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Lay Summary 

Human memory is very efficient. People can generally remember many events with great 

accuracy and they can also discriminate them from similar episodes to avoid memory errors. 

False recognition is a specific memory error in which novel information is erroneously 

remembered as previously been encountered. Although false recognition can occur in healthy 

young adults, it becomes substantially more frequent in older age. These errors have been 

attributed to similarity of meaning or appearance and aging is associated with an increased in 

reliance on semantic processing, thought to be responsible for false recognition due to 

meaning overlap between similar events. However, perceptual similarity may also have a 

role. Since items that are similar in meaning also look similar (e.g., “my rented blue mini 

cooper” versus “another light blue mini countryman parked next to mine”), it is difficult to 

study their individual contributions to memory. Understanding what causes false recognition 

is essential for future research into strategies or interventions to prevent these errors, 

particularly in the context of age-related decline. A fuller understanding of age-related 

decline in memory performance can also inform basic models of memory. My thesis aimed to 

disentangle the role of semantic and perceptual similarity in false recognition using two 

behavioural studies with young and older adults. Here, I used objective measures of semantic 

and perceptual similarity derived from cognitive models, together with subjective ratings, to 

assess the influence of these types of similarity on true and false recognition and their age-

related differences. This thesis also investigated the neural correlates that are engaged when 

people initially store memories. It is thought that whether an event’s representation is 

discriminated from similar memory representations depends critically on how it is encoded. 

However, the precise encoding mechanisms involved are not yet clear. Thus, I conducted a 

functional magnetic resonance brain imaging (fMRI) study to reveal whether specific pattern 

of semantic and perceptual information at encoding could inform later true and false 

recognition of common objects. 

 

 

 

 

 



10 
 

Abstract 

This thesis investigated the contribution of semantic and perceptual similarity to mnemonic 

discrimination, defined as the ability to recognize previously encountered events and to 

discriminate them from similar ones to avoid false recognition. When mnemonic 

discriminations fails, false recognition of similar events is typically attributed to shared 

memory representations (gist) typically characterized in terms of meaning. In two 

experiments with young adults, I investigated the effects of multiple semantic and perceptual 

relations in a mnemonic discrimination task involving pictures of objects. I hypothesised that 

semantic meaning could be processed at least at two different levels: at the concept level, 

semantic similarity captures features shared by different concepts. I derived this continuous 

measure from the Conceptual Structure Account, a feature-based model of semantic memory. 

At the item level, rated semantic similarity between a depicted exemplar and people’s internal 

representation of that concept captures the degree to which an item activates its individual 

representation. For each item, I also measured indexes of visual form and colour similarity. In 

all the experiments of the current thesis, the study phase was followed by a recognition 

memory test including studied items, similar lures, and novel items. In Experiment 1 and 2 of 

Chapter 2 participants studied single and multiple exemplars for each basic-level concept, 

respectively. Participants were less likely to recognize studied items with high concept 

confusability, but also to falsely recognize these lures. Thus, greater emphasis on coarse 

processing of shared features relative to fine-grained processing of individual concepts 

weakened the basic-level semantic gist shared between studied items and lures. In contrast, 

false recognition was higher for those lures judged more similar to people’s internal 

representation of that concept, suggesting reactivation of the studied concept at test by a 

different exemplar. False recognition was also more frequent for more visually confusable 

lures. These results suggest that multiple levels of semantic and perceptual similarity 

contribute to mnemonic discrimination. In Chapter 3, to understand whether initial processing 

of semantic and perceptual information at encoding is responsible for later true and false 

recognition, I ran an fMRI study that combined representational similarity analysis (RSA) 

with the subsequent memory paradigm. To index semantic and perceptual processing that I 

found relevant in Chapter 2, I created two semantic models to index coarse-grained 

taxonomic categories and specific object features, respectively, and two perceptual models 

defining visual properties, like line orientation and colour attributes. Participants encoded 

images of objects during fMRI scanning. Both perceptual and semantic models predicted 

later true memory. The strength of the neural patterns corresponding to low-level visual 
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representations in the early visual and inferotemporal cortex was stronger for items 

successfully recognized versus forgotten. Similarly, greater alignment of neural patterns with 

object-specific semantic representations in the inferotemporal cortex also predicted true 

recognition. However, the strength of the neural patterns reflecting nonspecific taxonomic 

information was stronger for items later forgotten than remembered in ventral anterior 

temporal lobe, left inferior frontal gyrus and, preliminary, in the left perirhinal cortex. In 

contrast, inefficient visual processing in posterior regions was associated with false 

recognition of similar lures. The results suggest that fine-grained semantic as well as visual 

analysis contributes to accurate later recognition, while processing visual image detail is 

critical for avoiding false recognition. To conclude, in Chapter 4 I investigated whether the 

same semantic and perceptual variables that I found to be significant predictors of young 

adults’ ability to recognize previously studied items, as well as misrecognize similar lures, 

have a greater impact on older adults’ performance on the same task. Thus, I focused on age-

related differences. Contrary to our predictions, Experiment 1 did not show any age-related 

differences in true and false recognition, or semantic and perceptual modulations on 

recognition memory.  However, Experiment 2 revealed an increase in true and false 

recognition for more confusable concepts in the older relative to young group when multiple 

exemplars of each basic-level concept were presented at study. I suggested this effect to be 

due to a reduction of processing semantic relations across concepts. This result is consistent 

with gist-based theories of aging that assume that semantic gist between studied items and 

lures can promote true and false recognition. Altogether, the studies described in the current 

thesis provide evidence that multiple semantic and perceptual relations can contribute to true 

and false recognition of objects and that these effects are in part mediated by operation that 

occur during the encoding phase. 
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Chapter 1: General Introduction 

In everyday life it is important to remember previously experienced events but also to 

discriminate them from highly similar ones to avoid mnemonic discrimination errors. 

Imagine how many times we rent a car for a new trip. In each occasion, we are encoding a 

new representation of that specific car. This means that we need to encode a novel 

representation of its type, shape, and colour in order to remember it. How can we later 

accurately recognise our car when it is parked in a car park among other semantically and 

perceptually similar cars? Recognising my car is an example of mnemonic discrimination, 

which also requires that I can discriminate similar ones as novel. To avoid falsely recognising 

the novel but similar car, it is important for the representations to be distinguished in 

memory. Whether discrimination is successful is thought to depend in part on encoding 

processes, and the nature of the information encoded. According to fuzzy-trace theory, 

emphasis on semantic gist at encoding increases the probability of misrecognizing items 

overlapping in gist with studied items. Gist is defined as shared semantic representations 

between sets of events embodied in a memory trace. However, other theories have also 

emphasised the role of further non-semantic dimensions, including perceptual similarity. 

Compared with young adults, older adults show reduced ability to discriminate similar events 

in memory, and this is thought to be associated with age-related changes in encoding 

processes. Fuzzy trace theory differs with other theories in terms of encoding mechanisms 

and the type of similarity proposed to drive mnemonic discrimination failures and their age-

related increase. In this thesis I sought to establish the type of similarity contributing to false 

recognition in young and older adults, and to clarify the contribution of encoding-related 

processes to mnemonic discrimination in young adults. The beginning of this chapter outlines 

prominent accounts of mnemonic discrimination in healthy young adults, and highlights 

outstanding questions. Emphasis is placed on fuzzy trace theory, which offer mechanistic 

explanations of encoding contributions to mnemonic discrimination errors. Then, age-related 

mnemonic discrimination decline is discussed in relation to the fuzzy trace theory and other 

relevant accounts. At the end, the thesis aims are outlined.  

1.1 Mnemonic discrimination 

As many of the events we experience every day are highly similar, substantial overlap 

between memory traces inevitably occurs (McClelland et al., 1995). Mnemonic 

discrimination is the ability to recognize and differentiate previously encountered events 
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from similar incoming information, and it is an essential component of episodic memory 

(Klippenstein et al., 2020). Although mnemonic discrimination refers to the ability to 

differentiate between internal neural representations, the behavioural outcome of this process 

is the differentiation between external stimuli (Leal & Yassa, 2014; Reagh et al., 2016). In 

the laboratory, during the study phase, participants are presented with a list of items that 

usually consists of single pictures or words. Then, in the subsequent test phase, mnemonic 

discrimination is typically probed by presenting a subset of studied items, semantically and/or 

perceptually similar lures, and unrelated novel items. Incorrectly identifying lures as “old” 

produces mnemonic discrimination errors or false recognition (Stark et al., 2010). Although 

Young adults can successfully discriminate most studied items and similar lures, false 

recognition is rather common when words or pictures are used (Koutstaal & Schacter, 1997; 

Motley & Kirwan, 2012; Seamon et al., 2000; Stahl et al., 2016). Thus, it is essential to 

understand the factors responsible for mnemonic discrimination errors. 

 

Studies employing images of common objects have typically probed mnemonic 

discrimination with lure images that represent different exemplars of the same studied basic-

level concepts. Intuitively, these lures are both semantically and perceptually similar to 

studied items. For instance, after studying multiple images (e.g., cat, stool, sheep, ladybug), 

Koutstaal and Schacter (1997) presented a subset of studied items (e.g., the same cat), 

together with similar lures (e.g., a different exemplar of cat), and unrelated novel items (e.g., 

a panther). The authors found that false recognition was more likely for related lures 

compared with unrelated novel items. These results which were attributed by the authors to 

semantic and perceptual similarity between studied items and lures, were subsequently 

replicated in more recent studies, all of which used pictures of common objects (Gutchess & 

Schacter, 2012; Koustaal et al., 1999; Koutstaal, 2003, 2006). However, a clear-cut 

separation between semantic and perceptual similarity is difficult with pictorial material since 

these dimensions often overlap, which makes it difficult to disentangle the relative 

contribution of each dimension in false recognition (but see Koutstaal et al., 2003 in Chapter 

2 for more details). 

 

Other studies reported false recognition for similar lure exemplars of pre-experimentally 

unfamiliar studied objects due to perceptual similarity (Budson et al., 2001; Koutstaal et al., 
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1999; Slotnick & Schacter, 2004). Stimuli were taken from categories defined by perceptual 

similarity. Categories were defined by a prototype figure, and sets of exemplars were created 

by applying different distortions to the prototype. Participants falsely recognized lure objects 

from studied categories more often than novel objects from non-studied categories. False 

recognition could be interpreted as due to similarity between exemplars of perceptually 

defined categories. According to this line of argumentation, false recognition could not have 

been due to semantic similarity because the objects and categories were unfamiliar and 

meaningless. However, the absence of pre-existing semantic information does not exclude the 

possible contribution of semantic similarity. Specifically, people may either have acquired 

new semantic knowledge when studying multiple exemplars from abstract categories or see 

them as meaningful in light of prior knowledge (Pidgeon & Morcom, 2014). If people acquire 

semantic knowledge during the study phase, then false recognition may have been based on 

this abstracted semantic similarity rather than on perceptual similarity (Pidgeon & Morcom, 

2014). Nonetheless, fuzzy trace theory supports the view that semantic similarity can play a 

role in false recognition. I consider this theory below. 

 

1.1.1 Fuzzy Trace theory 

Fuzzy trace theory posits dual memory mechanisms that act in concert to support true 

recognition, but that act in opposition with respect to false recognition. This theory suggests 

that semantic information shared between events is the key to understanding false 

recognition. Fuzzy trace theory hypothesised that subjects encode separate verbatim and gist 

traces of studied items when they initially process information. Verbatim traces are integrated 

representations of a studied item’s surface content and other item-specific information, which 

are unique to an item. Gist traces are episodic elaborations of semantic information (Brainerd 

& Reyna, 2002; Reyna & Brainerd, 1995). Fuzzy trace theory assumes that verbatim and gist 

traces are stored in parallel. A hallmark of fuzzy trace theory’s notion of verbatim traces is 

integration, i.e. that verbatim traces are integrated representations of multiple surface 

features, so that the retrieval of such traces on memory tests induces vivid mental 

reinstatement of experiences that accompanied items’ earlier presentations. Turning to gist 

traces, the initial encoding of items’ surface features is assumed to initiate a corresponding 

mechanism of meaning access and extraction, with these different storage mechanisms 

running in parallel during encoding. 
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If subjects store separate verbatim and gist traces of individual items, there will be latitude in 

the types of representations that may be accessed on memory tests, and therefore, the types of 

representations that are accessed will depend heavily upon the retrieval cues that are 

provided; verbatim traces are favoured when the surface content of retrieval cues matches 

that of the studied items, and gist traces are favoured when retrieval cues match studied items 

in meaning content but not in surface form. Thus, memory performance will depend on the 

relative availability and accessibility of verbatim and gist traces, which, while influenced also 

by consolidation and retrieval factors, rely largely on the strength of respective verbatim and 

gist representations formed at encoding (Brainerd & Reyna, 2002). As long as verbatim 

traces are still accessible, studied items are better retrieval cues for verbatim than for gist 

traces on recognition test; thus, successful recognition of studied items is thought to be based 

predominantly upon the retrieval of verbatim rather than gist traces (Reyna et al., 2002). 

Similarly, semantically related lures are better retrieval cues for gist than for verbatim traces; 

thus, mnemonic discrimination errors are based upon the retrieval of gist traces (Reyna & 

Kiernan, 1994, 1995). 

 

It is important to note that verbatim and gist retrieval are convergent processes in true 

recognition because they both support mnemonic discrimination of studied items. Fuzzy trace 

theory assumes that in true recognition retrieval of verbatim traces induces a vivid form of 

remembering in which subjects consciously re-experience items' occurrence in the study 

phase, a process called identity judgment. However, a studied item may fail to provoke 

verbatim retrieval and may instead provoke gist retrieval, which usually induces a more 

general form of remembering based on meaning overlap, a process called similarity 

judgment. With similar lures, however, verbatim and gist retrieval are assumed to be 

opponent processes, with gist retrieval supporting false recognition errors and verbatim 

retrieval suppressing them. Gist retrieval that results in misrecognition is again called 

similarity judgment. Verbatim retrieval, on the other hand, works against false recognition 

and it takes advantage of the vivid mental states that are provoked by verbatim traces. False-

but-gist-consistent items may sometimes produce the retrieval of verbatim traces of 

previously studied items, which can generate mismatches at the level of verbatim detail 

(Reyna, 1996). Such verbatim mismatches provide reliable, principled bases for correctly 

rejecting related lures in recognition because they supply a compelling explanation of how 



16 
 

events that were not experienced could nevertheless seem familiar. This ability is referred to 

as recollection-rejection (Brainerd et al., 2003).  

 

Fuzzy trace theory’s assumptions outlined above make it possible to explore mnemonic 

discrimination effects that fall out as predictions from the opponent-processes ideas. The 

most direct prediction is that, as gist traces are entirely composed of shared semantic 

information, semantic similarity drives mnemonic discrimination errors (Brainerd & Reyna, 

2002; Reyna & Lloyd, 1997). These errors are predicted to be observed only where lures are 

semantically similar to studied items. According to fuzzy trace theory, this relation should 

hold consistently for semantic overlap but nor for perceptual overlap (Reyna & Lloyd, 1997). 

Thus, if semantic similarity drives false recognition, it follows that false recognition levels 

will be higher for more semantically similar items (see Chapter 3 for details).  

 

1.1.2 Activation-monitoring theory 

A further theory, in which dissociated memory mechanisms are hypothesized, is the 

activation monitoring theory. This framework was developed to explain performance on the 

Deese-Roediger-McDermott (DRM) paradigm (Deese, 1959; Roediger & McDermott, 1995). 

Here, people study lists of associated words (e.g., bed, rest, awake) and then take a free recall 

or recognition memory test. The typical finding is that people often misrecognise critical 

lures (e.g., sleep) that were not presented in the study lists. The activation monitoring theory 

proposes that, at study, non-presented critical lures are often activated by relational 

processing induced by strong lexical associations between lures and list items (Roediger et 

al., 2001). The relative degree of item-specific and relational processing at encoding is 

thought to determine the strength of lure concept activation (Hunt & Einstein, 1981), and the 

success of monitoring at test. Greater item-specific encoding is thought to reduce later false 

recognition by increasing the probability that item-specific information is available at test, 

while greater relational processing contributes to reduced availability of item-specific 

information (Gallo & Roediger, 2002). If a lure concept was activated at study, false 

recognition is proposed to result from retrieval monitoring failure, misattributing the 

activated concept to the studied list. 
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Fuzzy trace theory makes similar predictions to the activation monitoring theory that 

increased verbatim (or item-specific) relative to gist (or relational) processing at encoding 

reduces false recognition in DRM and other recognition paradigms. Thus, the key difference 

between the theories is the activation monitoring theory’s emphasis is on associative rather 

than semantic processing. Despite these similarities, one difficulty of fuzzy trace theory in 

trying to explain false recognition is that gist has never been operationally defined (Roediger 

et al., 2001); that is, given a list of pictures or words, how does one specify the gist 

representation of the list and quantify how strong it is? According to the activation 

monitoring theory, one plausible interpretation of gist is backward associative strength, the 

average tendency for words in the study list to elicit the critical lure on a free association test 

(Nelson et al., 2004). The evidence suggests that the more the list items are associated to the 

critical item, the more a gist representation of the critical lure is created (Deese, 1959; 

Roediger & McDermott, 1995). However, further studies (Brainerd et al., 2008; Cann et al, 

2011) showed that the backward associative strength could be further decomposed into 

multiple semantic relations (see Chapter 2 for details). These findings suggest, counter to the 

activation monitoring theory, that semantic processing may play a role in accounting for 

mnemonic discrimination outcomes beyond associative processing. Importantly, as seen 

above, false recognition can also occur for perceptually similar abstract pictures that have no 

pre-existing meaning or associations (Koutstaal et al., 1999), as well as in DRM tasks that 

used phonologically similar, although associatively unrelated, lures (see Chapter 2 for 

details). These findings do indicate that semantic gist can cause false recognition in the 

absence of pre-existing associations. However, fuzzy trace theory cannot explain the results 

that show that perceptual similarity alone can cause false recognition. 

 

1.1.3 Cognitive neuroscience of mnemonic discrimination  

A key assumption of fuzzy trace theory is that despite parallel and independent gist and 

verbatim encoding, one trace can attract greater encoding resources, resulting in a relatively 

stronger trace (Brainerd & Reyna, 1990). Later recognition is then more likely to rely on the 

stronger trace, if intact at retrieval (Brainerd & Reyna, 2002). Therefore, a testable prediction 

is that the neural processes engaged at encoding will differ according to whether later 

recognition relies on verbatim or gist memory, or both (Kim & Cabeza, 2007) (see Chapter 4 

for more detail). Neuroimaging allows to separate investigation of encoding and retrieval 
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phases. In particular, the development of fMRI techniques has facilitated evaluation of such 

predictions using the subsequent memory paradigm (Otten et al., 2002; Wagner et al., 1998). 

Although lots is known about encoding mechanisms and neural networks supporting later 

true recognition (Kim, 2011), brain regions involved in false memory encoding are relatively 

unexplored (for a review see Dennis et al., 2015).  

 

In recent years, fMRI subsequent memory studies have revealed differences between regions 

showing encoding-related activity supporting later true recognition, and regions supporting 

later false recognition of perceptually and semantically similar images (Abe et al., 2013; 

Garoff et al., 2005) or semantically similar words (Baym & Gonsalves, 2010; Kim & Cabeza, 

2007). Such encoding differences are consistent with fuzzy trace theory’s claims that true 

recognition is more likely to engage verbatim encoding than false recognition (Brainerd & 

Reyna, 2002). Kim and Cabeza, (2007) also reported overlap in left ventrolateral prefrontal 

cortex between encoding predicting true and false recognition, supporting assumptions that 

both memory outcome can rely at least partially on gist encoding. Garoff et al. (2005) found a 

similar encoding-related activation in the left fusiform gyrus. In the above studies, many of 

the left-lateralized regions encoding false memories (e.g., left superior frontal gyrus, left 

middle temporal gyrus, and left ventrolateral prefrontal cortex) have previously been 

associated with semantic processing (Binder et al., 2009). If the encoding activity in these 

regions reflects processing of semantic information, findings linking these regions to later 

false recognition of semantically similar words/images (Baym & Gonsalves, 2010; Garoff et 

al., 2005; Kim & Cabeza, 2007) would be largely consistent with fuzzy trace theory’s 

predictions that semantic processing at encoding contributes to later gist-based memory. Such 

an interpretation was proposed by Kim and Cabeza (2007) and Garoff et al. (2005). Similarly, 

activation in posterior regions was interpreted in terms of an association between perceptual 

processing and later accurate recognition, again consistent with suggestions of fuzzy trace 

theory that verbatim encoding contributes to accurate memory (Brainerd & Reyna, 2002). 

However, these interpretations rely on reverse inference (Poldrack, 2006), as it cannot be 

concluded that activity reflects semantic and/or perceptual processing unless multivariate 

techniques aim to specifically isolate semantic and perceptual processing (see Davis et al., 

2020 and Chapter 4) . 
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Successful mnemonic discrimination depends on semantic and perceptual processing in 

regions that are known to support these operations, but also within the medial temporal lobe. 

The hippocampus is often implicated in forming new associative memories, storing memories 

independently of each other, retrieving memories from partial cues, and flexibly applying 

stored memories to novel situations. Marr (1971) was the first to suggest a role of the 

hippocampus in pattern separation and completion. Pattern separation and pattern completion 

are dissociable neural computations which are thought to be critical to encoding and retrieval 

of episodic memory and in particular to mnemonic discrimination (Sahay et al., 2011; Wilson 

et al., 2006; Yassa & Stark, 2011). Pattern separation is defined as the orthogonalisation of 

overlapping input representations, serving to reduce overlap between incoming information 

and existing representations in memory. Pattern completion is the process that retrieves a 

stored memory trace based on a set of sensory cues as input, increasing representational 

overlap between incoming information and previously stored representations (McNaughton 

& Morris, 1987; O’Reilly & McClelland, 1994). Without these complementary processes, 

people would be incapable of storing separate memories due to high levels of similarity 

among stimuli and we could not learn new memories, experiencing what has been called as 

catastrophic interference (McClelland et al., 1995; Norman & O’Reilly, 2003). The 

complementary actions of pattern separation and pattern completion are thought to contribute 

to mnemonic discrimination of both studied items and similar lures: efficient pattern 

separation at encoding is thought to better enable successful mnemonic discrimination of 

studied items from similar lures, while inefficient pattern separation coupled with dominance 

of pattern completion at encoding can increase the likelihood that similar overlapping lures 

would trigger false recognition (Guzowski et al., 2004; Sahay et al., 2011; Yassa et al., 2011). 

Unlike fuzzy trace theory and the activation monitoring theory, the pattern separation account 

does not make any distinction between the types of similarity likely to influence false as 

opposed to true recognition. Consequently, mnemonic discrimination errors can be triggered 

by a failure in discriminating between events that are similar across multiple dimensions, not 

just semantically (Yassa & Stark, 2011). Thus, this theory can help reconcile previous results 

that also highlighted a role of perceptual similarity. 
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1.1.4 Formal models of semantic and perceptual processing 

Fuzzy trace theory put emphasis on gist encoding and retrieval as responsible for false 

recognition. As I mentioned above, gist is assumed to reflect shared semantic information 

among a set of events. Formal models of semantic memory can allow us to objectively 

quantify what has been so far only a theoretical construct. One of these models, the 

Conceptual Structure Account (CSA; Tyler & Moss, 2001, see Chapter 2 for details), assume 

concepts to be organised in a connectionist system based on a number of elementary 

properties, or features. Thus, the activation of a concept corresponds to processing the 

concept’s features  (McRae et al., 1997; Tyler et al., 2000; Tyler & Moss, 2001; Vigliocco et 

al., 2004). Within this framework, the statistical characteristics of features have been 

proposed to determine how the concepts are processed. One of these, feature sharedness, 

quantifies the fact that some concepts’ features are highly shared (e.g., <has a tail >, < has 

eyes>) and are found in many other concepts, while others are highly distinctive (e.g., < has 

an udder >, < has a mane >) and can only be found in a few concepts. Thus, some concepts 

are more confusable with others in the semantic space (Moss et al., 1997; Moss et al., 1998; 

Taylor & Tyler, 2012). In Chapters 2, 3, and 4, feature-based models of semantic processing 

will allow us not only to define semantic similarity as a continuous measure, disentangled 

from a perceptual measure, but also to use this metric in neuroimaging to overcome the 

reverse inference problem identified above. Similarly, we can obtain low-level perceptual 

attributes of each item using computational models, such as the Hierarchical Model and X 

(HMax; Riesenhuber & Poggio, 1999; Serre et al., 2007), which captures properties 

processed by the ventral visual stream, a hierarchy of brain areas thought to mediate object 

recognition in cortex. Once we extracts perceptual properties of single objects, we can 

calculate a metric of perceptual similarity between objects. These models can help us 

understand the contribution of semantic and perceptual similarity on true and false 

recognition of common objects. 

 

1.2 Aging and mnemonic discrimination  

Age differences in cognitive functions are well-established. Older adults have difficulty with 

episodic memory that are manifested by a reduced ability to retrieve studied information (Luo 

& Craik, 2009). Relative to young adults, older adults generally exhibit deficits in recall, and 

less so in recognition of studied items (Davis et al., 2003; Kvavilashvili et al., 2009). 
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Importantly, older adults are more likely to falsely recognise highly similar lures than young 

adults. It is important therefore to understand the mechanisms underlying these age-related 

memory differences, in the hope that alternative encoding or retrieval strategies, or cognitive 

interventions can be targeted at reducing its impact. Moreover, age-related differences can 

provide a cue for a better understanding of the mechanisms involved in mnemonic 

discrimination in young adults while testing theories of cognitive ageing. 

 

Many studies on aging showed increased levels of false recognition in older adults (Koutstaal 

& Schacter, 1997; Toner et al., 2009; Yassa et al., 2011). This deficit appears to be more 

reliably observed than age differences in true recognition of studied items, suggesting that 

mnemonic discrimination errors of similar lures are a sensitive marker of age-related memory 

decline (Stark et al., 2013; Toner et al., 2009; Yeung et al., 2013). A review of studies of age-

related differences in mnemonic discrimination (Gomes et al., 2014) found that of 40 

experiments examining true and false recognition, 83% reported increased false recognition 

in older adults, while only 45% showed age-related decline in true recognition (but see 

Fraundorf et al., 2019). Although most of the recognition studies employed associatively-

related words in the DRM paradigm, where older adults typically showed heightened false 

recognition of critical lures (Balota et al., 1999; Lövdén, 2003; Norman & Schacter, 1997; 

but see Pansuwan et al., 2020 for different results), age-related increases in mnemonic 

discrimination errors were also reported for images of common objects (Koustaal et al., 

1999). These errors were attributed to an increase in gist-based memory (Brainerd & Reyna, 

2002; Koutstaal & Schacter, 1997; Tun et al., 1998). 

 

Despite older adults’ false recognition is primarily thought to be driven by semantic 

similarity, other authors that used both verbal and pictorial material have suggested that 

perceptual similarity may also contribute to false recognition (Koutstaal et al., 1999). Briefly, 

relative to young adults, older adults’ false recognition errors were higher for phonological 

similar lures (e.g., cork) that were semantically unrelated to studied items (i.e., corn) (Budson 

et al., 2003; Ly et al., 2013), and for lures related to studied items only by their shared font 

(Burnside et al., 2017). Age-related increases in false recognition between studied items and 

lures were also attributed to perceptual similarity objectively measured in terms of luminance 

and contrasts (Boutet et al., 2019). These results suggest that older adults, like young adults, 
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may be susceptible to perceptual similarity (but see Chapter 4 for more details). Below, I 

consider how fuzzy trace theory can be applied to aging and how other theories can integrate 

these results. 

 

1.2.1 Increased reliance on semantic gist 

The literature has suggested that aging produces a shift away from reliance on verbatim 

information toward reliance on memory for meaning content (Brainerd & Reyna, 2005). 

According to Brainerd and Reyna (2005)’s hypothesis, the gist-preference conjecture, older 

adults place greater emphasis than young adults on semantic gist information during encoding 

and retrieval, and are less likely to employ stored verbatim traces in support of memory 

(Brainerd & Reyina, 2005; Koutstaal & Schacter, 1997, Reyna & Lloyd, 1997). This is 

thought to lead to impaired mnemonic discrimination between items which overlap in gist 

and therefore to heightened false recognition (Brainerd & Reyna, 2002; Koutstaal & 

Schacter, 1999). Thus, although originally it was not primarily an aging theory, fuzzy trace 

theory can be used to explain some of the age-related errors outlined above. Consistent with 

this, in the categorized picture paradigms older adults manifest increased false recognition 

relative to young adults (Koustaal et al., 1999; Koutstaal & Schacter, 1997; Koutstaal et al., 

2001). Importantly, however, as I explained earlier for young adults, as images were both 

semantically and perceptually similar to studied items, the possibility that perceptual 

similarity has a role cannot be ruled out. There have only been few direct investigations of 

the specific roles that semantic information play in older adults’ memory errors (Koutstaal et 

al., 2003; Pidgeon & Morcom, 2014). These studies found heightened false recognition in 

older adults for concrete meaningful objects, leading the authors to propose that older people 

rely more on semantic processing than young adults. Although the concrete objects were not 

perceptually matched, these results suggests that the ability to exploit pre-existing semantic 

information is well maintained in the elderly (Matzen & Benjamin, 2013; Nyberg et al., 2003; 

Umanath & Marsh, 2014). 

 

1.2.2 Monitoring decline in aging 

The activation monitoring theory is also a gist-based account and can explain false 

recognition. However, it suggests that young adults and older adults activate a similar number 
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of critical lures during encoding of DRM study lists, and as such the activation component is 

not predicted to show significant age-related changes in false recognition (Dehon & Brédart, 

2004). Increased false recognition in older adults is instead explained by increased tendency 

to attribute the source of activated lures to study lists (Dehon & Brédart, 2004). Fuzzy trace 

theory’s recollection-rejection has also in part attributed age-related differences in false 

recognition to reduced source monitoring ability (Dodson & Schacter, 2002). Older adults 

would be less reliably able than young adults to benefit from manipulations encouraging the 

use of verbatim traces to reduce false memory through recollection-rejection (Gallo et al., 

2006), interpreted as support for decline in retrieval-based monitoring. While providing 

insights into the contribution of age-related change in retrieval processes to reduced 

mnemonic discrimination in older adults, the activation monitoring theory does not provide a 

complete account of aging and mnemonic discrimination as they do not make specific 

predictions regarding age-related differences in encoding. Thus, fuzzy trace theory may be 

better suited than the activation monitoring theory to explaining false recognition of 

semantically and perceptually similar lures. 

 

1.2.3 Cognitive neuroscience of age-related mnemonic discrimination 

Many different theories have been developed in the literature to account for age differences in 

mnemonic discrimination. Age-related changes in the neural underpinnings of cognitive 

processes are well documented and largely reflect deterioration from young adulthood (Raz et 

al., 2005). These changes include volumetric declines of grey matter in prefrontal cortex and 

hippocampus, two regions associated with memory encoding and retrieval and predictive of 

mnemonic discrimination of studied items and similar lures. Previous functional 

neuroimaging studies of encoding and aging have found significant age effects in prefrontal 

cortex and medial temporal lobe activity. These regions have been associated with different 

cognitive abilities contributing to mnemonic discrimination. The prefrontal cortex is thought 

to support executive functions (Miller and Cohen, 2001; Stuss and Alexander, 2000), which 

refer to cognitive processes that control and regulate other cognitive operations. Executive 

functions are necessary to control encoding or retrieval operations (Mitchell and Johnson, 

2009). In contrast, the medial temporal lobe is assumed to mediate the processes of pattern 

separation and completion (Yassa & Stark, 2011), and to bind episodes into one coherent 

representation. Thus, here I focus on a theory emphasizing executive function deficits (linked 
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to prefrontal cortex dysfunction), and a theory underscoring pattern separation deficits (linked 

to medial temporal lobe dysfunction). 

 

The resource deficit hypothesis (Craik, 1983, 1986; Craik & Byrd, 1982) suggests that aging 

is associated with a reduction in the amount of attentional resources, which results in deficits 

in demanding cognitive tasks. A corollary of the resource deficit hypothesis predicts that age-

related differences should be smaller when the task provides a supportive environment which 

reduces attentional demands (e.g., when older adults emphasise semantic information). 

Successful mnemonic discrimination also depends on evaluation and monitoring processes 

assumed to depend on prefrontal cortex, and the link between age-related increases in false 

recognition and prefrontal cortex dysfunction is supported by evidence of increased false 

memory rates in frontal lobe patients (Curran et al., 1997), and older adults with poorer 

frontal lobe functioning (Butler, McDaniel, Dornburg, Price, & Roediger, 2004). Fuzzy trace 

theory and the activation monitoring theory also propose that decline in prefrontal functions 

contributes to age-related mnemonic discrimination decline due to a monitoring failure at 

retrieval. 

 

Second, compared to young adults, older adults showed reduced activity in medial temporal 

lobe regions (Dennis et al., 2006; Gutchess et al., 2005), possibly reflecting a deficit in the 

formation of new memory traces. This result would be consistent with a role of these regions 

in pattern separation and pattern completion (Wilson et al., 2006; Yassa et al., 2011; Yassa et 

al., 2010). Wilson et al.'s (2006) model of neurocognitive ageing predicts that the older 

hippocampus is less able to efficiently perform pattern separation, and exhibits an increased 

tendency towards pattern completion. This age-related shift from pattern separation to pattern 

completion is proposed to lead to reduced ability to mnemonically discriminate between 

overlapping representations. The model also predicts that older adults require greater 

reduction in overlap between incoming and existing representations before pattern separation 

can occur. The resulting reduced ability to uniquely encode novel items via pattern 

separation, and tendency towards pattern completion in older adults are proposed to lead to 

greater mnemonic interference from existing memory traces (Wilson et al., 2003; 2004; 

2006). Wilson et al. (2006) explicitly assumed that pattern separation contributes to 

mnemonic discrimination and that retrieval of existing representations via dominance of 
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pattern completion can lead to mnemonic discrimination errors. It is therefore assumed that 

older adults’ tendency towards pattern completion directly contributes to age-related 

mnemonic discrimination difficulties. Thus, If age-related differences in mnemonic 

discrimination extends to multiple dimensions of similarity, including perceptual similarity, 

false recognition could be accounted for by pattern separation accounts proposing generalised 

mnemonic discrimination decline (Azab et al., 2014; Yassa & Stark, 2011).  

 

1.3 Thesis 

The studies comprising this thesis investigated semantic and perceptual contributions to 

mnemonic discrimination in young adults and older adults. Fuzzy trace theory assumes that 

the age-related increase in false recognition is driven by semantic similarity between lures 

and previously encoded items, while other researchers predict that further non-semantic 

dimensions of similarity can lead to mnemonic discrimination failure and heightened 

misrecognition. The lack of a way to separate semantic and perceptual similarity has led to 

difficulty in accurately assessing the role of these dimensions in driving mnemonic 

discrimination errors. This thesis includes three empirical investigations, detailed in three 

chapters (Chapters 2, 3, 4), and followed by a general discussion (Chapter 5). Each empirical 

chapter begins with an overview of the relevant literature, before methods and results are 

described and findings discussed in relation to the existing literature. 

 

Chapter 2 describes two published behavioural experiments on young adults (Naspi et al., 

2020). In these experiments, we employed pictures of common everyday objects and used a 

recognition memory task in which, after a study phase, we showed previously studied items, 

related lures (i.e., different exemplars of studied basic-level concepts), and unrelated novel 

items (i.e., unstudied basic-level concepts of studied categories). Experiment 1, which was 

exploratory, aimed to understand what dimensions of similarity were associated with the 

mnemonic discrimination task. Experiment 2, which was pre-registered, aimed to replicate 

the results obtained in Experiment 1 and to rule out alternative explanations of the observed 

results. Chapter 3 describes a published fMRI study conducted on young adults at encoding 

that combined the subsequent memory paradigm with RSA. I investigated whether the 

strength of perceptual and semantic representations, as defined by feature-based and 
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computational cognitive models, is reflected in pattern of activity predictive of subsequent 

true and false recognition. This would support the untested assumption that regions engaged 

in perceptual and semantic processing also contribute to episodic encoding. Chapter 4 

describes age-related differences in mnemonic discrimination in the behavioural experiments 

described in Chapter 2. The experiments investigated fuzzy trace theory’s prediction that 

semantic similarity is critical to driving the age-related increase in false recognition. Chapter 

5 provides an overview of findings in relation to the above aims, and contributions to the 

literature are discussed. Strengths, limitations and potential avenues for future research are 

outlined. 
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Chapter 2: Multiple Dimensions of Semantic and Perceptual Similarity 

Contribute to Mnemonic Discrimination for Pictures 

2.1 Abstract 

People often misrecognize objects that are similar to those they have previously encountered. 

These mnemonic discrimination errors are attributed to shared memory representations (gist) 

typically characterized in terms of meaning. In two experiments, we investigated multiple 

semantic and perceptual relations that may contribute: at the concept level, a feature-based 

measure of concept confusability quantified each concept’s tendency to activate other similar 

concepts via shared features; at the item level, rated item exemplarity indexed the degree to 

which the specific depicted objects activated their particular concepts. We also measured 

visual confusability over items using a computational model of vision, and an index of color 

confusability. Participants studied single (Experiment 1, N = 60) or multiple (Experiment 2, 

N = 60) objects for each basic-level concept, followed by a recognition memory test 

including studied items, similar lures, and novel items. People were less likely to recognize 

studied items with high concept confusability, and less likely to falsely recognize their lures. 

This points to weaker basic-level semantic gist representations for objects with more 

confusable concepts because of greater emphasis on coarse processing of shared features 

relative to fine-grained processing of individual concepts. In contrast, people were more 

likely to misrecognize lures that were better exemplars of their concept, suggesting that 

enhanced basic-level semantic gist processing increased errors due to gist across items. False 

recognition was also more frequent for more visually confusable lures. The results implicate 

semantic similarity at multiple levels and highlight the importance of perceptual as well as 

semantic relations. 

2.2 Introduction 

Memory for unique experiences depends on the ability to discriminate between events that 

share multiple overlapping features. For example, we may misrecognize an unknown car in a 

car park as one we have just hired because it is similar in type and color. Memory theory 

explains these mnemonic discrimination errors in terms of a gist shared between incoming 

information and previously encoded representations (Reyna & Brainerd, 1995). Gist is 

assumed to embody essential meaning shared by multiple items, but the representations 

underpinning gist are poorly understood. Mnemonic discrimination errors are observed for a 
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wide range of materials including pictures, words, and narratives (Brainerd & Reyna, 2002). 

More direct evidence also suggests that multiple semantic relations may contribute to the 

tendency to falsely recognize similar items as having been studied (Brainerd et al., 2008; 

Cann et al., 2011; Coane et al., 2016; Montefinese et al., 2015). Moreover, although gist is 

typically conceptualized as semantic, shared perceptual information may also be important 

(Koutstaal, Reddy, Jackson, Prince, Cendan, & Schacter, 2003; Pidgeon & Morcom, 2014). 

