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Lay Summary

Today’s most popular applications, including social networks, telecommunica-

tions, and financial services, rely on datastores to store their ever-growing data.

Datastores split and store application data across a cluster of machines. As

modern applications have numerous concurrent users who generate data re-

quests, datastores must deliver high performance. For performance, datastores

replicate application data across multiple machines. Replication also ensures

that data remain accessible in the face of machine crashes and other faults.

Datastores deploy replication protocols to keep the replicas synchronized and

provide the illusion of a single copy (i.e., strong consistency), even when faults

occur. To achieve this, replication protocols define the exact actions required to

access and update the data. Thus, in addition to guaranteeing strong consis-

tency and the ability to endure faults, replication protocols also determine the

performance of a datastore.

However, the existing replication protocols deployed by datastores fall short in

terms of performance. Meanwhile, protocols for strong consistency are also

well established when data are replicated across different memories inside a

multiprocessor. Protocols in the multiprocessor context synchronize replicas

using invalidations to deliver high performance but cannot tolerate failures.

In this thesis, we observe that the common operation of replication protocols in

datastores does not involve faults closely resembling the multiprocessor setting.

Based on this insight, we propose multiprocessor-inspired invalidating proto-

cols for replicated datastores that achieve high performance. The invalidating

protocols of this thesis are adapted to the challenges of replicated datastores,

which (among others) include guaranteeing data availability and fault tolerance.
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Abstract

Distributed in-memory datastores underpin cloud applications that run within a

datacenter and demand high performance, strong consistency, and availability.

A key feature of datastores is data replication. The data are replicated across

servers because a single server often cannot handle the request load. Replica-

tion is also necessary to guarantee that a server or link failure does not render a

portion of the dataset inaccessible. A replication protocol is responsible for en-

suring strong consistency between the replicas of a datastore, even when faults

occur, by determining the actions necessary to access and manipulate the data.

Consequently, a replication protocol also drives the datastore’s performance.

Existing strongly consistent replication protocols deliver fault tolerance but fall

short in terms of performance. Meanwhile, the opposite occurs in the world

of multiprocessors, where data are replicated across the private caches of

different cores. The multiprocessor regime uses invalidations to afford strongly

consistent replication with high performance but neglects fault tolerance.

Although handling failures in the datacenter is critical for data availability, we

observe that the common operation is fault-free and far exceeds the operation

during faults. In other words, the common operating environment inside a

datacenter closely resembles that of a multiprocessor. Based on this insight,

we draw inspiration from the multiprocessor for high-performance, strongly

consistent replication in the datacenter. The primary contribution of this thesis is

in adapting invalidating protocols to the nuances of replicated datastores, which

include skewed data accesses, fault tolerance, and distributed transactions.

Keywords: distributed datastores, replication, invalidation-based protocols,

consistency, performance, fault tolerance, skewed data accesses, transactions

vii



Declaration
I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or professional

qualification except as specified. This thesis incorporates and extends work

that first appeared in the following papers:

[70] V. Gavrielatos,∗ A. Katsarakis,∗ A. Joshi, N. Oswald, B. Grot, and V. Nagarajan.

Scale-out ccNUMA: Exploiting skew with strongly consistent caching. Proceed-

ings of the Thirteenth European Conference on Computer Systems (EuroSys).

ACM, 2018. ∗Equal contribution to this work.

[113] A. Katsarakis, V. Gavrielatos, S. Katebzadeh, A. Joshi, A. Dragojevic, B. Grot,

and V. Nagarajan. Hermes: A fast, fault-tolerant and linearizable replication pro-

tocol. Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS). ACM,

2020. Honorable mention in IEEE Micro Top Picks 2020.

[114] A. Katsarakis, Y. Ma, Z. Tan, A. Bainbridge, M. Balkwill, A. Dragojevic, B. Grot,

B. Radunovic, and Y. Zhang. Zeus: Locality-aware distributed transactions.

Proceedings of the Sixteenth European Conference on Computer Systems (Eu-

roSys). ACM, 2021.

In addition to the works mentioned above, which form the backbone of this the-

sis, I also contributed to other relevant publications during my studies including:

[115] A. Katsarakis, Z. Tan, M. Balkwill, B. Radunovic, A. Bainbridge, A. Dragojevic, B.

Grot, and Y. Zhang. rVNF: Reliable, scalable and performant cellular VNFs in

the cloud. Technical Report (MSR-TR-2021-7). Microsoft, 2021.

[72] V. Gavrielatos, A. Katsarakis, and V. Nagarajan. Odyssey: The impact of mod-

ern hardware on strongly-consistent replication protocols. Proceedings of the

Sixteenth European Conference on Computer Systems (EuroSys). ACM, 2021.

[73] V. Gavrielatos, A. Katsarakis, V. Nagarajan, B. Grot, and A. Joshi. Kite: Efficient

and available release consistency for the datacenter. Proceedings of the Twenty-

Fifth Symposium on Principles and Practice of Parallel Programming (PPoPP).

ACM, 2020. Best paper nominee.

Antonios Katsarakis

viii



Contents

1 Introduction 1
1.1 Replication protocols vs. multiprocessors: availability or performance . 2
1.2 The common case of a replication protocol resembling a multiprocessor 4
1.3 Content and primary contributions . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Replicated datastores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Existing replication protocols . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Multiprocessor consistency enforcement . . . . . . . . . . . . . . . . . . 20
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Scale-out ccNUMA: Replication for Performance 25
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Skew and load imbalance . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Existing skew mitigation techniques . . . . . . . . . . . . . . . . 29

3.3 Scale-out ccNUMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Symmetric caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Galene: Fully distributed strong consistency . . . . . . . . . . . . . . . . 35

3.5.1 Hotspots in write serialization . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Galene overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.3 Galene protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Operational example . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 ccKVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.1 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.2 Cache and KVS implementation . . . . . . . . . . . . . . . . . . 43
3.6.3 Communication layer . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.4 Performance optimizations . . . . . . . . . . . . . . . . . . . . . 46

3.7 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.1 Evaluated systems . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



3.7.2 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8.1 Read-only performance . . . . . . . . . . . . . . . . . . . . . . . 49
3.8.2 Performance under writes . . . . . . . . . . . . . . . . . . . . . . 51
3.8.3 Sensitivity to object size . . . . . . . . . . . . . . . . . . . . . . . 53
3.8.4 System bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8.5 Request coalescing . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8.6 Latency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.8.7 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Hermes: Fast Fault-Tolerant Replication 63
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 High-performance reads and writes . . . . . . . . . . . . . . . . 66
4.2.2 Reliable replication protocols . . . . . . . . . . . . . . . . . . . . 67

4.3 Hermes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Read/write protocol . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Network faults, reconfiguration, and recovery . . . . . . . . . . . 74
4.3.4 Operational example . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.5 Read-modify-writes . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.6 Taming asynchrony . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.7 Protocol summary . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 HermesKV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Evaluated systems . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.1 Throughput on uniform traffic . . . . . . . . . . . . . . . . . . . . 85
4.5.2 Throughput under skew . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3 Latency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.4 Scalability study . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.5 Comparison to Derecho . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.6 Tolerance to tail latency . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.7 Throughput with failures . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.8 Study under asynchrony . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

x



5 Zeus: Locality-Aware Replicated Transactions 103

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Objectives and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Datastore design objectives . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 A case for access locality . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Zeus design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.2 Overview of protocols . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Zeus ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.1 Reliable ownership protocol . . . . . . . . . . . . . . . . . . . . . 115

5.4.2 Fast scalable ownership . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Zeus reliable commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 Reliable commit protocol . . . . . . . . . . . . . . . . . . . . . . 119

5.5.2 Non-blocking transaction pipelining . . . . . . . . . . . . . . . . . 122

5.5.3 Read-only transactions . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6.1 Distributed commit vs. Zeus . . . . . . . . . . . . . . . . . . . . . 124

5.6.2 Further details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.8.1 Handovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8.2 Smallbank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8.3 TATP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8.4 Voter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.8.5 Legacy applications . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Concluding Remarks 143

6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 Enhancing proposed protocols and schemes . . . . . . . . . . . 146

6.2.2 Expanding to a different context . . . . . . . . . . . . . . . . . . 148

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Invariants and Strong Consistency 151

Bibliography 157

xi



List of Figures

1.1 Performance and fault tolerance of strongly consistent replication. . . . 4

2.1 Access primitives offered by datastores. . . . . . . . . . . . . . . . . . . 11

2.2 Operation ordering in different consistency models. . . . . . . . . . . . . 13

3.1 Load imbalance in a server cluster caused by skewed accesses. . . . . 28

3.2 Design space for skew mitigation techniques. . . . . . . . . . . . . . . . 29

3.3 Effectiveness of caching under popularity skew. . . . . . . . . . . . . . . 33

3.4 Design space for ensuring a global order of writes. . . . . . . . . . . . . 36

3.5 Write actions in Galene. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Metadata stored and messages sent by Galene. . . . . . . . . . . . . . 38

3.7 Execution example with concurrent writes in Galene. . . . . . . . . . . . 40

3.8 Throughput of a read-only workload while varying skew. . . . . . . . . . 50

3.9 Request breakdown for a read-only workload. . . . . . . . . . . . . . . . 50

3.10 Sensitivity to write ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Network traffic breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 Varying object size study. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Analysis of coalescing and latency. . . . . . . . . . . . . . . . . . . . . . 56

3.14 Scalability study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.15 Break-even write ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Throughput and latency of membership-based protocols. . . . . . . . . 67

4.2 Write actions in Hermes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Metadata stored and messages sent by Hermes. . . . . . . . . . . . . . 72

4.4 Execution example with faults in Hermes. . . . . . . . . . . . . . . . . . 77

4.5 Throughput while varying write ratio with uniform accesses. . . . . . . . 86

4.6 Throughput while varying write ratio under skew. . . . . . . . . . . . . . 87

4.7 Latency analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Scalability study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 Comparison to Derecho. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Throughput while increasing the tail latency of writes. . . . . . . . . . . 93

4.11 Maximum recovery per crash based on availability targets. . . . . . . . 94

4.12 Hermes throughput under a node crash. . . . . . . . . . . . . . . . . . . 95

4.13 Hermes vs. Hermes-async throughput. . . . . . . . . . . . . . . . . . . 96

4.14 Hermes vs. Hermes-async latency. . . . . . . . . . . . . . . . . . . . . . 97

xii



5.1 Locality-aware distributed transactions in Zeus. . . . . . . . . . . . . . . 112
5.2 Pipelined execution of transactions in Zeus. . . . . . . . . . . . . . . . . 114
5.3 Zeus ownership protocol with and without faults. . . . . . . . . . . . . . 117
5.4 Zeus reliable commit protocol and its messages. . . . . . . . . . . . . . 120
5.5 Per-node pipelines in Zeus. . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.6 Consistent read-only transactions in Zeus. . . . . . . . . . . . . . . . . . 123
5.7 Zeus transactional API. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.8 Handovers performance all-local (ideal) vs. Zeus. . . . . . . . . . . . . . 131
5.9 Smallbank performance while varying remote write transactions. . . . . 132
5.10 TATP performance while varying remote write transactions. . . . . . . . 133
5.11 Voter performance when moving objects across nodes. . . . . . . . . . 134
5.12 Voter performance when registering votes and moving objects. . . . . . 135
5.13 CDF of Zeus ownership request latency for Voter experiments. . . . . . 136
5.14 Cellular packet gateway control plane performance. . . . . . . . . . . . 137
5.15 SCTP performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.16 Nginx performance in a scale-in/scale-out scenario. . . . . . . . . . . . 139

A.1 Example of linearization points in writes. . . . . . . . . . . . . . . . . . . 152

List of Tables

1.1 Context differences in replicated datastores improved by this thesis. . . 6

2.1 Coordination of reads and writes for fault tolerance and consistency. . . 17

4.1 Replication protocol features for high performance. . . . . . . . . . . . . 64
4.2 Read and write features of the evaluated systems. . . . . . . . . . . . . 83

5.1 Nodes storing object (meta)data and their access permissions. . . . . . 115
5.2 Summary of evaluated benchmarks. . . . . . . . . . . . . . . . . . . . . 130

xiii





1
Introduction

Good ideas . . . want to connect, fuse, recombine.
They want to reinvent themselves by crossing conceptual borders.

Steven Johnson

Today’s cloud applications deliver critical services to large audiences and are

underpinned by cavernous datastores that manage their ever-increasing data.

A wide variety of applications rely on datastores, including social networks,

e-commerce, telecommunications, and financial services [31, 46, 165, 212].

Thus, datastores provide benefits to most people in numerous ways every day.

Datastores split and store application data across servers to leverage the in-

memory speed and capacity of multiple nodes (i.e., servers) inside a datacenter.

To let applications access and manipulate their data, datastores provide a

single-object read/write interface and occasionally, multi-object transactions.

A transaction is a series of reads and writes to one or more data objects treated

as an indivisible unit, such that either all or none of the reads and writes occur.

It is common for modern services to generate several million such data queries

per second [17, 199]. Therefore, datastores must offer high performance.

Furthermore, as datastores run on commodity failure-prone infrastructure [44],

it is essential that they also facilitate data availability in the case of faults.

Data replication is a fundamental feature of performant and resilient datastores.

Datastores must replicate data across nodes to increase throughput because a

single node often cannot keep up with the request load [31]. Replication is also

necessary to guarantee that the failure of a node or network link does not render

a portion of the dataset inaccessible. In such a replicated datastore, consistency

must be enforced across the data replicas. Succinctly put, replicas should not

1
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arbitrarily diverge in the face of data updates, or it would be impossible to predict

the behavior of the datastore and facilitate the correctness of the applications.

To ensure that the services running on the datastore operate correctly and

intuitively, the data replicas must be strongly consistent, providing the illusion of

a single copy. Maintaining the strong consistency of the replicas is a challenge,

especially in the presence of failures. A replication protocol1 is responsible for

keeping the replicas of a datastore strongly consistent, even when faults occur.

To achieve that, a replication protocol determines the exact actions necessary

to perform reads, writes, or transactions on the data. This includes the number

of network exchanges as well as which and how many servers must be involved

in completing each request. Thus, besides ensuring strong consistency and

fault tolerance, replication protocols also define the datastore’s performance.

Many applications that run on top of replicated datastores are highly sensitive

to performance. High throughput is a common requirement. In addition, low

latency is emerging as a critical design goal in the age of interactive services

and machine actors. For instance, Anwar et al. [12] note that a deep learning

system running on top of a replicated datastore is profoundly affected by the

latency of the datastore.

1.1 Replication protocols vs. multiprocessors:
availability or performance

In this thesis, we observe that the existing replication protocols which support

strongly consistent reads and writes and ensure data availability are unable to

achieve high performance because they sacrifice either concurrency or speed.

Concurrency is typically diminished due to the serialization of reads or writes on

a dedicated leader node (also called a primary or head node) [4, 9, 38, 86, 100,

181, 209]. Speed is jeopardized when writes need numerous network hops to

complete [209, 213] or when reads forfeit locality and require communication

across multiple replicas to be served [15, 27, 60, 89, 129, 144, 150, 160, 174].

1We use the term replication protocol to refer to a wide range of protocols for accessing and
manipulating replicated data, including protocols for data re-sharding and transactions.
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Strongly consistent replication is not a unique feature of datastores; it is also a

well-established practice between the caches of a multiprocessor. While perfor-

mance has been sacrificed in the name of fault tolerance and strong consistency

in the distributed world of replication protocols, the story is entirely different for

shared-memory multiprocessors. In the multiprocessor context, where fault

tolerance is generally not a consideration, cache coherence protocols almost

always enforce strong consistency while maintaining high performance.

Cache coherence protocols use invalidations to efficiently guarantee strong con-

sistency across replicated data in multiprocessor caches [163]. Their invalida-

tion scheme ensures high performance for both reads and writes, compromising

neither concurrency nor speed. All data copies in a valid state across caches

can be individually leveraged to perform local reads. Writes are also completed

quickly from any cache after only a single round of invalidations to other caches.

Latency is further minimized through the use of a high-performance fabric with

a fully hardened communication protocol. Unfortunately, cache coherence

invalidating protocols do not provide any fault-tolerance guarantees.

An analogous story unfolds when considering transactions. Replication proto-

cols in state-of-the-art datastores support strongly consistent transactions with

data availability but sacrifice performance, as they cannot fully exploit locality.

These protocols rely on static sharding, in which relevant data are randomly

placed on fixed nodes. Thus, they cause excessive network traffic and require

multiple network hops to complete each transaction, regardless of the access

pattern [57, 111]. Meanwhile, the opposite is true for strongly consistent trans-

actions in the multiprocessor. The multiprocessor’s transactional memory [93]

extends the invalidating coherence to afford transactions that exploit access lo-

cality to boost performance. For example, a core that has previously accessed

and currently caches relevant data can perform a series of transactions on

that data locally, eschewing remote access and coordination. Problematically,

transactional memory is also not resilient to faults, hence risking data availability.

To summarize, in the world of datastores, replication protocols are fault tolerant

but fall short in performance. While, in the multiprocessor world, invalidation

protocols allow local reads with fast writes from all replicas and transactions

that exploit locality to ensure high performance, but they are not fault tolerant.
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Figure 1.1 Performance and fault tolerance of strongly consistent replication.

1.2 The common case of a replication protocol
resembling a multiprocessor

Although guaranteeing data availability in the presence of faults is critical for

datastores, failures at the level of an individual server in a datacenter are

relatively infrequent [103]. Data from Google show that an average server

fails at most twice per year [20]. Consequently, for a typical replica group

comprised of a handful of datastore nodes, the amount of fault-free operation

significantly dominates over the operation during failures. Another observation

is that modern datacenters aggressively enable high-performance networking.

This trend includes user-space network stacks (e.g., DPDK [176]) and fabrics

featuring hardware offloading and remote direct memory access (RDMA) [69,

88, 155], which offer consistently low communication latencies. As such, our

insight is that the common operating environment of a replication protocol inside

a datacenter closely resembles that of a multiprocessor.
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Based on this insight and the need for reliable yet performant replicated datas-

tores, the thesis of this dissertation is as follows (also illustrated in Figure 1.1):

Thesis statement

Adapting the multiprocessor-inspired invalidating protocols

to intra-datacenter replicated datastores enables strong

consistency with data availability and high performance.

1.3 Content and primary contributions

To support our thesis statement, in this dissertation, we propose invalidating

protocols that improve the three most common uses of data replication within

intra-datacenter datastores. These three use cases are listed below, followed

by the name (in bold) of our associated proposal for each.

1. Replication for performance Scale-out ccNUMA

2. Replication for fault tolerance Hermes

3. Replicated distributed transactions Zeus

For the first two use cases, we consider the most typical setting for datastores,

in which the data are statically sharded and accessed via a single-object read-

/write interface. In the first use case, we leverage replication to exploit highly

skewed data accesses, which are common in online services [14]. This use of

replication aims to improve performance under strong consistency, but it does

not cover fault tolerance. In the second use case, we demonstrate how an

invalidation-based protocol enables fault-tolerant replication for data availability,

with strong consistency and high performance. Finally, in the third use case, we

apply invalidation-based protocols to a more challenging datastore setting, with

dynamic data sharding and fault-tolerant transactions for availability. The main

contextual differences considered in each use case are outlined in Table 1.1.

Below, we briefly describe the primary contributions of this thesis.

1. Scale-out ccNUMA: Replication for performance under access skew 2

Data access skew is a prevalent workload characteristic of online services.

2This was a joint work with equal contributions from myself and my colleague, Vasilis Gavrielatos.
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Scale-out ccNUMA Hermes Zeus

Key drive

for replication
Performance Availability Availability

Access

primitives
Reads/writes Reads/writes Transactions

Data sharding Static Static Dynamic

Table 1.1 Contextual differences in replicated datastores improved by this thesis.

In short, a small number of data objects are widely more popular and likely

to be accessed than the rest. Thus, the datastore nodes holding these hot

objects are overloaded while the majority of nodes remain underutilized.

The resulting load imbalances inhibit the performance of the datastore.

To mitigate these load imbalances, we propose a replication scheme that

balances the request load over a pool of RDMA-connected servers (e.g., a

rack). Each server is equipped with a small replicated software cache stor-

ing the (same) most popular objects in the pool, and client requests are

spread across the pool. Requests for popular objects are served by the

caches, filtering the skew. With the skew filtered, the remaining requests

can leverage an uncongested RDMA network to complete quickly.

The key challenge, however, is ensuring strong consistency between the

replicated hot objects. Existing protocols ensure strong consistency by

serializing writes over a physical ordering point, which could itself easily

become a hotspot under skewed accesses. To resolve this issue, we intro-

duce Galene, a replication protocol that couples invalidations with logical

timestamps to enable fully distributed write coordination from any replica

and avoid hotspots. Our evaluation shows that for typical modest write

ratios, the proposed scheme powered by Galene, improves throughput by

2.2× when compared with the state-of-the-art skew mitigation technique.

2. Hermes: Strongly consistent and fault-tolerant replication made fast

Resilient datastores that guarantee data availability must replicate their

data using fault-tolerant replication protocols. Existing fault-tolerant

replication protocols that support strong consistency hinder datastore

performance, as they compromise on speed or concurrency. Briefly, these

protocols fail to achieve both local reads and fast writes from all replicas.
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To address this shortcoming, we introduce Hermes, an invalidation-based

protocol that is strongly consistent and fault tolerant while exploiting the

typical fault-free operation to enable local reads and fast writes from all

replicas. We show that an invalidating protocol can be resilient and deliver

high throughput with low latency. Five node replicas managed by Hermes

afford hundreds of millions of reads and writes per second, resulting

in significantly higher throughput than the state-of-the-art fault-tolerant

protocols while offering at least 3.6× lower tail latency.

3. Zeus: Replicated and distributed locality-aware transactions

State-of-the-art datastores that provide multi-object transactions with data

availability deploy protocols which cannot fully exploit the locality in access

patterns that exist in several transactional workloads. Therefore, they incur

excessive remote accesses and numerous network round-trips to commit

each transaction, hence curtailing the datastore’s performance.

Inspired by the multiprocessor’s transactional memory, we propose and

implement Zeus, a strongly consistent distributed transactional datastore

that exploits and dynamically adapts to the locality of transactional work-

loads. To achieve this, we introduce a reliable ownership protocol for

dynamic data sharding that quickly alters replica placement and access

levels across the replicas and a fault-tolerant transactional protocol for fast,

pipelined, reliable commit and local read-only transactions from all repli-

cas. For workloads with data access locality, six Zeus nodes can achieve

tens of millions of transactions per second with up to 2× the performance

of state-of-the-art datastores while using less network bandwidth.

Formally verified invalidation-based replication protocols

Overall, in this thesis we introduce and formally verify, in TLA+ [128], the

correctness of four invalidating protocols that provide strong consistency with

high performance, advancing the state of affairs in replicated datastores.

1. Galene: A fully distributed replication protocol for high performance.

2. Hermes: A fast fault-tolerant replication protocol for reads and writes.

3. Zeus ownership: A fault-tolerant protocol for dynamic data sharding.

4. Zeus reliable commit: A locality-aware pipelined transaction commit.
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1.4 Thesis structure

The remainder of this thesis is organized as follows.

Chapter 2 provides background on replicated datastores, replication protocols,

and consistency enforcement in the multiprocessor.

Chapter 3 Scale-out ccNUMA reveals the benefits of aggressive replication

backed by a fully distributed invalidating protocol for load balance and

strong consistency in the presence of skewed data accesses.

Chapter 4 Hermes proposes a fault-tolerant invalidating protocol that affords

strong consistency with local reads and fast writes from all replicas and

demonstrates its throughput and latency advantages.

Chapter 5 Zeus introduces and evaluates two invalidation-based protocols

that enable fast dynamic sharding and distributed replicated transactions,

with data availability and locality awareness.

Chapter 6 concludes the thesis by summarizing the key results and exploring

possible directions for future work.

Supplementary material, including open-source code for the evaluated systems

and detailed TLA+ specifications of the proposed protocols, is available online:

Scale-out ccNUMA : http://s.a-phd.com

Hermes : http://h.a-phd.com

Zeus : http://z.a-phd.com

http://s.a-phd.com
http://h.a-phd.com
http://z.a-phd.com


2
Background

Make progress, and, before all else,
endeavor to be consistent.

Seneca

To put this work into context, we begin with background on replicated datastores,

including details related to consistency, fault tolerance, and performance. We

then outline existing replication protocols for datastores. Finally, we describe

the multiprocessor’s method of ensuring data consistency, which inspired the

invalidation protocols developed in this thesis.

2.1 Replicated datastores

Replicated distributed datastores are the backbone of today’s online services

and cloud applications. They are responsible for storing application data while

providing replica consistency, data availability, and high levels of performance.

One example of these datastores is key-value stores (KVS) [31, 53, 142], which

serve as the foundation of many of today’s data-intensive online services, in-

cluding e-commerce and social networks. Another example is coordination

services (e.g., Apache Zookeeper [100] and Google’s Chubby [33]), which

allow applications to maintain critical shared state, including configurations,

metadata, and locks. Yet another datastore example is shared-nothing trans-

actional databases, such as those focusing on online transaction processing

(OLTP) [56, 110].

Sharding and replication. Replicated datastores partition their data across

multiple nodes inside a datacenter. Modern datastores statically partition the

9
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stored data into smaller pieces called shards (i.e., static sharding) [56, 110].

Static sharding is typically achieved through consistent hashing [112], where a

hash function is used to deterministically decide the home node of an object

based on its unique identifier (e.g., a key or a memory address). Therefore,

consistent hashing results in a uniformly random and fixed placement of objects

among a datastore’s nodes.

Datastores also replicate each shard across multiple nodes to maintain data

availability, even in the presence of faults. A fault-tolerant replication protocol

is deployed to enforce consistency and fault tolerance across all replicas of a

given shard. The number of replicas of a shard is the replication degree, and it

presents a trade-off between cost and fault tolerance. More replicas increase

fault tolerance but also increase the cost of the deployment. To facilitate data

availability, a replication degree between three and seven replicas is commonly

considered to offer a good balance between resilience and cost [100]. Overall,

although a partitioned datastore may span numerous nodes, the replication

protocol need only scale with the replication degree.

In this thesis, we focus on replication protocols deployed over datastores,

sharded, and replicated within a datacenter. Clients (i.e., application threads)

interact with such a datastore by first establishing a session through which they

invoke requests and wait for responses. The type of request is determined by

the access primitives offered by the datastore.

Access primitives. Datastores provide fundamental primitives to access

and modify data objects.1 Based on the number of objects involved, they

can be classified as single-object or multi-object primitives. Some of these

primitives adhere to transactional semantics. Informally, a transaction is an

indivisible sequence of operations that access or modify at least one object.

This sequence either completes in its entirety as if executing without any other

concurrent requests (i.e., commits) or has no effect on the data (i.e., aborts).

Most datastores provide a single-object interface that allows for read and write

operations. Occasionally, datastores afford another single-object operation

called a read-modify-write (RMW) [121], which is a single-object transaction that

is equivalent to consensus [168]. An RMW facilitates arbitrarily powerful single-

1Throughout this thesis, we use the terms object and key interchangeably.
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Figure 2.1 Access primitives offered by datastores and examples of primitives

that update the state. Arrows point towards more general primitives. The

variables x, y, and locked represent objects stored in a datastore.

object procedures, such as compare-and-swap and other critical methods for

locks and synchronization.

Datastores with even richer interfaces support multi-object transactions. As

illustrated by the examples on the right-hand side of Figure 2.1, unlike in an

RMW, each operation within a multi-object transaction may address a different

object. If these objects do not strictly need to be stored on the same node,

the provided datastore primitive is called a distributed transaction. Finally,

multi-object transactions can be further classified as read-only if they only

access and do not modify data (otherwise, they are classified as read-write).

For brevity, in the remainder of this thesis, we refer to distributed transactions

simply as transactions (also abbreviated as txs) and read-write transactions as

write transactions.

The left-hand side of Figure 2.1 summarizes the primitives offered by datastores,

where A → B indicates that B can implement (and is more general than) A.

Although using more general primitives to implement less general ones results

in the correct behavior, doing so comes at the expense of performance. This

is because the realization of a more general primitive fundamentally requires

costlier protocol actions. For instance, a read can be served as an RMW;

however, implementing an RMW is significantly more expensive than a read in
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a distributed setting with faults [73]. As a result, a protocol should not simply

focus on offering the most general access primitive, since this generalization

would unnecessarily hinder the performance of the datastore.

In this context, the purpose of this dissertation is to provide invalidation-based

protocols that support these fundamental datastore primitives over replicated

datastores with strong consistency, fault tolerance, and high performance.

2.1.1 Consistency

The problem of managing concurrent accesses over replicated data arises

in many contexts, ranging from distributed replicated datastores to shared-

memory multiprocessors. To prevent the arbitrary divergence of replicas, which

would render any system unusable, a consistency model 2 must be enforced.

Informally, a consistency model is a set of rules that restricts the values a read

may return when it is interleaved or overlapped with other operations executed

over different replicas (and shards).

A plethora of weak consistency models exist that favor performance but incur

hefty costs on programmability. Most weak models fall within the category of

eventual consistency [210]. In such models, the only requirement is that all

replicas must eventually converge on a value in the absence of new updates,

allowing updates to be propagated asynchronously in any order. In terms

of performance, weak models are beneficial, but they fall short in terms of

providing adequate semantics to support all types of applications [46, 108].

In addition, weak models can be hard to reason about and can lead to nasty

surprises for both developers and clients [145, 214].

More intuitive models are sequential, such as sequential consistency for single-

object operations [127] and serializability for transactions [177]. As illustrated in

Figure 2.2, unlike weak models, sequential models guarantee that the results of

all operations are the same as if the operations on all the replicas (and shards)

were executed in some sequential interleaving. While sequential models are

more intuitive than weak models, their operations are still not required to respect

real-time boundaries. In other words, they permit operations to be sequenced

2A consistency model is also known as isolation level in the database community.
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Figure 2.2 Operation ordering in different consistency models.

outside of their invocation-response boundaries. For instance, as the execution

example over the sequential models in Figure 2.2 illustrates, a read operation

(B) for an object that is invoked after the response to a write (A) to the same

object can be sequenced before A, thereby missing the value of the write. Thus,

problematically, operations may return stale values under a sequential model,

which burdens programmers and confuses clients.

