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ON PRICING RULES AND OPTIMAL STRATEGIES IN GENERAL

KYLE-BACK MODELS

UMUT ÇETIN AND ALBINA DANILOVA

Abstract. The folk result in Kyle-Back models states that the value function of the insider
remains unchanged when her admissible strategies are restricted to absolutely continuous
ones. In this paper we show that, for a large class of pricing rules used in current litera-
ture, the value function of the insider can be finite when her strategies are restricted to be
absolutely continuous and infinite when this restriction is not imposed. This implies that
the folk result doesn’t hold for those pricing rules and that they are not consistent with
equilibrium. We derive the necessary conditions for a pricing rule to be consistent with
equilibrium and prove that, when a pricing rule satisfies these necessary conditions, the
insider’s optimal strategy is absolutely continuous, thus obtaining the classical result in a
more general setting.

This, furthermore, allows us to justify the standard assumption of absolute continuity of
insider’s strategies since one can construct a pricing rule satisfying the necessary conditions
derived in the paper that yield the same price process as the pricing rules employed in the
modern literature when insider’s strategies are absolutely continuous.

1. Introduction

The canonical model of markets with asymmetric information is due to Kyle [18], where
he studies a market for a single risky asset whose price is determined in equilibrium. Kyle set
up the model in discrete time and conjectured continuous-time equilibrium by considering
the limit. The continuous-time framework was formalised by Back [1] and thus the model
is commonly referred to as a Kyle-Back model in the subsequent literature. In this type of
models there are typically three types of agents participating in the market: non-strategic
noise traders, a strategic risk-neutral informed trader (insider) with private information re-
garding the future value of the asset, and a number of risk-neutral market makers competing
for the total demand. The goal of market makers is to set the pricing rule so that the result-
ing price is rational, which in particular entails finite expected profit for the insider trading
at these prices. On the other hand, the objective of the insider is to maximise her expected
final wealth given the pricing rule set by the market makers. Thus, this type of modelling
can be viewed as a game with asymmetric information between the market makers and the
insider and the goal is to find an equilibrium of this game.

Apart from extending the Kyle’s model to continuous time the most important contribu-
tion of Back [1] was to establish that, when the market maker sets the price to be a harmonic
function of total order, the insider’s value function is finite and the optimal control solving
the insider’s optimisation problem is absolutely continuous. This implies that the set of ad-
missible controls of the insider can be reduced to absolutely continuous ones. This restriction
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2 ON PRICING RULES AND OPTIMAL STRATEGIES IN GENERAL KYLE-BACK MODELS

significantly simplifies the problem of finding an equilibrium since it allows one to employ a
PDE approach to the insider’s optimal control problem that yields a system of PDEs that
the value function of the insider and the pricing rule of the market maker have to satisfy in
equilibrium.

Back’s result was the original justification for restricting the set of admissible controls
of the insider to absolutely continuous ones and this restriction is now standard in the
asymmetric information literature (see, e.g., [2], [11], [12], [6], [9], [14], [13], and [19]). In
this paper we show that if we extend the class of pricing rules beyond harmonic functions
of total order to include ones used in the recent literature, e.g. in the papers cited above,
then the value function of the insider is infinite and her optimal control is not absolutely
continuous. In particular, this is true for the pricing rules in the aforementioned papers.
Since the value function of the insider is infinite, those pricing rules can not be equilibrium
pricing rules.

However, since the infinite profit is due to penalty imposed on discontinuous strategies
or strategies with additional martingale part being insufficient to offset the profit made
due to private information, one can modify this penalty to ensure optimality of absolutely
continuous strategies, while warranting the same price process when insider’s strategy is
absolutely continuous. This is precisely what we do in this paper by establishing a class of
pricing rules that yield the same price process as the models cited before when the trading
strategy of the insider is absolutely continuous but produce a finite value for the insider
when her strategies are allowed to have jumps or martingale parts. We show that for this
class of pricing rules the set of admissible controls of the insider can be reduced to absolutely
continuous ones.

To the best of our knowledge, this paper is the first one to identify this class of pricing
rules consistent with an equilibrium. Moreover, it is also the first one since [1] that justifies
the restriction of insider’s controls to absolutely continuous ones in a general setting. Thus it
closes the gap between the assumption of absolutely continuous controls and its justification
in the modern literature that employs more general pricing rules.

The paper is structured as follows. In Section 2 we describe the model and introduce the
set of pricing rules that generalise the pricing rules employed in the current literature. In
Section 4 we state the main results of the paper: Theorem 3.1 that derives the necessary
conditions on the pricing rule that ensure that the insider cannot achieve infinite profits by
employing discontinuous strategies and/or strategies with a martingale part, Theorem 3.2
that establishes a PDE condition on the pricing rule that is necessary for the existence of
equilibrium, and Theorem 3.3 which demonstrate that, under the conditions for the pricing
rule derived Theorems 3.1 and 3.2, the restriction of admissible controls to absolutely contin-
uous ones produces the same value function. In Section 4 provide a worked-out example that
illustrates how the techniques developed in this paper can be applied to a particular model.
In Section 5 we analyse the optimisation problem of the insider and establish a subset of
these pricing rules that yield a finite value to this problem. Moreover, as a by-product we
obtain the familiar sufficient conditions on the pricing rule and the trading strategy in order
for the equilibrium to exist.
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2. Model setup

As in [1] we will assume that the trading will take place over the time interval [0, 1]. Let
(Ω,G, (Gt)t∈[0,1],Q) be a filtered probability space satisfying the usual conditions, The time-1
value of the traded asset is given by f(Z1), which will become public knowledge at t = 1 to
all market participants, where Z is a continuous and adapted process, and f is a measurable
increasing function.

Three types of agents trade in the market. They differ in their information sets and
objectives as follows.

• Noise/liquidity traders trade for liquidity reasons, and their total demand at time t
is given by a standard (Gt)-Brownian motion B independent of Z.

• Market makers only observe the total demand

Y = θ +B,

where θ is the demand process of the informed trader. The admissibility condition
imposed later on θ will entail in particular that Y is a semimartingale.
They set the price of the risky asset via a Bertrand competition and clear the

market. Similar to [2] we assume that the market makers set the price as a function
of weighted total order process at time t, i.e. we assume that the price process, S, is
given by

St = H (t, Xt) , ∀t ∈ [0, 1) (2.1)

where X is adapted to the filtration generated by B and Z and is the unique strong
solution of a certain SDE whose coefficients and drivers are constructed by the market
makers as made precise in Definition 2.1. Moreover, a pricing rule has to be admissible
in the sense of Definition 2.1, which will entail S being a semimartingale.

• The informed investor observes the price process St = H (t, Xt) and her private signal
Z. Since she is risk-neutral, her objective is to maximize the expected final wealth,
i.e.

sup
θ∈A

E0,z
[

W θ
1

]

, where (2.2)

W θ
1 = (f(Z1)− S1−)θ1− +

∫ 1−

0

θs−dSs. (2.3)

In above A is the set of admissible trading strategies for the given pricing rule1, which
will be defined in Definition 2.2. Moreover, E0,z is the expectation with respect to
P 0,z, which is the regular conditional distribution of (Xs, Zs; s ≤ 1) given X0 = 0
and Z0 = z, which exists due to Theorem 44.3 in [5].
Thus, the insider maximises the expected value of her final wealth W θ

1 , where the
first term on the right hand side of equation (2.2) is the contribution to the final
wealth due to a potential differential between the market price and the fundamental
value at the time of information release, and the second term is the contribution to
the final wealth coming from the trading activity.

1Note that this implies the insider’s optimal trading strategy takes into account the feedback effect, i.e.
that prices react to her trading strategy.
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Given the above market structure, we can now precisely define the filtrations of the market
makers and of the informed trader. As we shall consider their right continuous augmenta-
tions, we first define the probability measures that will be used in the augmentation.

First define F := σ(Bt, Zt; t ≤ 1) and let Q0,z be the regular conditional distribution of
(B,Z) given B0 = 0 and Z0 = z. Observe that any P 0,z-null set is also Q0,z-null in view of
the assumption on X . Due to the measurability of regular conditional distributions one can
define the probability measure P on (Ω,F) by

P(E) =

∫

R

Q0,z(E)Q(Z0 ∈ dz), (2.4)

for any E ∈ F .
WhileQ0,z is how the informed trader assign likelihood to the events generated by B and Z,

P is the probability distribution of the market makers who do not observe Z0 exactly. Thus,
the market makers’ filtration, denoted by FM , will be the right-continuous augmentation
with the P-null sets of the filtration generated by Y . In particular FM satisfies the usual
conditions.

On the other hand, since the informed trader knows the value of Z0 perfectly, it is plausible
to assume that her filtration is augmented with the Q0,z-null sets. However, this will make
the modelling cumbersome since the filtration will have an extra dependence on the value
of Z0 purely for technical reasons. Another natural choice is to consider the null sets that
belong to every Q0,z, i.e. the sets that are elements of the following

N I := {E ⊂ F : Q0,z(E) = 0, ∀z ∈ R}. (2.5)

These null sets will correspond to the a priori beliefs that the informed trader has about
the model before she is given the private information about Z0 and, thus, can be used
as a good benchmark for comparison. Therefore we assume that the informed trader’s
filtration, denoted by F I , is the right continuous augmentation2 of the filtration generated
by S and Z with the sets of N I . Similarly, we will denote by FB,Z the is the right continuous
augmentation of the filtration generated by B and Z with the sets of N I . Note that the
resulting filtrations are not complete.

A rational expectations equilibrium is a pair consisting of an admissible pricing rule and
an admissible trading strategy such that: a) given the pricing rule the trading strategy is
optimal, b) given the trading strategy, the pricing rule is rational in the following sense:

H(t, Xt) = St = E
[

f(Z1)|FM
t

]

, (2.6)

where E corresponds to the expectation operator under P. To formalize this definition of
equilibrium, we first define the sets of admissible pricing rules and trading strategies.

Definition 2.1. An admissible pricing rule is any quadruple (H,w, c, j) fulfilling the follow-
ing conditions:

(1) w : [0, 1]× R → (0,∞) is a function in C1,2([0, 1]× R);
(2) Given a Brownian motion, β, on some filtered probability space, there exists a unique

strong solution to
dX̃t = w(t, X̃t)dβt, X̃0 = 0.

2See Section 3 of [23] for a recipe of the procedure.



ON PRICING RULES AND OPTIMAL STRATEGIES IN GENERAL KYLE-BACK MODELS 5

(3) H ∈ C1,2([0, 1)× R).
(4) x 7→ H(t, x) is strictly increasing for every t ∈ [0, 1);
(5) c : [0, 1]× R → R is locally Lipschitz;
(6) j : [0, 1]× R× R → R is continuous and there exists ∆∗ > 0 such that

|j(t, x,∆)| ≤ Γ(t, x)|∆|, for |∆| < ∆∗, (2.7)

where Γ is locally bounded.

Definition 2.2. An FB,Z-adapted 3 θ is said to be an admissible trading strategy for a given
admissible pricing rule (H,w, c, j) if the following conditions are stisfied.

(1) θ is a semimartingale4 with summable jumps on (Ω,F , (FB,Z
t ), Q0,z) for each z ∈ R.

(2) There exists a unique strong solution5 , X, to

dXt =w(t, Xt−)dY
c
t +

(wx(t, Xt−)

2
+ c(t, Xt−)

)

w(t, Xt−)(d[Y, Y ]
c
t − dt)

+K−1
w (t, j(t, Xt−,∆Yt) +Kw(t, Xt−) + ∆Yt)−Xt−

starting from X0 = 0 over the time interval [0, 1] on (Ω,F , (FB,Z
t ),P), where Y =

B + θ, and

Kw(t, x) =

∫ x

0

1

w(t, y)
dy +

1

2

∫ t

0

wx(s, 0)ds. (2.8)

(3) No doubling strategies are allowed, i.e. for all z ∈ R

E0,z

[
∫ 1

0

H2 (t, Xt) dt

]

<∞. (2.9)

The set of admissible trading strategies for the given pricing rule (H,w, c, j) is denoted
with A(H,w, c, j). For the notational brevity, we will also denote by A(H,w) :=
A(H,w, 0, 0).