Here, we combined objective measures of semantic and perceptual similarity with a linear 

mixed modelling approach to tease apart multiple influences on mnemonic discrimination in 

one exploratory study and one confirmatory, preregistered study. 

 

Studies using categorized pictures suggest that semantic relations at different organizational 

levels may impact mnemonic discrimination. In the typical task, individuals study pictures of 

multiple exemplars of basic-level concepts (e.g., several cats). At test, memory probes 

include studied items (e.g., the same cat) together with lure items belonging to the same 

studied basic-level concepts (e.g., a different cat), as well as novel items that do not belong to 

any of the studied concepts (e.g., a snake) (Koustaal et al., 1999; Koutstaal & Schacter, 

1997). Participants must decide whether or not they have previously been shown each 

picture. Koutstaal and Schacter (1997) found that people were about 24% more likely to 

falsely endorse the related lures as “old” than they were to endorse unrelated novel items, and 

subsequent studies have found a similar pattern. Intuitively, studied items and lures (e.g., a 

different cat) tend to be semantically as well as perceptually similar. Koutstaal and Schacter 

(1997) attributed these memory errors to processing of semantic and/or perceptual gist. 

Without specifying the relative roles of these kinds of relations, gist has been proposed to 

reflect properties like similarity that are shared between studied exemplars and lures (e.g., 

Gutchess & Schacter, 2012; Koutstaal et al., 2003; Pidgeon & Morcom, 2014; Slotnick & 

Schacter, 2004). 

 

Variants of the categorized picture task have also been used in which studied and lure objects 

were related at the superordinate-category level (e.g., land animals: a cat, a horse, a cow), 

rather than at the basic level. In these tasks, lures in the recognition memory test (e.g., a 

different land animal, such as a lion) are related to studied items by membership of the same 

superordinate category (Bowman et al., 2019; Seamon et al., 2000). As for the basic-level 
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version of the task, false recognition is more frequent to lures than to unrelated novel items. 

The findings from both versions of the categorized pictures task suggest that mnemonic 

discrimination of pictures depends on multiple semantic as well as perceptual relations, 

although these studies could not distinguish the different influences. Such results are also 

consistent with studies using verbal materials in which studied items and lures are 

semantically related either by superordinate category (Brainerd et al., 1995) or at a higher 

level such as a narrative (Reyna et al., 2016).  

 

According to fuzzy trace theory, lures elicit false recognition errors when a gist memory 

representation is not opposed by a detailed memory representation of the related studied 

items (Reyna & Brainerd, 1995). The gist memory is an episodic trace that represents 

meanings and relations shared by sets of events, but the informational content of these 

relations is not specified (Brainerd et al., 2008; Roediger et al., 2001). In the Deese-Roediger-

McDermott paradigm (DRM) the studied word lists (e.g., bed, rest, awake) are all associated 

to a non-presented critical lure (e.g., sleep) (Deese, 1959; Roediger & McDermott, 1995). 

Frequent false recognition of the critical lures is attributed to these backward associations 

rather than to shared meaning. However, although critical lures are not typically semantically 

similar to most studied list items (e.g., sleep is not very similar to bed), they do share other 

semantic relations (e.g., familiarity and meaningfulness; Brainerd et al., 2008). Preliminary 

data suggest that lure words that are highly similar to studied items or share thematic 

information may elicit additional errors that cannot be explained by associative strength alone 

(Cann et al., 2011; Coane et al., 2016; Montefinese et al., 2015). Coane et al. (2016) showed 

that people were more likely to misrecognize lure words when studied lists shared semantic 

features and category membership with the lures as well as being associatively related. 

However, the between-list comparison could not identify specific effects of feature similarity 

or category membership. Montefinese et al. (2015) more directly investigated the effects of 

feature similarity using an index of the number of shared semantic features between pairs of 

concepts derived from norms for production frequency (McRae et al., 2005; Montefinese et 

al., 2013). After studying sets of categorically related words (e.g., car, bicycle, truck), 

participants were more likely to falsely endorse as “old” unstudied items that shared more 

semantic features to their studied items (e.g., bus compared to plane) (see also Montefinese et 

al., 2018). However, as there was no baseline novel item condition, it is unknown whether the 
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effects of feature similarity on false alarms reflected a real effect on memory or a modulation 

of response bias.  

There is less agreement about the role of perceptual similarity in mnemonic discrimination. 

While fuzzy trace theory characterizes false recognition of similar lures in terms of semantic 

gist, other theories explain it in terms of generic similarity and therefore also predict errors 

due to perceptual relations between studied items and lures. In global matching models, false 

recognition (like true recognition) reflects feature overlap with stored memory traces, 

including visual context as well as semantic relations (Arndt & Hirshman, 1998; Arndt, 

2010). Likewise, pattern separation/completion accounts describe mnemonic discrimination 

in terms of complementary computational processes that act to minimize overlap between 

new and existing memory traces along multiple dimensions of similarity, and to reinstate 

stored traces in response to partial cues at test (Wilson et al., 2006; Yassa & Stark, 2011). 

Several studies using verbal material have suggested that perceptually-driven errors can occur 

when lures rhyme with lists of studied rhyming words (Budson et al., 2003; Watson et al., 

2003; Watson et al., 2001). However, in the majority of studies, which have presented words 

visually (for an exception see Reyna & Kiernan, 1994), these errors cannot be attributed 

simply to sensory properties of the stimuli but may also reflect similarity of phonological 

and/or orthographic representations. Further evidence for perceptual influences on mnemonic 

discrimination comes from studies showing effects of shared perceptual context in the form 

of distinctive fonts (Arndt & Reder, 2003). Such effects have also been demonstrated when 

lure words are not also semantically associated with studied items (Burnside et al., 2017). 

 

The effects of semantic and perceptual relations are more difficult to separate for pictorial 

material, because some semantic features of objects can be directly perceived (e.g., it can be 

seen from an image whether an object < has legs >, < is red >). To isolate the effects of 

semantic similarity on mnemonic discrimination of pictures, Koutstaal et al. (2003) compared 

memory for sets of colored drawings of abstract and concrete objects. While concrete images 

depicted meaningful objects that were exemplars of the same basic-level concept, as in the 

standard categorized pictures task, the sets of abstract images were created to be pre-

experimentally meaningless but perceptually similar. False recognition was about 10% higher 

for lures related to studied concrete than abstract categories, supporting a specific role for 

semantic as opposed to perceptual gist (for a replication, see Pidgeon & Morcom, 2014). 
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Perceptual effects were suggested by above-zero false recognition of abstract objects, 

although this conclusion assumed that the perceptual relatedness of the concrete and abstract 

objects was matched and that the abstract objects were not processed semantically. This 

second assumption was questioned by subjective reports from Pidgeon and Morcom (2014)’s 

participants of spontaneous verbal labelling of the abstract images. Therefore, this paradigm 

could not unambiguously identify distinct semantic and perceptual contributions to 

mnemonic discrimination errors. Perceptual effects are suggested by findings that people 

make errors to lures that are rotated photographs of studied stimuli, in old/new (Motley & 

Kirwan, 2012) as well as forced-choice (Brady et al., 2008) recognition tasks. In such cases 

the task is to identify the same image, so in that sense the lures are related semantically to the 

studied object and the two elements difficult to separate. However, increasing the perceptual 

(rotational) difference does reduce lure errors (Motley & Kirwan, 2012). There is also recent 

evidence of perceptual-level interference in true recognition in a retrieval-induced forgetting 

task as a result of similarity of object shape and color (Reppa et al., 2020). In these studies 

only one dimension is varied at a time, so perceptual and semantic variables have not been 

shown to influence memory for the same items. Konkle et al. (2010) separated these elements 

more objectively, with semantic and perceptual distinctiveness ratings in a task using large 

sets of pictures organized at the basic level. They found that mnemonic discrimination errors 

in a forced choice recognition task were slightly more frequent for larger sets of objects that 

had been rated as less semantically distinctive, but perceptual effects were not significant. 

Their two ratings were relatively uncorrelated, although it cannot be assumed that perceptual 

properties did not influence semantic ratings or vice versa (see also Pidgeon & Morcom, 

2014).  

2.2.1 The Current Research 

The studies reviewed above have established that semantic relations between studied and 

unstudied items are a key driver of mnemonic discrimination errors, but it remains unclear 

what kind of semantic information is critical. Moreover, although gist is usually 

conceptualized as semantic, perceptual similarity may also be important, particularly for rich 

pictorial material. The two experiments reported here used objectively quantified dimensions 

to investigate the effects of semantic and perceptual similarity on mnemonic discrimination in 

a typical categorized pictures task. In this task, items are pictures of individual objects, so 

lures are different exemplars of the same basic-level concept. We operationalized semantic 

similarity at two distinct organizational levels: at the concept level, indexing the relations 
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between the basic-level concepts, and at the item level, indexing the relations between 

individual exemplars and their basic-level concepts. Perceptual similarity was also quantified 

using properties shared between items. 

 

We used feature overlap to measure semantic similarity at the concept level. A large body of 

experimental evidence supports the view that semantic memory is structured in terms of 

features. According to distributed feature models, like the Conceptual Structure Account 

(CSA; Tyler & Moss, 2001), concepts are represented in the brain by their features 

(e.g., < has legs >, < has eyes >, < has a tail >) in a connectionist system in which the mutual 

co-activation of the feature nodes determines the semantic processing (McRae et al., 1997; 

Tyler & Moss, 2001; Vigliocco et al., 2004). The statistical regularities of semantic features, 

derived from property norms, have proven to be a useful way of characterizing the structure 

and content of semantic representations (Devereux et al., 2014; Garrard et al., 2001). The 

most prominent statistical characteristic assumed to structure the semantic space and 

determine how concepts are processed is concept confusability (Clarke & Tyler, 2014). 

Concept confusability measures the degree to which a concept’s semantic features are shared 

with other concepts (e.g., many animals < have ears >). Highly shared features (e.g., < has 

legs >, < has eyes >, < has a tail >) provide coarse information about the superordinate 

categories to which a concept belongs (e.g., land animals), and support decisions that depend 

only on this coarse-grained information. In contrast, accessing specific basic-level concepts 

(e.g., tiger) requires finer-grained semantic processing that includes features more distinctive 

to the particular concept (e.g. < has stripes >), and support more specific tasks like naming. In 

the current work, we used concept confusability as an index of information shared across the 

basic-level concepts. 

 

To complement the examination of concept confusability, we assessed effects of semantic 

and perceptual relations at the item level, via properties of the individual depicted exemplars. 

Such properties are likely to be important determinants of people’s ability to correctly reject 

lures which are unstudied exemplars of studied basic-level concepts. Previous studies have 

shown that basic-level processing is enhanced for objects that are more representative of a 

stored basic-level conceptual representation. Pictures that are better exemplars are 
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categorized faster at the basic level than pictures that are poorer exemplars (Barry et al., 

1997; Snodgrass & Vanderwart, 1980). Therefore, we used ratings of item exemplarity to 

index how well a picture corresponded to its basic-level representation. We assumed that 

similarity between a picture and its conceptual representation would facilitate gist processing 

at the item level, i.e., information shared across exemplars of each concept. 

 

To operationalize perceptual similarity, we drew on an established computational model of 

perceptual processing. The Hierarchical Model and X (HMax; Riesenhuber & Poggio, 1999; 

Serre et al., 2007) models different hierarchical stages of the ventral processing stream in 

different layers, progressing from early visual cortex (V1) to posterior inferior temporal 

cortex (IT). The C1 layers correspond to increasingly position- and scale-invariant early 

visual cortex (V1/V2) which maintain feature specificity, while C2 layers simulate the 

extrastriate visual area cells (V4/IT) that integrate visual features from previous layers to 

represent object shape. Measures based on these two layers have been validated in studies of 

visual object recognition that have distinguished the time courses and neural correlates of 

semantic versus visual processing (Clarke & Tyler, 2014; Clarke et al., 2015). Here, we 

generated measures of the visual confusability of each image with others in the set, defined in 

terms of the properties indexed by C1 and C2 (e.g., orientation and shape). Lastly, since the 

HMax model does not represent color, we computed a novel index of color confusability 

using the CIELab color space, known to be an approximation of human color perception 

(Rubner et al., 2000). 

 

In a first, exploratory, experiment, we examined mnemonic discrimination in a simple task in 

which participants studied one exemplar for each basic-level concept and were later tested on 

a single lure (Bakker et al., 2008; Lacy et al., 2011; Reagh et al., 2016; Stark et al., 2013; 

Yassa et al., 2011). Then in a second, preregistered, confirmatory experiment, we sought to 

replicate and explain the findings of the first by increasing the number of studied exemplars 

of each basic-level concept. Successful mnemonic discrimination requires accurately 

identifying studied items and rejecting similar lures. Since distinct processes may contribute 

to memory for these two trial types, performance is typically assessed using separate 

measures of true and false recognition, and many studies focus mainly on false recognition. 

To adjust for response criterion, sensitivity measures derived from signal detection theory can 
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be computed from rates of endorsement of studied and lure items as “old”, relative to 

unrelated unstudied items. Equivalent measures of studied relative to lure item endorsement 

can also assess overall ability to discriminate studied items from lures in memory. In both 

experiments, we used generalized linear mixed effects models, which provide parameter 

estimates to index participants’ memory sensitivity and response bias that are equivalent to 

those provided by the equal variance signal detection theory framework (DeCarlo, 1998). 

This allowed us to preserve and take into account variability across items as well as 

participants, which results in an increased accuracy and generalizability of the parameter 

estimates (Baayen et al., 2008; Quené & van den Bergh, 2008).  

 

In this task, the studied and lure exemplars of the same basic-level concept can be regarded as 

sharing a semantic gist and possibly also a perceptual gist across items. We reasoned that 

concept confusability would impact mnemonic discrimination by weakening the basic-level 

conceptual representations shared by studied items and their lures. If a concept is highly 

confusable with other concepts because they share semantic features, the concept’s 

distinctive, basic-level representation will be less likely to be encoded. Thus, we expected 

that studied objects whose concepts are more confusable would be less likely to be 

recognized and their corresponding lures more likely to be successfully rejected. For 

example, if a cherry is studied – a concept with high confusability due to multiple highly 

shared features like < does grow on trees >, < is sweet >, < is edible > – a weak 

representation of “cherry” will be encoded alongside the details of the particular exemplar. In 

contrast, if a foot is studied – a concept with low confusability due to its few shared features 

and its distinctive features < has toes >, < is found at the end of a leg > – a strong 

representation of “foot” will be more likely to be encoded. In a memory test, the same 

exemplar of “cherry” will thus be less likely to be recognized than the same exemplar of 

“foot”, since memory for the former is weaker. For the same reason, for lures, a different 

exemplar of “cherry” will be more likely to be successfully rejected than a different exemplar 

of “foot”, given weaker encoding of the studied concept. In terms of the item-level metrics, 

we assumed that objects with higher rated item exemplarity would more strongly engage the 

basic-level conceptual processing shared by studied items and lures. We therefore predicted 

that higher exemplarity lures would be more likely to be misrecognized. Lastly, based on 

similar logic we predicted more frequent false recognition of more visually confusable lures. 
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2.3 Experiment 1 

 

2.4 Materials and Methods 

2.4.1 Participants 

The study included sixty participants aged 18-33 years (M = 21; SD = 2.2; 15 male, 45 

female). Eleven further participants were excluded from data analysis: 7 due to errors in 

stimulus lists or data acquisition issues, 1 due to misunderstanding of instructions, and 3 who 

did not meet the inclusion criterion for English fluency. The sample size was determined a 

priori using the simR package in R (Version 1.0.4; Green & Macleod, 2016). We powered 

the study for an interaction of condition (lure vs. new) × concept confusability, based on a 

pilot study suggesting an effect size equivalent to Cohen’s d = .17 (OR = 1.35). With N = 60 

we had 87.30 % power to detect such an effect at alpha = .05. Inclusion criteria were fluency 

in English (spoken since at least the age of 5 years), and normal or corrected-to-normal 

vision. Data from an additional group of older participants collected at the same time will be 

included in a separate report. Participants were compensated financially or with course 

credits. They were contacted by local advertisement and provided informed consent. The 

study was approved by the University of Edinburgh Psychology Research Ethics Committee 

(Ref. 278-1617/1). 

2.4.2 Stimuli 

Stimuli were pictures of objects corresponding to 180 of the 638 basic-level concepts in the 

Centre for Speech, Language and the Brain property norms (the CSLB norms; Devereux et 

al., 2014). These 180 basic-level concepts comprised 9 members of each of 20 different 

superordinate categories (Appliance, Bird, Body Part, Clothing, Container, Drink, Flower, 

Food, Fruit, Furniture, Invertebrate, Kitchenware, Land Animal, Music, Sea Creature, Tool, 

Toy, Vegetable, Vehicle, Weapon) and half were living and half non-living. We sourced two 

images for each basic-level concept. One set of 180 was a subset of images used by Clarke 

and Tyler (2014), and the other was compiled from the Bank of Standardized Stimuli (BOSS; 

Brodeur et al., 2014) and from the Internet. Each study list comprised 120 images of 

exemplars of different basic-level concepts, selected evenly from the superordinate categories 

(i.e., 6 different basic-level concepts per superordinate category). Each test list consisted of 

180 items: 60 studied images, 60 similar lures (i.e., novel images corresponding to the other 

60 studied basic-level concepts), and 60 novel items (i.e., novel images of basic-level 
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concepts that had not been studied). Three filler trials prefaced both study and test phases. 

We generated 6 different study and test lists which fully counterbalanced the allocation of the 

basic-level concepts and the two sets of images to conditions (studied, lure, and novel).  

2.4.3 Procedure 

The experiment consisted of a single study phase followed by a recognition test phase. 

Between study and test phases, participants completed standardized cognitive tests (not 

reported here) for 15 minutes. Stimuli were presented using E-Prime 2.0 software 

(Psychology Software Tools, Pittsburgh, PA). Participants were tested individually in the 

laboratory. At study, they viewed one image at a time, and rated how pleasant it was from 1 

(very unpleasant) to 5 (very pleasant). Participants were not informed of a later memory test. 

Images were presented against a white background within a 15 × 13 cm area in the center of a 

computer screen, and viewed at a distance of approximately 50 cm. Trials were self-paced. At 

test, participants viewed one image at a time every 3 s and judged each as “old” or “new” 

using the keyboard, indicating at the same time whether they were confident in this 

judgement. Responses were made using the “Z” and “A” keys when judging an item as “old” 

with high and low confidence, respectively; the “M” and “K” keys when judging an item as 

“new” with high and low confidence, respectively, and mappings of responses to hands 

counterbalanced over conditions. After completing the test phase, each participant also 

completed the concept familiarity or the item exemplarity ratings. The entire procedure took 

approximately 50 minutes and participants were debriefed at the end of the experiment. 

2.4.4 Variables of Interest 

The concept- and-item level variables of interest are illustrated in Figure 1. 

 

Figure 1 

Schematic Depiction of Stimuli Used in Both Experiments 
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Note. Rows show individual exemplars with the highest (right side) and lowest (left side) scores on 

each concept- and-item level experimental variable. Panel A illustrates concept confusability: the 

basic-level concept name is given alongside images of both exemplars representing it in Experiment 

1. High confusability concepts share more semantic features with other concepts. Panel B illustrates 

item-level measures for individual images of objects. Item exemplarity is an index of similarity 

between the depicted exemplar and the concept representation. The perceptual measures define 

confusability of an item as the similarity with its most similar neighbor in the set. C1 and C2 were 

obtained from gray-scaled version of the images depicted in Figure 1. For definitions see Variables of 

Interest section. 
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2.4.4.1 Concept Level  

Concept confusability. Our measure of concept confusability was based on that of Clarke and 

Tyler (2014), but we used a gentler weighting system and an updated set of property norms 

(Devereux et al., 2014). The property norms provide a matrix of features associated with 638 

objects (e.g., has 4 legs, has stripes and lives in Africa are features of a zebra). These were 

collected by presenting participants with a written concept name and asking them to produce 

properties of the concept. Taxonomic features (e.g., < is a bird >) were excluded as they refer 

to a superordinate category and are not normally regarded as true semantic features (Taylor et 

al., 2012). Based on the feature norms, each object can be represented by a binary vector. 

Semantic similarity between concepts was computed as the cosine angle between feature 

vectors in a semantic feature matrix in which each concept was represented by a binary 

vector indicating whether each feature was associated with the concept (1) or not (0). 

Concept confusability with all the other concepts in the set was then calculated by a weighted 

sum of the similarities in which each weight was the between-concept similarity itself, i.e., 

the sum of squared similarities (see Figure 1). This measure emphasized feature sharedness of 

each concept with those concepts with which it shared many semantic features. We also 

calculated the number of features for each concept from the same norms. 

Concept familiarity. Thirty of the 60 participants judged the 360 pictures representing the 

180 concepts. Following Snodgrass and Vanderwart (1980), we asked subjects to judge the 

familiarity of each picture “according to how usual or unusual the object is in your realm of 

experience”. Concept familiarity was defined as “the degree to which you come in contact 

with or think about the concept”. Participants were required to give their response on a 7-

point scale (1 = completely unfamiliar, 7 = completely familiar) using the keyboard. For each 

picture, familiarity scores were averaged over all participants (see Supplemental Materials for 

its theoretical relevance). 

 

2.4.4.2 Item Level   

Item exemplarity. To obtain a measure of item exemplarity we used a rating task in which 

pictures were presented together with their verbal label. Following Taylor et al. (2012), we 

asked participants to judge “how closely each picture resembles your mental image of the 

object”, giving their response on a 7-point scale (1 = poor picture of concept word, 7 = 
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excellent picture of concept word). The 30 participants who did not provide familiarity 

ratings were asked to provide these item exemplarity scores, which were averaged to give a 

single score per picture (see Figure 1). 

Perceptual confusability. Measures capturing the low- and high-level visual attributes of 

each picture were derived for each of the 360 images (2 per concept) used to represent our 

basic-level concepts. We calculated two indices for each dimension which embodied two 

alternative hypotheses about how perceptual similarity between images might affect 

mnemonic discrimination. Although the second measure was preregistered for Experiment 2, 

for clarity we only report the results from the first in the main paper, since it gave a coherent 

picture across the two experiments (see also Discussion). We first extracted HMax estimates 

of low- and high-level visual object information: a C1 response related to early visual cortex 

(V1/V2), and a C2 response related to V4/posterior IT. Response vectors from the C1 and C2 

layers were computed for grey-scaled versions of each image. Similarity between pictures 

was then calculated using the Pearson correlation coefficients between vectors. For the main 

visual confusability measure, for each image we defined confusability as the similarity value 

with its most similar picture (i.e., the nearest neighbor; see Figure 1). The second metric, 

graded visual confusability, was analogous to concept confusability, indexing an image’s 

similarity to the full set of images (see Supplemental Figure 4). We calculated a weighted 

score for each image by summing the squared ranks of Pearson correlations between each 

image i and all other images j, so pictures with high graded visual confusability scores were 

those that were similar to many other pictures. To obtain the ranks of all the similarity values, 

we first extracted the matrix of Pearson correlations between images as a single vector. Then, 

we computed the corresponding rank for each correlation, and transformed the vector of 

ranks back into a matrix. This allowed us to deal with negative Pearson correlations, which 

were assigned the lowest ranks.  

For each image, we also generated a nearest neighbor index of color confusability using the 

color distance package (Weller & Westneat, 2019) in R (version 3.4.3; R Core Team, 2017). 

This measure represents the degree to which the color of each item resembled that of the most 

similarly-colored item in set. After converting the RGB channels into CIELab space, we 

calculated the earth mover’s distance between each pair of images (Rubner et al., 2000). We 

then normalized the distance and transformed the distance matrix in a similarity matrix using 

the equation S = 1 - D so that similarity values ranged from 0 (lowest similarity) to 1 (highest 

similarity). Then, for each item, we retained the similarity with its most similar item in the set 
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(see Figure 1). As described above for the HMax measures, we also calculated a measure of 

graded color confusability. From the similarity matrix, to obtain a single metric for each 

image, we summed the squared ranks of similarities, so higher values indicate greater color 

confusability with all the other pictures in the set (see Supplemental Figure 4).  

2.4.5 Nuisance Variables  

Mnemonic discrimination may be influenced by a range of other visual, phonological, lexical, 

and semantic factors in addition to the semantic and perceptual confusability measures of 

interest here. We controlled for the effect of the following nuisance variables, described in 

more detail in the Supplemental Materials: forward and backward associative strength 

estimated using a continuous association task (De Deyne & Storms, 2008; Nelson et al., 

2004), word frequency (van Heuven et al., 2014), concreteness (Brysbaert et al., 2014), age 

of acquisition (Brysbaert & Biemiller, 2017), phonological neighborhood density (Baayen et 

al., 1995), the number of non-white pixels, color entropy (Chouinard & Goodale, 2012), and 

concept familiarity (derived from our rating task; see also Taylor et al., 2012).  

2.4.6 Statistical Analysis 

We tested our hypotheses using a series of generalized linear mixed-effect model analyses 

with the function glmer from the lme4 package in R (version 1.1-17, Bates et al., 2015). The 

linear mixed-effect model approach affords greater robustness and generalizability of 

inference compared to the analysis of variance typically used in studies of memory (Baayen 

et al., 2008). Modelling random effects of items as well as participants is helpful in studies of 

memory where generalization to other stimulus sets as well as other participant samples is 

desirable (Clark, 1973). Accuracy was modelled using a multiple linear logistic regression on 

participants’ binary recognition judgments (“new” = 0, “old” = 1) fitted by means of a logit 

link function. Thus, rather than considering our data in terms of proportions of hits, misses, 

false alarms, and correct rejections, as in the standard recognition test analysis, we directly 

predicted behavioral outcomes from item status (i.e., studied, lure, or novel). In this way we 

estimated how the probability of judging an item as “old” depended on its actual status, and 

asked which of our variables of interest moderated this effect. The log-odds-ratio coefficients 

generated by the generalized linear mixed effect logit models are formally proportional to d' 

in a Gaussian signal detection analysis (d' ≈ .6 logOR; DeCarlo, 1998; Wright et al., 2009). 

This relation holds over a wide range of values, so logit and probit models yield equivalent 

results except at the extremes. In the Results section we therefore report effect sizes in terms 
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of d’ equivalent for ease of comparison with other studies. We also performed an exploratory 

linear mixed-effect analysis of response times (RTs) at study to check whether the 

experimental variables would impact (non-speeded) decisions about item pleasantness. The 

results did not reveal any significant effects, and are not reported further (but can be found on 

https://osf.io/ndk83/). 

 

To test specific predictions about memory for studied items and lures, we set the reference 

level for the condition factor to “novel” so that with simple contrasts we could examine 

modulations of a) the probability of correctly identifying studied items as “old” relative to 

novel items (an index of sensitivity for studied items equivalent to d’, reflecting true 

memory), b) the probability of misrecognizing related lures relative to novel items (an index 

of sensitivity for related lures equivalent to d’, reflecting false memory). This also yielded c) 

the probability of falsely judging novel items as “old” (an index of baseline false alarms, 

equivalent to the response criterion c). So for example, an estimated d’ = 1.5 for an 

interaction between a continuous variable and the contrast of lure versus novel items, means 

that a one SD increase in that continuous variable is associated with a 1.5 x increase in d’ for 

lures versus novel items. In a final set of contrasts, we set the reference level for the condition 

factor to “lure” to assess modulations of d) the probability of endorsing studied items as “old” 

relative to lures (an index of overall sensitivity equivalent to d’). This allowed us to evaluate 

the effect of the semantic and perceptual variables on overall mnemonic discrimination 

performance, a net effect of their modulations of true and false memory (Koutstaal & 

Schacter, 1997; Loiotile & Courtney, 2015).  

 

For each model, we specified a priori random intercepts of both participants and concepts 

(Matuschek et al., 2017). In the fixed part, our variables of interest were condition (studied, 

lure, novel), two concept-level variables (i.e., concept confusability, number of features), and 

four item-level variables (i.e., item exemplarity, C1 and C2 visual confusability, color 

confusability). Within the concept-level and item-level partitions we also included the 

corresponding interactions with condition. To minimize model complexity, and because the 

nuisance variables were moderately-to-highly intercorrelated, we performed data reduction of 

the nuisance variables with principal components analysis (PCA) using the prcomp function 

in R. PCA with varimax rotation produced a 7 factor solution which accounted for 86.14% of 

https://osf.io/ndk83/
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variance (see Supplemental Table 5). We then compared the goodness-of-fit between i) the 

confounds model with the original nuisance variables and ii) the reduced confounds model 

with the principal components using the corrected Akaike information criterion (AICc). We 

also complemented the goodness-of-fit measure provided by AICc with the corresponding 

Bayesian information criterion (BIC) and the likelihood ratio test (LRT). Model selection 

revealed that the simpler confounds model with principal components provided a better 

goodness-of-fit (AIC = 14420.23, BIC = 14492.97) relative to the model with the original 

nuisance variables (AIC = 14424.65, BIC = 14519.21; for LRT for a difference between 

models, χ2(3) = 1.59, p = 0.662). Thus, these 7 principal components were included as 

nuisance variables for our models.  

 

Model selection was carried out to determine the fixed effects structure with the best 

goodness-of-fit based on sets of theoretically motivated predictors, which included concept-

level, item-level, and confound principal component variables. Starting with the most 

complex model, we used the AICc to compare progressively simpler models. At each step, 

we verified whether the exclusion of a particular set (in order, concept-level, item-level, and 

nuisance variables) was justified or not. We also supplemented this measure with the 

corresponding BIC and the LRT between models. Model comparison was performed using 

the AICcmodavg package (version 2.3-1) and the anova function in R. Post-hoc analyses 

were conducted, and results interpreted after selecting the best model. All the continuous 

predictor variables were standardized, and the resulting β coefficients representing log-odd-

ratios were used to calculate the corresponding d’ coefficients. 

 

2.5 Results 

The results of the mixed effects analysis for the winning model are shown in Table 1, and 

illustrated in Figure 2. Raw recognition responses by item type are reported in Supplemental 

Figure 5. The initial model comparison suggested that the full model with concept-level, 

item-level, and confounds principal component variables was the most parsimonious model 

for the data. This model received the lowest AICc score (AICc = 8821.92), indicating 

decisive evidence relative to simpler models (see Supplemental Table 6). It received 

substantial weight (AICc weight = .98) of the total weight of the models considered, with an 
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evidence ratio between the top-ranked model and the second-ranked model of 58.15. That is, 

the evidence was 58.15 times stronger for the best model. This result was also supported by a 

significant LRT in favor of the full relative to the model ranked second on the basis of AICc 

(χ2(7) = 19.59, p = .007). Unlike AICc and LRT, BIC provided evidence in favor of the 

model with concept-level variables only as the most parsimonious model (BIC = 8991.90). 

However, when we allowed the free selection of variables rather than the comparison based 

on our three blocks (i.e., removal of concept-level, item-level, and confounds principal 

component variables in this order), BIC resulted in a better goodness-of-fit when item 

exemplarity and C1 visual confusability were included in the model together with the 

concept-level variables (BIC = 8827.70). Participants’ responses were collapsed across 

confidence judgments as results were qualitatively similar when high confidence mnemonic 

discrimination was analyzed. Coefficients in Table 1 represent log-odds-ratios with the 

corresponding d’ effects. All the p-values reported below are FDR-multiple comparison 

corrected (Benjamini & Hochberg, 1995). 

 

Table 1 

Results of Experiment 1 (Novel Items as Baseline) 

Variable Estimate d’ SE z-value p 

(Intercept) -2.41 -1.37 0.12 -20.02 <.001 

Lure 1.71 0.95 0.07 23.09 <.001 

Studied 4.85 2.74 0.09 52.00 <.001 

Number of Features 0.13 0.07 0.08 1.66 .136 

Concept Confusability 0.28 0.15 0.08 3.44 .002 

Visual Confusability (C1) 0.06 0.03 0.07 0.85 .438 

Visual Confusability (C2) 0.20 0.10 0.09 2.28 .040 

Color Confusability 0.04 0.02 0.08 0.47 .635 

Item Exemplarity 0.18 0.09 0.07 2.55 .025 

Lure × Number of Features -0.31 -0.17 0.07 -4.25 <.001 

Studied × Number of Features -0.10 -0.05 0.09 -1.11 .332 

Lure × Concept Confusability -0.28 -0.15 0.07 -3.96 <.001 



44 
 

 

Note. The reference level of condition is set to “novel”. Parameter estimates (logOR), d’ equivalent, 

standard errors, z-values, and FDR-corrected p-values are listed for condition, concept-level, and 

item-level variables in the winning (full) linear mixed model selected with AIC. Nearest neighbor 

perceptual confusability measures were reported in the model above. See Material and Methods, 

Variables of Interest, and Results for details. SE = Standard Error. 

 

Figure 2 

Effects of Semantic and Perceptual Variables on Mnemonic Sensitivity in Experiment 1 

Studied × Concept Confusability -0.54 -0.29 0.09 -6.30 <.001 

Lure × Visual Confusability (C1) 0.16 0.10 0.07 2.28 .040 

Studied × Visual Confusability (C1) -0.19 -0.10 0.08 -2.24 .041 

Lure × Visual Confusability (C2) -0.15 -0.06 0.09 -1.67 .136 

Studied × Visual Confusability (C2) -0.11 -0.05 0.10 -1.07 .332 

Lure × Color Confusability -0.04 -0.02 0.08 -0.48 .635 

Studied × Color Confusability -0.11 -0.06 0.09 -1.17 .317 

Lure × Item Exemplarity 0.20 0.13 0.08 2.57 .025 

Studied × Item Exemplarity -0.21 -0.10 0.09 -2.29 .040 
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Note. Plots show effects of semantic and perceptual variables on modulation of sensitivity. The plot 

lines represent the effect of the predictor variables on the probabilities of endorsing studied items as 

“old” relative to novel items (light blue), lures as “old” relative to novel items (orange), and studied 
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items as “old” relative to lures (purple). Panel A, B, and C show the effects of concept confusability, 

item exemplarity, and C1 visual confusability in Experiment 1. See Material and Methods, Variables 

of Interest, and Results for details. * p < .05; ** p < .01; *** p < .001 (FDR-corrected). 

 

2.5.1 Sensitivity for Studied Relative to Novel Items 

The probability of judging a studied item as “old” was compared to the probability of judging 

a novel item as “old”. Overall, discrimination of studied from novel items was very good 

(simple effect on d’ = 2.74; 95% CI [2.65, 2.83]). The results also showed modulations of 

concept- and item-level variables on sensitivity for studied items. Images whose concepts 

were more confusable with other concepts in the set were less likely to be remembered 

(Figure 2A; interaction of concept confusability with studied items on d’ = -.29; 95% CI [-

.38, -.20]). Pictures judged with high exemplarity were also less likely to be remembered 

(Figure 2B; interaction of item exemplarity with studied items on d’ = -.10; 95% CI [-.19, -

.01]). Lastly, participants were less likely to recognize items that were visually confusable in 

terms of their low-level representations (Figure 2C; interaction of C1 with studied items on d’ 

= -.10; 95% CI [-.19, -.01]). No other variable significantly modulated sensitivity for studied 

items. 

2.5.2 Sensitivity for Lure Relative to Novel Items 

The probability of judging a lure item as “old” was compared to the probability of judging a 

novel item as “old”. As expected, participants were more likely overall to incorrectly endorse 

lures than novel items (simple effect on d’ = .95; 95% CI [.88, 1.03]). The concept-level 

semantic variables also had substantial effects on lure sensitivity. Fewer errors were observed 

for lure images whose concepts were more confusable with other concepts in the set (Figure 

2A; interaction of concept confusability with lure on d’ = -.15; 95% CI [-.23, -.07]), as well 

as for those with a greater number of semantic features (interaction of number of features 

with lure on d’ = -.17; 95% CI [-.25, -.10]). At the item-level, false recognition was more 

likely for lures rated as better exemplars of their concept (Figure 2B; interaction of item 

exemplarity with lure on d’ = .13; 95% CI [.05, .21]), as well as for lures whose early visual 

representations (such as line orientation) were more confusable (Figure 2C; interaction of C1 

with lure on d’ = .10; 95% CI [.03, .18]). No other variable significantly modulated 

sensitivity for lure items. 



47 
 

2.5.3 Sensitivity for Studied Relative to Lure Items 

The results of the analysis that examined the net modulation of participants’ ability to 

discriminate studied items from lures are shown below in Table 2, and illustrated in Figure 2. 

Overall, performance was fairly good (simple effect on d’ = 1.79; 95% CI [1.71, 1.87]). Both 

concept- and-item level variables modulated this effect. Mnemonic discrimination was poorer 

for items with high concept confusability (Figure 2A; interaction of concept confusability 

with studied items on d’ = -.13; 95% CI [-.21, -.06]), but was better for concepts with a larger 

overall number of semantic features (interaction of number of features with studied items on 

d’ = .12; 95% CI [.04, .20]). At the item level, objects judged as having high item 

exemplarity were also less well discriminated (Figure 2B; interaction of item exemplarity 

with studied items on d’ = -.23; 95% CI [-.31, -.15]), as were images with greater low-level 

(C1) visual confusability (Figure 2C; interaction of C1 with studied items on d’ = -.20; 95% 

CI [-.28, -.13]). No other variable significantly modulated sensitivity for studied relative to 

lure items. 

 

Table 2 

Results of Experiment 1 (Lure Items as Baseline) 

 

      

Variable Estimate d’ SE z-value p 

(Intercept) 

Studied 

-0.70 

3.14 

-0.42 

1.79 

0.11 

0.07 

-6.39 

42.02 

<.001 

<.001 

Studied × Number of Features 0.21 0.12 0.08 2.80 .005 

Studied × Concept Confusability -0.25 -0.13 0.07 -3.49 <.001 

Studied × Visual Confusability (C1) -0.35 -0.20 0.07 -4.76 <.001 

Studied × Visual Confusability (C2) 0.03 0.02 0.08 0.40 .686 

Studied × Color Confusability -0.07 -0.04 0.08 -0.93 .354 

Studied × Item Exemplarity -0.40 -0.23 0.08 -5.07 <.001 
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Note. The reference level of condition is set to “lure”. Parameter estimates (logOR), d’ equivalent, 

standard errors, z-values, and FDR-corrected p-values are listed for condition, concept-level, and 

item-level variables in the winning (full) linear mixed model selected with AIC. Nearest neighbor 

perceptual confusability measures were reported in the model above. See Material and Methods, 

Variables of Interest, and Results for details. SE = Standard Error. 

 

2.5.4 False Alarms to Novel Items 

Overall, participants were good at identifying unstudied novel items as “new” (intercept on d’ 

= -1.37; 95% CI [-1.50, -1.25]). This baseline was also modulated by both concept- and item-

level semantic variables. False alarms were more frequent for highly confusable novel items 

(Supplemental Figure 5A; simple effect of concept confusability on d’ = .15; 95% CI [.07, 

.23]), and for those with high rated item exemplarity (Supplemental Figure 5B; simple effect 

of item exemplarity on d’ = .09; 95% CI [.02, .17]). The baseline probability of false alarms 

to novel items was also modulated by the C2 index of visual confusability. People were more 

likely to falsely endorse novel items as “old” if they were highly confusable in terms of late 

visual representations (such as global shape) (simple effect of C2 on d’ = .10; 95% CI [.01, 

.19]). No other variable significantly modulated baseline false recognition of novel items. 

