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Unveiling the nature of interaction 
between semantics and phonology 
in lexical access based 
on multilayer networks
Orr Levy1,6*, Yoed N. Kenett2,6, Orr Oxenberg1, Nichol Castro3, Simon De Deyne4, 
Michael S. Vitevitch5 & Shlomo Havlin1

An essential aspect of human communication is the ability to access and retrieve information from 
ones’ ‘mental lexicon’. This lexical access activates phonological and semantic components of 
concepts, yet the question whether and how these two components relate to each other remains 
widely debated. We harness tools from network science to construct a large-scale linguistic multilayer 
network comprising of phonological and semantic layers. We find that the links in the two layers 
are highly similar to each other and that adding information from one layer to the other increases 
efficiency by decreasing the network overall distances, but specifically affecting shorter distances. 
Finally, we show how a multilayer architecture demonstrates the highest efficiency, and how this 
efficiency relates to weak semantic relations between cue words in the network. Thus, investigating 
the interaction between the layers and the unique benefit of a linguistic multilayer architecture allows 
us to quantify theoretical cognitive models of lexical access.

Language is a core cognitive capacity in human communication and interaction. It involves many different lin-
guistic components, including phonology, morphology, syntax, semantics, and pragmatics1. Across the complex 
process that enables efficient communication via language, one crucial question is: How do humans comprehend 
and produce meaningful linguistic output? A critical assumption regarding the realization of such communica-
tion skills, is the availability of conceptual representation in the cognitive system, e.g., the ‘mental lexicon’2. Clas-
sic linguistic theories assume that in order to comprehend or produce meaningful linguistic output, one needs 
to access and retrieve information from their mental lexicon, known as lexical access. Lexical access involves 
multiple processes of representation, in particular a semantic word-meaning process and a phonological word-
form mapping process, that allow access and retrieval from the mental lexicon2,3. However, whether the relation 
between these two processes is serial, parallel, or interactive is still debated3,4. In the current study we develop 
a computational framework based on a multilayer network to investigate the relation and the mutual effect of 
phonology and semantics on each other, to directly study the relations between these two processes.

Linguistic theories on the relation between semantic and phonological components of lexical access propose 
either a modular, cascading, or an interactive process of these two components. The modular account argues for 
a detailed process between two discrete modular processes of lexical access5. According to this account during 
lexical access of a linguistic input, phonological processing takes place only after semantic processing is com-
pleted. The cascading account argues for a more relaxed modular account. According to this model, phonologi-
cal processing can initiate before semantic processing is complete. Finally, the interactive model2 theorizes that 
lexical access involves an interactive spread of information across a phonological layer and a semantic layer that 
can influence each other. This model argues that both layers are structured as a network and that information 
spreads across these two networks, related to the organization of concepts across both layers and to the strength 
of links that connect them3. Thus, for example, when the concept cat is activated, both semantically connected 

OPEN

1Department of Physics, Bar-Ilan University, Ramat‑Gan  52900, Israel. 2Faculty of Industrial Engineering and 
Management, Technion—Israel Institute of Technology, 3200003  Haifa, Israel. 3Department of Communicative 
Disorders and Sciences, University at Buffalo, Buffalo, NY  14214, USA. 4School of Psychological Sciences, 
University of Melbourne, Melbourne, VIC  2010, Australia. 5Department of Psychology, University of Kansas, 
Lawrence, KS 66045, USA. 6These authors contributed equally: Orr Levy and Yoed N. Kenett. *email: orr.levy@
gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93925-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14479  | https://doi.org/10.1038/s41598-021-93925-y

www.nature.com/scientificreports/

concepts such as dog and milk are automatically activated, but also phonologically connected concepts such as 
mat or hat are activated, and a selection mechanism selects the appropriate concept.

Empirical support for the interactive model has been shown in semantically mediated phonological priming, 
homophone processing6–8, and false memory studies9–12. In semantically mediated phonological priming studies, 
it was shown that participants were quicker to respond to targets following primes that were indirectly phonologi-
cally related6,7. In a homophone study, it was shown that participants are more likely to accept homophone foils as 
members of a semantic category when the correct homophone was a typical member of that category (e.g. plain 
is accepted as an air vehicle8). In false memory studies, the recall of a word that was not part of a prior learnt list 
of words (critical lure; cow in this example) is tested when the learned list included a hybrid of semantically and 
phonologically related words (e.g., chill, told, warm, old, shiver, called, winter, sold, freezer, coal, snow, polled9). 
These studies show higher false memories in these hybrid lists compared to pure lists of either kind10. Recently, 
such higher false memories to hybrid lists have been argued to be related to the interactive model11. According 
to this theory, this effect is due to additive activation in both semantic and phonological networks related to the 
critical lure, allowing this activation to surpass a threshold for output11.