Now we are in a position to define the price set by the market makers. Observe that, given
an admissible pricing rule (H,w, c, j) and a trading strategy θ ∈ A(H,w, c, j), there exists
(due to the admissibility of θ) unique strong solution of

dXt = w(t, Xt−)dY
c
t + dCt + Jt, X0 = 0, (2.10)

with Y = B + θ, Kw defined in (2.8) and

dCt =
(wx(t, Xt−)

2
+ c(t, Xt−)

)

w(t, Xt−)(d[Y, Y ]
c
t − dt), (2.11)

Jt = K−1
w (t, j(t, Xt−,∆Yt) +Kw(t, Xt−) + ∆Yt)−Xt−. (2.12)

3See Remark 2.1 for the explanation of the choice of filtration θ is adapted to.
4Note that due to the incompleteness of the stochastic basis we follow the notion of semimartingale from

Jacod and Shiryaev [16] that only requires the right-continuity of filtrations.
5Following Kurtz [17] X is a strong solution of (2.10) if there exists a measurable mapping, ϕ, from a

Polish space to a Polish space such that X := ϕ(Y ) satisfies (2.10). In this case both Polish spaces are taken
to be the space of right continuous functions with left limits on [0, 1] equipped with Skorokhod topology.
Note that Y may jump only due to the discontinuities in θ.
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Thus the process X is well-defined6, and therefore

St := H(t, Xt),

is well-defined. Moreover, S is adapted to (FM
t ) since, following Kurtz [17], X is a functional

of the paths of Y only and Y is adapted to (FM
t ). These considerations justify the definition

of price stated below.

Definition 2.3. Given an admissible pricing rule (H,w, c, j) and a trading strategy θ ∈
A(H,w, c, j) the price set by market maker is given by

St := H(t, Xt),

where X is unique strong solution of (2.10)

Before we discuss our admissibility conditions, we will give a few examples from the
literature that illustrate the flexibility of our definition of price:

Example 2.1. In Back [1] the trading takes place in continuous time and the insider observes
the final asset value from the start. More precisely, the final value of an asset in this model
is f(Z1), where f is an increasing function and Z1 is Gaussian random variable with mean
0 and variance 1.

The price is defined to be:
St = H(t, Yt). (2.13)

In our setting, it translates to the pricing rule (H, 1, 0, 0). Observe that Kw(t, x) = x and
therefore Jt = ∆Yt yielding representation of (2.10) in the form:

dXt = dY c
t +∆Yt = dYt,

that is, Xt = Yt for all t ∈ [0, 1]. In this setting, our definitions of admissibility of trading
strategies and the pricing rules coincide with the ones in [1], as well.

Note that an alternative representation of the equilibrium stock price process is possible in
this model. The following representation demonstrates that already in [1] the market makers
use different weights to price absolutely continuous, martingale and jump parts of the insider
strategy.

To see this define w(t, x) := Hy(t, H
−1(t, x)), where the inverse is taken with respect to the

space variable, x. Then the equilibrium pricing rule can be represented as (H̃, w, 0, 0), where

H̃(t, x) = x+H(0, 0). Indeed, applying Ito formula for semimartingales to (2.13) yields:

dSt = w(t, St−)dY
c
t +

1

2
wx(t, St−)w(t, St−)(d[Y ]

c
t − dt) +H(t, Yt)−H(t, Yt−)

due to the fact that the equilibrium pricing rule in [1] satisfies

Ht(t, y) +
1

2
Hyy(t, y) = 0.

This PDE also allows to conclude that Kw(t, x) = H−1(t, x)−H−1(0, 0), thus yielding that

H(t, Yt)−H(t, Yt−) = K−1
w (t,Kw(t, St−) + ∆Yt)− St−,

6See Remark 2.2 for details.
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which implies that the equilibrium pricing rule indeed can be represented as (2.10) with pric-
ing rule (H̃, w, 0, 0) (and therefore Xt = St − H(0, 0)). This representation holds for any
admissible trading strategy. This, in fact, provides a generalisation of equation (16) in [1]
for general admissible pricing rules (and not only for equilibrium ones that are considered in
Theorem 3). Observe that H(t, Yt)−H(t, Yt−) 6= Hy(t, Yt−)∆Yt. If one instead prices jumps
via Hy(t, Yt−)∆Yt, the insider obtains infinite profits as we show in Theorem 3.1 comple-
menting the illustration given by [1] in Footnote 6.

Example 2.2. In Baruch [4] the trading takes place in continuous time where the risk-averse
insider observes the normally distributed asset value from the start. That is, f(Z1) = aZ1+b
is Gaussian random variable with known mean and variance. Using the above notation
St = Xt, where

dXt = λ(t)dYt,

and λ is deterministic.
In our setting, it translates to the pricing rule (H, λ, 0, 0) with H(t, x) = x. Indeed, as λ

does not depends on x and the evolution of X in [4] does not depend on quadratic variation
of the martingale part of Y explicitly, we should have

0 =

(

λx(t, Xt−)

2
+ c(t, Xt−)

)

λ(t, Xt−) = c(t, Xt−)λ(t, Xt−)

yielding c ≡ 0. Moreover, in this case Kw(t, x) =
x

λ(t)
and therefore we should have

λ(t)∆Yt = λ(t)(j(t, Xt−,∆Yt) + ∆Yt)

yielding j ≡ 0.

Example 2.3. Back and Baruch [2] study a version of the Kyle model where the trading
takes place in continuous time; however, the public announcement for f(Z1) takes place at
an exponential time τ with rate r. Moreover, f is the identity mapping and Z1 is a Bernoulli
random variable taking values in {0, 1}, and τ is independent from everything else.

Back and Baruch assume that St = Xt and

dXt = λ(Xs)dYs, (2.14)

for some function λ. In this model admissible trading strategies of the insider are absolutely
continuous. If we allow trading strategies with martingale part and keep the same dynamics
for S, the price postulated in [2] will translate to

(

H, λ,−λx

2
, ·
)

with H(t, x) = x in this
setting.7 Indeed, as the evolution of X in (2.14) does not depend on quadratic variation of
the martingale part of Y explicitly, we should have

0 =

(

λx(Xt)

2
+ c(t, Xt)

)

λ(Xt)

yielding the stated form of c.

7As jumps in the insider’s strategies are not allowed, the j term is not defined here. To allow for jumps
we need to define evolution for X for a process Y that is not continuous.
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Example 2.4. In Campi, Çetin and Danilova [6] extension of the Kyle model the insider
receives a dynamic signal given by a diffusion process

dZt = σ(s)a(V (s), Zs)dWs,

where V is an increasing and absolutely continuous deterministic function and a is a diffusion
coefficient satisfying mild regularity assumptions. The market makers choose a pricing rule
H and set the market price St = H(t, Xt), where

dXt = w(t, Xt)dYt,

where w is a smooth weighting function. In this model it is assumed that admissible trading
strategies of the insider are absolutely continuous. If we generalize this model to allow trading
strategies with jumps and martingale part by assuming that

dXt = w(t, Xt−)dYt, (2.15)

this pricing rule will translate to the setting of this paper as (H,w, c, j) with c(t, x) = −wx(t,x)
2

and
j(t, x,∆) = Kw(t, x+ w(t, x)∆)−Kw(t, x)−∆

with Kw defined as in (2.8). Indeed, as the evolution of X in (2.15) does not depend on
quadratic variation of the martingale part of Y explicitly, we should have

0 =

(

wx(t, Xt−)

2
+ c(t, Xt−)

)

w(t, Xt−)

yielding the stated form of c. To obtain j, observe that we should have

w(t, Xt−)∆Yt = K−1
w (t, j(t, Xt−,∆Yt) +Kw(t, Xt−) + ∆Yt)−Xt−.

As those examples illustrate, the process C in Definition 2.3 prices the additional mar-
tingale part of the total demand incurred by the insider’s strategy whereas J penalizes the
jumps in Y . Moreover, the Doss-Lamperti transformation Kw ensures that the price of the
jumps is given by the units of the total demand process and is independent of the scaling
factor w. That is, the form of the price postulated in Definition 2.3 allows a general pe-
nalization of martingale and jump components of insider strategy and therefore covers, as
particular cases, vast majority of pricing rules considered in the literature. This becomes
even more apparent if we rewrite (2.10) as (note that this is equivalent representation due
to the conditions on w8):

dXt = w(t, Xt−)dY
c
t + c̃(t, Xt−)(d[Y, Y ]

c
t − dt) + j̃(t, Xt−,∆Yt), X0 = 0,

with j̃ satisfying (2.7) for some ∆∗ and c̃ being locally Lipschitz.
If θ is absolutely continuous, dXt = w(t, Xt)dYt and the price set by the market makers

agrees with the one set in the standard literature. That is, if the insider’s trading strategy
is restricted to be absolutely continuous, the market price process is the same for all choices

8Indeed, choosing c = c̃

w
− wx

2
and

j(t, x,∆) = Kw(t, j̃(t, x,∆) + x)−Kw(t, x)−∆,

gives us the representation in the form of (2.10)-(2.12). Moreover, the relevant conditions in Definition 2.1
are satisfied in view of the mean value theorem and the fact that that w > 0.
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of c and j. This implies that (2.10) defines a set of pricing rules for general strategies of the
insider that are consistent with the ones used in the literature under the assumption that the
insider is only allowed to follow absolutely continuous strategies. Thus, if one can identify the
functions c and j for which the optimal strategy of the insider is absolutely continuous, one
recovers the equilibria obtained in the previous studies with the modification of the pricing
rule given by those c and j. The reason for the chosen parametrization of C and J is that
we are going to establish that these functions are identically 0 under our parametrization.
More precisely, the insider gets infinite profit unless c = j = 0 as shown in Theorem 3.1. 9

In the next few remarks we discuss well-posedness of our definitions of admissible trading
strategies and the price set by the market makers as well as their direct implications.

Remark 2.1. Note that Condition 2 in Definition 2.1 is equivalent to no trading being
admissible for the insider. Thus, A(H,w, c, j) 6= ∅ for any admissible pricing rule.

Moreover, the strict monotonicity of H in the space variable implies H is invertible prior
to time 1, thus, the filtration of the insider is generated by X and Z. Note that jumps of Y
can be inferred from the jumps of X via (2.10) and the form of J . Moreover, since Kw ∈ C1,2

under the hypothesis on w, an application of Ito’s formula yields

dKw(t, Xt) = dY c
t − 1

2
wx(t, Xt−)dt+Kw(t, Xt)−Kw(t, Xt−) +

∂

∂t
Kw(t, Xt−)dt.

Thus, one can also obtain the dynamics of Y c by observing X. Hence, the natural filtrations
of X and Y coincide. This in turn implies that (FS,Z

t ) = (FB,Z
t ), i.e. the insider has full

information about the market. This justifies our choice of the filtration to which θ is adapted
in Definition 2.2.

Remark 2.2. Note that since θ is assumed to be admissible in Definition 2.3, it is a semi-
martingale with summable jumps. This in turn implies Y is a semimartingale with summable
jumps as well. Therefore, the equations (2.10)-(2.12) are well-posed. In particular, the pro-
cesses C and (

∑

s≤t Js)t∈[0,1] are adapted to the market makers’ filtration FM and are of
finite variation. Indeed, since X is a strong solution and Y is a semimartingale, they are
both right continuous with left limits. Thus, their paths are bounded on compacts a.s.. This
readily implies that C is of finite variation as the functions c, w and wx are continuous.