 

2.6 Discussion 

In Experiment 1 we investigated the effects of conceptual and perceptual confusability on 

mnemonic discrimination of objects, using objective measures of similarity within a 

generalized linear mixed model framework. The findings for both concept-level and item-

level variables support the proposal that semantic and perceptual properties shared by studied 

and lure objects contribute to mnemonic discrimination. At the concept level, studied objects 

whose concepts were more confusable because they shared features with other concepts were 

less likely to be remembered, and the corresponding lures were more likely to be correctly 

rejected. In contrast, at the item level, while studied objects that were better exemplars of 

their concept were less well recognized, lure objects with this property triggered more 

frequent errors. Likewise, people also misrecognized more lures that were visually 

confusable with their nearest neighbor. Overall, these effects resulted in poorer mnemonic 
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discrimination between studied and lure objects with high concept confusability, high item 

exemplarity, and high visual confusability.  

 

The effects of concept confusability on sensitivity for studied items and lures suggest that 

when concepts were more confusable with other concepts, memory was weaker for the basic-

level information shared by the studied items and lures. Our metric of concept confusability 

was based on an established model of conceptual structure and existing norms for feature 

properties of common concepts (Devereux et al., 2014; Tyler & Moss, 2001). This measure 

reflects conceptual processing of shared information across a set of items. The more 

confusable concepts shared more features with other concepts, and had fewer distinctive 

features not shared with other concepts. Our results suggest that if people remember less 

distinctive information about an object’s concept, they are less likely to remember the object. 

The same logic applies to lures: lures with more confusable concepts can be more easily 

rejected as unstudied because memory is weaker for the concept shared with the studied item. 

This interpretation is supported by Taylor et al.'s (2012) finding that domain-level 

categorization decisions (living/ non-living judgments) were faster for concepts with more 

shared features, while basic-level naming was faster for concepts with more distinctive 

features. Thus, the efficiency of basic-level processing depended on the relative emphasis on 

coarse, cross-concept processing of shared features relative to fine-grained processing of 

individual concepts with distinctive features. Here, we did not find any modulation of study 

phase RT by concept confusability or other experimental variables. This probably reflected 

the use of self-paced judgments at study and prioritization of accuracy over speed given our 

primary concern with memory accuracy. From a fuzzy trace theory viewpoint, gist memory 

contributes positively to both veridical memory and lure false recognition (Brainerd et al., 

2008; Brainerd et al., 1995). In this typical categorized pictures task, the gist is at the basic 

level since studied and lure objects are exemplars of the same basic-level concepts (e.g. a dog 

was studied, and a different dog appeared as a lure). In Experiment 1, this gist was 

impoverished for highly confusable concepts, reducing both recognition of the studied items 

and gist-related errors for the lures. Overall, mnemonic discrimination between these items 

was poorer. 
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While people were better able to successfully reject lures with more confusable concepts, 

false alarms to novel items with more confusable concepts were increased (see Supplemental 

Figure 5A). These items did not share a basic-level concept with any studied items but did 

share semantic features with them to varying degrees. This result is similar to that reported by 

Montefinese et al. (2015) for verbal stimuli. Participants studied sets of categorically related 

words (e.g., car, truck, scooter for the vehicle category) and were more likely to falsely 

recognize unstudied words which had more shared semantic features (e.g., tram). In that 

study, the novel words were related to the studied sets by membership of common 

superordinate categories, like the novel objects in the current study. Thus, it is possible that 

this higher-level semantic similarity caused these items to be more difficult to discriminate in 

memory. However, since both this result and Montefinese et al.'s (2015) finding were 

modulations of raw false alarms, we cannot rule out the alternative possibility that they 

reflect an effect of concept confusability on response criterion (Heit et al., 2003; Loiotile & 

Courtney, 2015).  

 

The results for item exemplarity show that sensitivity for both studied items and lures 

depended on semantic processing at the item level as well as the concept level. As predicted, 

higher exemplarity lures were more likely to be falsely identified as studied, consistent with 

enhanced activation of basic-level representations. This suggests that participants tended to 

remember having studied the corresponding basic-level concept (e.g., giraffe in Figure 1) 

even if they did not remember the specific studied exemplar. These data are consistent with 

Barry et al.'s (1997) finding of facilitated basic-level naming for high exemplarity objects. 

However, studied items rated as better exemplars of their basic-level concept were more 

likely to be forgotten. This suggests that better exemplars were more likely to trigger 

reactivation of basic-level gist information at test, and perhaps less likely to elicit retrieval of 

specific information. It is not consistent with a simple modulation of basic-level gist at 

encoding, which should increase true recognition as well as lure errors.  

 

Our initial analysis of the effects of perceptual relations on memory used graded indices of 

confusability computed across the whole set of stimuli (see Supplemental Figure 4 and Table 

7). However, since the graded weighting prioritized similarity over many items, the high 

confusability items had generic visual properties rather than being similar to any specific 
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items in the set. These observations motivated the analysis using perceptual confusability 

measures with a stronger weight, restricted to nearest neighbors only. As Figure 1 shows, 

these metrics had a quite different profile from the across-set measures (compare to 

Supplemental Figure 4). For C1, more confusable items were those with a distinctive linear 

orientation, shared with at least one other specific item in the set (the neighbor), although 

more color-confusable items were relatively uniform as well as bland. The analysis using 

these measures revealed that lures that shared low-level (C1) visual features with their nearest 

neighbor were more likely to be misrecognized. However, the corresponding studied items 

were more likely to be forgotten. We consider these effects of nearest neighbor visual 

confusability further below, in light of the results of Experiment 2. 

 

The data point to multiple gist-like effects on mnemonic discrimination reflecting both 

semantic and perceptual dimensions along which studied items and lures were similar to 

other studied objects. Here, the lures were different exemplars of studied basic-level 

concepts, so variables increasing emphasis on processing at this level tended to trigger errors, 

while variables indexing processing shared with other concepts tended to reduce them. We 

have proposed that these effects reflect strengthening or weakening of basic level conceptual 

memory representations. However, there is an alternative mechanism by which lures with 

more confusable concepts could be better discriminated: they might be more easily rejected 

using the memory editing strategy of recall-to-reject (Gallo, 2004; Brainerd et al., 2003). 

When a lure triggers recollection of similar studied items, people can avoid gist-related errors 

by comparing the recollected information with the lure (e.g., they decide that a white dog was 

not presented, because they remember having studied a black dog). A similar mechanism 

might also apply to differences in performance for lures that were related to studied items in 

other ways, at the item level. It was important to establish whether our results would 

generalize to a situation in which recall-to-reject was prevented. 

 

2.7 Experiment 2 

In Experiment 2 we aimed to replicate Experiment 1’s novel semantic and perceptual effects 

on memory, and test whether these modulations of mnemonic discrimination would 

generalize to a task where the use of a recall-to-reject strategy was prevented. We therefore 
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amended the procedure so that multiple different exemplars of each basic-level concept were 

studied. Once people have to recall more than 5 different studied items in order to reject a 

single lure, a recall-to-reject strategy becomes ineffective, particularly if the set size varies 

within the study list (Gallo, 2004). In Experiment 2, participants studied sets of either two or 

eight different exemplars of the same basic-level concept. Our preregistered prediction was 

that if Experiment 1’s finding of reduced false recognition of lures with more confusable 

concepts was due to impoverished representations of these basic-level concepts in memory, 

Experiment 2 would show a similar effect. With more studied exemplars per concept we 

might also observe enhanced effects of concept confusability on mnemonic discrimination in 

Experiment 2 compared to Experiment 1, and for set size 8 compared to set size 2. However, 

if the recall-to-reject account is correct, concept confusability would either be associated with 

increased lure errors in Experiment 2, or would have no effect. In terms of item-level 

processing, we expected that effects might be similar, or more pronounced because of the 

larger studied sets. 

 

2.8 Materials and Methods 

The experimental methods were preregistered with the Open Science Framework 

(https://osf.io/3h7kf). 

2.8.1 Participants 

The study included sixty adults aged 18-33 years (M = 21.2; SD = 3.2, 12 male, 48 female).  

A further ten participants were excluded from data analysis: 9 due to technical issues with 

recording responses, 1 due to poor performance at test (using the preregistered criterion of d’ 

for studied item discrimination of less than 3 SD from the mean). The sample size was 

determined with sensitivity analyses setting alpha to .05. The principal effect of interest was 

the overall effect of concept confusability on lure false recognition (interaction of concept 

confusability × lure versus novel baseline; collapsed across set size). Simulations with simR 

suggested that with N = 60 we would have .92 power to detect a small effect (OR = .70; 

equivalent to Cohen’s d = .20; the effect size in Experiment 1 was equivalent to d = .15, 

although as outlined above, we expected this effect to be larger, if present). For the higher 

order interaction of concept confusability with study set size condition (lures for set size 8 

versus 2), N = 60 could detect a medium-sized interaction of concept confusability × 

https://osf.io/3h7kf
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condition × lure versus novel baseline at .99 power (OR = .58; equivalent to Cohen’s d = 

.30). Data from a group of older participants collected at the same time will be included in a 

separate report. All participants were fluent English speakers (since at least the age of 5), and 

had normal or corrected to-normal vision. Participants were recruited by local advertisement 

and provided informed consent. They received either course credit or an honorarium. The 

study was approved by the University of Edinburgh Psychology Research Ethics Committee 

(Ref. 278-1617/1). 

2.8.2 Stimuli 

Except where specified, stimuli were the same as in Experiment 1. For each of the 200 basic-

level concepts, 9 different sets of images were obtained for a total of 1800 images. Each 

study list included 600 items: 480 in the large sized sets (i.e., set size 8) and 120 in the small 

sized sets (i.e., set size 2). Each test list consisted of 300 items: 120 studied images (60 from 

set size 8 and 60 from set size 2), 120 similar lures (60 unstudied exemplars of studied basic-

level concepts from set size 8 and 60 from set size 2), and 60 novel items whose basic-level 

concepts had not been studied. Three filler trials prefaced both the study and the test phase. 

We generated one study and test list for each participant which randomized the allocation of 

the concepts and their exemplar images to conditions (i.e., studied, lure, and novel) and set 

size (2 and 8) with the constraint that half the concepts in each condition (item type and set 

size) were living and half non-living. 

2.8.3 Procedure 

The experiment consisted of a single study phase followed by a recognition test phase with 

interspersed standardized cognitive tests (not reported here) for 15 minutes. Stimuli were 

presented with MATLAB (R2018b, The MathWorks) using PsychToolbox (Kleiner et al., 

2007; Version 2.0.14). The procedure was otherwise the same of Experiment 1 except that 

trials during the study phase were not self-paced, but presented every 3 s.  

2.8.4 Statistical Analysis 

The variables of interest and nuisance variables (see Supplemental Table 8) were identical to 

those used in Experiment 1, but the item metrics were recomputed for this larger set of 

images. Analyses reported here were based on the nearest neighbor metrics of perceptual 

confusability for reasons noted in Experiment 1, Materials and Methods, Variables of 

Interest, and the results for graded perceptual confusability metrics are given in the 
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Supplemental Material (Supplemental Table 11). Item exemplarity ratings were again 

collected from the participants after the test phase. As the concepts were identical to those 

used in Experiment 1, we used the same concept familiarity values collected previously. The 

main preregistered statistical analyses collapsed across the large and small study set sizes 

were identical to those used in Experiment 1, as were the model selection procedures. We 

also examined a priori the modulatory effects of set size (i.e., set size 8 vs set size 2), but as 

this variable had no significant effects we focus here on the results collapsed over the two set 

sizes (see Supplemental Table 10 for the results of the full model). Lastly, we again 

conducted a linear mixed-effect analysis of study phase RTs (results not reported, see 

https://osf.io/ndk83/). 

2.9 Results 

As in Experiment 1, there was decisive evidence in favor of the full model including concept-

level, item-level, and confounds principal component variables, relative to simpler models 

(see Supplemental Table 9). The full model was the most parsimonious, receiving the lowest 

AICc score (AICc = 17597.96), and substantial weight (AICc weight = .89) relative to the 

other models, with an evidence ratio between the top-ranked model and the second-ranked 

model of 7.83. This result was also supported by a significant LRT in favor of the full relative 

to the model ranked second on the basis of AIC (χ2(7) = 18.16, p = .011). Unlike Experiment 

1, BIC now provided evidence in favor of the model with both concept- and-item level 

variables as the most parsimonious model (BIC = 17780.99). The results of the mixed effects 

analysis of the full model are shown below in Table 3, and illustrated in Figure 3. All the p-

values are FDR-multiple comparison corrected (Benjamini & Hochberg, 1995). Raw 

recognition responses by item type are reported in Supplemental Figure 6. 

 

 

Table 3 

Results of Experiment 2 (Novel Items as Baseline) 

  

Variable Estimate d’ SE z-value p  

(Intercept) -2.70 -1.55 0.10 -26.65 <.001 

https://osf.io/ndk83/
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Lure 2.34 1.33 0.07 32.00 <.001 

Studied 4.20 2.44 0.08 54.42 <.001 

Number of Features 0.00 0.00 0.07 -0.03 .978 

Concept Confusability 0.31 0.16 0.07 4.30 <.001 

Visual Confusability (C1) -0.08 -0.03 0.07 -1.13 .364 

Visual Confusability (C2) 0.22 0.10 0.08 2.83 .011 

Color Confusability 0.07 0.03 0.07 1.07 .375 

Item Exemplarity 0.14 0.08 0.07 2.11 .067 

Lure × Number of Features -0.01 0.00 0.07 -0.12 .949 

Studied × Number of Features -0.09 -0.05 0.07 -1.28 .301 

Lure × Concept Confusability -0.25 -0.12 0.07 -3.59 <.001 

Studied × Concept Confusability -0.53 -0.29 0.07 -7.32 <.001 

Lure × Visual Confusability (C1) 0.26 0.14 0.07 3.66 <.001 

Studied × Visual Confusability (C1) 0.20 0.10 0.07 2.66 .016 

Lure × Visual Confusability (C2) -0.16 -0.06 0.08 -1.95 .082 

Studied × Visual Confusability (C2) -0.17 -0.07 0.08 -2.05 .071 

Lure × Color Confusability 0.05 0.04 0.07 0.70 .536 

Studied × Color Confusability -0.07 -0.03 0.07 -0.95 .422 

Lure × Item Exemplarity 0.29 0.18 0.07 4.03 <.001 

Studied × Item Exemplarity -0.06 -0.03 0.07 -0.82 .483 

 

Note. The reference level of condition is set to “novel”. Parameter estimates (logOR), d’ equivalent, 

standard errors, z-values, and FDR-corrected p-values are listed for condition, concept-level, and 

item-level variables in the winning (full) linear mixed model selected with AIC. Nearest neighbor 

perceptual confusability measures were included in the model above. See Material and Methods, 

Variables of Interest, and Results for details. SE = Standard Error 

 

Figure 3 

Effects of Semantic and Perceptual Variables on Mnemonic Sensitivity in Experiment 2 
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Note. Plots show effects of semantic and perceptual variables on modulation of sensitivity. The plot 

lines represent the effect of the predictor variables on the probabilities of endorsing studied items as 
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“old” relative to novel items (light blue), lures as “old” relative to novel items (orange), and studied 

items as “old” relative to lures (purple). Panel A, B, and C show the effects of concept confusability, 

item exemplarity, and C1 visual confusability in Experiment 2. See Material and Methods, Variables 

of Interest, and Results for details. * p < .05; ** p < .01; *** p < .001 (FDR-corrected). 

 

2.9.1 Sensitivity for Studied Relative to Novel Items 

As in Experiment 1, discrimination of studied from novel items was very good (simple effect 

on d’ = 2.44; 95% CI [2.36, 2.51]). Concept confusability impaired sensitivity for studied 

items which were more likely to be forgotten (Figure 3A; interaction of concept confusability 

with studied items on d’ = -.29; 95% CI [-.36, -.21]). However, the effect of item exemplarity 

on true recognition was no longer significant (Figure 3B; interaction of item exemplarity with 

studied items on d’ = -.03; 95% CI [-.10, .05]). Also, more visually similar studied items 

were now more (rather than less) likely to be correctly recognized (Figure 3C; interaction of 

C1 with studied items on d’ = .10; 95% CI [.03, .18]). No other variable significantly 

modulated sensitivity of studied items.  

 

2.9.2 Sensitivity for Lure Relative to Novel Items 

As in Experiment 1, participants were generally more likely to judge lures than novel items as 

“old” (simple effect on d’ = 1.33; 95% CI [1.26, 1.41]). The direction of the concept 

confusability effect was also unchanged: false recognition of lures was again relatively less 

likely for pictures whose concepts shared many semantic features with other concepts (Figure 

3A; interaction of concept confusability with lure on d’ = -.12; 95% CI [-.20, -.05]). At the 

item level, lure errors were again more frequent for items with higher rated exemplarity 

(Figure 3B; interaction of item exemplarity with lure on d’ = .18; 95% CI [.11, .26]), and 

with higher visual confusability in terms of low-level visual representations (Figure 3C; 

interaction of C1 with lure on d’ = .14; 95% CI [.07, .22]). No other variable significantly 

modulated sensitivity for lure items. 
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2.9.3 Sensitivity for Studied Relative to Lure Items 

The results of the analysis that examined participants’ ability to discriminate studied items 

from lures are shown below in Table 4, and illustrated in Figure 3. Overall, participants were 

fairly good at discriminating studied items from similar lures (simple effect on d’ = 1.10; 

95% CI [1.06, 1.15]). Both concept- and-item level variables modulated this effect. Similar to 

Experiment 1, studied items with high concept confusability were less likely to be correctly 

discriminated from highly confusable lures (Figure 3A; interaction of concept confusability 

with studied items on d’ = -.16; 95% CI [-.21, -.12]). However, unlike Experiment 1, more 

semantic features did not improve discrimination (interaction of number of features with 

studied items on d’ = -.05; 95% CI [-.10, .00]). Studied concepts whose pictures were judged 

to have high exemplarity were again less likely to be discriminated from their lure exemplars 

(Figure 3B; interaction of item exemplarity with studied items on d’ = -.21; 95% CI [-.26, -

.16]). Lastly, participants were less likely to correctly discriminate studied items with high 

color confusability (interaction of color confusability with studied items on d’ = -.07; 95% CI 

[-.12, -.02]). Unlike Experiment 1, the effect of C1 visual confusability was no longer 

significant (Figure 3C; interaction of C1 with studied items on d’ = -.04; 95% CI [-.09, .01]). 

No other variable significantly modulated sensitivity for studied relative to lure items. 

 

Table 4 

Results of Experiment 2 (Lures as Baseline) 

      

Variable Estimate d’ SE z-value p 

(Intercept) 

Studied 

-0.35 

1.85 

-0.21 

1.10 

0.08 

0.04 

-4.45 

44.54 

<.001 

<.001 

Studied × Number of Features -0.09 -0.05 0.04 -1.91 .079 

Studied × Concept Confusability -0.28 -0.16 0.04 -6.65 <.001 

Studied × Visual Confusability (C1) -0.06 -0.04 0.04 -1.47 .186 

Studied × Visual Confusability (C2) -0.01 -0.01 0.04 -0.25 .847 

Studied × Color Confusability -0.12 -0.07 0.04 -2.89 .007 
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Note. The reference level of condition is set to “lure”. Parameter estimates (logOR), d’ equivalent, 

standard errors, z-values, and FDR-corrected p-values are listed for condition, concept-level, and 

item-level variables in the winning (full) linear mixed model selected with AIC. Nearest neighbor 

perceptual confusability measures were reported in the model above. See Material and Methods, 

Variables of Interest, and Results for details. SE = Standard Error. 

 

2.9.4 False Alarms to Novel Items 

Participants correctly identified most unstudied novel items as “new” (intercept on d’ = -1.55; 

95% CI [-1.65, -1.44]). As predicted, and as in Experiment 1, items with high concept 

confusability were more likely to be falsely recognized as “old” (Supplemental Figure 6A; 

simple effect of concept confusability on d’ = .16; 95% CI [.09, .24]). At the item level, false 

alarms to novel items were modulated by C2 visual confusability. People were more likely to 

misrecognize novel items with more confusable late visual representations (i.e., their overall 

shape) (simple effect of C2 on d’ = .10; 95% CI [.02, .17]). No other variable significantly 

modulated baseline false recognition of novel items. 

 

2.10 Discussion 

Experiment 2 closely reproduced Experiment 1’s procedures, except that participants studied 

multiple exemplar images of each basic-level concept. This allowed us to test whether the 

variables contributing to mnemonic discrimination were altered when people could not 

effectively use a recall-to-reject strategy. The effect observed in Experiment 1 for concept 

confusability was qualitatively the same in Experiment 2: people were again less likely to 

misrecognize lures with high concept confusability (reductions in d’ by factors of -.15 and -

.12 in Experiments 1 and 2), and more likely to forget more confusable studied items (d’ 

reductions of -.29 and -.29 in Experiments 1 and 2). Therefore, the pattern of findings in 

Experiment 1 cannot be explained by a facilitation of recall-to-reject for lures with more 

confusable concepts. Instead, the data suggest that processing shared features over concepts 

weakened the representation of basic-level conceptual information in memory. Thus, concept 

Studied × Item Exemplarity -0.35 -0.21 0.04 -8.32 <.001 
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confusability reduced recognition of both studied and lure exemplars and impeded the ability 

to discriminate between them in memory.  

 

As in Experiment 1, semantic relations over items also had a marked effect on lure errors, 

which were again more frequent for lures that were better exemplars of their concept (d’ 

increasing by factors of .13 and .18 in Experiments 1 and 2). This suggests that at test, people 

were more likely to respond “old” to high exemplarity lures because they remembered having 

studied the corresponding basic-level concepts. However here, unlike in Experiment 1, item 

exemplarity did not significantly affect true recognition of studied items (d’ effects of -.10 

and -.03 in Experiments 1 and 2). We do not place much emphasis on this null finding, since 

the between-Experiment interaction between study set size, item exemplarity and old versus 

novel items was also not significant (see Supplemental Table 12). It may be that there is an 

effect on true recognition which is too small for us to detect consistently. Alternatively, the 

effect observed in Experiment 1 may have been weakened by the increase in set size: for 

example, exemplarity of individual studied items might matter less when multiple exemplars 

are studied. Despite this, the effect for lures remained robust, as did the effect on overall 

discrimination between studied items and lures. 

 

For the perceptual item-level variables, as already noted in Experiment 1, the graded 

measures did not seem to capture our initial intuition that some lures would be highly visually 

confusable with specific studied items. Therefore, we focused instead on exploratory analyses 

that better tested our original prediction that such lures would be more frequently 

misrecognized. The nearest neighbor metrics yielded consistent findings in the two 

experiments in this regard. For the low-level C1 measure, lures that were more visually 

confusable with another item were more likely to be misrecognized (d’ increased by factors 

of .10 and .14 for Experiments 1 and 2). However, the effects of C1 visual confusability on 

recognition of studied items differed between the two experiments. While in Experiment 1 

more confusable items were less likely to be remembered, in Experiment 2 they were more 

often remembered (d’ modulations of -.10 and .10). This reversal may reflect a genuine 

difference due to the increase in study set size in Experiment 2: for example, if more highly 

similar nearest neighbors were introduced by use of multiple studied exemplars of each basic-

level concept. Further data will be required to establish whether this is a robust finding. As a 
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result of this different effect for studied items, visual confusability did not significantly 

reduce overall mnemonic discrimination of studied items from lures in Experiment 2, unlike 

for Experiment 1. The current results point to a particular salience of simple visual features 

like line orientation for false recognition of lures (see Figure 1). We explore the possible 

reasons for this below.  

2.11 General Discussion 

In this research, we used objective and model-based measures to show for the first time that 

multiple semantic and perceptual relations contribute to people’s ability to discriminate 

objects in memory. This approach allowed us to assess simultaneous influences of semantic 

and perceptual relations between objects while controlling for the potential effects of other 

variables known to influence mnemonic discrimination. Using generalized linear mixed 

model analysis we were also able to directly model the effects of predictors on binary 

memory outcomes, and generalize the results over concepts as well as participants (DeCarlo, 

1998; Wright et al., 2009). In both experiments, studied objects that shared semantic features 

with many other concepts were more difficult to recognize, and lures whose corresponding 

studied object had many shared features were easier to correctly identify as new. In contrast, 

misrecognition was more frequent for lure objects that were more representative of their 

basic-level concept. The findings demonstrate distinct effects of semantic relations among 

concepts, and semantic relations between concepts and their exemplars. Simple perceptual 

properties shared with other studied images also contributed to misrecognition of lures, 

suggesting that image as well as concept properties are important in mnemonic discrimination 

for pictures.  

 

To assess the effects of semantic similarity on memory we used a concept confusability 

metric derived from a feature-based model of semantic memory (Devereux et al., 2014; Tyler 

& Moss, 2001). Previous studies have shown that conceptual structure understood in terms of 

feature relations between concepts can explain a range of phenomena, such as differences in 

the processing of living and nonliving concepts in healthy people (McRae et al., 1997; 

Randall et al., 2004; Taylor et al., 2011; Vigliocco et al., 2004) and specific impairments in 

neuropsychological patients (Forde & Humphreys, 1999; Humphreys & Forde, 2001; 

Warrington & Shallice, 1984). For example, Moss et al. (1997) described a post-encephalitic 

patient who was very poor at differentiating between highly similar objects (e.g., tiger versus 
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panther), but had no difficulty in determining the superordinate category of an object (e.g., 

land animals; see also Tyler et al., 2004). This dissociation between finer-grained and coarser 

categorical levels of conceptual processing converges with Taylor et al.'s (2012) finding that, 

in healthy people, processing highly shared semantic features facilitated domain-level 

categorization decisions but impeded basic-level naming. 

 

The current study is the first to show that feature-based conceptual structure impacts 

mnemonic discrimination. The results converge with earlier evidence from Montefinese et al. 

(2015) that semantic feature similarity increases false alarms to unstudied items (see also 

Montefinese et al., 2018). Our data confirm that overlapping semantic features impact 

mnemonic sensitivity indices that adjust false recognition for response criterion, and further 

show that concept confusability also affects true recognition. The results are also in line with 

Coane et al. (2016)’s suggestion that specific effects of semantic categorical relations on false 

recognition reflect feature similarity at least in part (see also Coane et al., 2020). We have 

interpreted this finding in terms of gist memory traces representing basic-level conceptual 

information. According to fuzzy trace theory, memory outcomes reflect the relative 

accessibility of two kinds of memory traces encoded in parallel: verbatim traces containing 

specific representations of the studied items, and gist traces representing their meaning traces 

(Brainerd & Reyna, 2002). Memory for studied items is supported by both verbatim and gist 

traces, and false memory for related lures occurs when gist but not verbatim traces are 

retrieved. Although the theory does not specify the informational content of gist, the logic of 

the mnemonic discrimination task suggests that the relevant gist information in any given 

task is the information that is shared between the studied items and lures. Our results support 

this assumption, and suggest that different levels of semantic similarity have distinct effects 

on mnemonic discrimination. In the categorized pictures task used here, studied items and 

lures shared basic-level concepts. Concept confusability – a similarity metric reflecting 

shared processing of conceptual features – weakened the representations of individual 

concepts in memory and therefore reduced gist-like effects on memory for studied items and 

lures. The net effect on mnemonic discrimination was also negative: for concepts that were 

more confusable, people were less able to discriminate in memory between studied items and 

lures.  
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In contrast, item exemplarity – similarity between an exemplar item and its concept – 

strengthened activation of the concept and therefore increased gist-like effects, at least for 

lures. Exemplarity, or image agreement, defines a relation between an image exemplar and its 

basic-level concept, and is closely related to typicality (Barry et al., 1997; Snodgrass & 

Vanderwart, 1980). A typical exemplar shares more features with other members of its 

category (Rosch & Mervis, 1975) and may therefore more strongly elicit a gist memory trace 

that overlaps with representations of other exemplars. In line with this, we found that people 

falsely recognized more high exemplarity basic-level lures. Together with the findings for 

concept confusability, the data suggest that both concept-level and item-level variables 

impacted mnemonic discrimination via modulations of basic-level memory representations. A 

few prior studies have examined the specific semantic information that gist is based on. 

These have used specific stimuli or measures that focused on a single type of relation (Cann 

et al., 2011; Coane et al., 2016; Montefinese et al., 2015). Our use of multiple measures 

enabled effects of relations at different levels to be examined at the same time.  

 

As outlined in the Introduction, studies using a range of different task materials also suggest 

that the content of the memory representations critical for mnemonic discrimination varies. 

Studies using pictures, words, situational themes, and narratives as to-be-remembered 

material find that lures that are related to studied items at these different semantic levels are 

misrecognized as studied, implicating gist representations at different levels. The results for 

novel items offer converging evidence that the effects of different semantic relations on lure 

errors may depend on the nature of the lures to be discriminated. In both experiments, while 

concept confusability improved rejection of lures, it increased false alarms to unrelated novel 

images. Although neither these objects (e.g., a panther) nor other exemplars of their basic-

level concepts had been studied (e.g., a different panther), people had studied other items 

from the same superordinate categories (e.g., a cat and a dog) as well as further items with 

which they shared semantic features (e.g. a chair, which < has legs >). Since no basic-level 

gist memory was ever encoded for these items’ concepts, its effects could not be 

impoverished by emphasis on features shared with other concepts. However, if the coarse 

semantic activation not only reduced within-concept gist but enhanced across-concept gist, it 

would lead some novel objects with many shared features to be classified as “old”. A similar 

argument was made by Montefinese et al. (2015) for verbal material. Our finding is also in 

line with previous studies showing that novel pictures (Bowman, Chamberlain, & Dennis, 
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2019; Seamon et al., 2000) and words  (Brainerd et al., 1995; Coane et al., 2016, 2020) 

belonging to the same superordinate category as studied items are more likely to be 

misrecognized than unrelated novel items. The current study and that of Montefinese et al. 

(2015) are the first to directly demonstrate that shared semantic features can increase false 

recognition of pictures and words, respectively. However, both these findings could be due to 

modulations of response criterion rather than effects on memory (see also Montefinese et al., 

2018). People’s bias to respond “old” versus “new” can change item-by-item in response to 

properties of the test probes (Heit et al., 2003; Kent et al., 2018). For example, processing 

shared semantic features might increase attention to items in the absence of any retrieval of a 

gist trace. Further studies with an additional unrelated novel item baseline condition will be 

required to adjudicate between these two possibilities.  

 

We have discussed the findings for both concept confusability and item exemplarity in terms 

of their effects on concept gist shared by studied items and lures. However, unlike concept 

confusability, item exemplarity did not affect memory for studied items as would be expected 

according to fuzzy trace theory if it modulated encoding of gist traces. Recognition of higher 

exemplarity studied items was numerically reduced in both experiments, significantly so in 

Experiment 1. The effects of exemplarity or typicality on recognition memory are relatively 

unexplored, but several studies suggest that words that are more typical members of their 

superordinate category tend to be better recalled, mediated in part by clustering by category 

(Schmidt, 1996). One possibility is that the restriction of the effect of exemplarity to lure 

errors derived from the way that exemplarity as an item-level variable assessed gist. Unlike 

concept confusability, which directly indexed shared features among concepts, item 

exemplarity indirectly indexed shared features among exemplars via judgments of the 

strength of the relations between exemplars and their concepts. Prioritization of relations 

between exemplars and concepts may have increased sensitivity to test phase cueing of 

memory traces by images eliciting strong basic-level representations. Greater overlap 

between an exemplar and its basic-level concept may therefore have increased the degree to 

which a lure image could trigger retrieval of a gist trace, but not the degree to which a studied 

image could elicit gist encoding at this level. Currently, norms are not available for the 

semantic features that are shared between individual pictured exemplars of a concept but, 

based on the assumptions of fuzzy trace theory, we would predict that similarity between 
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studied items and lures on such measures would be associated with increases in recognition 

of both types of items, and reduced discrimination between the two.  

 

The current data also support the proposal that mnemonic discrimination errors are driven by 

perceptual as well as semantic similarity (Bowman, Chamberlain, & Dennis, 2019; Brady et 

al., 2008; Burnside et al., 2017; Koutstaal & Schacter, 1997; Motley & Kirwan, 2012; 

Seamon et al., 2000). We examined the effects of perceptual relations on memory using item-

level measures of visual properties of the images. Lure items with greater low-level (i.e. C1) 

visual confusability with another image in the set were more likely to be misrecognized as 

“old”. As these nearest neighbor analyses were exploratory, the results need to be treated with 

some caution, but the metrics yielded consistent results across the two experiments in the 

direction originally predicted for visual confusability effects. The findings suggest that 

perceptual effects on false recognition of lures are robust, at least for early visual properties 

like line orientation. The contrasting lack of consistent effects of perceptual confusability 

measured with graded metrics points to a dependence of this effect on specific similarity 

between lures and individual items in the set. We considered whether defining measures of 

perceptual (and semantic) similarity only between test items and each participant’s set of 

studied items might provide a clearer picture; however, this was not possible due to very high 

collinearity with the original indices (Pearson’s r between .80 and .98 in Experiments 1 and 

2).  

 

Our data converge with the handful of previous studies that have directly addressed 

perceptual effects. It is difficult to draw strong conclusions about color effects since we did 

not find consistent effects over experiments, and Reppa et al. (2020) (see Introduction) used a 

very different task and measures from ours. However, the current results are broadly in line 

with their finding that perceptual similarity (in their case, of shape) can cause interference in 

memory. Our data also converge with those of Brady et al. (2008) who found that people 

made errors to lures that were different-view images of studied objects, as well as to different 

exemplars of studied concepts. They used a forced choice recognition task, in which 

discrimination performance is generally substantially better than in old/new recognition, and 

may rely more on familiarity (Migo et al., 2009) and/or processing fluency (Voss et al., 

2012). Our findings (and those of Motley and Kirwan, (2012); see Introduction) broadly 
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converge with these earlier data to suggest that perceptual as well as semantic similarity both 

influence mnemonic discrimination regardless of the recognition task format. Our model-

based measures specifically implicate low-level visual similarity in this task, but future 

studies may show that higher-level attributes like shape and view also contribute 

independently.  

 

Others have found that perceptually similar but pre-experimentally meaningless lures trigger 

false recognition (Koutstaal et al., 2003; Pidgeon & Morcom, 2014; Slotnick & Schacter, 

2004). For example, Slotnick and Schacter (2004) found that meaningless shapes that were 

visually related to studied items were more likely to be misrecognized relative to novel 

unrelated shapes. While visual similarity was not formally measured, lures tended to have 

similar linear orientation to their studied items. Our data are also in line with fMRI studies 

that have shown engagement of early visual cortex during false recognition of visually 

similar picture lures, whether or not these are also semantically related, supporting the 

interpretation that such activity represents enhanced visual processing during lure 

misrecognition (Bowman et al., 2019; Garoff-Eaton et al., 2006; Gutchess & Schacter, 2012; 

Slotnick & Schacter, 2004). Thus, behavioral and neuroimaging results converge on the idea 

that mnemonic discrimination errors can be elicited by both semantic and perceptual 

relations. The use of model-based metrics allowed us to go further by indexing perceptual 

properties directly, and addressing concerns that people may bring conceptual processing to 

bear even on experimentally unfamiliar stimuli (Pidgeon & Morcom, 2016).  

 

These findings support earlier suggestions that gist-based memory can be perceptual as well 

as conceptual (Koutstaal & Schacter, 1997). This possibility is consistent with fuzzy trace 

theory’s opponent processes, if gist is not restricted to information about meaning. A fuller 

understanding of mnemonic discrimination needs to take into account the nature of the 

relations and representations involved. Our finding that semantic relations between concepts 

and items had different effects on mnemonic discrimination suggests that different semantic 

relations may impact memory in ways that are modulated by task demands. An important 

question to address in future studies will be whether manipulations previously shown to 

impact measures of gist reliance (Brainerd & Reyna, 2005) can be shown to have dissociable 

effects on the contributions of semantic and perceptual similarity to mnemonic 
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discrimination. Our results are also in line with previous data suggesting that semantic 

influences on memory errors go beyond associative activation (Brainerd et al., 2008; Cann et 

al., 2011; Coane et al., 2016, 2020) The activation/monitoring theory explains false 

recognition in terms of associative strength (Roediger & McDermott, 2000; Roediger et al., 

2001). On this view, studying a list of words produces an automatic associative activation 

that spreads through the lexical semantic system, and false recognition occur when lures 

accrue substantial activation through this process. A strength of the activation/monitoring 

theory is that the associative relations assumed to determine memory errors are quantifiable 

(Roediger et al., 2001). However, this account cannot explain the above findings. It is also 

inconsistent with perceptual effects on lure errors as it specifies that misrecognition stems 

from activation of lure representations at study. Similar lures which have no pre-existing 

associations to studied items are unlikely to be spontaneously generated at encoding (Arndt, 

2010). Associative activation also cannot explain lure errors reflecting spatial proximity to 

the location of a studied object (Reagh et al., 2016, 2014). 

  

Global-matching models can explain lure errors that reflect perceptual as well as semantic 

relations (Arndt & Hirshman, 1998; Arndt, 2010; Hintzman, 1988). According to models like 

MINERVA2 (Arndt & Hirshman, 1998), there is no gist memory trace, but mnemonic 

discrimination errors occur to the degree that lures presented at test are globally similar to 

multiple traces previously stored at encoding, without specification of the nature of the 

similar features. Such a retrieval-based mechanism may also explain why some variables – 

here, item exemplarity and visual confusability – impact lure errors but not memory for 

studied items. In fuzzy-trace theory’s conjoint recognition model, lure-specific factors could 

modulate the probability of similarity responding at test, and therefore lure errors (Brainerd et 

al., 1999; Brainerd & Wright, 2005), although its processing tree model does not explicitly 

separate encoding and retrieval processes. An explicit model of encoding and retrieval 

contributions is offered by the pattern separation and completion processes at the heart of the 

complementary learning systems model (Marr, 1971; McClelland et al., 1995; McNaughton 

& Morris, 1987; Norman & O’Reilly, 2003). At study, pattern separation by the hippocampus 

ensures that specific memory traces are generated. When this separation fails memory traces 

may become more gist-like, and lures more likely to trigger errors (Wilson et al., 2006; Yassa 

& Stark, 2011). At test, people may also fail to discriminate lures because the lures trigger 

pattern completion due to high overlap with studied items (Motley & Kirwan, 2012; Norman 
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& O’Reilly, 2003; Norman, 2010; Yotsumoto et al., 2007). Hippocampal pattern separation 

and completion do not specify the types of similarity more likely to influence mnemonic 

discrimination, and predict influences of perceptual, semantic and contextual properties 

(Hunsaker & Kesner, 2013; Reagh et al., 2014; Yassa & Stark, 2011). The complementary 

learning systems model further specifies non-pattern-separated neocortical inputs that may 

also contribute to semantically-driven mnemonic discrimination errors (Norman & O’Reilly, 

2003; Pidgeon & Morcom, 2014; Wilson et al., 2006). These model predictions about 

specific encoding and retrieval operations are difficult to test with behavioral measures alone, 

but can be more directly investigated using neuroimaging measures, which enable semantic 

and perceptual modulations of neural processing during study and test phases to be assessed.  

