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Sequence signatures of multidonor broadly neutralizing influenza antibodies can be used
to quantify the prevalence of B cells with virus-neutralizing potential to accelerate
development of broadly protective vaccine strategies. Antibodies of the same class
share similar recognition modes and developmental pathways, and several antibody
classes have been identified that neutralize diverse group 1- and group 2-influenza A
viruses and have been observed in multiple human donors. One such multidonor antibody
class, the HV6-1-derived class, targets the stem region of hemagglutinin with
extraordinary neutralization breadth. Here, we use an iterative process to combine
informatics, biochemical, and structural analyses to delineate an improved sequence
signature for HV6-1-class antibodies. Based on sequence and structure analyses of
known HV6-1 class antibodies, we derived a more inclusive signature (version 1), which
we used to search for matching B-cell transcripts from published next-generation
sequencing datasets of influenza vaccination studies. We expressed selected
antibodies, evaluated their function, and identified amino acid-level requirements from
which to refine the sequence signature (version 2). The cryo-electron microscopy
structure for one of the signature-identified antibodies in complex with hemagglutinin
confirmed motif recognition to be similar to known HV6-1-class members, MEDI8852 and
56.a.09, despite differences in recognition-loop length. Threading indicated the refined
signature to have increased accuracy, and signature-identified heavy chains, when paired
with the light chain of MEDI8852, showed neutralization comparable to the most potent
members of the class. Incorporating sequences of additional class members thus enables
an improved sequence signature for HV6-1-class antibodies, which can identify class
members with increased accuracy.

Keywords: antibody identification, hemagglutinin stem, influenza, iterative optimization, multidonor class antibody,
neutralizing antibody, sequence signature
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INTRODUCTION

Understanding the elicitation of broadly neutralizing antibodies
(bNAbs) is key to the development of B cell-based vaccines
against pathogens of high sequence diversity such as HIV-1 and
influenza A virus (1, 2). While B cells from different individuals
generally develop unique antibodies against the same antigen,
multidonor class antibodies – antibodies from different
individuals having similar developmental pathways and
targeting antigens with similar modes of recognition – have
been identified from sera of donors infected by or vaccinated
against pathogens such as HIV-1 (3–8), influenza A virus (9–16),
Ebola virus (17–19), dengue virus (20), SARS-CoV-2 (21–32) or
malaria parasites (33, 34). Because of the potential
reproducibility of these antibodies in the general population,
multidonor class antibodies have become prime templates for B
cell-based vaccines (35–40).

Sequence signatures have been developed to facilitate the
identification of antibodies of the same class (6, 7, 9, 17, 41–43),
as such signatures in combination with longitudinal sequencing
of B-cell transcripts can be used to monitor the development of
antibody class lineages during infection or vaccination studies.
For example, sequence signature for VRC01-class antibodies (3,
41), whose members comprise some of the most effective
neutralizers of HIV-1 (4, 44–46), have been used to define
lineages in humans (7, 47–49) and to monitor the development
of HIV-1 neutralizing antibodies both in animal models (50–54)
and in a clinical trial (NCT03547245). Likewise, the sequence
signature for HV1-69 influenza antibodies targeting the stem
region of the hemagglutinin has been characterized and
demonstrated also to be allele-specific (42). Sequence
signatures have also been identified for mAb114, a therapeutic
antibody for the treatment of Ebola virus disease undergoing
clinical trial (55), based on antibodies elicited from vaccination
of rhesus macaques with Zaire ebolavirus glycoprotein (17).

Another example of a multidonor antibody class is the HV6-
1-derived influenza antibodies that target the stem region of
influenza hemagglutinin with extraordinary breadth (9, 31, 56).
These antibodies utilize heavy chain HV6-1 and HD3-3 genetic
elements, and a first-generation antibody-class sequence
signature could identify other class members from sequence
databases (9). However, MEDI8852 (56), a HV6-1 influenza
antibody identified at the same time in a separate study, did
not satisfy the first-generation signature, despite clearly having a
similar mode of recognition and being of the same class.
Specifically, the CDR-H3 length and recognition motif of
MEDI8852 were different from what have been delineated by
the first-generation signature, indicating the first-generation
antibody class-sequence signature was not inclusive enough. In
this study we developed a workflow, coupling antigenic screening
and bioinformatics analyses to optimize iteratively the HV6-1-
class sequence signature. We searched for matching B-cell
transcripts, expressed identified antibodies, evaluated their
function, and identified residues from which to refine the
sequence signature. We assessed signature-identified antibodies
and determined the cryo-electron microscopy (cryo-EM)
structure of one in complex with hemagglutinin. Overall, we
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improved the accuracy of the sequence signature for HV6-1-class
influenza antibodies and demonstrated that sequence transcripts
identified by the optimized sequence-signature are functional,
with several that have neutralization activity on par with the best
known HV6-1 class antibodies.
METHODS