Moreover, due to the mean value theorem and the fact that K−1
w has a continuous deriva-

tive, we have
|Jt| ≤ γ(ω)|j(t, Xt−,∆Yt) + ∆Yt|,

where γ is bounded. Since there are only finitely many jumps of Y that exceed ∆∗, the above
bound implies that

∑

t≤1 |Jt| <∞ in view of (2.7).

Remark 2.3. In the standard models Z is assumed to be a solution of an SDE driven by a
Brownian motion. This entails that FB,Z is contained in a Brownian filtration. Therefore,
the jumps of θ are summable as soon as θ is assumed to be a semimartingale. Hence, the
first condition of the definition above reduces to the requirement that θ is a semimartingale.

Now we can formally define the market equilibrium as follows.

9This, in particular, implies that in the Example 2.3 and Example 2.4 an insider can obtain infinite profit
by employing trading strategies with martingale part and/or jumps.
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Definition 2.4. A couple ((H∗, w∗, c∗, j∗), θ∗) is said to form an equilibrium if (H∗, w∗, c∗, j∗)
is an admissible pricing rule, θ∗ ∈ A(H∗, w∗, c∗, j∗)), and the following conditions are satis-
fied:

(1) Market efficiency condition: given θ∗, (H∗, w∗, c∗, j∗) is a rational pricing rule, i.e.
it satisfies (2.6).

(2) Insider optimality condition: given (H∗, w∗, c∗, j∗), θ∗ solves the insider optimization
problem for all z:

E0,z[W θ∗

1 ] = sup
θ∈A(H∗,w∗,c∗,j∗)

E0,z[W θ
1 ] <∞.

We finish this section by summarizing our standing assumptions for the convenience of
the reader.

Assumption 2.1. (1) Z is a continuous and G-adapted process10.
(2) f : R → R is a measurable and increasing function.
(3) The pricing rule (H,w, c, j) satisfies

Ht(t, x) +
1

2
w2(t, x)Hxx(t, x) = 0. (2.16)

In what follows we will use function g defined as

g(t, x) :=
wt(t, x) +

w2(t,x)
2

wxx(t, x)

w2(t, x)
(2.17)

for a given admissible pricing rule (H,w, c, j). Note that it is continuous due to the conditions
on w.

Remark 2.4. A formal derivation of HJB equations associated with the insider optimisation
problem in the case the insider’s signal is Markovian as in [6] and [10] will lead to (2.16) and
g ≡ 0. Moreover, we will demonstrate that g ≡ 0 is necessary for the equilibrium to exist11.

The above setup uses the standard definition of equilibrium as in Back [1]. The difference
lies in the generalisation of the set of admissible pricing rules that in particular includes
the ones used in the current literature (see, e.g., [2], [11], [12], [6], [9], [14], [13], and [19]).
Moreover, the signal of the insider is not assumed to be Markovian, i.e. our setting is less
stringent than the current literature where Z is assumed to be Markov.

3. Main results

There are three main results in this paper:

• Our first main result, Theorem 3.1, shows that the insider achieves infinite profits
unless the pricing rule penalises the jumps and martingale parts correctly, i.e. c =
j = 0. 12

10Recall that this implies that the regular conditional distribution of (Xs, Zs; s ≤ 1) given X0 = 0 and
Z0 = z exists in view of Theorem 44.3 in [5].

11If the equilibrium is inconspicuous as in most of the literature, the stated PDE for H will follow from
the standard filtering theory.

12Observe that this condition is not satisfied in the Examples 2.3 and 2.4.
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• Our second main result, Theorem 3.2, shows that in a wide range of models for a
pricing rule to be consistent with an equilibrium it’s weighting function must satisfy
(2.17) with g = 0.

• Our third main result, Theorem 3.3, shows that, if the market maker chooses a pricing
rule with correct penalization of martingale part/jumps of insider’s strategy that is
also consistent with an equilibrium in a sense of the Theorem 3.2 (i.e. g = 0 in (2.17)),
then there exists a sequence of absolutely continuous insider trading strategies that
maximizes insider’s objective. This implies that one can restrict admissible trading
strategies to absolutely continuous one without loss of generality as soon as pricing
rule is chosen correctly.

For the reader’s convenience of a reader the main results, as well as remarks discussing
their assumptions, are stated below.

Theorem 3.1. Let (H,w, c, j) be an admissible pricing rule such that H satisfies Assumption
2.1. Consider g defined by (2.17) and assume that for every z ∈ R there exists an x ∈ R

such that

E0,z

[

∫ 1−

0

∫ x(z)

ξ(t,f(Z1))

(H(t, u)− f(Z1))|g(t, u)|dudt
]

<∞. (3.1)

Assume further that the random variable f(Z1) is such that :

•
E0,z

[

f 2(Z1)
]

+ E0,z
[

K2
w(1, H

−1(1, f(Z1)))
]

<∞, ∀z ∈ R, (3.2)

• limz→−∞E0,z[−f(Z1)] = limz→∞E0,z[f(Z1)] = ∞,
• and lim supz→−∞E0,z[f(Z1)1[f(Z1)>k]] <∞, lim infz→∞E0,z[f(Z1)1[f(Z1)<k]] > −∞.

Then there exists a set E such that Q(Z0 ∈ E) > 0 and for any z ∈ E we have

sup
θ∈A(H,w,c,j)

E0,z[W θ
1 ] = ∞

unless c and j are identically 0.

Remark 3.1. The condition (3.1) ensures that the value function of the insider is bounded
when she is restricted to use absolutely continuous strategies. This condition is always sat-
isfied if insider has static information, i.e. if Z0 = Z1. The assumptions on the random
variable f(Z1) are quite general and are satisfied in the available literature. In particular
they are satisfied in a large class of diffusion models.

Theorem 3.2. Suppose that there exists an equilibrium ((H∗, w∗), θ∗), where H∗ satis-
fies Assumption 2.1. Consider g defined by (2.17) and assume Z0 = Z1, limz→∞ f(z) =
− limz→−∞ f(z) = ∞, and g

Hy
as a function on [0, 1]× R̄ with values in R̄ is continuous.

Assume further that there exists a set E such that Q(Z0 ∈ E) = 1 and for all z ∈ E there
exists a continuous function sf(z) of finite variation such that

sf(z)(t) := argmax
x

−
∫ x

ξ(t,f(z))

(H∗(t, y)−f(z))g(t, y)dy = argmin
x

∫ x

ξ(t,f(z))

(H∗(t, y)−f(z))g(t, y)dy
(3.3)

for all t ∈ [0, ν]. Then g ≡ 0 for all t ∈ [0, ν).
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Theorem 3.3. Suppose that

E0,z
(

f 2(Z1)
)

<∞, ∀z ∈ R, (3.4)

i.e. f(Z1) is square integrable for any initial condition of Z. Let (H,w) be an admissible
pricing rule satisfying (2.17) and (2.16) with g = 0. Then θ ∈ A(H,w) is an optimal strategy
if

i) θ is continuous and of finite variation,
ii) and H(1−, X1−) = f(Z1), P

0,z-a.s.,

where

Xt =

∫ t

0

w(s,Xs){dBs + dθs}.

Moreover, if we further assume that

E0,z
[

K2
w(1, H

−1(1, f(Z1)))
]

<∞, ∀z ∈ R, (3.5)

and M defined by

Mt := E0,z
[

Kw(1, H
−1(1, f(Z1)))|FZ

t

]

(3.6)

satisfies

d[M,M ]t = σ̃2
t dt (3.7)

for some measurable process σ̃ such that

lim sup
t→1

σ̃2
t (1− t)α−1 = 0 (3.8)

for some α ∈ (1, 2), then for any θ ∈ A(H,w), there exists a sequence of admissible absolutely
continuous strategies, (θn)n≥1, such that

E0,z
[

W θ
1

]

≤ lim
n→∞

E0,z
[

W θn

1

]

.

Remark 3.2. To understand the conditions (3.6)-(3.8) note that Kw(1, H
−1(1, f(Z1))) is

P 0,z-integrable, therefore M is well-defined and is independent of B.
This process M will be used by the insider to drive the market price to its fundamental

value. Under the optimality conditions of the theorem above Kw(1, H
−1(1, f(Z1))) = Y1.

Thus, M corresponds to the insider’s expectation of the final total demand using her own
private information only. Not using public information ensures M is independent of B.

The condition (3.8) is in fact an assumption on the quadratic variation of the signal and is
satisfied in the Markovian framework employed in the earlier Kyle-Back models (see, among
others, [15], [3], [6],[24], and [7]).

4. Penalization in action

In this section we illustrate our results with the model considered in Back and Baruch [2]
and discussed in the Example 2.3. We will show that the pricing rule employed therein allows
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infinite profit for the insider that uses trading strategies with martingale component and de-
scribe the correct penalization of the martingale component that prevents such opportunities
and ensures that the absolutely continuous strategies are optimal.13

Although this model does not directly fit to the above framework at a first sight, the
exponential character of τ allows us to view the setting of Back and Baruch (and a more
general version studied in Çetin [9]) as an infinite horizon version of the Kyle model.

More precisely, given a continuous semimartingale trading strategy θ of the insider, the
associated final wealth at time τ is given by

Wτ = Z1θτ −
∫ τ

0

Stdθt − [θ, S]t.

Back and Baruch assume that St = Xt, where

dXt = λ(Xs)dYs,

for some function λ that is implicitly defined by an equation and with the boundary condi-
tions λ(0) = λ(1) = 0. Çetin [9] later shows that

λ(x) = s′(s−1(x)),

where

s(x) =

∫ x

−∞

√

r

π
exp(−ry2)dy.

Now suppose that θ has a local martingale component driven only by B and let

γt :=
d

dt
[θ, B]t.

Thus, using the independence of τ , we can find the expected profit of the insider given Z1 = z
as

E0,z [Wτ ] = E0,z

[
∫ ∞

0

e−rt(z −Xt)dθt −
∫ ∞

0

e−rtλ(Xt)(1 + γt)γtdt

]

. (4.1)

Following [9] define

Ψ(x) =

∫ x

z

y − z

λ(y)
dy

and observe that
λ2

2
Ψ′′ − rΨ = 0, (4.2)

and that

Ψ′′(x) =
1

λ(x)
+ 2r

x− z

λ2(x)
s−1(x). (4.3)

13One can also show that insider that uses jumps achieves infinite profit in straightforward generalization
of the pricing rule of [2] where dXt = λ(Xt−)dYt. It is also possible to determine a correct penalization that
makes jumps suboptimal for the insider. To do so one needs to employ tedious calculations as in the proof
of Theorem 5.2. Thus, to simplify the exposition we will only demonstrate the results for martingale parts
assuming continuous strategies.
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Therefore,

e−rtΨ(Xt) = Ψ(x) +

∫ t

0

e−rsΨ′(Xs)dXs +
1

2

∫ t

0

e−rsλ2(Xs)γs(2 + γs)Ψ
′′(Xs)ds,

which in turn yields

E0,z [Wτ ] =Ψ(x)− lim
t→∞

E0,z
[

e−rtΨ(Xt)
]

+ E0,z

[
∫ ∞

0

e−rs

(

rs−1(Xs)(Xs − z)γs(2 + γs)− λ(Xs)
γ2s
2

)

ds

]

.

We shall now show that the insider will obtain infinite profits given this pricing rule by
appropriately choosing γ. To this end it suffices to consider the case z = 0.