2.12 Conclusions 

In this work we used objective measures derived from established models of conceptual 

structure and low-level vision to show that semantic and perceptual relations can 

simultaneously contribute to gist-like effects in memory. The results from two experiments 

implicated relations at multiple representational levels and suggested that similarity between 

studied and unstudied items does not always impair mnemonic discrimination. The coarse 

semantic activation elicited by processing shared semantic features across concepts impeded 

memory for studied objects while reducing false alarms to lure exemplars of the same 

concepts. In contrast, a strong semantic overlap at the item-level between an object and its 

basic-level concept was associated with more frequent false recognition of lures, as was 

strong low-level visual similarity between an object and a studied image. The initial findings 

were replicated in the second experiment which increased and varied the study set size in 

order to rule out recall-to-reject as an explanation for the results. Taken together, our findings 

point to the utility of a more structured and formal approach to understanding the relations 

underpinning gist-like effects in memory, and highlight the importance of image as well as 

concept properties in mnemonic discrimination. 
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Chapter 3: Perceptual and Semantic Representations at Encoding 

Contribute to True and False Recognition of Objects 

When encoding new episodic memories, visual and semantic processing are proposed to 

make distinct contributions to accurate memory and memory distortions. Here, we used 

functional magnetic resonance imaging (fMRI) and preregistered representational similarity 

analysis (RSA) to uncover the representations that predict true and false recognition of 

unfamiliar objects. Two semantic models captured coarse-grained taxonomic categories and 

specific object features, respectively, while two perceptual models embodied low-level visual 

properties. Twenty-eight female and male participants encoded images of objects during 

fMRI scanning, and later had to discriminate studied objects from similar lures and novel 

objects in a recognition memory test. Both perceptual and semantic models predicted true 

memory. When studied objects were later identified correctly, neural patterns corresponded 

to low-level visual representations of these object images in the early visual cortex, lingual, 

and fusiform gyri. In a similar fashion, alignment of neural patterns with fine-grained 

semantic feature representations in the fusiform gyrus also predicted true recognition. 

However, emphasis on coarser taxonomic representations predicted forgetting more 

anteriorly in the anterior ventral temporal cortex, left inferior frontal gyrus and, in an 

exploratory analysis, left perirhinal cortex. In contrast, false recognition of similar lure 

objects was associated with weaker visual analysis posteriorly in early visual and left 

occipitotemporal cortex. The results implicate multiple perceptual and semantic 

representations in successful memory encoding and suggest that fine-grained semantic as 

well as visual analysis contributes to accurate later recognition, while processing visual 

image detail is critical for avoiding false recognition errors. 

 

 

 

 

 



70 
 

3.1 Significance Statement 

People are able to store detailed memories of many similar objects. We offer new insights 

into the encoding of these specific memories by combining fMRI with explicit models of how 

image properties and object knowledge are represented in the brain. When people processed 

fine-grained visual properties in occipital and posterior temporal cortex, they were more 

likely to recognize the objects later, and less likely to falsely recognize similar objects. In 

contrast, while object-specific feature representations in fusiform gyrus predicted accurate 

memory, coarse-grained categorical representations in frontal and temporal regions predicted 

forgetting. The data provide the first direct tests of theoretical assumptions about encoding 

true and false memories, suggesting that semantic representations contribute to specific 

memories as well as errors. 
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3.2 Introduction 

Humans are able to remember objects in great detail and discriminate them in memory from 

others that are similar in appearance and type (Standing, 1973). To achieve this, highly 

specific memories must be encoded. Successful object encoding engages diverse cortical 

regions alongside the hippocampus (Kim, 2011). These areas intersect with networks 

involved in visual object processing and semantic cognition (Binder et al., 2009; Clarke and 

Tyler, 2014). However, little is known about the neural operations these regions support 

during encoding. According to fuzzy-trace theory, the specific memory traces that contribute 

to true recognition depend on encoding of perceptual features, while semantic gist 

representations promote both true and false recognition (Brainerd and Reyna, 1990). 

However, recent data suggest that perceptual relations between studied items and lures can 

also trigger false recognition (see Chapter 2; Naspi et al., 2020). Here, we used functional 

magnetic resonance imaging (fMRI) and representational similarity analysis (RSA) to 

investigate the perceptual and semantic representations engaged that allow people to 

recognize these same objects later among perceptually and semantically similar lures. 

 

In line with fuzzy-trace theory, a few fMRI studies have shown stronger activation in 

occipito-temporal regions when people later successfully recognize specific studied objects 

than when they misrecognize similar lures (Garoff et al., 2005; Gonsalves et al., 2004; Okado 

and Stark, 2005). However, activation of similar posterior areas has also been associated with 

later false recognition (Garoff et al., 2005), and activation in left inferior frontal gyrus – a 

region typically associated with semantic processing – with later true recognition (Pidgeon 

and Morcom, 2016). Such results appear to challenge any simple mapping between 

perceptual and semantic processing and true and false recognition (see also Chapter 2; Naspi 

et al., 2020). However, one cannot infer type of processing based on presence or absence of 

activation alone. Here, we investigated the underlying processes that give rise to such effects, 

using RSA to test whether patterns of neural similarity that indicate visual and semantic 

processing predict subsequent memory performance. 

 

Object recognition involves visual analysis and the computation of meaning, proceeding in an 

informational gradient along the ventral visual pathway (Clarke and Tyler, 2015). The coarse 
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semantic identity of an object emerges gradually from vision in posterior cortices including 

lingual, fusiform, parahippocampal, and inferior temporal gyri that integrate semantic 

features capturing taxonomic relationships (Devereux et al., 2013; Mahon et al., 2009; Tyler 

et al., 2013). The lingual and fusiform gyri in particular are also engaged when memories of 

objects are encoded (Kim, 2011). At the apex of the ventral pathway, the perirhinal cortex 

provides the finer-grained feature integration required to differentiate similar objects (Clarke 

and Tyler, 2014; Devlin and Price, 2007; Winters and Bussey, 2005), and activation here 

predicts later memory for specific objects (Chen et al., 2019). Other researchers ascribe this 

role more broadly to the anterior ventral temporal cortex, considered a semantic hub that 

integrates modality-specific features into transmodal conceptual representations (Lambon 

Ralph et al., 2017). Beyond the ventral stream, left inferolateral prefrontal regions supporting 

controlled, selective semantic processing are also critical for memory encoding (Gabrieli et 

al., 1998; Kim, 2011). 

 

According to theory, the perceptual and semantic representations encoded in memory traces 

reflect how items were originally processed (Craik and Lockhart, 1972; Otten and Rugg, 

2001). We therefore expected that some of these ventral pathway and inferior frontal 

representations would be revealed in distinct distributed activity patterns giving rise to later 

true and false recognition. We quantified perceptual representations in terms of low-level 

visual attributes of object images, and semantic representations of the objects’ concepts in 

terms of their coarse taxonomic category membership as well as their specific semantic 

features. We used these models to identify representational similarity patterns between 

objects at encoding using a novel approach that combined RSA and the subsequent memory 

paradigm in a single step. This allowed us to test where the strength of perceptual and 

semantic object representations predicts subsequent accurate memory and false recognition of 

similar lures.   

 

3.3 Materials and Methods 

3.3.1 Participants 

Twenty-eight right-handed adults aged 18-35 years underwent fMRI scanning (M = 23.07 

years, SD = 3.54; 18 females, 10 males). Data from a further 4 participants were excluded due 
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to technical failures. All participants also spoke English fluently (i.e., had spoken English 

since the age of 5 or lived in an English-speaking country for at least 10 years) and had 

normal or corrected-to-normal vision. Exclusion criteria were a history of a serious systemic 

psychiatric, medical or a neurological condition, visual issues precluding good visibility of 

the task in the scanner, and standard MRI exclusion criteria (see https://osf.io/ypmdj for 

preregistered criteria). Participants were compensated financially. They were contacted by 

local advertisement and provided informed consent. The study was approved by the 

University of Edinburgh Psychology Research Ethics Committee (Ref. 116-1819/1). All the 

following procedures were preregistered unless otherwise specified. 

3.3.2 Stimuli 

Stimuli were pictures of objects corresponding to 491 of the 638 basic-level concepts in The 

Centre for Speech, Language and the Brain concept property norms (the CSLB norms; 

Devereux et al., 2014). These were members of 24 superordinate categories (Appliance, Bird, 

Body Part, Clothing, Container, Drink, Fish, Flower, Food, Fruit, Furniture, Invertebrate, 

Kitchenware, Land Animal, Miscellaneous, Music, Sea Creature, Tool, Toy, Tree, Vegetable, 

Vehicle, Water Vehicle, Weapon), and 238 were living things and 253 non-living things. We 

sourced two images for each basic-level concept. Of the 982 images, 180 were a subset of the 

images used by Clarke and Tyler (2014), 180 were compiled from the Bank of Standardized 

Stimuli (BOSS; Brodeur et al., 2014) and the remaining 622 were taken from the Internet. 

Each study list included single exemplar images of either 328 or 327 concepts. Of these, half 

were subsequently tested as old and half were subsequently tested test as lures. Each test list 

consisted of 491 items: 164 (or 163) studied images, 164 (or 163) similar lures (i.e., images 

of different exemplars of studied basic-level concepts), and 163 (or 164) novel items (i.e., 

images of basic-level concepts that had not been studied). Three filler trials prefaced the test 

phase. For each participant, living and non-living concepts were randomly allocated to the 

conditions with equal probability, i.e., to be studied/lure or novel items. Each study and test 

list was presented in a unique random trial order.  

3.3.3 Procedure  

The experiment comprised a scanned encoding phase followed by a recognition test phase 

outside the scanner. Stimuli were presented using MATLAB 2019b (The MathWorks Inc., 

2019) and PsychToolbox (Version 2.0.14; Kleiner et al., 2007). In the scanner, stimuli were 

viewed on a back-projection screen via a mirror attached to the head coil. Earplugs were 

https://osf.io/ypmdj
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employed to reduce scanner noise, and head motion was minimized using foam pads. During 

the study phase participants viewed one image at a time, and they were asked to judge 

whether the name of each object started with a consonant or with a vowel, responding with 

either index finger via handheld fiber-optic response triggers. By requiring participants to 

retrieve the object names, we ensured that they processed the stimuli at both visual and 

semantic levels. Participants were not informed of a later memory test. Images were 

presented centrally against a white background for 500 ms. This was followed by a black 

fixation cross with duration sampled from integer values of 2 to 10 s with a flat distribution, 

and then a red fixation cross of 500 ms prior to the next trial, for a stimulus onset asynchrony 

(SOA) of 3-11 s (M = 6). At test, participants viewed one image at a time for 3 s followed by 

a black fixation cross for 500 ms, and they judged each picture as “old” or “new” indicating 

at the same time whether this judgment was accompanied by high or low confidence using 

one of 4 responses on a computer keyboard. Mappings of responses to hands were 

counterbalanced at both encoding and retrieval.  

3.3.4 fMRI acquisition 

Images were acquired with a Siemens Magnetom Skyra 3T scanner at the Queen’s Medical 

Research Centre (QMRI) at the Royal Infirmary of Edinburgh. T2*-weighted functional 

images were collected by acquiring multiple echo-time sequences for each echo-planar 

functional volume (repetition time (TR) = 1700 ms, echo time (TE) = 13 ms (echo-1), 31 

(echo-2) ms, and 49 ms (echo-3)). Functional data were collected over 4 scanner runs of 360 

volumes, each containing 46 slices (interleaved acquisition; 80 × 80 matrix; 3 mm × 3 mm × 

3 mm, flip angle = 73°). Each functional session lasted ~ 10 min. Before functional scanning, 

high-resolution T1-weighted structural images were collected with TR = 2620 ms, TE = 4.9 

ms, a 24-cm field of view (FOV), and a slice thickness of 0.8-mm. Two field map magnitude 

images (TE = 4.92 ms and 7.38 ms) and a phase difference image were collected after the 2nd 

functional run. At the end, T2-weighted structural images were also obtained (TR= 6200 ms 

and TE = 120 ms). 

3.3.5 Image preprocessing 

Except where stated, image processing followed procedures preregistered at 

https://osf.io/ypmdj and was conducted in SPM 12 (v7487) in MATLAB 2019b. The raw 

fMRI time series were first checked to detect artefact volumes that were associated with high 

motion or were statistical outliers (e.g. due to scanner spikes). We checked head motion per 

https://osf.io/ypmdj
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run using an initial realignment step, classifying volumes as artefacts if their absolute motion 

was > 3 mm or 3 deg, or between-scan relative motion > 2 mm or 2 deg. Outlier scans were 

then defined as those with normalized mean or standard deviation (of absolute values or 

differences between scans) > 7 SD from the mean for the run. Volumes identified as 

containing artefacts were replaced with the mean of the neighboring non-outlier volumes, or 

removed if at the end of a run. If more than half of the scans in a run had artefacts, that run 

was discarded. Artefacts were also modeled as confound regressors in the first level design 

matrices. Next, BOLD images acquired at different echo times were realigned and slice time 

corrected using SPM12 defaults. The resulting images were then resliced to the space of the 

first volume of the first echo-1 BOLD time series. A brain mask was computed based on 

preprocessed echo-1 BOLD images using Nilearn 0.5.2 and combined with a grey-and-white 

matter mask in functional space for better coverage of anterior and ventral temporal lobes 

(Abraham et al., 2014). The three echo time series were then fed into the Tedana workflow 

(Kundu et al., 2017), run inside the previously created brain mask. This workflow 

decomposed the time series into components and classified each component as BOLD signal 

or noise. The three echo series were optimally combined and noise components discarded 

from the data. The resulting time series were unwarped to correct for inhomogeneities in the 

scanner's magnetic field: the voxel displacement map calculated from the field maps was 

coregistered to the first echo-1 image from the first run, and applied to the combined time 

series for each run. The preprocessed BOLD time series corresponding to the optimal 

denoised combination of echoes outputted by the Tedana workflow were then used for RSA 

analysis, where we used unsmoothed functional images in native space to keep the finer-

grained structure of activity. For univariate analysis, the preprocessed BOLD time series were 

also spatially normalized to MNI space using SPM's non-linear registration tool, DARTEL; 

spatially normalized images were then smoothed with an 8 mm isotropic full-width half 

maximum Gaussian kernel. 

 

3.3.6 Experimental design and statistical analysis 

3.3.6.1 Sample size 

The sample size was determined using effect sizes from two previous studies. Staresina et al. 

(2012) reported a large encoding-retrieval RSA similarity effect (d = 0.87). However, 

subsequent memory effects are typically more subtle, for example d = 0.57 for an activation 
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measure (Morcom et al., 2003). We calculated that, with N = 28, we would have .8 power to 

detect d = .55 for a one sample t-test at alpha = .05 (G*Power 3.1.9.2). 

3.3.6.2 Behavioural analysis 

To assess whether differences in task engagement during memory encoding predicted later 

memory, we modelled the effects of encoding task accuracy (0, 1) on subsequent memory 

outcomes using two separate generalized linear mixed effect models (GLMM) for studied 

items tested as old (subsequent hits and misses as predictors), and for studied items tested as 

lures (subsequent false alarms and correct rejection as predictors). Similarly, to assess any 

differences in study phase reaction times (RTs) according to subsequent memory status, we 

used two further linear mixed effect models (LMM). At test, to evaluate the effects on 

memory of perceptual and semantic similarity between objects, we also applied a generalized 

linear mixed model following the methods of Chapter 2 (Naspi et al., 2020). This had 

dependent measures of response at test (“old” or “new”) and confusability predictors 

calculated for each image and concept. C1 visual and color confusability were defined as the 

similarity value of an image with its most similar picture (i.e., the nearest neighbor) from 

Pearson correlation and earth’s mover distance metrics, respectively. Concept confusability 

was calculated by a weighted sum of the cosine similarities between objects in which each 

weight was the between-concept similarity itself, i.e., the sum of squared similarities (see 

Chapter 2; Naspi et al., 2020). All the analyses described above were carried out data with the 

lme4 package (Version 1.1-23) in R (Version 4.0.0). Models included random intercepts to 

account for variation over items and participants. 

 

3.3.6.3 Multivariate fMRI analysis 

Overview. The goal of our study was to investigate how perceptual and semantic 

representations processed at encoding predict successful and unsuccessful mnemonic 

discrimination. To test this, we used RSA to assess whether the fit of perceptual and semantic 

representational models to activity patterns at encoding predicted subsequent memory. In two 

main sets of analyses we examined representations predicting later true recognition of studied 

items, and representations predicting false recognition of similar lures. We implemented a 

novel approach that models the interaction of representation similarity with subsequent 

memory in a single step. Each memory encoding model contrasts the strength of visual and 

semantic representations of items later remembered versus forgotten (or falsely recognized 



 

77 
 

versus correctly rejected) within the same representational dissimilarity matrix (RDM). In a 

third set of analyses we also aimed to replicate Clarke and Tyler (2014) key findings 

regarding perceptual and semantic representations irrespective of memory. All RSA analyses 

were performed separately for each participant on trial-specific parameter estimates from a 

general linear model (GLM). We then followed three standard steps: 1) For each theoretical 

perceptual and semantic model, we created model RDMs embodying the predicted pairwise 

dissimilarity over items; 2) For each ROI (or searchlight sphere), we created fMRI data 

RDMs embodying the actual dissimilarity of multivoxel activity patterns over items; 3) We 

determined the fits between the model RDMs and the fMRI data RDM for each ROI (or 

searchlight sphere). The implementation of these steps is outlined in the following sections. 

RSA first level general linear model. Statistical analysis of fMRI data was performed in 

SPM12 using the first-level GLM and a Least-Squares-All (LSA) method (Mumford et al., 

2012). For each participant, the design matrix included one regressor for each trial of interest, 

for a total of 327 or 328 regressors (depending on counterbalancing), computed by 

convolving the 0.5 s duration stimulus function with a canonical hemodynamic response 

function (HRF). For each run, we also included twelve motion regressors comprising the 

three translations and three rotations estimated during spatial realignment, and their scan-to-

scan differences, as well as individual scan regressors for any excluded scans, and session 

constants for each of the 4 scanner runs. The model was fit to native space pre-processed 

functional images using Variational Bayes estimation with an AR(3) autocorrelation model 

(Penny, Trujillo-Barreto, & Friston, 2005). A high-pass filter with a cutoff of 128 s was 

applied and data were scaled to a grand mean of 100 across all voxels and scans within 

sessions. Rather than using the default SPM whole-brain mask (which requires a voxel 

intensity of 0.8 of the global mean and can lead to exclusion of ventral anterior temporal lobe 

voxels), we set the implicit mask threshold to 0 and instead included only voxels which had 

at least a 0.2 probability of being in grey or white matter, as indicated by the tissue 

segmentation of the participant’s T1 scan.  

Regions of interest. All regions of interests (ROIs) are shown in Figure 1. We defined six 

ROIs including areas spanning the ventral visual stream, which have been implicated in 

visual and semantic feature-based object recognition processes (Clarke and Tyler, 2014; 

Clarke and Tyler, 2015). We also included the left inferior frontal gyrus, strongly implicated 

in semantic contributions to episodic encoding (Kim, 2011), and bilateral anterior ventral 

temporal cortex, which is implicated in semantic representation (Lambon Ralph et al., 2017) 
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and is hypothesized to contribute to false memory encoding, albeit mainly in associative false 

memory tasks (Chadwick et al., 2016; Zhu et al., 2019). Except where explicitly stated, ROIs 

were bilateral and defined in MNI space using the Harvard-Oxford structural atlas: 1) the 

early visual cortex (EVC; BA17/18) ROI was defined using the Julich probabilistic 

cytoarchitectonic maps (Amunts et al., 2000) from the SPM Anatomy toolbox (Eickhoff et 

al., 2005); 2) the posterior ventral temporal cortex (pVTC) ROI consisted of the inferior 

temporal gyrus (occipito-temporal division; ITG), fusiform gyrus (FG), lingual gyrus (LG), 

and parahippocampal cortex (posterior division; PHC); 3) the perirhinal cortex (PrC) ROI 

was defined using the probabilistic perirhinal map including voxels with a > 10% probability 

to be in that region (Devlin and Price, 2007; Holdstock et al., 2009); 4) the anterior ventral 

temporal cortex (aVTC) ROI included voxels with >30% probability of being in the anterior 

division of the inferior temporal gyrus and >30% probability of being in the anterior division 

of the fusiform gyrus; 5) the left inferior frontal gyrus (LIFG; BA44/45) consisted of the pars 

triangularis and pars opercularis. Lastly, we used univariate analysis as a preregistered 

method to define additional ROIs for RSA around any regions not already in the analysis that 

showed significant subsequent memory effects. Based on this analysis, we also included 6) 

the left inferior temporal gyrus (occipito-temporal division; LITG) (see Results, Univariate 

fMRI analysis). The LITG has been previously implicated in true and false memory encoding 

(Dennis et al., 2007; Kim and Cabeza, 2007). The ROIs in Figure 1 are mapped on a pial 

representation of cortex using the Connectome Workbench 

(https://www.humanconnectome.org/software/connectome-workbench). 

 

https://www.humanconnectome.org/software/connectome-workbench
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Figure 1. Binary ROIs overlaid on a pial cortical surface based on the normalized structural 

image averaged over participants. Colored ROIs represent regions known to be important in 

episodic encoding and in visual or semantic cognition. Circled numbers specify different 

subregions within pVTC (see Region of Interest for details). 

 

RSA region of interest analysis. 

Model RDMs. We created four theoretical RDMs using low-level visual, color, 

binary-categorical, and specific object semantic feature measures. Figure 2 illustrates the 

multidimensional scale (MDS) plots for the perceptual and semantic relations expressed by 

these models, and Figure 3 shows the model RDMs. Memory encoding RDMs are displayed 

in Figure 3A and 3B, and overall RDMs irrespective of memory in Figure 3C. 
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Figure 2. MDS plots for perceptual and semantic similarities for the four models. Pair-wise 

similarities were calculated to create representational dissimilarity matrices (RDMs). A, C1 

visual similarity codes for a combination of orientation and shape (e.g., round objects towards 

the top, horizontal shapes on the right, vertical shapes at the bottom). B, Color similarity 

represents color saturation and size information (i.e., from bright on the left to dark at the 

bottom, and white towards the top). C, Binary categorical semantic similarity codes for 

domain-level representations distinguishing animals, plants and nonbiological objects 

(bottom-left, top, bottom-right, respectively). D, Semantic feature similarity codes for finer-

grained distinctions based on features of each concept (e.g., differences within living things at 

the bottom, non-living things on the left, and many categories of animal on the top-right). The 

objects shown are taken from a single subject at encoding. 
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1) The early visual RDM was derived from the HMax computational model of vision 

(Riesenhuber and Poggio, 1999; Serre et al., 2007) and captured the low-level (V1) visual 

attributes of each picture in the C1 layer. Pairwise dissimilarity values were computed as 1 - 

Pearson’s correlations between response vectors for gray-scale versions of each image. 

2) The color RDM was calculated using the color distance package (Version 1.1.0; Weller 

and Westneat, 2019) in R. After converting the RGB channels into CIELab space we 

calculated the earth mover’s distance between each pair of images (Rubner et al., 2000). We 

then normalized the distance so that the dissimilarity values ranged from 0 (lowest) to 1 

(highest). 

3) The animal-nonbiological-plant RDM combined the 24 object categories together 

according to 3 domains: animal, nonbiological, and plants (Clarke and Tyler, 2014). Pairwise 

dissimilarity values in this RDM were either 0 (same domain) or 1 (different domain). 

4) Construction of the semantic feature RDM followed Clarke and Tyler (2014), but used 

updated property norms (Devereux et al., 2014). We first computed pairwise feature 

similarity between concepts from a semantic feature matrix in which each concept is 

represented by a binary vector indicating whether a given feature is associated with the 

concept or not. Pairwise dissimilarity between concepts was computed as 1 – S where S is 

equal to the cosine angle between feature vectors. This RDM captures both categorical 

similarity between objects (as objects from similar categories have similar features) and 

within-category object individuation (as objects are composed of a unique set of features). 

For the analyses of memory encoding, model RDMs were split into two, giving one RDM for 

each subsequent memory analysis. The true subsequent memory RDMs included only items 

that were subsequently tested as old; these were coded as subsequent hits or subsequent 

misses (Fig. 3A). The false subsequent memory RDMs included only items that were 

subsequently tested as lures; these were coded as subsequent false alarms or subsequent 

correct rejections (Fig. 3B). For true subsequent memory, we computed dissimilarity between 

all pairs of subsequently remembered items, and all pairs of subsequently forgotten items, 

omitting pairings of subsequently remembered and subsequently forgotten items. Then, to 

assess how dissimilarity depended on subsequent memory we weighted the model RDMs so 

that the sum of the cells corresponding to remembered items equaled 1 and the sum of the 

cells corresponding to forgotten items equaled -1, so the dissimilarity values for all included 

trials summed to 0 (i.e., subsequent hits – subsequent misses). Thus, positive correlations of 
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the model RDMs with the fMRI data RDMs indicate that the representations are aligned more 

strongly with neural patterns for items that are later remembered than forgotten. Conversely, 

negative correlations indicate greater alignment for items that are later forgotten than 

remembered items. For false subsequent memory, we followed the same procedure, but 

subsequent false alarms were substituted for subsequent hits, and subsequent correct 

rejections for subsequent misses. Although an unequal number of trials can create spurious 

effects, we have a sufficiently large number of trials for each participant and condition for 

reliable correlation coefficients. According to one estimate, a correlation needs to have at 

least 150 observations to be considered stable (Schönbrodt & Perugini, 2013). In our study, 

only one participant yielded less than 150 similarity values, from a matrix of 17 falsely 

recognized trials, which gives a vector of 136 unique similarity values. Thus, we can be fairly 

confident in our results. Analyses were implemented using custom MATLAB 2019b (The 

MathWorks Inc., 2019) and R (Version 4.0.0; R Core Team, 2017) functions 

(https://osf.io/ypmdj). For the RSA analyses irrespective of memory, we modeled 

dissimilarities between all item pairs, treating all trials in the same way (see Fig. 3C). 

 

https://osf.io/ypmdj
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Figure 3. Representational dissimilarity matrices. A, Dissimilarity predictions of the four true 

subsequent memory models which included items that were later tested as old, coding 

subsequent hits positively (upper-left quadrants) and subsequent misses negatively (bottom-

right quadrants). B, Dissimilarity predictions of the four false subsequent memory models 

which included items that were later tested as lures, coding subsequent false alarms positively 

(upper-left quadrants) and subsequent correct rejections negatively (bottom-right quadrants). 

C, Dissimilarity models of object processing including all the items. D, Similarity between 

theoretical models. The color palettes used for the model correlations in D are the inverse of 

those used for the model RDMs in A, B, and C. The specific models are unique for each 

participant. For visualization purposes, similarity values within true and false subsequent 

memory RDMs have not been scaled. A-N-P = Animal-nonbiological-plant. 

 

fMRI data RDMs. Parameter estimates were extracted from gray matter voxels in 

each ROI for all trials of interest. For each voxel, these betas were then normalized by 
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dividing them by the standard deviation of its residuals (Walther et al., 2016). As for the 

model RDMs, we constructed separate fMRI data RDMs for the true and false subsequent 

memory and overall object processing analyses. For the true subsequent memory analysis, the 

fMRI data RDM represented activity patterns for concepts subsequently tested as old, and for 

the false subsequent memory analysis, the fMRI data RDM represented activity patterns for 

concepts subsequently tested as lures. For the overall analysis, the RDM represented activity 

patterns for all study trials. For the fMRI data RDMs for the subsequent memory analysis, as 

for the model RDMs, we computed dissimilarity between all pairings of subsequently 

remembered (or falsely recognized) items, and between all pairings of subsequently forgotten 

(or correctly rejected) items, omitting pairings between different trial types. Distance between 

each item pair was computed as 1 - Pearson’s correlation, creating a dissimilarity matrix.  

Fitting model to data RDMs. Each fMRI data RDM was compared with each 

theoretical model RDM using Spearman’s rank correlation, and the resulting dissimilarity 

values were Fisher-transformed. It is important to note that the Spearman’s rank correlation is 

not affected by the weighting procedure for number of trials, since this measure does not 

depend on the distance between pair of items; thus the order of the ranks is equivalent. For 

the subsequent memory analysis, we tested for significant positive and negative similarities 

between model RDM and fMRI data RDMs at the group level using a two-sided Fisher’s 

one-sample randomization (10,000 permutation) test for location with a Bonferroni correction 

over 6 ROIs. The permutation distribution of the test statistic T enumerates all the possible 

ways of permuting the correlation signs, positive or negative, of the observed values and 

computes the resulting sum. Thus, for a two-sided hypothesis, the p-value is computed from 

the permutation distribution of the absolute value of T, calculating the proportion of values in 

this permutation distribution that are greater or equal to the observed value of T (Millard and 

Neerchal, 2001). For the overall analysis we only tested for significant positive similarities 

between model RDM and fMRI data RDMs (Clarke and Tyler, 2014), using a one-sided test, 

in which the p-value is evaluated as the proportion of sums in the permutation distribution 

that are greater than or equal to the observed sum T (Millard and Neerchal, 2001). To find the 

unique effect of model RDMs, each fMRI data RDM showing a significant effect was also 

compared with each theoretical model RDM while controlling for effects of all other 

significant model RDMs (using partial Spearman’s rank correlations). While correlations 

between model RDMs were generally low, the object-specific feature model shared about 

19% variance with the category model (r = 0.44; Fig 3D), likely reflecting the information 
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about coarse semantic categories as well as individual objects that is carried by feature 

similarities (Clarke and Tyler, 2014).   

Post hoc RSA analyses by memory item type. For regions and models showing significant 

RSA memory effects, we explored whether representations aligned with each item type were 

significantly different from zero. To do this, we created four separate model and fMRI data 

RDMs for items subsequently remembered, forgotten, falsely recognized, and correctly 

rejected. We then followed the same steps as described for the ROI analysis irrespective of 

memory, but fit model RDMS to fMRI data RDMs for each trial type separately. Then, we 

tested for significant positive similarity at the group level using a one-tailed Fisher’s one-

sample randomization test (10,000 permutations) for location. We applied Bonferroni 

corrections for the 6 preregistered and the 6 exploratory ROIs. 

RSA searchlight analysis. In addition to the targeted ROI analysis, we ran a whole-brain 

searchlight analysis. This followed the same 3 main steps as the ROI analysis (see RSA 

region of interest analysis). For each voxel, the fMRI data RDM was computed from 

parameter estimates for gray matter voxels within a spherical searchlight of radius 7 mm, 

corresponding to maximum dimensions 5 × 5 × 5 voxels. Dissimilarity was again estimated 

using 1 - Pearson’s correlation. As in the ROI analysis, this fMRI data RDM was compared 

with the model RDMs, and the resulting dissimilarity values were Fisher transformed and 

mapped back to the voxel at the center of the searchlight. The similarity map for each model 

RDM and participant was then normalized to the MNI template space (see Image 

preprocessing). For each model RDM, the similarity maps were entered into a group-level 

random-effects analysis and thresholded using permutation-based statistical nonparametric 

mapping (SnPM; http://www.nisox.org/Software/SnPM13/). This corrected for multiple 

comparisons across voxels and the number of theoretical model RDMs. As for the ROIs we 

performed two-tailed tests in the subsequent memory analyses and one-tailed tests for the 

overall analysis. Variance smoothing of 6 mm FWHM and 10,000 permutations were used in 

all analyses. We used cluster-level inferences with FWE-correction at α = .025 in each 

direction for the two-tailed tests and α = .05 for the one-tailed test, in both cases with a 

cluster forming threshold of .005 uncorrected. All results are presented on an inflated 

representation of the cortex using the BrainNet Viewer (Xia et al., 2013, 

http://www.nitrc.org/projects/bnv/) based on a standard ICBM152 template. 

 

http://www.nisox.org/Software/SnPM13/
http://www.nitrc.org/projects/bnv/
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3.3.6.4 Univariate fMRI analysis 

In addition to RSA, we used univariate analysis to test whether activation in PrC was related 

to the conceptual confusability of an object, in a replication of Clarke and Tyler (2014), and 

whether this activation predicted memory. We also used activations to define additional ROIs 

(see Regions of interest). The first level GLM for each participant included one regressor of 

interest for each of the 4 experimental conditions (subsequent hits, misses, false alarms, and 

correct rejections). For each condition, we also included 4 linear parametric modulator 

regressors representing concept confusability values for each concept with other concepts in 

the CSLB property norms (Devereux et al., 2014). We first computed a semantic similarity 

score between each pair of concepts (see RSA region of interest analysis, Model RDMs). The 

concept confusability score of each concept was then equal to the sum of squared similarities 

between it and the other concepts in the set. This was equivalent to a weighted sum of pair-

wise similarities in which each weight was the between-concept similarity itself, a measure 

used in our recent behavioral study in Chapter 2 (Naspi et al., 2020). As also specified in the 

preregistration, since the results of the concept confusability analysis diverged from those of 

Clarke and Tyler (2014), we ran an additional analysis using a measure of concept 

confusability with a stronger weighting scheme equivalent to theirs. They defined concept 

confusability as the exponential of the ranked similarities of all the paired concepts, which is 

very close to a nearest neighbor scheme in which each concept’s similarity is equal to its 

similarity to the most similar concept in the set. Due to our larger number of items the 

exponential weighting produced extremely large weights, so we substituted the simpler 

nearest neighbor scheme (the two measures were correlated at r = .98). We used an explicit 

mask including only voxels which had at least a .2 probability of being in grey matter as 

defined using the MNI template. To permit inferences about encoding condition effects 

across participants, contrast images were submitted to a second-level group analysis (one 

sample t-test) to obtain t-statistic maps. The maps were thresholded at p < .05, FWE-

corrected for multiple comparisons at the voxel level using SPM (the preregistration specified 

3dClustSim in AFNI, but this function had since been updated (Cox et al., 2017) so for 

simplicity we used the SPM default). Only regions whose activations involved contiguous 

clusters of at least 5 voxels were retained as ROIs for subsequent RSA analysis. 
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3.3.7 Code accessibility 

All analyses were performed using custom code and implemented either in MATLAB or R. 

All code and the data for the behavioral and the fMRI analyses are available through 

https://osf.io/z4c62/. 

3.5 Results 

3.5.1 Memory task performance 

In the study phase, participants correctly identified most of the time whether concepts began 

with a consonant or vowel on the incidental encoding task (M proportion = 0.78). Analysis on 

task engagement (see Materials and Methods, Behavioral data) using a GLMM showed that 

accuracy at encoding did not differ according to whether items that were tested as studied 

were later remembered relative to forgotten (β = .110, SEM = .242, z = .456, p = .649), or 

whether items that were tested as lures were later falsely recognized relative to correctly 

rejected (β = .051, SEM = .202, z = .251, p = .802). Similarly, a linear mixed model did not 

reveal any difference in RTs related to subsequent old items that were later remembered 

relative to forgotten (β = .002, SEM = .017, t = .123, p = .902), or subsequent lures that were 

later falsely recognized relative to correctly rejected (β = -.013, SEM = .015, t = -.873, p = 

.383). Thus, the fMRI subsequent memory effects are not attributable to differences in 

accuracy or time on task at encoding.  

At test, as a simple check on the overall level of performance we used the discrimination 

index Pr, i.e., the difference between the probability of a hit to studied items and the 

probability of a false alarm to novel items. All participants passed the preregistered inclusion 

criterion of Pr > 0.1. Overall, discrimination collapsed across confidence was very good (M = 

.649, SD = .131, t(27) = 26.259, p < .001). Discrimination was also above chance for high 

confidence (M = .771, SD = .152, t(27) = 26.868, p < .001) and low confidence judgments (M 

= .330, SD = .145, t(27) = 12.014, p < .001). This suggests that low confidence responses at 

test carried veridical memory, so we followed our preregistered plan to include trials 

attracting both high and low confidence responses in the subsequent memory analysis. 

Following an analogous procedure for false recognition of similar lures corrected by 

subtracting the proportion of false alarms to novel items, we also found that this was 

significantly above chance for judgments collapsed across confidence (M = .271, SD = .090, 

t(27) = 15.996, p < .001), and for both high confidence (M = .293, SD = .133, t(27) = 11.618, p 

https://osf.io/z4c62/
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< .001) and low confidence (M = .157, SD = .160, t(27) = 5.187, p < .001) considered 

separately. 

We then used a GLMM to quantify the influence of perceptual and semantic variables on 

memory performance according to item status. Our variables of interest were condition 

(studied, lure, or novel), concept confusability, C1 visual confusability, and color 

confusability (see Behavioral data for details). Results revealed modulations of memory by 

perceptual and semantic variables in line with our recent behavioral study in Chapter 2 (Naspi 

et al., 2020). People were less likely to recognize studied items for which the low-level visual 

representations (C1) were more similar to those of their nearest neighbor (β = -.166, SEM = 

.064, z = -2.584, p = .015), and also less likely to recognize studied items with high concept 

confusability relative to novel items (β = -.533, SEM = .067, z = -7.963, p < .001). As 

expected, concept confusability also had a substantial effect on false recognition of similar 

lures relative to novel items, whereby images whose concepts were more confusable with 

other concepts in the set were less likely to be falsely recognized (β = -.273, SEM = .064, z = 

-4.292, p < .001). 

 

3.5.2 Preregistered RSA analysis in regions of interest 

3.5.2.1 Perceptual and semantic representations predict true recognition  

To examine representations engaged during successful encoding we compared the fit of early 

visual, color, animal-nonbiological-plant, and semantic feature models for studied items 

tested as old that were subsequently remembered (number of trials, M = 61.41; range = 60-

146) versus forgotten (number of trials, M = 19.93; range = 17-104) (Fig. 4A). These 

comparisons were bidirectional, since engagement of perceptual and/or semantic processing 

in a region might either support or be detrimental to later memory. Thus, we used a two-sided 

Fisher’s randomization test T. In posterior ROIs, engagement of both perceptual and finer-

grained semantic representations tended to predict successful later recognition. In EVC, the 

early visual model strongly predicted later true recognition of studied items (M = .07, 95% CI 

[.05, .09], T = 1.86, p < .001). Thus, when the neural patterns at study were representing 

visual information, items were more likely to be correctly recognized. Both the early visual 

and semantic feature models also predicted true recognition in pVTC (M = .03, 95% CI [.02, 

.04], T = .82, p < .001, and M = .02, 95% CI [.01, .04], T = .67, p = .007, respectively). In 
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contrast, taxonomic semantic representations coded more anteriorly were associated with 

later forgetting. In aVTC and in the LIFG, model fit for categorical semantic information 

represented by the animal-nonbiological-plant domain was less for remembered than 

forgotten studied items (M = -.01, 95% CI [-.02, -.01], T = .35, p = .001, and M = -.02, 95% 

CI [-.04. -.01], T = .65, p = .004, respectively). Thus, when neural patterns in these regions 

were aligned with items’ taxonomic categories, participants were less likely to successfully 

recognize them. No other results were significant. 