Identification of HV6-1 Class Heavy Chain
Transcripts Based on Signature Search
Publicly available deep sequencing datasets associated with
influenza vaccine trials and heavy chain sequences of healthy
donors were downloaded using accession numbers listed in
supplemental Tables S1A, B. The Stand‐alone IgBLAST (57)
was used for V(D)J germline gene assignments, and IgBLAST
output was parsed and analyzed by in‐house developed python
script. For 454 sequencing, non‐immunoglobin reads and non‐
productive reads were removed. For Illumina sequencing, non‐Ig
reads, non‐duplicate and non‐productive reads were filtered out.
The remaining reads were sieved by the HV6-1 class signatures
previously published (9) or developed in this paper. The CDR-
H3 of HV6-1 class signature positive reads were clustered with
97 percent sequence identity using CD-HIT (58). The centroid
sequence was selected as representative sequence of each cluster
for neutralization assay. The germline amino acids were used to
repair missing N- and C- terminal residues.

Microplate-Based Antigenic Analysis
24 h prior to DNA-transient transfection, 100 ml per well of log-
phase growing HEK 293T cells were seeded into a 96-well
microplate at a density of 2.5x105 cells/ml in optimized
expression medium (RealFect-Medium, ABI Scientific, VA),
and incubated at 37°C, 5% CO2 for 24 hours. Prior to
transfection, 40 ml per well of spent medium was removed.
For transient transfection, 0.15 ug of each heavy chain variant
plasmid DNA was paired with 0.15 ug of light chain plasmid
DNA of 56.a.09, 54.f.01, or MEDI8852, respectively, in 10 ml of
Opti-MEMmedium (Invitrogen, CA) per well in a 96-well plate,
and then mixed with 0.9 ml per well of TrueFect-Max
transfection reagent (United BioSystems, VA) in 10 ml of
Opti-MEM medium, followed by an incubation for 15 min at
room temperature (RT). The DNA-TrueFect-Max complex was
mixed with growing cells in the 96-well microplate and
incubated at 37°C, 5% CO2. In day one post transfection, 30
ml per well of enriched expression medium (CelBooster Cell
Growth Enhancer Medium for Adherent Cell, ABI Scientific,
VA) was fed. After five days post transfection, the antigenic
analysis of paired antibodies was characterized by 96-well-
formatted ELISA. Briefly, 100 ul per well of Flu hemagglutinin
of A/California/04/2009 (CA2009, H1 subtype) or H3 A/Hong
Kong/1/1968 (HK1968, H3 subtype), respectively, at a
concentration of 4 ug/ml in phosphate buffered saline (PBS)
was captured in Ni-coated 96-well ELISA plates (Thermo, IL))
and incubated for two hours at room temperature, followed by
the removal of the Flu HA antigen solution and incubation of
May 2021 | Volume 12 | Article 662909
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200 ml per well of CelBooster Cell Growth Enhancer Medium for
Adherent Cell for one hour at RT. After washing with PBS +
0.05% Tween 20, 30 ml per well of the expressed supernatant
antibody mixed with 70 ml of PBS was incubated for one hour at
RT. After washing, 100 ml per well of Horseradish peroxidase
(HRP)-conjugated goat anti-human IgG antibody (Jackson
ImmunoResearch Laboratories Inc., PA), diluted at 1:10,000
in CelBooster Cell Growth Enhancer Medium for Adherent Cell
with 0.02% tween 20, was incubated for 30 min at RT. After
washing, the reaction signal was developed using 100 ml of
BioFX-TMB (SurModics, MN) at RT for 10 min, and then
stopped with 100 ml of 0.5 N H2SO4. The readout was measured
at a wavelength of 450 nm, and OD450 values were normalized
and analyzed. All samples were performed in duplicate.