Note that

γ 7→ rs−1(Xs)Xsγ(2 + γ)− λ(Xs)
γ2

2
is strictly convex if 2rs−1(Xs)Xs − λ(Xs) > 0. Since s−1(1) = ∞ and λ(x) = s′(s−1(x), it
is easy to show the existence of some p∗ such that 2rs−1(x)x − λ(x) > 1 for x > p∗. Also
observe that Ψ(1 − ε) < ∞ for ε > 0. Thus, the insider’s optimal strategy is to keep the
price process between p∗ and 1− ε by using a constant γ process provided rs−1(Xs)Xsγ(2+

γ) − λ(Xs)
γ2

2
> 1 all the time. This can be achieved by using a recurrent transformation

with h(x) = (s(x) − s(p∗))(s(1 − ε) − s(x)) (cf. Theorem 3.1 in [8]) or an infinite horizon
version of the method used in Stage 3 of the proof of Theorem 3.1 in this paper. Scaling this
γ will lead to infinite profits in the limit. To penalize correctly the martingale components
of a given continuous strategy the market makers should choose X such that

dXt = λ(Xt)dYt +
λ′(Xt)λ(Xt)

2
(d[Y, Y ]t − dt). (4.4)

This choice above will lead the insider to use continuous strategies with no martingale com-
ponent. Indeed, in this case

e−rtΨ(Xt) =Ψ(x)−
∫ t

0

re−rsΨ(Xs)ds+

∫ t

0

e−rsΨ′(Xs)dXs +
1

2

∫ t

0

e−rsλ2(Xs)Ψ
′′(Xs)d[Y, Y ]s

(4.2)
= Ψ(x) +

∫ t

0

e−rsΨ′(Xs)dXs +
1

2

∫ t

0

e−rsλ2(Xs)Ψ
′′(Xs)(d[Y, Y ]s − ds)

(4.4)
= Ψ(x) +

∫ t

0

e−rsΨ′(Xs)λ(Xs)dYt

+
1

2

∫ t

0

e−rs
(

Ψ′(Xs)λ
′(Xs)λ(Xs) + λ2(Xs)Ψ

′′(Xs)
)

(d[Y, Y ]s − ds)

(4.3)
= Ψ(x) +

∫ t

0

e−rsΨ′(Xs)λ(Xs)dYt

+
1

2

∫ t

0

e−rs
(

(Xs − z)
(

λ′(Xs) + 2rs−1(Xs)
)

+ λ(Xs)
)

(d[Y, Y ]s − ds)

=Ψ(x) +

∫ t

0

e−rs(Xs − z)dYs +
1

2

∫ t

0

e−rsλ(Xs)(d[Y, Y ]s − ds).
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Observe also that calculations similar to the ones that lead to (4.1) will yield

E0,z [Wτ ] = E0,z

[
∫ ∞

0

e−rt(z −Xt)dθt −
∫ ∞

0

e−rtλ(Xt) (d[Y, Y ]t − d[B, Y ]t)

]

.

and therefore

E0,z [Wτ ] =Ψ(x)− lim
t→∞

E0,z
[

e−rtΨ(Xt)
]

+ E0,z

[

1

2

∫ ∞

0

e−rtλ(Xt)(d[Y, Y ]t − dt)−
∫ ∞

0

e−rtλ(Xt) (d[Y, Y ]t − d[B, Y ]t)

]

=Ψ(x)− lim
t→∞

E0,z
[

e−rtΨ(Xt)
]

− 1

2
E0,z

[
∫ ∞

0

e−rtλ(Xt)d[Y − B, Y − B]t

]

.

This shows that additional martingale component is strictly suboptimal.

5. On equilibrium pricing rules and optimal strategies

In this section we will prove Theorems 3.1 – 3.3. In particular, we will show that in the
representation (2.10) c = j = 0 and w satisfying (2.17) with g = 0 are necessary conditions
for a pricing rule to be compatible with an equilibrium, since any other choice of market
maker’s weighting of the signal will result in the infinite profit for the insider and/or make
equilibrium impossible. We will also show that when a pricing rule satisfies those necessary
conditions trading strategies of the insider can be restricted to absolutely continuous ones.

Our first theorem computes the expected final wealth of the insider in our general setup.
We will use this representation to solve the optimisation problem for the insider. In particular
this representation will provide an upper bound on the value function when g vanishes and
the trading strategies are continuous.

Theorem 5.1. Let (H,w, c, j) be an admissible pricing rule such that H satisfies Assumption
2.1. Assume θ ∈ A(H,w, c, j). Then

E0,z
[

W θ
1

]

= E0,z

[

Ψf(Z1)(0, 0)−Ψf(Z1)(1−, X1−)−
1

2

∫ 1−

0

w(t, Xt−)Hx(t, Xt−)d[θ, θ]
c
t

+

∫ 1−

0

(H(t, Xt−)− a) c(t, Xt−)(d[Y, Y ]
c
t − dt)−

∫ 1−

0

∫ Xt−

ξ(t,a)

(H(t, u)− a)g(t, u)dudt

+
∑

0<t<1

{

Ψf(Z1)(t, Xt)−Ψf(Z1)(t, Xt−)− (H(t, Xt)− f(Z1))∆θt
}

]

,

where

Ψa(t, x) :=

∫ x

ξ(t,a)

H(t, u)− a

w(t, u)
du+

1

2

∫ 1

t

Hx(s, ξ(s, a))w(s, ξ(s, a))ds, (5.1)

the function g is given by (2.17), and ξ(t, a) is the unique solution of H(t, ξ(t, a)) = a.
Moreover,

∆Ψa(t, Xt)− (H(t, Xt)− a)∆θt ≤ (H(t, Xt)− a)j(t, Xt−,∆Yt)

∆Ψa(t, Xt)− (H(t, Xt)− a)∆θt ≥ (H(t, Xt−)− a)j(t, Xt−,∆Yt)−∆H(t, Xt)∆θt.
(5.2)
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Proof. Using Ito’s formula for general semimartingales (see, e.g. Theorem II.32 in [20]) we
obtain

dH(t, Xt) = Hx(t, Xt−)w(t, Xt−)dY
c
t + dFVt,

where FV is of finite variation, in view of Remark 2.2. Therefore,

[θ, S]ct =

∫ t

0

Hx(s,Xs−)w(s,Xs−) {d[B, θ]s + d[θ, θ]cs} . (5.3)

Moreover, integrating (2.3) by parts (see Corollary 2 of Theorem II.22 in [20]) we get

W θ
1 = f(Z1)θ1− −

∫ 1−

0

H(t, Xt−))dθt − [θ,H(·, X)]1− (5.4)

since the jumps of θ are summable. Moreover, direct calculations lead to

Ψa
t +

1

2
w(t, x)2Ψa

xx = −
∫ x

ξ(t,a)

(H(t, u)− a)g(t, u)du. (5.5)

Ito’s formula in conjunction with above yields

Ψa(1−, X1−) = Ψa(0, 0) +

∫ 1−

0

H(t, Xt−)(dBt + dθt)− a(B1 + θ1−)

+
1

2

∫ 1−

0

w(t, Xt−)Hx(t, Xt−)(d[Y, Y ]
c
t − dt)

+
∑

0<t<1

{Ψa(t, Xt)−Ψa(t, Xt−)− (H(t, Xt−)− a)∆θt}

+

∫ 1−

0

(H(t, Xt−)− a) c(t, Xt−)(d[Y, Y ]
c
t − dt)−

∫ 1−

0

∫ Xt−

ξ(t,a)

(H(t, u)− a)g(t, u)dudt

Combining the above and (5.4) and noting that the stochastic integral with respect to B is
a true martingale we deduce

E0,z
[

W θ
1

]

= E0,z

[

Ψf(Z1)(0, 0)−Ψf(Z1)(1−, X1−)−
1

2

∫ 1−

0

w(t, Xt−)Hx(t, Xt−)d[θ, θ]
c
t

+

∫ 1−

0

(H(t, Xt−)− a) c(t, Xt−)(d[Y, Y ]
c
t − dt)−

∫ 1−

0

∫ Xt−

ξ(t,a)

(H(t, u)− a)g(t, u)dudt

+
∑

0<t<1

{

Ψf(Z1)(t, Xt)−Ψf(Z1)(t, Xt−)− (H(t, Xt)− f(Z1))∆θt
}

]

.

Note that since w is positive and H is increasing, we have

Ψa(t, Xt)−Ψa(t, Xt−)− (H(t, Xt)− a)∆θt =

∫ Xt

Xt−

H(t, u)− a

w(t, u)
du− (H(t, Xt)− a)∆θt

≤ (H(t, Xt)− a)

∫ Xt

Xt−

1

w(t, u)
du− (H(t, Xt)− a)∆θt

= (H(t, Xt)− a)j(t, Xt−,∆Yt).



ON PRICING RULES AND OPTIMAL STRATEGIES IN GENERAL KYLE-BACK MODELS 17

Similarly,

Ψa(t, Xt)−Ψa(t, Xt−)− (H(t, Xt)− a)∆θt ≥ (H(t, Xt−)− a)j(t, Xt−,∆Yt)−∆H(t, Xt)∆θt.

�

Remark 5.1. The representation of the expected profit given by the above theorem shows
that the absolutely continuous strategies deliver expected wealth bounded by E0,z[Ψf(Z1)(0, 0)]
when g ≡ 0. Similarly, if the optimisation problem

inf
X
E0,z

[
∫ 1−

0

∫ Xt

ξ(t,f(Z1))

(H(t, u)− f(Z1))|g(t, u)|dudt
]

has a finite value, the value function of the insider is also bounded when she is restricted to
use absolutely continuous strategies. Theorem 3.1 that we will prove next imposes conditions
sufficient for this to hold.

Proof of Theorem 3.1. Suppose c(t, x) 6= 0 for some t < 1 and x. Since c is continuous, there
exist ν1 < ν2 < 1 and x1 < x2 such that |c(t, x)| > ε for some ε > 0 on [ν1, ν2] × [x1, x2].
Moreover, by the continuity ofK−1

w there exists t1 < t2 < 1 and y1 < y2 such thatK−1
w (t, y) ∈

[x1, x2] for all (t, y) ∈ [t1, t2]× [y1, y2].
We shall construct a continuous trading strategy to achieve arbitrarily large profits for

some realisation of Z1. This construction will be done in three stages. The first stage will
utilise Lemma A.1 to bring X inside [K−1

w (t1, y1), [K
−1
w (t1, y2)] at time t1. The second stage

will keep Kw(t, Xt) inside the interval [y1, y2] with arbitrarily large quadratic variation. The
final stage will keep X bounded up to time 1.

Observe that for any continuous semimartingale θ and G(t, x) :=
∫ x

0
g(t, y)dy

dKw(t, Xt) = dYt + c(t, Xt)(d[Y, Y ]t − dt)−G(t, Xt)dt.

Stage 1: To obtain a bounded Xε satisfying Kw(t1, X
ε
t1
) ∈ (y1, y2) apply Lemma A.1 to

x(t) =
(K−1

w (t1, y1) +K−1
w (t1, y2))t

2t1
and ε =

(K−1
w (t1, y2)−K−1

w (t1, y1))

4
.

Set X = Xε on [0, t1].
Stage 2: Fix a y ∈ (y1, y2). Consider interval [t1, t2] and the solutions of

dRt = (b+1)dBt+(b+1)2
(

1

Rt − y1
1[Rt≤y] −

1

y2 − Rt

1[Rt>y]

)

dt+(b2+2b)c(t,K−1
w (t, Rt))dt.

and observe that pathwise uniqueness holds until the exit time from (y1, y2) since c is locally
Lipschitz and K−1

w is continuously differentiable. Thus, if we can show the existence of a
weak solution that never exits (y1, y2), we will arrive at a strong solution that stays in (y1, y2).
Indeed, since c(t,K−1

w (t, x)) is bounded for all (t, x) ∈ (t1, t2)×(y1, y2), by means of Girsanov
transformation, weak solutions of above are the same as those of

dUt = qdβt + q2
(

1

Ut − y1
1[Ut≤y] −

1

y2 − Ut

1[Ut>y]

)

dt, (5.6)
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which are unique in law and never exit (y1, y2) by Proposition 3.1 in [8]. Define Xt :=
K−1

w (t, Rt) and observe that

dθt = bdBt + (b+ 1)2
(

1

Rt − y1
1[Rt≤y] −

1

y2 − Rt

1[Rt>y]

)

dt+G(t,K−1
w (t, Rt))dt.