 

We also checked which representations showed unique effects that predicted memory after 

controlling for effects of other significant models using partial correlation. In pVTC, only the 

early visual model uniquely predicted successful recognition memory for studied items (M = 

.02, 95% CI [.01, .03], T = .64, p = .004) (but see Exploratory ROI analysis). 
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Figure 4. Perceptual and semantic representations predicting subsequent memory for a priori 

ROIs and models. Plots show the relative difference in the strength of perceptual and 

semantic representations at the group level associated with: A, true subsequent memory 

(greater representational similarity for remembered than forgotten items, positive bars); B, 

false subsequent memory (greater representational similarity for falsely recognized than 

correctly rejected items, positive bars). Error bars represent the standard error of the mean 
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(SEM) across participants. Asterisks indicate models for which Spearman’s rho differed 

significantly from zero at the group level (two-sided Fisher’s randomization test for location; 

Bonferroni correction calculated by multiplying the uncorrected p-value by the number of 

preregistered ROIs, i.e., 6). * p < .05, ** p < .01, *** p < .001 

 

3.5.2.2 Weak perceptual representations predict false recognition  

To examine how the perceptual and semantic representations embodied in our theoretical 

models contributed to subsequent memory for lures, we compared RSA model fit for items 

that were later falsely recognized (number of trials, M = 30.71; range = 26-107) versus 

correctly rejected (number of trials, M = 50.61; range = 54-131) (Figure 4B). In posterior 

regions, weaker low-level visual representations of pictures predicted subsequent false 

recognition of lures. We observed this pattern in both the EVC and the LITG (M = -.02, 95% 

CI [-.04, -.01], T = 0.66, p = 0.047, and M = -.02, 95% CI [-.04, -.01], T = .69, p = .026, 

respectively). Thus, when neural patterns in these regions were not aligned with the early 

visual model, items were more likely to be falsely recognized. No other results were 

significant.  

 

3.5.2.3 Perceptual and semantic object processing irrespective of memory 

Replicating Clarke and Tyler (2014), we also examined the perceptual and semantic 

representations of objects that were reflected in fMRI activity patterns regardless of memory 

encoding. The results (Fig. 5) showed that while visual information is broadly represented 

posteriorly, activity patterns in the aVTC, PrC, and LIFG reflect finer-grained semantic 

information. Posteriorly, EVC showed a strong relationship with the low-level visual model 

(M = .08, 95% CI [.06, .10], T = 2.21, p < .001), and a weaker but significant relation with the 

semantic feature model (M = .01, 95% CI [.00, .01], T = .20, p = .032). More anteriorly, the 

low-level visual and semantic feature models were both significantly related to activity 

patterns in pVTC (M = .04, 95% CI [.03, .04], T = 1.00, p < .001, and M = .02, 95% CI [.02, 

.03], T = .60, p < .001, respectively) and in LITG (M = .01, 95% CI [.00, .02], T = .26, p < 

.038, and M = .02, 95% CI [.01, .02], T = .45, p < .001, respectively). At the apex of the 

ventral visual pathway, semantic feature information was coded in both the bilateral aVTC 

(M = .01, 95% CI [.00, .01], T = .17, p = .006) and in bilateral PrC (M = .01, 95% CI [.00, 
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.01], T = .19, p < .001). These findings replicated those of Clarke and Tyler (2014). The 

specific semantic properties of objects were also represented in the LIFG (M = .01, 95% CI 

[.01, .02], T = .30, p = .001). 

 

 

Figure 5. Semantic and perceptual representations represented in ROIs regardless of memory 

encoding. Plots show the strength of perceptual and semantic representations at the group-

level within patterns of activity along the ventral stream and frontal regions. Error-bars are 

standard error of the mean (SEM) across subjects. Asterisks above and below the bars depict 

p-values for tests of whether each individual Spearman’s correlation is greater than zero (one-

sided Fisher’s randomization test for location; Bonferroni correction calculated by 

multiplying the uncorrected p-value by the number of preregistered ROIs, i.e., 6). * p < .05, 

** p < .01, *** p < .001 

 

We then ran a partial correlation on those ROIs showing significant effects for multiple 

models. As expected, patterns of activity in the EVC were uniquely related to the early visual 

model (M = .08, 95% CI [.06, .10], T = 2.20, p < .001), replicating Clarke and Tyler's (2014) 
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results. Thus, the semantic feature model was no longer significant when the early visual 

model was controlled for. More anteriorly, the pattern of activity in the pVTC had unique 

relations to both low-level visual and semantic feature information (M = .03, 95% CI [.03, 

.04], T = .96, p < .001, and M = .02, 95% CI [.01, .02], T = .54, p < .001, respectively). 

However, after controlling for the low-level visual model, activity patterns in the LITG were 

only uniquely associated with semantic feature representations (M = .02, 95% CI [.01, .02], T 

= .44, p < .001). Thus, like Clarke and Tyler (2014), we found that visual information is 

represented in early visual regions. We also replicated their finding that semantic feature 

similarity information was coded more anteriorly in the PrC, and found further, also anterior, 

regions that showed a similar pattern, in the aVTC and the LIFG (see also RSA searchlight 

fMRI analysis). 

 

3.5.3 Exploratory RSA analysis in regions of interest 

3.5.3.1 Perceptual and semantic representations in pVTC subdivisions predict true 

recognition 

In the preregistered analyses reported above, our large pVTC ROI showed evidence of both 

visual and semantic feature representations predicting memory success. We therefore 

explored whether four subdivisions of this large bilateral region showed distinct effects: the 

LG, ITG, FG, and PHC (see Regions of interest). Moreover, given our strong a priori 

prediction of involvement of PrC in subsequent memory, we ran exploratory analyses in left 

perirhinal cortex (LPrC) and right perirhinal cortex (RPrC), separately. The results are shown 

below in Figure 6. Posteriorly, in bilateral LG, perceptual information related to the early 

visual model predicted later recognition of studied items (M = .03, 95% CI [.01, .04], T = .74, 

p = .002), as it did in the EVC ROI. In contrast, more anteriorly, activity patterns in the FG 

related to both the low-level visual and semantic feature models predicted subsequent true 

recognition (M = .03, 95% CI [.02, .05], T = .87, p = .002, and M = .04, 95% CI [.02, .05], T 

= 1.01, p < .001, respectively), as did categorical semantic information represented by the 

animal-nonbiological-plants model in the PHC (M = .02, 95% CI [.01, .03], T = .55, p = 

.019). Lastly, activity related to the categorical semantic model in the LPrC predicted 

subsequent forgetting (M = -.01, 95% CI [-.02, .00], T = .28, p = .023). 
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Figure 6. Perceptual and semantic representations predicting true subsequent memory in 

exploratory ROIs. Plots show the relative difference in the strength of perceptual and 

semantic representations at the group-level associated with true subsequent memory (greater 

representational similarity for remembered than forgotten items, positive bars). Error bars 

represent the standard error of the mean (SEM) across participants. Asterisks indicate 

significance of tests of group level differences of Spearman’s rho from zero (two-sided 

Fisher’s randomization test for location; Bonferroni correction calculated by multiplying the 

uncorrected p-value by the number of exploratory ROIs, i.e., 6). * p < .05, ** p < .01, *** p < 

.001 

 

A partial correlation analysis for the FG (which showed effects of multiple models) 

confirmed that both the early visual and semantic feature models were uniquely associated 

with later true recognition (M = .02, 95% CI [.01, .03], T = .58, p = .034, and M = .03, 95% 

CI [.01, .04], T = .71, p = .002, respectively). Thus, both simple visual and object-specific 

semantic information contributed to memory after controlling for each other.  
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3.5.3.2 Perceptual representations in the early visual cortex predict true recognition 

Lastly, following our main analyses of true and false memory encoding, we wanted to check 

for evidence that the key representations predicting later memory differed according to the 

type of memory (true or false). Thus, we compared the fit of our theoretical models for 

studied items tested as old and subsequently remembered versus those tested as lures and 

subsequently falsely recognized. Results showed that low-level visual information mapped in 

EVC was stronger for true than false recognition (M = .04, 95% CI [.02, .06], T = 1.16, p < 

.001). No other results were significant at the Bonferroni-corrected threshold of 6 ROIs, but 

without a correction the theoretically important object-specific semantic representations in 

FG were also stronger for true than false recognition (M = .02, 95% CI [.00, .04], T = .61, p = 

.030). 

 

3.5.3.3 Post hoc RSA analyses by memory item type  

Where the RSA analyses showed that representational similarity differed significantly 

according to subsequent memory, we explored which trial types – hits or misses, and falsely 

recognized or correctly rejected – carried representations of the relevant information. To do 

this, we asked whether representational similarity was significantly different from zero for 

each trial type separately (Table 1).  For all models and ROIs where the alignment of neural 

patterns with a perceptual or semantic model positively predicted true memory, significant 

representational similarity was present only for subsequently remembered items. Examples 

were low-level visual representations in EVC and pVTC, and fine-grained semantic 

representations in pVTC. In contrast, for almost all models and ROIs in which the alignment 

of neural patterns with the model predicted forgetting, significant representational similarity 

was present only for forgotten items. This pattern was found in aVTC and LIFG, and in the 

exploratory analysis, in LPrC. Lastly, in the visual regions where the alignment of neural 

patterns with low-level visual representations predicted correct rejection of lures in early and 

late visual regions, there was significant representational similarity only on correct rejection 

trials.  
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Table 1. Post hoc analysis in regions associated with true and false subsequent memory 

in the preregistered and exploratory analysis. 

 

 
True subsequent memory (Sub hits > Sub misses) 

Preregistered 

ROIs 

Early visual model Color model A-N-P model Semantic feature model 

M CI M CI M CI M CI 

EVC 
   Sub hits 

   Sub misses 

 
0.07*** 

0.02 

 
0.05-0.09 

0.01-0.03 

      

pVTC 
   Sub hits 

   Sub misses 

 
0.05*** 

0.01 

 
0.04-0.06 

-0.01-0.02 

     
0.04*** 

0.01 

 
0.04-0.05 

-0.01-0.03 

aVTC 
   Sub hits 

   Sub misses 

     
 0.00 

 0.02** 

 
0.00-0.01 

0.01-0.03 

  

LIFG 

   Sub hits 
   Sub misses 

 

 
 

 

 
 

 

 
 

 

 
 

 

-0.01 
 0.02* 

 

-0.01-0.00 
0.01-0.03 

 

 
 

 

 
 

Exploratory 

ROIs 

    

        

LG 
   Sub hits 

   Sub misses 

 
0.04*** 

0.00 

 
0.03-0.05 

-0.02-0.02 

      

FG 
   Sub hits 

   Sub misses 

 
0.04*** 

0.00 

 
0.03-0.05 

-0.02-0.02 

     
0.04*** 

0.00 

 
0.03-0.05 

-0.02-0.01 

PHC 

   Sub hits 
   Sub misses 

 

 

 

 
 

   

 0.04*** 
 0.01* 

 

0.03-0.05 
0.00-0.03 

  

LPrC 

   Sub hits 
   Sub misses 

 

 

 

 

   

 0.00 
 0.03*** 

 

0.00-0.01 
0.01-0.04 

  

 False subsequent memory (Sub FAs > Sub CRs) 

Preregistered Early visual Color A-N-P Semantic feature 

ROIs M CI M CI M CI M CI 

EVC 

   Sub FAs 

   Sub CRs 

LITG 
   Sub FAs 

   Sub CRs 

 

0.01 

0.04*** 

 
0.00 

0.03*** 

 

-0.01-0.03 

0.03-0.06 

 
-0.01-0.01 

0.02-0.05 

      

         

Mean estimate (M) and confidence intervals (CI) are reported in the table for each trial type. Asterisks 

indicate models for which Spearman’s rho differed significantly from zero at the group level (one-

sided Fisher’s randomization test with Bonferroni corrections for preregistered and exploratory ROIs, 

i.e., 6 each). A-N-P = animal-nonbiological-plant; FAs = false alarms; CRs = correct rejections. * p < 

.05; ** p < .01; *** p < .001 
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3.5.4 Preregistered RSA searchlight analysis 

3.5.4.1 Perceptual and semantic representations associated with memory encoding 

The RSA searchlight analysis tested for any further brain regions coding for perceptual and 

semantic information associated with memory encoding (Fig 7 and Table 2). The true 

subsequent memory models showed significant fit to activity patterns in several areas beyond 

the a priori ROIs. The color similarity model was related to patterns in the right parietal 

opercular cortex, superior frontal gyrus, and precentral gyrus, and this representation at 

encoding predicted later successful recognition of studied items. Fine-grained semantic 

features represented in the right lateral occipital cortex (LOC) also predicted true recognition. 

Coarse categorical semantic representations in right inferior frontal gyrus (RIFG; 

BA44/45/47) and frontal pole (FP) were associated with later forgetting, paralleling the 

findings for the a priori ROI in LIFG (BA44/45). 
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Figure 7. RSA searchlight results for perceptual and semantic models. The figure shows 

regions in which multivoxel activity pattern predicted successful subsequent true recognition 

(hot map) and unsuccessful true recognition (i.e., subsequent forgetting, cool map). All 

significant clusters are shown at the FWE-corrected threshold used for analysis (see Materials 

and Methods: RSA searchlight analysis). No suprathreshold voxels survived for the 

subsequent false recognition models. Similarity maps are presented on an inflated 

representation of the cortex based on the normalized structural image averaged over 

participants. 
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Table 2. RSA searchlight results showing perceptual and semantic effects on successful 

true memory encoding  

 

MNI coordinates and significance levels are shown for the peak voxel in each cluster. 

Anatomical labels are provided for peak locations in each cluster; Effects in clusters smaller 

than 20 voxels not shown; OT = Occipito-temporal division. 

 

3.5.4.2 Perceptual and semantic object processing irrespective of memory 

Searchlight analysis was also conducted for the perceptual and semantic model RDMs across 

all trials regardless of memory encoding (Fig. 5 and Table 3). The models showed significant 

fit to multivoxel activity patterns in several areas beyond the a priori ROIs. In particular, the 

effects for the color model were largely restricted to the right lateral occipital cortex, right 

Regions Cluster 

extent 

Cluster-level 

p(FWE) 

Pseudo-t x y z 

Early visual       

     R occipital pole 2493 .005 10.04 18 -93 9 

     R lingual gyrus   8.91 15 -78 -6 

     L occipital pole   7.20 -12 -96 6 

Color       

     R parietal operculum cortex 1756 .010 4.77 48 -21 24 

     R superior frontal gyrus 

     R precentral gyrus 

 

 

 

 

3.91 

3.58 

9 

18 

3 

-18 

66 

69 

Animal-nonbiological-plant       

     R inferior frontal gyrus (BA44) 1405 .012 6.05 54 15 27 

     R inferior frontal gyrus (BA45) 

     R frontal pole 

 

 

 

 

5.27 

4.35 

52 

51 

24 

39 

18 

3 

     R inferior frontal gyrus (BA47)   3.34 33 30 -18 

Semantic feature       

     R lingual gyrus 1230 .018 4.44 12 78 -12 

     R lateral occipital cortex   4.32 42 -75 -12 

     R occipital fusiform gyrus 

     R inferior temporal gyrus (OT) 

 

 

 

 

4.29 

3.43 

39 

45 

-72 

-60 

-12 

-15 
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middle temporal gyrus, and intracalcarine cortex, but also extended into the left lateral 

occipital cortex and supramarginal gyrus. Categorical semantic representations represented 

by the animal-nonbiological-plant domain were largely restricted to posterior parts of the 

ventral stream, highlighting the coarse nature of object information represented in the 

posterior ventral temporal cortex. This included the right temporal fusiform cortex, the right 

lingual gyrus, and the posterior division of parahippocampal cortex, but also extended into 

the middle temporal lobe. In contrast, representation of finer-grained semantic properties of 

objects extended more anteriorly in the ventral pathway beyond the preregistered ROIs, into 

bilateral hippocampus, temporal pole and ventromedial frontal regions. 

 

 

Figure 8. RSA searchlight results for perceptual and semantic models. The figure shows regions in 
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which multivoxel activity pattern was associated with object processing (i.e., irrespective of memory 

encoding). All significant clusters are shown at the FWE-corrected threshold used for analysis (see 

Materials and Methods: RSA searchlight analysis). Similarity maps are presented on an inflated 

representation of the cortex based on the normalized structural image averaged over participants. 

 

Table 3. RSA results showing perceptual and semantic effect of object processing 

Regions Cluster 

extent 

Cluster-level 

p(FWE) 

Pseudo-t x y z 

Early visual       

     R occipital pole 4844 .002 13.10 18 -96 12 

     L occipital pole   13.02 -15 -99 6 

     R occipital fusiform gyrus   11.53 18 -78 -12 

Color       

     R lateral occipital cortex 1121 .019 5.97 45 -75 -3 

     R middle temporal gyrus    3.45 36 -57 15 

     R intracalcarine cortex   3.45 21 -72 3 

     L lateral occipital cortex 714 .044 5.67 -42 -81 -3 

     L supramarginal gyrus   3.66 -60 -48 15 

Animal-nonbiological-plant       

     R lateral occipital cortex 2110 .005 6.05 45 -78 6 

     R lingual gyrus   5.98 30 -39 -6 

     R temporal fusiform cortex   4.18 39 -54 -18 

     L parahippocampal cortex 3865 .002 5.14 -18 -39 -21 

     L middle temporal gyrus   4.58 -63 -42 0 

     L supramarginal gyrus   4.43 -60 -42 30 

Semantic feature       

     L lateral occipital cortex 

     R lateral occipital cortex 

28111 

 

.000 

 

10.08 

9.69 

-48 

51 

-75 

-72 

9 

6 

     R temporal fusiform cortex 

     L temporal fusiform cortex 

  

 

8.12 

7.10 

42 

-45 

-51 

-60 

-15 

-15 

     L middle temporal gyrus 

     L hippocampus 

     L perirhinal cortex 

     R inferior frontal gyrus (BA45) 

 

 

 

 

 

 

 

 

6.46 

5.50 

4.58 

4.20 

-60 

-33 

-27 

51 

0 

-27 

-12 

27 

-18 

-12 

-36 

0 
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MNI coordinates and significance levels shown for the peak voxel in each cluster. Anatomical labels 

are provided for locations in each cluster. Effects in clusters smaller than 20 voxels not shown. 

 

3.5.5 Preregistered univariate fMRI analysis 

3.5.5.1 Encoding activity predicting true and false recognition  

Univariate analysis was run to derive ROIs for RSA based on subsequent memory effects in 

regions where prior literature is suggestive, but not clear, regarding their involvement. This 

showed significant activation for subsequently remembered > subsequently forgotten items in 

the LITG (cluster size: k = 13, p < 0.05 FWE). No significant activation was revealed for 

subsequently falsely recognized > subsequently correctly rejected items after FWE 

correction.  

 

3.5.5.2 Parametric effect of concept confusability 

Finally, we were interested in the specific role of the PrC, and possibly aVTC, in processing 

conceptually confusable objects. These regions were not related to parametric changes in 

concept confusability regardless of memory encoding. Therefore, we did not replicate Clarke 

and Tyler (2014)’s finding of increased activation for more conceptually confusable objects 

(uncorrected p = .139 and p = .05 for PrC and aVTC, respectively). Subsequent memory 

effects were also not significant at the preregistered FWE-corrected threshold. However, at an 

uncorrected threshold, activity associated with concept confusability was greater for 

subsequently forgotten than remembered items in right PrC (cluster size: k = 12, p < .005) 

and bilateral aVTC (right cluster size: k = 19, p < .001; left cluster size: k = 6, p < .001). 

     R inferior frontal gyrus (BA44) 

     R ventromedial prefrontal cortex 

     L ventromedial prefrontal cortex 

     L inferior frontal gyrus (BA44) 

     L ventral anterior temporal lobe 

     L inferior frontal gyrus (BA45) 

     L temporal pole 

     R hippocampus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.10 

4.08 

4.03 

4.02 

3.84 

3.62 

3.60 

3.34 

51 

9 

-6 

-51 

-45 

-51 

-36 

33 

18 

51 

51 

18 

-9 

27 

3 

-12 

9 

-12 

-12 

12 

-39 

0 

-36 

-18 
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Activity associated with concept confusability was also greater for subsequently falsely 

recognized than correctly rejected items in bilateral PrC (right cluster size: k = 35, p < .005; 

left cluster size: k = 11, p < .005), and right aVTC (cluster size: k = 22, p < .005), and for 

subsequently falsely recognized than remembered items in bilateral PrC (right cluster size: k 

= 25, p < .005; left cluster size: k = 12, p < .005), and right aVTC (cluster size: k = 16, p < 

.005). 

 

3.6 Discussion 

Our results show that semantic and perceptual representations play distinct roles in true and 

false memory encoding. By combining explicit models of prior conceptual knowledge and 

image properties with a subsequent memory paradigm, we probed their separate contributions 

to encoding of objects. Fine-grained perceptual and semantic processing in the ventral visual 

pathway both predicted later recognition of studied objects, while coarser-grained categorical 

semantic information processed more anteriorly predicted forgetting. In contrast, only weak 

low-level visual representations in posterior regions predicted false recognition of similar 

objects. The data provide the first direct tests of fuzzy-trace theory’s assumptions about how 

memories are encoded, and suggest that semantic representations may contribute to specific 

as well as gist memory phenomena (Brainerd and Reyna, 2002).  

 

Our results for the early visual model in the ROI and searchlight analyses converge with 

studies showing univariate subsequent memory effects in the same regions (Kim and Cabeza, 

2007; Kirchhoff et al., 2000; Pidgeon and Morcom, 2016; Wagner et al., 1998). Distributed 

low-level visual representations in EVC predicted successful later recognition of specific 

studied objects. The C1 HMax representations embody known properties of primary visual 

cortex relating to local edge-orientations in images (Kamitani and Tong, 2005), and this 

model clustered our object images by overall shape and orientation (Fig. 2). These results 

converge with Davis et al. (2020)’s recent finding that RSA model fit for an early layer of a 

deep convolutional neural network (DNN) in early visual cortex predicted later memory for 

pictures. Our data point to specific lower-level properties available in the presented images 

that contribute to memory. The searchlight analysis showed that these properties also include 

color (Fig 7). The roles of the regions with significant memory effects are not clear, but 

overall, color information was represented in LOC as expected.   
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In late visual regions, such as LG and FG, activity patterns fitting the early visual model also 

predicted true recognition (Fig. 5 and 7), as hypothesized based on activation studies (Garoff 

et al., 2005; Kim, 2011; Kirchhoff et al., 2000; Stern et al., 1996; Vaidya et al., 2002). We 

also found that object semantic features coded in FG predicted true recognition. These pVTC 

regions receive low-level properties as input to compute complex shape information 

(Kanwisher, 2001). Emerging data suggest that the FG processes visible (but also 

verbalizable) semantic features, supporting extraction of meaning from vision. Devereux et 

al. (2018) combined deep visual and semantic attractor networks to model the transformation 

of vision to semantics, revealing a confluence of late visual representations and early 

semantic feature representations in FG (see also Tyler et al., 2013). This converges with 

Martin et al.'s (2018) finding that FG patterns aligned with rated visual object features. Davis 

et al. (2020) reported that in FG the mid-layer of a visual DNN predicted memory for object 

names when the objects were forgotten, while semantic features of the object images 

predicted memory for the images when the names were forgotten. Our findings clarify that 

both image-based visual codes and non-image-based semantic feature codes are represented 

here during successful encoding. Together, the data further suggest that this initial extraction 

of visual semantic features is important for the effective encoding of memories of specific 

objects, but not false recognition of similar objects.  

 

More anteriorly, taxonomic categorical representations in aVTC and LIFG, as well as (in the 

searchlight analysis) RIFG, predicted forgetting of studied items. In an exploratory result, 

LPrC showed a similar pattern. These findings support the idea that coarse-grained domain-

level semantic processing is detrimental to memory for specific objects. Bilateral IFG 

typically shows strong univariate subsequent memory effects for nameable object stimuli 

(Kim, 2011). It is thought to support selection and control processes involved in elaborative 

semantic encoding (Jackson et al., 2015; Prince et al., 2007). Object-specific semantic 

information was also represented in this region, but did not predict recognition. In contrast, 

taxonomic semantic information was not represented on average across trials, but was present 

only for forgotten items, suggesting that processing this information at encoding was 

detrimental to memory. One possibility is that domain-level taxonomic processing impeded 

selection of specific semantic information. Another possibility, in line with the levels of 
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processing principle, is that the object naming encoding task did not strongly engage 

semantic control operations that promote subsequent memory (Craik and Lockhart, 1972; 

Otten and Rugg, 2001). Object naming depends on basic-level object-specific processing in 

the FG, consistent with the current findings (Taylor et al., 2012). Future studies can test this 

by manipulating cognitive operations at encoding to determine whether the representations 

promoting later memory are also task-dependent.  

 

The absence of any association between object-specific representations in PrC and encoding 

was unexpected, although we replicated Clarke and Tyler (2014)’s central finding that PrC 

represents object-specific semantic features. The PrC encodes complex conjunctions of visual 

(Barense et al., 2012; Bussey et al., 2002) and semantic features (Bruffaerts et al., 2013; 

Clarke and Tyler, 2014) that enable fine-grained object discrimination and may contribute to 

later item memory (Brown and Aggleton, 2001; Yonelinas et al., 2005). As the object-

specific semantic model fit embodied both shared and distinctive feature information, we ran 

a further, univariate analysis to examine the directional effect of shared features (concept 

confusability). We did not replicate Clarke & Tyler's (2014) finding that PrC activation was 

higher overall for more confusable objects, interpreted in terms of feature disambiguation. 

However, we found preliminary evidence that in both PrC and aVTC, activity correlating 

with concept confusability predicted forgetting of studied objects. This result is consistent 

with our finding that concept confusability strongly impairs true recognition, as well as 

discrimination between studied objects and lures (see also Chapter 2; Naspi et al., 2020), 

results replicated here. These data also suggest an interpretation of Davis et al.'s (2020) report 

that semantic feature model fit in PrC predicted later true recognition of object concepts when 

their pictures were forgotten, which may correspond to nonspecific encoding.  

 

An important and novel feature of our study is the investigation of the representational 

content associated with encoding of false memories. Our results revealed that weak visual 

representations coded in EVC and extending to LITG predicted later false recognition (Fig. 

5), and model fit differed significantly from true recognition. This supports fuzzy-trace 

theory’s proposal that visual detail is encoded in specific memory traces that confer 

robustness to later true recognition (Brainerd and Reyna, 2002). Several univariate fMRI 

studies of memory retrieval have shown greater early and late visual cortex activation for true 
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than false memories of objects (Dennis et al., 2012; Karanian and Slotnick, 2017, 2018; 

Schacter and Slotnick, 2004). Of the few encoding studies, two have found occipital 

activation predicting true but not false recognition (Dennis et al., 2008; Kirchhoff et al., 2000; 

Pidgeon and Morcom, 2016; but see Garoff et al., 2005). Here, we not only show that 

visually specialized regions are engaged more when encoding true than false memories, but 

also characterize the visual features involved. Thus, insufficient early visual analysis at 

encoding leads to poor mnemonic discrimination of similar lures. This may prevent later 

recollection of details of the studied item that would allow people to reject the similar lures 

(recollection rejection; Brainerd et al., 2003). The RSA result is also consistent with the 

behavioral increase in false recognition for more visually confusable objects (see also 

Chapter 2; Naspi et al., 2020). 

 

We did not find any evidence here that semantic processing contributes to false memory 

encoding, and in FG, semantic feature representations impacted true memory encoding more 

strongly. Clearly, we cannot place weight on the null result, and our models did not 

comprehensively address all potential semantic processes but focused on concept-level 

processes we have shown to contribute behaviorally in this task (see Chapter 2; Naspi et al., 

2020). Lateral and ventral temporal regions previously implicated in false memory encoding 

in verbal tasks did not show significant effects here (Chadwick et al., 2016; Dennis et al., 

2007). These areas may support higher-level verbal semantics linking studied items to lures. 

Nonetheless, both in the current task and following deep semantic judgments at encoding (see 

Chapter 2; Naspi et al., 2020), concept confusability reduced lure false recognition relative to 

novel objects as well as true recognition. An intriguing possibility is that the semantic 

processes reducing lure false recognition operates at retrieval rather than at encoding. This 

hypothesis will be tested using RSA analysis of retrieval phase brain activity in this task. 

 

In conclusion, we have revealed some of the visual and semantic representations that allow 

people to form memories of specific objects and later reject similar novel objects. This is the 

first – to our knowledge – preregistered study of neural representations in memory encoding, 

and the first probe of representations predicting false recognition. Using previously validated 

representational models, we were able to disentangle low-level image properties from 

semantic feature processing. The data provide novel support for theoretical assumptions 
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implicating visual detail in specific memory encoding, but suggest that semantic information 

may contribute to specific as well as gist memory. Our approach offers a path by which 

future studies can evaluate the respective roles of encoding and retrieval representations in 

true and false memory. 

 

Chapter 4: Reducing Emphasis on Shared Semantic Information Affects 

Object Mnemonic Discrimination in Older Adults 

4.1 Abstract 

Older adults are prone to misrecognize objects that are semantically and perceptually similar 

to those they have previously encountered. These errors are typically attributed to shared 

semantic gist, but may also reflect inefficient encoding of perceptual features. In two 

experiments, we investigated age-related differences in the effects of multiple objective 

semantic and perceptual measures that have been found to be important determinants of 

mnemonic discrimination in young adults. We quantified semantic similarity at two different 

levels – concept confusability, indexing each concept’s tendency to activate other similar 

concepts via shared features, and item exemplarity, indexing the strength with which depicted 

objects activated their concepts – as well as low-level visual confusability. In Experiment 1 

(N= 60, 60), participants studied single object images for each basic level concept, followed 

by a recognition memory test including studied items, similar lures, and novel items. As in 

young adults, true recognition was lower for more confusable concepts, while images with 

higher rated exemplarity were more likely to be falsely recognized. The two groups did not 

differ significantly in true or false recognition. However, in Experiment 2 (N = 60, 60) when 

multiple exemplar objects were studied for each concept, true and false recognition were both 

greater in the older than the young group. Critically, the negative effects of concept 

confusability on both true and false recognition were attenuated in the older relative to the 

young group, although the effects of item exemplarity and visual confusability of individual 

items did not differ according to age. The results point to reduced spontaneous processing of 

object-specific conceptual features in older people, which would be consistent with a 

reduction in general cognitive resources, but inconsistent with the assumption that gist, or 

relational processing, is always increased as a result. 
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4.2 Introduction 

Difficulty with memory for details is one of the major complaints of older adults (Hertzog, 

2002; Lineweaver & Hertzog, 1998). In the laboratory, this difficulty is manifested 

particularly by a reduction in mnemonic discrimination between previously studied items and 

similar lures (Fraundorf et al., 2019; Koutstaal & Schacter, 1997), as well as by impaired 

recollection of details and contextual information (Spencer & Raz, 1995). Substantial age-

related differences are also seen in tasks involving working memory, attention, inhibition, 

and processing speed, all of which can be considered as types of executive function (Grady, 

2012). Nevertheless, some aspects of cognition are maintained with age, notably semantic 

memory (Umanath & Marsh, 2014). It has therefore been proposed that older adults rely 

more than young adults on semantic memory to support declining episodic memory, and are 

more likely to falsely recognize semantically similar lures in mnemonic discrimination tasks 

(Koutstaal et al., 2003; Reder et al., 2007; Umanath & Marsh, 2014). Without 

operationalizing semantic processing, it is difficult to draw clear conclusions on its 

contribution to support of memory since perceptual attributes may also play a role. The 

current study investigated the degree to which age-related differences in mnemonic 

discrimination for objects are attributable to differences in their processing of semantic, or 

perceptual information, using objective measures of these dimensions that we recently 

showed to be important determinants of young adults’ memory performance (see Chapter 2; 

Naspi et al., 2020). 

 

Older adults are more prone to false recognition than young adults when they are asked to 

remember specific visually-presented objects that are semantically and perceptually similar to 

the lures encountered at test (Koustaal et al., 1999; Koutstaal & Schacter, 1997; Pidgeon & 

Morcom, 2014; Yassa & Stark, 2011). In the typical categorized pictures task, in which lures 

represent different exemplars of studied basic level concepts (e.g., a different cat), age-related 

differences are prominent, with older adults false recognizing up to .60–.70 of lures compared 

with .25–.30 in younger adults (Koustaal et al., 1999; Koutstaal & Schacter, 1997; Koutstaal 

et al., 2001). Similar effects are often observed for verbal stimuli (Balota et al., 1999; LaVoie 

& Faulkner, 2000; Norman & Schacter, 1997; but see Burnside et al., 2017; Gallo 2006; 

Pansuwan et al., 2020). This effect of age has been attributed to an increased reliance on 

semantic gist, i.e., encoded semantic properties of studied items that are shared with 
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semantically related lures (Brainerd & Reyna, 2002; Koutstaal et al., 2003; Tun et al., 1998) 

However, perceptual properties may also contribute to age-related differences in mnemonic 

discrimination (Koutstaal & Schacter, 1997; Pidgeon & Morcom, 2014). 

 

As mentioned earlier, one broad proposal is that older adults’ memory depends more on 

semantic knowledge than younger adults’ memory. This may reflect not only preservation of 

knowledge in aging, but the acquisition of more knowledge over the lifespan (Reder et al., 

2007; Umanath & Marsh, 2014; Zacks & Hasher, 2006). This knowledge can support older 

people’s memory (Castel, 2005; Castel et al., 2013; Matzen & Benjamin, 2013; McGillivray 

& Castel, 2017), but can also lead to confusions among items that are semantically similar 

(Koutstaal et al., 2003). According to this view, older adults’ performance should be driven 

more by semantic similarity between studied items and lures. Koutstaal et al. (2003)’s second 

experiment supported this idea since older adults were more likely than young adults to 

falsely recognize meaningful lures that were semantically and perceptually similar to studied 

familiar objects than abstract lures that were perceptually similar to studied unfamiliar 

abstract shapes (for a replication, see Pidgeon & Morcom, 2014). Although this theory can 

account well for some memory errors made by older adults, there are conflicting data. One 

challenge is that prior knowledge does not always benefits older people’s memory more 

(Badham et al., 2012; Badham et al., 2016). For example, in a series of experiments that 

elicited emphasis on pre-existing semantic knowledge (i.e., encoding of familiar versus novel 

proverbs, or meaningful versus meaningless scenes), Badham et al. (2016) found that young 

and older adults can utilise prior knowledge to the same extent, and that the performance in 

an old-new recognition memory test benefited both age groups similarly, at least for true 

recognition.  

 

A more specific proposal to explain age-related errors in mnemonic discrimination is that 

older adults particularly emphasize basic-level semantic information when processing 

pictures, by focusing on the concept name (Koutstaal et al., 2003). This semantic 

categorization account suggests that what is critical is meaning overlap between studied and 

lure exemplar items that share the same basic-level concept. It is assumed that semantic 

categorization at this level detracts from the encoding of further, perceptual features. This 

proposal has not been systematically tested: initial evidence from Koutstaal et al.'s (2003) 
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first experiment suggested that older adults were more likely to false alarm to lure pictures of 

ambiguous objects when these pictures were accompanied by disambiguating verbal labels at 

study and at test, but not when the pictures were presented alone. However, it was not 

established that this effect on lure recognition survived a correction for group differences in 

response bias. One way to test this account further is to examine the effects of age on 

influences of semantic relations at multiple different levels in the same task, as we outline 

below. 

 

Any semantically-based account of age effects on mnemonic discrimination is further 

challenged by a few studies that have shown increased false recognition in older people for 

perceptually similar but semantically unrelated lures (Burnside et al., 2017; Pidgeon & 

Morcom, 2014; but see Pansuwan et al., 2020). In one study, Boutet et al. (2019) found 

increased false alarms in older adults for perceptually similar lures representing different 

exemplars of studied chairs or inverted faces. A strength of this study was that perceptual 

similarity was objectively measured in terms of luminance and contrasts, and semantic 

similarity assumed to be matched. These findings, as well as the age effects for semantically 

similar lures, can also be explained by the alternative view that older adults are more 

sensitive to generic similarity. Wilson et al. (2006) proposed that aging leads to inefficient 

pattern separation by the hippocampus. Pattern separation is a process whereby stimuli 

produce distinct neuronal representations of similar input at encoding to support later 

mnemonic discrimination between studied and novel items (Stark et al., 2013; Wilson et al., 

2006). In aging, overlapping neuronal memory representations are thought to be due to 

multiple dimensions of similarity, without a special focus on semantic similarity (Wilson et 

al., 2006; Yassa et al., 2011; Yassa et al., 2011). Greater overlap of representations may 

account for increased false recognition in older adults (Toner et al., 2009). Neuroimaging 

studies in humans, as well as studies with animals, support this proposal  (Reagh et al., 2018; 

Yassa et al., 2011; Yassa et al., 2011). At the behavioural level, a critical test of this account 

is whether the effects of perceptual as well as semantic similarity on mnemonic 

discrimination increase in aging. 
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4.2.1 The Current Research 

The studies reviewed above suggested that semantic and/or perceptual relations between 

studied items and lures are a key driver of age-related increases in false recognition and 

reductions in mnemonic discrimination. The two experiments reported here used objectively 

quantified multiple dimensions of semantic and perceptual similarity to investigate their 

impact on age-related differences (see Chapter 2; Naspi et al., 2020). We included variables 

that we previously showed to impact memory in young adults, examining the effects of 

semantic similarity on memory at two distinct levels, as well as low-level visual 

confusability. The first, concept confusability, indexed semantic similarity at the concept 

level in terms of the overlap of a concept’s semantic features with the features of other 

concepts. These shared semantic features are informative about domain-level and 

superordinate category membership, but not so helpful for identifying individual concepts. 

For example, processing a lion’s properties < has legs >, < has eyes >, and < has a tail > 

would emphasize its land animal category as these features are shared with other animals like 

tiger and dog. This measure derives from the Conceptual Structure Account’s distributed 

feature-based model of semantic processing (Tyler & Moss, 2001). In contrast, item 

exemplarity is a measure of semantic overlap at the item level, in this case between individual 

exemplars and their basic level concepts. This measure was derived from participant ratings 

of how good an exemplar was of its concept. Lastly, visual confusability was measured using 

an index from the HMax computational model of vision that captures low-level visual 

properties of objects (Riesenhuber & Poggio, 1999; Serre et al., 2007). In this typical 

mnemonic discrimination task, studied items and lures are different exemplar images of the 

same basic-level concept and share semantic and perceptual similarity at the item level.  