The strongest models provide the illusion of a single data copy and never return

stale values. More precisely, these models are sequential but also respect real

time. Consequently, they offer intuitive behavior to clients, permit the broadest

spectrum of applications, and accommodate a simple programming interface.

Not surprisingly, many modern replicated datastores target the strongest

consistency [17, 57, 111]. For the above reasons, this thesis also focuses

on guaranteeing the strongest consistency models, which are described next.

Linearizability. For single-object operations, the strongest semantics are cap-

tured by linearizability [95]. In this model, as shown in Figure 2.2, each request

appears to take effect globally and instantaneously at some point between its

invocation and response. Thus, a read invoked after the response of a write

to the same object is guaranteed to be sequenced after the write and return

the value of the write (or a more recent value). Besides its intuitive behavior,

linearizability is also composable [94]. Succinctly put, the union of individually

linearizable entities results in a linearizable system. Composability is important

from a performance perspective, as it enables independent, per-object lineariz-

able, protocol instances to form a multi-object linearizable datastore in a highly

concurrent fashion. This modularity is also the reason why the linearizable
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protocols presented in this thesis can simply focus on a single object.

Strict serializability. The strongest consistency model for transactions is

strict serializability [195]. This model is equivalent to linearizability for transac-

tions [95]. Under strict serializability, all committed transactions appear as if

they are atomically performed on all relevant shards and replicas at a single

point between their invocation and response.

For brevity, throughout this dissertation, we use the term strong consistency (or

the term safety ) to refer to linearizability for single-object operations and strict

serializability for transactions.

2.1.2 Fault tolerance

An essential feature of resilient datastores is ensuring data availability in the

face of node and network failures. Availability requires data replication and

fault-tolerant protocols that enforce replica consistency even in the case of

failures. In this thesis, Chapter 4 and Chapter 5 provide three such protocols

based on the following failure model.

Failure model. This thesis primarily considers a partially synchronous system

[59] in which processes are equipped with loosely synchronized clocks (LSCs),

as in [38], and crash-stop or network failures may occur. In this model, network

failures can manifest as message reordering, duplication, or loss. Although

nodes follow the replication protocol and do not act maliciously, they may fail due

to a crash, and these crashes cannot be accurately detected. We assume that

only up to a minority of node replicas may crash, as we explain in Section 2.2.

Throughout this thesis, we describe datastores, protocols, or primitives as

reliable when they afford the strongest consistency and fault tolerance under

this model.

While this thesis focuses on the partially synchronous model, Section 4.3.6

demonstrates how the proposed invalidation-based protocols can be made in-

dulgent (i.e., safe under non-reliably detected crash faults and asynchrony —

that is, without LSCs) [81]. Note that in accordance with the seminal FLP impos-

sibility result [68], indulgent protocols with primitives equivalent to consensus

(e.g., RMWs) may not always provide progress.
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Datacenter network topologies are highly redundant [67, 78, 200]. Therefore,

link failures leading to network partitions are not common inside a datacenter.

This renders partitions outside the main scope of this dissertation. Neverthe-

less, we discuss how our approach maintains safety under network partitions

in Section 4.3.3.

Common operation = fault-free. Although ensuring data availability and

correctness under faults is of the utmost importance, the failure-free operation

considerably prevails for a replica group. Failures at the level of an individual

node inside a datacenter are relatively infrequent. An average server fails at

most twice per year, according to data from Google [20], and other independent

studies over large clusters have reported similar numbers [191, 203]. With

a typical replication degree spanning 3–7 nodes for fault tolerance, one can

generally expect well over 20 days of crash-free operation within each replica

group. Unsurprisingly, researchers have advocated for leveraging the common

fault-free operation to increase the performance of reliable datastores [25, 103].

2.1.3 Performance

Modern hardware and workload characteristics matter. Cloud applications

and online services supported by datastores are characterized by numerous

concurrent and latency-sensitive requests [12, 31]. To satisfy the application

demands, datastores must deliver high performance. This translates to serving

requests in a high-throughput and low-latency manner. Leveraging modern

hardware — for example, keeping the dataset in-memory, employing highly

multithreaded designs, and exploiting fast networking (e.g., DPDK or RDMA) —

is necessary but insufficient for performance.

Workload characteristics play a significant role in performance. Online services

present data accesses that are highly skewed in popularity, following a power-

law distribution [14]. For instance, posts by state leaders in a social network

are exponentially more likely to be accessed than the vast majority of other

posts. Handling workloads with very popular objects requires extra care to

avoid hotspots. Another workload characteristic is that several transactional

applications exhibit a high degree of locality in their access patterns [49, 212].
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In other words, transactions tend to repeat, accessing the same or adjacent

sets of objects. For example, in a cellular control plane application, each phone

user repeats transactions, accessing the same phone context and its nearest

base station. Despite the locality in the workload, if the datastore does not strive

to keep relevant objects on the same node, costly network communication is

inevitable to execute transactions. In short, ignoring these important workload

characteristics leads to load imbalances and excessive network traffic, which

adversely affect performance.

The protocol is essential. The replication protocol determines the actions

necessary to execute each request, thus defining the datastore’s performance.

To achieve high performance, a replication protocol should strive to follow two

high-level principles: (1) maximize concurrency and load balance and (2) com-

plete operations as fast as possible. For concurrency, the protocol must allow

the execution of operations from all replicas in the deployment. The protocol

should not neglect the skewed data access nature of online services, which are

susceptible to load imbalances. For instance, a dedicated replica that acts as

a physical ordering point for writes limits concurrency and is prone to hotspots,

thereby significantly inhibiting the performance of the datastore.

The second principle – namely, completing operations fast – calls for minimizing

coordination (i.e., network exchanges between replicas) in the critical path of

a request, which is challenging under strong consistency and fault tolerance.

Intuitively, under strong consistency, a read on an object replica that executes

after the completion of a write to another object replica must return the value of

the write. However, if both the write and read execute locally to their respective

replicas, it would be impossible for the read to know and return the latest value.

Therefore, a coordination round-trip among replicas is inevitable under strong

consistency for either reads or writes when served by different replicas.

When it comes to fault tolerance, coordination is necessary for writes. Each

write must ensure that it has replicated its value before its completion. Other-

wise, if the coordinating replica of the write fails, the datastore will permanently

lose that committed value. Undesirably, losing the latest committed value means

that future reads on the affected object, even if they repeatedly contact all alive

replicas, would remain indefinitely blocked or return stale values.
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Coordination Strong consistency Fault tolerance

Reads = 0

Writes = 0
7 7

Reads = 1

Writes = 0
3 7

Reads ≥ 0

Writes ≥ 1
3 3

Table 2.1 Fault tolerance and consistency of reads and writes from all replicas

based on coordination (i.e., round-trips to other replicas in the critical path).

Overall, as outlined in Table 2.1, when all replicas can execute reads and writes,

the following two conditions apply on coordination to attain strong consistency

and fault tolerance. For strong consistency, either reads or writes must contact

other replicas (one or more times). For fault tolerance, writes necessarily need

to contact other replicas at least once before completion to replicate their value.

Thus, the best result a reliable protocol can aim for is to allow all replicas

to serve local reads and fast writes that complete after a round-trip to other

replicas, as this combination yields the maximum concurrency with the least

amount of coordination for strong consistency and fault tolerance.

However, achieving this "holy grail" of local reads and fast writes is not always

feasible. For example, multi-object transactions or failures in the middle of a

single-object primitive may necessitate further coordination [41]. Nevertheless,

protocols can optimize performance during the standard fault-free operation,

which is far more common than the operation during faults. When it comes to

transactions, protocols can exploit the locality exhibited by several workloads

to avoid unnecessary network hops and traffic, which significantly reduce the

overall performance.

In summary, high performance under fault tolerance and strong consistency,

demands — in addition to exploiting modern hardware — replication protocols

that strive for local reads and fast writes from all replicas. To approach this

performance ideal, protocols should leverage the common fault-free operation

without neglecting critical workload characteristics, such as data access skew

and locality in transactional workloads.
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2.2 Existing replication protocols

Replication protocols that guarantee strongly consistent reads and writes and

are capable of dealing with failures under our fault model can be classified

into two categories: majority-based protocols, which are typically variants

of Paxos [129], and membership-based protocols, which require a stable

membership of live nodes, such as the seminal primary-backup protocol [9].

Majority-based protocols. This class of protocols requires the majority of

replicas to respond in order to commit a write. As a result, majority-based

protocols are naturally available, provided that a majority is responsive. How-

ever, majority-based protocols pay the price in performance. To commit writes

from all replicas, they must make multiple round-trips to a majority [32, 75,

76, 89, 129, 150]. More importantly, in the absence of responses from all

replicas, there is no guarantee that a given write has reached all replicas,

which makes linearizable local reads fundamentally challenging. Myriad of

protocols are majority-based and cannot afford linearizable local reads from all

replicas [32, 63, 71, 75, 76, 89, 129, 130, 131, 150, 160, 174, 202]. In short,

majority-based protocols seamlessly handle failures but hurt the performance

of writes and reads, even in the absence of faults.

Membership-based protocols. Protocols in this class require all operational

nodes in the replica group to acknowledge a write (also called read-one/write-all

protocols [104]). In doing so, they ensure that a committed write has reached

all replicas in the ensemble, which naturally facilitates local reads.

Membership-based protocols are supported by a reliable membership (RM) [24,

43, 133]. Modern RM implementations use a majority-based protocol to reliably

maintain a stable membership of live nodes guarded by leases [57, 79, 108].

Specifically, each node locally stores a membership variable with an epoch ID

and a lease. The membership variable indicates the set of live nodes. Live

nodes remain operational (i.e., execute reads and writes) as long as their lease

has not expired. Protocol messages are tagged with the epoch ID of the sender

at the time of the message creation, and a receiver drops any message that is

tagged with an epoch ID that differs from its local epoch ID.
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Membership-based protocols favor performance in the standard fault-free

operation in exchange for a reconfiguration, causing a performance hiccup

when nodes crash. During failure-free operation, membership leases are

regularly renewed, facilitating local reads. When a failure is suspected, the

membership variable is reliably updated (and the epoch ID is incremented)

through a majority-based protocol, but only after the expiration of the mem-

bership leases. This guarantees safety by circumventing the potential false

positives of unreliable failure detection. Simply put, updating the membership

variable only after the lease expiration ensures that unresponsive nodes cannot

compromise consistency, since they have stopped serving requests before they

are removed from the membership. As a result, when a fault occurs, the lease

duration translates to a short unavailability for the affected shard. Nevertheless,

given the common failure-free operation, this is a fair trade-off in comparison

with the majority-based protocols, which avoid reconfiguration but forfeit local

reads, even in the absence of faults.

Another benefit of membership-based protocols is that they require a fewer

number of replicas to sustain the same number of node crashes. Unlike

majority-based protocols that need 2f + 1 node replicas to sustain f node

crashes, membership-based protocols need just f + 1 node replicas to sustain

f node crashes if the reliable membership is maintained by an external set of

nodes [133]. However, to facilitate a fair performance comparison, in this thesis

the membership is maintained by the same set of nodes (i.e., the replicas them-

selves). Consequently, we assume that both majority- and membership-based

protocols can sustain only a minority of replica failures, even though this is not

in favor of the protocols we propose.

Although existing membership-based protocols maximize performance on reads,

they still hinder performance on writes in the steady state. The state-of-the-art

membership-based protocol [209] improves upon the primary-backup protocol

and allows for linearizable local reads from all replicas. Unfortunately, as we

detail in Section 4.2.2, writes in this protocol always serialize on a dedicated

replica and are propagated to one replica at a time. This deficiency adversely

affects the throughput and latency of writes.
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Reliable transactions via distributed commit. Modern resilient datastores

afford reliable transactions [56, 111, 220]. To implement transactions, they rely

on statically sharded data. In static sharding, objects are placed randomly on

fixed nodes, making it easy to locate and access objects. Because related

objects reside on different shards across nodes, a distributed commit must take

place to accommodate transactions. In other words, multiple nodes, i.e., those

storing data relevant to the transaction, must reach a unanimous agreement

on whether a transaction can commit; otherwise, it should abort (e.g., due to

conflicts) [80]. The distributed commit is typically implemented over primary-

backup replicated shards for fault tolerance [56]. This combination of static

sharding and distributed commit supports reliable transactions, regardless of

the workload access patterns.

However, a distributed commit over static sharding cannot fully exploit the data

access locality in transactional workloads and requires several round-trips to

execute and commit each transaction reliably. It is most likely that during execu-

tion under static sharding, the node executing a transaction must fetch one or

more objects that are stored remotely, potentially in a serial manner (e.g., due to

control flow or pointer chasing). Moreover, since a transaction can be aborted

by remote participants, which may fail, committing a transaction also funda-

mentally mandates several round-trips for a reliable agreement [56, 111]. This

overhead is embedded in the commit of each transaction, even when failures do

not occur. To make matters worse, even if an identical transaction immediately

repeats on the same node on which it was previously completed, it will cause

as much network traffic to be executed and committed again. In summary, the

inability of the distributed commit over static sharding to exploit access locality

in transactions results in numerous network round-trips, drastically affecting the

performance of the datastore.

2.3 Multiprocessor consistency enforcement

Replication is not a unique feature of datastores; it has long been practiced in

the world of shared-memory multiprocessors. In the world of multiprocessors,

in which the memory system is the "datastore", every processing core with its
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local private cache is a "node", and the cache blocks are the "objects" — a

cache block may be replicated in one or more caches, each private to a core.

While in the distributed world of datastores, strongly consistent replication pro-

tocols sacrifice performance for fault tolerance, in the world of shared-memory

multiprocessors, the story is exactly the opposite. In the multiprocessor, fault

tolerance is generally not a consideration, and cache consistency protocols

(also known as coherence protocols) almost always enforce strong consistency

with high performance [163].

Cache coherence protocol. A multiprocessor cache coherence protocol

ensures that, at any given time, a cache block can be either written or read. To

maintain this invariant, a typical coherence protocol allows a reader to return

the local cache block value if and only if the block’s local state is valid and

forces a writer to invalidate all copies of the block before completing an update.

Therefore, a read always returns the most up-to-date value, thus providing

linearizability [163].3 We call such a protocol that invalidates all operational

replicas before completing an update as an invalidating (or invalidation-based)

protocol.

The performance benefits of an invalidating cache coherence protocol are

twofold. First, this protocol allows each core with an object replica to perform

linearizable local reads against its copy. Second, the invalidating coherence

protocol allows for high-performance writes. Any core can quickly perform a

write after a single broadcast round of invalidations to all other object replicas

(i.e., cores caching the block). Succinctly put, invalidating coherence protocols

allow for concurrency and speed in both reads and writes.

Hardware transactional memory. Modern multiprocessors are enhanced

with hardware transactional memory (HTM) [93]. Architectures that support

HTM afford arbitrary transactions over independent cache blocks in an efficient

manner. Akin to distributed transactions in datastores, which typically build

on top of replication protocols, such as primary-backup protocols, an HTM

implementation extends the invalidation-based cache coherence protocols.

3Scheurich and Dubois [192] presented this approach as a sufficient condition for enforcing
sequential consistency. In reality, however, it satisfies the stronger linearizability property, a
model that was later formalized by Herlihy and Wing [95].
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Unlike datastore transactions over static sharding, transactions in HTM are not

executed or committed in a costly distributed way. Instead, a core coordinating a

transaction leverages the dynamic sharding ability of the underlying coherence

protocol to gather all involved objects in its local cache with exclusive write per-

missions (i.e., it dynamically acquires ownership). This dynamic scheme allows

for local transaction execution and commit. Crucially, subsequent transactions

to those blocks eschew any remote coherence actions until another core takes

over the ownership. As a result, this approach tremendously benefits workloads

with locality in their transactional access patterns.

Performant but not fault tolerant. The multiprocessor’s approach to strong

consistency is highly efficient, offering both local reads with fast writes from

all cores and performant transactions once the workload’s locality is captured.

However, the multiprocessor’s consistency protocols are tailored for a single

machine, and are therefore, not readily applicable to the distributed setting

of replicated datastores. For example, scalable coherence protocols arbitrate

concurrent writes through a directory-based design, which has two performance

drawbacks in the distributed setting. First, writes must consult a directory before

invalidating other copies. This can be fast within a multiprocessor but costly in a

distributed setting, where it translates to across-server network hops. Second,

writes to the same object serialize on the directory, which is not a good fit for

online services with highly skewed data accesses, as it is prone to hotspots.

However, the most critical issue is that neither coherence protocols nor HTM

provide any fault tolerance guarantees. To begin with, the centralized directory

on which they rely is a single point of failure. In addition, invalidating all copies

of a block on a write is impossible if one of the cores with a copy fails, as in

this case the writer will endlessly wait for the failed core to acknowledge its

invalidation. More subtly, the entire system is vulnerable when a core with

ownership to a block crashes; as the sole up-to-date replica of the block is

permanently lost, and any other cores attempting future access to that block

will be indefinitely stalled.
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2.4 Summary

In summary, distributed datastores need high performance, strong consistency,

and fault tolerance. To guarantee fault tolerance and strong consistency, they

replicate data and rely on replication protocols. Replication protocols define

the exact actions necessary to execute all operations and thus the datastore’s

performance. Traditional datastore protocols for reads/writes and distributed

transactions are designed for the distributed setting but do not adequately

address performance. In contrast, the multiprocessor’s consistency protocols

provide high performance but cannot handle the challenges of the distributed

setting, such as highly skewed workloads or fault tolerance.

To resolve this tension, the remainder of this dissertation primarily proposes

multiprocessor-inspired invalidating protocols tailored for performance, load

balance, and fault tolerance to accelerate both single-object operations and

distributed transactions in replicated datastores.





3
Scale-out ccNUMA:
Replication for Performance

The whole is greater than the sum of its parts.
Aristotle

In this chapter, we explore data replication solely to improve performance

without considering fault tolerance. We examine popularity skew in data access

as this is a prevalent characteristic of online services and is responsible for

load imbalances which can greatly degrade the datastore performance. We

propose a novel caching strategy that exploits skew to increase performance

by aggressively replicating the hottest objects. At the core of this strategy is

a new replication protocol that combines multiprocessor-inspired invalidations

with logical timestamps to enforce strong consistency while balancing writes

across all replicas and avoiding hotspot-prone physical serialization points.

3.1 Overview

Today’s online services, such as search, e-commerce, and social networking,

are backed by distributed key-value stores (KVS). Such datastores must provide

high throughput in order to serve millions of user requests simultaneously while

meeting online response time requirements. To sustain these performance

objectives, the application datasets are typically kept in-memory and sharded

across multiple servers using techniques such as consistent hashing.

Although sharding data across individual servers enables massive parallelism,

such a datastore design can suffer from hotspots. This is because the popularity

25
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distribution of objects is highly skewed in these workloads, typically following

power-law distributions [14, 99, 171, 215]. In other words, in the presence of

skew, the server(s) serving the most popular objects will become saturated,

turning into a bottleneck and limiting the throughput of the entire KVS.

The skew problem is well established, and a number of techniques have

been proposed for mitigating it. These techniques can be classified into two

categories. The first class of techniques [64, 106, 140] uses a dedicated cache

for storing popular keys to filter the skew. The second class of techniques

(FaRM [56] and RackOut [172]) mitigate skew by evenly distributing read

requests across all servers of the KVS, regardless of the object’s location.

To ensure low latency, the servers use an RDMA-enabled interconnect to

access objects that reside at other servers. In essence, this class of techniques

exposes a non-uniform memory access (NUMA) shared memory abstraction

across the KVS servers.

The first approach is not scalable because the limited computational resources

of a single cache node may not be able to keep up with the load. In contrast, the

second approach is scalable in its processing capability but is network bound

because the vast majority of accesses are serviced by remote nodes.

In this chapter, we view skew as an opportunity and leverage it to improve KVS

performance. Taking inspiration from the effectiveness of caches in shared

memory multiprocessors, we propose a Scale-out ccNUMA architecture that

augments each server node in a distributed KVS deployment with a small cache

of hot objects. Because object popularity is a function of the entire dataset, and

not of individual shards, all cache instances maintain an identical set of objects,

which are the most popular objects in the dataset. This symmetric cache not

only ensures a high hit rate, but also relieves the clients from needing to know

which caches maintain what objects, and avoids the need for costly metadata

to track sharers on the KVS side.

Replicating the hottest data in multiple caches raises the problem of ensuring

consistency in the presence of writes. Traditional strongly consistent replication

protocols, which allow for local reads and are suitable for caching, mandate that

writes must serialize on a physical ordering point which is prone to hotspots

in the presence of skew. To address this issue, we propose Galene, a novel
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replication protocol that couples cache-coherence-inspired invalidations with

logical timestamps. This combination affords linearizability and fully distributed

write serialization. Thus, writes can be coordinated by any cache, equally

spreading the cost of consistency actions across the datastore nodes.

We then develop ccKVS, a distributed RDMA-based KVS that employs a Scale-

out ccNUMA architecture, featuring symmetric caching with the strongest

consistency enforced via the Galene protocol. Our evaluation on a nine-node

rack-based cluster shows that in comparison with a state-of-the-art NUMA-

approach KVS, ccKVS achieves a 2.2× improvement in throughput for a

typical skewed workload with a modest write ratio while satisfying the strongest

consistency.

In short, the main contributions of this chapter are as follows:

• We introduce symmetric caching (Section 3.4), a transparent caching strat-

egy that replicates the most popular objects in all caches, thus enabling high

throughput and load balance while eliminating the costly requirement of track-

ing sharers.

• To keep the caches consistent, we propose Galene (Section 3.5), a fully

distributed protocol that couples invalidations with logical timestamps. Galene

avoids hotspot-prone serialization points and enables write coordination from

any replica to equally spread the cost of consistency actions across the

deployment. We also verify Galene for safety and deadlock freedom in TLA+.

• We build and evaluate ccKVS (Section 3.6 and Section 3.8), an RDMA-

based KVS that implements symmetric caching with the Galene protocol. Our

evaluation shows that ccKVS achieves a throughput improvement of 2.2×
over a state-of-the-art RDMA-based skew mitigation scheme for a workload

with modest write ratios while satisfying linearizability.
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Figure 3.1 Load imbalance in a cluster of 128 servers caused by skewed

workload with α = 0.99.

3.2 Motivation

3.2.1 Skew and load imbalance

Prior research characterizing data access patterns in real-world datastore set-

tings has shown that the popularity of individual objects in a dataset often

follows a power-law distribution [14, 26, 99, 171, 197, 222]. In such a distri-

bution, a small number of hot objects receive a disproportionately high share

of accesses, while the majority of the dataset observes relatively low access

frequency. The resulting skew can be accurately represented using a Zipfian

distribution, in which an object’s popularity y is inversely proportional to its rank

r: y r–α. The exponent α is a function of the dataset and access pattern, and

has been shown to lie close to unity. The most common value for α in the recent

literature is 0.99 [56, 97, 106, 140, 172], with 0.90 and 1.01 also frequently used

and cited in KVS research [13, 64].

An important implication of popularity skew is the resulting load imbalance

across the set of servers maintaining the dataset. As shown in Figure 3.2a, the

server(s) responsible for the hottest keys may experience several times more

load than an average server storing a slice of the dataset [171]. For instance,

Figure 3.1 shows an example deployment of 128 servers and a data-serving

workload with an access skew of α = 0.99. In this scenario, the server storing

the hottest key receives over 7× the average load in the system.
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Figure 3.2 Design space for skew mitigation techniques.

3.2.2 Existing skew mitigation techniques

Figure 3.2b and Figure 3.2c depict two approaches for skew mitigation that

have emerged in the recent literature: caching and the NUMA abstraction.

Caching. Noting that a small fraction of keys is responsible for the load

imbalance, recent work has suggested using a dedicated cache to filter the

skew from the access stream before it hits the data-serving nodes (Figure 3.2b).

Several variants of this idea have been proposed: (i) placing a cache at the

front-end load balancer [64]; (ii) using a programmable switch to steer requests

for hot objects to the cache node [140]; and (iii) using a programmable switch

as a cache node [106].

These caching approaches suffer from two important limitations. First, they

usually target storage clusters where the back-end nodes are limited by the

performance of the storage I/O [140]. Thus, a powerful server with an in-

memory object cache is sufficient to keep pace with the load. The same is
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not true if the datastore is in-memory, in which case the high request rate it

can sustain would overwhelm a single cache node. Second, these approaches

do not offer a viable strategy for scaling the cache beyond a single node to

accommodate larger deployments. While it is true that simple partitioning of hot

keys across servers is one way to scale to multiple cache nodes; in the limit,

however, this strategy is fundamentally limited by the ability of the cache node

with the hottest key to keep up with the load.

NUMA abstraction. This approach, which was pioneered in FaRM [56] and

leveraged in RackOut [172], offers a NUMA-like shared memory abstraction

across the nodes storing the dataset via remote access primitives over a low-

latency RDMA-enabled network, as shown in Figure 3.2c. More specifically,

the one-sided RDMA reads allow any node to directly access the memory of

any other node in the deployment. The design exploits this remote access

capability to offer a black-box abstraction to the outside world wherein a client

can send a request to any node in the deployment regardless of the data’s

location. By allowing requests for any object to be evenly distributed across the

entire deployment, load imbalance is mitigated in the face of a skewed access

distribution.

The key limitation of this approach is that the vast majority of requests require

remote access. Indeed, the fraction of requests satisfied locally is inversely

proportional to the number of servers in a deployment. Subsequent work

(FaSST [111]) improved on network performance by replacing the one-sided

primitives with two-sided RDMA communication, reducing the overall network

overhead of the approach. Novakovic et al. [170] demonstrated that integrated

on-chip NICs can further enhance performance by lowering the remote access

latency. Nevertheless, network bandwidth has persisted as the main perfor-

mance limiter of the NUMA shared memory abstraction [111].

To summarize, existing skew mitigation techniques either (1) use a powerful

cache node to filter the skew from the access stream before it hits the storage

nodes or (2) exploit a NUMA-like shared memory abstraction that relies on

remote access primitives to distribute the load across all servers. The first

approach is processing bound because a single cache node may not be able

to keep pace with the load, which makes it applicable mainly in a disk-based
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cluster environment. Meanwhile, the latter approach is scalable in its processing

capability, but is network bound because the vast majority of requests require a

remote access.

3.3 Scale-out ccNUMA

The central thesis of this chapter is that a small cache of hot objects at each

data serving node can effectively filter the skew while scaling cache throughput

with the number of servers. Figure 3.2d demonstrates the proposed approach,

which combines the best features of caching and the NUMA abstraction in

an architecture we call Scale-out ccNUMA. As shown in the figure, Scale-out

ccNUMA augments each node in a pure NUMA deployment with a cache of

hot objects. Whenever a client request hits in a server’s cache, that node

can immediately return the data, thus avoiding a remote access to the node

containing the corresponding shard.

The proposed approach has the following benefits:

• Compared with existing cache proposals, which have a centralized cache at

a load balancer or a network switch [64, 106, 140] and are thus limited by the

throughput of that cache, the per-node cache naturally scales its throughput

with the size of the deployment. Moreover, the per-node cache avoids the

need for heterogeneous or exotic hardware required by prior work, such as a

more powerful server in the cache node [64, 140] and/or programmable net-

work switches [106, 140]. Avoiding hardware heterogeneity in a datacenter

setting is beneficial from a cost, maintenance, and engineering (programma-

bility) perspectives.

• Compared to a pure NUMA abstraction (e.g., FaRM [56], RackOut [172],

FaSST [111]), adding a cache to each node can significantly lower the

incidence of remote accesses. As Figure 3.3 shows, for a Zipfian skew

with an exponent α = 0.99 and a cache storing as little as 0.1% of the hottest

data, 65% of requests will hit in the cache. Thus, only the remaining 35% of

the accesses (i.e., cache misses) may require remote access.

Critically, the use of caching does not compromise the black-box abstraction

presented by the NUMA shared memory architecture. Thus, any client can
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send a request to any server in the deployment without knowing the data’s

location. By load balancing the requests across the nodes and avoiding the

majority of remote accesses, co-locating a cache with each node naturally

improves the scalability of the shared memory architecture.

Despite these benefits, the proposed approach introduces a significant

challenge in that it requires the caches to be consistent with respect to each

other whenever a write occurs. This consistency-related challenge can further

be broken down into two components.

The first is how to determine which caches store what objects. This is

necessary to find the set of replicas, which is needed for consistency-preserving

actions (e.g., invalidations or updates). The consistency protocols used in

scalable multiprocessors use a directory to track replicas; however, the node

holding the directory can potentially become a performance bottleneck. While

a directory can be distributed, a skewed access distribution naturally makes

certain directory nodes more loaded than others, likely negating the benefits of

caching.

The second aspect of the challenge is related to write serialization, which is

an important consistency requirement: all sharers must agree on the order of

writes. Scalable multiprocessors accomplish this by physically serializing at the

directory, which can, again, cause a bottleneck in our setting.

Finally, we note that in addition to the consistency challenge, Scale-out

ccNUMA also introduces the need for push-based protocols. Protocols used in

multiprocessors tend to employ invalidating pull-based protocols, meaning that

a writer invalidates all sharers, which then must re-read the object to bring it

back into the cache. This strategy is intended for parallel workloads where, for

example, a variable can be written multiple times before being read by another

thread. In contrast, with read-intensive workloads that are the target of this

work, an object that was updated will very likely be read in the nearest future at

other nodes. This motivates the need for a push-based protocol that proactively

pushes the updated object to all caches.

In the next two sections, we describe a cache organization, followed by the

Galene consistency protocol, which address the challenges outlined above.
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Figure 3.3 Effectiveness of caching under popularity skew.

3.4 Symmetric caching

We exploit a simple insight in designing a scalable cache architecture that helps

address the concerns outlined in the previous section. Specifically, we observe

that the most popular objects are by nature the most likely ones to be accessed;

hence, even though there are multiple cache nodes, they should all cache the

same set of objects — namely, the most popular ones. This idea, which we call

symmetric caching, is illustrated in Figure 3.2d.

Despite its apparent simplicity, the symmetric cache architecture is extremely

powerful, as it naturally resolves a number of challenges. For one, because

all caches keep the same set of objects, there is no need to inform clients

of which node caches what objects. Thus, clients can leverage the black-box

abstraction and send requests to any node in the data serving deployment,

with the probability of a cache hit being dependent solely on the requested key

and not the choice of the node. This ensures both a load-balanced request

distribution and a high cache-hit rate.