Stage 3: Finally consider the interval (t2, 1]. Apply Lemma A.1 to x(t) = Xt2 and ε as
before to get |Xε| and set X = Xε.

Observe that X constructed above is bounded by a determinstic constant, which in turn
implies the boundedness of H(t, Xt). Thus, θ ∈ A(H,w, c, j). Recall from Theorem 5.1 that

E0,z
[

W θ
1

]

≥ E0,z

[

−Ψf(Z1)(1−, X1−)−
b2

2

∫ t2

t1

w(t, Xt−)Hx(t, Xt−)dt

+ (b2 + 2b)

∫ t2

t1

(H(t, Xt−)− f(Z1)) c(t, Xt−)dt−
∫ 1−

0

∫ Xt−

ξ(t,f(Z1))

(H(t, u)− f(Z1))g(t, u)dudt

]

since Ψf(Z1)(0, 0) ≥ 0 and d[θ, θ]t = 0 for t ∈ [0, 1]\[t1, t2]. Moreover, as dKw(1, u) =
1

w(1,u)
,

Ψf(Z1)(1−, X1−) ≤ (H(1, X1−)− f(Z1))(Kw(1, X1−)−Kw(1, ξ(1, f(Z1))))

since H and Kw are increasing functions. Since X is bounded and (3.2) holds, we deduce

E0,z[Ψf(Z1)(1−, X1−)] < ℓ1(z) <∞. (5.7)

Also observe that
∫ 1−

0

∫ Xt−

ξ(t,f(Z1))

(H(t, u)− f(Z1))|g(t, u)|dudt =

∫ 1−

0

∫ x(z)

ξ(t,f(Z1))

(H(t, u)− f(Z1))|g(t, u)|dudt

+

∫ 1−

0

∫ Xt−

x(z)

(H(t, u)− f(Z1))|g(t, u)|dudt.

Thus, for some constant ℓ2(z) independent of b due to Assumption 3.1 and X taking values
in a bounded interval,

E0,z

[
∫ 1−

0

∫ Xt−

ξ(t,f(Z1))

(H(t, u)− f(Z1))|g(t, u)|dudt
]

≤ ℓ2(z) <∞. (5.8)

Therefore,

E0,z
[

W θ
1

]

≥ ℓ(z) + E0,z

[
∫ t2

t1

(

(b2 + 2b) (H(t, Xt−)− f(Z1)) c(t, Xt)−
b2

2
w(t, Xt−)Hx(t, Xt−)

)

dt

]

≥ ℓ(z) + b2(m1 +mE0,z[f(Z1)] + (M −m)E0,z[f(Z1)1[f(Z1)<0]])

+b(m3 + 2mE0,z[f(Z1)] + 2(M −m)E0,z[f(Z1)1[f(Z1)<0]])

= ℓ(z) + b2(m1 +ME0,z [f(Z1)] + (m−M)E0,z[f(Z1)1[f(Z1)≥0]])

+b(m3 + 2ME0,z[f(Z1)] + 2(m−M)E0,z[f(Z1)1[f(Z1)≥0]]),
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where the constants m and M such that mM > 0 and M ≥ −
∫ t2

t1
c(t, Xt)dt ≥ m exist due

to the continuity of c, boundedness of X and that c(t, Xt) is bounded away from 0 on [t1, t2]
by construction.

Observe that the coefficient of b2 in above can be made positive for large enough z (resp.
small enough z) if m > 0 (resp. if M < 0) due to our assumption on the random variable
f(Z1). This implies that insider’s wealth can be made arbitrarily large for such z by making
b arbitrarily large. This yields the claim that c must be 0 for insider’s profit to be finite.

Next, suppose c ≡ 0, but j(t, x, κ) 6= 0 for some t < 1 and x, κ. Without loss of generality,
assume j(t, x, κ) > 0 (the proof in the case j(t, x, κ) < 0 is similar). Since j is continuous,
there exist t1 < t2 < 1, x1 < x2, and κ1 < κ2 such that j(t, x, κ) > δ for some δ > 0 on
[t1, t2]× [x1, x2]× [κ1, κ2].

We will construct a strategy that achieves an arbitrarily large profit for some realisations
of Z1. This will be again done in three stages: first, we will bring X inside the interval
[x1, x2] at time t1 via Lemma A.1. On the interval [t1, t2] we will construct a process with an
arbitrary number of jumps each of which will give positive contribution to the final utility.
Finally, we will keep X in the interval [x1, x2] after time t2.

Fix 0 < ε < x2−x1

2

Stage 1: On the interval [0, t1) let x(t) = x1+x2

2t1
t and apply Lemma A.1 with ε as above to

obtain a bounded process X such that Xt1− ∈ (x1, x2). The associated θε will be
used as insider’s strategy on [0, t1).

Stage 2: Next, we iteratively construct the process of jumps on [t1, t2].
To this end, consider si = t1 + i t2−t1

n
, for i = 0, n and set θt1 = θs0 = θs0− + κ1.

Observe that j(s0, Xs0−, κ1) > δ, and Xs0 = K−1
w (s0, j(s0, Xs0−, κ1)+Kw(s0, Xs0−)+

κ1).
Suppose we already constructed the process θ (and X) on [0, si] and i < n, then

on the interval (si, si+1) consider x(t) = Xsi +
x1+x2

2
−Xsi

si+1−si
(t − si) and apply Lemma

A.1 with ε as above. Similar to Stage 1 the associated θε will be used as the trading
strategy and X satisfies Xsi+1− ∈ [x1, x2]. Finally, for i < n−1, set θsi+1

= θsi+1−+κ1.
We again obtain j(si+1, Xsi+1−, κ1) > δ, and Xsi+1

= K−1
w (si+1, j(si+1, Xsi+1−, κ1) +

Kw(si+1, Xsi+1−) + κ1).
If i = n− 1, define θsi+1

= θsi+1− and Xsi+1
= Xsi+1−.

Thus, we constructed a process θ with n jumps such that [θ, θ]c ≡ 0.
Stage 3: On the interval [t2, 1] use Lemma A.1 to construct X to stay in the interval [x1, x2]

by using x(t) = x1+x2

2
with the same ε.

Thus, we constructed a process θ and X with n jumps such that [θ, θ]c ≡ 0 and X is
taking values in (m,M) for some m < M . Since X is bounded, H(t, Xt) is also bounded
and therefore θ ∈ A(H,w, c, j). Moreover, due to Theorem 5.1, (5.2) and the fact that
Ψf(Z1)(0, 0) ≥ 0 we have
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E0,z
[

W θ
1

]

≥ E0,z

[

−Ψf(Z1)(1−, X1−)−
∫ 1−

0

∫ Xt−

ξ(t,f(Z1))

(H(t, u)− f(Z1))g(t, u)dudt

+
∑

0<t<1

{(H(t, Xt−)− f(Z1))j(t, Xt−,∆Yt)−∆H(t, Xt)∆θt}
]

.

Using the computations that led to (5.7)and (5.8) we obtain

E0,z

[

Ψf(Z1)(1−, X1−) +

∫ 1−

0

∫ Xt−

ξ(t,f(Z1))

(H(t, u)− f(Z1))|g(t, u)|dudt
]

≤ ℓ1(z) <∞, ∀z.

Note that the constant ℓ1 is independent of n.
Furthermore, since the jumps of θ are of size κ1, the jumps of X are uniformly bounded

and jumps occur only at si, we have ∆H(t, Xt)∆θt ≤ ℓ2 <∞.
Combining the above estimates with the expression for wealth, we get

E0,z
[

W θ
1

]

≥ E0,z

[

n−1
∑

i=0

{(H(si, Xsi−)− f(Z1))j(t, Xsi−, κ1)− ℓ2}
]

− ℓ1(z),

with l2 being independent of z.
Let jm = min(t,x)∈[t1,t2]×[x1,x2] j(t, x, κ1) > δ, ∞ > jM = max(t,x)∈[t1,t2]×[x1,x2] j(t, x, κ1),

hm = min(t,x)∈[t1,t2]×[x1,x2]H(t, x) > −∞, hM = max(t,x)∈[t1,t2]×[x1,x2]H(t, x) <∞. We have

E0,z [(H(si, Xsi−)− f(Z1))j(t, Xsi−, κ1)] ≥ E0,z [(hm − f(Z1))j(t, Xsi−, κ1)]

= E0,z
[

(hm − f(Z1))j(t, Xsi−, κ1)1[hm<f(Z1)]

]

+E0,z
[

(hm − f(Z1))j(t, Xsi−, κ1)1[hm≥f(Z1)]

]

≥ (jM − jm)
(

min{0, hm} − E0,z
[

f(Z1)1[hm<f(Z1)]

])

+jm
(

hm −E0,z [f(Z1)]
)

.

Since limz→−∞E0,z[f(Z1)] = −∞ and lim supz→−∞E0,z[f(Z1)1[f(Z1)>k]] < ∞, there exists a
constant z1 such that for any z < z1 we will have

E0,z [(H(si, Xsi−)− f(Z1))j(t, Xsi−, κ1)]− ℓ2 > 1

for all i. Thus we will have E0,z
[

W θ
1

]

≥ n − ℓ1(z), and letting n → ∞ will complete the
proof. �

The following theorem allows a glimpse into the optimal strategy of the insider. It shows
that if the pricing rule satisfies c = j = 0, it is not optimal for the insider to use jumps.

Theorem 5.2. Suppose that there exists an equilibrium ((H∗, w∗), θ∗) such that H satis-
fies Assumption 2.1. Consider g defined by (2.17) and assume Z0 = Z1, limz→∞ f(z) =
− limz→−∞ f(z) = ∞, and g

Hy
as a function on [0, 1] × R̄ with values in R̄ is continuous.

Then P 0,z(ω : θ∗t (ω) ∈ C([0, 1))) = 1.

The proof of this theorem is postponed to the Appendix. It relies on the following lemma
that will also be useful in the proof of Theorem 3.2. This lemma shows that only a class of
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weighting functions that satisfy a further condition on g can be supported in an equilibrium.
Thus it allows us to restrict the set of admissible pricing rules further.

Lemma 5.1. Suppose Z0 = Z1, limz→∞ f(z) = − limz→−∞ f(z) = ∞, and there exists an
equilibrium ((H,w), θ) such that H satisfies Assumption 2.1. Consider g defined by (2.17)
and assume that g

Hy
as a function on [0, 1]× R̄ with values in R̄ is continuous. Then g

Hy
is

bounded from below on [0, 1]× R.

Proof. Let us first show that the existence of equilibrium impliesH(t,∞) = −H(t,−∞) = ∞
for all t ∈ [0, 1]. Indeed, if there exists t̂ such that H(t̂, x) ≥ h for all x ∈ R, then for all s ≤ t̂
we have H(s, x) ≥ h for all x ∈ R. This follows from the fact that Y is a Brownian motion
in the market maker’s filtration in equilibrium and, thus, the random variable Xt has full
support due to Remark A.1. That Y is a Brownian motion is a consequence of rationality,
Hx > 0 and H satisfies (2.16).

However, uniform boundedness of the price from below on [0, t̂] gives an unbounded profit
for the insider contradicting the definition of equilibrium. Indeed, since f is unbounded from
below there exists a z ∈ R such that f(z) < h. Consider the trading strategy

dθt = −n1[0,t̂](t)dt

and note that integrating by parts the associated final wealth we obtain

W1 = −n
∫ t̂

0

(f(z)−H(t, Xt)) dt ≥ n(h− f(z))t̂→ ∞ as n→ ∞.

Therefore, we can assume that H(t,∞) = −H(t,−∞) = ∞ for all t ∈ [0, 1].
Next denote g

Hy
(t, H−1(t, x)) by g̃(t, x) and observe that

∫ ∞

ξ(t,a)

(H(t, u)− a)g(t, u)du =

∫ ∞

a

(u− a)g̃(t, u)du.