 

Our previous analysis in young adults (see Chapter 2; Naspi et al., 2020) showed that concept 

confusability, which captured generic processing across concepts, reduced both recognition 

of studied items and false recognition of similar lures. In contrast, both item exemplarity and 

low-level visual confusability captured shared characteristics of studied and lure items, and 

both increased false recognition. We had three alternative hypotheses for the age effects. If 

semantic processing of objects is emphasized in general in older compared to young adults, 

we predicted older adults would show enhanced impact of both concept confusability and 

item exemplarity on mnemonic discrimination. Alternatively, based on the semantic 
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categorization account (Koutstaal, et al., 2003), we reasoned that age effects at concept- and-

item levels would differ because the memoranda are nameable objects. If older adults focus 

more on processing individual basic-level concepts, they should show an increase in false 

recognition relative to the young for higher exemplarity lures. In contrast, the greater reliance 

on item-level processing may reduce processing of shared semantic relations across concepts, 

so the older group should show reduced effects of concept confusability. Lastly, if age effects 

on mnemonic discrimination reflect impaired hippocampal pattern separation, we predicted 

that older adults would be more prone to false recognition of lures that were more similar to 

their studied items at the item level, whether the similarity was semantic or perceptual. 

Therefore, they should show greater effects of both item exemplarity and visual confusability 

than the young, suggesting a generalized impairment in the specificity of memory 

representations for individual items. In a first, exploratory, experiment we presented a single 

exemplar of each basic level concept at study, and participants were later tested on a single 

lure at test. This did not reveal any age-related differences, so in a second experiment we 

increased the number of studied exemplars of each basic level concept. 

 

4.3 Experiment 1 

 

4.4 Materials and Methods 

4.4.1 Participants 

The study included one hundred and twenty participants. 60 young adults aged 18-33 years 

and 60 older adults aged 65-80 years. Demographic characteristics are summarized along 

with baseline cognitive test results in Table 1. The young adult data is the same as in Chapter 

2 (Naspi et al., 2020). We excluded eleven further young adults from data analysis: 7 due to 

errors in stimulus lists or data acquisition issues, 1 due to misunderstanding of instructions, 

and 3 who did not meet the inclusion criterion for English fluency. Three further older adults 

were also excluded: 1 due to data acquisition issues, and 2 due to poor memory performance. 

The sample size was determined a priori using the simR package in R (Version 1.0.4; Green 

& Macleod, 2016). We powered the study for an interaction of aging (older vs. young) × 

condition (lure vs. new) × concept confusability, based on results on young adults suggesting 

an effect size equivalent to Cohen’s d = 0.17 (OR = 1.35). With N = 120 (60 young adults, 60 

older adults) we had 87.50 % power to detect such an effect at alpha = .05. Inclusion criteria 
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were fluency in English (spoken since at least the age of 5 years), normal or corrected-to-

normal vision, and a good self-reported health. Participants were compensated financially or 

with course credits. They were contacted by local advertisement and provided informed 

consent. The study was approved by the University of Edinburgh Psychology Research 

Ethics Committee (Ref. 278-1617/1). 

 

 

Table 1 

Demographic and Cognitive Test Data for Experiment 1 and Experiments 2 

 

 Experiment 1 Experiment 2 

 Young Adults 

(N = 60) 

Older Adults 

(N = 60) 

Young Adults 

(N = 60) 

Older Adults 

(N = 60) 

Age 21 (2.2)* 71 (3.6)* 21.2 (3.2)* 71.2 (3.6)* 

Sex 45 F; 15 M* 34 F; 26 M* 48 F; 12 M 43 F; 17 M 

Years of Education 15.63 (1.89) 16.27 (2.99) 15.97 (2.41) 15.75 (3.65) 

Trail Making Test 22.46 (14.56) 27.65 (18.17) 25.59 (15.11) 29.43 (19.33) 

Digit Span Forward 6.48 (1.17)* 7.18 (1.41)* 6.97 (1.44) 7.23 (1.50) 

Digit Symbol 87.42 (12.42)* 70.52 (15.37)* 89.55 (14.09)* 68.15 (13.77)* 

Standardized WTAR 116.80 (9.73)* 120.88 (6.21)* 115.50 (9.23)* 121.00 (5.22)* 

Semantic Fluency 27.42 (5.64) 26.75 (7.03) 23.80 (6.16) 24.98 (6.03) 

FAS Fluency 40.97 (11.46)* 56.15 (15.20)* 42.17 (10.29)* 51.70 (14.69)* 

 

Note. Mean (standard deviation). * denotes significant within-experiment age difference (p < .05). 

The Trial Making Test score reflects the average difference in seconds between part B and A; the 

Digit Span Forward score represents the number of correct digits produced forwards; the Digit 

Symbol score consists of the number of items completed in 120 s in a substitution task; the Wechsler 

Test of Adult Reading (WTAR) yields a total number of irregular words correctly pronounced. This 

raw score is transformed to an age-adjusted standard score, which predicts IQ (M = 100; SD = 15); the 

Semantic and FAS Fluency tests were scored summing the total words produced for the animal 
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category and over three letters, respectively; F = Female; M = Male; See Cognitive Tests section for 

details of statistical analyses. 

 

4.4.2 Stimuli 

The stimuli were identical to those reported in Chapter 2 (Naspi et al., 2020). Briefly, each 

study list comprised 120 images of exemplars of different basic level concepts. Each test list 

consisted of 180 items: 60 studied images, 60 similar lures (i.e., different exemplars of 

previously studied basic level concepts), and 60 novel items (i.e., novel basic level concepts 

not previously studied). Three filler trials prefaced both study and test phases. We generated 

6 different study and test lists which fully counterbalanced the allocation of the basic level 

concepts and the two sets of images to conditions (studied, lure, and novel). 

4.4.3 Procedure 

The experiment consisted of a single study phase followed by a recognition test phase. 

Between study and test phases, all participants completed the following standardized 

cognitive tests (see Table 1) for 15 minutes: the Trail Making Tests (Tombaugh, 2004), the 

Digit Span Forward and Digit Symbol Coding of the Wechsler Adult Intelligence Scale IV 

(WAIS-IVUK; Wechsler, 2008), and the Wechsler Test of Adult Reading (WTAR; Wechsler, 

2001). Raw WTAR scores were converted to standard scores based on the UK 

standardization sample. Lastly, we administered the phonemic (FAS) and semantic (animal 

naming) fluency tests (Tombaugh et al., 1999). Participants viewed one image at a time 

during the study phase and rated their pleasantness from 1 (very unpleasant) to 5 (very 

pleasant) using a button press response. Trials were self-paced. At test, we presented one 

image at a time every 3 s and participants judged each as “old” or “new” indicating the 

confidence of their judgment. For full details, see Chapter 2 (Naspi et al., 2020). 

4.4.4 Variables of Interest 

The concept- and-item level variables of interest are illustrated in Figure 1 and described 

below. For further background on these measures, see Chapter 2 (Naspi et al., 2020). 
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Figure 1 

Schematic Depiction of Stimuli Used in Both Experiments 

 

Note. Columns show individual exemplars with the highest (top) and lowest (bottom) similarity scores 

on each concept- and-item level experimental variable. For concept confusability, the basic level 

concept name is given alongside images of both exemplars representing it in Experiment 1. High 

confusability concepts share more semantic features with other concepts. Item exemplarity is an index 

of similarity between the depicted exemplar and the concept representation. C1 visual confusability 

defines confusability of an item as the similarity with its most similar neighbor in the set and was 

obtained from gray-scaled version of the images depicted in Figure 1. For definitions see Variables of 

Interest section. 
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4.3.4.1 Concept Level  

Concept confusability. This measure emphasizes feature sharedness between concepts that 

share many semantic features (Clarke & Tyler, 2014; Devereux et al., 2014; Naspi et al., 

2020). Semantic similarity between concepts was computed as the cosine angle between 

feature vectors in a semantic feature matrix in which each concept was represented by a 

binary vector indicating whether each feature was associated with the concept (1) or not (0). 

Concept confusability with all the other concepts in the set was then calculated by a weighted 

sum of the similarities in which each weight was the between-concept similarity itself, i.e., 

the sum of squared similarities (see Figure 1). 30 participants also collected concept 

familiarity (not reported here). 

4.3.4.2 Item Level   

Item exemplarity. We obtained a measure of item exemplarity using a rating task in which 

pictures were presented together with their verbal label. Following Taylor et al. (2012), we 

asked participants to judge “how closely each picture resembles your mental image of the 

object”, giving their response on a 7-point scale (1 = poor picture of concept word, 7 = 

excellent picture of concept word). 30 participants provided the item exemplarity scores, 

which were averaged to give a single score per picture (see Figure 1 of Chapter 2; Naspi et 

al., 2020). 

Visual confusability. The low-level visual attributes of each picture, for a total of 360 images 

(2 per concept) were used to represent our basic level concepts. We first extracted HMax 

estimates of low-level visual object information: a C1 response related to early visual cortex 

(V1/V2). The response vector from the C1 layer was computed for grey-scaled versions of 

each image. Similarity between pictures was then calculated using the Pearson correlation 

coefficients between vectors. For each image we defined confusability as the similarity value 

with its most similar picture (i.e., the nearest neighbor; see Figure 1). 

4.4.5 Nuisance Variables  

Mnemonic discrimination is influenced by a range of other visual, phonological, lexical, and 

semantic factors in addition to the semantic and perceptual confusability measures of interest 

here. We controlled for the effect of the following nuisance variables, described in more 

detail in the Supplemental Material of Chapter 2: forward and backward associative strength 

estimated using a continuous association task (De Deyne & Storms, 2008; Nelson et al., 



 

117 
 

2004), word frequency (van Heuven et al., 2014), concreteness (Brysbaert et al., 2014), age 

of acquisition (Brysbaert & Biemiller, 2017), phonological neighborhood density (Baayen et 

al., 1995), the number of non-white pixels, color entropy (Chouinard & Goodale, 2012), and 

concept familiarity (derived from our rating task; see also Taylor et al., 2012).  

4.4.6 Statistical Analysis 

We tested our hypotheses using a generalized linear mixed-effect model analyses with the 

function glmer from the lme4 package in R (version 1.1-17, Bates et al., 2015). This analysis, 

that we used in Chapter 2 (Naspi et al., 2020) on the same data of young adults, generates 

log-odds-ratio coefficients that are formally proportional to d' in a Gaussian signal detection 

analysis (d' ≈ .6 logOR; DeCarlo, 1998; Wright et al., 2009). In the Results section we 

therefore report effect sizes in terms of d’ equivalent for ease of comparison with other 

studies. In the analyses, we tested for age-related differences in mnemonic discrimination 

driven by concept-and item level variables that predicted memory performance in the initial 

analysis in the same data of young adults (see Chapter 2; Naspi et al., 2020). These predictors 

of interest were concept confusability, item exemplarity, and C1 visual confusability. To test 

specific predictions about age-related differences for studied items and lures, we set the 

reference level for the condition factor to “novel” and for the age group to “young”. Thus, we 

assessed age-related differences in memory sensitivity (d’ equivalent) using simple contrasts 

that yielded a) modulations of older adults’ sensitivity for studied items relative to the young, 

reflecting true memory), and b) modulations of the older adults’ sensitivity for related lures 

relative to the young, reflecting false memory). The novel items provided c) an index of 

modulations of baseline false alarms for the older relative to the young group, equivalent to 

differences in response criterion (DeCarlo, 1998). In a final set of contrasts, we set the 

reference level for the condition factor to “lure”, keeping the reference level for age group as 

“young”, to assess modulations of the d) the overall older adult’s sensitivity relative to the 

young equivalent to d’). This allowed us to evaluate the effect of the semantic and perceptual 

variables on overall mnemonic discrimination performance in older relative to young adults, 

to determine the net effect of their modulations of true and false memory (Koutstaal & 

Schacter, 1997; Loiotile & Courtney, 2015; Naspi et al., 2020).  

 

Consistent with our previous analysis on the same data of young adults in Chapter 2 (Naspi et 

al., 2020), we specified a priori random intercepts of both participants and concepts 
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(Matuschek et al., 2017). In the fixed part, our variables of interest were age group (young, 

older), condition (studied, lure, novel), one concept-level variable (i.e., concept 

confusability), and two item-level variables (i.e., item exemplarity and C1 visual 

confusability). Within the concept-level and item-level partitions we also included the 

corresponding interactions with age and condition. To minimize model complexity, and 

because the nuisance variables were moderately-to-highly intercorrelated, we used the 7 

principal components (see Supplemental Material of Chapter 2, Table 5) that we obtained in 

the previous analysis on the same group of young adults with principal components analysis 

(PCA) using the prcomp function in R. PCA with varimax rotation produced a 7 factor 

solution which accounted for 86.14% of variance (this approach was the same as used in 

Chapter 2; Naspi et al., 2020). All the continuous predictor variables were standardized, and 

the resulting β coefficients representing log-odd-ratios were used to calculate the 

corresponding d’ coefficients. 

4.5 Results 

4.5.1 Cognitive Tests 

Cognitive test results for participants in Experiment 1 are summarized in Table 1. Young and 

older adults did not differ in years of education (t(118) = 1.39, p = .168), Trail Making Test 

(t(118) = 1.72, p = .087), and Semantic Fluency (t(118) = .57, p = .568. As expected, young 

adults outperformed older adults on the Digit Symbol Coding task (t(118) = 6.62, p < .001), 

while older adults showed a better performance on the Digit Span Forward (t(118) = 2.96, p = 

.004), WTAR (t(118) = 2.74, p = .007), and the FAS Fluency (t(118) = 6.18, p < .001). Chi-

squared test of independence revealed that the sex distribution differed between age groups 

(χ2(1) = 4.48, p = .034), i.e., in the young group there were more female participants than in 

the older group. 

 

4.5.2 Memory Performance 

The results of the mixed effects analysis are shown below in Table 2, and illustrated in Figure 

2. The results for effects including age-related differences are listed in Table 2, and analysis 

outcomes for young and older groups separately are reported within the text. Age-invariant 

effects are given in Supplemental Material of Chapter 4, Table 13. The pattern of findings 

was qualitatively similar when only high confidence mnemonic discrimination was analyzed, 



 

119 
 

so these results are not reported (https://osf.io/ndk83/). Participants’ responses were collapsed 

across confidence judgments as results. Coefficients in Table 2 represent log-odds-ratios with 

the corresponding d’ effects. All the p-values reported below are FDR-multiple comparison 

corrected (Benjamini & Hochberg, 1995). 

 

Table 2 

Age-Related Differences in Experiment 1  

 

Note. In the upper part of the table, the reference level of age group is set to “young adults”, and 

condition is set to “novel items”. In the lower part of the table, the reference level of age group is set 

to “young adults”, and condition is set to “lure items”. Parameter estimates (logOR), d’ equivalent, 

  

Variable Estimate d’ SE z-value p 

• Young Adults/Novel Items as Baseline 

(Intercept) 

Older 

Older × Lure 

 

-2.38 

-0.20 

0.15 

 

-1.35 

-0.11 

0.08 

 

0.11 

0.14 

0.10 

 

-21.65 

-1.44 

1.42 

 

<.001 

.249 

.249 

Older × Studied 

Older × Concept Confusability 

Older × Visual Confusability 

Older × Item Exemplarity 

Older × Lure × Concept Confusability 

Older × Studied Concept Confusability 

Older × Lure × Visual Confusability 

Older × Studied × Visual Confusability 

Older × Lure × Item Exemplarity 

Older × Studied × Item Exemplarity 

0.16 

-0.10 

0.09 

-0.11 

0.10 

0.14 

-0.18 

0.00 

0.13 

-0.04 

0.09 

-0.06 

0.04 

-0.06 

0.06 

0.09 

-0.09 

0.01 

0.07 

-0.02 

0.12 

0.08 

0.08 

0.09 

0.10 

0.11 

0.10 

0.11 

0.11 

0.12 

1.36 

-1.30 

1.12 

-1.24 

1.05 

1.23 

-1.88 

0.03 

1.25 

-0.33 

.261 

.263 

.303 

.263 

.320 

.263 

.132 

.974 

.263 

.770 

• Young Adults/Lure Items as Baseline 

(Intercept) 

Older × Studied 

Older × Studied × Concept Confusability 

Older × Studied × Visual Confusability 

Older × Studied × Item Exemplarity 

 

-0.69 

0.02 

0.04 

0.18 

-0.18 

 

-0.42 

0.01 

0.02 

0.10 

-0.10 

 

0.10 

0.10 

0.09 

0.10 

0.11 

 

-6.96 

0.19 

0.37 

1.89 

-1.65 

 

<.001 

0.890 

0.773 

0.121 

0.168 

https://osf.io/ndk83/).
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standard errors (SE), z-values, and false discovery rate (FDR) corrected p-values are listed for 

condition, concept-level, and item-level variables in the linear mixed model. 

Figure 2 

Effects of Semantic and Perceptual Variables on Mnemonic Sensitivity in Experiment 1 
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Note. The plot lines represent the effect of the predictor variables on the probabilities of endorsing 

studied items as “old” relative to novel items, lures as “old” relative to novel items, and studied items 

as “old” relative to lures in young (red lines) and older adults (blue lines). Panel A, B, and C show the 

effects of concept confusability, item exemplarity, and C1 visual confusability in Experiment 1 in 

young and older adults. Coloured asterisks indicate effects that were significant within each age group 

separately. Black asterisks at the top within the panels indicate significant age-related differences. See 

Material and Methods, Variables of Interest, and Results for details. * p < .05; ** p < .01; *** p < 

.001 (false discovery rate-corrected). 

4.5.2.1 Sensitivity for Studied Relative to Novel Items 

We did not find any significant age-related effects on sensitivity for studied items in 

Experiment 1 (Table 2, Figure 2). There was no difference in overall sensitivity (for 

interaction of older group with studied items on d’ = .09; 95% CI [-.03, .21]). None of the 

concept-and item level experimental variables modulated the age-related differences in 

sensitivity for studied items, and separate comparisons for each group (Figure 2) showed 

similar modulations of concept- and item-level variables on sensitivity for studied items. 

Images whose concepts were more confusable with other concepts in the set were less likely 

to be remembered in both groups (Figure 2A; interaction of concept confusability with 

studied items on d’ = -.18; 95% CI [-.27, -.10] for older adults; d’ = -.28; 95% CI [-.36, -.20] 

for young adults). Pictures judged with high exemplarity were also less likely to be 

remembered in both older (Figure 2B; interaction of item exemplarity on d’ = -.13; 95% CI [-

.22, -.04]) and young adults (Figure 2B; interaction of item exemplarity with studied items on 

d’ = -.10; 95% CI [-.19, -.01]). Lastly, both groups were less likely to recognize more 

visually confusable items (Figure 2C; interaction of C1 with studied items on d’ = -.10; 95% 

CI [-.18, -.01] for older adults; d’ = -.12; 95% CI [-.20, -.04] for young adults).  

4.5.2.2 Sensitivity for Lure Relative to Novel Items 

In line with the findings for true recognition, there were no significant age-related effects on 

sensitivity for lures in Experiment 1 (Table 2, Figure 2). We found no group difference in 

overall sensitivity (interaction of older group with lure items on d’ = .08; 95% CI [-.03, .19]). 

Again, none of the concept-and item level experimental variables modulated the age-related 

differences in sensitivity for lure items (Table 2; Figure 2 for differences in slopes). In older 

adults, concept confusability did not significantly modulate sensitivity for lure items, unlike 

in the young (Figure 2A; interaction of concept confusability with lure on d’ = -.04; 95% CI 
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[-.12, .04]; in young group, modulation of d’ = -.11; 95% CI [-.18, -.03]). At the item-level, 

false recognition was more likely for lures rated as better exemplars of their concept in both 

older and young adults (Figure 2B; interaction of item exemplarity with lure on d’ = .19; 95% 

CI [.11, .28] for older adults and d’ = .13; 95% CI [.05, .22] for young adults). Unexpectedly, 

C1 visual confusability did not modulate sensitivity for lure items in either group (Figure 

2C). 

4.5.2.3 Sensitivity for Studied Relative to Lure Items 

We did not observe age-related differences in sensitivity for studied items relative to lures 

(Table 2; interaction of older adults with studied items on d’ = -.01; 95% CI [-.09, .12]). 

Moreover, none of the concept-and item level experimental variables modulated the age-

related overall differences in sensitivity for studied relative to lure items (Table 2; Figure 2). 

Both concept- and-item level variables modulated this effect in each group (Figure 2). 

Mnemonic discrimination was poorer for items with high concept confusability in both 

groups (Figure 2A; interaction of concept confusability with studied items on d’ = -.14; 95% 

CI [-.22, -.07] for older adults; d’ = -.17; 95% CI [-.24, -.10] for young adults). At the item 

level, objects judged as having high item exemplarity were also less well discriminated in 

both groups (Figure 2B; interaction of item exemplarity with studied items on d’ = -.32; 95% 

CI [-.40, -.24] for older adults; d’ = -.23; 95% CI [-.31, -.15 for young adults). However, C1 

visual confusability did not modulate older adults’ discrimination of studied items from 

similar lures (Figure 2C; interaction of C1 with studied items on d’ = -.08; 95% CI [-.16, -

.01]), while it did so in the young adults (Figure 2C; interaction of C1 with studied items on 

d’ = -.20; 95% CI [-.27, -.12]).  

4.6 Discussion 

In Experiment 1, we investigated the effects of semantic and perceptual similarity on age-

related differences in mnemonic discrimination, using objective measures that in Chapter 2 

we have found to be important predictors in the same data of young adults (Naspi et al., 

2020). Unexpectedly, we did not observe significant age-related differences in memory, or 

differences in the effects of the semantic and perceptual similarity. This result contrasts with 

previous studies that used a single studied exemplar, and reported age-related increases in 

false recognition (Koutstaal et al., 2003; Pidgeon & Morcom, 2014; Reagh et al., 2016; Yassa 

et al., 2011), and in some cases also decreases in true recognition (Koutstaal & Schacter, 

1997). 
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One factor that is known to account for some of the variance in cognitive ability among older 

adults is education. More education has been associated with a slower longitudinal age-

related decline in memory (Colsher & Wallace, 1991; Evans et al., 1993; Rönnlund et al., 

2005). Although the groups in Experiment 1 did not differ significantly in education, the 

older group had numerically slightly more years of education than the young group. A higher 

baseline ability in the older group may be more clearly indicated by the older adults’ 

significantly higher forward digit span scores. This test is not thought to index executive 

aspects of working memory and is typically not sensitive to advancing age (Babcock & 

Salthouse, 1990; Grégoire & Van der Linden, 1997; but see Hester et al., 2004). The other 

age-related differences in standardized cognitive test performance were as expected: the older 

participants showed evidence of cognitive slowing on the Digit Symbol Coding test 

(Salthouse, 1992) despite their (also typically) higher crystallized ability as indicated by the 

WTAR verbal IQ estimate and the verbal fluency (FAS) tests (Tomer & Levin, 1993; Yuspeh 

et al., 1998; but see Bryan & Luszcz, 2000). In light of the null finding for memory 

differences and the suggestion that the groups might not be perfectly matched, we ran a check 

analysis comparing a subgroup of 48 young and 48 older participants who were perfectly 

matched on education, and did not show a significant difference in forward digit span. Even 

when education and forward digit span were completely matched, we could not find any age-

related difference in mnemonic discrimination.  

Despite not finding age-related differences, the analysis on the two groups separately did not 

show identical results. Unlike the young adults, processing shared semantic information 

across concepts did not modulate older adults’ probability to correctly reject similar lures. 

Although the group difference was not significant, this hints at a possibility that older adults 

may engage less in cross-concept processing of pre-existing knowledge and emphasize more 

basic level information. However, like the young adults, the older group showed a significant 

(though numerically slightly smaller) reduction in recognition of studied items when concepts 

were more confusable with other concepts (Naspi et al., 2020). The older adults’ sensitivity 

for lures also depended on semantic processing at the item level. Similar to young adults, 

lures judged as more similar to the participants’ internal representations were more likely to 

be misrecognized in older adults, consistent with enhanced activation of item-level semantic 

representations in both groups. Lastly, although more visually confusable studied items were 

more likely to be forgotten in both groups, visual confusability did not modulate either young 

or older adults’ ability to discriminate similar lures. This result in the young is inconsistent 
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with the results of the original model, in which this effect was significant (see Chapter 2; 

Naspi et al., 2020). We consider this finding further in the General Discussion, in light of the 

results of Experiment 2. In the second experiment we aimed to enhance any underlying age-

related differences by examining the effects of our semantic and perceptual variables using a 

manipulation under which older adults should show a clear overall decrement in mnemonic 

discrimination.  

 

4.7 Experiment 2 

To provide a stronger test of age-related effects of semantic and perceptual confusability on 

memory, we increased the studied category set size in Experiment 2. Previous studies have 

shown that increasing the number of studied exemplars of each basic level concept often 

exacerbates the age differences in false recognition of categorized picture lures (Koutstaal et 

al., 2003; Koutstaal & Schacter, 1997). Increasing set size is assumed to enhance gist-based 

memory by emphasizing processing of the studied concepts. However, Pidgeon and Morcom 

(2014) also observed this effect when increasing the number of abstract pictures without pre-

existing semantic information, suggesting that increasing set size might also enhance shared 

perceptual processing. A second motivation for this manipulation was to clarify the possible 

role of a recall-to-reject strategy in the negative or null concept confusability effects on 

memory (see also Chapter 2; Naspi et al., 2020). When only one exemplar is studied per 

concept, people can avoid gist-related errors when lures trigger recollection of similar studied 

items, by comparing the recollected information with the lure (e.g., they decide that a white 

dog was not presented, because they remember having studied a black dog). It was important 

to establish whether our results would generalize to a situation in which recall-to-reject was 

prevented. In Experiment 2, participants therefore studied sets of either two or eight different 

exemplars of the same basic level concept. Our predictions for age-related effects were the 

same as in Experiment 1.  

4.8 Materials and Methods 

4.8.1 Participants 

The study included one hundred and twenty participants: 60 young adults aged 18-33 years 

(M = 21.2; SD = 3.2, 12 male, 48 female) that consisted of the same data included in Chapter 

2 (Naspi et al., 2020), and 60 older adults aged 65-80 (M = 71.2; SD = 3.6, 17 male, 43 
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female). A further ten young adults were excluded from data analysis: 9 due to technical 

issues with recording responses, 1 due to poor performance at test (using the preregistered 

criterion of d’ for studied item discrimination of less than 3 SD from the mean). Five further 

older adults were also excluded: 2 due to data acquisition issues, 2 due to poor memory 

performance, and 1 due to misunderstanding of instructions. Similarly to Experiment 1, we 

powered the study for an interaction of aging (older vs. young) × condition (lure vs. new) × 

concept confusability, based on results on young adults suggesting an effect size equivalent to 

Cohen’s d = .17 (OR = 1.35). With N = 120 (60 young adults, 60 older adults) we had now 

99.80 % power to detect such an effect at alpha = .05. All participants were fluent English 

speakers (since at least the age of 5), had normal or corrected to-normal vision, and a good 

self-reported health. Participants were recruited by local advertisement and provided 

informed consent. They received either course credit or an honorarium. The study was 

approved by the University of Edinburgh Psychology Research Ethics Committee (Ref. 278-

1617/1). 

4.8.2 Stimuli 

Except where specified, stimuli were the same as in Experiment 1 (see Chapter 2 for details). 

Briefly, each study list included 600 items: 480 in the large sized sets (i.e., set size 8) and 120 

in the small sized sets (i.e., set size 2). Each test list consisted of 300 items: 120 studied 

images (60 from set size 8 and 60 from set size 2), 120 similar lures (60 different exemplars 

of previously studied basic level concepts from set size 8 and 60 from set size 2, and 60 novel 

basic level concepts not previously studied). Three filler trials prefaced both the study and the 

test phase. We generated one study and test list for each participant which randomized the 

allocation of the concepts and their exemplar images to conditions (i.e., studied, lure, and 

novel) and set size (2 and 8) with the constraint that half the concepts in each condition (item 

type and set size) were living and half non-living. 

4.8.3 Procedure 

The experiment consisted of a single study phase followed by a recognition test phase with 

interspersed standardized cognitive tests for 15 minutes (see Table 3). Stimuli were presented 

with MATLAB (R2018b, The MathWorks) using PsychToolbox (Kleiner et al., 2007; 

Version 2.0.14). The procedure was otherwise the same of Experiment 1 except that trials 

during the study phase were not self-paced, but presented every 3 s.  
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4.8.4 Statistical Analysis 

The variables of interest and nuisance variables were identical to those used in Experiment 1, 

but the item metrics were recomputed for this larger set of images. Item exemplarity ratings 

were again collected from the young adults after the test phase. As the concepts were 

identical to those used in Experiment 1, we used the concept familiarity values collected 

previously. We also examined a priori the modulatory effects of set size (i.e., set size 8 vs set 

size 2), but as this variable had no significant effects, we focus here on the results collapsed 

over the two set sizes. 

4.9 Results 

4.9.1 Cognitive Tests 

Cognitive test results for participants in Experiment 2 are summarized in Table 1. Young and 

older adults did not differ in years of education (t(118) = .38, p = .702), and unlike in 

Experiment 1, the numerical values were closely similar. The groups also did not differ in 

performance on the Trail Making Test (t(118) = 1.21, p = .228), Digit Span Forward (t(118) = 

.90, p = .322), and Semantic Fluency (t(118) = 1.06, p = .290. As expected, and as in 

Experiment 1, young adults outperformed older adults on the Digit Symbol Task (t(118) = 

8.41, p < .001), while older adults showed better performance on the WTAR (t(118) = 4.02, p 

< .001), and the FAS Fluency (t(118) = 4.12, p < .001). A chi-squared test of independence 

revealed that the sex distribution did not differ between age groups (χ2(1) = 1.14, p = .286). 

 

4.9.2 Memory Performance 

The results of the mixed effects analysis are shown below in Table 3, and illustrated in Figure 

3. Table 3 only reports age-related differences. Separate young and older adults’ effects are 

compared within text. Age-invariant effects are reported in Supplemental Material of Chapter 

4, Table 14. Coefficients in Table 1 represent log-odds-ratios with the corresponding d’ 

effects. All the p-values reported below are FDR-multiple comparison corrected (Benjamini 

& Hochberg, 1995).  
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Table 3 

Age-Related Differences in Experiment 2 

 

Note. In the upper part of the table, the reference level of age group is set to “young adults”, and 

condition is set to “novel items”. In the lower part of the table, the reference level of age group is set 

to “young adults”, and condition is set to “lure items”. Parameter estimates (logOR), d’ equivalent, 

standard errors (SE), z-values, and false discovery rate (FDR) corrected p-values are listed for 

condition, concept-level, and item-level variables in the linear mixed model. 

 

Figure 3 

Effects of Semantic and Perceptual Variables on Mnemonic Sensitivity in Experiment 2 

 

Variable Estimate d’ SE z-value p 

• Young Adults/Novel Items as Baseline 

(Intercept) 

Older 

Older × Lure 

 

-2.69 

-0.09 

0.69 

 

-1.55 

-0.04 

0.41 

 

0.10 

0.14 

0.10 

 

-26.43 

-0.63 

6.79 

 

<.001 

.530 

<.001 

Older × Studied 

Older × Concept Confusability 

Older × Visual Confusability (C1) 

Older × Item Exemplarity 

Older × Lure × Concept Confusability 

Older × Studied × Concept Confusability 

Older × Lure × Visual Confusability (C1) 

Older × Studied × Visual Confusability (C1) 

Older × Lure × Item Exemplarity 

Older × Studied × Item Exemplarity 

0.56 

-0.26 

0.16 

-0.06 

0.22 

0.28 

-0.13 

-0.10 

0.17 

0.18 

0.30 

-0.12 

0.08 

-0.03 

0.11 

0.15 

-0.06 

-0.04 

0.10 

0.09 

0.11 

0.09 

0.09 

0.10 

0.10 

0.10 

0.10 

0.11 

0.10 

0.11 

5.20 

-2.63 

1.74 

-0.68 

2.25 

2.78 

-1.23 

-0.89 

1.62 

1.67 

<.001 

.017 

.124 

.520 

.039 

.012 

.274 

.405 

.140 

.134 

• Young Adults/Lure Items as Baseline 

(Intercept) 

Older × Studied 

Older × Studied × Concept Confusability 

Older × Studied × Visual Confusability (C1) 

Older × Studied × Item Exemplarity 

 

-0.35 

-0.13 

0.06 

0.03 

0.01 

 

0.21 

-0.10 

0.04 

0.01 

0.00 

 

0.08 

0.06 

0.06 

0.06 

0.06 

 

-4.29 

-2.23 

1.06 

0.50 

0.15 

 

<.001 

.042 

.346 

.675 

.883 



 

129 
 

 



 

130 
 

Note. The plot lines represent the effects of the predictor variables on the probabilities of endorsing 

studied items as “old” relative to novel items, lures as “old” relative to novel items, and studied items 

as “old” relative to lures in young (red lines) and older adults (blue lines). Panels A, B, and C show 

the effects of concept confusability, item exemplarity, and C1 visual confusability in Experiment 1 in 

young and older adults. Black asterisks at the top within the panels indicate significant age-related 

differences. See Material and Methods, Variables of Interest, and Results for details. * p < .05; ** p < 

.01; *** p < .001 (false discovery rate-corrected). 

 

4.9.2.1 Sensitivity for Studied Relative to Novel Items 

Unlike in Experiment 1, we found greater mnemonic sensitivity for studied items in the older 

relative to young adults (interaction of older adults with studied items on d’ = .30; 95% CI 

[.20, .41]). Moreover, concept confusability modulated this overall age-related increase in 

sensitivity so that relative to the young, older adults were significantly more likely to 

recognize highly confusable concepts (Table 3; Figure 3A; interaction of age and concept 

confusability with studied items on d’ = .15; 95% CI [.05, .25]). This represents an 

attenuation of the negative effect of concept confusability on true recognition in the young 

group. As in Experiment 1, concept confusability reduced sensitivity for studied items in both 

groups (Figure 3A; interaction of concept confusability with studied items on d’ in older = -

.12; 95% CI [-.20, -.05]; in young, modulation of d’ = -.28; 95% CI [-.35, -.20]). The effect of 

item exemplarity on true recognition was no longer significant in either group (Figure 3B; 

interaction of item exemplarity with studied items on d’ = .05; 95% CI [-.03, .13] for older 

adults; d’ = -.04; 95% CI [-.11, .04] for young adults). Also, while older adults’ sensitivity for 

studied items was not significantly influenced by C1 visual confusability (Figure 3C; 

interaction of C1 with studied items on d’ = .06; 95% CI [-.02, .14]), young adults were now 

more (rather than less) likely to correctly recognize studied items that were visually 

confusable with their lures (Figure 3C; interaction of C1 with studied items on d’ = .09; 95% 

CI [.02, .17]).  

 

4.9.2.2 Sensitivity for Lure Relative to Novel Items 

Unlike in Experiment 1, sensitivity for lure items was increased in the older relative to the 

young group, reflecting an overall age-related increase in lure false recognition (interaction of 
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group with lure items on d’ = .41; 95% CI [.31, .51]). Moreover, concept confusability 

modulated the age-related increase in sensitivity for lure items in older relative to young 

people. Thus, in parallel with the results for true recognition, older adults were more likely 

than young adults to falsely recognize more confusable concepts (Table 3; Figure 3A; 

interaction of age and concept confusability with lure items on d’ = .11; 95% CI [.02, .21]). 

This represented an attenuation of the negative effect of concept confusability on sensitivity 

for lures in the young (interaction of concept confusability with lure on d’ = -0.12; 95% CI [-

.19, -.05]; d’ = .00; 95% CI [-.07, .07] for older group). At the item level, lure errors were 

again more frequent for items with higher rated exemplarity in both groups, with no 

significant difference (Table 3; Figure 3B; interaction of item exemplarity with lure on d’ = 

.18; 95% CI [.10, .25] for young, d’ = .27; 95% CI [.20, .35] for older adults). Higher visual 

confusability only significantly increased false recognition in the young adults, not in the 

older group taken separately, but the groups did not differ significantly (Table 3; Figure 3C; 

interaction of C1 with lure on d’ = .14; 95% CI [.06, .21] in young, d’ = .09; 95% CI [.01, 

.16] in older group).  

 

4.9.2.3 Sensitivity for Studied Relative to Lure Items 

Unlike Experiment 1, results showed an overall age-related reduction in sensitivity for 

studied items relative to lures, reflecting reduced overall mnemonic discrimination (Table 3; 

interaction of older adults with studied items on d’ = -.10; 95% CI [-.17, -.04]). However, 

none of the concept-and item level experimental variables significantly modulated this 

overall age-related difference (Table 3; Figure 3). In the older group the semantic variables 

had similar effects to those reported in Chapter 2 (Naspi et al., 2020) for the young, and to 

those in Experiment 1. Studied items and lures with high concept confusability were less 

likely to be correctly discriminated in both groups, and – unlike in the contrasts with novel 

items as baseline – this effect was numerically slightly larger in the older group so there was 

no hint of an age-related reduction (Figure 3A; interaction of concept confusability with 

studied items on d’ = -.12; 95% CI [-.17, -.07] for older adults; d’ = -.15; 95% CI [-.20, -.11] 

for young adults). In both groups, lure objects with high rated exemplarity were again less 

likely to be discriminated from their corresponding studied exemplars (Figure 3B; interaction 

of item exemplarity with studied items on d’ = -.22; 95% CI [-.27, -.17] for older adults; d’ = 

-.21; 95% CI [-.26, -.17] for young adults). The effect of C1 visual confusability was not 
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significant in either group (Figure 3C; interaction of C1 with studied items on d’ = .01; 95% 

CI [-.06, .08] for older adults; d’ = -.04; 95% CI [-.09, .01] for young adults).  

4.10 Discussion 

In Experiment 2, when participants studied multiple exemplars of each basic-level concept, 

we found the expected age-related increase in both true and false recognition. At the same 

time, there was an attenuated effect of concept confusability in older relative to young adults, 

again impacting both true and false recognition (Figure 3A). These results suggest that older 

adults focused more on processing basic-level conceptual information than features shared 

over concepts. As a consequence, shared semantic features across concepts had less of a 

negative effect than in their younger counterparts. This result is consistent with the 

predictions of the semantic categorization account, and its implications will be considered 

further in the General Discussion. 

 

All three alternative hypotheses also predicted that the older group would show larger effects 

of item exemplarity on false recognition. We assumed that exemplars that are more similarly 

related to people’s internal basic-level representations would more strongly reactivate 

previously studied concepts at test (see also Chapter 2; Naspi et al., 2020). Although the item 

exemplarity effect on lure false recognition was numerically larger in the older group than in 

the young, we did not find any significant age-related difference. The lack of an age-related 

difference may derive from the way that exemplarity as an item-level variable assessed 

semantic similarity. 

