {xh , h ∈ {0, . . . , k − 1}} to
the vertices in B , while after the swap v is on the paths from the vertices in
{xh , h ∈ {0, . . . , k − 1}} to at least the vertices in W (|B | < |W |). Similarly,
the swap increases the separation of y ′0. For the other vertices the separation
stays the same because they separate the exact same set of vertex pairs before
and after the swap. So, after the swap v and y ′0 are the only possible max-sep
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k − 1 leaves

k − 1 leaves

k − 1 leaves
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l − 1 leaves l − 1 leaves

w0

u

w′0

v

y′j x0

y0

x′0

y′0

Figure 5.4: Swap s = (x0, u, y
′
j ) with j ∈ {0, . . . , `− 1}

vertices. Both vertices separate x0 and the set X := W ∪ {u} ∪ {x ′h , h ∈
{0, . . . , k−1}} with |X | > 3k . So, we have C(Gs

k ,`, x0) > 3k , while C(Gk ,`, x0) <
3k by the calculation in the proof of Lemma 5.12. Hence, the swap is not
profitable for x0.

– For a = yj for some j ∈ {0, . . . , ` − 1}, see Figure 5.5. We show that y0 is
the only max-sep vertex of Gs

k ,`, so the swap is not profitable. Let j > 0.
If yj is destroyed, we have ` − 2 single vertices yh , h 6= j , a component
{xh , h ∈ {0, . . . , k − 1}} ∪ {yj } and a component with the rest of the vertices.
We get by Proposition 5.7 (ii)

seps(y0) = n2 − 1− (`− 2)− (k + 1)2 − (n − 1− (`− 2)− (k + 1))2

= n2 − 1− `+ 2− (k + 1)2 − (n − l − k)2

= n2 − 1− `+ 2− k2 − 2k − 1

− n2 − `2 − k2 + 2n`+ 2nk − 2`k)

= n2(1− 1) + 2n`+ 2nk − 2k`− k2(1 + 1)

− `2 − `− 2k + (−1 + 2− 1)

= 2n(k + `)− 2k`− 2k2 − 2k − `2 − `
= 2(4k + 2`+ 2)(k + `)− 2k`− 2k2 − 2k − `2 − `
= 8k2 + 4k`+ 4k + 8k`+ 4`2 + 4`− 2k`− 2k2 − 2k − `2 − `
= k2(8− 2) + `2(4− 1) + k`(4 + 8− 2) + k(4− 2) + `(4− 1)

= 6k2 + 3`2 + 10k`+ 2k + 3` (5.5)

The separation of u decreases with the swap, because now u is no longer on
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k − 1 leaves

k − 1 leavesk − 1 leaves k − 1 leaves

l − 1 leaves l − 1 leaves

w0

u

w′0

v

x0

y0

x′0

y′0
yj

Figure 5.5: Swap s = (x0, u, yj ) with j ∈ {0, . . . , `− 1}

the paths between the vertices of {xh , h ∈ {0, . . . , k − 1}} and the vertices of
{yh , h ∈ {0, . . . , `−1}} For all vertices b ∈ V \{y0, yj , u} the separation stays
the same, because b separates the exact set of vertex pairs before and after
the swap (see Figure 5.5). We already showed that u is a max-sep vertex, so
seps(b) ≤ sep(b) ≤ sep(u) We have with 5.1, 5.5 and with ` ∈ Ik ∩ N, so
` > λ(k),

seps(y0)− sep(u) = `2 − 8k − 3`− 2

= `(`− 3)− 8k − 2

> λ(k)(λ(k)− 3)− 8k − 2

The latter term is non-negative if λ(k) ≥
√

17
4 + 8k + 3

2 . Since λ(k)
k→∞−→

√
11−3
2 · k , this inequality is fulfilled if k is sufficiently large. In fact, for all

k ≥ 353 the inequality holds, so y0 is the only max-sep vertex of Gs
k ,`. Note

that
sep(x0,u,y0)(y0) = sep(x0,u,yj )(y0) + 2k

for every j ∈ [k − 1], since in this case y0 also separates yj and the k vertices
in {xh , h ∈ {0, . . . , k − 1}}. Thus the same argument applies for a = y0.

• y0: All swaps performed by y0 are of the form s = (y0, u, a) for some vertex a.

The cases a = xi or a ∈ W are not profitable for the same reasons as in the case
(xi , x0, a), a ∈W . The case a ∈ B is analog to the case (xi , x0, a), a ∈ B .

• w0: For a swap, w0 has to delete one of the edges {w0, u}, {w0, v}, or {w0,w
′
0}. As

already mentioned, in all cases the subgraph remains two-connected, so it does not
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matter which edge is deleted and we may assume that all swaps performed by w0

are of the form s = (w0, u, a) for some vertex a.

The deletion of {w0, u} does not change any separation, since there are still two
vertex-disjoint w0-u-paths in the resulting graph. It follows that seps(b) ≤ sep(b)
for all b ∈ V .

If a ∈ A (resp. a ∈ B), the separation of v (resp. u) will stay the same. If a ∈W ,
the separation of u and v will stay the same. So, either u or v is the only max-sep
vertex of Gs

k ,`, or MS(Gs
k ,`) = {u, v}. Because of the symmetry of Gk ,`, in all cases

the cost for w0 remains the same.

• u: This case is quite similar to the above case. Analogously, we may assume that
all swaps performed by u are of the form s = (u, v , a) for some vertex a and we
know that seps(b) ≤ sep(b) for all b ∈ V .

Because seps(u) = sep(u), there are only two different cases to consider: If a ∈ B ,
then seps(v) < sep(v) and u is the only max-sep vertex of Gs

k ,`. Otherwise, u and
v stay the only max-sep vertices and the cost of u does not change.

All possible swaps of v ,w ′i , x
′
iand y ′i are symmetric to the swaps of u,wi , xi and yi that

have already been considered.
We showed that Gk ,` is a swap equilibrium. For the social cost, with Remark 5.9 we

have λ(k), µ(k) ∈ (0.15k , 0.16k), so we get

n = 2 + 4k + 2` < 4k + 2µ(k) + 2 < 4.33k

and

SC(Gk ,`) = sep(u)

= 6k2 + 2`2 + 10k`+ 10k + 6`+ 2

> 6k2 + 2λ(k)2 + 10kλ(k)

> 6k2 + 0.045k2 + 1.5k2

> 0.4n2
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