Another advantage of the symmetric cache is that a node can determine which,

if any, nodes cache an object solely by querying its local cache; if an object is

found there, then all nodes have it; otherwise, none do. The ability to query a

local cache to learn the status of an object naturally avoids the need for a direc-

tory, whose role in cache-coherent multiprocessors is to track the set of caches
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that have a copy of a cache block. By not having a directory through which

consistency actions would need to serialize, the symmetric cache eliminates a

potential serialization bottleneck and enables fully distributed consistency, as

we describe in the next section.

An important feature of symmetric caching is that the caches are write-back.

This means that writes to an object residing in the symmetric cache do not

update the underlying KVS until the object is evicted from the cache. This

feature is critical in avoiding throughput degradation at the home node of a

popular object, whenever writes follow a skewed distribution. Because all

caches maintain the same set of objects in the cache, on eviction, only the

node containing the shard with the evicted key needs to check whether the

object has been modified and, if so, update the underlying KVS.

In order for the symmetric cache to be effective, it is essential to be able to

identify the most popular objects with minimal overhead. This problem has

been well researched, with highly efficient solutions proposed in recent work.

A particularly attractive approach for symmetric caching is one proposed by

Li et al. [140], which relies on memory-efficient top-k algorithms [47, 157] to

dynamically learn the popularity distribution. In the algorithm proposed by Li

et al., each server maintains a key-popularity list with k entries, approximating

the popularity of the k hottest keys, and a frequency counter that keeps track

of recently visited keys, such that newly popular keys can be detected. The

scheme uses an epoch-based approach, whereby the key popularity list gets

updated and propagated to the cache at the end of each epoch. Finally, request

sampling is used to alleviate the performance impact of updating the frequency

counter upon each request.

Conveniently, because symmetric caching exposes a NUMA abstraction, whereby

clients spread their requests across all servers, each server sees the same

access distribution as do the other servers in the deployment. Therefore, in our

setting (and in contrast to [140]), it is sufficient for just a single server to act as

the cache orchestrator, responsible for identifying the most popular objects and

informing the other nodes. Centralizing the process of classifying an object as

popular not only reduces the overhead of tracking hot objects but also naturally

alleviates the burden of reaching a consensus on which objects are popular,
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thus simplifying the entire process. While our evaluation does not consider

shifts in popularity skew, we expect the set of most popular keys to evolve

slowly, with only a handful of keys removed or added to the cache every few

seconds [140].

3.5 Galene: Fully distributed strong consistency

With symmetric caching, while a significant portion of read requests (the cache

hits) can be served locally, ensuring consistency in the presence of writes is

challenging. To facilitate strongly consistent local reads, a replication protocol

must propagate writes that hit in one cache to all other symmetric caches.

Our targeted consistency model of linearizability mandates that writes must be

atomically reflected across the replicas at a point within their invocation and

response. This implies write serialization: all replicas must agree on the order

of writes to a key.1

3.5.1 Hotspots in write serialization

Enforcing write serialization in a high-throughput fashion is challenging under

skew. One natural way to enforce write serialization is to constrain writes to

a single replica (e.g., via a primary-backup protocol), where all writes to a

specific key must occur at a designated primary, as shown in Figure 3.4a. Such

protocols are commonly used in distributed datastores that demand strong

consistency [57, 209, 213]. In the same spirit, distributed datastores can opt to

achieve write serialization through a sequencer (shown in Figure 3.4b), which

assigns monotonically increasing timestamps to writes and their consistency

actions (e.g., update messages). However, in the presence of skew, the primary

(or sequencer) in the two approaches could easily become a hotspot on writes

to a popular object, as consistency actions related to that object must serialize

through it. The same flaw arises in coherent multiprocessors where write

serialization to a block is performed at a physical point (i.e., a directory).

1Because linearizability is composable, ensuring linearizability for each individual key guar-
antees that the entire datastore is linearizable.



36 Chapter 3. Scale-out ccNUMA

Figure 3.4 Design space for ensuring a single global order for writes to a key.

We address this issue by employing Galene, a multiprocessor-inspired inval-

idation protocol with a twist. As in the multiprocessor’s coherence, Galene

invalidates all replicas before performing a write. Unlike the multiprocessor pro-

tocols, however, Galene eschews the directory and achieves write serialization

in a fully distributed manner through logical timestamps. Figure 3.4c shows

the fully distributed nature of the protocol, which completely avoids physical

serialization points that are prone to load imbalances.

3.5.2 Galene overview

Galene is a fully distributed push-based invalidating protocol that guarantees

linearizability. Read cache hits are executed locally on any of the symmetric

cache nodes. A write cache hit also proceeds on any node. As illustrated in

Figure 3.5: the cache coordinating the write (called the coordinator ) broadcasts

an Invalidation (INV) message to all other caches (called the followers) and

waits on Acknowledgments (ACKs). Once all ACKs have been received, the

write completes via an Update (UPD) message broadcast where the coordinator

proactively pushes the new value to the followers.
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Figure 3.5 Write actions in Galene when writing the value 5 to a hot (cached)

key K. TS is the write’s logical timestamp.

Before describing the protocol, we briefly outline the two essential mechanisms

behind Galene’s fully distributed method of ensuring strong consistency:

Invalidations. When an INV message is received, the target key is placed

in an Invalid state, meaning that reads to the key cannot be served. While

conceptually similar to a lock, the main difference is that with invalidations,

concurrent writes to the same key do not fail and are resolved in place through

the use of logical timestamps, as discussed below. The use of invalidations is

inspired by cache coherence protocols, where a cache line in an Invalid state

informs the readers that they must wait for an updated value.

Logical timestamps. Each write in Galene is tagged with a monotonically-

increasing per-key logical timestamp, implemented using logical clocks (as in

the seminal ABD protocol [15]) and computed locally at the coordinator cache.

The timestamp is a lexicographically ordered tuple <v, cid> that combines a

key’s version number (v), which is incremented on every write, with the node

ID of the coordinator (cid). Two or more writes to a key are concurrent if their

execution is initiated by different caches holding the same timestamp. Non-

concurrent writes to a key are ordered based on their timestamp version, while

concurrent writes from different coordinators (same version) are ordered via

their cid.2 Uniquely tagged writes allow each node to locally establish the same

global order of writes to a key.

2More precisely, a timestamp A: <vA, cidA> is higher than a timestamp B: <vB, cidB>, if either
vA > vB or vA = vB and cidA > cidB.
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Figure 3.6 Metadata stored and messages sent by Galene.

3.5.3 Galene protocol

Each cached object replica maintained by Galene can be in one of three states:

Valid, Invalid, or Write. Figure 3.6 illustrates the format of protocol messages

and the metadata stored at each cached replica of an object. Notice that a

write’s associated messages (i.e., INVs, ACKs, and UPDs) are tagged with the

logical timestamp of that write. The exact protocol steps to execute a read and

a write are described below.

Read : Any symmetric cache node can service a read request of a cached

object by returning the local value of the requested key if it is in the Valid state.

If the key is in any other state, the request is temporarily stalled.

Write:

Coordinator

Any node can be a coordinator and issue a write to a cached key, but only when

its local replica of the targeted key is in the Valid state. Otherwise, the write is

temporarily stalled. To issue and complete a write, the coordinator node:

• CTS: Updates the key’s local timestamp by incrementing its version and

appending its node ID as the cid, then assigns this timestamp to the write.

• CINV: Promptly broadcasts an INV message consisting of the key and the

new timestamp (TS) to all followers and transitions the key to the Write state.

• CACK: Once the coordinator receives ACKs from all the followers, it checks

whether the key’s local timestamp is unchanged (i.e., is the same as its write’s
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timestamp). If the timestamp remained the same, it applies the write in its

local cache by updating the key to the new value and transitioning the key’s

state back to Valid. Otherwise, it leaves the key unchanged.

• CUPD: Finally, if the coordinator applied the write locally, it completes the write

by broadcasting a UPD message which consists of the key, the write’s value,

and timestamp to all the followers. If it did not apply the write locally, then

another concurrent write with a higher timestamp took precedence, covering

its write. In this case, the coordinator completes its write without broadcasting

a UPD message.

Follower

• FINV: Upon receiving an INV message, a follower compares the timestamp

of the incoming message with its local timestamp of the key. If the received

timestamp is lower than the local timestamp, the follower simply ignores

the message. Otherwise, the follower performs the INV to its local cache by

transitioning the key to the Invalid state and updating the key’s local timestamp

(both its version and the cid).

• FACK: Regardless of the result of the timestamp comparison, a follower

always responds with an ACK containing the same timestamp as that in the

INV message of the write.

• FUPD: When a follower receives a UPD message, it updates the key’s local

value with the value from the message and transitions the key to the Valid

state if and only if the received timestamp is equal to the key’s local timestamp.

Otherwise, the UPD message is simply ignored.

Formal verification. We expressed Galene in TLA+ [128] and verified its

reads and writes for safety and the absence of deadlocks. For safety, we

verified against the data value invariant : if an object copy is in the Valid state

(i.e., can be read), then it must hold the most recent value written to that object.

Our TLA+ model allows for the number of caches and number of total writes to

be configured. We have verified with up to 5 caches and 4 writes. A detailed

state transition table as well as the TLA+ specification are available online.3 We

sketch why this protocol specification provides linearizability in Appendix A.
3http://s.a-phd.com

http://s.a-phd.com
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Figure 3.7 Concurrent writes to a hot key A, followed by a read, each hitting

a different instance of a three-node symmetric cache. State of A shows the

values of the replicas in each cache; underlined values represent Valid state,

non-underlined represent other states. The color indicates the timestamp value.

Enhancing fairness. Galene linearizes writes based on their unique

timestamps, consisting of a version and a node ID. In the event that the versions

are the same (i.e., concurrent writes), the linearization is resolved based on the

node IDs, which might raise concerns about ordering fairness. This is easily

mitigated by assigning several virtual node IDs to each physical node. With

this scheme, before issuing a write, a node randomly picks one of its virtual

node IDs to be used for the write’s logical timestamp. Of course, to maintain

correctness, the same virtual node ID cannot be assigned to more than one

physical node. For example, given three nodes A, B, and C, the sets of virtual

IDs A: {1, 4, 7, 10}, B: {2, 5, 8, 11}, and C: {3, 6, 9, 12} are safe and would

increase fairness.

3.5.4 Operational example

In this subsection, we discuss Figure 3.7, which illustrates an example of Ga-

lene’s execution with reads and writes to a cached key A. The purpose is to



3.5. Galene: Fully distributed strong consistency 41

demonstrate the operation of Galene in the presence of concurrent reads and

writes to a key. For clarity, we consider a symmetric cache over three nodes, no

use of virtual node IDs, and use the notation v.cid instead of <v, cid> for the

timestamp. We assume that key A is initially stored in the Valid state, with the

same value (zero) and timestamp (0.0) in all three nodes.

First, node 1 initiates a write (A = 1) by incrementing its key’s local timestamp to

1.1, broadcasting INV messages (dashed lines), and transitioning key A to the

Write state but without yet updating its local value. Similarly, node 3 initiates

another concurrent write (A = 3, with timestamp 1.3). Recall that INVs in Galene

contain the key and timestamp (including the cid).

Node 2 ACKs the INV message from node 1 (dotted line), transitions the key

A to the Invalid state and updates its timestamp to 1.1. Node 3 ACKs the INV

of node 1 but does not modify the local copy of A (or its metadata) because its

local timestamp is higher (same version, but higher cid). Subsequently, node

2 receives the INV from node 3, which has a higher timestamp than the locally

stored timestamp, resulting in an update to its local timestamp (from 1.1 to 1.3),

all while remaining in the Invalid state. Likewise, node 1 ACKs the INV of node

3 by updating the timestamp and remaining in the Invalid state.

Meanwhile, node 2 starts a read, but it is stalled because its local copy of A is

invalidated. Once node 3 receives all of the ACKs, it completes its own write

by updating the local value, transitioning A to the Valid state, and broadcasting

a UPD message (solid lines) to the other replicas that includes the write’s

timestamp and value. When node 2 receives node’s 3 UPD message, it updates

A’s local value, transitions its state to Valid and completes its stalled read.

Once node 1 receives all of the ACKs, it completes its write. However, its key

remains in the Invalid state. This occurs because the write from node 3 took

precedence over node’s 1 own write due to its higher timestamp, but the UPD

from node 3 has not yet been received. Note that although the write from node

1 completes later than the concurrent write from node 3, it is linearized directly

before the write of node 3 due to its lower timestamp (cid). Finally, node 1

receives node’s 3 UPD message, which results in updating the value of A and

transitioning its state back to Valid.
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3.6 ccKVS

To understand the benefits and limitations of the proposed Scale-out ccNUMA

architecture, we build ccKVS, an in-memory RDMA-based distributed KVS that

combines a NUMA abstraction [56] with symmetric caching and the Galene

protocol. The code of ccKVS is available online.4

Each node in ccKVS is composed of two entities: a shard of the KVS and an

instance of the cache. Each entity has an object store and a dedicated pool of

threads for request processing. As described in Section 3.4, the content of all

caches is identical, composed of the most popular objects in the dataset. The

caches are kept consistent using the Galene protocol (described in Section 3.5).

The nodes of a ccKVS deployment are connected via RDMA with two-sided

primitives used for communication. Clients load balance their requests (both

reads and writes) across all nodes in a ccKVS deployment — for example, by

picking a server at random or in a round-robin fashion.

3.6.1 Functional overview

Reads. When a client request arrives at a ccKVS server, the server probes its

instance of the symmetric cache. If the requested key is found, the associated

object is retrieved from the cache and the server directly responds to the client.

In case of a miss, the server determines whether the key belongs to a local

or remote KVS partition. If remote, the server issues a remote access to the

server containing the requested key using a two-sided RDMA primitive. On the

destination side, the server picks up the remote access and responds with the

data to the requesting server. Once the object is available, either by virtue of

being in the local partition or through a remote access, the server handling the

request responds to the client.

Writes. Similar to reads, write requests are load-balanced across all nodes in

a ccKVS deployment, thus avoiding write-induced load imbalance. If the write

request hits in the cache, the server handling the request (i.e., the coordinator

4http://s.a-phd.com

http://s.a-phd.com
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of the write) executes the steps necessary to maintain consistency across all

symmetric caches in accordance with the Galene protocol. Briefly, this means

first invalidating all the caches and only then performing the write locally and

propagating the new data to the other caches. The communication required

for maintaining consistency also occurs via two-sided RDMA primitives. If the

write request misses in the cache, the server forwards it to the home node (if

remote), which directly performs the write.

3.6.2 Cache and KVS implementation

Thread partitioning. The threads inside a machine in ccKVS are partitioned

into two pools: cache threads and KVS threads. The cache threads receive the

requests from outside clients and are responsible for the cache accesses. The

back-end KVS is handled by the KVS threads; thus, in case of a cache miss,

the request must be propagated from a cache thread to a KVS thread (local

or remote). Finally, the cache threads also communicate with each other to

exchange consistency messages: invalidations, acknowledgments and updates.

Notably, the KVS threads do not communicate with each other.

Concurrency control. Among the cache threads, which are responsible for

servicing requests to the most popular objects in the request stream, ccKVS

leverages the concurrent-read-concurrent-write (CRCW) model, whereby any

cache thread can read or write any object in the cache. Despite the mandatory

synchronization overheads, we find that this design maximizes throughput given

the demand for the most popular keys in the dataset.

The KVS design is more involved. The conventional wisdom [142] is that when

the requests are load-balanced across all machines, it is beneficial to parti-

tion the KVS at a core granularity (i.e., exclusive-read-exclusive-write (EREW)

model) to avoid inter-thread synchronization on data accesses. Our design,

however, employs the CRCW model for the KVS, even though with the skew

filtered by the caches, KVS accesses observe an access distribution that closely

approaches uniform.

We choose CRCW because it allows us to minimize the connections among
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the cache threads and the KVS threads in the deployment. Our experiments

show that this is a favorable design choice, as the benefits of limiting the

connectivity among threads on different machines outweigh the overhead of the

concurrency control in CRCW. We elaborate on these benefits in Section 3.6.4.

Finally, the CRCW concurrency model in the KVS increases the ability of cache

threads to batch multiple requests in a single packet, alleviating network-related

bottlenecks. We explore the benefits of this optimization in Section 3.8.5.

To ensure high read and write performance under the CRCW model, ccKVS

synchronizes accesses using sequential locks (seqlocks) [92, 125], which allow

lock-free reads without starving the writes. The seqlock is composed of a

spinlock and a version. The writer acquires the spinlock and increments the

version, goes through its critical section, increments the version again, and

releases the lock. Meanwhile, the reader never needs to acquire the spinlock;

it simply checks the version immediately before entering the critical section and

immediately after exiting. If the version has changed or is an odd number, then

a write has happened concurrently with the read, and the reader retries.

The seqlocks are implemented in the header of each object. The header

contains a version number that has a dual role: it is used to implement both

seqlocks and the version of the logical timestamps for the Galene protocol.

Therefore, we only need to add one byte to the header to implement the spinlock.

Our seqlock implementation is inspired by the OPTIK design pattern [87].

All consistency messages are treated as writes, as they must modify metadata

in the header of the key-value pair. Meanwhile, reads to the cache do not

modify state and thus happen “lock-free” and in parallel.

KVS. We use MICA [142] as a state-of-the-art KVS and leverage the source

code for EREW found in [110] to build our KVS. Since ccKVS adopts the CRCW

model, the KVS is concurrently accessed by all KVS threads; therefore, we

implement seqlocks over MICA. Our evaluation considers both EREW and

CRCW design choices. Finally, we note that symmetric caching and Galene are

not tied to any particular KVS.

Symmetric cache. The symmetric cache is a data structure that is concur-

rently accessed by all the cache threads within a node. It inherits its structure
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from our KVS. We extend the KVS’s API and functionality to provide support

for Galene’s consistency-related operations (i.e., Invalidations, Acknowledg-

ments, and Updates) and object states (i.e., Valid, Invalid, and Write). For

example, a read request may hit in the cache but not immediately return, since

the key-value pair could be in the Invalid state.

Each key-value pair stored in the cache has an 8B header, where the necessary

metadata for synchronization and consistency are efficiently maintained. These

metadata include: the consistency state (1B), the logical timestamp (i.e., the

version (4B) and cid (1B)), a counter for the received acknowledgments (1B),

and the spinlock required to support the seqlock mechanism (1B).

3.6.3 Communication layer

RDMA. There are two prevalent techniques for building an RDMA-based KVS:

(i) using one-sided primitives such as RDMA reads in FaRM [56] and (ii) us-

ing remote procedure calls over unreliable datagram (UD) sends, similar to

FaSST [111]. We choose the more general remote procedure calls over the

UD sends approach but note that the Scale-out ccNUMA paradigm is not

constrained by the choice of the communication primitive and could equally

work with one-sided accesses.

Flow control. The communication between cache and KVS threads is

facilitated by a credit-based flow control mechanism [123]. The cache threads

have a number of credits for each remote KVS thread, and the KVS threads

have a matching amount of buffer space for each remote cache thread. Each

time a cache thread sends a request, the credits for the receiving KVS thread

are decremented. Similarly, the credits are incremented whenever the KVS

responds. Because a request always receives a response, the flow control

does not require additional credit update messages; the responses to the

requests are implicitly used as credit update messages.

In contrast, the communication between cache threads on consistency actions

requires explicit credit updates because not all messages receive a response.

For example, a cache thread that broadcasts updates to all other machines
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does not receive acknowledgments for those updates. Thus, ccKVS uses

explicit credit update messages to inform cache threads of buffer availability

across the symmetric cache nodes. Section 3.6.4 describes optimizations to

alleviate the network bandwidth overhead of credit updates.

Broadcast primitive. To facilitate Galene’s write actions, we implement a

software broadcast where the sender prepares and sends a separate message

to each receiver. The application sends a linked list of work requests (i.e.,

packets) to the NIC as a batch; all work requests point to the same payload

but each work request points to a different destination. When a cache thread

intends to send more than one broadcast, we batch these broadcasts together

to the NIC to amortize the PCIe overheads.

3.6.4 Performance optimizations

Reducing connections. One of our goals in implementing ccKVS is to

maintain RDMA scalability by limiting the number of threads that communi-

cate with each other. Despite using the more scalable UD transport, all-to-all

communication at the thread level can still prove challenging to scale because

of the required buffer space, which scales linearly with connection count [111].

Partitioning threads helps to limit the extent of all-to-all communication, as the

KVS threads of different nodes do not need to communicate with each other.

Additionally, we bind each cache thread to exchange messages with just two

threads in each remote machine: one cache thread and one KVS thread. This

optimization is enabled by the use of the CRCW model in both the symmetric

cache and KVS, since each thread has full access to the dataset (cache or

KVS, respectively).

Reducing the connections minimizes the buffer space that needs to be regis-

tered with the NIC. As discussed in Section 3.6.2, transitioning the KVS from the

EREW to the CRCW model incurs a concurrency control overhead. However,

in our experiments, we measure a performance increase of up to 10% when

employing CRCW rather than EREW, which we attribute to the reduction of the

connections between cache and KVS threads.
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RDMA optimizations. Using the UD transport allows us to perform opportunis-

tic batching in all communications with the NIC to amortize the PCIe overheads.

We post work requests as linked lists and notify the NIC about their existence.

The NIC can then read these requests in bulk, amortizing the PCIe overheads.

To further alleviate PCIe overheads, we inline payloads inside their respective

work requests, whenever the payloads are small enough (less than 189 Bytes),

such that the NIC does not need a second round of DMA reads to fetch the

payloads after reading the work requests.

We follow the guideline to use multiple queue pairs per thread [110]; for example,

a cache thread uses different queue pairs for remote requests, consistency

messages, and credit updates. Moreover, we leverage selective signaling when

sending messages: the sender polls for only one completion every time it sends

a fixed-size batch of messages.

Flow control optimizations. To prevent flow control from becoming an impor-

tant factor in network bandwidth consumption, we apply a batching optimization

on the credit updates. We do not send a credit update for each received mes-

sage; instead, we send a credit update after receiving a number of consistency

messages to amortize the network cost of the credits. Additionally, the credit

update messages have no payload (i.e., are header-only messages), reducing

the required PCIe transactions and network traffic for sending and receiving

them. In Section 3.8, we show that through these optimizations, the overhead

of the credit update messages becomes trivial.

3.7 Experimental methodology

In this section, we first present the designs that we evaluate, then describe our

evaluation infrastructure.

3.7.1 Evaluated systems

We evaluate Scale-out ccNUMA by comparing it with a state-of-the-art skew

mitigation approach based on FaSST [110]. Although FaSST is designed for
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transaction processing, it has two key attributes that make it a good baseline for

a system to tackle skew. Namely, it offers a NUMA abstraction like FaRM [56]

and RackOut [172], and it leverages several design techniques to achieve high

performance using RDMA [111]. We implement FaSST over our datastore

with efficient single-object read and write operations by stripping all of the

transaction processing overheads. We apply all of the optimizations discussed

in Section 3.6.4 to maximize the performance of this baseline and negate any

implementation-specific advantages of ccKVS. The performance of our baseline

system is on par with the reported FaSST results (subject to different evaluation

setups).

We evaluate three flavors of the FaSST-based baseline design:

• Base-EREW has its KVS partitioned at a core granularity similarly to

MICA. We expect this system to suffer under a skewed distribution, as the

performance will be limited by the core responsible for the hottest shard.

• Base has its KVS partitioned at a server granularity (CRCW). Compared

with Base-EREW, we expect this system to perform better under skew

while still being bottlenecked by the server with the hottest shard.

• Uniform represents the performance of Base under a uniform distribution.

This establishes an upper bound on the performance of baseline designs.

We build ccKVS by adding symmetric caches on top of Base. More specif-

ically, we add a cache to each node and implement a system as described

in Section 3.6 that supports the Galene protocol specified in Section 3.5. We

configure the symmetric cache size to 0.1% of the total dataset (250K objects of

up to 1KB each, with an overall memory footprint of up to 1GB). In accordance

with Figure 3.3, the expected cache-hit ratio is 46%, 65%, and 69% for skew

exponents of α equal to 0.9, 0.99, and 1.01, respectively.

3.7.2 Testbed

Infrastructure. We conduct our experiments on an isolated cluster of 9 servers

interconnected via a 12-port Infiniband switch (Mellanox MSX6012F-BS). Each
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machine runs Ubuntu server 14.04 and is equipped with two 10-core CPUs

(Intel Xeon E5-2630) with 64 GB of system memory and a single-port 56Gb

NIC (Mellanox CX4 FDR IB PCIe3 x16) connected on socket 0. Each CPU has

25 MB of L3 cache and two hyper-threads per core. We disable turbo-boost, pin

threads to cores, and use huge pages (2MB) for both the KVS and the cache.

Workloads. Our evaluation is performed on workloads following a Zipfian

access distribution. We use the skew exponent α = 0.99 as the default value

(as in YCSB [45]) and also study α = {0.90, 1.01}. For comparison purposes,

we also assess a uniform access distribution. We evaluate both a read-only

workload and workloads with modest write ratios, which are representative of

large-scale data serving deployments with high skew (e.g., Facebook reports

a write ratio of 0.2% [31]). The KVS consists of 250 million distinct key-value

pairs, making each node responsible for nearly 28 million keys. Unless stated

otherwise, we use keys and values of 8 and 40 bytes, respectively, thus allowing

a direct comparison with FaSST [111]. Finally, we apply request coalescing

optimization in Section 3.8.4, Section 3.8.5, and Section 3.8.6.

3.8 Evaluation

3.8.1 Read-only performance

We first evaluate the performance of all the designs for a read-only workload.

Figure 3.8 shows the performance of Base-EREW, Base, and ccKVS under

three different skewed distributions (α = {0.9, 0.99, 1.01}). As the results are

similar for all three distributions, we focus our discussion on α = 0.99.

As expected, Base-EREW has poor performance and achieves only 95 million

requests per second (MReq/s), as the whole system is bottlenecked by the

throughput of the core responsible for the hottest shard. On the other hand,

Base achieves 215 MReq/s, significantly mitigating the skew, as the bottleneck

shifts from the hottest core to the hottest server. In fact, the performance of

Base is within 10% of Uniform, which achieves 240 MReq/s. It is worth noting

that this performance gap is strongly correlated with the skew exponent (α) and
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Figure 3.8 Throughput of a read-only workload while varying skew. [9 nodes]

 = 0.90  = 0.99 (YCSB)  = 1.010

200

400

600

800

M
Re

qu
es

ts
 / 

se
c

Uniform

cache hits
cache misses

Figure 3.9 Breakdown of completed requests in ccKVS for a read-only workload

with varying skew. [9 nodes]

the number of servers in the deployment.

ccKVS achieves 690 MReq/s, which is 3.2× higher than the throughput of Base

and 2.85× higher than Uniform. The significantly higher throughput of ccKVS

compared to Uniform highlights the fact that the baseline systems are network

limited. ccKVS is able to achieve considerably higher throughput by avoiding

the need to access remote nodes for cached objects, thus reducing network

bandwidth pressure. ccKVS also benefits from the fact that symmetric caches

allow all the nodes in the KVS to serve requests for hot objects, thus distributing

the load evenly among them.

To better understand the reasons behind the significant performance improve-
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ment provided by ccKVS, we analyze its throughput. Figure 3.9 shows the

breakdown of ccKVS throughput in terms of the number of cache hits and

misses for a read-only workload with varying skew. In general, as the skew

increases, the cache-hit rate also increases. Cache hits require compute

resources, whereas cache misses mostly require network resources due to

remote KVS access. We observe that the cache-miss throughput of ccKVS

is equal to the entire throughput of Uniform and stays constant, even though

the cache-miss rate is higher with lower skew exponents. This leads to the

conclusion that both ccKVS and Uniform are network bound. Meanwhile, the

cache-hit throughput increases as the cache-hit rate increases, indicating that

the CPU is not the bottleneck. We confirm these hypotheses in Section 3.8.4.

3.8.2 Performance under writes

We now analyze the performance of ccKVS in the presence of writes. Fig-

ure 3.10 shows the throughput of the evaluated systems for varying write ratios

with α = 0.99. None of the baselines are sensitive to the write ratio, as they

are all bottlenecked by the network. Note that in the baseline design, the

network traffic does not change with varying write ratios, as remote read and

remote write requests both consume the same amount of network bandwidth. In

contrast, the throughput for ccKVS decreases with increasing write ratios. This

decrease is caused by the additional consistency actions required for every

cache write, such as broadcasting updates over the network. These actions

consume network resources and thus diminish the throughput of the system,

which is network bound even in the read-only scenario.

However, for realistic write ratios in skewed workloads, such as 0.2% for Face-

book’s workload [31], ccKVS provides throughput within 3% of a read-only

workload. In fact, ccKVS outperforms Base even for write ratios as high as

5% while providing the strongest consistency guarantee (linearizability). This

is a particularly important result, as it shows that, contrary to conventional

wisdom, it is possible to achieve high throughput in the presence of aggressive

replication under strong consistency guarantees.

To further analyze the throughput of ccKVS with increasing write ratios, we
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Figure 3.11 Network traffic breakdown for ccKVS. [9 nodes, α = 0.99]

show the breakdown of the network traffic for 1%, 2%, and 5% write ratios in

Figure 3.11. As the write ratio increases, consistency actions (i.e., updates,

invalidations and acks) claim an increasingly large percentage of the available

network bandwidth. As a result, less bandwidth is available for remote KVS

accesses triggered by cache misses. Since the system is network bound,

a reduction in available bandwidth for remote KVS accesses proportionately

lowers total system throughput. Finally, we note that flow control consumes a

negligible amount of bandwidth thanks to batching of credits (Section 3.6.4).
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Figure 3.12 Read-only and 1% writes, varying object size. [9 nodes, α = 0.99]

3.8.3 Sensitivity to object size

We next study the performance of ccKVS with varying object sizes. Figure 3.12

shows the throughput of ccKVS in comparison to Base for various object sizes

over read-only and 1% writes with α = 0.99.

In the read-only scenario, the relative performance of Base and ccKVS follow

the same trend, irrespective of object size. ccKVS still outperforms Base by

over 3× for larger objects. The trend is similar with writes. As expected, the

performance of ccKVS is lower than read-only due to the bandwidth spent on

consistency messages (i.e., invalidations, acknowledgments, and validations).

Nevertheless, ccKVS still outperforms Base by more than 2.2× across all object

sizes.