Thus, theoretical and empirical evidence from language and memory research demonstrate the interaction of 
phonological and semantic processing, highlighting the need to further elucidate the nature of their interaction. 
However, such theories are largely indirectly examined via behavioral studies (but see13). In the current study, we 
apply a computational network science approach to examine the interaction between phonological and semantic 
networks. Network science is based on graph theory, providing quantitative methods to investigate complex sys-
tems as networks14. Application of network science methodologies to study cognitive systems have been recently 
gaining recognition, with an emphasis on studying language and memory systems15–17. While such network 
applications have led to unique insights in studying separately phonology18 and semantics19, they primarily focus 
on one layer (phonological or semantic) at a time and do not examine the interaction between the two levels.

The multilayer network approach allows examining a network where the same set of nodes are connected 
differently across layers of networks20–22. It has been successfully applied in different domains, such as robust-
ness of infrastructure, science of science and game-theoretic dilemmas, among many others22. Recently, mul-
tilayer network analysis has been applied in studying language, mainly to quantify language development and 
impairment23–26. In this line of research, the linguistic multilayer network includes four layers, roughly mapping 
onto layers of phonology—one layer—and semantics—three layers based on free associations, synonyms, and 
taxonomies27. Thus, while other linguistic components such as syntax and morphology can be added as additional 
layers when suitable data will be available, currently our work focuses on a phonological-semantic linguistic 
multilayer network where suitable extensive data exists.

In the present study we apply a multilayer network approach to directly analyze and quantify the relation 
between phonological and semantic networks, motivated by the interactive model of language processing3. We 
do so by constructing a large-scale multilayer network comprised of empirical phonological and semantic lay-
ers (Fig. 1), for a large-scale network of about 9000 words. These words were used in a unique, multi-year big 
data free association data acquisition project28. While textual corpus based methods exist to estimate semantic 
networks29, analyzing behavior-based data such as collected via free association data is argued to better repre-
sent the ‘mental lexicon’30,31. First, we examine the similarity between the two layers by measuring their link 
overlap (Fig. 2). Next, we measure the effect of adding non-overlapping links from one layer to the other (Fig. 3). 
Finally, we examine the potential benefit of combining both layers as a multilayer network on lexical access, by 
measuring the networks’ average distances of the single layers versus the multiplex (Fig. 4). Past research has 
demonstrated the role of shorter distances on cognitive processing in typical and clinical populations using 
semantic, phonological, and phonological-semantic networks26,31–34. Thus, we expect to find optimal distances 
in our multilayer network compared to independent phonological and semantic layers. We directly test this 
prediction by comparing how distances in our multilayer network better captures Reaction Time data collected 
in a previous study32 (Fig. 5). Our analyses aim to elucidate the different proposed theoretical relations between 
phonology and semantics in lexical access (serial, parallel, or interactive).