Suppose that for all t ∈ [0, 1] we have limu→∞
g

Hy
(t, H−1(t, u)) = limu→∞ g̃(t, u) ≥ 0 as

well as limu→−∞ g̃(t, u) ≥ 0, and consider An := {(t, u) ∈ [0, 1]× R : g̃(t, u) ≤ −n}. Clearly,
An is closed for each n ≥ 1. Moreover, it is also bounded. Indeed, suppose there exists a
sequence (tm, um)m≥1 ⊂ An such that limm→∞ tm = t ≤ 1 and limm→∞ um = ∞ or −∞.
Then, limm→∞ g̃(tm, um) ≥ 0 due to the joint continuity of g̃, which is a contradiction. Thus
Ans are compact and their intersection would be nonempty by the nested set property if g̃
were not bounded from below. However, if (t̂, û) ∈ [0, 1] × R belongs to the intersection,
g̃(t̂, û) = −∞. Thus, the intersection must be empty and, therefore, g̃ is bounded from
below.

Next suppose that there exists a t̂ such that either limu→∞ g̃(t̂, u) < 0 or limu→−∞ g̃(t̂, u) <
0. Without loss of generality assume the former and observe that this leads to g̃(t, x) < −c
for all (t, x) in [t1, t2]× [x1,∞) for some c > 0 and t1, t2 in [0, 1] and x1 ∈ R due to the joint
continuity of g̃. Note that x1 can be assumed to satisfy H(t, x1) ≥ f(z) for all t ∈ [t1, t2] due
to the continuity and monotonicity of H .

Let xn : [0, 1] → R be the piecewise linear function defined by xn(0) = 0, xn(t1) =
x1 + 1

2
, xn(3t1+t2

4
) = x1 + n + 1

2
, xn(t2) = x1 +

1
2
, xn(1) = f(z) and xn(t) = x1 + n + 1

2

for all t ∈ [3t1+t2
4

, t1+3t2
4

]. Consider ε = 1
4
and an application of Lemma A.1 yields an
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existence of an admissible strategy θn that is continuous and of finite variation and satisfies
supt∈[0,1] |Xn

t − xn(t)| < 1
4
, where Xn is as in the Lemma. The wealth associated with this

strategy is given by

W n
1 := Ψf(z)(0, 0)− E0,z

[

∫ 1

0

∫ H(t,Xn
t )

f(z)

(u− f(z))g̃(t, u)dudt

]

by Theorem 5.1. Since Xn is uniformly bounded on [0, t1] and[t2, 1], we only need to consider
the above integral on [t1, t2]. Moreover, continuity of g̃ implies

W n
1 ≥ ℓ− E0,z

[

∫ t2

t1

∫ H(t,Xn
t )

x1

(u− f(z))g̃(t, u)dudt

]

≥ ℓ− E0,z

[

∫
3t2+t1

4

3t1+t2
4

∫ H(t,Xn
t )

x1

(u− f(z))g̃(t, u)dudt

]

≥ ℓ+
c

2
E0,z

[

∫

3t2+t1
4

3t1+t2
4

(H(t, Xn
t )− f(z))2dt

]

,

where the second and third inequality are due to g̃ being less than or equal to −c on [t1, t2]×
[x1,∞). Since H(t, Xn

t ) ≥ f(z) on [3t1+t2
4

, t1+3t2
4

], it follows from the monotone convergence
theorem that W n

1 → ∞ as n→ ∞, which contradicts the definition of equilibrium. �

Remark 5.2. Note that in view of the above lemma we can take H to be the identity func-
tion. Indeed, if (H,w) is a pricing rule satisfying the conditions of above lemma, then
(H̃, w̃), where H̃(t, x) = x and w̃(t, x) = Hx(t, H

−1(t, x))w(t, H−1(t, x)) is also a pricing

rule satisfying the conditions of the lemma with g̃(t, x) = g(t,H−1(t,x))
Hx(t,H−1(t,x))

. Moreover,

∫ x

ξ(t,a)

(H(t, u)− a)g(t, u)du =

∫ H(t,x)

a

(u− a)g̃(t, u)du,

and H(t,∞) = −H(t,−∞) = ∞ for all t ∈ [0, 1].
Moreover, consider St := H(t, Xt), where X is the unique solution of (2.10) with c = j = 0.

Then

dSt = w̃(t, St−)dY
c
t +

w̃(t, St−)w̃x(t, St−)

2
(d[Y, Y ]ct − dt) + (H(t, Xt)−H(t, Xt−),

and, therefore, S satisfies (2.10) with w = w̃. Indeed,

St− +H(t, Xt)−H(t, Xt−) = K−1
w̃ (t,Kw̃(t, St−) + ∆Yt).

The above is equivalent to

∆Yt = Kw̃(t, H(t, Xt))−Kw̃(t, St−) =

∫ St

St−

1

w̃(t, y)
dy =

∫ Xt

Xt−

1

w(t, y)
dy,

which holds in view of dynamics of X. Therefore, without loss of generality we can assume
H is identity.

We can now give a proof of Theorem 3.2.
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Proof of Theorem 3.2. Note that θ∗ is continuous in view of Theorem 5.2. Observe that H∗

can be taken equal to identity in view of Remark 5.2. We will also restrict our attention to
z ∈ E.

Fix z ∈ E. We show that X∗ must be such that X∗
t = argminx

∫ x

f(z)
(y− f(z))g(t, y)dy for

all t ∈ (0, ν). Suppose not, i.e. assume that there exists t ∈ (0, ν) and δ > 0 such that

P 0,z

[

∫ X∗

t

f(z)

(y − f(z))g(t, y)dy −
∫ sf(z)(t)

f(z)

(y − f(z))g(t, y)dy > δ

]

> 0.

since both X∗ and sf(z) are continuous on [0, ν] and

∫ X∗

u

f(z)

(y − f(z))g(u, y)dy −
∫ sf(z)(u)

f(z)

(y − f(z))g(u, y)dy ≥ 0

for all u ∈ [0, ν] we will have

P 0,z

[

∫ ν

0

∫ X∗

t

f(z)

(y − f(z))g(t, y)dydt−
∫ ν

0

∫ sf(z)(t)

f(z)

(y − f(z))g(t, y)dydt > 0

]

> 0.

This implies

E0,z

[
∫ ν

0

∫ X∗

t

sf(z)(t)

(y − f(z))g(t, y)dydt

]

= δ > 0 (5.9)

For any ε > 0 consider sε such that sε(0) = 0, sε = sf(z) on [ε, ν), and sε is continuous
and monotone on [0, ε]. Due to Lemma A.1 there exists Xε such that

sup
t∈[0,ν]

|sε(t)−Xε
t | < ε.

We will use the corresponding θε as the insider’s strategy on [0, ν].

On [ν, ν + ε] set dθε = −dBt +
f(z)−Xε

ν

εw(t,Xε
t )
dt and note that Xε remains bounded on [ν, ν + ε]

and Xε
ν+ε = f(z).

Now consider the interval [ν + ε, ν + 2ε] and introduce

dRε
t = dBt +

R∗
t − Rε

t

ν + 2ε− t
dt,

with Rε
ν+ε = Kw(ν + ε, f(z)). It is easy to see that the solution to the above SDE on

[ν + ε, ν + 2ε) is given by

Rε
t = (ν + 2ε− t)

[

Rε
ν+ε +

∫ t

ν+ε

1

ν + 2ε− s
dBs +

∫ t

ν+ε

R∗
s

(ν + 2ε− s)2
ds

]

,

where R∗
t = Kw(t, X

∗
t ). Observe that the first two terms in the square brackets multiplies

by (ν + 2ε− t) converge two 0 as t → ν + 2ε in view of Exercise IX.2.12 in [21]. Moreover,
on [R∗

ν+2ε 6= 0] an application of L’Hospital’s rule shows that the third term multiplied by

(ν + 2ε− t) converges to R∗
ν+2ε. Similarly, on [R∗

ν+2ε = 0], (ν + 2ε− t)
∫ t

ν+ε

|R∗

s |
(ν+2ε−s)2

ds→ 0.
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Therefore, Rε
ν+2ε = R∗

ν+2ε, a.s.. Note that if we define τR := inf{t ≥ ν + ε : R∗
t = Rε

t}, then
Rε is a semimartingale on [ν + ε, τR]. Indeed,

∫ τR

ν+ε

|R∗
t −Rε

t |
(ν + 2ε− t)

dt =

∣

∣

∣

∣

∫ τR

ν+ε

R∗
t − Rε

t

(ν + 2ε− t)
dt

∣

∣

∣

∣

=
∣

∣BτR − Rε
τR

− Bν+ε +Rε
ν+ε

∣

∣ <∞.

Next we define X̃t = K−1
w (t, Rε

t ) for t ∈ [ν + ε, ν + 2ε] and set

Xε
t =

{

f(z) + (X̃t − f(z))+, if X∗
ν+ε ≥ f(z);

f(z)− (X̃t − f(z))−, if X∗
ν+ε < f(z),

∀t ∈ [ν + ε, τ ],

where τ = inf{t ≥ ν+ε : X∗
t = f(z)}∧τR. First note that τ ≤ ν+2ε and for all t ∈ [ν+ε, τ ]

we have either X∗
t ≥ Xε

t ≥ f(z) or f(z) ≥ Xε
t ≥ X∗

t depending on X∗
ν+ε. Moreover, Xε

τ = X∗
τ

so we can set Xε
t = X∗

t for t ∈ [τ, 1].
Xε on [ν + ε, τ ] satisfies

dXε
t = w(t, Xε

t )(dBt + dθεt ),

where in case X∗
ν+ε ≥ f(z)

dθεt = 1[Xε
t>f(z)]

(

G(t, Xε
t ) +

R∗
t − Rε

t

ν + 2ε− t

)

dt+
1

2
dL̃t − 1[Xε

t=f(z)]dBt,

and L̃ is the local time of X̃ at f(z) in view of Theorem 68 in Chap. IV of [20]. Similarly,
if X∗

ν+ε < f(z),

dθεt = 1[Xε
t<f(z)]

(

G(t, Xε
t ) +

R∗
t −Rε

t

ν + 2ε− t

)

dt− 1

2
dL̃t − 1[Xε

t=f(z)]dBt.

Clearly, θε is admissible since Xε is bounded on [0, ν + ε] and |Xε
t − f(z)| ≤ |X∗

t − f(z)|
for all t ∈ [ν + ε, 1] and X∗ is admissible.

We shall show that the above strategy will outperform θ∗ for small enough ε.

E0,z[W ε
1 −W ∗

1 ] ≥ E0,z

[

−
∫ ε

0

∫ Xε
t

sf(z)(t)

(u− f(z))g(t, u)dudt−
∫ ν

ε

∫ Xε
t

sf(z)(t)

(u− f(z))g(t, u)dudt

+

∫ ν+ε

ν

∫ X∗

t

f(z)

(u− f(z))(g(t, u) + C)dudt−
∫ ν+ε

ν

∫ Xε
t

f(z)

(u− f(z))g(t, u)dudt

−C
∫ ν+ε

ν

∫ X∗

t

f(z)

(u− f(z))dudt+

∫ ν+2ε

ν+ε

∫ X∗

t

Xε
t

(u− f(z))(g(t, u) + C)dudt

− C

∫ ν+2ε

ν+ε

∫ X∗

t

Xε
t

(u− f(z))dudt− εℓ

]

+ δ

≥ −εℓ1 −
C

2
E0,z

[
∫ ν+2ε

ν

(X∗
t − f(z))2dt−

∫ ν+2ε

ν+ε

(Xε
t − f(z))2dt

]

+ δ,
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where the first inequality is due to (5.9) and the boundedness ofXε on [ν, ν+ε] in conjunction
with the following estimate:

−
∫ 1

ν

w(t, Xε
t )d[θ

ε, θε]t +

∫ 1

0

w(t, X∗
t )d[θ

∗, θ∗]t = −
∫ τ

ν

w(t, Xε
t )d[θ

ε, θε]t +

∫ τ

0

w(t, X∗
t )d[θ

∗, θ∗]t

≥ −
∫ ν+ε

ν

w(t, Xε
t )dt+

∫ τ

ν+ε

1[Xε
t=f(z)]w(t, f(z))dt ≥ εℓ.