Expression and Purification of HA
H1 CA09, H3 HK68, and H3 VIC11 HA constructs C-terminally
fused to a thrombin cleavage sequence, T4 fibritin trimerization
motif followed by hexahistidine affinity tag were synthesized
(Genscript) and subsequently cloned into a pVRC8400
expression plasmid, as previously described (12). HA proteins
were expressed by transfection in 293F cells (Thermo Fisher)
using Turbo293 transfection reagent (SPEED BioSystem)
according to the manufacturer’s protocol. Transfected cells
were incubated in shaker incubators at 120 rpm, 37°C, 9% CO2

overnight. On the second day, one tenth culture volume of
CellBooster medium (ABI scientific) was added to each flask of
transfected cells. Cell cultures were then incubated at 120 rpm,
37°C, 9% CO2 for an additional 5 days. 6 days post-transfection,
cell culture supernatants were harvested, clarified by
centrifugation at 2,000 × g and filtered. The supernatants were
loaded on Complete His-Tag Resin (Roche) by gravity flow. The
resin was washed with three column volumes of PBS with 50 mM
imidazole (Roche) and the target protein was subsequently eluted
in three column volumes of PBS with 300 mM imidazole. The
eluted protein was concentrated and further purified on a
Superdex 200 16/60 size exclusion column (GE Healthcare)
in PBS.

Production of Influenza Antibodies
Immunoglobulin heavy chain or light chain sequences were
constructed by gene synthesis and then cloned into human
IgG1, lambda, or kappa expression plasmids as previously
described (12, 59). Heavy and light chain expression plasmid
DNA was transfected into Expi293F cells (Thermo Fisher) in 1:1
(v/v) ratio using Turbo293 transfection reagent (60). Monoclonal
antibodies from the culture supernatants were purified using
recombinant Protein-A Sepharose (GE Healthcare) as per the
manufacturer’s instructions.

Antibody Fab Preparation
The purified human IgG proteins were cleaved by LysC enzyme
(1:4000 w/w) (Roche) at 37°C overnight to yield Fabs. On the
next day, the enzymatic digestion reaction was terminated by
addition of protease inhibitor (Roche). The cleavage mixture was
then passed through a protein A column to separate the Fc
fragments from the Fab. The Fab collected in the flow-through
Frontiers in Immunology | www.frontiersin.org 3
was loaded onto a Superdex 200 16/60 column for further
purification to be used for structure determination.

Cryo-EM Structure Determination
The H3N2 hemagglutinin (A/Victoria/361/2011) HA trimer was
incubated with a molar excess of Fab SRR2899884.46167H
+MEDI8852L and 2.3 ml of the complex at 1 mg/ml
concentration was deposited on a C-flat 1.2/1.3 carbon grid
(protochip.com). The grid was then vitrified using an FEI
Vitrobot Mark IV with a wait time of 30 seconds, blot time of
3 seconds, blot force of 1 and humidity of 100%. Data collection
on a Titan Krios was performed through Leginon (61) equipped
with a Gatan K2 Summit direct detection device. Exposures were
collected in movie mode for a 10 s with the total dose of 71.06 e–/
Å2 fractionated over 50 raw frames. Pre-processing was
performed through Appion (62, 63); frames were aligned and
dose-weighted with MotionCor2 (64). CTFFind4 (65, 66) was
used to estimate the CTF and DoG Picker (62, 63) was used for
particle picking, RELION (67) was then used for particle
extraction. CryoSPARC 2.15 (68) was subsequently used for
the remaining processing of 2D classifications, ab initio 3D
reconstruction, homogeneous refinement, and nonuniform 3D
refinement. Initial 3D reconstruction was performed using C1
symmetry, confirming 3 Fab molecules per trimer, whereupon
C3 symmetry was applied for the final reconstruction and
refinement. Model building through coot was followed by
simulated annealing and real space refinement in Phenix (69)
and then iteratively improved with manual fitting of the
coordinates in Coot (70). Geometry and map fitting were
evaluated using Molprobity (71) and EMRinger (72). PyMOL
(www.pymol .org) and ch imera (73) were used to
generate figures.

Pseudotyped Neutralization Assay
Influenza HA-NA pseudotyped lentiviruses that harbor a
luciferase reporter gene were produced as described previously
(74, 75). Pseudovirus was produced by transfection of 293T cells
of HA and corresponding NA along with the lentiviral packaging
and reporter plasmids. For all pseudoviruses except H5N1, a
human type II transmembrane serine protease TMPRSS2 gene
was also contransfected for proteolytic activation of HA to HA1/
HA2. Cells were transfected overnight by use of Fugene6
(Promega, Madison, WI) and then replaced with fresh
medium. Forty-eight hours after transfection, supernatants
were harvested, filtered through a 0.45- mm syringe filter and
frozen at -80°C before use.