Materials and methods
Data collection.  Data analyzed is a subsample of a large free association data collection project in English28. 
Ethics approval was obtained from the KU Leuven ethics committee (ref. G-2014 07 017), obtained by co-author 
Dr. Simon De Deyne. All participants provided their informed consent  to participate in this data collection 
study28. Importantly, all analysis methods we conducted in this study preserved and respected the anonym-
ity of participants that took part in the data collection study, and were carried out in accordance with relevant 
guidelines and regulations by the KU Leuven Ethics Committee28. This online data collection project follows a 
similar free association data collection project previously conducted in Dutch35, and was approved by the KU 
Leuven ethics committee. In this online project, participants were presented with cue words and were required 
to generate three associative responses for each of the cue words separately, for a total of 14 to 18 cue words 
Although data collection in this project continued till 2018, we only analyzed a subset of the data. Our analysis 
included data collected from the beginning of data collection (2011) till the end of 2015, when we started work-
ing on this project. However, our analysis includes most of the entire data collected, data collected for 10,500 out 
of 12,000 cue words. Our dataset includes cues and associative responses totalling 10,500 words, generated by 
a total of 73,256 participants (mean age of 36 years [SD = 16], 61% females). Words were removed if they were 
non-appropriate words (such as offensive words), non-American English version words, proper nouns, and non-
sensical words in English. Furthermore, similar words in plural and singular forms were merged and encoded as 
singular. This process led to a total of 8,963 words that were included in the final analysis.
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Phonological network estimation.  The representation of the phonological layer was based on a method 
developed to analyze phonological networks based on phonological similarity36,37. First, the written words were 
converted into a computer readable phonological transcription. Next, links were placed between words accord-
ing to the Levenshtein edit distance of 1—one word differed from the other by either adding, deleting, or sub-
stituting only one phoneme37. Only pairs of nodes with an edit distance of 1 were retained in the final adjacency 
matrix, leading to a subset of nodes (4980 words) from the original list of cue words (8963 words). The links 
between all pairs of cue words defines a symmetric similarity matrix whose (i, j) element denotes the phonologi-
cal similarity between words i and j. This matrix can be studied in terms of an adjacency matrix of an unweighted, 
undirected network, where each word is a node and a link between two nodes (words) represents a phonological 
edit distance of one between them. As all edges are unweighted and uniformly equal to one, distance between 
word pairs in the phonological network can be measured by counting the number of links that separate them.

Semantic network estimation.  The representation of the semantic network was based on a method 
developed to analyze semantic networks based on free associative responses generated to cue words38,39. Specifi-
cally, the more similar associative response that are generated to a pair of cue words, and the larger number of 
participants generating these associative responses to these cue words, the stronger the link between the word 
pair. The calculation of a link between two words (which represents the semantic similarity between them) 
was achieved in the following way: For each pair of cue words, we analyzed only the associative responses gen-
erated to them (similar to the method used in 1). For each of these matched associative responses, we sum 
the lower amount of participants generating them: Link

(

Ci ,Cj

)

=

∑Associations
k=1 min(#P_CiA(k), #P_CjA(k)) , 

where Associations is the total number of associative responses given to cue words i and j, and #P_C!/!A k is the 
amount of participants in the sample generating the k’th associative response to cue words i and j. Our method 
accounts for not only the correlation of associations based on the overlap of associative features to a pair of cue 
words, but also the number of participants generating these overlapping associative features. In order to filter 
noisy links that were a result of one association or a result of an overlapping association that was a result of a 
single participant’s response, the contribution of an overlapping association to the link strength of each pair of 
cue words was considered only if more than one participant contributed to the overlapping association.

Network construction.  Using free association data generated to the cue words, we constructed a weighted 
undirected semantic network39, where nodes represent these cue words and links are defined by the similarity 
of responses generated between cue words. From the same cue words used to construct the semantic network, 
we constructed an unweighted phonological network36. The semantic layer is very dense, with its giant compo-
nent comprised of 8963 nodes and over 12 M links, whereas the phonological layer is very sparse, with its giant 
component comprised of 4980 nodes and 16,943 links (SI Figs. 1, 2), both from the about 44 M possible links 
(Fig. 1A). While both layers include these common 4980 nodes, some links connecting these nodes overlap 
across the layers, and some do not (Fig. 1A). For example, the link between the pair of cue words incense and 
intense is overlapping (exists in both layers) while the link between the cue words intent and indent is non-
overlapping, since these two cue words only have a direct link in the phonological layer (Fig.  1B). As such, 
this defines a multilayer network, unlike a multiplex network in which there is full node alignment across the 
layers40. When combining the two layers into a multilayer, new paths between cue words across the two layers 
arise. These new paths usually shorten the distance between pairs of nodes in each of the layers separately.

First, we analyzed the overlapping links regions (area I in Fig. 1A), i.e., testing the similarity between the 
two layers by analyzing the link overlap (Fig. 2). We then tested the interaction between the two layers (area II 

Figure 1.   Multiplex network of semantic and phonological layers. (A) Illustration of the overlap across the 
(weighted) semantic layer and the (unweighted) phonological layer. (B) Illustration of the multiplex network 
with nodes and links across both semantic and phonological layers.
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in Fig. 1A) by analyzing the effects of adding non-overlapping links from one layer to the other (Fig. 3). Finally, 
we examined the advantage of a multilayer network architecture when compared to single-layer phonological 
and semantic networks (Figs. 4, 5).