3.8.4 System bottlenecks

In order to identify the system bottlenecks, we analyze the hardware counters

for the NIC, PCIe, and memory.5 We also profile ccKVS (using the Zoom

profiler [184]) and use busy-wait counters within the ccKVS. After inspecting

all measurements, we observe that bottleneck shifts depending on the network

packet size. We identify two distinct cases: large objects that result in large

5We used Mellanox’s NEO-Host suite [156] for NIC profiling and Intel’s pcm [179] for the
PCIe and memory measurements.
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packet sizes and small objects that result in small packet sizes.

For large objects, network utilization in ccKVS closely approaches the available

network bandwidth, while the rest of the resources remain underutilized. Thus,

we can safely infer that the bottleneck, in this case, is the available network

bandwidth. In contrast, with small objects, CPU, PCIe, memory bandwidth, and

network bandwidth are all underutilized. To our surprise, the bottleneck for

small object sizes appears to be the packet processing rate of the switch.

To validate our claim, we conduct the following experiment: we measure the

maximum packet rate using Mellanox’s micro-benchmark (ib_send_bw) when

connecting two machines directly (i.e., without the switch) and when connecting

them through the switch. We observe that the maximum rate of sent/received

packets per second is significantly higher (up to 25%) when the servers are

connected directly.6 These results hold for ccKVS, as well.

For simplicity, throughout the evaluation section, we assume that the bottle-

neck is in the network in both cases, as the limited switch processing rate for

small packets can be viewed as an artificial network bandwidth limitation. We

measure the maximum achievable bandwidth to be around 21.5 Gbps for small

packets, while the NIC nominally supports 54 Gbps.

3.8.5 Request coalescing

In order to demonstrate and alleviate the bottlenecks imposed by transmitting

small packets, we perform request coalescing, whereby multiple requests des-

tined for the same node are opportunistically coalesced into a single network

packet. We only apply request coalescing to cache misses (requests and the

associated responses), since these dominate the network traffic in ccKVS at

modest write ratios.

Figure 3.13a shows the network utilization of ccKVS for a read-only workload

with and without request coalescing. This figure breaks down the network

utilization into packet header and payload (i.e., data traffic), illustrated by striped

and solid bars, respectively. Coalescing multiple requests results in larger

network packets, shifting the bottleneck from the switch’s packet processing

6Our findings were confirmed by the manufacturer of the switch.
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rate to network bandwidth. As a result, the optimized ccKVS that supports

coalescing increases throughput by almost 3× for the 40B values.

To ensure a fair comparison, we also add support for coalescing to Base and

present the optimized performance of ccKVS and Base in Figure 3.13b for

read-only and 1% writes while varying the object size. As expected, when

comparing the results presented in Figure 3.12 and Figure 3.13b, both ccKVS

and Base enjoy increased throughput for small object sizes when coalescing is

applied. However, coalescing is less beneficial for larger objects, as the system

is already bottlenecked by the network bandwidth.

Specifically, when examining the effects of coalescing on small (40B) objects,

we observe that the performance of Base is almost 950 MReq/s for both the

read-only and 1% writes workloads, which yields an improvement of over 4×
relative to the no-coalescing Base. In turn, ccKVS achieves a 3× improvement

in performance with coalescing enabled, delivering over 2 billion requests per

second, which is more than twice the performance of Base with coalescing.

The benefits of coalescing diminish in ccKVS on the 1% writes workload

because a fraction of network traffic carries consistency messages, which we

do not coalesce. Nonetheless, even with writes, request coalescing improves

the performance of ccKVS by 2× over no-coalescing.

3.8.6 Latency analysis

Figure 3.13c illustrates the average and the 95th-percentile latency of ccKVS

for a read-only workload and a workload with 1% writes while varying the load

and with request coalescing. We observe that, even at high loads, the tail

latency is about an order of magnitude lower than the target of 1ms for a typical

KVS service [136]. In fact, at maximum load, the 95th-percentile read-only

latency is quite close to the average latency. However, for 1% writes when

ccKVS is at high load, its 95th-percentile latency is noticeably higher than its

average latency. This is expected, since writes in ccKVS are blocking (i.e., send

invalidations and wait for acknowledgments in the critical path). Note we do

not optimize ccKVS for latency (or compare it with the baseline), as this chapter

focuses on the throughput benefits of replication and invalidating protocols. We

thoroughly study latency and compare with existing works in the next chapter.
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3.8.7 Analytical model

Since our 9-machine deployment prevents us from directly evaluating the

scalability of ccKVS, we build an analytical model that models the throughput

of ccKVS. This model leverages the fact that ccKVS is bottlenecked by the

network bandwidth (Section 3.8.4). Therefore, the throughput of ccKVS is

inversely proportional to the overall network traffic.

There are two sources of network traffic. The first is due to requests that miss

in the cache targeting keys mapped to a remote node. A request is a cache

miss with probability (1 – h), where h denotes the cache hit ratio. The cache

miss targets a remote node with probability 1 – 1
N , where N denotes the number

of servers. A remote request generates two messages: one request and one

reply. The total size of these two messages (in bytes) is denoted as BRR. On

average, the cache miss-related traffic (TRM) generated per request is given by:

TRM = (1 – h) ∗ (1 – 1
N
) ∗ BRR (3.1)

The second source of traffic is the messages for consistency actions, which are

generated by hot writes (i.e., writes that hit in the cache). Consistency actions

in ccKVS include invalidations, acknowledgments, and updates. These three

messages amount to BG bytes, with each hot write generating (N – 1) of each of

these types of messages. The probability of a hot write is given by h ∗ w, where

w denotes the write ratio. Therefore, the overall consistency-related traffic (TRC)

generated per request in ccKVS is given by:

TRC = h ∗ w ∗ (N – 1) ∗ BG (3.2)

From Equation (3.1) and Equation (3.2), each request in ccKVS generates

TRM+TRC bytes worth of traffic. Because ccKVS is network bound, the throughput

(i.e., number of requests per second) of a server can be computed as the

available network bandwidth (BW) divided by the bytes required per request. To

compute the total throughput of ccKVS (TccKVS), we multiply by the number of

servers, as shown in Equation (3.3):

TccKVS = N ∗ BW
TRM + TRC

(3.3)
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validation (solid). [1% writes, α = 0.99]

In the Uniform design, network traffic is generated for requests that map to a

remote node. Requests map to a remote node with the probability 1 – 1
N and

such requests generate a request and a reply message (similar to cache misses

in ccKVS) that amount to BRR bytes transferred over the network. Therefore, the

total traffic (TRU) generated by a request in Uniform is given by:

TRU = (1 –
1
N
) ∗ BRR (3.4)

And the total throughput (TU) of Uniform is as shown in Equation (3.5).

TU = N ∗ BW
TRU

(3.5)

Scalability study

In the presence of writes, we anticipate the per-server throughput of ccKVS to

degrade as the number of servers increases due to the proportional increase

in consistency traffic. We employ the proposed analytical model to conduct a

scalability study and understand the extent of this degradation.

To validate the model with our existing setup, we feed the model with the same

parameters as in our implementation with request coalescing disabled. We set

the cache hit ratio (h) to 65% and the message sizes with the exact numbers used

in our evaluation for small objects: BRR = 113 bytes and BG = 183 bytes (including
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(solid) for up to 9 nodes. [α = 0.99]

network headers). Finally, we set the available network bandwidth (BW) at 21.5

Gbps, which is the network bandwidth observed for the configuration with small

objects.

Figure 3.14 shows the estimated throughput of Uniform and ccKVS when

scaling the number of servers of the deployment from 5 to 40 while fixing

the write ratio at 1%. As expected, the scaling of Uniform is almost perfectly

linear. However, ccKVS scales sublinearly with the number of servers; this is

because, as the number of servers increases, the consistency traffic increases

too.

We also plot the measured throughput of our system for up to nine machines

(i.e., the size of our deployment). As we can see, the analytically computed

throughput is similar to the measured throughput for both ccKVS and Uniform.

With nine servers, ccKVS is estimated to achieve 554 MReq/s, which is within

1% of the measured throughput in our implementation (558 MReq/s).

In general, we find that the analytical model predicts the performance of ccKVS

with sufficient accuracy. Using the validated model, we find that the performance

of ccKVS is significantly better than the upper bound for the baseline (i.e.,

Uniform) for moderately sized deployments with 1% write ratio.
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When does symmetric caching break even?

Next, we use our analytical model to answer the following question: for a

deployment of X servers, what is the write ratio at which ccKVS yields the same

throughput as Uniform? We call this write ratio the break-even write ratio. To

calculate the break-even write ratio for ccKVS, we equate the throughput of Uni-

form, TU (Equation (3.5)), with the throughput of ccKVS, TccKVS (Equation (3.3)),

and solve for the write ratio.

Figure 3.15 illustrates the break-even write ratio for ccKVS deployments of up

to 40 servers. For example, a ccKVS deployment with 15 servers yields the

same performance as Uniform at a write ratio of 4%. Therefore, a 15-server

deployment with a write ratio below 4% can benefit from employing ccKVS.

To validate the model, Figure 3.15 also depicts the measured break-even write

ratios for actual deployments of up to nine nodes. We observe that the trend is

similar for both the model and actual measurements; however, the real system

can sustain slightly higher break-even write ratios than what the model predicts.

The reason for this slight discrepancy is that, as noted in Section 3.8.4, the

actual bottleneck for small packets is in the switch packet processing; because

the update messages in Galene are large (i.e., contain both key and value),

ccKVS achieves higher network bandwidth than predicted for high write ratios.

As expected, the break-even write ratio decreases when the number of servers

increases. This occurs because the consistency traffic increases linearly with

the number of servers, since a write to a hot object must be propagated to all

servers. With 40 servers, the break-even write ratio is 1.7% for ccKVS. This

indicates that in a moderately sized deployment with low write ratios, ccKVS

should outperform the baseline while maintaining strong consistency guaran-

tees. However, at higher write ratios or in larger deployments, the performance

benefit of ccKVS may vanish.

Note on scalability. We have established that the benefits of symmetric

caching decrease with increasing size of the deployment. However, this con-

straint does not strictly prohibit the application of symmetric caching in large

deployments. To scale beyond a rack-scale or small-sized cluster deployment,

we believe our ideas can be applied by simply partitioning bigger deployments
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into smaller Scale-out ccNUMA clusters, each of which can independently

apply symmetric caching. For example, a KVS spanning 100 nodes can be

split into five 20-machine groups (similarly to [172]) where each group employs

symmetric caching for its portion of the KVS.

3.9 Related work

Data replication. Service providers often use data replication to improve

system performance, particularly to provide load balancing. While conceptually

straightforward, replicating hot data across some number of servers [97, 99], it

entails a number of practical shortcomings, as detailed in [172]. These include

determining the appropriate level of replication granularity (object, partial shard,

or entire shard), tracking replicas, maintaining replica consistency, and inform-

ing clients of the replica’s locations. The latter can be particularly onerous if the

number of clients is much greater than the number of servers, which is often

the case. In practice, these problems tend to have ad-hoc solutions requir-

ing complex engineering and with significant system-level overheads, hence

spurring the recent work on alternative approaches using fast remote access

and caching (as discussed in Section 3.2.2).

Our work takes the best features of replication, caching, and fast remote access.

Compared to traditional replication, our solution allows for fine-granularity repli-

cation of individual keys and does not require client-side knowledge of replicas

while affording strong consistency across all replicas.

Distributed shared memory (DSM). In principle, a distributed KVS is not all

that different from a DSM [37, 116, 139, 204]. The underlying problem boils

down to enforcing a consistency model in the presence of replication. However,

there is one important difference: the workloads. The goal of DSM is to support

scalable parallel programs, whereas the goal of KVS is to support data-serving

workloads. The former is characterized by CPU-intensive programs that ideally

do not spend all their time waiting for memory, while the latter does little more

than perform data accesses to main memory. Whereas locality in DSM arises

from program working sets, locality in a KVS can be explained by a skewed
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access distribution.

These workload and sharing pattern differences translate into significant

divergence in the design of caches and consistency protocols. In particular,

the popularity skew naturally dictates that only the popular objects should be

cached. Similarly, it dictates that there is no need to have different objects

in different caches, thus avoiding the need to track sharers (e.g., through a

directory) or migrate pages.

Cache coherence. In shared-memory multiprocessors, the local caches of

each processor are typically kept coherent using hardware-based coherence

protocols [163]. Our approach is inspired by the effectiveness of coherent

caches in such architectures. However, as discussed in Section 3.3, the proto-

col we employ (push-based and fully distributed) is quite different from those

typically used in multiprocessors (pull-based and serializing at a directory).

3.10 Summary

Popularity skew is a well-known bottleneck in existing KVS deployments.

Existing skew-mitigation techniques are limited in their efficacy when applied to

a distributed in-memory KVS. This chapter embraces skew as an opportunity

through aggressive caching of popular objects across all nodes of the KVS.

While aggressive replication is generally thought to be a challenge in distributed

datastores due to the perceived cost of keeping replicas consistent, our work

shows otherwise. Using a low-overhead symmetric cache architecture powered

by a fully distributed strongly consistent replication protocol, we demonstrate

that our prototype ccKVS outperforms a state-of-the-art KVS on workloads with

a moderate write ratio.
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Hermes:
Fast Fault-Tolerant Replication

The greatest glory in living lies not in never falling,
but in rising every time we fall.

Nelson Mandela

In the previous chapter, replication was used to improve performance, but it

did not ensure fault tolerance. In this chapter, we introduce a fault-tolerant

replication protocol with very high throughput and significantly lower latency

than the state of the art by extending the cache-coherence-inspired invalidating

protocols in a setting with failures.

4.1 Overview

Modern reliable datastores are expected to keep strongly consistent replicas for

data availability despite failures while also delivering high performance. When it

comes to performance, recent works on reliably replicated datastores focus on

throughput and tend to ignore latency [209]. Meanwhile, latency is emerging as

a critical design goal in the age of interactive services and machine actors [21].

For instance, a recent work [12] notes that a deep learning system running on

top of a reliable datastore is greatly affected by the latency of the datastore.

Today’s replication protocols are not designed to handle the latency challenge

of in-memory reliable datastores. Chain replication (CR) [213], a state-of-the-art

high-performance reliable replication protocol, is a striking example of trading

latency for throughput. Our detailed study of CRAQ [209], the state-of-the-art

63
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local
reads

load-balanced

decentralized

inter-key concurrentwrites

fast (e.g., few RTTs)

Table 4.1 Reliable replication protocol features for high performance.

CR variant, reveals that while CRAQ can offer very high throughput, it is ill-

suited for latency-sensitive workloads. CRAQ organizes the replicas in a chain.

Although reads can be served locally by each of the replicas, writes expose the

entire length of the chain. Moreover, when a read hits a key for which a write

is in progress, the read incurs an additional latency as it waits for the write to

be resolved. With high-latency writes and mixed-latency reads, CRAQ fails to

provide predictably low latency.

This chapter addresses the challenge of designing a reliable replication protocol

that provides both high throughput and low latency within a datacenter. To that

end, we identify essential features necessary for high performance, which are

summarized in Table 4.1. For reads, this means the ability to execute a read

locally on any of the replicas. For writes, high performance mandates the

ability to execute writes in a decentralized manner (i.e., any replica can initiate

and drive a write to completion without serializing it through another node),

concurrently execute writes to different keys, and complete writes fast (e.g., by

minimizing round-trips).

Based on these insights, we introduce Hermes, a strongly consistent fault-

tolerant replication protocol for in-memory datastores that provides high through-

put and low latency. At a high level, Hermes is a broadcast-based protocol

for single-object reads, writes, and RMWs that resembles two-phase commit

(2PC) [80]. However, 2PC is not reliable (Section 4.6) and is overkill for replicat-

ing single-object writes. In contrast, Hermes is highly optimized for single-object

operations and is reliable.

Hermes builds upon the two main ideas of Galene to achieve high performance

while also ensuring fault tolerance. Galene’s first idea is the use of invalidations:

a form of lightweight locking inspired by cache coherence protocols. The second

is per-key logical timestamps implemented as Lamport clocks [126]. Together,

these enable linearizability; local reads; and fully concurrent, decentralized, and
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fast writes. Logical timestamps further allow each node to locally establish a

single global order of writes to a key, which enables conflict-free write resolution

(i.e., writes never abort1 – another difference from 2PC) and write replays to

handle faults.

In short, the contributions we make in this chapter are as follows:

• We introduce Hermes, a reliable replication protocol (Section 4.3) that

utilizes invalidations and logical timestamps to achieve high performance and

linearizability. In the common failure-free operation, any replica in Hermes

affords efficient local reads and fast fully concurrent writes. Hermes handles

message loss and node failures by guaranteeing that any write can always

be safely replayed. We also detail efficient RMW support in Hermes and

propose a variant of Hermes for safe operation under asynchrony that does

not compromise on throughput.

• We formally verify Hermes (Section 4.3) reads, writes, and RMWs in TLA+

for safety and absence of deadlocks in the presence of crash-stop failures as

well as message reordering and duplicates.

• We implement and evaluate Hermes (Section 4.4 and Section 4.5) over

a high-performance RDMA-based KVS. Our evaluation shows that Hermes

outperforms the state-of-the-art RDMA-enabled virtual Paxos protocol [103]

by an order of magnitude. Moreover, Hermes achieves higher throughput than

the highly optimized RDMA-based state-of-the-art ZAB [107] and CRAQ [209]

replication protocols across all write ratios while significantly reducing the tail

latency. At 5% writes, the tail latency of Hermes is at least 3.6× lower than

that of CRAQ and ZAB.

1RMW in Hermes may abort (Section 4.3.5).
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4.2 Motivation

4.2.1 High-performance reads and writes

Maintaining high performance under strong consistency and fault tolerance is

an established challenge [17, 213]. In the context of in-memory datastores,

high performance is accepted to mean low latency and high throughput. Re-

quirements for achieving high performance differ for reads and writes.

Reads. The key to achieving both low latency and high throughput on reads

is (1) being able to service a read on any replica, which we call load-balanced

reads, and (2) completing the read locally (i.e., without engaging other repli-

cas). While seemingly trivial, load-balanced local reads (thereafter simply local

reads) present a challenge for many reliable protocols, which may require

communication among nodes to agree on a read value (e.g., ABD [15, 150] and

Paxos [129]) or mandate that only a single replica serve linearizable reads for

a given key (e.g., primary-backup [9] or Zookeeper’s ZAB protocol [107]).

Writes. Achieving high write performance under strong consistency and

fault tolerance is notoriously difficult. We identify the following requirements

necessary for low-latency high-throughput writes:

� Decentralized : In order to reduce network hops and preserve load balance

across the replica ensemble, any replica must be able to initiate a write and

drive it to completion (by communicating with the rest of the replicas) while

avoiding centralized serialization points. For instance, both ZAB and CR require

writes to initiate at a particular node, thus failing to achieve decentralized writes.

� Inter-key concurrent : Independent writes on different keys should be able to

proceed in parallel, enabling intra- and multi-thread parallel request execution.

For example, ZAB requires all writes to be serialized through a leader, thus fail-

ing to provide inter-key concurrency. Linearizable protocols, like CR, can offer

inter-key concurrency but some need costly per-key leases (see Section 4.7).

� Fast : Fast writes require minimizing the number of message round-trips,

avoiding long message chains (e.g., contrary to CR), and shunning techniques

that otherwise increase latency (e.g., performing writes in lockstep [151, 182]).



4.2. Motivation 67

Figure 4.1 Comparison of reliable membership-based protocols in terms of

throughput and latency.

4.2.2 Reliable replication protocols

As stated in the background section, reliable replication protocols capable

of dealing with failures under our fault model are either majority-based or

membership-based protocols. Majority-based protocols require only a

majority of nodes to respond in order to commit a write. They therefore tend to

give up on local reads but may support decentralized or inter-key concurrent

writes [129, 150, 160]. Majority-based protocols that afford local reads either

relax consistency and serialize independent writes on a master (e.g., ZAB)

or require communication-intensive per-key leases (detailed in Section 4.6).

Problematically, both approaches hurt performance even in the absence of

faults.

In contrast, membership-based protocols ensure that a committed write reaches

all replicas in the ensemble. Thus, in the absence of faults, membership-based

protocols are naturally free of performance limitations associated with majority-

based protocols and can easily facilitate local reads.

A common practice for high-performance replication is to optimize for the

typical case of failure-free operation by harnessing the performance benefits

of membership-based protocols and limiting the use of majority-based proto-

cols to RM reconfiguration [57, 104, 133]. In fact, major datacenter operators,

such as Microsoft, not only exploit membership-based protocols in their datas-
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tores [57, 196], but they also provide LSCs [46, 183] and RM [108] as datacen-

ter services to ease the deployment of membership-based protocols by third

parties.

The earliest membership-based protocol is primary-backup [9], which serves

all requests at a primary node and does not leverage the backup replicas for

performance. Chain replication (CR) [213] improves upon primary-backup by

organizing the nodes in a chain and dividing the responsibilities of the primary

between the head and the tail of the chain, as shown in Figure 4.1 (bottom

left). CR is a common choice for implementing high-performance reliable repli-

cation [12, 18, 105, 209, 218]. We next discuss CRAQ [209], a highly optimized

variant of CR.

CRAQ

CRAQ is a state-of-the-art membership-based protocol that offers high through-

put and strong consistency (linearizability). In CRAQ, nodes are organized in

a chain and writes are directed to its head, as in CR. The head propagates

the write down the chain, which completes once it reaches the tail. Subse-

quently, the tail propagates acknowledgment messages upstream toward the

head, informing all nodes of the write’s completion.

CRAQ improves upon CR by enabling read requests to be served locally from

all nodes, as shown in Figure 4.1 (top left). However, if a non-tail node attempts

to serve a read for which it has seen a write message propagating downstream

from head to tail, but has not seen the acknowledgment propagating upstream,

then the tail must be queried to determine whether the write has been applied

or not.

CRAQ is the state-of-the-art reliable replication protocol that achieves high

throughput via a combination of local reads and inter-key concurrent writes.

However, CRAQ fails to satisfy the low latency requirement: while reads are typ-

ically local and thus very fast, writes must traverse multiple nodes sequentially,

incurring a prohibitive latency overhead.



4.3. Hermes 69

Figure 4.2 Example of writing a value of 3 to key K. Nodes 1, 2, and 3 hold a

replica of K. TS is the timestamp.

4.3 Hermes

Hermes is a reliable membership-based broadcasting protocol that offers high

throughput and low latency while providing linearizable reads, writes, and

RMWs. Hermes optimizes for the common case of no failures [20] and tar-

gets intra-datacenter in-memory datastores with a replication degree typical of

today’s deployments (3–7 replicas) [100]. As noted in Section 2.1, the replica

count does not constrain the size of a sharded datastore, since each shard is

replicated independently of other shards. Example applications that can benefit

from Hermes include reliable datastores [17, 18, 169, 218], lock-services [33,

100] and applications that require high performance, strong consistency, and

availability (e.g., [3, 28, 221]).

4.3.1 Protocol overview

In Hermes, reads complete locally. Writes can be initiated by any replica and

complete fast regardless of conflicts. As illustrated in Figure 4.2, a write to a

key proceeds as follows. The replica initiating the write (called coordinator )

broadcasts an Invalidation (INV) message to the rest of the replicas (called

followers) and waits on Acknowledgments (ACKs). Once all ACKs have been

received, the write completes via a Validation (VAL) message broadcast by the

coordinator replica.
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We now briefly overview the salient features of Hermes and discuss the specifics

in the following subsections.

Invalidations and logical timestamps. Similar to Galene, Hermes leverages

the combination of invalidations and logical timestamps2 for high-performance

reads and writes. Given that a write invalidates all replicas prior completion,

strongly consistent local reads in Hermes are simple. The very fact that an

object replica is in a valid state implies that it contains the most up to date value

and thus is safe to read. Writes are more involved as we discuss next.

High-performance non-conflicting writes. Hermes affords high-performance

writes (Section 4.2.1) by maximizing concurrency while maintaining low latency.

First, writes in Hermes are executed from any replica in a decentralized manner,

eschewing the use of a serialization point (e.g., a leader) and thus reducing

the number of network hops and ensuring load balance. In contrast to ap-

proaches that globally order independent writes for strong consistency (e.g.,

ZAB – Section 4.4.2), Hermes allows writes to different keys to proceed in

parallel, hence achieving inter-key concurrency. This is accomplished through

Hermes’ approach of invalidating all operational replicas to achieve lineariz-

ability. When combined with per-key logical timestamps, invalidations permit

concurrent writes to the same key to be correctly linearized at the endpoints;

thus, writes do not appear to conflict, making aborts unnecessary.

Finally, in the absence of a failure, writes in Hermes cost one-and-a-half round-

trips (INV→ACK→VAL); however, the exposed latency is only a single round-trip

for each node. From the perspective of the coordinator, once all ACKs are

received, it is safe to respond to a client because, at this point, the write is

guaranteed to be visible to all live replicas and any future read cannot return

the old value (i.e., the write is committed – Figure 4.2 b ). The followers also

observe only a single round-trip (further optimized in Section 4.3.2), which

starts once an INV arrives. At that point, each follower responds with an ACK

and completes the write when a VAL is received.

Safely replayable writes. Hermes takes the ideas of Galene a step further

by ensuring fault tolerance. In Galene, node and network faults during a write

2Recall that the timestamp is a lexicographic tuple of <v, cid> combining a key’s version
number (v), which is incremented on every write, with the node ID of the coordinator (cid).
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to a key may leave the key in a permanently Invalid state in some or all nodes.

To prevent this, Hermes allows any invalidated operational replica to replay the

write to completion without violating linearizability. This is accomplished using

two mechanisms. First, the new value for a key is propagated to the replicas

in INV messages (Figure 4.2 a ). Such early value propagation guarantees that

every invalidated node is aware of the new value. Second, logical timestamps

enable a precise global ordering of writes in each replica, facilitating idempo-

tence. By combining these ideas, a node that finds a key in an Invalid state

for an extended period can safely replay a write by taking on a coordinator

role and retransmitting INV messages to the replica ensemble with the original

timestamp (i.e., original version number and cid), hence preserving the global

write order.

The above features afford the following properties:

� Strong consistency: By invalidating all replicas of a key at the start of a write,

Hermes ensures that a key in a Valid state is guaranteed to hold the most

up-to-date value. Hermes enforces the invariant that a read may complete if

and only if the key is in a Valid state, which provides linearizability.

� High performance: Local reads, in concert with high-performance broadcast-

based non-conflicting writes from any replica, help ensure both low latency and

high throughput.

� Fault tolerance: Hermes uses safely replayable writes to tolerate a range

of faults, including message loss, node failures, and network partitions. As a

membership-based protocol, Hermes is aided by RM (Section 2.2) to provide a

stable membership of live nodes in the face of failures and network partitions.

4.3.2 Read/write protocol

The Hermes protocol consists of four stable states (Valid, Invalid, Write, and

Replay ) and a single transient state (Trans). Figure 4.3 illustrates the format of

protocol messages and the metadata stored at each replica. A detailed protocol

transition table, as well as the TLA+ specification, are available online.3

3https://hermes-protocol.com

https://hermes-protocol.com
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Figure 4.3 Metadata stored and messages sent by Hermes.

The following protocol is slightly simplified in that it focuses only on reads and

writes (i.e., omits RMWs) and deals only with node failures (not network faults).

Resilience to network faults and RMWs are described in Section 4.3.3 and

Section 4.3.5, respectively.

Reads: A read request is serviced on an operational replica (i.e., one with an

RM lease) by returning the local value of the requested key if it is in the Valid

state. If the key is in any other state, the request is stalled.

Writes:

Coordinator

A coordinator node issues a write to a key only if it is in the Valid state; otherwise,

the write is stalled. To issue and complete a write, the coordinator node:

• CTS: Updates the key’s local timestamp by incrementing its version and

appending its node ID as the cid, then assigns this timestamp to the write.

• CINV: Promptly broadcasts an INV message consisting of the key, the new

timestamp (TS), and the value to all replicas and transitions the key to the

Write state while applying the new value locally.

• CACK: Once the coordinator receives ACKs from all live replicas, the write is

completed by transitioning the key to the Valid state (Invalid state if the key

was in the Trans state4).

4The Trans state indicates a coordinator with a pending write that got invalidated. While not
required, the Trans state helps track when the coordinator’s original write completes, hence
allowing the coordinator to notify the client of the write’s completion.
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• CVAL: Finally, the coordinator broadcasts a VAL consisting of the key and the

same timestamp to all followers.

There are two simple yet subtle differences when comparing the coordinator

actions of a write in Hermes and Galene. First, in Hermes, the value of a write

is sent eagerly with the INV message. Second, the coordinator in Hermes waits

for ACKs only from the live replicas, as indicated in the membership variable.

If a follower fails after an INV has been sent, the coordinator waits for the ACK

from the failed node until the membership is reliably updated (after the node is

detected as failed and the membership leases expire – Section 2.2). Once the

coordinator is no longer missing any ACKs, it can safely continue the write.

Follower

• FINV: Upon receiving an INV message, a follower compares the timestamp

of the incoming message to its local timestamp of the key. If the received

timestamp is higher than the local timestamp, the follower transitions the key

to the Invalid state (Trans state if the key was in the Write or Replay state) and

updates the key’s value and local timestamp (both its version and the cid).

• FACK: Regardless of the result of the timestamp comparison, a follower

always responds with an ACK containing the same timestamp as that in the

INV message of the write.

• FVAL: When a follower receives a VAL message, it transitions the key to the

Valid state if and only if the received timestamp is equal to the key’s local

timestamp. Otherwise, the VAL message is simply ignored.

Write replays: A request that finds a key in the Invalid state for an extended

period of time (determined via the mlt timer, described in Section 4.3.3) triggers

a write replay. The node servicing the request takes on the coordinator role,

transitions the key to the Replay state, and begins a write replay by re-executing

steps CINV through CVAL using the timestamp and value received with the INV

message. Note that the original timestamp is used in the replay (i.e., the version

and cid are the same as that of the original coordinator) to allow the write to

be correctly linearized. Once the replay is completed, the key transitions to the

Valid state, after which the initial request is serviced.
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Formal verification. We expressed Hermes in TLA+ and model-checked

the protocol’s reads, writes, RMWs and replays for safety and the absence of

deadlocks in the presence of message reordering and duplicates, as well as

membership reconfigurations due to crash-stop failures.

Protocol Optimizations

[O1] Enhancing fairness. Like Galene, Hermes can utilize virtual node IDs to

increase fairness in the order of concurrent writes to the same key from different

replicas.