Neutralization assays were carried out as follows:
pseudovirus was mixed with serial dilutions of monoclonal
antibodies for 45 minutes followed by addition to 293A cells
(Thermo Fisher Scientific) in 96-well plate white/black isoplates
(PerkinElmer, Waltham, MA) in triplicate. Three days after
infection, cells were lysed in 20ml of cell culture lysis buffer
(Promega, Madison, WI) and 50 ml of luciferase assay reagent
(Promega) was added. Luciferase activity was measured
according to relative light unit (RLU) by MicroBeta
luminescence counter (PerkinElmer). IC50 were generated
using Prism 8 (GraphPad, San Diego, CA).
May 2021 | Volume 12 | Article 662909
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Neutralization Assay Using Engineered
Reporter Viruses
Influenza neutralization assay using replication-restricted
reporter(R3) influenza viruses was described previously (76).
Briefly, R3 DPB1 influenza viruses, which have PB1 coding
sequence replaced with TdKatushka2S fluorescent reporter,
were rescued by reverse genetics and propagated in PB1-
expressing MDCK-SIAT1 cells. For neutralization assay, 4-fold
serial antibody dilutions with a starting concentration of 25 ug/
ml were made in OptiMEM (Thermo Fisher) supplemented with
TPCK-trypsin and incubated with pre-titrated viruses for 1h at
37°C. After incubation, antibody-virus mixtures were transferred
in quadruplicates to 384-well plates (Greiner) and 3 ×103

MDCK-SIAT1-PB1 cells were added to each well. Plates were
incubated for 18-20h at 37°C in a humidified 5% CO2

atmosphere. The number of fluorescent cells in each well was
obtained using a Celigo image cytometer (Nexcelom Biosciences)
with customized red channel to enhance detection of mKate2/
TdKatushka2 reporter (EX 540/80 nm, DIC 593 nm and EM
593/LP nm). The percent neutralization was calculated by
constraining the VC control as 0% and the CC control as
100% and plotted against antibody concentration. A curve fit
was generated by a four-parameter nonlinear fit model in Prism
(GraphPad). The 50% (IC50) inhibitory concentrations were
obtained from the curve fit for each antibody.

Homology Modeling and Comparison of
Paired Heavy : Light Antibody
Publicly available paired heavy- and light- chain datasets were
downloaded using accession numbers from references (77–79).
Deep sequencing reads were filtered and sieved by the HV6-1
class signatures. The CDR-H3 sequences were clustered as
described in section 2.1, and the centroid antibody of each
cluster was selected for modeling of HA/antibody complex
structures. Germline amino acids were used to repair the
missing residues at N-termini of heavy and light chains.
Repaired antibody sequences were threaded on 56.a.09/HA
complex structure (PDB:5K9K) (9) and MEDI8852/HA
complex structure (PDB:5JW4) (56) structures respectively
using software NEST (80). Binding energy between antibody
and influenza A virus HA was predicated by Rosetta package,
Interface Analyzer, using default parameter (81). The average of
the binding energies calculated from the two homology models
were used to compare antibodies that satisfied the signatures
versus antibodies that satisfied the version 1 signature but not the
version 2 signature; two-tailed Mann-Whitney test were used to
compare the statistical significance.

Binding affinity Measurement by
Bio-Layer Interferometry
The hexahistidine affinity tagged CA09 or PR34 HA proteins (30
mg/ml) diluted in PBS was captured on Ni-NTA sensor tips to a
level of approximately 1.0 – 1.2nm. The duration of protein
capture was 300 s. The sensor tips were then washed with PBS for
60 s to allow baseline adjustment. After that, the sensor tips were
dipped into the Fabs with eight different concentrations (400 nM,
Frontiers in Immunology | www.frontiersin.org 4
200 nM, 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM, 0 nM) for an
association time of 300 s. Subsequent to Fab binding, the sensors
were placed back into PBS for dissociation for 300 s. Antibody
binding experiment was performed on a ForteBio OcteRed 96
machine. Subsequent data analysis was performed using the
ForteBio Data Analysis 12.0 software.
RESULTS

Workflow to Delineate the Sequence
Signature of HV6-1 Class Influenza
Antibodies
We developed a workflow to delineate antibody sequence
signature in general and applied it to delineate the sequence
signature of HV6-1 class influenza antibodies (Figure 1). Briefly,
we start with a broader signature that are able to accommodate
all known HV6-1 class influenza antibodies, use this sequence
signature to identify antibody sequences from sequence
databases , and then character ize their b inding to
hemagglutinin. As we only defined the signature for heavy
chain, we pair the identified heavy chain sequences with three
known HV6-1 antibodies: MEDI8852, 56.a.09, and 54.f.01. If all
or majority of the sequences are functional, the sequence
signature would be made broader and the sequence search and
binding analyses would be repeated again. If substantial number
of the sequences are not functional, this would suggest the
sequence signature is too broad, and the sequence signature
would be made more restrictive by adding amino acid
requirements based on the informatics analyses from the
binding data. Select number of antibodies would also be
selected to assess for their neutralization against group 1 and
group 2 viruses.