Phonological‑semantic overlapping link analysis.  We computed the correlations of links across the 
two layers41. To do so, we calculated the fraction of overlapping links across the two layers and compared it to 
the fraction of overlapping links in a random network. We take advantage of previously developed methods 
to compare between links across different layers in multilayered networks23,42, adapting these methods to also 
account for differences in path length of these links.

First, we calculated the overlap of the phonological links within a moving window of increasing semantic link 
strengths. We sorted the semantic links in an ascending order according to their strength. Then, we divided the 
semantic links into equal sized windows of 100,000 links. The size of the window was set in a way that allowed 
a high resolution for weak links and strong links (which are much less common). In order to test the statistical 
significance of the overlap of the phonological links to that of the semantic links within each semantic strength 
window, we randomly chose 10,000 semantic links and calculated the fraction of overlapping semantic links and 
phonological path distances. Additionally, in order to test the strength of the overlap of the phonological net-
work to the semantic network within each semantic window, we assessed the overlap between the phonological 
network with a random network—with a similar number of nodes and links to the phonological network—and 
with the semantic network (SI Fig. 3 shows the overlap without the division by the randomly chosen network 
overlap). Finally, we divided the fraction of phonological-semantic overlap with the fraction of random-semantic 
overlap. We repeated this process for 100 iterations and calculated the mean overlap value and its standard devia-
tion. We conducted the same analysis for different phonological link distances of one to three and normalized 
each phonological distance with their number of links.

Second, we measured the fraction of overlapping semantic links from three equally sized groups with different 
semantic strengths (weak, medium, strong) for a given phonological path distance. For each phonological path 
distance, we randomly chose 3,000 phonological links and calculated the fraction of overlapping weak, medium, 
and strong semantic links. We repeated this process for 100 iterations and calculated the mean overlap fraction 
and its standard deviation. We compared this overlap of a given phonological path distance with a random net-
work. This random network was generated by permutating the semantic links, thus retaining the same number 
of nodes and edges while removing any original node-link relation.

Phonological‑semantic non‑overlapping link analysis.  We analyzed the effect of the non-overlap-
ping phonological link (shortest path) distance with different distances on the semantic layer by adding non-
overlapping phonological links to the semantic layer, compared to adding randomly chosen links, and measuring 
the relative path distances that were reduced in the semantic layer. When adding non-overlapping phonological 
links to the semantic layer, we have to decide how to refer to the strength of the semantic links compared to the 

Figure 2.   Phonological and semantic overlapping links analysis. (A) The overlap ratio between the number 
of phonological links within semantic links and the number of the overlapping shuffled phonological links 
within semantic links, as a function of semantic weight, for different phonological paths distances (1, 2, and 3 
in the figure). Each point represents the ratio of the average number of overlapping phonological links (for a 
specific phonological path distance) divided by the average number of shuffled phonological links within the 
semantic window (bars denote standard error). These averages were obtained from 100 iterations per window. 
(B) Fraction of overlapping semantic links of different strength with phonological links of different phonological 
distances. The fraction is with respect to the phonological network. For each phonological path distance, we 
compared the average fraction of overlapping groups of semantic links of different strength – strong, medium, 
weak links and shuffled semantic links with phonological links (bars denote standard error). These averages 
were obtained from 100 iterations per group. Note that for phonological path distance one, the fraction of 
overlapping phonological linked with all semantic strengths is close to 0.5.
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phonological links. Thus, we analyzed the path distances that were reduced over a filtered unweighted semantic 
network, where we kept the top 1% of the semantic links and converted the semantic layer from weighted to 
unweighted. We also tested the effect on the top 3% and 5% of the semantic links and found similar results (SI 
Figs. 5, 6). For each of the phonological path distances (from one to six), we randomly chose half of the non-
overlapping phonological links (4439 links) and separately added them to the semantic layer. We then randomly 
chose a similar number of links (4439 links) from the theoretical fully connected semantic network (~ 44 M 
links), but which do not exist in the empirical data (~ 12 M links) or were not the added non-overlapping pho-
nological links. We repeated this process for 100 iterations and in each iteration calculated the sum of path 
distances that were reduced.