 

Similarly, although visual confusability did not influence older adults’ levels of false 

recognition, and did significantly increase the levels of false recognition in the young, we did 

not find any age-related difference. According to the pattern separation account (Wilson et 

al., 2006), which predicts an impairment of mnemonic discrimination that generalizes across 

multiple dimensions of similarity, we should observe an increased in false recognition in 

older people that extends beyond the semantic dimension. However, visual confusability did 

not provide evidence for the theory. We explore the possible reasons of the observed results 

below. 
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4.11 General Discussion 

In this research, we investigated the contribution of semantic and perceptual similarity to age-

related differences in true and false recognition. We compared performance of young and 

older adults in two different experiments in which we varied the number of exemplars of the 

same basic level concepts at study. According to the view that aging is associated with a 

greater reliance on processing any kind of semantic information (Umanath & Marsh, 2014), 

we predicted that both concept- and item-level semantic variables would impact on 

mnemonic discrimination more in older than young people. Alternatively, based on the 

semantic categorization account by Koutstaal et al. (2003), we hypothesized that older adults 

would emphasize information at the basic level and underscore the similarity between 

different exemplars of the same concept more than young adults. Lastly, if aging is associated 

with a general impairment in processing different dimensions of similarity (Wilson et al., 

2006), then we would observe a generalized increased impact of perceptual and semantic 

similarity in aging. In both experiments, more conceptually confusable lures were more likely 

to be classified as new for the young adults, but not for the older group. In Experiment 2, this 

age-related difference was associated with a significant increase in false recognition for more 

confusable concepts in the older group. Similarly, in Experiment 2, more confusable studied 

objects were more likely to be successfully recognized in older relative to young adults, 

suggesting a reduced tendency to process relations among concepts that were detrimental to 

memory for items in this task. In contrast, irrespective of age-group, false recognition was 

more frequent for lure objects that were more similar to their basic-level concepts, a result 

that does not provide full support to the semantic categorization account (Koutstaal et al., 

2003). Lastly, simple visual features shared with other studied images increased young 

adults’, but not older adults, levels of false recognition, suggesting that aging is not 

associated with a general impairment across multiple dimensions of similarity. 

 

Experiment 1 did not show significant age-related differences in mnemonic discrimination 

despite previous research has consistently shown increased false recognition in older adults 

when a single basic level concept was studied and tested with a similar exemplar, at least for 

concrete object stimuli (Koutstaal & Schacter, 1997; Pidgeon & Morcom, 2014; Reagh et al., 

2016). The literature also suggests that although true recognition is often reduced in older 
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relative to young adults (Koustaal et al., 1999; Koutstaal & Schacter, 1997) it is also 

frequently age-invariant (e.g., Craik & McDowd, 1987; Danckert & Craik, 2013; Pidgeon & 

Morcom, 2014; Schonfield & Robertson, 1966). One problem with presenting a single 

studied item and lure at test is that older people, as well as the young adults, can employ 

strategies in order to recognize previously studied items, but also to reject similar lures. 

Although young adults are sometimes able to use these strategies more efficiently, older 

adults are equally able to adopt monitoring strategies with rich pictorial material (Gallo et al., 

2007). Such monitoring strategies could reduce the influence of semantic and perceptual 

similarity on mnemonic discrimination. In Experiment 2, where recall-to-reject strategies 

were made ineffective by the increased number of studied items per concept, we found 

evidence of increased false as well as true recognition in older relative to young adults for 

those concepts that were more confusable with all the other concepts in the set. In this regard 

these findings are convergent with Pidgeon and Morcom (2014), but differ from those of 

Koutstaal et al. (2003), who reported non-significant age effects on true recognition, with a 

non-significant reduction in true recognition in older adults. Here, we showed that these age-

related differences in true as well as false recognition may in part be driven by an attenuated 

effect of concept confusability in older adults. Concept confusability is an index of semantic 

similarity across concepts reflecting the activation of coarse semantic representations via 

processing of shared features. Our results suggest that older adults tend to emphasize the 

processing of individual basic level concepts over this shared information in this task 

(Koutstaal et al., 2003). This attenuation of the concept confusability effect in older people 

was also associated with a more pronounced gist-like modulation at the basic level compared 

to Experiment 1, with increases in both true and false recognition relative to the young.  

 

Parallel effects of semantic processing on true and false recognition are predicted by fuzzy 

trace theory’s gist-preference conjecture (Brainerd & Reyna, 2005), which assumes that gist 

traces engender both true and false memory, but that verbatim traces support accurate 

recognition of studied items and rejection of lures (Koutstaal & Schacter, 1997; Verfaellie et 

al., 2002). According to gist accounts, including the semantic categorization account 

(Koutstaal et al., 2003), encoding of multiple meaningful exemplars leads to stronger 

semantic gist representations (Koustaal et al., 1999). If older adults rely to a greater extent on 

basic-level processing, and to a lesser extent on semantic information shared across concepts, 

this should result in an overall tendency to endorse more studied items as well as 
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semantically similar lures as “old” on the basis of semantic gist shared across exemplars. 

While lending support to the semantic categorization account, our results provide evidence 

against the broad claim that older people always rely more than young people on prior 

semantic relations in order to support declining episodic memory (Reder et al., 2007; 

Umanath & Marsh, 2014). In previous studies, there was no way to index processing of 

concept-level relations, thus both the general semantic theories and the semantic 

categorization account could explain the increase in basic-level false recognition in this task. 

In this study, we provided the first direct evidence based on objective measures that older 

adults’ processing of cross-concept relations is attenuated relative to young adults in this 

categorized pictures task. 

 

Previous research has suggested that false memory susceptibility may in part be a result of 

overreliance on relational processing at encoding (Thomas & McDaniel, 2013; Thomas & 

Sommers, 2005), defined as processing involving the relations between studied items (Hunt 

& Einstein, 1981). On the other hand, item-specific processing is defined by the encoding of 

individuating, non-overlapping information specific to each item and thus improves memory 

by making item memories highly distinctive. At face value this seems to conflict with our 

results, which link false and true recognition to reduced (rather than enhanced) processing of 

shared semantic relations. However, these results can be reconciled if we consider that in this 

typical categorized pictures task – especially when multiple exemplars of each concept are 

studied – the task-relevant gist is at the basic level, because the studied items and their lures 

share the same concept (e.g. several cats were studied, and the lure is a different cat). 

However, in other versions of the task (Bowman et al., 2019; Seamon et al., 2000), studied 

items and lures represent different basic level concepts related by membership of the same 

superordinate category (e.g., a cow, dog, and deer were studied, and a lion appeared as a 

lure). In the latter version of the task, processing shared semantic features across concepts 

may make lure errors more likely when the lures are related to studied items in this way (i.e., 

at the superordinate level). Thus, whether older adults engage in more or less cross-concept 

processing than younger adults may depend on the nature of the representations elicited by 

the current task. Thus, the selective disengagement from cross-concept processing in the 

current task is consistent with the idea that older people need to select that amount of 

information to be processed due to limited resources, and to favour basic-level processing. 
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According to the resource deficit hypothesis (Craik, 1986; Luo & Craik, 2008), older adults 

show a reduction in attentional control resources relative to young adults. Craik and 

Broadbent (1983) hypothesized that these age-related deficits reflect impaired prefrontal 

cortex function (see also West, 1992). Researchers have suggested that relational and item-

specific processing may compete for finite resources (e.g., DeLosh & McDaniel, 1996; Serra 

& Nairne, 1993). Thus, even in young people, paradigms that elicit the activation of shared 

semantic representations should diminish the encoding of basic-level information relative to 

conditions that do not promote the cross-concept processing. If older adults operate with 

reduced resources, then they may over-rely on the directly task-relevant process to resolve the 

task. For example, our pleasantness decision task together with multiple presentations of 

different exemplars in Experiment 2 are likely to enhance demands on concept-specific rather 

than shared semantic information compared to a task in which processing is unconstrained by 

instructions (Smith & Hunt, 1998). Thus, the generalization of semantic information across 

exemplars arises because of a resource deficit, which is more likely to occur when the 

orienting task focus is on basic-level processing, and perhaps also when there are multiple 

exemplars at study (Koutstaal et al., 2003).   

 

The reduction of the effect of concept confusability in older adults is therefore consistent with 

the semantic categorization account (Koutstaal et al., 2003). In contrast, we did not find 

support for the broad claim that older adults’ memory is generally more reliant upon semantic 

knowledge than younger adults’ memory (Reder et al., 2007; Umanath & Marsh, 2014). 

Given that concept confusability supports the semantic categorization account, we were also 

expecting that older adults would process information more at the item level. However, item 

exemplarity did not affect older adults’ memory for lures as would be expected according to 

either of the semantic gist-related theories. One possibility is that we failed to detect the 

effect in older adults due to the way that exemplarity as an item-level variable assessed 

emphasis on semantic information at the item level. Unlike concept confusability, which 

directly indexed shared features among concepts, item exemplarity indirectly indexed shared 

features among exemplars via judgments of the strength of the relations between exemplars 

and their concepts. Currently, norms for the semantic features that are shared between 

individual exemplars of a basic level concept are not available but, based on the assumptions 
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of fuzzy trace theory and the semantic categorization account, we would predict that 

similarity between studied items and lures on such measures would be associated with 

increases in older adults’ levels of false recognition, and reduced discrimination between the 

two (see also Chapter 2; Naspi et al., 2020) 

 

In the introduction, a third alternative hypothesis we considered was that older adults are 

more susceptible than young adults to false recognition of items whose similarity to studied 

items extends beyond the semantic domain, i.e., perceptually similar lures. In young adults, 

the increase in errors for visually confusable lures was consistent in both experiments, but 

was particularly strong in Experiment 2 after presenting multiple exemplars at study, 

presumably a consequence of the strengthened perceptual processing (see also Chapter 2; 

Naspi et al., 2020). However, here the older adults’ false recognition was not modulated by 

increasing levels of visual confusability, and in Experiment 2 this effect was numerically 

reduced relative to young adults. Thus, there was little support for theories suggesting age-

related elevation in false recognition for more visually confusable lures. According to the 

pattern separation account, older adults less efficiently encode and later use the rich and 

detailed perceptual information provided by visual stimuli (Wilson et al., 2006). Our results 

converge with previous studies that have directly addressed perceptual effects on young and 

older adults using novel abstract stimuli that did not belong to any pre-existing semantic or 

conceptual categories (Koutstaal et al., 1999; Schacter et al., 1997). These experiments found 

that the two age groups showed only modest, and non-significant, differences in overall false 

recognition for these stimuli, providing support for the semantic categorization account. 

Overall these studies suggest that the effects of perceptual similarity on false recognition, 

measured in terms of shared low-level visual attributes, are equivalent in young and older 

adults. 

 

The picture is not clear-cut, however. Although our measure of visual confusability derived 

from HMax (HMax; Riesenhuber & Poggio, 1999; Serre et al., 2007) did not detect age-

related differences attributable to perceptual processing, others have found that perceptually 

similar but pre-experimentally meaningless lures can trigger false recognition. For instance, 

using Koutstaal et al.’s (2003) abstract stimuli, Pidgeon and Morcom (2014) showed that 

older adults were more likely to confidently falsely recognize abstract lures for which they 
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had studied multiple visually similar exemplars. However, as the authors pointed out, it is 

possible that these meaningless abstract images attracted some semantic processing, due to 

resemblance to real-world objects. This was supported by participants’ subjective reports of 

spontaneous verbal labelling of the abstract images. Boutet et al. (2019) more directly 

investigated the contribution of perceptual factors to age-related differences in false 

recognition by assessing recognition of different exemplars of four different categories of 

basic level concepts: upright faces, inverted faces, chairs, and houses. This study had the 

advantage that perceptual similarity was operationally defined as the similarity in the low-

level physical properties of the stimuli (contrast, luminance) using an objective measure that 

parallels the response profile of neurons in the visual cortex (Zeki, 1978). Older adults 

showed elevated false alarm levels for inverted faces and chairs relative to young adults. 

 

Support for increased perceptually-driven false recognition in aging also comes from several 

studies using verbal stimuli. In some, multiple studied words are related to phonologically 

similar lures (Budson et al., 2003; Rankin & Kausler, 1979; Sommers & Huff, 2003; Watson 

et al, 2001). Recently, Burnside et al. (2017) extended these findings by demonstrating 

greater false recognition by older adults of visually similar lures that were related to studied 

items only by a shared font. These results support the notion that older adults are more 

sensitive to recognition based on perceptual similarity between sets of related but, unlike in 

the case of the phonologically similar lures, pre-experimentally unfamiliar features. However, 

the results of a recent study by Pansuwan et al. (2020) diverged from those of Burnside et al. 

(2017) since young and older people were equally likely to falsely recognise the visually 

similar lures presented with the same font. It is therefore not clear why we did not detect such 

an effect, and whether an underlying effect exists. It is possible that other aspects of visual 

processing can contribute to older adult’s false recognition, for example even lower-level 

visual characteristics than the simple visual features examined here (e.g., luminance and 

contrast; Boutet et al., 2019). For example, Gellersen et al., (2021) found reduced perceptual 

representational qualities in healthy aging, providing evidence that older adults do not only 

find difficulties with controlled retrieval, but they also struggle with processing on less 

distinctive stimulus representations. Further studies are needed to clarify what, if any, 

perceptual attributes of images are important determinants in age-related differences in 

mnemonic discrimination.  
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4.12 Conclusions 

In this work we used objective measures derived from established models of conceptual 

structure and low-level vision to investigate semantic and perceptual contributions to 

mnemonic discrimination in young and older adults. The results from two experiments 

suggest that older adults emphasize the processing of shared semantic information less than 

young adults, and show a greater relative focus on basic-level semantic information. In 

Experiment 2, we showed an increase in older adults’ true and false recognition relative to the 

young for more confusable concepts, but no age-related increase in false recognition 

attributable to item exemplarity, although this remained an important determinant of false 

recognition in both age groups. We also found no evidence that low-level visual attributes of 

objects contribute to false recognition more in older than young adults. This result support the 

semantic categorization account, but not the generalized semantic gist or the pattern 

separation account.  
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Chapter 5: General Discussion 

This thesis examined semantic and perceptual contributions to mnemonic discrimination in 

healthy young and older adults. Mnemonic discrimination is the ability to differentiate similar 

lures from previously studied items to avoid false recognition. In young adults, behavioural 

(Chapter 2) and fMRI (Chapter 3) studies employing the categorized picture paradigm 

supported the prediction that both perceptual and semantic processing impacted mnemonic 

discrimination. In older adults (Chapter 4), I showed that the disengagement from processing 

shared semantic information increased their levels of true and false recognition for items with 

high concept confusability. Below I summarise these results briefly and discuss their broader 

implications. 

 

In Chapter 2, I reported two different experiments (Experiment 1 and 2) that showed that 

semantic relations can impact memory at the concept and-item level. Similarity at the concept 

level, concept confusability, indexed shared semantic information across concepts, and 

impacted both true and false recognition. Specifically, more confusable studied concepts 

were more likely to be forgotten, while the lures more likely to be correctly rejected. 

Similarity at the item level, item exemplarity, indexed the ability to activate the 

corresponding individual basic-level concept by individual exemplars. In both experiments, 

high exemplarity lures were more likely to be falsely recognized. 

 

In Chapter 3, I tested the prediction that the perceptual and semantic representational content 

of objects at encoding differentially contributed to true and false recognition. In a novel 

approach, I combined RSA with the subsequent memory paradigm in a single step. This 

allowed me to contrast the relative strength of perceptual and semantic representations for 

items later remembered versus those later forgotten (and for items later falsely recognized 

versus those correctly rejected). While object-specific visual and semantic representations in 

posterior regions were associated with successful encoding of studied items, coarse 

taxonomic semantic representations more anteriorly in the ventral visual pathway and frontal 

regions hindered it. I also showed that inefficient visual processing of low-level visual 

attributes in early and late visual cortices led to false recognition. These results, together with 

the findings discussed in Chapter 2, support my proposal that multiple kinds of perceptual 

and semantic representations influence mnemonic discrimination.  
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In Chapter 4, I investigated whether the same variables that are important determinants for 

mnemonic discrimination in young adults (Chapter 2) would show a differential impact in the 

older adults. Experiment 1, in which I presented a single exemplar for each basic-level 

concept, did not reveal any age-related differences in memory, or differences in the effects of 

the semantic and perceptual similarity. However, predictions that older adults show 

impairments in false recognition were supported in Experiment 2, when I presented multiple 

exemplars of the same basic-level concepts at study. Unexpectedly, these findings also 

revealed heightened true recognition in older relative to young adults. Age-related increases 

in both true and false recognition were in part modulated by a reduced effect of concept 

confusability in the older group. I therefore concluded that, unlike young adults, older adults 

in this task may emphasize more the basic-level processing of individual concepts and less 

their cross-concept relations.  

 

5.1 Implications for theories of mnemonic discrimination 

One of the predictions of fuzzy trace theory introduced in Chapter 1 was that semantic 

overlap between study and test items would contribute positively to false as well as true 

recognition (Brainerd & Reyna, 2002). The behavioural experiments in Chapter 2 partially 

supported these predictions (Naspi et al., 2020). Our results in young adults suggest that 

different levels of semantic similarity have distinct effects on mnemonic discrimination that 

reflect the fact that in the categorized pictures task used here, studied items and lures shared 

basic-level concepts. Thus, semantic relations that emphasize shared features across the entire 

set of concepts – indexed by concept confusability – appeared to weaken the representations 

of individual concepts in memory and therefore reduced gist-like effects for studied items and 

lures. In contrast, semantic relations that emphasize the representations of individual concepts 

– indexed by item exemplarity – appeared to strengthen the activation of the basic-level 

concept and therefore increased gist-like effects, triggering false recognition. This is the 

suggested mechanism underlying both the reduction of true and false recognition for more 

confusable concepts, and the increase of false recognition for those lures that were more 

similar to people’s internal representations. However, item exemplarity did not affect 

memory for studied items as I was expecting if it modulated encoding of a gist trace at this 

level. Thus, although the data fit well with fuzzy trace theory’s prediction that semantic 
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overlap between studied items and lures leads to false recognition, the data do not fully 

support the theory when it comes to true recognition. 

 

The fMRI study in Chapter 3 also provides partial support for fuzzy trace theory’s prediction 

that semantic overlap is critical for both false and true recognition (see Chapter 3; Naspi et 

al., 2021). However, these results are only in part convergent with the behavioural findings of 

Chapter 2. For example, as noted above, I interpreted the behavioural findings with regard to 

concept confusability in Chapter 2 in terms of reduced emphasis on basic-level concepts. 

However, at the neural level, object-specific semantic information processed at encoding was 

not associated either positively or negatively with later false recognition. Here, the idea was 

that fine-grained semantic processing was likely to facilitate the activation of the basic-level 

concept at encoding through modulation of gist, promoting false recognition. But this is not 

what I found. This null result is inconsistent with fuzzy trace theory’s prediction that 

semantic representations contribute to false recognition, even though I did find that the same 

object-specific semantic representations contributed to true recognition as predicted. Beyond 

the possibility of a false negative (see Chapter 3), it is unclear why the fMRI study did not 

reveal any semantic representation at encoding associated with false recognition. Later I will 

provide a possible explanation when I discuss the relative roles of encoding and retrieval 

processes in mnemonic discrimination (Section 5.2). 

 

Although fuzzy trace theory is not a theory of aging per se, it has been used to explain age-

related differences in memory. My data on older adults does not provide direct support to 

fuzzy trace theory’s prediction that greater reliance on semantic gist increases both false and 

true recognition (Brainerd & Reyna, 2005), at least in the theory’s original specification. In 

Experiment 2 of Chapter 4, the older people showed increased false and true recognition 

specifically for those items that shared more semantic features with all the other items in the 

set, driven in part by attenuated effects of concept confusability. This suggested that the older 

group might be less prone than the young adults to process semantic relations across concepts 

and focus relatively more on basic-level information, enhancing a gist-like effect at this level. 

However, the lack of age-related differences in true and false recognition driven by item 

exemplarity prevents me from drawing clear-cut conclusions that would be compatible with 

fuzzy trace theory’s gist-preference conjecture in this way. One possible interpretation of the 
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age-related increase in false recognition, comes from the semantic categorization account 

(Koutstaal et al., 2003). According to this theory, older adults may primarily focus on specific 

aspects of the semantic information (e.g., the names of objects). This might arise because this 

type of information is more readily or automatically accessed (Brainerd & Reyna, 1998; 

Koutstaal & Schacter, 1997; Schacter et al., 1998). Although this theory does not explicitly 

consider true recognition, an emphasis on the concept word could support false and true 

recognition by underscoring the meaning overlap between concept names. Thus, these age-

related effects are consistent with fuzzy trace theory’s gist-preference conjecture introduced 

in Chapter 1 provided that the concept of gist is not purely restricted to shared semantic 

information across items, but extends to include the semantic of the word (Brainerd & Reyna, 

2005).  

 

Although a seemingly self-evident claim about false memory responses is that they will 

increase as their similarity to experienced material increases, according to fuzzy trace theory, 

this relation should hold consistently only for semantically, but not perceptually, similar 

material (Brainerd & Reyna, 2002). Thus, as outlined in Chapter 1, fuzzy trace theory also 

predicts that because verbatim traces are representations of surface information including 

perceptual aspects of the studied items, increasing perceptual similarity between studied and 

lure items should make the latter better retrieval cues for verbatim traces of the former, 

thereby decreasing false recognition (also see Reyna & Lloyd, 1997). However, retrieval of 

verbatim traces should also promote true recognition of studied items. The findings of 

Chapter 2 are less clear in this regard. In Chapter 2 perceptual similarity increased lure false 

recognition relative to novel items. This effect was weak in Experiment 1, but stronger in 

Experiment 2 when multiple perceptually similar exemplars were presented at study. 

Similarly, the effect of perceptual similarity on true recognition was incosistent across 

experiments. Therefore these findings neither provide a clear-cut picture of the importance of 

perceptual similarity in mnemonic discrimination nor are wholly consistent with fuzzy trace 

theory, which cannot explain lure false recognition due to perceptually similar items.  

 

The fMRI study of Chapter 3 provides a clearer result regarding the role of perceptual 

representations in young adults that are not necessarily incompatible with the behavioural 

findings of Chapter 2 or with fuzzy trace theory (Brainerd & Reyna, 2002). At encoding, 
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insufficient visual processing in the early and late visual cortex predicted false recognition. 

Therefore, it is likely that in the behavioural studies of Chapter 2, young adults failed to 

efficiently encode low-level perceptual details of studied items, allowing perceptually similar 

lures at test to elicit false recognition. At the neural level, RSA indexes the strength with 

which the representational content of items is encoded and can reveal increases or decreases 

in this strength. The idea that false recognition due to perceptual similarity in Chapter 2 is 

due to insufficient encoding of visual attributes is also supported in the fMRI study by the 

fact that successful visual processing at encoding was associated with later true recognition, 

and also the rejection of similar lures. Thus, the fact that perceptual similarity provided 

inconsistent results for true recognition in Chapter 2 does not necessarily mean that verbatim 

encoding and retrieval do not support veridical memory, as predicted by fuzzy trace theory. 

Inconsistency of results across the experiments may simply reflect unsuccessful encoding of 

perceptual information in one experiment, but not in the other. In the fMRI study, the lack of 

any positive perceptual representation associated with later false recognition is compatible 

with fuzzy trace theory that assumes that false recognition is exclusively driven by semantic 

information (although not found in the current study). What fuzzy trace theory does not 

explain is the increase of false recognition for perceptually similar items in Chapter 2. 

 

Although behavioural and neuroimaging results in young adults suggested that perceptual 

information per se plays a role in false recognition, I did not find evidence of age-related 

differences in the influence of perceptual similarity on mnemonic discrimination. Fuzzy trace 

theory’s gist-preference conjecture suggests that the shift from verbatim processing toward 

gist processing is more in the nature of an encoding and retrieval preference than a deficit in 

verbatim memory (Brainerd & Reyna, 2005). That is, for some reason, as we age, we come to 

base our memory more on the meaning content of experience and less on its surface form, 

despite the fact that perceptual information is attended to and stored. Instead, the semantic 

categorization account suggest that processing pre-existing semantic information like the 

concept name truncates, precludes, or preempts further verbatim processing (Koutstaal, 

Reddy, Jackson, Prince, Cendan, Schacter, et al., 2003). Thus, while fuzzy trace theory 

suggests that perceptual details are indeed encoded by the older adults but are less effectively 

used in the recognition context requiring their deliberate, controlled use, the semantic 

categorization account does not. In this case my data supports fuzzy trace theory. If older 

adults were not able to encode perceptual information because the semantic meaning 
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impaired it, we would also observe age-related differences in perceptual false recognition due 

to their inability to recall verbatim information at test to reject perceptually similar lures, at 

least in Experiment 1 where a single exemplar was studied. But this is not what I observed. 

However, this conclusion cannot be given for granted since the previous literature also 

showed that older people’s levels of false recognition are sensitive to perceptual similarity 

(Boutet et al., 2019; Pidgeon & Morcom, 2014; Stark et al., 2013). Thus, a more sensitive 

measure that better capture perceptual processing in aging or a better model may be able to 

detect age-related differences in false recognition (see Section 5.5). 

 

Together, the results challenge fuzzy trace theory’s assumption that only semantic similarity 

is implicated in false recognition. As discussed in Chapter 2, fuzzy trace theory cannot 

readily account for false recognition due to perceptual similarity, unless the notion of gist is 

extended to incorporate visual information. Several authors borrowing heavily from fuzzy 

trace theory have not discounted the notion that other kinds of similarity can contribute to 

recognition outcomes, particularly in relation to aging (Koutstaal & Schacter, 1997; Koutstaal 

et al., 1999; Pidgeon & Morcom, 2014). Research in vision suggests that observers can 

process a perceptual gist representation corresponding to the average of two scenes’ global 

perceptual features (Oliva, 2005; Oliva & Torralba, 2006). These data therefore partially 

support fuzzy trace theory if gist and verbatim memory are not distinguished by a semantic 

versus perceptual basis. However, to really investigate fuzzy trace theory’s assumptions and 

test the impact of these dimensions on separate verbatim and gist memory components, these 

components should be formally measured using Brainerd et al's. (1999) conjoint recognition 

paradigm and associated multinomial model. In the conjoint recognition paradigm, the test 

list (as here) contains three types of items: studied items, related lures that share a semantic 

gist with the studied items, and unrelated novel items. The memory test is administered to 

three groups of participants with different instructions: Under the T instruction, participants 

are asked to accept as old only studied items; under the R instruction, participants are to 

accept as old only related lures; and, finally, under the T + R instruction, participants are to 

accept both studied items and related lures. From the proportions of studied items, related 

lures, and unrelated novel items obtained in the three different groups, the parameters of a 

model are estimated that provide measures of verbatim and gist memory. The model’s 

parameters can be interpreted as the probability of the cognitive processes that they represent. 

Stahl and Klauer (2008) also proposed a simplified conjoint recognition paradigm in which 
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all participants are presented with the same test list, and a single instruction is presented 

asking the same multiple choice question for all items. Briefly, people are instructed to 

respond “target” if they believe that the item has been presented in the study phase, “related” 

if they believe that the item is a related lure, and “new” if they consider it to be an unrelated 

novel item. Thus, in the simplified conjoint recognition paradigm, valid measures of gist and 

verbatim memory can be obtained from a single group of participants. Future studies that 

combine the conjoint recognition paradigm together with predictors representing semantic 

and perceptual similarity can reveal more about the contributions of these variables to gist 

and verbatim memory. 

 

Although the data of the current thesis fits relatively well with fuzzy trace theory, other 

theories introduced in Chapter 1 may also explain the same results, and perhaps elucidate 

whether different accounts are mutually exclusive or not. As outlined in Chapter 1, the 

pattern separation account predicts decline in discrimination ability across multiple 

dimensions of similarity. Although the current thesis did not assess neural pattern separation 

per se, the data in Chapter 2 and 3 is consistent with a failure in discriminating between 

events that are similar across multiple dimensions, not just semantically (Motley & Kirwan, 

2012; Reagh et al., 2014; Yassa et al., 2011). Thus, fuzzy trace theory and the pattern 

separation account are not necessarily mutually exclusive, at least in young adults. However, 

the neurocognitive model of aging proposed by Wilson et al. (2006) does predict age-related 

differences in false recognition due to increasing levels of perceptual as well as semantic 

similarity, which I failed to find evidence for here. From a pattern separation perspective, 

presence of multiple overlapping representations in memory (as when multiple exemplars 

have been encoded in Experiment 2), should also result in increased likelihood of erroneous 

pattern completion and therefore mnemonic discrimination errors, particularly in older adults 

(Wilson et al., 2006). Therefore, according to this theory, I should have observed increased 

false recognition in older adults in Experiment 2 than Experiment 1 (Chapter 4). The data 

partially support this view because, although older adults’ false recognition emerged in 

Experiment 2, there was no between-experiment difference.  

 

Similar to fuzzy trace theory, the activation monitoring theory hypothesises multiple memory 

mechanisms to explain false memory (Roediger et al., 2001). This theory relies on the 
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assumption that associative activation at study, followed by retrieval-based monitoring 

failure, jointly lead to false recognition. However, Cann et al. (2011) demonstrated that 

thematic semantic relations between list items and the critical lures may be a better 

determinant of false recognition than backward associative strength (see also Brainerd et al. 

(2008) and Introduction of Chapter 2). The assumed association between associative 

activation at encoding and false recognition in young adults also means the activation 

monitoring theory cannot explain Chapter 2 ’s findings that false recognition could be driven 

by perceptual similarity. The activation monitoring theory and source monitoring account – 

like fuzzy trace theory – also specify a role of retrieval-based monitoring, thought to be 

largely mediated by prefrontal cortex functions, in determining the encoding source of 

recognised information (Johnson et al., 1993; Roediger et al., 2001). Source monitoring 

failure is thought to be associated with misattribution of the source of information, and is 

proposed to lead to false recognition of lures (Johnson, 1997). It has also been suggested that 

age-related increases in false recognition are explained by monitoring decline (Henkel et al., 

1998; West, 1996). However, the source monitoring alone does not predict the effects of the 

semantic and perceptual relations at encoding and thus it is not sufficient to explain the 

results of the current thesis. Instead, fuzzy trace theory assumes a prominent role at encoding 

in processing semantic gist. However, with the behavioural measures (which I also used in 

the test phase of the fMRI study) I was not directly able to discern whether semantic and 

perceptual contribution to mnemonic discrimination were due to encoding or retrieval 

processes. Therefore, in the next section, I will discuss the encoding contribution to 

mnemonic discrimination and a possible role of retrieval processing. 

 

5.2 Encoding and retrieval processes in mnemonic discrimination 

One of the major advantages of the fMRI study is that it could better separate encoding and 

retrieval and directly test the neural operations involved in mnemonic discrimination. As 

noted above, fuzzy trace theory assumes that the brain stores two independent memory traces: 

a verbatim and a gist trace. If verbatim traces are episodically instantiated representations of 

the surface forms of experienced items, including contextual and perceptual details, to some 

degree the perceptual representations are equivalent to verbatim traces. Similarly, if gist 

traces are representations in space organised in terms of object-specific semantic features, to 

some degree the semantic representations are equivalent to gist traces. It is useful to 
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remember from the Introduction in Chapter 1 that verbatim and gist retrieval are assumed to 

be opponent processes in false recognition, with gist retrieval supporting lure mnemonic 

discrimination errors and verbatim retrieval suppressing them. However, verbatim and gist 

retrieval are convergent processes in true recognition because they both support true 

recognition of studied items. 

 

The fMRI data partially supports the first assumption. Indeed, while strong perceptual 

representations at encoding were later associated with correct rejection of similar lures, it is 

not clear why no semantic representations at encoding predicted false recognition. One 

possibility is that pictures attract surface-processing attention at encoding, so corresponding 

gist traces were weak. Alternatively, showing a single exemplar during the encoding phase 

may be not enough to create a strong gist representation detectable with RSA. The opponent-

processes idea predicts that levels of false recognition will increase if studied items that share 

the same semantic gist are repeated (Brainerd & Reyna, 2005). This prediction follows 

because the memorial basis for false recognition (gist traces) is being strengthened. However, 

these lines of reasoning do not explain why object-specific semantic representations at 

encoding are successfully used to support true recognition. Overall, across the results of the 

behavioural and fMRI studies is clear that semantic operations that enhance basic-level 

processing support false recognition responses because high concept confusability tends to 

reduce them. Less clear is whether object-specific semantic processing at encoding directly 

contributes to false recognition. It may simply be that the fewer number of falsely recognized 

items overall decreased the RSA sensitivity in detecting pattern of activity reflecting semantic 

information specific to false recognition, i.e., a lack of power. Thus, it is important to note 

that this null finding does not necessarily mean that the effect of semantic representations on 

memory does not exist. Future studies that employ words, known to tap more strongly on gist 

processing than pictures, and thus increasing the number falsely recognised trials, can better 

test whether semantic representations at encoding contribute to later false recognition. 

Although the first prediction of fuzzy trace theory was only partially supported, the fMRI 

data are consistent with fuzzy trace theory’s principle that verbatim and gist traces are 

convergent processes when it comes to true recognition. 
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As briefly discussed earlier, the fMRI study highlighted the fact that inefficient visual 

processing at encoding could trigger false recognition. Although this is not incompatible with 

fuzzy trace theory, this theory has little to say about the encoding mechanisms that subserve 

false recognition. The importance of encoding operations in processing verbatim information 

is explained by Molitor et al. (2014) who used a continuous recognition memory task with 

eye-tracking measures to investigate the cognitive processes underlying false recognition. 

The authors assumed that mnemonic discrimination errors for similar lures result from the 

insufficient encoding of study items and predicted that fewer fixations would be made to 

falsely recognized lures compared to hits and correctly rejected lures during the first 

presentations of items. The eye-tracking data supported this prediction during first 

presentations when encoding presumably occurred. Based on previous research that has 

shown a relationship between the number of fixations during encoding and subsequent 

memory (Kafkas & Montaldi, 2011; Loftus, 1972), this finding implies that the original 

studied items were insufficiently encoded. A similar logic can be applied to the finding in 

Chapter 3 that reduced early visual processing predicted false recognition. This results is 

compatible with fuzzy trace theory if we assume that insufficient visual processing at 

encoding may reinforce the representation of a raw perceptual gist which then could seem 

familiar in a novel exemplar that shares those same generic features, as suggested to explain 

my findings in Chapter 2 (Naspi et al., 2020). This result is also consistent with the idea that 

false recognition would exemplify a failure of pattern separation during the first presentation 

of items (Schacter et al., 1998), rather than an isolated pattern completion process during the 

presentation of the lures. 

 

This thesis therefore provides some support for the idea that encoding processes can 

contribute to mnemonic discrimination and that some perceptual and semantic operations at 

encoding can be responsible for true and false recognition. However, it is of course both 

encoding and retrieval processing which ultimately determine recognition outcomes, and a 

comprehensive account of mnemonic discrimination must also clarify the retrieval processes 

involved and their interactions with encoding (Otten, 2007). This is particularly important 

given that gist retrieval may also play a substantial role in mnemonic discrimination. 

Retrieval processes also form a major component of some of the mnemonic discrimination 

accounts discussed in this thesis. According to fuzzy trace theory, while the relative strength 

of verbatim and gist representations formed at encoding influences the availability and 
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strength of these representations at test, and thus influences recognition outcomes, retrieval-

based factors such as retrieval cues play a major role (Brainerd & Reyna, 2002). Use of 

studied items as retrieval cues is thought to lead to a tendency to retrieve verbatim traces 

more often than gist, while presentation at test of lure items sharing gist with studied items 

leads often to retrieval of gist memory. Thus, it is likely that stronger reactivations of 

semantic representations for falsely recognised items are elicited at retrieval than encoding. 

Behaviorally, this effect was suggested for both young and older adults in Chapters 2 and 4 

by item exemplarity. Although I found that items more representative of their basic-level 

concepts were more likely to be falsely recognized, studied items with high item exemplarity 

were not more likely to be remembered as I expected if item exemplarity modulated semantic 

gist at encoding. Thus, I argued that this modulation of false recognition was probably due to 

a retrieval effect. If so, fMRI at retrieval would reveal a better fit of the object-specific 

semantic model for falsely recognized lures.  

 

Further retrieval processes also contribute to recognition. According to the source monitoring 

theory, lure mnemonic discrimination involves evaluation of the match between current and 

previous representations, with false recognition occurring when overlap is attributed to the 

lure having been studied (Johnson, 1997). This is similar to suggestions that recall-to-reject 

mediates comparison of the match between previous and existing representations (Brainerd et 

al., 2003). However, this explanation cannot explain the results obtain in Experiment 2 of 

Chapter 2, in which recall-to-reject was prevented. According to the pattern separation 

account, pattern separation at encoding supports later pattern separation and mnemonic 

discrimination at test, while dominance of pattern completion at encoding increases the 

likelihood of dominance of pattern completion at test and thus false recognition. While 

encoding processes influence test outcomes, dominance of pattern separation or completion at 

retrieval is critical. At processing of lures, pattern separation enables unique encoding of 

item-specific information despite overlap with previous representations, enabling avoidance 

of false recognition (Sahay et al., 2011; Yassa & Stark, 2011). It has been suggested that this 

dominance of pattern separation, if accompanied by retrieval of overlapping representations 

via pattern completion, enables comparison of the current and existing representations and 

therefore identification of lures as novel (Kirwan & Stark, 2007). When lures elicit pattern 

completion instead of pattern separation, this is assumed to lead to retrieval of overlapping 

previous episodes, and thus lure false recognition (Wilson et al., 2006). This explanation is 
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not mutually exclusive with encoding mechanisms, and it is likely that the combine 

interaction of encoding and retrieval determines the final recognition outcome. 

  

5.3 Thesis strengths 

A major strength of the thesis is that it provides the first objective evidence that mnemonic 

discrimination is influenced by multiple semantic and perceptual dimensions in young and 

older adults. The current thesis explored different measures of semantic and perceptual 

relations that prior literature only assumed to be relevant. Previous behavioural studies that 

used the categorized picture task assumed that false recognition was exclusively driven by 

semantic and/or perceptual similarity between different exemplars of the same concept on the 

basis of their shared gist (Koutstaal & Schacter, 1997). Moreover, previous research did not 

take into consideration the potential contribution of semantic and perceptual relations 

between different items within the same study and test list (e.g., between “cat”, “chair”, and 

“ladybug” that shared the feature “has legs”). Multiple associative effects have previously 

been investigated in the context of the DRM paradigm, in which increasing the strength of 

connections from list items to critical items and increasing the strength of interconnections 

among the list items produced an increase in false memories in recognition (McEvoy et al., 

1999). However, this is the first study that simultaneously accounts for multiple measures of 

semantic and perceptual processing in a categorised picture paradigm. The current thesis also 

made explicit an important fact about pre-existing semantic knowledge: not all kinds of 

semantic processing contribute to true and false recognition. It all depends on whether the 

currently relevant gist information between study and test items is strengthened or not.  

 

A second strength of the current thesis is that all the studies discussed were pre-registered in 

Open Science Framework (https://osf.io/dashboard). This practice is particularly important in 

neuroimaging and, to my knowledge, mine was the first published preregistered study of 

episodic memory encoding. The reproducibility problem in fMRI has been recently discussed 

in a paper that showed that about 10% of the published results may be false positive (Eklund 

et al., 2016; Mumford, 2012). This problem can arise due to the use of different fMRI 

software (e.g., AFNI, FSL, SPM) that has different pipelines, but sometimes is due to 

practices that dramatically increases the number of false positive findings that encourage the 

https://osf.io/dashboard
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retrospective formulation of hypotheses as the basis of scientific knowledge and theory 

(Yamada, 2018). Thus, the submission of research papers for which experimental and 

analytic methods have been designed and described completely prior to collection of actual 

data can alleviate this problem. This include the software used, a detailed pipeline of each 

step taken, but also the author’s motivation and hypothesis. For example, although not 

currently used in my fMRI study, the used of a standardised pipeline for pre-processsing 

could reduce variability and increase transparency that, consequently, would promote 

reproducibility of results (Esteban et al., 2019). 