The second inequality is due to the fact that the first, second and the fourth terms are
integrals of continuous functions on compact domains whose measures are proportional to ε,
and the sixth is positive since by construction either X∗ ≥ Xε ≥ f(z) or X∗ ≤ Xε ≤ f(z)
on [ν + ε, ν + 2ε] and g is bounded from below by some constant −C in view of Lemma 5.1.
Finally, the above lower estimate converges to δ as ε → 0 due to the square integrability of
Xε and Xε.

Thus, θ∗ should be such that X∗
t = argminx

∫ x

f(z)
(y − f(z))g(t, y)dy for all t ∈ (0, ν) for

t ∈ [0, ν].
Define

Et(s) := {a ∈ R : s = argmin
x

∫ x

a

(y − a)g(t, y)dy},

a set of realisations of insider’s signal that allow the insider to set X∗
t = s.

In what follows we will show that : i) Et(s) is a connected set for all t ∈ [0, ν], and ii) for
all Et(s) such that s ∈ Et(s) and {s} 6= Et(s) we have g(t, y) = 0 for all y ∈ Et(s).

This will imply that g ≡ 0 for all t ∈ [0, ν). Indeed, suppose there exists (t, a) ∈ [0, ν)×R

such that g(t, a) 6= 0. Since g is continuous, there exists a set [a1, a2] ⊆ R such that
g(t, a) 6= 0 for all a ∈ [a1, a2]. Due to ii) we must have X∗

t = a on the set {f(Z1) = a}
for all a ∈ [a1, a2]. Indeed, suppose on the set {f(Z1) = a} we have X∗

t = s 6= a. Since
s = X∗

t = argminx

∫ x

f(z)
(y−f(z))g(t, y)dy, ii) yields that s /∈ Et(s) (since a ∈ Et(s)), but then

we have a contradiction to the rationality of the pricing rule as s = X∗
t = E[f(Z1)|FM

t ] =
E[f(Z1)1[f(Z1)∈Et(s)]|FM

t ] ∈ Et(s), where the last inclusion is due to i). Thus, we have
X∗

t = a on the set {f(Z1) = a} for all a ∈ [a1, a2], or, equivalently, X
∗
t = f(Z1) for all

Z1 ∈ f−1([a1, a2]), but this means that the rational pricing rule must satisfy X∗
s = X∗

t for
any s ≥ t which is not consistent with the definition of the pricing rule since w > 0.

i) Et(s) is connected: Suppose a1, a2 ∈ Et(s) and λ ∈ [0, 1]. We need to show that
a = λa1 + (1− λ)a2 ∈ Et(s). Indeed, for any r ∈ R we have:

∫ r

a

(y − a)g(t, y)dy −
∫ s

a

(y − a)g(t, y)dy =

∫ r

s

(y − a)g(t, y)dy

= λ

(
∫ r

a1

(y − a1)g(t, y)dy −
∫ s

a1

(y − a1)g(t, y)dy

)

+(1− λ)

(
∫ r

a2

(y − a2)g(t, y)dy −
∫ s

a2

(y − a2)g(t, y)dy

)

≥ 0,
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where the last inequality is due to the fact that for i = 1, 2
∫ s

ai

(y − ai)g(t, y)dy = min
r∈R

∫ r

ai

(y − ai)g(t, y)dy.

This implies that
∫ r

a
(y − a)g(t, y)dy ≥

∫ s

a
(y − a)g(t, y)dy for all r ∈ R and therefore

a ∈ Et(s).
ii) s ∈ Et(s) and {s} 6= Et(s) ⇒ g(t,y) = 0 for all y ∈ Et(s). Suppose there exist

(t, s) ∈ [0, ν] × R such that: s ∈ Et(s), Et(s) 6= {s}, and g(t, ỹ) 6= 0 for some
ỹ ∈ Et(s).
Since s ∈ Et(s) for any r ∈ R we will have

∫ r

s

(y − s)g(t, y)dy ≥
∫ s

s

(y − s)g(t, y)dy = 0.

Let G(t, y) =
∫ y

s
g(t, u)du. We have

0 ≤
∫ r

s

(y − s)g(t, y)dy =

∫ r

s

(y − s)dG(t, y) = (r − s)G(t, r)−
∫ r

s

G(t, y)dy

= (r − s)(G(t, r)−G(t, ψ)) (5.10)

for any r ∈ R and some ψ ∈ [r ∧ s, r ∨ s].
Note that ỹ 6= s since for any a ∈ Et(s) we have s = argminx

∫ x

a
(y − a)g(t, y)dy

and therefore the first order conditions imply g(t, s) = 0 as we can choose a 6= s.
Suppose ỹ > s. Let G(t, y∗) = miny∈[s,ỹ]G(t, y). Due to (5.10) there exists ψ ∈

[s, y∗] such that

(y∗ − s)G(t, y∗)−
∫ y∗

s

G(t, y)dy = (y∗ − s)(G(t, y∗)−G(t, ψ)) ≥ 0 (5.11)

and therefore G(t, y∗) ≥ G(t, ψ). Thus, G(t, y∗) = G(t, ψ) and (5.11) implies
∫ y∗

s

G(t, y)dy = (y∗ − s)G(t, ψ) = (y∗ − s)G(t, y∗) =

∫ y∗

s

min
y∈[s,y∗]

G(t, y)dy.

This yields G(t, y) = const for y ∈ [s, y∗] and in particular G(t, s) = G(t, y∗) =
miny∈[s,ỹ]G(t, y). Since G(t, y) = const for y ∈ [s, y∗] and g is continuous, we have
g(t, y) = 0 for y ∈ [s, y∗]. Thus ỹ 6= y∗ which implies G(t, s) = miny∈[s,ỹ]G(t, y) <
G(t, ỹ).
Since ỹ ∈ Et(s) we have

(s− ỹ)(G(t, s)−G(t, φ)) = (s− ỹ)dG(t, s)−
∫ s

ỹ

G(t, y)dy =

∫ s

ỹ

(y − ỹ)dG(t, y)

=

∫ s

ỹ

(y − ỹ)g(t, y)dy ≤
∫ ỹ

ỹ

(y − ỹ)g(t, y)dy = 0

for some φ ∈ [s, ỹ]. Thus G(t, φ) = G(t, s) = miny∈[0,ỹ]G(t, y) and therefore
∫ ỹ

s

min
y∈[0,ỹ]

G(t, y)dy = (ỹ − s)G(t, φ) =

∫ ỹ

s

G(t, y)dy.
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Since G is continuous it implies that G(t, y) = G(t, s) for all y ∈ [0, ỹ] which contra-
dicts the above result that G(t, s) < G(t, ỹ). Thus, we can not have ỹ ≥ s.
Suppose ỹ < s. Let G(t, y∗) = maxy∈[ỹ,s]G(t, y). Due to (5.10) there exists ψ ∈

[y∗, s] such that

(y∗ − s)G(t, y∗)−
∫ y∗

s

G(t, y)dy = (y∗ − s)(G(t, y∗)−G(t, ψ)) ≥ 0 (5.12)

and therefore G(t, y∗) ≤ G(t, ψ). Thus, G(t, y∗) = G(t, ψ) and (5.12) implies
∫ y∗

s

G(t, y)dy = (y∗ − s)G(t, ψ) = (y∗ − s)G(t, y∗) =

∫ y∗

s

max
y∈[y∗,s]

G(t, y)dy.

This yields G(t, y) = const for y ∈ [y∗, s] and in particular G(t, s) = G(t, y∗) =
maxy∈[ỹ,s]G(t, y). Since G(t, y) = const for y ∈ [y∗, s] and g is continuous, we have
g(t, y) = 0 for y ∈ [y∗, s]. Thus ỹ 6= y∗ which implies G(t, s) = maxy∈[ỹ,s]G(t, y) >
G(t, ỹ).
Since ỹ ∈ Et(s) we have

(s− ỹ)(G(t, s)−G(t, φ)) = (s− ỹ)dG(t, s)−
∫ s

ỹ

G(t, y)dy =

∫ s

ỹ

(y − ỹ)dG(t, y)

=

∫ s

ỹ

(y − ỹ)g(t, y)dy ≤
∫ ỹ

ỹ

(y − ỹ)g(t, y)dy = 0

for some φ ∈ [s, ỹ]. Thus G(t, φ) = G(t, s) = maxy∈[ỹ,s]G(t, y) and therefore
∫ ỹ

s

min
y∈[0,ỹ]

G(t, y)dy = (ỹ − s)G(t, φ) =

∫ ỹ

s

G(t, y)dy.

Since G is continuous it implies that G(t, y) = G(t, s) for all y ∈ [0, ỹ] which con-
tradicts the above result that G(t, s) < G(t, ỹ). Thus, there doesn’t exist ỹ ∈ Et(s)
such that g(t, ỹ) 6= 0.

�

Finally, we can prove Theorem 3.3.

Proof of Theorem 3.3. In view of (5.2) and since w is positive and H is increasing, we have

E0,z
[

W θ
1

]

≤ E0,z
[

Ψf(Z1)(0, 0)−Ψf(Z1)(1−, X1−)
]

Note the inequality above becomes equality if and only if ∆θt = 0 due to the strict monotonic-
ity ofH . Moreover, Ψf(Z1)(1−, X1−) ≥ 0 with an equality if and only ifH(1−, X1−) = f(Z1).
Therefore, E0,z

[

W θ
1

]

≤ E0,z
[

Ψf(Z1)(0, 0)
]

for all admissible θs and equality is reached if and
only if the following two conditions are met:

i) θ is continuous and of finite variation.
ii) H(1−, X1−) = f(Z1), P

0,z-a.s..

Hence, the proof will be complete if one can find a sequence of absolutely continuous
admissible strategies, (θn)n≥1 such that limn→∞E0,z

[

W θn

1

]

= E0,z
[

Ψf(Z1)(0, 0)
]

.
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Consider the bridge process, Y , that starts at 0 and ends up at M1 at t = 1:

Yt := Bt +

∫ t

0

Ms − Ys
1− s

ds = (1− t)

(
∫ t

0

1

1− s
dBs +

∫ t

0

Ms

(1− s)2
ds

)

.

It is easy to check that the above converges a.s. to M1 using the continuity of M and
L’Hospital rule since (1 − t)

∫ t

0
1

1−s
dBs is the Brownian bridge from 0 to 0 as in Exercise

IX.2.12 in [21].
To establish the semimartingale property of Y first observe that

Yt −Mt = (1− t)

∫ t

0

1

1− s
{dBs − dMs}.

Thus, by Theorem V.1.6 in [21], there exists a Brownian motion β̃ such that
∫ 1

0

|Mt − Yt|
1− t

dt =

∫ 1

0

|β̃τt |dt,

where

τt =

∫ t

0

1 + σ̃2
s

(1− s)2
ds.

Observe that τ1 = ∞, P 0,z-a.s.. Thus by the law of iterated logarithm for Brownian motion
(see Corollary II.1.12 in [21]), we have

|β̃τt |√
τt log log τt

< C ∀t ∈ [0, 1], P 0,z-a.s.

for some finite random variable C. Therefore,
∫ 1

0

|Mt − Yt|
1− t

dt < C

∫ 1

0

√

τt log log τtdt ≤ C

∫ 1

0

τ
1+ε
2

t dt, (5.13)

for all ε > 0. Thus, Y is a semimartingale.
Note that (3.8) implies that for any n > 1 there exists δ > 0 such that for any s ∈ [1−δ, 1],

σ̃2
s(1− s)α−1 < 1

n
. Therefore, for t ≥ 1− δ,

(1−t)α
∫ t

0

1 + σ̃2
s

(1− s)2
ds ≤ (1−t)α−1−(1−t)α+(1−t)α

(
∫ 1−δ

0

1 + σ̃2
s

(1− s)2
ds+

1

n

(

(1− t)−α − δ−α
)

)

,

which in turn yields limt→1 τt(1− t)α = 0. Hence,
∫ 1

0

τ
1+ε
2

t dt ≤ C̃

∫ 1

0

(1− t)−
α(1+ε)

2 dt <∞

for any ε < 2
α
− 1. This proves the semimartingale property of Y in view of (5.13).