[O2] Eliminating unnecessary validations. When the coordinator of a write

gathers all of its ACKs but discovers a concurrent write to the same key with

a higher timestamp (i.e., the key was in the Trans state), it does not need to

broadcast VAL messages (CVAL), thus saving valuable network bandwidth.

[O3] Reducing blocking latency. In failure-free operation, and during a write

to a key, followers block reads to that key for up to a round-trip (Section 4.3.1).

This blocking latency can be reduced to half of a round-trip if followers broadcast

ACKs to all replicas rather than responding only to the coordinator of the write

(FACK). Once all ACKs have been received by a follower, it can service the

reads to that key without waiting for the VAL message. While this optimization

increases the number of ACKs, the actual bandwidth cost is minimal as ACK

messages have a small constant size. The bandwidth cost is further offset by

avoiding the need to broadcast VAL messages. Thus, under the typical small

replication degrees, this optimization comes at a negligible cost in bandwidth.

4.3.3 Network faults, reconfiguration, and recovery

This section presents Hermes’ operation under imperfect links, network parti-

tions, and the transient period of membership reconfiguration on a fault. It then

provides an overview of the mechanism to add new nodes to the replica group.

Imperfect links. In typical multi-path datacenter networks, messages can be
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reordered, duplicated, or lost [66, 78, 149]. Hermes operates correctly in all of

these scenarios, as described below. In Hermes, the information necessary to

linearize operations is embedded with the keys and in messages in the form

of logical timestamps. Thus, the protocol never violates linearizability even if

messages get delayed, reordered, or duplicated in the network.

Hermes uses the same idea of replaying writes if any INV, ACK, or VAL message

is suspected to be lost. A message is suspected to be lost for a key if the

request’s message-loss timeout (mlt) – within which every write request is

expected to be completed – is exceeded. To detect the loss of an INV or ACK

for a particular write, the coordinator of the write resets the request’s mlt once it

broadcasts INV messages. If a key’s mlt is exceeded before its write completion,

the coordinator suspects a potential message loss and resets the request’s mlt

before retransmitting the write’s INV broadcast.

In contrast, the loss of a VAL message is handled by the follower using a write

replay. Once a follower receives a request for a key in the Invalid state, it resets

the request’s message-loss timeout. If the timestamp or state has not been

updated within the mlt duration, it suspects the loss of a VAL message and

triggers a write replay. Although a write replay will never compromise the safety

of the protocol, a carefully calibrated timeout will reduce unnecessary replays

(e.g., when messages are not lost).

Network partitions. Datacenter network topologies are highly redundant [78,

200]; however, in rare cases, link failures might result in a network partition. Ac-

cording to the CAP theorem [29, 77], either consistency or availability must be

sacrificed in the presence of network partitions. Hermes follows the guidelines

of Brewer [30] to permit the datastore to continue serving requests only in its pri-

mary partition: a partition with the majority of replicas. Recall that we consider

a membership service using a majority-based protocol. Thus, although failure

detectors cannot differentiate between node failures and network partitions, the

membership can only be reliably updated in the primary partition and does so

only after the expiration of the membership leases. As a result, replicas in a

minority partition stop serving requests before the membership is updated and

new requests are able to complete only in the primary partition. Updating the

membership in the primary partition is always feasible because the RM protocol
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is run by the datastore replicas, not external nodes (e.g., an external service).5

Once network connectivity is restored, nodes previously on a minority side can

rejoin the replica group via a recovery procedure explained below.

Membership reconfiguration after a failure. Following a network partition or

a node failure and expiration of the leases for all of the nodes in a membership

group, a majority-based protocol is used to reliably update the membership. We

refer to this update as m-update, which consists of a lease renewal, a new list

of live nodes, and an incremented epoch ID (epoch_id). Although the m-update

is consistent even in the presence of faults, it does not reach all live replicas

instantaneously. Rather, there is a transient period in which some replicas

that are considered live, according to the latest value of the membership, have

received the m-update while others have not and are still non-operational.

Hermes seamlessly deals with the transition of m-update without violating safety.

Hermes’ replicas, which have received the m-update, are able to act as coor-

dinators and serve new requests. Thus, reads that find the target key in the

Valid state can immediately be served as usual. In contrast, writes or reads

that require a replay (i.e., the targeted key is Invalid) are effectively stalled until

all live nodes (as indicated by the membership variable) receive the m-update.

This is because writes and write replays do not commit until all live replicas

become operational and acknowledge their INV messages.

During this transition period, any live follower that has not yet received the

latest m-update will simply drop the INV messages, because those messages

are tagged with an epoch_id greater than the follower’s local epoch_id. This

manifests as a simple message loss to a coordinator, which triggers retrans-

mission of the INVs (Section 4.3.3). The coordinator eventually completes its

writes once all live followers have received the latest membership and become

operational.

Recovery. Hermes’ fault tolerance properties enable a datastore to continue

operating even in the presence of failures. However, as nodes fail, new nodes

need to be added to the datastore to continue operating at peak performance.

To add a new node, the membership is reliably updated, following which all

5If Hermes is deployed over an external RM service, only the nodes that remain connected
with the service would continue to be operational under a network partition.
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Figure 4.4 Concurrent writes to key A, then a read, followed by a node and

a message failure which trigger a write replay on the last read. State of A

shows the value on each object replica; underlined represents Valid state, non-

underlined represents other states. The color indicates the timestamp’s value.

other live replicas are notified of the new node’s intention to join the replica

group. Once all replicas acknowledge this notification, the new node begins

to operate as a shadow replica that participates as a follower for all writes but

does not serve any client requests. Additionally, it reads chunks (multiple keys)

from other replicas to fetch the latest values and reconstruct the shard for which

it is responsible, similar to existing approaches [57, 175]. After reading the

entire shard, the shadow replica is up to date and transitions to an operational

state, in which it is able to serve client requests.

4.3.4 Operational example

In this subsection, we discuss Figure 4.4, which illustrates an example of Her-

mes’ execution with reads and writes to key A that is replicated in three nodes.

The key A is initially stored in the Valid state with the same value (zero) and

timestamp in all three nodes. The purpose is to demonstrate the operation of

Hermes while shedding light on some of its corner cases in the presence of

concurrency and failures. For simplicity, we assume no use of virtual node IDs

or any latency optimizations (Section 4.3.2).
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First, node 1 initiates a write (A = 1) by incrementing its local timestamp, broad-

casting INV messages (solid lines), transitioning key A to the Write state, and

updating its local value. Likewise, node 3 initiates another concurrent write

(A = 3). Recall that INVs in Hermes contain the key, timestamp (including the

cid), and value to be written.

Node 2 ACKs the INV message from node 1 (dashed line), updates its times-

tamp and value, and transitions key A to the Invalid state. Node 3 ACKs the INV

of node 1, but it does not modify A or its state because its local timestamp is

higher (same version, but higher cid). Subsequently, node 2 receives the INV

from node 3, which has a higher timestamp than the locally stored timestamp,

resulting in an update to its local value and timestamp, all while remaining in the

Invalid state. Similarly, node 1 ACKs the INV of node 3 by updating the value

and the timestamp before transitioning to the Trans state.

Meanwhile, node 2 starts a read, but it is stalled because its local copy of

A is invalidated. Once node 3 receives all ACKs, it completes its own write

by transitioning A to the Valid state and broadcasting a VAL message (dotted

lines) to the other replicas. When node 2 receives node’s 3 VAL message, it

transitions A to Valid state and completes its stalled read.

Once node 1 receives all of the ACKs, it completes its write but transitions to

the Invalid state. This occurs because the write from node 3 took precedence

over node 1’s write due to its higher timestamp, but the VAL from node 3 has

not yet been received. Note that, although the write from node 1 completes

later than the concurrent write from node 3, it is linearized before the write of

node 3 due to its lower timestamp (cid).

As a last step, we consider a failure scenario wherein the VAL message from

node 3 to node 1 is dropped, node 3 crashes, and key A in node 1 thus remains

in the Invalid state. Once the leases expire and node 3 is detected as failed,

the membership variable is reliably updated. Subsequently, node 1 receives a

read for A but finds A invalidated by a failed node. Thus, node 1 triggers a write

replay by broadcasting INV messages with the key’s locally stored timestamp

and value (i.e., replaying node 3’s original write). Crucially, the fact that INV

messages contain both the timestamp and value to be written allows node 1 to

safely replay node 3’s write. Node 2 ACKs the INV from node 1 without applying



4.3. Hermes 79

it, since it already has the same timestamp. Once node 1 gets the ACK from

node 2, it can unblock itself. Lastly, node 1 completes the replay of the write by

broadcasting a VAL message to all live nodes (i.e., node 2, in this example).

4.3.5 Read-modify-writes

So far, we have focused on read and write operations. However, Hermes also

supports read-modify-write (RMW) atomics that are useful for synchronization

(e.g., a compare-and-swap to acquire a lock). In general, the atomic execution

of a read followed by a write to a key may fail if naively implemented with simple

reads and writes. This is because a read followed by a write to a key is not

guaranteed to be performed atomically, since another concurrent write to the

same key with a smaller logical timestamp could be linearized between the

read-write pair, hence violating the RMW semantics.

For this reason, an RMW update in Hermes is executed similarly to a write,

but it is conflicting. Hermes may abort an RMW that is concurrently executed

with another update operation (either a write or another RMW) to the same key.

Hermes commits an RMW if and only if the RMW has the highest timestamp

amongst any concurrent updates to that key. Moreover, it purposefully assigns

higher timestamps to writes compared to their concurrent RMWs. As a result,

any write racing with an RMW to a given key is guaranteed to have a higher

timestamp, thus safely aborting the RMW. Meanwhile, if only RMW updates are

racing, the RMW with the highest node ID will commit, and the rest will abort.

More formally, Hermes always maintains safety and guarantees progress in the

absence of faults by ensuring two properties: (1) writes always commit, and (2)

at most one of the possible concurrent RMWs to a key commits. To maintain

these properties, the following protocol alterations are needed:

• Metadata: To distinguish between RMW and write updates, an additional

binary flag (RMW_flag) is included in INV messages. The flag is also stored in

the per-key metadata to accommodate update replays.

• CTS: When a coordinator issues an update, the version of the logical times-

tamp is incremented by one if the update is an RMW and by two if it is a write.
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• FRMW-ACK: A follower ACKs an INV message for an RMW only if its timestamp

is equal to or higher than the local one; otherwise, the follower responds with

an INV based on its local state (i.e., the same message used for write replays).

• CRMW-abort: In contrast to non-conflicting writes, an RMW with pending ACKs

is aborted if its coordinator receives an INV to the same key with a higher

timestamp.

• CRMW-replay: After an RM reconfiguration, the coordinator resets any gath-

ered ACKs of a pending RMW and replays the RMW to ensure that it is not

conflicting.

4.3.6 Taming asynchrony

This thesis mainly considers a failure model with loosely synchronized clocks

(LSCs), which is representative of intra-datacenter deployments [141, 196].

Nevertheless, Hermes leverages LSCs only for RM lease management to

ensure that a node with a lease is always part of the latest membership.

Updates in Hermes seamlessly work under asynchrony (i.e., without LSCs),

since they commit only after all acknowledgments are gathered, which occurs

only if the coordinator has the same membership as every other live follower.6

Linearizable reads in Hermes can also be served under asynchrony. The

basic idea is to use a committed update to any key after the arrival of a read

request as a guarantee that the given node is still part of the replica group (thus

validating the read). More specifically, observe that a node can establish that

it is a member of the latest membership by successfully committing an update.

Using this idea, a read at a given node can be speculatively executed but not

immediately returned to the client. Once the node executes a subsequent

update to any key and receives acknowledgments from a majority of replicas,

it can be sure that it was part of the latest membership when the read was

executed. Once that is established, the read can be safely returned to the

client. Note that a majority of acknowledgments suffices, as the membership is

updated via a majority-based protocol and is maintained by the replicas rather

than an external service.
6Followers with a different membership value would have otherwise ignored the received

INVs due to discrepancy in the message epoch_ids (Section 4.2.2)
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If a subsequent update is not readily available (e.g., due to low load), the coordi-

nator replica of a read can send a membership-check message to the followers

containing only the membership epoch_id. The followers acknowledge this

message if they are in the same epoch. After a majority of acknowledgments

have been collected, the coordinator returns the read. The membership-check

is a small message and can be issued after a batch of read requests are spec-

ulatively executed by the coordinator. Overall, although serving reads without

LSCs increases the latency of reads until a majority of replicas respond, it in-

curs zero (if a subsequent update is timely) or minimal network cost to validate

a batch of reads. We experimentally study the impact of this asynchronous

variant in Section 4.5.8.

4.3.7 Protocol summary

This section introduced Hermes, a reliable membership-based protocol that

guarantees linearizability. Hermes’ decentralized, broadcast-based design is

engineered for high throughput and low latency. Leveraging invalidations and

logical timestamps, Hermes enables efficient local reads and high-performance

updates that are decentralized, fast, and inter-key concurrent. Writes (but

not RMWs) in Hermes are also non-conflicting. Hermes seamlessly recovers

from a range of node and network faults thanks to its update replays, enabled

by early value propagation and logical timestamps. Finally, Hermes can be

deployed in a fully asynchronous setting without compromising safety via a

simple read-validation scheme.

4.4 Experimental methodology

4.4.1 HermesKV

To evaluate the benefits and limitations of the Hermes protocol, we build Her-

mesKV, an in-memory RDMA-based KVS with a single-object read/write API.

HermesKV is replicated across all the machines comprising a deployment and

relies on the Hermes protocol to ensure the consistency of the deployment.
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Overview and KVS. Each node in HermesKV is composed of a number

of identical worker threads. Each worker performs the following tasks: (1)

decodes client requests; (2) accesses the local KVS replica; and (3) runs the

Hermes protocol to complete requests. Client requests are distributed among

the worker threads of the system. Requests can be either reads or writes.

Worker threads communicate solely to coordinate writes (and write replays) as

reads are completed locally.

The implementation of HermesKV is based on ccKVS [70]. We extend ccKVS by

replicating all objects for availability and to accommodate the Hermes-specific

protocol actions, state transitions, and request replies based on the replica

state. To focus on the performance of Hermes, we strip the caching layer of

ccKVS. Note that the Hermes protocol is agnostic to the choice of a datastore

and can be used with any datastore. We choose ccKVS because its minimalist

design allows us to focus on the impact of the replication protocol itself, without

regarding other irrelevant overheads of commercial-grade datastores.

Networking. State-of-the-art RDMA-based KVS designs such as HERD [109]

and ccKVS [70] have shown remote procedure calls to be a highly effective

design paradigm. Hence, we leverage two-sided RDMA primitives (over unre-

liable datagram sends) and all of the networking optimizations discussed in

Section 3.6.3. These include opportunistic coalescing of multiple messages

into one network packet, application-level flow control, support for software

broadcasts, and other low-level RDMA optimizations.

4.4.2 Evaluated systems

We evaluate Hermes by comparing its performance with majority-based and

membership-based RDMA-enabled baseline protocols. To facilitate a fair

protocol comparison, we study all protocols over a common multi-threaded

KVS implementation based on HermesKV (as described in Section 4.4.1). All

protocols are implemented in C over the RDMA verbs API [208].

The evaluated systems are as follows:

• rZAB: In-house, multi-threaded, RDMA-enabled ZAB [187].

• rCRAQ: In-house, multi-threaded, RDMA-based CRAQ [209].
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• HermesKV: Implementation of Hermes as presented in Section 4.3, without

the latency optimization [O3] from Section 4.3.2.

Our evaluation mainly focuses on comparing HermesKV to rZAB and rCRAQ,

since they share the same KVS and communication implementation, which

allows us to isolate the effects of the protocol itself on performance. We also

compare Hermes to Derecho [103] (Section 4.5.5), the state-of-the-art RDMA-

optimized open-source implementation of membership-based (i.e., virtually

synchronous) Paxos. Table 4.2 summarizes the read and write features of the

evaluated systems.

Local reads Writes
System

Leases Consistency Concurrency Latency (RTT) Decentralized

HermesKV one per RM linearizable inter-key 1 3

rCRAQ one per RM linearizable inter-key O(n) 7

rZAB none SC serializes all 2 † 7

Derecho none SC serializes all 1 ‡ 3

Table 4.2 Comparison of read and write features for the evaluated systems.

SC: sequentially consistent; RM: reliable membership; n: number of replicas;

†1 RTT for master’s writes; ‡lockstep commit.

rZAB

In the ZAB protocol, one node is the leader and the rest are followers. A client

can issue a write to any node, which in turn propagates the write to the leader.

The leader receives writes from all nodes, serializes them, and proposes them

by broadcasting atomically to all followers. The followers send ACKs back to the

leader. Upon receiving a majority of ACKs for a given write, the leader commits

the write locally and broadcasts commits to the followers.

A client’s read can be served locally by any node without any communication as

long as the last write of that client has been applied in that node. However, local

reads in ZAB are sequentially consistent, which is weaker than linearizable.

Problematically, the fact that ZAB is not linearizable leads to a performance

issue on writes. This is because, in contrast to the stricter linearizability, se-

quential consistency (SC) is not composable [16]. As a result, it is not possible

to deploy independent (e.g., per-key) instances of SC protocols such as ZAB to

increase the concurrency of writes because the composition of those instances
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would violate SC. If a ZAB client requires linearizable reads, it can issue a

sync command prior to the read. A sync completes similarly to a write, hence

significantly increasing the read message cost and latency. In order to obtain

the upper-bound performance of ZAB, we do not evaluate linearizable reads.

rZAB optimizations. We apply to rZAB all HermesKV optimizations and use

the RDMA multicast [208] to tolerate ZAB’s asymmetric (i.e., leader-oriented)

network traffic pattern. Our highly optimized, RDMA implementation of ZAB

outperforms the open-source implementation of Zookeeper (evaluated in [105])

by three orders of magnitude. Of course, Zookeeper is a production system

that incorporates features beyond the ZAB protocol, such as client tracking and

checkpointing to disk. By evaluating a lean and optimized version of ZAB, alone,

we facilitate a fair protocol comparison.

rCRAQ

CRAQ affords local reads and inter-key concurrent – but not decentralized –

writes (Section 4.2.2 details the CRAQ protocol). We identify two undesirable

properties of CRAQ: (1) writes must traverse multiple hops before completing,

adversely affecting the system’s latency; and (2) the nodes of the chain are gen-

erally not well balanced in terms of the amount of work performed per packet,

potentially affecting the system’s throughput. To evaluate how these proper-

ties affect performance, we study our own RDMA-enabled version of CRAQ

(rCRAQ), which takes advantage of all optimizations available in HermesKV.

4.4.3 Testbed

All of our experiments (except those described in Section 4.5.8) are conducted

on a cluster of 7 servers interconnected via a 12-port Infiniband switch (Mellanox

MSX6012F). Each machine runs Ubuntu 18.04 and is equipped with two 10-

core CPUs (Intel Xeon E5-2630) with 64 GB of system memory and a single-port

56Gb NIC (Mellanox CX4 FDR IB PCIe3 x16). Each CPU has 25 MB of L3 cache

and two hardware threads per core. We disable turbo-boost, pin threads to

cores, and use huge pages (2 MB) for the KVS. The KVS consists of one million

key-value pairs, replicated in all nodes. Unless stated otherwise, we use keys

and values of 8 and 32 bytes, respectively, which are accessed uniformly.
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4.5 Evaluation

4.5.1 Throughput on uniform traffic

Figure 4.5 shows the performance of HermesKV, rCRAQ, and rZAB while vary-

ing the write ratio under uniform traffic.

Read-only. For read-only, all three systems exhibit identical behavior, achiev-

ing 985 million requests per second (MReqs/s), as all systems perform reads

locally from all replicas. To reduce clutter, we omit the read-only from the figure.

HermesKV. At 1% write ratio, HermesKV achieves 770 MReqs/s, outperform-

ing both baselines (12% better than rCRAQ and 4.5× better than rZAB). As the

write ratio increases, the throughput of HermesKV gradually drops, reaching

72 MReqs/s on a write-only workload. The throughput degradation at higher

write ratios is expected, as writes require an exchange of messages over the

network, which costs both CPU cycles and network bandwidth.

At 20% write ratio, HermesKV significantly outperforms the baselines (40%

over rCRAQ, 3.4× over rZAB). The reason for HermesKV’s good performance

compared to alternatives is that it combines local reads with high-performance

writes.

rCRAQ. The CRAQ protocol is well suited for high throughput, comprising both

inter-key concurrent writes and local reads. Nevertheless, rCRAQ performs

worse than HermesKV across all write ratios, with the gap widening as write

ratios increase. That difference has its root in the design of CRAQ.

First, reads in CRAQ are not always local. If a non-tail node is attempting to

serve a read for a key for which it has seen a write but not an ACK, then the

tail must be queried to determine whether the write has been applied or not.

Therefore, increasing the write ratio has an adverse effect on reads, as more

reads need to be served remotely via the tail node.

This disadvantage hints at a more important design flaw: the CRAQ design is

heterogeneous, mandating that nodes assume one of three different roles –
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Figure 4.5 Throughput for 1% to 100% writes with uniform accesses. [5 nodes]

head, tail, or intermediate – each of which has different responsibilities. As such,

the load is not equally balanced, so the system is always bottlenecked by the

node with the heaviest responsibilities. For instance, at high write ratios, the tail

node is heavily loaded, as it receives read queries from all nodes. Meanwhile,

at low write ratios, the tail has fewer responsibilities than an intermediate node

since it only propagates acknowledgments up the chain, while an intermediate

must also propagate writes downstream.

rZAB. As expected, ZAB fails to achieve high throughput at non-zero write

ratios, as it imposes a strict ordering constraint on all writes at the leader.

The strict ordering makes it difficult to extract concurrency, inevitably causing

queuing of writes and delaying subsequent reads within each session. At 1%

write ratio, rZAB achieves 172 MReqs/s, which drops to a mere 16 MReqs/s for

a write-only workload.

4.5.2 Throughput under skew

We next explore how the evaluated protocols perform under access skew. We

study an access pattern that follows a power-law distribution with a Zipfian

exponent a = 0.99, as in YCSB [45] and recent studies [56, 70, 172]. Figure 4.6

shows the performance of the three protocols when varying the write ratio from

1% to 100%. We discuss the read-only scenario separately.
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Figure 4.6 Throughput for 1% to 100% writes under skew. [α = 0.99, 5 nodes]

Read-only. Similar to the uniform read-only setting, all three protocols achieve

identical performance (4183 MReq/s) due to their all-local accesses. Unsurpris-

ingly, the read-only performance under the skewed workload is higher than the

uniform performance for all protocols. This is because, under a skewed work-

load, there is temporal locality among the popular objects, which is captured by

the hardware caches.

HermesKV. HermesKV gracefully tolerates skewed access patterns, especially

at low write ratios (achieving 1190 MReq/s at 1% write ratio). Repeatedly ac-

cessing popular objects cannot adversely affect HermesKV’s write throughput,

as concurrent writes to popular objects can proceed without stalling (as ex-

plained in Section 4.3.1). Meanwhile, read throughput thrives under a skewed

workload because reads are always local in HermesKV, and as such can benefit

from temporal locality.

rCRAQ. Similarly, rCRAQ benefits from temporal locality when accessing the

local KVS, while write throughput is unaffected by the skew, as multiple writes for

the same key can concurrently flow through the chain. The problem, however,

is that non-tail nodes cannot complete reads locally if they have seen a write

for the same key but have not yet received an ACK. In such cases, the tail must

be queried. Under skew, such cases become frequent, with reads to popular

objects often serviced by the tail rather than locally. Thus, at higher write ratios,

the tail limits rCRAQ’s performance.
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rZAB. rZAB is not affected by the conflicts created by the skewed access

pattern, as it already serializes all writes irrespective of the object they write.

In practice, rZAB performs slightly better under skew, as hardware caches are

more effective due to better temporal locality for popular objects.

4.5.3 Latency analysis

Latency vs. throughput

Figure 4.7a illustrates the median (50th%) and the tail (99th%) latencies of the

three protocols as a function of their throughput at 5% write ratio. We measure

the latency of each request from the beginning of its execution to its completion.

All three systems execute reads locally, while writes incur protocol actions that

include traversing the network. Therefore, at 5% write ratio, we expect the

median latency of all protocols to be close to the latency of a read and the

tail latency to be close to that of a write. Consequently, the gap between the

median and tail latency is to be expected for all systems and should not be

interpreted as unpredictability.

HermesKV. The median latency of HermesKV is the latency of a read, and as

expected, is consistently very low (on the order of 1µs) even at peak throughput

because reads are local. Tail latency is determined by the writes. The tail

latency increases with the load because writes traverse the network and thus

can be subject to queuing delays as load increases. At peak throughput, the

tail latency of HermesKV is 69µs.

rCRAQ. In rCRAQ, the median latency is the latency of a read, and as such,

is typically on the order of a few microseconds. As expected, the tail latency,

which corresponds to a write, is consistently high: at least 3.6× larger than

HermesKV at the same throughput points (ranging from 42µs at lowest load to

172µs at peak load). The high write latency is directly attributed to the protocol

design, as writes in rCRAQ need to traverse multiple network hops, incurring

both inherent network latency and queuing delays in all the nodes.
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rZAB. Like the other two protocols, rZAB achieves a low median latency be-

cause of its local reads. However, even at moderate throughput, its tail latency

is much larger (e.g., over 3.6× than that of Hermes at 75 MReq/s) because of

the high latency of the writes that must serialize on the leader.

Latency vs. write ratio

Figure 4.7b and Figure 4.7c depict the median and tail latencies of reads and

writes separately, under both uniform and skewed workloads, when operating

at the peak throughput of CRAQ, which corresponds roughly to 50–85% of

HermesKV’s peak throughput. rZAB cannot achieve sufficiently high throughput

to be included in the figures.

Uniform. HermesKV delivers very low, tightly distributed latencies across all

write ratios, for both reads (2µs – 15µs) and writes (29µs – 42µs). As expected,

rCRAQ exhibits a similar behavior for reads but not for writes. rCRAQ write

latencies are at least 3.9× to 5.9× larger than the corresponding write latencies

of HermesKV, with median latencies ranging from 101µs to 215µs while the tail

latencies range from 138µs to 330µs.

Skew. Under skew, the tail latencies of both reads and writes increase in

HermesKV, as reads and writes are more likely to conflict on popular objects.

The tail read latency is the latency of a read that stalls waiting for a write to

return. Not surprisingly, that latency is roughly equal to the median latency of

a write. Similarly, the tail latency of a HermesKV write increases up to 120µs

because, in the worst case without failures, a write might need to wait for an

already outstanding write (to the same key) issued from the same node.

In rCRAQ, the latencies of writes remain largely unaffected compared to the

uniform workload. However, the behavior of reads changes radically because

reads are far more likely to conflict with writes under skew; such reads are sent

to the tail node. Consequently, the tail node becomes very loaded, which is

reflected in both the median (up to 112µs) and tail (up to 386µs) read latencies.

This is a very important result; while high write latencies are expected of rCRAQ,

we show that read latencies can suffer as well, making CRAQ an undesirable

protocol for systems that target low latency.
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4.5.4 Scalability study

To investigate the scalability of the evaluated protocols, we measure their per-

formance by varying the replication degree. Figure 4.8 depicts the throughput

of the three protocols under 1% and 20% write ratios for 3, 5, and 7 machines.

HermesKV. Reads in HermesKV are always local and their overhead is thus

independent of the number of replicas, allowing HermesKV to take advantage of

the added replicas to increase its throughput. Therefore, HermesKV’s scalability

is dependent on the write ratio, achieving almost linear scalability with the

number of replicas at 1% writes while maintaining its performance advantage

at 20% write ratio.

rCRAQ. When scaling rCRAQ, the expectations are similar to HermesKV:

reads are scalable, but writes are not. However, scaling the replicas in CRAQ

implies extending the size of the chain. Consequently, more non-tail nodes

redirect their reads to the tail node. Thus, the tail becomes loaded, degrading

read throughput while also creating back pressure in the chain, which adversely

affects write throughput. This phenomenon is apparent in Figure 4.8; at 20%

write ratio, rCRAQ throughput degrades when the chain is extended from 5 to 7

nodes.

rZAB. rZAB also performs reads locally and thus is expected to see a benefit

from greater degrees of replication at low write ratios. However, write requests

incur a large penalty in rZAB, as the leader receives and serializes writes

from all machines. When the leader cannot keep up with the write stream,

the replicas inevitably fall behind, as the reads stall waiting for the writes to

complete and the writes are queued on the leader. Indeed, in Figure 4.8, we

observe that even though rZAB scales well for a read-dominant workload, at a

20% write ratio, increasing the replication degree from 5 to 7 cuts performance

almost in half. Our results are in line with the original scalability analysis of

Zookeeper [100].
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Figure 4.9 Comparison to Derecho. [uniform traffic, 5 nodes, write-only]

4.5.5 Comparison to Derecho

In this section, we compare HermesKV’s throughput with the RDMA-optimized

open-source Derecho [103], the state-of-the-art membership-based variant

of Paxos. Derecho’s codebase partitions work at each node across several

threads (3–4) but does not support higher degrees of threading. To ensure the

fairest possible comparison, we limit HermesKV to a single thread.

Figure 4.9 shows the throughput of a write-only workload when the object size

is varied from 32B to 1KB. Such relatively small object sizes are typical for

datastore workloads [14, 142]. Despite being constrained to a single thread,

HermesKV outperforms Derecho by an order of magnitude on small object

sizes (32B) while maintaining its advantage even on larger objects (3× at 1KB).

Derecho increases the performance of its totally ordered writes by exploiting

monotonic predicates [103]. Nevertheless, due to its lockstep delivery and its

inability to offer inter-key concurrent writes, it fails to match the performance

of Hermes. We note that HermesKV’s throughput naturally decreases as the

object size increases and more bytes per request are transferred.
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Figure 4.10 Throughput of Hermes while artificially increasing write tail latency.

[uniform traffic, 5 nodes, 5% write ratio]

4.5.6 Tolerance to tail latency

Slowdowns (e.g., due to message losses) are less rare than node crashes

and could affect a protocol’s throughput. In contrast to some majority-based

replication protocols that may naturally tolerate such slowdowns, Hermes is a

membership-based protocol and must gather acknowledgements from all the

replicas when performing a write. Thus, raising the question of what impact this

design decision has on its performance. More precisely, can an increase in tail

latency adversely affect the throughput of Hermes?