HV6-1 Class Signature Version 1 Identified
22 Functional and 40 Non-Functional
Heavy Chain Sequences From
NGS Dataset
As opposed to the HV6-1 class influenza antibody signature
initially described in Joyce et al., 2016 (termed HV6-1 class
signature version 0 in this paper), which is not compatible with
other known HV6-1 antibodies such as MEDI8852, we started
with a broader sequence signature in this paper (HV6-1 class
signature version 1, Figure 2A). Specifically, we specified the
CDR-H3 length to be 16-18 amino acids long as opposed to
limiting the CDR-H3 length to only 16 amino acids long as in the
version 0 signature, as 56.a.09 had a CDR-H3 length of 16 amino
acids while MEDI8852 had a CDR-H3 length of 18 amino acids.
In addition, version 1 signature allows full amino acid flexibility
at residue 98, and allowing amino acid flexibility limited to
similar residue types for the 99IFGI motif in version 0 signature,
as residue 98 did not contact hemagglutinin for both 56.a.09 and
MEDI8852 (Figure S1). In addition, we removed the
requirement of HD3-3 germline gene as D gene determination
can be sometimes ambiguous. We used the version 1 signature to
search for heavy chain sequences from three NGS datasets from
May 2021 | Volume 12 | Article 662909
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three influenza vaccination three studies (Table S1A), and
identified a total of 62 cluster representatives (Figure S2A,
Table S1, and Dataset S1). We co-expressed the heavy chains
with three different light chains from known HV6-1 class
antibodies respectively, including MEDI8852, 56.a.09, and
54.f.01, and assessed the binding to hemagglutinin of A/
California/04/2009 (CA2009, H1 subtype) and H3 A/Hong
Kong/1/1968 (HK1968, H3 subtype) using a 96-well transient
expression ELISA assay (see Methods). We observed that 24 of
the 62 heavy chain sequences, when paired with one of the three
HV6-1 class antibody light chains, have high binding towards
CA2009 HA, and 19 of the 62 heavy chains, when paired with
one of the three HV6-1 class antibody light chains, have high
binding toward HK1968 HA (see Methods) (Figure 2B, Dataset
S2). Overall, 25 of the 62 heavy chains (40.3%), when paired with
one of the three HV6-1 class antibody light chains, have high
binding toward CA2009 HA or HK1968 HA. Specifically, 24 of
these 25 heavy chains are functional when paired with
MEDI8852 light chain (KV1-39 derived), while 16 of these 25
heavy chains are functional when paired with 56.a.09 or 54.f.01
light chain (KV3-20 derived) (Figure 2C).

As majority of the version 1 sequence signature-identified
heavy chains were not functional, we examined the association
between amino acid types at each residue position and functional
outcome. We observed that 23 of the 25 functional heavy chains
Frontiers in Immunology | www.frontiersin.org 5
had a phenylalanine at residue 100 (P=0.0011) and 22 of the 25
functional heavy chains had a glycine at residue 100a (P=0.0311)
(Figure 2D). Examination the structure of antibody 56.a.09 in
complex with hemagglutinin revealed that Phe100 binds to a
cavity lined by hydrophobic residues such as Trp350, Ile372, and
Il377 (PDB:5K9K) (Figure 2E). We also noticed that among the
62 antibodies, larger fraction of antibodies with CDR-H3 length
of 17 were functional compared to antibodies with CDR-H3
length of 16 or 18 (Figure S3), suggesting that CDR-H3 length of
17 is compatible with HV6-1 class antibody signature.