Next define the stopping times

τn := inf{t : |Yt| ≥ n}
with the convention that inf ∅ = 1, and introduce the sequence of trading strategies, θn given
by

dθnt = 1[τn≥t]
Mt − Yt
1− t

dt+ 1[τn,m<t]dθ̃
n
t ,
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where θ̃n is the continuous and of finite variation process given by Lemma A.1 to keep
Y n
t ∈ (−1 − n, 1 + n) for t ≥ τn via choosing x(t) = Yτn

1−t
1−τn

and ε = w = 1. This will also

ensure that Y n
1 ∈ (−1, 1) on [τn < 1]. Thus, the total demand process Y n corresponding to

θn satisfies

(1) supt∈[0,1] |Y n
t | ≤ n+ 1, a.s.;

(2) Y n
1 1[τn=1] = Y11[τn=1] = Kw(1, H

−1(1, f(Z1)))1[τn=1], a.s..
(3) Y n

1 1[τn<1] ∈ (−1, 1).

In view of Remark A.1 and the continuity of H(1, K−1
w (1, ·)) we deduce that H(t,K−1

w (t, Y n
t ))

is bounded uniformly in t yielding θn admissible for each n.
Recall that since θn is absolutely continuous, we have

E0,z[W θn] = E0,z
[

Ψf(Z1)(0, 0)−Ψf(Z1)(1, K−1
w (1, Y n

1 ))
]

.

On the other hand,

Ψf(Z1)(1, K−1
w (1, Y n

1 )) ≤ (H(1, K−1
w (1, Y n

1 ))− f(Z1))(Y
n
1 −Kw(1, H

−1(1, f(Z1))))

= 1[τn<1](H(1, K−1
w (1, Y n

1 ))− f(Z1))(Y
n
1 −Kw(1, H

−1(1, f(Z1)))).

Since f(Z1)Kw(1, H
−1(1, f(Z1))) is integrable and Y n

1 is uniformly bounded, applying the
dominated convergence theorem yields

lim
n→∞

E0,z[W θn ] = E0,z
[

Ψf(Z1)(0, 0)
]

,

i.e. the expected wealth corresponding to our sequence of admissible strategies converges to
the upper limit of the value function. �

Appendix A. Auxiliary results

Remark A.1. Observe that the existence of a unique strong solution in Definition 2.1 implies
min{P(Kw(t, X̃t) > y),P(Kw(t, X̃t) < −y)} > 0. In particular Kw(t, ·) : R → R is onto for
every t ∈ [0, 1].

Indeed, P(Kw(t, X̃t) > y) ≥ P(Kw(t, X̃t) > y, sups≤t |X̃s| ≤ n) for some large enough n.
On the other hand, application of Ito’s formula yields

Kw(t, X̃t) = βt −
∫ t

0

G(s, X̃s)ds,

where G(t, x) =
∫ x

0
g(t, y)dy and g(t, x) := wt(t,x)

w2(t,x)
+ 1

2
wxx(t, x) are continuous.

Thus, the law of Kw(t ∧ τn, X̃t∧τn)t∈[0,1] is equivalent to that of (βt∧νn)t∈[0,1], where τn =

inf{t ≥ 0 : |X̃t| ≥ n} and νn = {t ≥ 0 : |K−1
w (t, βt)| ≥ n} by Girsanov’s theorem. There-

fore, P(Kw(t, X̃t) > y, sups≤t |X̃s| ≤ n) > 0 yielding the claim. Similarly, P(Kw(t, X̃t) <

−y, sups≤t |X̃s| ≤ n) > 0. Consequently, min{P(X̃t > x),P(X̃t < −x)} > 0 for all t ∈ [0, 1]
by choosing y = Kw(t, x).

Lemma A.1. Consider bounded stopping times S ≤ T and let x : [S, T ] 7→ R be continuous,
adapted, and of finite variation. Then for any ε > 0 there exists an adapted process θε that
is continuous and of finite variation on [S, T ] such that there exists a strong solution to

dXε
t = w(t, Xt){dBt + dθεt}
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with Xε
S = x(S) for a given w : [0, 1]× R → (0,∞) ∈ C1,2 . Moreover, Xε satisfies

sup
r∈[S,T ]

|Xε
r − x(r)| < ε.

Proof. Define y(t) := Kw(t, x(t)) and observe that y is continuous and of finite variation.
Moreover, introduce the stochastic process U δ with U δ

S = 0 and

dU δ
t = dBt +

(

1

U δ
t + δ

1[Uδ
t ≤0] −

1

δ − U δ
t

1[Uδ
t >0]

)

dt,

which stays in (−δ, δ) in view of Proposition 3.1 in [8].
Next define Rδ := U δ + y on [S, T ] and set Xδ

t = K−1
w (t, Rδ

t ). Thus,

dXδ
t = w(t, Xδ

t )
{

dBt + dθδt
}

,

where

dθδt =

(

G(t,K−1
w (t, Rδ

t )) +
1

U δ
t + δ

1[Uδ
t ≤0] −

1

δ − U δ
t

1[Uδ
t >0]

)

dt+ dyt,

where G(t, x) :=
∫ x

0
g(t, y)dy. Therefore,

sup
t∈[S,T ]

|y(t)−Kw(t, X
δ
t )| < δ. (A.1)

Choosing δ small enough we thus obtain

sup
t∈[S,T ]

|x(t)−Xδ
t | = sup

t∈[S,T ]

|K−1
w (t, y(t))−Xδ

t )| < ε.

due to the uniform continuity of K−1
w on compacts. �

Lemma A.2. Let g : [0, 1] × R̄ → R̄ be continuous such that g : [0, 1] × R → R is also
continuous. Suppose that limu→∞ g(t, u) ≥ 0 and limu→−∞ g(t, u) ≥ 0 for every t ∈ [0, 1].
Then g is bounded from below.

Proof. Consider sets (En)n≥1

En := {(t, u) ∈ [0, 1]× R : g(t, u) ≤ −n}.
Clearly, Ans are closed. They are also bounded. Indeed, if there exists a sequence (tm, um) ∈
An such that um → ∞ or um → −∞. Then, limm→∞ g(tm, um) ≤ −n, contradicting the
hypotheses on joint continuity and the limits at ±∞. Thus, Ans are compact. Therefore,
if all Ans are non-empty, then ∩n≥1An 6= ∅ by the nested set property (see Corollary to
Theorem 2.36 in [22]). By construction g(t, u) = −∞ for any (t, u) in this intersection,
which contradicts our continuity assumption on g, Therefore, An must be empty for all
n > N for some N . �

Proof of Theorem 5.2. First observe thatH∗ can be taken equal to identity in view of Remark
5.2. Let ν := inf{t ≥ 0 : ∆Xt > 0} and suppose P 0,z(ν < 1) > 0. We will construct a
strategy θε that agrees with θ∗ on [0, ν). Let ε > 0 and choose ε(ν) = ε ∧ 1−ν

3
.

On [ν, ν+ε(ν)] setXε
ν = X∗

ν−, dθ
ε = −dBt+

f(z)−Xε
ν

ε(ν)w(t,Xε
t )
dt and note that |Xε| ≤ |X∗

ν−|+|f(z)|
on [ν, ν + ε(ν)] as well as Xε

ν+ε(ν) = f(z).



ON PRICING RULES AND OPTIMAL STRATEGIES IN GENERAL KYLE-BACK MODELS 31

Now consider the interval [ν + ε(ν), ν + 2ε(ν)] and introduce

dRε
t = dBt +

R∗
t − Rε

t

ν + 2ε(ν)− t
dt,

with Rε
ν+ε(ν) = Kw(ν + ε(ν), f(z)). It is easy to see that the solution to the above SDE on

[ν + ε(ν), ν + 2ε(ν)) is given by

Rε
t = (ν + 2ε(ν)− t)

[

Rε
ν+ε(ν) +

∫ t

ν+ε(ν)

1

ν + 2ε(ν)− s
dBs +

∫ t

ν+ε(ν)

R∗
s

(ν + 2ε(ν)− s)2
ds

]

,

by (ν + 2ε(ν) − t) converge two 0 as t → ν + 2ε(ν) in view of Exercise IX.2.12 in [21].
Moreover, on [R∗

ν+2ε(ν) 6= 0] an application of L’Hospital’s rule shows that the third term

multiplied by (ν + 2ε(ν) − t) converges to R∗
(ν+2ε(ν))−. Similarly, on [R∗

(ν+2ε(ν))− = 0], (ν +

2ε(ν) − t)
∫ t

ν+ε(ν)
|R∗

s |
(ν+2ε(ν)−s)2

ds → 0. Therefore, Rε
ν+2ε(ν) = R∗

(ν+2ε(ν))−, a.s.. Note that if we

define

τR := inf{t ≥ ν+ε(ν) : sgn(R∗
t −Rε

t ) 6= sgn(R∗
ν+ε(ν)−Rε

ν+ε(ν))}∧ inf{t ≥ ν+ε(ν) : R∗
t = Rε

t},
where sgn(x) = 1x>0 − 1x≤0, then R

ε is a semimartingale on [ν + ε(ν), τR]. Indeed,
∫ τR

ν+ε(ν)

|R∗
t − Rε

t |
(ν + 2ε(ν)− t)

dt =

∣

∣

∣

∣

∫ τR

ν+ε(ν)

R∗
t − Rε

t

(ν + 2ε(ν)− t)
dt

∣

∣

∣

∣

=
∣

∣BτR − Rε
τR

− Bν+ε(ν) +Rε
ν+ε(ν)

∣

∣ <∞.

Next we define X̃t = K−1
w (t, Rε

t ) for t ∈ [ν + ε(ν), ν + 2ε(ν)) and set

Xε
t =

{

f(z) + (X̃t − f(z))+, if X∗
ν+ε(ν) ≥ f(z);

f(z)− (X̃t − f(z))−, if X∗
ν+ε(ν) < f(z),

∀t ∈ [ν + ε(ν), τ),

where

τ = inf{t ≥ ν+ε(ν) : X∗
t = f(z)}∧inf{t ≥ ν+ε(ν) : sgn(X∗

t −f(z)) 6= sgn(X∗
ν+ε(ν)−f(z))}∧τR.

Xε on [ν + ε(ν), τ) satisfies

dXε
t = w(t, Xε

t )(dBt + dθεt ),

where in case X∗
ν+ε(ν) ≥ f(z)

dθεt = 1[Xε
t>f(z)]

(

G(t, Xε
t ) +

R∗
t − Rε

t

ν + 2ε(ν)− t

)

dt+
1

2
dL̃t − 1[Xε

t=f(z)]dBt,

and L̃ is the local time of X̃ at f(z) in view of Theorem 68 in Chap. IV of [20]. Similarly,
if X∗

ν+ε(ν) < f(z),

dθεt = 1[Xε
t<f(z)]

(

G(t, Xε
t ) +

R∗
t −Rε

t

ν + 2ε(ν)− t

)

dt− 1

2
dL̃t − 1[Xε

t=f(z)]dBt.

Next pick an n ≥ 1 and consider θ̂, which is given by

θ̂t = 1[t<ν]θ
∗
t + 1[t≥ν]

(

θ∗t 1[X∗

ν−>n] + θεt1[X∗

ν−≤n]

)

.
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This strategy is clearly admissible and will outperform θ∗ for small enough ε and large
enough n by following the reasoning and calculations that led to the analogous conclusion
in Theorem 3.2. �
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