 

As I explained just now, one of the advantages of using objective measures is that I was able 

to show that the relevant perceptual information that can elicit false recognition is not 

exclusively restricted to low-level attributes shared between studied items and their specific 

lures. Unlike concept confusability, the pre-registered measure of visual confusability 

calculated across the entire set of images did not influence performance on the mnemonic 

discrimination task. Thus, using an exploratory measure, I hypothesised that the effect of 

perceptual similarity on false recognition was simply driven by the most similar exemplar, or 

the nearest neighbour. This is what I found. Although this finding has to be taken with 

caution, this measure being exploratory, it is a potentially powerful result. At least 

anecdotally, it shows that visual confusability of a similar lure is not necessarily related to the 

corresponding studied exemplar that depicts the same basic-level concept (see Chapter 2). 

For example, one subject in my sample falsely recognized a picture of a “rifle”. Its most 

similar neighbour in terms of low-level visual representation (i.e., in this case their elongated 

orientation) is the image of an “arrow” that I presented during the study phase. This is a novel 

aspect of our experiments since previous studies that emphasised the importance of 

perceptual similarity in eliciting false recognition only assumed this dimension to be at play 

between studied items and similar lures (Koutstaal et al., 2003; Pidgeon & Morcom, 2014). 

More generally, the use of objective measures allowed me to begin to disentangle effects of 

semantic and perceptual similarity on mnemonic discrimination. 

  

Lastly, previous studies that investigated the influence of semantic and perceptual similarity 

simply operationalized these dimensions as category or thematic membership (Cann et al., 

2011), presuming that different exemplars or concepts share semantic or perceptual features, 
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but without actually measuring the degree of semantic or perceptual similarity (but see Boutet 

et al., 2019; Montefinese et al.,  2015). The used of objective measures of similarity allowed 

me to overcome this important limitation. Similarly, feature-based and computational models 

in the fMRI study allowed me to directly overcome the reverse inference problem of previous 

mass univariate analysis studies that interpreted activation in regions associated with 

semantic or perceptual processing necessarily as a reflection of semantic or perceptual 

operations (e.g., Kim & Cabeza, 2007) 

 

5.4 Limitations 

One of the most important limitations of the current thesis is the fact that the models used to 

capture perceptual and semantic processing are incomplete and imperfect. This is true for all 

the measures used across the experiments. Especially in the field of the semantic cognition, 

for example, it is difficult to capture all the semantic aspects of an object and to define all the 

existing relations with all the other concepts. The semantic memory model used in the current 

thesis (CSA; Tyler & Moss, 2001) is optimal for concrete concepts that can be defined in 

terms of features, but it is incapable of describing how the brain represents in space all the 

other abstract concepts for which the semantic meaning is less describable in terms of 

features. Although the current thesis only used concrete concepts, other problems still 

emerged. One major issue, for example, is the lack of norms that quantify semantic similarity 

between different exemplars of the same basic-level concept. In the behavioural experiments 

I was expecting that people could show elevated levels of false recognition for those items 

that were rated as more similar to the participant’s internal representations of those concepts. 

In both young and older adults, I found that these items were more likely to trigger mnemonic 

discrimination errors when used as lures, but we did not observe any age-related difference. 

Moreover, this variable did not impact on true recognition in the hypothesised direction. 

While exemplarity (as I argued above) may have had its effects at retrieval, it is also possible 

that this measure was insensitive to potential basic-level gist effects on encoding (see Chapter 

2). An improved measure could be derived if feature norms were available for the different 

depicted exemplars of the same basic-level concepts. This limitation also extends to the fMRI 

study which by the same argument also lacked a representational model that captured 

semantic processing at this level. 
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A second limitation is that although I controlled for associative effects of backward and 

forward associative strength on memory, they were not included as main predictors in the 

behavioural models. This is important in light on a recent review that show that semantic 

memory includes both “taxonomic” (dog-bear), and “thematic” (dog-leash), relations 

(Mirman et al., 2017). These semantic systems are dissociable and therefore may 

independently contribute to mnemonic discrimination. In Experiments 1 and 2 of both 

Chapter 2 and Chapter 4, backward and forward associative strength together accounted for a 

single principal component. An exploratory examination of statistical results for these 

components (not reported) suggested a strong simple effect on overall “old” responses to 

novel items only in the case of the multiple studied exemplars (Experiment 2 of each 

Chapter). However, as models (to limit the number of predictors) did not include interactions 

with memory, this result does now allow any inference about the relative contributions of the 

associative measures to mnemonic discrimination. However, this was not the main purpose of 

the current thesis, which focused on the modulation by perceptual and semantic variables, 

understood here in terms of features, on mnemonic discrimination. The results showed that 

the effects of these variables can go beyond the controlled effect of backward and forward 

associative strength. I therefore do not argue that associative strength is unimportant in false 

memory because clearly in the real world some concepts are more likely to co-occur with 

other concepts in certain situations (e.g., doctor and nurse). Co-occurrence probabilities 

influence processing at many levels, and, as such, they influence, for example, the probability 

of remembering an event. My point is that associative strength is not necessary nor by itself 

sufficient to explain false memory effects. Rather, what is more important are certain types of 

semantic relations that are processed and extracted from experiences with the world and then 

later used in support to memory. From my perspective, associative relations embed many 

semantic relations (Brainerd et al., 2008; Cann al., 2011) and thus the debate of whether 

semantic relations versus associative strength is more important in false memory may be after 

all not the best way to make progress. 

 

As far as neuroimaging is concerned, a major limitation is the absence of a study of neural 

correlates at retrieval. As noted above, a comprehensive account of mnemonic discrimination 

requires specification of both encoding and retrieval processes. Collecting the data for both 

phases would allow the researcher to also perform further analysis, e.g., encoding-retrieval 

similarity between these activity patterns that is not possible with the actual data. Although 
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encoding-retrieval similarity is not an optimal technique when it comes to revealing the kinds 

of information (perceptual or semantic) reflected in specific brain regions, it can be used to 

clarify whether false memories are due to a reinstatement of the studied information. A fully 

reinstated pattern of activity associated with high confidence judgments could help 

disambiguate whether these representations are associated with a vivid sense of recollection 

instead of familiarity. For example, fuzzy-trace theory suggests people can experience a 

phenomenon known as phantom recollection (Brainerd et al., 2003), where people mistake 

the strong familiarity that results from a test item strongly matching a gist memory trace for 

the experience of recollecting. This gives rise to the subjective experience of recollecting that 

it is based upon retrieval of a gist trace. 

 

Lastly, two more general methodological limitations apply to the aging studies. One problem 

often encountered is that of selection bias in older samples (Hultsch et al., 2002), whereby the 

sample under study is not representative of the population. In ageing studies this often 

manifests as older adults being of greater cognitive ability than the population average at the 

same age (Bootsma-van der Wiel et al., 2002). This is most problematic where volunteers are 

sought via direct advertisements rather than randomly selected from populations, as typically 

older adults of greater cognitive ability are more likely to volunteer for research studies 

(Ganguli et al., 1998). This especially applies to Experiments 1 and 2 of Chapter 4, where 

older adults were recruited via email invitations to members of a research volunteer panel. 

Although in Experiment 1 the levels of educational attainment were equivalent between the 

two groups, older people showed on average slightly higher numerical years of education. 

This can in turn influence executive abilities, and the finding in Experiment 1 that older 

adults showed greater Forward Digit Span than young adults is consistent with a high-

performing sample. The absence of increased false recognition and decreased true recognition 

in Experiment 1 can thus in some circumstances reflect these differences. However, after 

matching the years of education, the observed results still persisted. This suggests that young 

and older groups were largely comparable, despite older adults’ greater Forward Digit Span 

in Experiment 1. Effects of selection bias also apply often to young samples due to the 

tendency to recruit young adults from student populations, as here. A second problem is that 

ageing studies using the cross-sectional design employed in Experiments 1 and 2 of Chapter 4 

are, unlike longitudinal studies, susceptible to cohort effects, and provide less clear support 
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for inferences about changes as a result of age rather than differences in environmental, social 

or other factors between young and older adults (Lindenberger, 2014; Rönnlund et al., 2005). 

 

5.5 Future research 

A major way in which this work could be developed in future is by improving these initial 

models of semantic and perceptual processing to obtain more comprehensive measures of the 

similarity relations that affect mnemonic discrimination. For example, to address the 

fundamental question of how the visual properties of an object elicit semantic meaning, 

researchers have started to combine computationally explicit model of vision with 

computationally explicit model of semantics. As a model of visual processing one step could 

be to shift from HMax to the deep convolutional neural network (DNN), which some view as 

the state-of-the-art in machine vision research, and has remarkable power to capture visual 

information in images and to label objects accurately (Devereux et al., 2018). A DNN 

consists of a series of hierarchical layers, where the nodes of each layer correspond to filters 

that are sensitive to particular patterns in the preceding layer. Nodes in the earliest layers are 

sensitive to relatively local patterns of low-level properties of the stimulus (e.g. pixel values 

or line orientations) whilst nodes at later layers are sensitive to higher-level complex visual 

features which exhibit invariance with respect to lower-level detail, such as position. 

Although these models have been developed with engineering goals rather than 

neurocognitive plausibility in mind, recent neuroimaging studies have shown a remarkable 

correspondence between the layers of DNNs and activation patterns in the visual system 

predicting memory success (Davis et al., 2020; Deng et al., 2021). However, to my 

knowledge no work has yet been done on false memories with these recent newly established 

models of vision. If the model of perception can benefit from advances computational tools, 

the same applies to the semantic model, particularly in the lack already identified of finer-

grained measures that explore within-concept feature similarity. It is difficult to capture for 

example semantic differences between two similar exemplars that belong to the same 

concept. Indeed, some of these features that make two objects semantically similar are 

sometimes only verbalised through the observation of a picture, which necessarily ends up 

overlapping with the perception itself. Future studies could address this concern by asking 

participants to rate a pair of stimuli based on their kind (e.g., semantic similarity) similar to 

Konkle et al. (2010). Moreover, these novel measures should be applied to the aging studies 
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at encoding and retrieval to better test whether they can predict true and false recognition, as 

explained above. 

 

Further studies on the neural correlates at encoding and retrieval related to the older 

population are essential to draw clear conclusions of age-related differences in the 

informational content that drives true and false recognition in this group. For example, there 

has been accumulating evidence that activation patterns elicited by different types of visual 

stimuli are less distinct in older than in young adults (Abdulrahman et al., 2017; Koen et al., 

2019; St-Laurent et al., 2014). This phenomenon, known as age-related neural 

dedifferentiation, suggests that aging impairs the quality of representations during visual 

perception. If inefficiencies in perceptual processing determines poor mnemonic 

representations (Davidson et al., 2019; Park et al., 2004), we would be able to test whether 

this phenomenon is associated with the age-related increases in the levels of false recognition. 

In contrast to perceptual aspect, semantic knowledge is largely preserved in older adults. 

According to general semantic views, because semantic processing is generally spared in 

older adults, they can use this knowledge to compensate for impaired cognitive deficits 

(Umanath & Marsh, 2014). Thus, we could test whether semantic model in older people 

provides a better fit than in young adults within areas known to be responsible for semantic 

processing.  

 

Ultimately, progress in neuroscience requires better understanding of the relations between 

the processes subserved by brain regions and their representations. Most prior fMRI studies 

investigating the neural bases of these operations have focused primarily on processes 

(operations performed on information) and only rarely examined age effects on 

representations (the nature of the information processed) (Cowell et al., 2019). Now, we are 

observing the opposite trend. Would it be possible to unify these line of research? For 

instance, although univariate activation in the left inferior frontal gyrus associated with 

semantic retrieval and elaboration usually predicts later true recognition, my results revealed 

that coarse semantic information in this area hindered it. How can these kinds of results be 

integrated together? Answering these questions will be of primary importance in order to 

disclose the function of human memory. 
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5.6 Conclusion 

This thesis examined the contribution of semantic and perceptual similarity to later 

mnemonic discrimination in young and older adults. Moreover, it investigated the encoding 

contribution to true and false recognition in young people. More broadly the results of the 

current thesis support three general conclusions. First, fuzzy trace theory’s idea that semantic 

information is crucial for both true and false recognition, provided that the relevant gist 

information is shared between studied items and lures. The results are consistent with an 

updated view of fuzzy trace theory that also allows for shared perceptual information to 

contribute to gist. My results, although incompatible with the activation monitoring theory, 

are also broadly compatible with the pattern separation account which does not put emphasis 

on any kind of similarity likely to trigger lure mnemonic discrimination errors. It has been 

noted before that fuzzy trace theory and the pattern separation account are not mutually 

exclusive. Second, the data partially supports the semantic categorization account that 

emphasise a primary role of pre-existing semantic knowledge in eliciting false, but also true 

recognition, in the elderly through processing of the basic-level concept. If gist is not 

restricted to shared semantic information, but also embeds the meaning of the words common 

to study and test items, then the results would also be compatible with fuzzy trace theory’s 

gist-preference conjecture. Lastly, I provided evidence that at least in part these effects are 

due to perceptual and semantic operations that occur at encoding. In conclusion, the used of 

objective measures allowed me to disentangle the relative role of multiple semantic and 

perceptual dimensions and to test their contribution to mnemonic discrimination. It is hoped 

that the findings of this thesis will contribute to future research into encoding strategies or 

interventions to avoid mnemonic discrimination errors in the young and elderly. Future 

investigations using fMRI and RSA are also needed to clarify the role of perceptual and 

semantic processes at retrieval, to determine whether semantic representations may influence 

true and false recognition during this phase. These lines of enquiry, together with 

neuroimaging studies in aging that will investigate how differences in the perceptual and 

semantic representational content at encoding and retrieval contribute to mnemonic 

discrimination in older people, are likely to improve our understanding of memory. 
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Appendices 

Supplemental material of Chapter 2 

Nuisance Variables 

 

Word Associations 

The strength of associations between words is an established modifier of mnemonic 

discrimination (Deese, 1959; Roediger et al., 2001). Both forward associative strength (FAS, 

from an unstudied lure concept to a studied concept) and backward associative strength 

(BAS, from a studied concept to an unstudied lure concept ) may contribute to misrecognition 

and false recall of lures (C. J. Brainerd & Wright, 2005; Roediger et al., 2001). However, the 

current English language norms (Nelson et al., 1998) only provide data for 156 of the 200 

concepts with semantic feature norms used in this study (Devereux et al., 2014). The Nelson 

et al. (1998) norms were also gathered decades ago (from 1973) in the US. To ensure that 

association scores were relevant for our participants, we gathered our own association data 

using a method similar to De Deyne and Storms (2008). 

Participants 

Two hundred and six participants contributed (Age: M = 24.7, SD = 8.7, 147 female, 59 

male). Participants were recruited using social media and Mechanical Turk. They were 

required to live in the UK and be aged 18-50 years. Non-native English speakers self-

evaluated their English ability using a scale from 0 (none) to 5 (fluent) on four dimensions: 

expression, comprehension, reading, and writing. A score of at least 16 out of 20 was 

required. Forty further participants were removed who did not meet these criteria. Each 

concept was seen by an average of 32.4 participants (SD = 2.5). 

 

Stimuli and Procedure 

Participants each rated 30 randomly chosen concepts from the 200 used in the study. For each 

concept, participants were asked to list the first three words that came to mind when reading 

the name of the concept, ranked such that the most prevalent (or first thought of) was listed 
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first. Participants could also mark a word as unknown or provide less than three answers. 

There was no time limit to complete the task. 

Calculation of Mean BAS and Mean FAS 

Associations for a concept were manually sorted and counted to take account of different 

spellings, spelling mistakes, and capitalizations. Following Nelson et al. (2004), conjugated 

words and plural/singular words were transformed into the most frequent instance.  

Following De Deyne and Storms (2008), idiosyncratic words (associations only produced 

once) were removed in the calculation of frequencies. Then, the associations were tallied for 

each concept and divided by the number of associations produced for that concept to create 

relative frequencies of each association. 

A useful metric is how much on average a specific concept is associated with the other 

concepts used in the study (De Deyne & Storms, 2008). This is referred to as mean backward 

associative strength (MBAS) and mean forward associative strength (MFAS). To calculate 

these, we followed procedures used by De Deyne and Storms (2008), and Montefinese, 

Zannino, and Ambrosini (2015). Association data were entered in a 200 x 200 matrix in 

which rows corresponded to concepts and columns to their generated associations with other 

concepts. We entered each association frequency in the corresponding cell. The MFAS was 

then calculated by averaging over frequencies in a given concept’s row, and MBAS by 

averaging over a given concept’s column.  

Word frequency 

Frequently encountered words are processed faster than words that are rarely encountered 

(Oldfield & Wingfield, 1964). Low-frequency words are correctly recognised and correctly 

rejected more often than high-frequency words (Glanzer & Adams, 1985). We used log-

transformed word frequencies from SUBTTLEX-UK, based on British English television 

subtitles (van Heuven et al., 2014). 

 

Concreteness 

Concreteness refers to the extent to which the concept denoted by a word refers to a 

perceptible entity (Paivio & Begg, 1971). More concrete words are easier to remember than 

more abstract words (Gorman, 1961; Paivio, 2013). We used norms from Brysbaert et al. 
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(2014). Participants rated how concrete the meaning of each word was by using a 5-point 

scale. 

 

Age of Acquisition 

Age of acquisition (AoA) is known to influence memory: words learned early in life are less 

well recognized (Dewhurst et al., 1998). We used Brysbaert & Biemille's (2017) update of 

Dale and O’Rourke’s (1981) norms. 

 

Phonological Neighborhood Density 

The phonological neighbourhood density (PND) of a word is the number of words in the 

language which differ only by the addition, subtraction or substitution of a single phoneme 

from the target word (Luce & Pisoni, 1998). Items with high PND tend to be processed less 

quickly and/or accurately. We used norms from the CELEX database (Baayen et al., 1995). 

 

Visual Complexity 

The visual complexity measures reflect superficial visual characteristics of images. More 

complex stimuli may be more easily recognized (Snodgrass & Vanderwart, 1980). We 

included two different measures of image complexity: the number of non-white pixels in the 

image, and color entropy, a measure of the color variability of an image. Images with a large 

proportion of pixels sharing the same color should be less visually complex (Chouinard & 

Goodale, 2012). Color entropy was computed by finding the relative frequency of all colors 

that occur in the non-white pixels in the image and calculating the entropy of this probability 

distribution. 

Concept Familiarity 

We included concept familiarity as an attribute of images. In recognition memory, more 

unfamiliar pictures are better recognised than familiar pictures (Snodgrass & Vanderwart, 

1980).  

Each covariate we considered in the study was standardized and the statistics that follow were 

calculated over the new set of z-score values. 
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Experiment 1 

Figure 4 

Schematic Depiction of Additional Graded Perceptual Confusability Measures 

 

 

Note. Rows show individual exemplars with the highest (right side) and lowest (left side) scores on 

each metric of perceptual confusability. The graded perceptual confusability measures define 

confusability indexing an image’s overall similarity to the full set of images. C1 and C2 were obtained 

from gray-scaled version of the images depicted in Figure 4. For definitions see Variables of Interest 

section. 

 

Table 5 

Principal Component Analysis of Nuisance Variables in Experiment 1 

 Components 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Nb of non-white pixel     0.997   

Color entropy  0.154  0.701   -0.272  0.264 

Mean BAS -0.536      -0.334 

Mean FAS -0.811       0.272 

PND                                                      -0.822 

Concept familiarity -0.156  0.710   0.258 -0.243 

Word co-occurrence         0.992    

Concreteness  -0.700      
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Age of acquisition      0.921  

Word Frequency  -0.708      

Note. The top 7 principal components from the PCA with varimax rotation of nuisance variables. 

Cumulative variance explained is 86.14 %. 

 

Table 6 

Model Selection for Experiment 1 

Model  AICc ΔAICc AICcWt Cum.Wt LL 

Concept + Item + PCs 

Concept + Item 

Item + PCs 

Item 

Concept + PCs 

Concept 

PCs 

Null 

8821.92 0.00 0.98 0.98 -4380.87 

8830.05 8.13 0.02 1.00 -4391.97 

8876.02 54.10 0.00 1.00 -4413.95 

8886.94 65.02 0.00 1.00 -4426.44 

8899.91 77.98 0.00 1.00 -4431.92 

8911.89 89.96 0.00 1.00 -4444.93 

14420.23 5598.30 0.00 1.00 -7200.10 

14430.75 5608.83 0.00 1.00 -7212.38 

Note. Summary of AICc results for models including concept-level, item-level, and confounds 

principal component variables; PCs = Principal components. 

 

Figure 5 

Effects of Semantic and Perceptual Variables on Raw Recognition Measures in Experiment 1 
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Note. Plots show effects of semantic and perceptual variables on raw recognition responses by item 

type. The plot lines represent the raw probabilities of endorsing studied items as “old” (light blue), 

lures as “old” (orange), and novel items as “old” (grey). Panel A, B, and C show the effects of concept 

confusability, item exemplarity, and C1 visual confusability in Experiment 1. Note that for concept-
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level variables (concept confusability) there are data points for each concept, and for item-level 

variables (item exemplarity and C1 visual confusability) there are data points for each exemplar 

image. The clustering around discrete values of p(“old”) reflects the small numbers of observations 

for individual exemplars (see Experiment 1, Materials and Methods, Stimuli). 

 

Table 7 

Results of Experiment 1 Using Graded Perceptual Confusability Metrics 

  

Variable Estimate d’ SE z-value p 

(Intercept) -2.42 -1.38 0.12 -20.09 <.001 

Lure 1.73 0.96 0.07 23.37 <.001 

Studied 4.86 2.75 0.09 52.24 <.001 

Number of Features 0.15 0.08 0.08 1.94 .084 

Concept Confusability 0.29 0.16 0.08 3.61 <.001 

Visual Confusability (C1) -0.14 -0.08 0.07 -1.89 .084 

Visual Confusability (C2) 0.14 0.06 0.08 1.67 .117 

Color Confusability 0.13 0.07 0.08 1.69 .117 

Item Exemplarity 0.18 0.10 0.07 2.61 .022 

Lure × Number of Features -0.32 -0.18 0.07 -4.43 <.001 

Studied × Number of Features -0.12 -0.06 0.09 -1.40 .190 

Lure × Concept Confusability -0.27 -0.14 0.07 -3.74 <.001 

Studied × Concept Confusability -0.57 -0.30 0.08 -6.73 <.001 

Lure × Visual Confusability (C1) 0.14 0.08 0.08 1.88 .084 

Studied × Visual Confusability (C1) 0.20 0.11 0.09 2.27 .041 

Lure × Visual Confusability (C2) -0.08 -0.03 0.08 -0.92 .355 

Studied × Visual Confusability (C2) -0.11 -0.05 0.10 -1.11 .297 

Lure × Color Confusability -0.08 -0.04 0.07 -1.05 .307 

Studied × Color Confusability -0.26 -0.14 0.09 -3.00 .007 

Lure × Item Exemplarity 0.19 0.12 0.08 2.44 .028 

Studied × Item Exemplarity -0.23 -0.11 0.09 -2.52 .025 

 

Note. The reference level of condition is set to “novel”. Parameter estimates (logOR), d’ equivalent, 

standard errors, z-values, and FDR-corrected p-values are listed for condition, concept-level, and 

item-level variables in the winning (full) linear mixed model selected with AIC. Graded perceptual 

confusability measures were reported in the model above. See Material and Methods, and Variables of 

Interest for details. SE = Standard Error. 
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Experiment 2 

 

Table 8 

Principal Component Analysis of Nuisance Variables in Experiment 2 

 Components   

PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Nb of non-white pixel -0.203  -0.675 -0.116  -0.229 0.112 

Color entropy      -0.989    

Mean BAS 0.602      -0.238 

Mean FAS 0.744       0.257 

PND                                                      -0.924 

Familiarity 0.198  -0.733 0.108  -0.207  

Word co-occurrence         0.992    

Concreteness  0.706      

Age of acquisition      -0.947  

Word frequency  0.707      

 

Note. The top 7 principal components from the PCA with varimax rotation of nuisance variables. 

Cumulative variance explained is 86.54 %.  

 

Table 9 

Model Selection for Experiment 2 

Model  AICc ΔAICc AICcWt Cum.Wt LL 

Concept + Item + PCs 

Concept + Item 

Item + PCs 

Item 

Concept + PCs 

Concept 

PCs 

17597.96 0.00 0.89 0.89 -8768.93 

17602.07 4.12 0.11 1.00 -8778.00 

17660.69 62.73 0.00 1.00 -8806.31 

17665.99 68.03 0.00 1.00 -8815.98 

17854.98 257.02 0.00 1.00 -8909.47 

17862.95 264.99 0.00 1.00 -8920.47 

23836.19 6238.23 0.00 1.00 -11908.09 
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Null 23856.48 6258.53 0.00 1.00 -11925.24 

 

Note. Summary of AICc results for models including concept-level, item-level, and confounds 

principal component variables; PCs = Principal components. 
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Figure 6 

 

Effects of Semantic and Perceptual Variables on Raw Recognition Measures in Experiment 2
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Note. Plots show effects of semantic and perceptual variables on raw recognition responses by item 

type. The plot lines represent the raw probabilities of endorsing studied items as “old” (light blue), 

lures as “old” (orange), and novel items as “old” (grey). Panel A, B, and C show the effects of concept 

confusability, item exemplarity, and C1 visual confusability in Experiment 2. Note that for concept-

level variables (concept confusability) there are data points for each concept, and for item-level 

variables (item exemplarity and C1 visual confusability) there are data points for each exemplar 

image. The clustering around discrete values of p(“old”) reflects the small numbers of observations 

for individual exemplars, as 300 of 1800 images were randomly allocated to the 3 test conditions for 

each participant (see Experiment 2, Materials and Methods, Stimuli). 

 

Table 10 

Results Including Study Set Size Effects for Experiment 2 

  

Variable Estimate d’ SE z-value p 

(Intercept) -0.86 -0.51 0.09 -9.94 <.001 

Novel 

Lure-Set8 

-1.85 

0.98 

-1.03 

0.59 

0.08 

0.05 

-23.48 

17.90 

<.001 

<.001 

Studied-Set2 

Studied-Set8 

2.18 

2.57 

1.30 

1.53 

0.06 

0.06 

37.26 

40.54 

<.001 

<.001 

Number of Features -0.02 -0.01 0.05 -0.30 .890 

Concept Confusability 0.09 0.06 0.05 1.71 .162 

Visual Confusability (C1) 0.13 0.07 0.04 2.94 .010 

Visual Confusability (C2) 0.06 0.03 0.05 1.31 .304 

Color Confusability 0.08 0.05 0.04 1.81 .135 

Item Exemplarity 0.43 0.25 0.05 9.52 <.001 

Novel × Number of Features 

Lure-Set8 × Number of Features 

0.01 

-0.01 

0.00 

0.00 

0.08 

0.06 

0.11 

-0.11 

.941 

.941 

Studied-Set2 × Number of Features 

Studied-Set8 × Number of Features 

-0.03 

-0.16 

-0.02 

-0.09 

0.06 

0.07 

-0.45 

-2.28 

.813 

.050 

Novel × Concept Confusability 

Lure-Set8 × Concept Confusability 

Studied-Set2 × Concept Confusability 

Studied-Set8 × Concept Confusability 

Novel × Visual Confusability (C1) 

Lure-Set8 × Visual Confusability (C1) 

Studied-Set2 × Visual Confusability (C1) 

0.21 

-0.08 

-0.31 

-0.33 

-0.20 

0.14 

0.02 

0.10 

-0.05 

-0.19 

-0.19 

-0.10 

0.09 

0.01 

0.08 

0.06 

0.06 

0.06 

0.08 

0.06 

0.06 

2.81 

-1.37 

-5.28 

-5.12 

-2.54 

2.53 

0.27 

.013 

.286 

<.001 

<.001 

.026 

.026 

.890 
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Studied-Set8 × Visual Confusability (C1) 

Novel × Visual Confusability (C2) 

Lure-Set8 × Visual Confusability (C2) 

Studied-Set2 × Visual Confusability (C2) 

Studied-Set8 × Visual Confusability (C2) 

Novel × Color Confusability 

Lure-Set8 × Color Confusability 

Studied-Set2 × Color Confusability 

Studied-Set8 × Color Confusability 

Novel × Item Exemplarity 

Lure-Set8 × Item Exemplarity  

Studied-Set2 × Item Exemplarity 

Studied-Set8 × Item Exemplarity 

-0.03 

0.16 

0.01 

-0.05 

0.05 

0.00 

0.06 

-0.06 

-0.09 

-0.28 

0.04 

-0.38 

-0.30 

-0.01 

0.07 

0.01 

-0.03 

0.03 

-0.01 

0.03 

-0.04 

-0.05 

-0.17 

0.03 

-0.22 

-0.18 

0.06 

0.09 

0.06 

0.06 

0.06 

0.08 

0.06 

0.06 

0.06 

0.08 

0.06 

0.06 

0.06 

-0.42 

1.88 

0.16 

-0.92 

0.84 

-0.01 

1.03 

-1.09 

-1.46 

-3.54 

0.63 

-6.22 

-4.83 

.813 

.123 

.941 

.503 

.539 

.988 

.440 

.255 

.417 

.001 

.689 

<.001 

<.001 

 

Note. The reference level of condition is set to “Lure-Set2”. Parameter estimates (logOR), d’ equivalent, 

standard errors, z-values, and FDR-corrected p-values are listed for condition, concept-level, and item-

level variables in the winning (full) linear mixed model selected with AIC. Nearest neighbour  

perceptual confusability measures were reported in the model above. See Material and Methods, and 

Variables of Interest and for details. SE = Standard Error. 

 

Table 11 

Results of Experiment 2 Using Graded Perceptual Confusability Metrics 

  

Variable Estimate d’ SE z-value p  

(Intercept) -2.71 -1.55 0.10 -26.66 <.001 

Lure 2.36 1.34 0.07 31.98 <.001 

Studied 4.20 2.44 0.08 54.11 <.001 

Number of Features -0.01 -0.01 0.07 -0.16 .917 

Concept Confusability 0.29 0.15 0.07 4.05 <.001 

Visual Confusability (C1) 0.06 0.03 0.07 0.80 .589 

Visual Confusability (C2) 0.30 0.14 0.08 3.96 <.001 

Color Confusability 0.02 0.00 0.07 0.30 .896 

Item Exemplarity 0.17 0.09 0.07 2.41 .030 

Lure × Number of Features 0.00 0.00 0.07 -0.04 .969 

Studied × Number of Features -0.08 -0.05 0.07 -1.10 .405 

Lure × Concept Confusability -0.22 -0.10 0.07 -3.09 .005 

Studied × Concept Confusability -0.51 -0.27 0.07 -6.97 <.001 
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Lure × Visual Confusability (C1) -0.05 -0.03 0.07 -0.75 .597 

Studied × Visual Confusability (C1) -0.02 0.00 0.08 -0.23 .908 

Lure × Visual Confusability (C2) -0.25 -0.11 0.08 -3.12 .005 

Studied × Visual Confusability (C2) -0.23 -0.10 0.08 -2.84 .009 

Lure × Color Confusability -0.04 -0.01 0.07 -0.57 .699 

Studied × Color Confusability -0.11 -0.05 0.07 -1.54 .218 

Lure × Item Exemplarity 

Studied × Item Exemplarity             

0.27 

-0.09 

0.18 

-0.04 

0.07 

0.08 

3.68 

-1.17 

<.001 

.390 

 

Note. The reference level of condition is set to “novel”. Parameter estimates (logOR), d’ equivalent, 

standard errors, z-values, and FDR-corrected p-values are listed for condition, concept-level, and 

item-level variables in the winning (full) linear mixed model selected with AIC. Graded perceptual 

confusability measures were reported in the model above. See Material and Methods, and Variables of 

Interest for details. SE = Standard Error. 

 

Experiment 1 and Experiment 2 

Table 12 

Results for Between-Experiment comparison 

  

Variable Estimate d’ SE z-value p 

(Intercept) 

Experiment 2 

-2.31 

-0.39 

-1.33 

-0.21 

0.10 

0.14 

-22.25 

-2.71 

<.001 

.023 

Experiment 2 × Lure 

Experiment 2 × Studied 

0.71 

-0.45 

0.40 

-0.24 

0.10 

0.11 

6.93 

-3.96 

<.001 

<.001 

Experiment 2 × Number of Features 

Experiment 2 × Concept Confusability 

-0.12 

0.05 

-0.07 

0.02 

0.09 

0.09 

-1.35 

0.59 

.322 

.725 

Experiment 2 × Visual Confusability (C1) -0.15 -0.07 0.09 -1.74 .174 

Experiment 2 × Visual Confusability (C2) 0.08 0.03 0.11 0.79 .604 

Experiment 2 × Color Confusability 0.05 0.01 0.10 0.50 .766 

Experiment 2 × Item Exemplarity -0.06 -0.02 0.09 -0.65 .700 

Experiment 2 × Lure × Number of Features 

Experiment 2 × Studied × Number of Features 

Experiment 2 × Lure × Concept Confusability 

Experiment 2 × Studied × Concept Confusability 

Experiment 2 × Lure × Visual Confusability (C1)  

Experiment 2 × Studied × Visual Confusability (C1)  

Experiment 2 × Lure × Visual Confusability (C2)  

0.29 

0.02 

0.02 

-0.02 

0.09 

0.37 

-0.03 

0.17 

0.00 

0.02 

-0.01 

0.04 

0.20 

0.00 

0.10 

0.11 

0.10 

0.11 

0.10 

0.11 

0.12 

2.97 

0.14 

0.25 

-0.21 

0.91 

3.42 

-0.28 

.011 

.907 

.872 

.872 

.522 

.003 

.872 
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Experiment 2 × Studied × Visual Confusability (C2)  

Experiment 2 × Lure × Color Confusability  

Experiment 2 × Studied × Color Confusability  

Experiment 2 × Lure × Item Exemplarity  

Experiment 2 × Studied × Item Exemplarity 

-0.06 

0.05 

0.03 

0.11 

0.13 

-0.01 

0.04 

0.03 

0.06 

0.07 

0.13 

0.11 

0.12 

0.10 

0.11 

-0.47 

0.49 

0.24 

1.05 

1.19 

.766 

.766 

.872 

.444 

.408 

 

Note. The reference levels of condition and experiment are set to “novel” and “Experiment 1”. 

Parameter estimates (logOR), d’ equivalent, standard errors, z-values, and FDR-corrected p-values are 

listed for condition, concept-level, and item-level variables in the winning (full) linear mixed model 

selected with AIC. Nearest neighbor perceptual confusability measures were used in the model above. 

See Material and Methods, and Variables of Interest for details. SE = Standard Error. 

 

Supplemental material of Chapter 4 

Experiment 1 

Table 13 

Age-Invariant Effects in Experiment 1 

  

Variable Estimate d’ SE z-value p 

• Novel Items as Baseline 

(Intercept) 

Lure 

 

-2.48 

1.76 

 

-1.41 

0.98 

 

0.09 

0.05 

 

-28.82 

33.65 

 

<.001 

<.001 

Studied 

Concept Confusability 

Visual Confusability 

Item Exemplarity 

Lure × Concept Confusability 

Studied × Concept Confusability 

Lure × Visual Confusability 

Studied × Visual Confusability 

Lure × Item Exemplarity 

Studied × Item Exemplarity 

4.88 

0.21 

0.13 

0.11 

-0.16 

-0.45 

0.02 

-0.20 

0.25 

-0.26 

2.69 

0.11 

0.07 

0.05 

-0.08 

-0.23 

0.03 

-0.10 

0.16 

-0.12 

0.06 

0.06 

0.05 

0.05 

0.05 

0.06 

0.05 

0.06 

0.06 

0.07 

75.11 

3.28 

2.55 

2.05 

-3.39 

-7.99 

0.41 

-3.49 

4.53 

-3.98 

<.001 

.001 

.013 

.044 

.001 

<.001 

.685 

<.001 

<.001 

<.001 
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Note. In the upper part of the table, the reference level of condition is set to “novel items”. In the 

lower part of the table, the reference level of condition is set to “lure items”. Parameter estimates 

(logOR), d’ equivalent, standard errors (SE), z-values, and false discovery rate (FDR) corrected p-

values are listed for condition, concept-level, and item-level variables in the linear mixed model. 

 

Experiment 2 

Table 14 

Age-Invariant Effects in Experiment 2 

• Lure Items as Baseline 

(Intercept) 

Studied 

Studied × Concept Confusability 

Studied × Visual Confusability 

Studied × Item Exemplarity 

 

-0.72 

3.12 

-0.29 

-0.22 

-0.51 

 

-0.43 

1.78 

-0.15 

0.14 

-0.28 

 

0.08 

0.05 

0.05 

0.05 

0.06 

 

-9.21 

60.14 

-6.06 

-4.43 

-9.00 

 

<.001 

<.001 

<.001 

<.001 

<.001 

  

Variable Estimate d’ SE z-value p 

• Novel Items as Baseline 

(Intercept) 

Lure 

 

-2.75 

2.71 

 

-1.57 

1.55 

 

0.08 

0.05 

 

-35.00 

52.57 

 

<.001 

<.001 

Studied 

Concept Confusability 

Visual Confusability 

Item Exemplarity 

Lure × Concept Confusability 

Studied × Concept Confusability 

Lure × Visual Confusability 

Studied × Visual Confusability 

Lure × Item Exemplarity 

Studied × Item Exemplarity 

4.48 

0.22 

0.02 

0.13 

-0.16 

-0.40 

0.19 

0.14 

0.35 

0.00 

2.59 

0.11 

0.01 

0.07 

-0.07 

-0.21 

0.11 

0.08 

0.22 

0.00 

0.05 

0.06 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

81.57 

3.93 

0.35 

2.65 

-3.30 

-7.81 

3.64 

2.56 

6.81 

-0.04 

<.001 

<.001 

.796 

.011 

.001 

<.001 

<.001 

.013 

<.001 

<.969 

• Lure Items as Baseline 

(Intercept) 

Studied 

Studied × Concept Confusability 

 

-0.05 

1.78 

-0.24 

 

-0.03 

1.05 

-0.14 

 

0.06 

0.03 

0.03 

 

-0.72 

58.56 

-8.02 

 

.469 

<.001 

<.001 
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Note. In the upper part of the table, the reference level of condition is set to “novel items”. In 

the lower part of the table, the reference level of condition is set to “lure items”. Parameter 

estimates (logOR), d’ equivalent, standard errors (SE), z-values, and false discovery rate 

(FDR) corrected p-values are listed for condition, concept-level, and item-level variables in 

the linear mixed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Studied × Visual Confusability 

Studied × Item Exemplarity 

-0.05 

-0.36 

-0.03 

-0.22 

0.03 

0.03 

-1.61 

-11.80 

.128 

<.001 
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