To answer this question, we artificially increase the tail latency by randomly

choosing writes and delay their commit. Figure 4.10 shows the throughput of

Hermes when increasing the 99.9th% latency of writes by an amount specified

on the X axis. From the data, we conclude that Hermes is tail-tolerant because

increasing the tail latency has a negligible effect on its throughput. The reason

is that requests from different sessions and keys can be executed concurrently

in Hermes and thus, if a write is stalled due to a slow tail effect, Hermes is able

to process requests from other sessions to mask the impact of the slow request.

The only time another session stalls on an outstanding request is if it performs

a read to an in-progress write; however, as results show, this is rarely the case.

Note that the above experiment focuses on inflated tail latencies (e.g., emulating

messages losses). In contrast, if a replica always responds slowly (e.g., due to

an overloaded node), it would impact Hermes performance. Such a slow node

should be removed from the membership to avoid reducing the throughput
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Figure 4.11 Maximum recovery time per failure while meeting various availabil-

ity targets, based on a failure rate of two crashes per year per server.

of Hermes. However, notice that unlike centralized protocols, Hermes load-

balanced design naturally minimizes such issues [72].

4.5.7 Throughput with failures

Like CRAQ and other membership-based protocols, Hermes is designed to

run in conjunction with a leased reliable membership (RM). In this section,

we empirically identify the length of the lease timeout in order to minimize

the likelihood of a false positive in failure detection. Given that timeout and

industry-observed failure rates, we calculate the availability of Hermes. Finally,

we evaluate the throughput of Hermes under failures.

Timeout length. To determine the required RM timeout in our setup, we con-

duct the following experiment. While Hermes is running at peak throughput, an

additional process is spawned in each server. These processes exchange 40-

byte messages over RDMA, emulating heartbeats through an inquire-response

pattern, while logging the response latencies. After running the experiment

for 10 hours, the highest observed latency was 6ms, likely arising from kernel

(scheduler) interference.

Ideally, the timeout would be sufficiently larger than the highest latency, minimiz-

ing the probability of a false positive. We quantify the meaning of "sufficiently

larger" through a safety factor sf, defining that the timeout must be sf times

larger than the highest observed latency. We set sf equal to 25, which yields a

timeout of 150ms.
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Figure 4.12 HermesKV under failure. [uniform traffic, 5 nodes, timeout=150ms]

Availability. Using the observation from [20] that a server may crash up to two

times per year, we plot in Figure 4.11 the maximum recovery time per failure for

various deployments with various availability targets. For example, a five-replica

deployment achieves 99.999% availability if it is able to recover from a server

failure within 31 seconds, assuming each server fails twice per year.

Hermes is able to recover a few microseconds after the lease timeout (more

details in the "Throughput under failure"), and thus the recovery time of Hermes

is practically equal to its timeout. We note that the 150ms recovery time is two

orders of magnitude smaller than the maximum allowed 31-second recovery

time, enabling Hermes to comfortably achieve the common target of 99.999%

availability. Indeed with a recovery time of 150ms, a 5-replica deployment can

achieve 99.999% availability while tolerating 420 failures per server each year.

Throughput under failure. In order to study HermesKV’s behavior when

a failure occurs, we implement RM similarly to [108] and integrate it with Her-

mesKV. Figure 4.12 depicts the behavior of HermesKV when a failure is injected

at 1%, 5%, and 20% write ratios in a five-node deployment and a conservative

timeout of 150ms. The throughput drops to zero almost immediately after the

failure because all live nodes are blocked while waiting for acknowledgments

from the failed node. After the timeout expires, the machines reach agree-

ment (via a majority-based protocol) to reliably remove the failed node from

the membership and subsequently continue operating with four nodes. The

agreement part of the protocol entails exchanging a handful of small messages

over an unloaded RDMA network, which takes only a few microseconds and

is not noticeable in the figure. The recovered steady-state throughput is lower

after the failure because one node is removed from the replica group.
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4.5.8 Study under asynchrony

We conduct a brief study on Cloudlab [58] to evaluate the performance of

the asynchronous Hermes variant (Hermes-async), described in Section 4.3.6.

We use HermesKV and the same optimizations to compare the performance

of Hermes-async with that of Hermes (i.e., the original variant with loosely

synchronized clocks). To that end, we perform two experiments on a cluster

of 5 nodes equipped with a Xeon E5-2450 processor (8 cores, 2.1Ghz) and

interconnected over 40Gb network cards (CX3 FDR IB). The KVS consists of

one million key-value pairs, replicated in all five nodes. We use keys and values

of 8 and 32 bytes, respectively, which are accessed uniformly.

Throughput while varying the write ratio. We first evaluate the throughput

while varying the write ratio. As expected, Figure 4.13 shows that Hermes

outperforms Hermes-async for low write ratios (up to 5%), as Hermes-async

needs to send extra messages to validate reads. However, the difference is

marginal because several reads can be verified by a constant lightweight mes-

sage carrying just the epoch_id. For higher write ratios, a write is almost always

readily available and able to verify reads in Hermes-async, thus rendering the

throughput difference negligible to non-existent.

Latency while varying the load. We also study the latency of reads in Her-

mes and Hermes-async while varying the load. We focus on a read-dominant
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workload with just 2% write ratio, in which reads in Hermes-async will most

likely need to send extra messages for validation. The results are shown in

Figure 4.14. As expected, both the average and the tail latency of Hermes-

async are higher than that of Hermes, reaching about 50µs average latency

with maximum load. This difference is justified because – unlike Hermes’ reads,

which immediately return the local value – reads in Hermes-async must wait for

a round-trip to a majority of replicas.

4.6 Related work

Consensus and atomic broadcast. State machine replication (SMR) [193]

provides linearizability by explicitly ordering all client requests (reads and writes)

and requiring all replicas to execute requests in the determined order. SMR

can be implemented using any fault-tolerant consensus or atomic broadcast

algorithm to order the requests. Numerous such algorithms have been pro-

posed [24, 39, 144, 173], the most popular of which are variants of Paxos [129].

Recent works present optimized variants of these protocols that exploit commu-

tative operations [5, 131, 160] and rotating coordinators [151]. Others leverage

a ring-based topology [10, 84, 153], similar to CRAQ, to increase throughput

but at the cost of latency.

Most of these protocols are majority-based and sacrifice performance for a
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failure model without RM support. Therefore, they typically enforce strong

consistency at the cost of performance by sacrificing either local reads or

concurrency. An abundance of such protocols forfeits local reads [15, 24, 27,

60, 129, 130, 131, 132, 138, 151, 152, 160, 174, 181], thereby incurring a

significant penalty on read-dominant datastore workloads.

Meanwhile, protocols that allow local reads sacrifice performance on writes.

A recent atomic broadcast protocol offers local reads but does so by relaxing

consistency and applying writes in lockstep [182]. Chandra et al. [38] present a

protocol with linearizable local reads through object leases that serializes writes

on a leader. ZAB [187], a characteristic example of such protocols, enables

local reads and serializes writes on a leader, but without using object leases;

thus increasing performance but at the cost of consistency. As shown in our

evaluation, Hermes significantly outperforms ZAB with its decentralized and

inter-key concurrent writes.

Per-key leases. Linearizable protocols that use object leases for local reads,

such as those in [38, 161], could be deployed on a per-key basis (i.e., one

protocol instance for each key) to match the inter-key concurrency – but not la-

tency – of writes in Hermes. However, this mandates a lease for each individual

key, which is not scalable for realistic datastores with millions of keys. In this

approach, for linearizable local reads, leases must be continuously renewed for

each key, even in the absence of writes or reads. This renewal costs at least

Θ(n) messages (where n = number of replicas) per key and must occur before

each lease expires, causing significant network traffic. Moreover, the lease du-

ration cannot be very long, since a long lease would translate into similarly long

unavailability upon a fault. In contrast, Hermes, with its invalidating writes and

only a single RM lease per replica, offers local reads while being fully inter-key

concurrent at a message cost independent of the number of the keys stored in

the datastore.

Hardware-assisted replication. Some proposals leverage hardware support

to reduce the latency of reliable replication, such as FPGA offloading [101] and

programmable switches [52, 105, 118, 138]. For instance, Zhu et al. [227]

use programmable switches for in-network conflict detection to allow local

reads from any replica. Other works tailor reliable protocols by exploiting
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RDMA [22, 181, 216]. Hermes offers local reads without hardware support.

When evaluated over RDMA, Hermes significantly outperforms Derecho, which

represents the state of the art of RDMA-based approaches.

Optimized reliable replication. A recent work [178] proposed a primary-

backup optimization to reduce the exposed write latency for external clients.

However, its correctness relies on commutative operations. Howard’s optimiza-

tion [98] allows Paxos to commit after 1 RTT in conflict- and failure-free rounds,

but reads are not local. In contrast, Hermes is not limited to commutative

operations and affords local reads.

Reliable transaction commit. Hermes provides single-object linearizable

reads, writes, and RMWs, but does not offer reliable multi-object transactions.

The distributed transaction commit requires an agreement as to whether a

transaction should atomically commit or abort. A transaction may only be

committed if all parties agree on it. A popular protocol to achieve this is the two-

phase commit (2PC) [80]. However, the 2PC is a blocking protocol and must be

extended to three phases (3PC) to tolerate coordinator failures [82, 85, 201]. A

more common way to achieve reliable transactions is layering a transactional

protocol over a reliable replication protocol [46, 120, 226]. For instance, FaRM

and Sinfonia use a primary-backup protocol [6, 57]. In this type of setting,

Hermes could be used as the underlying reliable replication protocol to increase

locality and improve performance.

4.7 Discussion

Are local reads beneficial in a large-scale datastore? Throughout this

chapter, we report the latency of operations with respect to a node (replica) in

a distributed replicated datastore. In a large-scale datastore, clients might be

external and not co-located with the replica they want to access. Although in

this case reads in Hermes do not provide locality with respect to the client, they

still ensure low latency and cost. This is because, in Hermes, a remote read

from an external client would be solely served by one replica without additional

message delays or coordination among replicas.
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Reducing write latency of external clients. For the protocols discussed in

this work, if clients are external, an additional round-trip is required to reach and

obtain a response from the replica ensemble. Thus, the common-case exposed

latency for an external client when committing a write in Hermes is 2 RTTs.

To reduce response time, followers can send ACKs to both the coordinator of

the write and the client. This reduces the latency in completing linearizable

writes from external clients to 1.5 RTTs. The message cost of this optimization

(approximately twice the number of ACKs of the baseline protocol) is linear with

the replication degree.

Reducing RMW conflicts with opportunistic leadership. Despite Hermes’

decentralized design, concurrent writes from different coordinators need never

abort, even if they target the same key, as they can be safely linearized directly

at the end-points based on their logical timestamps. Thus, concurrent writes

in Hermes are always non-conflicting. However, RMWs to the same key in

Hermes are conflicting and may abort (as detailed in Section 4.3.5).

Under high RMW conflicts to the same key a leader-based design could reduce

conflicts and aborts. Such high conflicts would only arise under skewed dis-

tributions and for just a few hot keys which must also be dominantly updated

via RMWs. For those keys7 one could apply what we call an opportunistic

leader optimization over Hermes, in which a hash function is used to steer

update requests for such a hot key to the same Hermes replica. In short, such

an opportunistic leader in Hermes reduces conflicts and enables batching of

concurrent RMW requests to the same (hot) key, while being a best-effort opti-

mization. In other words, unlike native leader-based protocols, Hermes would

still safely handle any updates issued by a non-(opportunistic-)leader.

4.8 Summary

In this chapter, we introduced Hermes, a membership-based reliable replication

protocol that offers both high throughput and low latency. Hermes utilizes

invalidations and logical timestamps to achieve linearizability, with local reads

7Techniques to identify such popular keys are discussed in Section 3.4.
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and high-performance updates at all replicas. In the common case of no failures,

Hermes broadcast-based writes are non-conflicting and always commit after a

single round-trip. Hermes also tolerates node and network failures through its

safe write replays. Our evaluation of Hermes against state-of-the-art protocols

shows that it achieves superior throughput at all write ratios and considerably

reduces tail latency. Finally, we demonstrated that Hermes can be applied

safely even under asynchrony, with a modest latency penalty on reads but

without sacrificing its high throughput.





5
Zeus:
Locality-Aware Replicated Transactions

Think global, act local.
Patrick Geddes

The last two chapters focused on a single-object interface over a statically

sharded datastore. This chapter applies invalidation-based protocols in a data-

store that dynamically shards data and offers a richer transactional interface

with data availability and the performance benefits of locality awareness.

5.1 Overview

Cloud applications over commodity infrastructure are becoming increasingly

popular. They require distributed, fast, and reliable datastores. Recent

in-memory datastores that operate within a datacenter and leverage replication

for fault tolerance (FaRM [56], FaSST [111], and DrTM [220]) offer strongly

consistent distributed transactions in the order of millions per second. They do

not make any assumptions about the workloads and rely on highly optimized

remote access primitives (e.g., RDMA) to enable a variety of use cases.

These datastores run OLTP workloads with transactions involving a small

number of objects. In addition, many applications have a high degree of

locality. For example, many transactions in a cellular control plane involve

one user always accessing the same set of objects (e.g., the nearest base

station or the same call forwarding number [165]). Many Internet middleboxes

mostly access the same state for all packets of a single flow (e.g., intrusion

103
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detection systems [221]). Bank transactions often recur between the same

parties [34, 212, 225]. As Stonebraker et al. report [90], a transactional concur-

rency control scheme can derive significant benefits from leveraging application-

specific characteristics such as locality.

Existing works [56, 111, 220] can exploit locality through static sharding – if

and only if all objects involved in each transaction are stored on the same node.

Consequently, static sharding only helps if the optimal placement is known

a priori and never changes. However, this is often not the case for two main

reasons. First, the set of objects involved in a transaction may change over time.

For instance, as a mobile phone user moves, her cellular handover transaction

involves different base stations. Second, the popularity of each object changes

over time, be it a network service or a financial stock. If several popular objects

are located on the same server, the server becomes a bottleneck, and the

popular objects should be spread across servers. In both cases, the rate of

changes in access locality is multiple orders of magnitude lower than the rate

of processed transactions (which is in the millions per second). We describe

these cases in more detail in Section 5.2.

In contrast, dynamic sharding, where objects are moved across nodes on

demand, helps both when the set of objects involved in a transaction changes

or when object popularity shifts. In the first case, dynamic sharding ensures that

all objects involved in a transaction are co-located, thereby reducing expensive

remote accesses. In the second case, dynamic sharding allows the most

popular objects to be quickly spread out, thus alleviating bottlenecks. However,

state-of-the-art replicated datastores [56, 111, 220] do not support dynamic

object sharding. Once the existing sharding is no longer optimal, they revert to

remote transactions. Remote transactions are inherently slower because they

impose the overhead of several round-trips, both to execute a transaction via

remote accesses and to atomically commit it. The overhead of the latter results

from the complexity of distributed atomic commit for conflict resolution under

the uncertainty of faults.

Several systems propose application-level load balancer designs that enable

applications to make fine-grained decisions regarding which node each trans-

action should be routed to [3, 8, 11, 19]. However, most of these systems
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rely on custom datastores that either do not provide strong consistency or are

not as fast as the state-of-the-art datastores [56, 111, 220]. As Adya et al. [2]

argue, there is a need for a general distributed protocol that provides strongly

consistent transactions and better exploits dynamic locality.

In this chapter, we address the problem of high-performance dynamic sharding

for transactional workloads by presenting a novel distributed datastore called

Zeus. The key insight behind Zeus is that, for many workloads, the benefits of

local execution outweigh the cost of (relatively infrequent) re-sharding. Zeus

capitalizes on this insight through two novel reliable invalidation-based protocols

designed from the ground up to exploit locality in transactional workloads. One

protocol is responsible for reliable (atomic and fault-tolerant) object ownership

migration, requiring at most 1.5 round-trips during common fault-free operation.

Using this protocol, when executing a transaction Zeus moves all objects to the

server executing that transaction and ensures exclusive write access. Once this

is done, and unless the access pattern changes, all subsequent transactions

to the same set of objects are executed entirely locally, eschewing the need

for costly distributed conflict resolution. The second protocol is a fast reliable

commit protocol for the replication of localized transactions. By combining

these two protocols, Zeus achieves the performance and simplicity of single-

node transactions with the generality of distributed transactions. To further

exploit locality, Zeus reliable commit enables local yet consistent read-only

transactions from all replicas.

Zeus’ design provides an extra benefit in that it allows for easy portability of

existing applications. Since most Zeus transactions are local, Zeus can pipeline

executions without compromising correctness. A subsequent transaction need

not wait for the replication of the current one. This is in contrast to the existing

in-memory distributed transactional datastores [56, 111, 220], in which each

transaction blocks until the replication is finished. To mitigate the effects of

blocking, these datastores use custom user-mode threading (e.g., co-routines)

that requires substantial effort when porting existing applications. In contrast,

Zeus’ transaction pipelining enables easy porting of legacy applications onto it,

making them distributed and reliable while reaping the performance benefits of

locality with minimal developer effort.
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We implement Zeus and evaluate it on several relevant benchmarks: Small-

bank [34], Voter [55], and TATP [165]. We also introduce and implement a new

benchmark that models handovers in a cellular network based on observed

human mobility patterns. To demonstrate the ease of porting existing applica-

tions to Zeus, we port several networking applications that exhibit locality: a

cellular packet gateway [180], an Nginx server [166], and the SCTP transport

protocol [205].

In brief, the main contributions of this chapter are as follows:

• We introduce Zeus, a reliable locality-aware transactional datastore

(Section 5.3) that replicates data in-memory to ensure availability. Unlike

state-of-the-art strongly consistent transactional datastores, transactions in

Zeus are fast by virtue of exploiting dynamic sharding and locality that exists

in certain transactional workloads (as demonstrated in Section 5.8).

• We propose two invalidation-based reliable protocols (Section 5.4 and

Section 5.5): an ownership protocol for dynamic sharding that quickly alters

object placement and access levels across replicas; and a transactional

protocol for fast pipelined reliable commit and local read-only transactions

from all replicas. Both protocols, which ensure the strongest consistency

under concurrency and faults, are verified in TLA+.

• We implement and evaluate Zeus (Section 5.7 and Section 5.8) over DPDK

on a six-node cluster, using three standard OLTP benchmarks and a new

cellular handover benchmark. For workloads with high access locality, Zeus

achieves up to 2× the performance of state-of-the-art RDMA-optimized

systems while using less network bandwidth and without relying on RDMA.

On the handovers benchmark, Zeus’ performance with dynamic sharding is

just 4% to 9% from the ideal of all-local accesses. We also demonstrate the

ease of portability by porting three legacy applications, showing scalability

and reliability with little to no performance drop.

5.2 Objectives and motivation

We first describe high-level objectives that datacenter operators and application

developers desire in a datastore. We next discuss the opportunities that arise
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with regard to local access patterns and analyze why they have not been fully

explored before.

5.2.1 Datastore design objectives

Our goal is to design an intra-datacenter shared-nothing transactional database

for OLTP workloads that allows programmers to deploy their software on top of

a distributed infrastructure without needing to re-architect the application. More

specifically, we want to provide the following:

Performance and reliability. Our target is to have a reliable datastore capable

of processing millions of operations per second. Moreover, to remain available

despite node failures, each state update needs to be replicated across nodes.

Transactions. A single operation may arbitrarily access or modify multiple

objects. A notion of transaction guarantees that either all modifications are

committed or none are. This is in contrast to many widely used in-memory key-

value stores (e.g., [124]), which essentially provide only single-object primitives

and some generalizations as an afterthought.

Strong consistency. We want to provide a simple programming model where

a programmer has the intuitive notion of a single copy of state, despite the

state being replicated for reliability. This model requires strongly consistent

distributed transactions guaranteeing strict serializability. Recall that, under

strict serializability, all transactions appear as if they are atomically performed at

a single point in real time to all replicas between their invocation and response.

Support for legacy applications. The state-of-the-art in-memory datas-

tores [56, 111, 220] meet the above criteria. However, when executing remote

transactions, they block the associated threads. To mask the performance cost

of blocking, they rely on transaction multiplexing and user-mode threads [111].

However, this makes porting existing applications on top of these frameworks

difficult. Our goal is to provide a datastore that allows legacy applications to

run on top of it without mandating modifications to the existing architecture.
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5.2.2 A case for access locality

As noted in Section 5.1, many real-world applications exhibit transactional

access patterns with a high degree of locality. In these cases, data are usually

sharded for efficiency. However, the optimal sharding may change over time for

two reasons: changes in object popularity or changes in access locality. In this

chapter, we use the term locality to refer specifically to the temporal reuse of

transactions between (spatially related) objects that reside on the same node.

Let us consider changes in locality via an example of call handovers in a cellular

network. Every time a phone wakes up to process data traffic (a service request)

or goes to sleep (a release request), the cellular control plane updates various

objects related to the phone and to the base station to which the phone is

attached. This is an example of data access locality, where each consecutive

operation on the same phone accesses the same two objects (the phone and

the base station contexts).

However, the access locality may slowly and gradually change over time due

to mobility. Every time a cellular user moves from one base station to another,

her phone performs a handover operation. This is a transaction that involves

three entities: the phone, the old base station that the user is leaving, and the

new base station the user is connecting to. As the user travels (e.g., during a

daily commute), her phone performs many such transactions, each involving

one object that stays the same (the phone context) and two other objects that

continuously change (contexts of the base stations along the trip). Once the

user finishes her commute, the access locality resumes, and every subsequent

service request and release for the user again involves a single base station

(the one the user is currently attached to, which is different from the one she

was attached to at the beginning of her commute).

This change is slow, as people are stationary most of the time. A study [36]

shows that, on average, a person makes five one-way trips per day with a

total length of 100km for drivers and 20km for non-drivers. Consequently,

handover requests are only between 2.5% and 5% of service and release

requests [158, 186], while the vast majority of service and release requests

repeatedly include the same base station. Another fact that further improves
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locality in this scenario is that a base station will only take part in handovers

with other base stations that are geographically close to it.

The optimal sharding should adapt to keep relevant objects together in the same

node. In this example, it should strive to keep the contexts of a phone and the

base station with which it is associated on the same node. However, based on

the above observations regarding user mobility, re-sharding will occasionally

need to happen, though only for a single-digit fraction of transactions. We

further discuss and evaluate this example in Section 5.8.

Another example of access locality is peer-to-peer financial transactions. Sev-

eral studies of the popular peer-to-peer mobile payment system Venmo [212,

225] show that transactions mainly occur among groups of friends and that

the transaction graph exhibits a greater local clustering than Facebook and

Twitter graphs. Moreover, as noted by Unger et al. [212], the network remains

largely consistent across studies, indicating slow temporal changes in the in-

teraction graph. We study this case using publicly available data from a recent

Venmo study [190] and evaluate it on a popular financial transaction benchmark,

Smallbank [34] (discussed in Section 5.8).

The optimal sharding may also change due to a shift in object popularity. One

example of this can be found in the Voter benchmark [55], which we also

evaluate in Section 5.8. In a long-lasting online public contest (e.g., Eurovision),

many users vote for a few contestants. The optimal sharding should spread

the load evenly and would ideally put each of the most popular contestants

on a separate server while potentially grouping the least popular contestants

together on a single server. However, the popularity of each contestant changes

over time, and as she receives more or fewer votes, the optimal sharding

changes, as well. As in the previous example, each transaction involves only

a few objects (a voter and a contestant), and the frequency of change in the

optimal sharding is much lower than the frequency of the voting transactions.

Another example is the stock exchange. Between 40% and 60% of the volume

on the New York Stock Exchange occurs on just 40 out of 4000 stocks [206].

Stock popularity changes at the granularity of hours or days, whereas daily

trading volume is on the order of 5–10 billion shares [164]. Thus, while trans-

action volume is high, the change in popularity is slow. Similar to the case of
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handovers, re-sharding will need to happen but relatively infrequently.

Existing works [51, 61, 122, 162, 194, 206] propose dynamic sharding to adapt

to these kinds of changes. However, their datastore designs that support

re-sharding and provide strong consistency operate at a sub-Mtps throughput.

For instance, Squall [61] and Rococo [162] report up to 100 Ktps per server

and Rocksteady [122] up to 700 Ktps per server.

Meanwhile, the state-of-the-art reliable in-memory datastores (e.g., FaRM,

FaSST) reach millions of tps per node but have limited support for changes in

locality. For instance, FaRM only supports static location hints. If the access

locality changes, both FaRM and FaSST must execute remote transactions.

Some domain-specific datastores have been built that exploit locality, but they

do not meet all design objectives. For example, S6 [221] does not provide

replication (a must for availability), while FTMB [198] runs on only one node and

replicates on disk. Overall, to the best of our knowledge, there is no in-memory

datastore that meets all our design objectives and effectively exploits locality.

5.3 Zeus design

We start this section by outlining the Zeus datastore’s system architecture. We

then present a high-level overview of the core of Zeus: a pair of protocols that

exploit locality for high-performance transaction processing with fault tolerance,

strong consistency, and programmability.

5.3.1 System architecture

Zeus exploits request locality and uses an application-level load balancer to

enforce it. External requests issued to Zeus are routed through a load balancer.

The load balancer can extract the application level information, locate relevant

object keys, and always forwards requests with the same set of keys to the

same server. Application-level load balancers are not a new concept. Several

previous systems have demonstrated such load balancers [3, 8, 11, 167]. We

implement a simple load balancer using a distributed, replicated key-value store
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based on Hermes. We extract a key from each request and look it up in the

key-value store. If it is not found, we pick a destination Zeus node at random,

store it in the load balancer’s key-value store, and forward the request. If the

key is found, we forward the request to the corresponding destination.

Zeus considers a partially synchronous model with crash-stop node failures

and network faults, including message losses (as described in Section 2.1.2). It

implements a reliable messaging library with low-level retransmission to recover

lost messages. Similar to Hermes, it uses a reliable membership with leases to

deal with the uncertainty of detecting node failures. Each membership update

is tagged with a monotonically increasing epoch ID and is performed across

the deployment only after all node leases have expired. For data reliability,

Zeus maintains replicas of each object. The replication degree is configurable;

however, the higher the degree of replication, the greater the CPU and network

overhead, and the lower the throughput of transactions that modify the state.

5.3.2 Overview of protocols

Zeus is efficient in executing distributed transactions by forcing them to become

local. At the heart of Zeus are two separate, loosely-connected reliable proto-

cols. One is the ownership protocol responsible for the on-demand migration

of the object data from one server to another and for changing the access

rights (read or write) of servers storing the replica of an object. The other one

is the reliable commit protocol for committing the updates performed during a

transaction to the replicas. As these two protocols are only loosely connected,

they can be independently optimized, verified, and tested.

Zeus, inspired by hardware transactional memory [93], executes and commits

each transaction locally on a server designated to be the coordinator for that

transaction. When executing a transaction, the coordinator must secure the

appropriate ownership level for each object involved in the transaction. This is

the task of the ownership protocol. Once the coordinator acquires the required

ownership levels and finishes execution, it commits the transaction locally. Sub-

sequently, it copies the state of modified objects to backup servers, also called

followers. The latter is the task of the reliable commit protocol. Crucially, the
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Figure 5.1 Locality-aware distributed transactions in Zeus.

ownership protocol is invoked only the first time a node accesses an object.

Subsequent transactions proceed without invoking it until another node takes

over the ownership (i.e., the locality changes).

At a high level, a transaction in Zeus is carried out through the following three

steps (also shown in Figure 5.1):

1. Prepare & Execute: When the coordinator executes a transaction, it verifies

prior to accessing an object that it holds the appropriate ownership level

(read or write) for that object. If not, it acquires the appropriate ownership

level via the ownership protocol (described in Section 5.4) and continues

execution. Before performing its first update to an object, the coordinator

creates a local private (to the transaction) copy of the object. This private

copy is then used for all accesses of the transaction to the object.

2. Local Commit: The coordinator attempts to serialize the transaction locally

via a single-node commit. This commit is local and unreliable but does not

yet expose any updated values to other servers. We implement a simple

multi-threaded local commit that resolves contention across threads using a

simplified, local version of the ownership protocol (detailed in Section 5.7).

3. Reliable Commit: If the local commit is successful, the coordinator pushes

all updates to the followers for data reliability. In case the coordinator fails

in the middle of this process, the followers recover by safely replaying any

pending reliable commit of the failed coordinator. Both backup and recovery

are performed by the reliable commit protocol (detailed in Section 5.5).

Zeus allows only a single server to modify an object at any given time. This
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server is called the owner and is the only node able to use the object to execute

write transactions (i.e., transactions that modify at least one object). Each object

is replicated on one or more backup servers. These backups are active and are

called the readers of the object; they can perform read-only transactions but

not write transactions using the object.1 Only the owner and the readers store

the content of the object. The owner (as a coordinator of write transactions)

updates all readers during the reliable commit phase. A user can specify and

dynamically change the number of readers (i.e., replicas) of each object, making

a trade-off between reliability and replication overhead.

Zeus avoids the conventional distributed commit protocols [159, 201], which

are complex [23] because they need to deal with distributed conflict resolution

and the uncertainty of commit or abort after faults. Zeus sidesteps these

challenges through a simple invariant: an initiated reliable commit is idempotent

and cannot be aborted by remote participants. This is accomplished via the

exclusive write access of the coordinator and the use of idempotent invalidations

(Section 5.5.1), which are sent to all of the remote participants at the start of

the reliable commit. In the case of a fault, any of the participants can replay the

invalidation message, which contains enough data to complete the transaction.

Zeus further introduces two key optimizations. First, it supports efficient, strictly

serializable read-only transactions. Any node that is a reader of all objects

involved in a read-only transaction is able to execute that transaction without

invoking the ownership protocol. A read-only transaction does not require

a reliable commit phase; as such, it is lightweight and incurs no network

traffic. The consistency of read-only transactions is enforced through

invalidation messages, as a read-only transaction cannot execute on an object

that is invalidated.

Second, a transaction coordinator in Zeus pipelines local execution and commit

with the reliable commit, as shown in Figure 5.2. This is possible because no

other server can update the objects at the same time. The latter is guaranteed

by the ownership protocol, which ensures that only one node (the current owner)

can modify an object. It is thus safe for the coordinator to keep modifying the

same object without waiting for the reliable commit to finish. As a consequence,

1Note that a reader is per object, whereas a follower is per transaction (potentially spanning
multiple objects).
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Figure 5.2 Zeus’ pipelined execution of transactions for objects X and Y on the

same coordinator (labels in boxes are the same as in Figure 5.1).

any local transactions to objects for which permissions have already been

acquired will not block the application execution.