HV6-1 Class Signature Version 1 Identified
Antibodies With Comparable
Neutralization Potency and Breadth to
MEDI8852
To evaluate if the signature-identified HV6-1 class antibodies can
neutralize influenza viruses in addition to binding to
hemagglutinin, we evaluated entry-inhibition for 10 of the 22
heavy chains that, when paired with one of the three known
HV6-1 class antibody light chains, showed the highest binding to
hemagglutinin, using a pseudovirus assay with a panel of six
influenza strain (Dataset S3). All ten tested antibodies inhibited
the entry of all six viruses. Next, we selected the top three
antibodies based on the results of the six strain panel, and
evaluated their entry inhibition against a panel of 31 influenza
FIGURE 1 | Iterative workflow to improve the sequence signature-based identification of human HV6-1 class influenza antibodies. In this protocol, a starting
sequence signature that is compatible to all known HV6-1 class influenza antibodies was used to screen against published NGS databases of human IgG
sequences, comprise mostly unpaired sequences of IgG-heavy chains or IgG-light chains. The heavy chain sequences that satisfied the sequence signature were
paired with light chains from known HV6-1 class influenza antibodies respectively and assessed for their binding toward group 1 and group 2 hemagglutinins (HAs).
The sequence signature can be further optimized based on the proportion of the signature-identified antibodies that are functional. Select antibodies with high HA-
binding were assessed for their neutralization capacities.
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strains, including 16 group 1 strains and 15 group 2 strains
(Figure 2F, Dataset S4), and observed that all three signature-
identified heavy chains, when paired with the light chain from
MEDI8852, showed comparable neutralization potency and
breadth to MED8852. We also assessed the neutralization of
these three signature-identified antibodies with a high-
throughput influenza neutralization assay using engineered
reporter viruses (see methods), and showed that two of these
three antibodies (SRR2899884.46167 and 39218, paired with
Frontiers in Immunology | www.frontiersin.org 6
MEDI8852 light chain respectively) showed comparable
neutralization potency and breadth to MEDI8852 (Figure 2G
and Dataset S5).

SRR2899884.46167H+MEDI8852L Showed
Similar CDR-H3 Recognition of
Hemagglutinin as MEDI8852 and 56.a.09
To examine if the sequence-signature-identified HV6-1
sequences have similar recognition mode as known HV6-1
A B

D E

F G

C

FIGURE 2 | Sequence signature optimization and antibody identification for HV6-1 class antibody based on sequence search of NGS database of human IgG-heavy
chain sequences and antigenic screening. (A) HV6-1 class signature version 1, with the modification from the original sequence signature published in Joyce et al.
Cell 2016 highlighted in red. (B) ELISA binding of 62 HIV6-1 class signature version 1-identified heavy chain variants to hemagglutinin of CA2009 or HK1968, when
paired with light chain of 56.a.09, 54.f.01, or MEDI8852 (highest value of the three were displayed). (C) Light chains that resulted in functional antibodies when paired
with the signature-identified heavy chains. Heavy chain entries that were functional when paired at least of the three light chains are shown. Heavy/light chain pairing
that resulted in functional antibodies (e.g. with ELISA signal greater than 1.5 fold of the maximum background for either CA2009 or HK1968 HA) are shown in black
fill. (D) 2x2 contingency analysis of the functionality of signature-identified heavy chain sequence versus the presence of phenylalanine at residue 100 or glycine at
residue 100a, respectively. P-values were calculated using two-tailed Fisher’s Exact test. (E) Close up view of residues F100 and G100a in a hemagglutinin structure
in complex with antibody 56.a.09 (PDB:5K9K). (F) Neutralization IC80 of three HV6-1 class signature version 1-identified heavy chains paired with MEDI8852 light
chain when assessed with a pseudovirus assay. 46167 is short for SRR2899884.46167. 39218 is short for SRR2899884.39218. 28946 is short for
SRR2899884.28946. (G) Neutralization IC50 of three HV6-1 class signature version 1-identified heavy chains paired with MEDI8852 light chain when assessed with
a high-throughput influenza neutralization assay using engineered reporter viruses.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chuang et al. Antibody-Class Sequence-Signature Optimization
antibodies, we solved the structure of SRR2899884.46167H
+MEDI8852L in complex with an H3N2 hemagglutinin (A/
Victoria/361/2011) using cryo-EM at 3.41 angstroms (Figures
3A, B and S4). When the structures of hemagglutinin in complex
with MEDI8852 (PDB:5JW4) and 56.a.09 (PDB:5K9K) were
aligned on top of this structure based on hemagglutinin
(Figure 3C), the 99VFGV100b motif of MEDI8852 CDR-H3,
the 99IFGI100b motif of 56.a.09 CDR-H3, and 99IFGL100b motif
of SRR2899884.46167 CDR-H3 align almost perfectly on top of
each other (RMSD<1 Å, Figure 3D), demonstrating that the
signature-search-identified HV6-1 heavy chain SRR2899884.46167
can recognize hemagglutinin in the similar manner as previously
identified HV6-1 class antibodies.