We also note that, in order to simplify application portability, we made a con-

scious design trade-off in making the ownership protocol blocking and Zeus

transactions (the most frequent operations) non-blocking. In other words, the

application thread stalls when executing an ownership request (phase 1(a) in

Figure 5.1). This design is justified because ownership requests are much less

frequent than transactions, as discussed in Section 5.2. It would be straight-

forward to improve the performance of the ownership protocol, e.g., via a user-

mode thread scheduling framework, as in [111]. However, doing so would

increase the burden on the developer and likely require re-architecting the ap-

plication, thus invalidating a key design requirement, as laid out in Section 5.2.

Finally, we specified Zeus ownership and Zeus reliable commit in TLA+ and

model-checked them. The details are provided in Section 5.8.

5.4 Zeus ownership

The reliable ownership atomically alters object access rights and transfers

content between nodes. We start by introducing the main terminology used in

the protocol. We then overview its operation without faults and contention, and

follow by discussing these other cases.

Access levels, directory, and metadata. A node can be the owner, a reader,
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directory owner reader(s) non-replica

data 3 3

ownership metadata 3 3

ownership levels - w/r r -

Table 5.1 Object data and metadata stored by each node along with their read

(r) and exclusive write (w) access permissions.

or a non-replica of an object. Each object has at most one owner at any given

time, which has exclusive write and (non-exclusive) read access to it. An object

can also have several other readers with read access. Both the owner and the

readers store a replica of the object. A non-replica node has neither the access

rights nor the data for the object.

Zeus maintains an ownership directory that stores ownership metadata about

each object. This directory is replicated across three nodes for reliability (even if

a Zeus deployment has more nodes). The nodes that store directory information

are called the directory nodes.

The directory stores the following metadata for an object:

• o_state: the ownership state of the object, which can be Valid, Invalid,

Request, or Drive;

• o_ts = <obj_ver, node_id>: the ownership timestamp, which is a tuple of a

monotonically-increasing number and a node ID; and

• o_replicas: a bit vector that denotes all nodes storing a replica of the object

and their access rights (i.e., the owner and readers).

These ownership metadata are also stored by each object’s owner node. A

summary of the above is given in Table 5.1.

5.4.1 Reliable ownership protocol

Failure- and contention-free operation. An ownership request is illustrated

at the top of Figure 5.3. The coordinator that starts a request is called a

requester node. The requester assigns a locally unique request ID to the

request (to be able to match the response) and sets the object’s local o_state =
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Request. It then sends a request (REQ) message with the request ID to an

arbitrarily chosen directory node, and this node becomes the driver of the

request. The directory nodes and the object owner help arbitrate concurrent

ownership requests to the same object and are called arbiters.

Upon receipt of a REQ message, the driver assigns an ownership timestamp

o_ts to the object and sets its local state to o_state = Drive 1 . It also sends

an Invalidation (INV) message containing both the request ID and ownership

metadata to the remaining arbiters (including the current owner) 2 . Assuming

no contention over the ownership of the object, each arbiter sets the object’s

local state to o_state = Invalid, updates its local o_ts and o_replicas, and

responds directly to the requester with an ACK message. Note that we optimize

the ownership latency by sending the responses directly to the requester rather

than passing them through the driver. If the requester is a non-replica and does

not have the data of the object, the current owner includes the data in her ACK.

When the requester receives all expected ACK messages, it applies its request

locally before responding to all arbiters with a Validation (VAL) message 3 . To

apply the request, it updates the o_replicas to specify itself as the new owner

and sets its object’s local o_state = Valid. Finally, upon reception of the VAL

message, each arbiter applies the request in the same way, and the request is

finished 4 .

Notice that, to keep o_replicas consistent with the replica placement and the

access levels of the object, the requester must apply the request before any of

the arbiters does. Moreover, once the requester receives all the ACK messages,

it unblocks the application. The application thus resumes its transaction after

1.5 round-trips, as shown in the top part of Figure 5.3.

Contention resolution. Zeus ownership uses the o_ts timestamp to resolve

contending requests. Multiple nodes may concurrently issue an ownership

request for the same object through different drivers. Each driver creates a

per-object unique timestamp for the request o_ts = <obj_ver + 1, node_id>

using its previous local obj_ver and own node_id 1 . In case of contention,

a driver of one of the contending requests will receive an INV message of

another contending request (for the same object) 2 . It will only process the

INV message if the o_ts in the message is lexicographically larger than its own
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Figure 5.3 Zeus ownership protocol with and without faults.

o_ts for the object. This guarantees that there is one and only one winner of

each contention. All the drivers whose requests fail send a NACK message to

their requesters. Similarly, the owner responds directly to the requester with

a NACK message if the requested object is involved in a pending transaction

(Section 5.5). Upon receiving a NACK, the requester either aborts its ownership

request or retries it at a later point.

Failure recovery. The failure recovery procedure starts when the reliable

membership is updated after fault detection and the expiration of leases. Each

live directory node (and the live owners) update their o_replicas to remove

any non-live nodes. The objects whose owners have died will be taken over by

a new owner on the next write transaction. After the membership update, which

increases the epoch ID (e_id), requests from previous epochs are ignored.

This is achieved by including the e_id of the current epoch in the INV and ACK

messages. The requester and arbiters ignore these types of messages when

their e_ids differ from their local ones.

A node fault followed by a membership update can leave the arbiters of a
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pending ownership request in an Invalid o_state. Nevertheless, any arbiter

has all the necessary information to replay the idempotent arbitration phase

of the ownership request (termed arb-replay) between the live arbiters and

unblock. A blocked arbiter acts as the request driver and initiates an arb-replay

by constructing and transmitting the same INV message using its local state.

During arb-replays, some arbiter may receive an INV message for a request it

has already applied locally (with the same o_ts). In this case, the arbiter simply

responds with an ACK. A basic recovery path from an owner failure is illustrated

at the bottom of Figure 5.3.

Note that, in the recovery process, the arbitration phase of an ownership request

is finalized with ACK messages sent from the arbiters to the driver instead of

the requester, as shown in Figure 5.3. This is done in order to have a single

recovery process that covers the failures of all nodes, including the requester.

If the requester is not live, the driver directly sends VAL messages to unblock

the other live arbiters. Otherwise, for safety reasons – as in the failure-free

case – the requester must be the first to apply the request. To achieve this, we

introduce a new RESP message which confirms the win of the arbitration to the

requester, who can then apply the request prior to sending VAL messages to

the live arbiters, as before.

5.4.2 Fast scalable ownership

The Zeus ownership protocol is scalable since (1) it does not store directory

metadata for each object at every transactional node and (2) it does not broad-

cast to every transactional node to locate an object’s owner. The Zeus owner-

ship protocol has a latency of at most 3 hops (without faults and contention) to

reliably acquire the ownership, regardless of the node requesting the owner-

ship. We believe this to be the lowest possible latency for a scalable ownership

protocol. The worst-case latency is incurred when an ownership request orig-

inates from a non-replica node where neither the owner nor the requester is

co-located with the object’s directory metadata. To proceed in this case, the

requester must receive the latest value of the object. In order to locate the ob-

ject, the requester should first contact the directory. The directory forwards the

request to the owner, which in turn sends the value to the requester, resulting
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in 3 hops. Note that if the requester is co-located with a directory replica, the

first hop is eliminated, and the ownership is acquired after just one round-trip

(2 hops) to the owner.

5.5 Zeus reliable commit

The Zeus reliable commit protocol is responsible for propagating the updates

made by a local transaction to all followers (illustrated in Figure 5.4). For clarity,

we begin by describing the information maintained by the protocol. We next

overview the operation without faults and then discuss the case with failures.

Finally, we present two optimizations: pipelining and local read-only transac-

tions from all replicas.

(Meta)data. Each replica (i.e., the owner and readers) keeps the following

information for an object:

• t_state: the state of the object, which can be Valid, Invalid or Write;

• t_version: the version of the object, which is incremented on every transac-

tion that modifies the object; and

• t_data: the data of the object stored by the application.

For every transaction, at the beginning of the reliable commit, the coordinator

generates a unique tx_id = <local_tx_id, node_id>, where node_id is its

own ID and local_tx_id is a locally unique, monotonically-increasing transac-

tion ID.

5.5.1 Reliable commit protocol

Failure-free operation. At the end of the Local Commit phase, the transaction

coordinator updates the t_data of all modified objects with its private copies cre-

ated during the Prepare & Execute phase. It also increments their t_versions

and sets t_state = Write — for the pending reliable commit.

At the beginning of the Reliable Commit phase, the coordinator broadcasts an
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Figure 5.4 Zeus reliable commit protocol and its messages.

Invalidation (R-INV) message to all followers. As shown at the bottom of Fig-

ure 5.4, this message contains the tx_id, the current e_id, and the node_ids

of all followers. For each updated object, it also contains the new t_version

and t_data. The coordinator temporarily stores the R-INV message locally.

Upon receiving an R-INV message, a follower checks whether the received and

local e_id match. If not, the message is ignored. If they match, the follower

goes through each updated object and compares its local t_versions with that

of the message. In the case that an object’s local version is greater than or

equal to the object version in the message, the follower skips the update of that

object. Otherwise, it updates the local t_data (the actual content of the object)

and t_version with their new counterparts from the message and sets its local

t_state = Invalid — denoting that the object has a pending reliable commit.

A follower then responds to the coordinator with an R-ACK message containing

the same tx_id and temporarily stores the R-INV.

Once the coordinator receives R-ACKs from all the followers, it reliably commits

the transaction locally by changing the t_state of each updated object to

Valid. Subsequently, the coordinator broadcasts a Validation (R-VAL) message

containing the tx_id to all followers and discards the previously-stored R-INV
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Figure 5.5 Zeus’ per-node (in reality, per-thread; see Section 5.7) pipelines.

message of the transaction. When a follower receives an R-VAL message for

which it has already stored an R-INV message (with the same tx_id), it sets the

t_state of all objects previously updated by the transaction to Valid if and only

if their t_version has not been increased. It then discards the stored R-INV

message.

Reliable replay under failures. A node failure triggers a membership recon-

figuration wherein the epoch ID (e_id) is increased and the set of live nodes

is updated. Subsequently, the ownership protocol temporarily stops accepting

requests for objects whose owner node is not live in the current membership.

At this point, each locally stored R-INV message on any live node represents

a pending transaction in the Reliable Commit phase. A live node replays its

own pending reliable commits as well as those from the failed nodes. This is

accomplished by first updating the local pending R-INV messages (issued or

received) with the new e_id and removing all non-live nodes from followers.

The messages are then re-sent and handled as explained before. A follower

who receives an R-INV message with the latest e_id for a transaction that

it has previously stored locally (i.e., with the same tx_id) simply ignores its

content and responds with an R-ACK. Although multiple nodes may replay the

reliable commit phase of the same transaction, all relevant R-INV messages

are idempotent, containing the same tx_id (and t_versions), so the only one

can apply updates.

When a node has no more pending reliable commits (R-INV messages) from

nodes that are not live, it informs the ownership protocol that it has finished the

recovery (Section 5.4). Once all live nodes finish the recovery, the ownership

protocol again starts to accept all ownership requests as normal.
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5.5.2 Non-blocking transaction pipelining

We further introduce transaction pipelining to avoid blocking the application at

the coordinator during replication (illustrated in Figure 5.2). This is possible

because a locally (unreliably) committed transaction at the coordinator cannot

be aborted. Thus, the coordinator can proceed using its locally committed

values with certainty.

However, Zeus also needs to maintain strict serializability on each follower

replica. Thus, followers must respect the pipeline order of the coordinators when

applying updates. For this, Zeus uses tx_id = <local_tx_id, node_id>, which

is transmitted in every R-INV message and contains both the local transaction

order within the node local_tx_id and the node_id. As a result, although

there could be several pending and causally related reliable commits, all will be

applied in the correct order as specified by the local_tx_id.

Note that the ordering is enforced only within each different pipeline, as shown in

Figure 5.5. This is because an object’s owner change (i.e., when an

object switches pipelines) is not approved until all pending reliable commits

with that object have been completed (Section 5.4). Thus, an object cannot

be involved in pending transactions from two different coordinator nodes, and

the ordering across coordinators is irrelevant. We further optimize this by

enabling per-thread (rather than per-node) pipelines via our choice of local

commit, as explained in Section 5.7. The pipelining optimization also reduces

the number of R-ACK and R-VAL messages, since sending a message with a

tx_id implies the successful reception and processing of all previous messages

in that pipeline.

A node may not be a follower of all R-INVs and thus may receive only a partial

stream of a pipeline. An extra condition is needed for when such followers can

apply an R-INV. A follower applies an R-INV if for the previous local_tx_id

(slot) of the pipeline it has either applied an R-INV or has received an R-VAL.

The latter occurs for a transaction follower F who was not also a follower of

the previous slot in the pipeline. To facilitate this, during the broadcast of an

R-INV, the coordinator piggybacks a prev-VAL bit if it has broadcasted R-VALs

for the previous slot. Otherwise, it includes F in the R-VAL broadcast of the
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Figure 5.6 Zeus’ consistent read-only transactions on readers.

previous slot. Finally, after a coordinator’s failure, an R-INV is considered a

pending reliable commit and is replayed by a follower if and only if that follower

has not only received but also applied the R-INV message.

5.5.3 Read-only transactions

Zeus optimizes read-only transactions by allowing them to be executed locally

from any replica that stores all relevant objects, regardless of the ownership

level (read or write) and without compromising strict serializability. This is

enabled by three factors. First, read-only transactions do not need to com-

municate any updates to other replicas. Second, a verification-based scheme

can be applied to exploit the local object versioning and ensure a consistent

snapshot across all reads of a read-only transaction. Third, the reliable commit

guarantees that all replicas are invalidated before any updated state is exposed

externally by the readers. We elaborate on the latter before discussing the

read-only protocol.

Invalidation-based reliable commit. A locally committed write transaction

does not reliably commit on the owner unless it has invalidated all its followers

(i.e., the readers of modified objects). As noted previously, a reader that applies

an invalidation to its local object also updates its object’s local value with the

newly received value. Thus, it can return neither the old nor the new value, as

the object has been invalidated. The reader can return the new value only after

it receives the R-VAL message and validates its local object.

Simply put, there is a transitioning period until a reader can safely return the

new value. That period ends once all readers of a modified object have stopped
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returning the old value and have received the new one. If a reader was set to

prematurely return the new value (i.e., prior to receiving the R-VAL message

and before the end of that period), two problems could arise. First, another

reader who has not yet invalidated the object could subsequently return the

old value and compromise consistency. Second, if all nodes that had received

the new (not yet reliably committed) value were to fail,2 then the prematurely

returned value would be permanently lost.

Read-only protocol. Consequently, in Zeus, a read-only transaction com-

pletes after only two phases, as shown in Figure 5.6 and described next. In

the Prepare & Execute phase, the coordinator of a read-only transaction se-

quentially reads and buffers the t_version and the value (t_data) of each local

object as specified by the transaction. In the Local Commit phase, the coordina-

tor checks whether all accessed objects are in t_state = Valid before verifying

that all t_versions have remained the same. If yes, the transaction commits

successfully. Otherwise, there is an ongoing conflicting (local or remote) reliable

commit, and the read-only transaction is aborted or optionally retried.

Use case. Apart from the obvious performance benefits, one example where

the read-only optimization is useful is control/data-plane applications, such

as cellular network applications. There, write transactions are executed by

a control-plane node (the Zeus owner) – for instance, to configure routing –

while all data-plane nodes (i.e., Zeus readers) can perform consistent read-only

transactions locally (e.g., for forwarding).

5.6 Discussion

5.6.1 Distributed commit vs. Zeus

Traditional datastores statically shard objects and execute reliable transactions

in a distributed manner across servers. This poses two challenges. The first

is accessing the objects. Static sharding schemes do not guarantee that all

objects accessed by a transaction will reside on the same node. Frequently,

2That is a smaller number of nodes than the replication degree.
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one or more objects in a transaction are stored remotely. In such cases, the

execution stalls until the objects are fetched, sometimes sequentially (e.g., for

pointer chasing or control flow).

The second challenge is handling concurrent transactions on conflicting objects.

If two nodes attempt to simultaneously commit transactions on conflicting ob-

jects, one of them has to abort. Detecting and handling these conflicts under

the uncertainty of faults requires extra signaling across nodes. Thus, transac-

tional systems based on distributed commit necessitate numerous round-trips

to commit each transaction (e.g., see FaSST). Moreover, a node cannot start

the next transaction on the same set of objects until the commit is finished, as

it cannot be sure that it will not need to abort. This introduces several round-

trips of delay in the critical path of the commit and significantly reduces the

transactional throughput.

Zeus replaces remote accesses and distributed commit with its (occasional)

ownership, local accesses, and reliable commit to address the two main issues

mentioned above and accelerate workloads with locality. First, the ownership

makes objects accessed by a transaction accessible locally most of the time,

which avoids stalls during the execution. Second, only a single node (the

owner) can execute a write transaction on an object at a given time. Therefore,

a transaction cannot be aborted remotely, commits after a single round-trip, and

is pipelined. Zeus reliable commit also affords local and consistent read-only

transactions from all replicas.

Unlike distributed commit, the Zeus ownership protocol is specialized for single-

object atomic operations (including migration). Zeus resolves concurrent

ownership requests in a decentralized way and applies an idempotent scheme

to tolerate faults without extra overhead in the common failure-free case. This

makes acquiring ownership reliable yet fast (1.5 round-trips) during fault-free

operation.

5.6.2 Further details

Cost of ownership vs. remote access. The object size influences the cost

of acquiring ownership for it by a non-replica node similarly to a remote access,
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since in the fault-free case the value is included in a single ownership message,

as in the response of a remote access. A reader acquires the ownership without

the value and thus is not influenced by its size. The reliability of Zeus ownership

comes with a higher message cost compared to a remote access. These are

small constant messages whose cost is amortized over several local accesses

in workloads with locality. Nevertheless, for workloads without sufficient locality,

that cost renders Zeus less suitable than remote accesses and distributed

commit.

Deadlocks. Zeus currently circumvents deadlocks via a simple backoff mech-

anism. For Zeus, such a situation may arise only early in a transaction (i.e., in

the Prepare & Execute phase) – when requesting ownership for an object. This

manifests with repeated failed ownership requests, after which Zeus aborts and

retries a transaction with an exponential backoff. In practice, deadlocks in Zeus

are rare because transactions on the same object are mostly executed on the

same server by virtue of load balancing. For deployments where this is not the

case, a more sophisticated scheme such as that proposed by Lin et al. [143]

may be considered.

Distributed directory. For simplicity, Zeus uses a single directory for all

objects in the deployment. The directory is replicated for fault tolerance, and the

ownership protocol is lightweight and is designed to balance the load across

all directory replicas. However, a single replicated directory may become a

scalability bottleneck at large deployment sizes or when locality is limited. In

such cases, a distributed directory scheme (i.e., one using consistent hashing

on an object to determine its directory nodes) should be used instead.

Sharding request types. Zeus exploits the ownership protocol for other types

of sharding requests, such as reliably removing a reader. For example, when

a non-replica acquires the ownership of an object, the total number of replicas

increases. To maintain the initial replication degree and avoid increasing the

cost of reliable commits, we invoke the ownership protocol out of the critical

path to discard a reader.

Write transactions with opacity. Apart from strict serializability, Zeus

provides an additional guarantee that all write transactions will see a consis-
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tent snapshot of the database, even if they abort. This is also referred to as

opacity [83]. Opacity further enhances Zeus’ programmability; by preventing

inconsistent accesses in write transactions, it relieves the programmer from the

effort of handling those cases.

5.7 System

We built a custom in-memory datastore and implemented the Zeus protocols

on top of it. In this section, we briefly discuss the details of the implementation.

An application communicates with the datastore through a transactional mem-

ory API (summarized in Figure 5.7), which consists of a traditional key-value

interface and primitives to create and manage memory objects of different

sizes. The latter includes implementations of malloc to create an object, free

to destroy an object, and tr_read (tr_write) for marking an object as used in

a transaction for reading (writing). Each transaction starts with a create trans-

action call tr_create, followed by an arbitrary code that can invoke the above

APIs, and finishes with tr_commit (or tr_abort), at which point the local commit

starts (aborts). This is a low-level API very similar to the one used by FaRM,

and it allows for great flexibility in building further abstractions on top of it.

The datastore is implemented in C over DPDK and consists of two parts. The

first is the datastore module, which runs as a separate process implementing

the main datastore functionality. The other part is the Zeus library, which is

linked to any application over shared memory without limiting its architecture

(e.g., can be a separate process, a VM, or a container).

The datastore module implements the transactional memory API as well as

the Zeus protocols. Zeus nodes communicate with each other using a custom

reliable messaging library we built on top of DPDK. The datastore module

also includes a customizable, application-aware load balancing functionality, as

described in Section 5.3.

Both the application and datastore modules can run in multiple threads. In the

evaluation, we use up to 10 application and 10 datastore worker threads. These

threads are pinned to their own cores. We also use one core for DPDK.
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trans* tr_create(bool is_read_only );

void tr_abort (trans* t);

void tr_commit(trans* t);

tr_addr tr_malloc(trans* t, int size);

void tr_free (trans* t, tr_addr addr);

void* tr_read (trans* t, tr_addr addr , int size);

void* tr_write (trans* t, tr_addr addr , int size);

int tr_del(trans* t, void* key , int len);

int tr_get(trans* t, void* key , int len , void* val);

int tr_set(trans* t, void* key , int len , void* val , int vlen);

Figure 5.7 Zeus transactional API.

We implement a simple multi-threaded Local Commit (Section 5.3) using the

same intuition as for the overall Zeus. Each thread that executes a transaction

needs to become the owner of each object. However, this ownership is local

and is managed through standard locking. We leverage the aforementioned

load balancer to enforce locality across the threads and increase concurrency.

Apart from simplicity, this also enables transaction pipelining to be applied on a

per-thread basis, which increases the overall concurrency of reliable commits.

Currently, porting an application to Zeus requires manual code modification

on pointer accesses, similar to prior work (e.g., FaRM). However, this can be

automatized at a compiler level, as performed by Sherry et al. [198].

5.8 Evaluation

Formal verification. We specified the ownership protocol and the reliable

commit of Zeus in TLA+ and model-checked them in the presence of crash-stop

failures, message reordering and duplication. We verified them against several

key invariants, including the following:

• Live nodes3 in t_state = Valid store the latest reliably committed value.

3By construction, non-live nodes cannot compromise safety, as e_ids prevent them from
participating in either transaction or ownership requests.
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• All live arbiters in o_state = Valid agree and correctly reflect the owner and

reader nodes of the object.

• At any given time, there is at most one owner, who stores the most up-to-date

value of the object.

The detailed protocol specifications and the complete list of model-checked

invariants can be found online.4 Appendix A dives deeper into these invariants

and informally sketches why the protocol provides strict serializability.

Locality in workloads. We begin by briefly analyzing the locality of access

patterns in workloads. For this, we report the fraction of remote transactions of

three workloads spanning the telecommunications, financial, and trade sectors.

• Boston cellular handovers: As explained in Section 5.2, in a cellular

workload, remote transactions are caused by remote handovers. To evaluate

the real-world frequency of remote handovers, we use the population and

mobility model from the Boston metropolitan area [36] with the reported aver-

age daily commute of 100km. We assume that base stations are uniformly

spread throughout the area at a distance of 1km, with a typical coverage of

a macro cell [102] and a common ratio of cells per population [158]. These

are sharded across all nodes in a deployment. As the number of nodes

increases, the percentage of remote handovers also increases, up to 6.2%

for six nodes. In summary, for a setup in which 5% of all transactions are

handovers and out of these 6.2% of handovers are remote (in a six-node

deployment), there are in total 0.31% remote transactions.

• Venmo transactions: We use the most recent public Venmo dataset [190],

which contains more than seven million financial transactions, to analyze

the fraction of remote transactions. We partition the users to nodes but still

observe that 0.7% and 1.2% of remote transactions are remote for 3 and 6

nodes, respectively.

• TPC-C: We mathematically analyze the number of remote transactions in

the TPC-C benchmark, which is considered representative for industries that

trade products. In TPC-C, only a small fraction of new-order and payment

transactions may result in remote accesses. We find that only 2.45% of the

4https://zeus-protocol.com

https://zeus-protocol.com/
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characteristic tables columns txs read txs

Handovers large contexts 5 36 4 0%

Smallbank write intensive 3 6 6 15%

TATP read intensive 4 51 7 80%

Voters popularity skew 3 9 1 0%

Table 5.2 Summary of evaluated benchmarks.

transactions in the benchmark are remote.

We empirically evaluate benchmarks related to cellular and financial transac-

tions (i.e., Handovers and Smallbank). While promising in terms of locality,

we leave the experimental evaluation of TPC-C for future work, as our current

implementation of Zeus does not support range queries.

Experimental testbed. We run all of our experiments on a dedicated cluster

with six servers. Each server has a dual-socket Intel Xeon Skylake 8168 with

24 cores per socket, running at 2.7GHz, 192 GB of DDR4 memory, and a

Mellanox CX3 network card. We use and pin all our threads into the first socket

only, where the network card resides. All servers communicate through a Dell

S6100-ON switch with 40 Gbps links.

We first evaluate Zeus on several benchmarks (summarized in Table 5.2),

including the three benchmarks discussed in Section 5.2 and the TATP bench-

mark [165], to further study Zeus’ limits in comparison with FaSST and FaRM.

For benchmarks, as in prior work [111], we consider three-way replication and

enough co-located clients to saturate each evaluated system. The initial shard-

ing of all systems is the same. Unlike Zeus, baselines do not support dynamic

sharding (i.e., ownership). We were not able to run the baseline systems FaRM,

FaSST and DrTM on our platform. However, as the hardware used in their

evaluations is similar, we report the numbers from their papers [56, 111, 220].

We conclude by demonstrating the ease of porting legacy applications onto

Zeus by porting and evaluating a cellular packet gateway, an Nginx server, and

the SCTP protocol.
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Figure 5.8 All-local vs. Zeus for 2.5% and 5% handovers on 3 and 6 nodes.

5.8.1 Handovers

We start our evaluation with a cellular handovers benchmark. We evaluate three

operations described in Section 5.2: a handover (consists of two transactions,

one at the start and one at the end), a service request and a release (each a

single transaction). We implement them as defined in the 3GPP specification on

top of Zeus. All transactions are write transactions. The typical cellular phone

context for these operations is large and many parts of it are modified, so we

need to commit about 400B of data per transaction.

Recall that mobile users perform both handovers and all other requests, while

stationary users only perform other requests (i.e., no handovers). In our eval-

uation, we vary the ratios of the total number of handovers versus the total

number of requests (handovers, service requests, and releases), each model-

ing different mobility speeds in the network. A typical cellular network has 2.5%

handovers [158]. We also evaluate the case of 5% handovers, corresponding

to doubling the mobility.

We run a benchmark on a population of 2M users, of whom 400k are mobile.

We use the typical cell network provisioning as reported in [158, 186], scaled to

2M users (requiring 1000 base stations). Not all handovers involve ownership

transfers because some occur between objects of the same node. For the

ratio of remote handovers, we use the numbers we analyzed from the Boston

metropolitan area.

In our evaluation, we vary the number of nodes in the system and plot the
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Figure 5.9 Smallbank performance while varying remote write transactions.

total throughput for the two ratios as well as for all-local transactions (shown in

Figure 5.8). The difference between Zeus and the perfect sharding is at most

9%. This is because a large fraction of the transactions is local, and we have

less than 0.5% ownership requests. We also see that the performance scales

linearly with the number of nodes, even though there are more transactions

with ownership transfers for a larger number of nodes. Lastly, we note that

prior works have not studied the handover benchmark; as such, there are no

published numbers for state-of-the-art systems to compare against.

5.8.2 Smallbank

Smallbank is a benchmark that simulates financial transactions [34]. It is write

intensive, with 85% write transactions. Of these, 30% modify two objects, and

the rest modify three or more objects per transaction. All read transactions

access three objects. We use the same access skew on objects as in FaSST.

Smallbank does not specify which pairs of users transact with each other and

hence cannot be used to infer real-world transaction locality. To understand

how much the degree of locality affects Zeus, we increase the number of

transactions that require an ownership change until Zeus breaks even with the

baselines (shown in Figure 5.9). We find that, when running Smallbank with

the real-world remote transactions, as observed in Venmo, Zeus outperforms

FaSST and DrTM by about 35% and 100%, respectively. Recall that neither

FaSST nor DrTM support dynamic sharding, so any gradual change in access
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Figure 5.10 TATP performance while varying remote write transactions.

pattern will eventually lead to an almost random placement and most requests

being remote, which is what we show here. As expected, Zeus’ throughput

drops as remote transactions increase and the trend remains the same between

three and six nodes. As long as less than 5% (20%) of transactions require

ownership change, Zeus provides an advantage over FaSST (DrTM).

Reliable lower-end networking. Note that, unlike FaSST, Zeus implements

reliable messaging with its overheads. While this reduces Zeus’ performance,

it allows Zeus to gracefully tolerate message losses. In contrast, FaSST must

kill and recover a node for each lost message. Additionally, FaSST uses 56Gb

RDMA. DrTM similarly leverages 56Gb RDMA and relies on hardware transac-

tional primitives for performance. Zeus uses 40Gb non-RDMA networking and

does not depend on hardware-assisted transactions for performance.

5.8.3 TATP

Next, we evaluate the TATP benchmark [165], which provides a second point of

comparison with other state-of-the-art systems [57, 111]. It is read intensive,

with 80% read and 20% write transactions. We use 1M subscribers per server,

as in FaSST. Similar to the Smallbank benchmark, we vary the fraction of

transactions that require an ownership change. The total throughput is shown

in Figure 5.10. We see that when the fraction of remote requests is small, Zeus

outperforms FaSST and FaRM by up to 2× and 3.5×, respectively.
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Figure 5.11 Voter performance when moving 1M objects across nodes.

As discussed in the Smallbank study, neither FaRM nor FaSST allow dynamic

sharding, so they end up issuing remote requests whenever there is a chang-

ing access pattern. Zeus keeps the requests local by moving objects and is

especially effective for a read-dominant benchmark like TATP, since there is

little overhead on reads. In addition, as long as fewer than 20% (40%) of

write transactions need ownership requests, Zeus outperforms FaSST (FaRM).

Again, these thresholds are higher than in the case of Smallbank due to the

read-dominant workload. The performance trend of Zeus for three and six

nodes is the same as in Smallbank.

5.8.4 Voter

Voter is a benchmark that represents a phone voting system [55]. Using three

nodes, we simulate 20 contestants in a popularity show with 1M unique voters,

each identified by their phone number. Each voter can vote for one contestant

during one phone call, and there is a limit to how many times each voter may

vote per unit of time. Therefore, each phone voting operation updates two

objects: the total votes for a contestant and the voting history of the voter.

In this benchmark, we evaluate the ability of Zeus to move popular objects, as

discussed in Section 5.2. In the first experiment, we evaluate the performance

of the ownership transfer protocol in isolation. We have 1M voters that generate

4M transactions per second (in comparison, E-store [206] evaluates up to
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Figure 5.12 Voter performance when registering votes and moving objects.

200Ktps). At time 2s, we move all voter objects from node 1 to node 2, and at

time 7s, we move them again to node 3. The results are shown in Figure 5.11.

We see that the full move takes 4s, implying that a single worker thread (out of

10) can move 25k objects per second.

In the second experiment, we evaluate the performance of ownership transfers

concurrently with transaction processing. We have one very popular contestant

that has 100k voters voting for her, generating 700Ktps. All other voters vote for

other contestants and generate about 5.3Mtps in aggregate. In this experiment,

a single application and worker thread process the most popular contestant.

As in the previous experiment, at times 2s, 6s, and 10s, we begin to move the

object corresponding to the popular contestant to another node. The results are

shown in Figure 5.12. We see that the single worker thread still performs 25k

ownership requests per second (moving 100k objects in 4s) while, at the same

time, the rest of the system completes 5.3Mtps. This shows that concurrent

transactions do not impact the ownership performance.

Figure 5.13 shows the latency distribution of ownership transfer. This metric is

important because an application thread is stalled during an ownership trans-

fer, which allows for easy porting of applications. The mean latency and the

99.9th percentile are close during the first voter experiment (17 and 36 µs,

respectively). Under high load and while moving hot objects (during the second

experiment), the mean latency is slightly higher at 29 µs, and the 99.9th per-



136 Chapter 5. Zeus

0 20 40 60 80 100
Ownership Latency (us)

0

25

50

75

100

CD
F

Moving 1M voters
Moving 100K hot voters

Figure 5.13 CDF of Zeus ownership request latency for Voter experiments.

centile is 83 µs. This makes Zeus three times faster than Rocksteady5 [122] in

the 99.9th percentile, despite moving hot objects under load.

5.8.5 Legacy applications

One of the advantages of Zeus is the ease of porting existing applications.

Different applications assume different multi-threading or multi-process models,

with a different role for each thread (process). They also often have depen-

dencies on various external libraries and OS calls. FaRM, FaSST, and DrTM

need to wait on each remote access. To mitigate this latency, they assume

transaction multiplexing via custom user-mode threading (e.g., co-routines or

Boost user-threads in FaSST); however, this makes it difficult to integrate with

many legacy applications.

As explained in Section 5.3, Zeus takes a different approach. Since most

transactions are pipelined and do not block the application thread, there is

no need to re-architect a legacy application. Zeus only blocks the application

during ownership requests, which are infrequent.

In order to verify our claim regarding portability, we port and evaluate three

existing applications on top of Zeus: the control plane of a cellular packet

gateway, the SCTP transport protocol, and an Nginx web server.

Cellular packet gateway. A cellular packet gateway is a virtual network

5Evaluated in a similar setup with DPDK networking over 40Gb CX3 NICs.
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Figure 5.14 Cellular packet gateway control plane performance.

function in a cellular network that forwards all packets from mobile users. It

has a control and data plane. The control plane performs service request

and release operations, as described in the handover benchmark (but not the

handovers themselves). Each of these operations is one transaction. We use

the OpenEPCv8 [180] 4G implementation of the cellular core control plane.

We remove the legacy datastore and instrument every access to use Zeus.

We use a custom load generator to create test workloads with service and

release requests. We test the gateway without any datastore (i.e., all data in

local memory and no replication), using an off-the-shelf Redis datastore without

replication, and Zeus.

The results are shown in Figure 5.14. Requests to Redis are remote and, due

to the OpenEPC design, the application thread blocks on every request. Redis’

performance is thus lower than 10Ktps even without replication, which illustrates

the challenges due to blocking when porting existing applications. With a single

active node (and one passive replica), Zeus is as fast as the gateway with local

accesses and no replication. This is because the bottleneck is in parsing and

processing the signaling messages, not in the datastore access. When we

treat both nodes as active (i.e., as each other’s replicas), the throughput is 60%

higher. We are not able to scale beyond three nodes due to the limitations of

our signal generator, which cannot saturate more than two Zeus nodes.

SCTP transport protocol. SCTP is commonly used in the cellular control

plane to offer a degree of fault tolerance on network issues. For fault tolerance,
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Figure 5.15 SCTP performance.

SCTP natively supports multi-homing and is able to switch from one access

network to another in case of a network failure without dropping a connection.6

However, current SCTP implementations cannot survive a node failure, as the

connection state is not replicated. If an SCTP connection fails, all active users

drop calls.

To demonstrate Zeus’ efficiency and ability to support legacy applications, we

port an implementation of the SCTP protocol [205] to Zeus. Each packet trans-

mission, reception, and timer event is treated as a single transaction. Thus, any

node failure is perceived by its peers as a network loss and dealt with by the

protocol. We replicate both the internal SCTP state and its buffer queues. SCTP

uses standard BSD macros for basic data structures (e.g., lists, hash tables)

that are compatible with Zeus memory interfaces (described in Section 5.7).

Each pointer malloc, access, and free are converted to the Zeus equivalent. We

are able to keep the original SCTP design (timer, RX, and TX threads) because

we do not have to deal with thread blocking. In short, all operations are repli-

cated, including, for example, a socket write that stores a packet to a shared

queue. This approach does not necessarily provide optimal performance, but it

requires minimum effort and is the least error-prone way to port SCTP.

We use a standard iperf3 client to generate a single SCTP flow to a Zeus server

running SCTP. All state is replicated on another Zeus server. Figure 5.15

6A connection is typically referred as an association in SCTP parlance.
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Figure 5.16 Nginx performance in a scale-in/scale-out scenario.

shows the throughput of the single flow for different packet sizes. For large

packet sizes, Zeus is 40% slower than vanilla SCTP with no modifications. This

is because SCTP has a complex state that is modified for every packet and 6.8

KB of data must be replicated (note that we have not spent any time optimizing

state access and providing read-only accesses). The difference is greater for

smaller packets because the replication rate is higher. However, we argue that

this is acceptable for the control plane, where reliability is more important than

speed. We also note that Zeus’ pipelined transactions are important for the

SCTP case with a few flows because many consecutive transactions access

the same object and do not have to wait for the reliable commit of the previous

transaction (Section 5.5.2).

Nginx web server. Finally, we evaluate the session persistence routing

mode [166] of an Nginx web server on top of Zeus. In this mode, Nginx runs as

an application-layer load balancer. It looks up a specific cookie in an HTTP re-

quest and chooses an end destination based on its value. Session persistence

is not available in the open-source version of Nginx, so we implement our own

variant using the Zeus datastore. We store (and replicate) each cookie in a

Zeus-supported key-value store that is accessed by all servers to determine

subsequent request routing decisions. If the requested cookie is found in the

replicated datastore, we route the request to the destination stored in the entry.

If not, we randomly select one of the two HTTP back-end servers and store it in

the datastore (replicated over two nodes). The rest of the state is not replicated.
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For instance, we do not replicate the TCP state as an HTTP connection will

re-establish on a fault (i.e., a simpler failover mechanism than SCTP).

A client creates a number of requests for a single small HTTP page (the default

page of Nginx – 612B). Initially, all packet requests are processed by the same

Nginx server node using a single software thread affinitized to a core. We then

emulate a scale-out and a scale-in by adding and removing another server node

while spreading the load across all available nodes. The number of forwarded

HTTP requests processed by Nginx is shown in Figure 5.16. We see that the

Nginx’s performance with Zeus is the same as without Zeus, indicating that

the bottleneck is in the application and not the datastore. We also see that it

seamlessly scales in and out as the number of servers changes. Again, this

illustrates the ease of porting an existing legacy application to Zeus.

5.9 Related work

Modern transactional datastores. Recent works on in-memory distributed

transactions present distributed commit protocols that leverage modern

hardware to achieve good performance with strong consistency but do not fully

exploit locality [42, 56, 57, 111, 134, 219]. Some systems expose object locality,

which allows programmers to implement locality-aware optimizations [7, 56],

but, unlike Zeus, object relocation is costly and burdens the programmer.

Cheaper distributed transactions. There are also works that mitigate the

cost of distributed transactions but impose other constraints. For example, some

mandate determinism [96, 146, 188, 211] and are limited to non-interactive

transactions that require the read/write sets of all transactions to be known prior

to execution [189]. Others adopt epoch-based designs to amortize the cost of

commit across several transactions but at the cost of increasing the transaction

latency [50, 147, 148]. Unlike these, Zeus enhances programmability via non-

deterministic transactions that need not wait until the end of epochs to commit.

Object ownership. Several works have used ownership-related ideas, albeit

in a single-node context [54, 91, 154]. L-Store [143] optimizes for locality

using ownerships in a distributed local area setting but only supports durable
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transactions (i.e., without replicas and availability). In contrast, Zeus enables

strictly serializable transactions and ownerships over a replicated deployment

that facilitates availability and local read-only transactions from any replica.

Dynamic sharding. Dynamic object sharding has been used to improve

the performance of distributed transactions. Typically, objects are partitioned

and migrated periodically to improve locality [1, 51, 61, 122, 135, 185, 194,

206]. In geo-distributed systems, object migration can significantly reduce WAN

traffic [40]. Facebook’s Akkio [11] splits data in µ-shards, which migrate across

datacenters to leverage locality in workloads. Similarly, SLOG [188] deploys a

periodic remastering scheme over a deterministic database to reduce across-

datacenter round-trips but mandates coordination within a datacenter. Other

works also exploit locality to reduce across-datacenter round-trips [65, 207,

224]. In contrast, Zeus infers locality and moves the object eagerly on the

first access, supports non-deterministic transactions, and reduces coordination

within the datacenter.

Invalidating protocols. Zeus protocols resemble cache coherence in

multiprocessor systems. Cache coherence protocols move cache lines to the

requesting node on access. Cache coherence protocols have been used to

implement hardware transactions [93]. Zeus builds on the ideas in Hermes,

which adapted concepts from cache coherence and applied them to enforce

strong consistency for replicated in-memory datastores. Hermes allows for local

reads and fast reliable updates to individual objects from all replicas; however, it

does not support multi-object reliable transactions or reliable object ownership.

Distributed shared memory (DSM). A DSM provides the abstraction of a

single shared memory space built on top of a collection of machines. Similar

to Zeus, many DSMs use cache coherence protocols to move data to the

accessing node, but, unlike Zeus, most focus on single-object consistency [37,

116, 117, 204]. A few support transactions (e.g., [35, 217, 223]) but relax

consistency or forfeit data availability for performance.



142 Chapter 5. Zeus

5.10 Summary

Many real-world applications exhibit high access locality. Zeus leverages this to

depart from conventional distributed transaction designs. Rather than executing

a transaction across nodes, Zeus brings all objects to the same node and

executes the transaction locally. It does so via two new reliable invalidation-

based protocols: one for fast localized transactions with replication and one for

efficient object ownership. Another benefit of Zeus is the ease of porting existing

applications on top of it without any re-architecting, as localized transactions

can pipeline replication without blocking the application. Zeus is up to 2× faster

than state-of-the-art systems on the TATP benchmark and up to 40% faster on

Smallbank while using lower-end networking. It can move up to 250K objects

per server and process millions of transactions per second.
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Concluding Remarks

This is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.
Winston Churchill

In this final chapter, we first summarize the main contributions of this thesis.

We then discuss limitations and future work before concluding.

6.1 Summary of contributions

Scale-out ccNUMA: Replication for performance

In Chapter 3, we focused on skewed access patterns that are common in

workloads of online services and drastically inhibit a datastore’s performance.

State-of-the-art skew mitigation techniques resort to either (1) a front-end cache

node to filter the skew or (2) exploit a NUMA-like shared memory abstraction

that relies on remote access primitives to distribute the load across all servers.

The first approach is processing bound because a single cache node may not

be able to keep pace with the load. Meanwhile, the second is network bound

because the vast majority of requests require remote access.

In Scale-out ccNUMA, we addressed these shortcomings by combining the

NUMA abstraction with caching and replication. Our symmetric caching strategy

replicates a small cache that stores the hottest objects to all nodes. The request

load is distributed among all nodes, allowing them to collectively serve the

hottest objects through their replicated caches. Requests that miss in the

143
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symmetric cache are served via remote accesses, as in the NUMA abstraction.

Thus, symmetric caching has two benefits. First, unlike a centralized front-end

cache, the per-node cache scales its throughput with the size of the deployment.

Second, by serving the hottest objects locally at any node, it significantly lowers

the incidence of remote accesses compared with the pure NUMA abstraction.

A key challenge in symmetric caching is keeping the replicas of the hottest

objects strongly consistent while avoiding a hotspot-prone write serialization.

To resolve this challenge, we proposed Galene, a novel invalidating protocol

that uses logical timestamps for fully distributed write serialization. Galene

provides the strongest consistency while enabling any replica to drive a write

to completion without imposing physical serialization points, hence eschew-

ing hotspots and evenly spreading the cost of consistency actions across the

deployment. Under typical modest write ratios of skewed workloads, our evalu-

ation shows that symmetric caching powered by Galene can more than double

the performance of the state-of-the-art skew mitigation technique.

Hermes: Fast fault-tolerant replication

In Chapter 4, we detailed the necessary protocol features for high-performance

reads and writes and highlighted the performance limitations of existing repli-

cation protocols that guarantee strong consistency and fault tolerance. The

state-of-the-art reliable protocol allows for efficient local reads from all replicas

but still serializes writes on a dedicated node and requires numerous network

hops to complete each write, thus harming the throughput and latency of writes.

To eliminate these performance limitations, we proposed Hermes, a strongly

consistent protocol that extends Galene’s combination of invalidations and

logical timestamps to the fault-tolerant setting. Hermes leverages logical times-

tamps for idempotence and propagates the value of an update early with the

invalidation message. This simple strategy enables safe update replays that

can tolerate node crashes and message failures. Meanwhile, in the common

fault-free operation, Hermes can achieve the holy grail of performance through

its local reads and non-conflicting decentralized writes from all replicas, which

complete quickly after a single round-trip to other replicas. We showed that

five Hermes replicas can sustain hundreds of millions of reads and writes per
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second without delays, resulting in significantly better throughput and latency

than the state-of-the-art protocols. Finally, we demonstrated that Hermes can

be safely deployed under asynchrony with a negligible drop in throughput.

Zeus: Locality-aware replicated transactions

In Chapter 5, we pinpointed that the state-of-the-art datastores, which

afford fault-tolerant transactions with strong consistency, impose significant

performance penalties to several workloads that exhibit locality in their access

patterns. The distributed commit protocols of these datastores rely on static

sharding and cannot fully exploit locality in transactional accesses. Regardless

of access pattern, each transaction in these datastores is likely to incur costly

remote accesses during execution, while it also requires several communication

rounds over the network for its distributed commit.

To address this issue, we proposed Zeus, an HTM-inspired transactional datas-

tore that affords locality-aware reliable transactions. Zeus transforms expensive

distributed transactions into efficient single-node transactions using two novel

reliable invalidating protocols. First, the Zeus ownership protocol allows any

node to quickly (at most three hops, in the typical case) alter an object’s access

privileges and location without compromising on consistency or fault tolerance.

Using this protocol, Zeus moves all objects to the server executing a transaction

and ensures exclusive write access (i.e., ownership). Once this is done, and

unless the access pattern changes, all subsequent transactions to the same set

of objects are executed entirely locally, eschewing distributed conflict resolution.

The second protocol is Zeus reliable commit, which ensures data availability

via a reliable replication of localized write transactions. Unlike a distributed

commit, Zeus reliable commit is pipelined, completes quickly after only one

round-trip to other replicas, and facilitates local read-only transactions from all

replicas with strong consistency. Our evaluation shows that, for workloads that

exhibit locality in accesses, Zeus’ locality-aware transactions can deliver up to

twice the performance of state-of-the-art transactional datastores while using

less network bandwidth.
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Formal verification of protocols

To ensure that all four invalidating protocols we proposed in this thesis guaran-

tee the strongest consistency under all circumstances, we formally specified

them in TLA+ and verified their correctness. We verified all invalidating protocols

for safety under concurrency and conflicts. For the three fault-tolerant protocols

(i.e., Hermes, Zeus ownership, and Zeus reliable commit), we also verified their

correctness in the presence of membership reconfigurations due to crash-stop

failures as well as message reordering and duplicates. Recall that message

losses are tolerated via retransmissions and are thus covered by duplicates.

6.2 Limitations and future work

In this section, we suggest possible research directions related to the ideas

of this thesis which may inspire compelling future work. We first discuss

improvements on the proposed protocols and schemes and then consider how

our ideas might be expanded to different settings.

6.2.1 Enhancing proposed protocols and schemes

Scale-out ccNUMA. Although, in symmetric caching, requests for hot objects

are served once they reach any node of the deployment, cold requests that

miss in the cache must access the home node of the object. Consequently,

most cold requests require an extra remote access. Even if this occurs over an

uncongested network, as the symmetric caches filter the skew, it still results

in substantial network traffic. Future studies could consider a more involved

request dispatching on the client side to facilitate a better path for cold requests.

For instance, if a client knows (or speculates) that its request is not for a hot

object, it could send the request directly to the home node of the object, saving

a hop and entirely bypassing the symmetric cache.
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Hermes. A practical future work, perhaps as easy as a graduate exercise,

might explore implementing Hermes as a fast path over existing state machine

replication approaches (e.g., over the popular Raft [174]). This has the potential

to boost the performance of numerous datastores powered by these protocols.

A limitation of Hermes and all other membership-based protocols is that,

in favoring performance during fault-free operation, they temporarily disrupt

operation when node faults occur. To circumvent safety violations on false

positives, when a node crashes, a membership reconfiguration takes place

only after the membership leases expire. This suspends update operations on

the affected shard, as they are waiting for a response from the failed node to

complete. In a modern datacenter with predictable low-latency communication,

leases can be short-lived, and node faults within each shard are infrequent.

However, even a small, rare disruption might be undesirable for certain ap-

plications. The asynchronous variant of Hermes (Hermes-async) does not

require membership leases and could reconfigure faster. Further exploring this

direction, perhaps through a variant mixing Hermes with Hermes-async, could

alleviate the performance drop when node failures occur.

Zeus. A future study could focus more on the scalability of Zeus’ locality-aware

transactions. For instance, it might target to reduce metadata for dynamic

sharding and accelerate the ownership directory (e.g., via partitioning) such

that it can sustain a larger volume of requests, which would naturally arise

in clusters with a large number of servers. Exploring prefetching of object

ownership could also yield further performance gains.

Another interesting research direction would be to compose locality-aware

transactions and distributed commit in a hybrid transactional datastore. As

expected and shown in our evaluation, traditional distributed commit can provide

better performance when locality is low and vice versa. A hybrid transactional

datastore could strive to deliver the best of both worlds. More precisely, it could

perform transactions with locality through a Zeus-like locality-aware protocol

and utilize a distributed commit for transactions without sufficient locality.
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6.2.2 Expanding to a different context

Hardware offloading. Ultra-low latencies are becoming first-order concerns

in datacenters, requirements partly driven by the emergence of machine actors

such as online sensors and self-driving cars. The need for low latency has

ushered in an era of offloaded network stacks and high-bandwidth network

gear. While our work takes advantage of these networking advances and offers

dramatically lower latency than prior reliable replication, it is still subject to

software overheads in the critical path of replication. Given the emergence of

programmable hardware in the datacenter, offloading the replication protocols

of this thesis to hardware (e.g., to smart NICs or programmable switches) is a

promising way forward.

Although works on reliable replication offloading already exist [52, 101, 105,

118, 138], the protocols they offload forfeit linearizable local reads from all

replicas and serialize updates on a single node (e.g., a switch). In contrast,

the multiprocessor-inspired common path of our work not only provides fast

decentralized updates and local reads from all replicas, but we also believe that

it offers a simpler scheme that is better suited to hardware implementations.

Moreover, this line of work has not yet considered reliable dynamic ownership

or distributed fault-tolerant transactions.

Hybrid consistency. The main purpose of this thesis was to maximize

performance under strong consistency. While strong consistency provides the

most intuitive behavior and is inevitable for some use cases, it may impose

unnecessary overheads in others. In the latter case, hybrid approaches that

intuitively compose strong and weak consistency (e.g., [73, 119, 137]) might be

a better choice for developers willing to sacrifice the ease of programming with

purely strong consistency for performance. We believe that hybrid approaches

can adopt our invalidating protocols and drastically boost their performance

when delivering strong guarantees.

Byzantine failures. Security is an ever-growing issue for cloud applications

and datastores. The sharing and openness of these systems could be com-

promised by malicious participants. When considering failures in this thesis,

we assumed a crash-stop fault model wherein participants are expected to be
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well-intentioned. It is worth researching whether techniques similar to those we

have proposed in this thesis could provide performance benefits when applied

to the Byzantine fault model, where the system may experience faults due to

participants’ misbehavior. An interesting direction is to explore the interplay be-

tween the proposed invalidating protocols and trusted execution environments

(e.g., Intel’s SGX [48]), which are now prevalent in datacenter CPUs.

Geo-replication. In this dissertation, our primary objective was to improve

data replication within a datacenter. Invalidation-based protocols might also

benefit geo-replication (i.e., replication across datacenters), where the latency

of inter-replica communication is magnified. Unlike majority-based protocols,

which are typically deployed in this setting, we expect that invalidating protocols

would afford linearizable reads solely by accessing the closest (local) datacen-

ter. Recall that invalidating protocols can also provide decentralized updates

that commit after only one round-trip. However, these updates must contact

all replicas before they complete, no matter how far they reside, rather than

contacting only the closest majority, as in majority-based approaches [62, 160].

Consequently, there is a trade-off to explore between (1) the benefits of strongly

consistent local reads and (2) the latency of reaching all replicas once instead

of reaching the closest majority of replicas potentially multiple times.

6.3 Conclusion

In this dissertation, we argued that multiprocessor-inspired invalidating

protocols can advance data replication inside a datacenter by delivering strong

consistency, data availability, and superior performance. To support our claim,

we demonstrated significant performance gains in three typical use cases of

data replication within replicated datastores. First, we examined replication to in-

crease performance under skewed data accesses. We showed that symmetric

caching powered by a fully distributed invalidating protocol delivers high perfor-

mance and the strongest consistency despite aggressive replication. Second,

we demonstrated that a strongly consistent invalidating protocol with logical

timestamps can maximize the performance of reads and writes in the common

fault-free case while also maintaining data availability when node crashes or
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network failures occur. Finally, we introduced invalidating protocols that enable

fast dynamic sharding and distributed transactions with replication to ensure

availability and high performance through locality awareness. We expect that

the performance demands will continue to grow, and we hope that this thesis will

motivate the uptake of invalidating protocols in the next generation of replicated

datastores.



A
Invariants and Strong Consistency

Informal sketch of protocol correctness

This appendix informally sketches the correctness of the single- and multi-object

protocols proposed in the main body of this thesis by diving deeper into the

model-checked protocol invariants and their linearization/serialization points.

Single-object protocols. As discussed in Section 2.1.1 we target the strongest

consistency, which for single-object operations is captured by linearizability. Re-

call that under linearizability it appears as if each (non-aborted) operation is

executed without contention and instantaneously at a single point (i.e., the

linearization point) to all replicas between its invocation and response.

� Updates: The protocol specifications of Galene and Hermes ensure that for

all writes, there is an equivalent unreplicated serial execution in accordance

with real time, which is established by linearization points. Each write has a

linearization point within its invocation and response and is associated with a

unique per-object, monotonically-increasing, logical timestamp. The write is

linearized (i.e., its linearization point is established) when all live replicas of the

targeted object apply an invalidation with a timestamp greater or equal than the

write’s timestamp for the first time. More precisely, the linearization point of a

write to an object o with timestamp t occurs once the following three conditions

are satisfied:

1. there is only one live replica (R) storing o with timestamp lower than t ;

2. R applies an invalidation to the object with a timestamp t’ ≥ t ; and

3. concurrent1 writes to o with smaller timestamp than t have been linearized

1Two operations are concurrent if their invocation-response periods overlap in time.
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Figure A.1 Linearization points for a write executing solo followed by two con-

current writes (colored green and blue) to the same object. Arrows represent

invalidation messages; timestamps are shown in the form of version.node_ID.

Note that the above conditions are just a systematic way to produce an equiva-

lent serial execution and not actual steps performed by the protocols. Moreover,

when considered in isolation, the first two conditions do not suffice to create an

equivalent serial execution because they may result in overlapping linearization

points for concurrent writes to the same key. Condition 3. resolves these cases

by enforcing the linearization points of such concurrent writes to be consecutive

(i.e., no other operations can be linearized in between) and ordered based on

their timestamps. For instance, the example execution illustrated by Figure A.1

shows two concurrent writes, which are linearized at time t5 with consecutive

linearization points that respect their timestamp order (i.e., 2.1 is linearized

before 2.2).

The above rationale can also be utilized to linearize more complex single-object

updates such as Hermes RMWs and Zeus ownership requests. However,

because when such updates commit (i.e., are not aborted), it is guaranteed

that no other concurrent updates will also commit (we have model checked

such an invariant as well), there is no need for the condition 3. to establish their

linearization points.

Besides ordering concurrent updates based on their timestamps, the lineariza-

tion points of non-concurrent updates also follow the timestamp order. Each
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update is tagged with a lexicographically higher timestamp than any preceding

update.2 This is because updates are only issued in the Valid state during which

all preceding updates have propagated their version of their timestamp,3 which

is subsequently incremented to create the timestamp of the current update.

� Reads: In Galene, Hermes, and Zeus ownership, we have model-checked

the data value invariant (among others). In short, this invariant ensures that

at any given time, all replicas of an object in a Valid state reflect the most

recent update (i.e., the timestamp and value of either a write, an RMW, or an

ownership request). The most recent is established based on the ordering

formed by the linearization points of updates as described above. Therefore, a

read that encounters its requested object in a Valid state can be linearized (i.e.,

establish its own linearization point) before returning the local value and would

never violate linearizability. This is because each read is guaranteed to return

the value associated with an update that is at least as recent as the value:

1. written by any preceding update; and

2. returned by any preceding read

In a nutshell, for single-object reads and updates, we can establish linearization

points within each operation’s invocation and response boundaries to construct

an equivalent serial execution and thus guarantee linearizability (i.e., by ensur-

ing all of the real time orderings [74]).

Multi-object protocols. We also target the strongest consistency when it

comes to multi-object transactions. This means that transactions in Zeus must

guarantee strict serializability. Similarly to linearizability, in strict serializability,

it appears as if each (non-aborted) transaction is executed without contention

and instantaneously at a single point (i.e., the serialization point) to all replicas

and relevant shards within its invocation and response.

�Write transactions: As detailed in Chapter 5, write transactions in Zeus can

be executed and committed only by the node that is the owner of all the objects

involved in the transaction. If the coordinator of a write transaction accesses

an object for which it is not the owner, it leverages the Zeus ownership protocol

2An operation o1 precedes an operation o2 if o1’s response occurs before o2’s invocation.
3Recall that updates cannot return before sending a timestamped invalidation to all replicas.
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to acquire the ownership. For the Zeus ownership protocol, we have verified

several invariants, including the following:

1. At any time, there is at most one owner of an object who has exclusive

write access to it.

2. The object owner holds the most up-to-date data and version of the object

(i.e., the object has no pending committed updates from remote nodes).

During the execution of a write transaction, the coordinator has ensured that it

holds the ownership, which implies two things. First, the transaction accessed

or modified the most recent values all of the objects involved in the transaction.

Second, the coordinator holds exclusive write access to all these objects. Suc-

cinctly put, there can be no other concurrent write transaction on these objects

from other nodes (or local threads in our case – Section 5.7). Therefore, the

transaction can always be committed locally without requiring further steps for

distributed conflict resolution. However, to guarantee that the values modified

by the transaction remain accessible despite faults, Zeus has to replicate the

modified state of the transaction to all the relevant replicas (i.e., the followers).

Similar to the single-object protocols, Zeus first invalidates the live replicas of

all the objects involved in the transaction. This invalidation message also holds

the new values, which the replicas cannot immediately serve, and it is tagged

with a unique transaction ID. As such, the serialization point of a non-aborted

write transaction with transaction ID tx_id is naturally established at the point

when both of the following conditions hold:

1. there is only one live follower (F ) who has not yet applied the invalidation

of the transaction with tx_id ; and

2. F applies an invalidation with a tx_id

Because the serialization points take place within the invocation-response

boundaries of each transaction, they form an equivalent serial execution of

write transactions that respects real time. Note that the most recent values

above are again established based on these serialization points.

� Read-only transactions: In Zeus, read-only transactions can execute locally

from any node replica that stores the relevant data (e.g., a reader). Once again,

we have verified the data value invariant. Thus, an object found in the Valid

state on a Zeus reader always holds the most recent data based on the se-
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rialization points established by write transactions. This means that similarly

to the single-object protocols, each individual access to an object in the Valid

state is guaranteed to hold the latest value and be linearized, as explained

in the section above. However, we need to ensure that multi-object read-only

transactions are executed atomically in their entirety to establish their serializa-

tion points. For this reason, we perform a validation phase before committing

a read-only transaction. The validation phase verifies that no conflicting write

transaction got a serialization point in between the series of reads performed

by the read-only transaction. Recall that a read-only transaction proceeds as

follows:

1. The transaction is executed by recording the values and versions of all

the requested objects.

2. The transaction commits and returns these values if it accesses all the

objects again and finds them in the Valid state with their version unchanged.

The serialization point of a successfully committed read-only transaction is

established during the execution phase of the transaction, right after accessing

the version of the last object to be read. In summary, Zeus guarantees strict

serializability, as we can establish serialization points for both its write and

read-only transactions within their invocation and response such that each

operates on the most recent value according to serial execution provided by

those serialization points.
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