HV6-1 Class Signature Version 2 Identified
Functional HV6-1 Class Antibodies With
Improved Accuracy
Based on the antigenic and bioinformatics analyses of the
sequences identified from HV6-1 class signature version 1
(Figure 2), we came up with the version 2 of HV6-1 class
signature by allowing only phenylalanine at residue 100 and
glycine at residue 100a (Figure 4A). We used the HV6-1 class
Frontiers in Immunology | www.frontiersin.org 7
signature version 2 to search for HV6-1 class sequences from
ano th e r NGS da t a s e t ( dbGaP S t udy Ac c e s s i on :
phs000666.v1.p1), which had no sequence overlap to the NGS
datasets used in the prior search. Sixteen out of 1,611,992
productive heavy sequences were compatible with the signature
version 2. After clustering, we co-expressed nine heavy chains
(Figure S2B, Dataset S6A) with light chains from MEDI8852,
56.a.09, and 54.f.01, respectively, and assessed the binding to
hemagglutinin of A/California/04/2009 (CA2009, H1 subtype)
and H3 A/Hong Kong/1/1968 (HK1968, H3 subtype) using a 96-
well transient expression ELISA assay (see Methods). We
observed that five of the nine heavy chain sequences (56%),
when paired with one of the three HV6-1 class antibody light
chains, have high binding towards CA2009 HA, and two of these
nine heavy chains, when paired with one of the three HV6-1 class
antibody light chains, have high binding toward HK1968 HA
(see Methods) (Figure 4B, Dataset S7). We assessed entry-
inhibition of eight antibodies, including five unique heavy
chains, with the highest ELISA signal using three group 1 and
three group 2 viral strains. All eight antigenic-positive antibodies
showed activity towards at least two different strains (Figure 4C,
Dataset S8), confirming the signature version 2-identified
A B

DC

FIGURE 3 | Cryo-EM structure of signature-identified antibody SRR2899884.46167H+MEDI8852L in complex with hemagglutinin, confirms similar modes of
recognition. (A) 3D reconstruction of SRR2899884.46167H+MEDI8852L in complex with HA trimer at 3.4 Å. (B) Cartoon representation of the complex. Inset shows
quality of density surrounding the Phe100 interaction. (C) Overlay of 56.a.09 (PDB:5K9K, green), MEDI8852 (PDB:5JW4, magenta), and signature identified antibody
SRR2899884.46167H+MEDI8852L in complex with HA. (D) Sequence alignment of CDR-H3 based on structure is shown above an overlay of CDR-H3 from the
three antibodies that highlights similar CDR-H3 recognition.
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antibody sequences to be functional in terms of neutralization.
Notably, version 0 signature did not identify any reads, and
version 1 signature identified the same set of sequences as
identified by version 2 signature (Table S1A).

In addition, we used versions 0, 1, and 2 HV6-1 class antibody
signatures to search for paired heavy and light chain sequences
from three different deep sequencing samples (Figure 4F). We
found no sequences satisfying version 0 signature and 22
sequence cluster representatives satisfying version 1 signature,
among which 13 also satisfying version 2 signature (Figure 4F).
Nine different light chain germline genes were observed among
the 22 sequence cluster representatives from version 1 signature
search, including KV1-39 and KV3-20 used by MEDI8852 and
56.a.09, respectively (Dataset S6B); version 2-selected antibodies
derived from 8 different light chain germline genes and showed
an increase in the fraction from KV-gene origin (Dataset S6B).
We constructed homology model for the 22 antibodies, analyzed
Frontiers in Immunology | www.frontiersin.org 8
the predicted binding energy between Flu HA and antibody, and
observed the 13 antibodies satisfying the version 2 signature to
have lower binding energy than the 9 antibodies satisfying
version 1 but not the version 2 signature (Figures 4G, H).

Finally, we used versions 0, 1, and 2 HV6-1 class antibody
signatures to search NGS samples of Naïve B cells and cord blood
(78, 82), and found that while there are no sequences that
satisfied version 0 signature, sequences that satisfied versions 1
and 2 signature were present in these NGS reads (Table S1B),
suggesting that antibodies with HV6-1 class antibodies
characteristics are present before immunization.
DISCUSSION

In this study we developed a pipeline to optimize antibody
sequence signatures based on iterative sequence search and
A B

D E

F G H

C

FIGURE 4 | Next generation HV6-1 antibody class signature (version 2) can identify functional HV6-1 class antibodies with improved accuracy. (A) HV6-1 class
signature version 2, with the modification from HV6-1 class signature version 1 highlighted in red. (B) ELISA binding of 9 HV6-1 class signature version 2-identified
heavy chain variants to hemagglutinin of CA2009 or HK1968, when paired with light chain of 56.a.09, 54.f.01, or MEDI8852. (C) Neutralization IC50 of five HV6-1
class signature version 2-identified heavy chains paired with select light chains when assessed with a pseudovirus assay. (D) Number of functional sequences
identified by each of the three signatures from the first (PRJNA176314/PRJNA301150/PRJNA324093) and second (Phs000666) sequence database search.
(E) Precision (defined as TP/(TP+FP)) for identification of functional sequences for the three signatures from the first and second sequence database search. TP, true
positive; FP, false positive. (F) Number of reads, and number of HV6-1 class influenza antibodies in paired heavy:light chain BCR sequencing. (G) Venn diagrams
showing overlaps of antibodies selected by signature version 1 and version 2. The number inside parentheses indicates the number of antibody clusters.
(H) Comparison of binding energy (in silico calculation) to hemagglutinin between antibodies selected by version 1 but not version 2 signature (left) and antibodies
compatible with both version 1 and version 2 signatures (right). Two-tailed Mann-Whitney test was used for statistical comparison.
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antigenic assessment. Specifically, we optimized the sequence
signature of HV6-1-class influenza antibodies and identified new
antibody members of the class by searching NGS dataset with
sequence signatures. We also showed the 46167H/MEDI8852L
antibody, of which the heavy chain was identified from the
sequence signature search, to neutralize diverse strains of
influenza A and to recognize hemagglutinin in a manner
similar to that of MEDI8852 and 56.a.09, despite having
differences in CDR-H3 length.

Comparing the prediction performances of different HV6-1
signature versions, we noticed that the version 1 and 2 signatures
had higher sensitivity in identifying functional HV6-1 class
antibodies as compared to the version 0 signature (Figure 4D,
Table S1A), and the version 2 signature had higher precision
than version 1 (Figures 4E–G, Table S1A). We were, however,
unable to assess the false negative rate of our search, as we could
not assess the function of all antibodies derived from HV6-1
germline gene, which are in the order of hundreds of thousands
per donor (Table S1C).

Another caveat of the study was that most of the sequencing
datasets we examined only had heavy chain sequences, not
paired heavy-light chain sequences. but in general either did
not find heavy chain sequences that matched the HV6-1-
sequence signature, or the light chain sequences were
incomplete. We did search on single cell sequencing datasets of
influenza vaccination, healthy and treatment of disease for HV6-
1 signature matched sequences (PMID:33287869, 32573488,
32866963); however, zero reads matched HV6-1-sequence
signature because of low number of IGHV6-1 germline
sequences in recovered cells. We paired heavy chains we
identified from the sequence signature search with light chains
from three of the known HV6-1 class antibodies, which could
result in increased false negative rate as the heavy chains were not
paired with their native light chain.

Notably, we observed that reverting the light chain residues to
germline version generally did not reduce binding affinity by
more than three-fold, while reverting the heavy chain residues, or
residues from both chains, to germline had a much greater
impact (Figure S5). In addition, while these antibodies
employed light chains in binding to hemagglutinin, their
contribution to binding are expected to be lower than that of
the heavy chain, based on binding interface area calculation (the
light chains contributed 40% and 27% to the total protein buried
surface area for 56.a.09 and MEDI8852, respectively). Therefore,
in the absence of pairing with functional HV6-1 heavy chains,
the antibody is unlikely to be active and its binding affinity to
hemagglutinin is likely to be too low to be detected by ELISA.

We also note that in a recently published study two clonal
types of HV6-1 antibodies, 54-1G05 and 54-4H03, were isolated
in a single donor (31), but only the 54-1G05 clonal type is
compatible with the sequence signatures developed here. Further
investigation is needed to develop a sequence signature that
would encompass the other distinct clonal type from that study,
54-4H03, which utilizes a divergent CDR-H3 mode of
recognition, which can nonetheless evolve to neutralize both
group 1 and group 2 strains of influenza A virus. In general,
Frontiers in Immunology | www.frontiersin.org 9
antibodies evolve diverse ways to recognize similar epitopes, with
this diversity contending with multidonor class reproducibility.
This contention, between diversity and reproducibility is
mirrored by the completeness and accuracy of class-base
sequence signatures.

Overall, the results suggest that the workflow developed in
this study can nonetheless be useful in improving the sequence
signature for multidonor antibody classes – both to revise the
signature to encompass more divergent class members, such as
was carried out here to include MEDI8552 in this study, or to
include 54-4H03, in a future study. It will be interesting to see
how improved HV6-1 class signatures can be integrated into the
development of class-based immunogens, which seek to elicit
broad humoral immunity against diverse influenza A
viral strains.
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