We calculated the distribution of path distances that were directly reduced, defined as the number of pairs 
of nodes that their path distance was reduced directly by the added links. We computed this reduced distance 
effect from any original path distance to path distance of one, and path distances that were indirectly reduced, 
i.e., reduced path length between a pair of words that is a result of new paths that appeared in the network due 
to the addition of new links. Then, we calculated the ratio between the sum of path distances that were reduced 
due to the addition of the non-overlapping phonological paths with different distances on the semantic layer 
and that of the addition of the randomly chosen links. Finally, we normalized the sum of reduced distances due 
to adding phonological links in each iteration by the mean sum of reduced path distances of randomly chosen 
links. Thus, the closer this fraction is to one, the weaker is the effect of adding non-overlapping phonological 
links of a specific distance. We also calculated the ratio between the number of pairs of nodes where their path 
distance was reduced directly by the non-overlapping phonological links and those of the randomly chosen links. 
Thus, we obtained a relative effect of the addition of non-overlapping phonological links on the semantic layer.

Figure 3.   The effect of adding non-overlapping phonological/semantic links to the semantic/phonological 
layer. (A) The ratio between the sum of distances that were reduced in the semantic layer by adding non-
overlapping phonological links of different distances and by adding randomly chosen links (adding random 
links corresponds to 1.00 in the x-axis). The smooth kernel histogram distribution is shown for 300 realizations. 
The rectangles represent the mean and standard deviation of the specific phonological-distance distributions. 
(B) Ratio between the number of semantic path distances that were reduced to a distance of one due to adding 
non-overlapping phonological links and the analogues for adding random links. The x-axis is the specific 
semantic path distances that were reduced. Y-axis: Ratio of Path Shortening (RPS). (C) The ratio between the 
sum of distances that were reduced in the phonological layer by adding non-overlapping semantic links from 
different strengths (weak, medium and strong) and by adding randomly chosen links. The distribution is shown 
for 300 realizations. The rectangles are colored according to the phonological path distance represents the mean 
and the standard deviation of the distributions. (D) Ratio between the number of phonological path distances 
that were reduced to a distance of one due to adding non-overlapping semantic links and the analogues for 
adding random links. The x-axis is the specific phonological path distances that were reduced. Y-axis: Ratio of 
Path Shortening (RPS).
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Figure 4.   Comparing the distances of the semantic, phonological and multilayer networks as a function of 
the strength of the semantic links. (A) We compared the mean distances of the phonological network (P), the 
semantic filtered network (S), a multilayer composed of phonological and semantic filtered layers (M), and 
a random network with the same degree (R). All four networks consisted of the same set of nodes and have 
the same average degree. (B) Density plot of pairwise distances of the phonological network and the semantic 
network of top percentile of strongest semantic links. Note that the semantic network has typically longer 
distances than the phonological network. (C) Density plot of distances of the phonological network and the 
semantic network of the top 90% of strongest semantic links. Note that semantic network has typically shorter 
distance. (D) Comparison of the fraction of inter-links (inter community links) of the semantic network as a 
function of the semantic strength for the semantic (S), phonological (P) and random (R) networks. We found 
that phonological links and weak semantic links tended to be inter-community links more than strong semantic 
links, which explains the distance effect of the groups. (E) The average distance of the multilayer phonological-
semantic network for different percentages of top semantic links (99%, 96% and 93%) as a function of the 
fraction of the semantic links. While in (A) we measured only the case of 50%, here we tested different fractions 
and we found that the minimal (optimal) average distance in the multiplex network of stronger semantic links 
was obtained for larger fractions of phonological links.

Figure 5.   Multilayer network is more viable than the semantic network. RTs for relatedness judgments in the 
Kumar, Balota, and Steyvers32  network (Green), semantic network (Orange) and multilayer network (Blue). 
Error bars represent standard deviations of the average RT. The error bar of the Kumar, Balota, and Steyvers32 
network represents the standard deviation of averages of subsets of RTs.
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Finally, we measured the effect of adding non-overlapping semantic links on the phonological layer. We added 
non-overlapping semantic links from three different groups of semantic strength (weak, medium, strong) that 
are maximally separable, and compared their relative effect to randomly chosen links. Here, for each iteration, 
we chose randomly ~ 800 semantic links from each group (the three groups of semantic strength and random 
group). The number 800 was chosen in order to maintain a similar proportion of phonological links added to the 
semantic network (4439/ ~ 100,000 links—the size of the semantic network) and added them to the phonological 
layer. We then randomly chose a similar number of links from a theoretical fully connected phonological layer 
that does not exist in the empirical phonological layer (18 K links) and were not the added non-overlapping 
semantic links. We repeated this process for 100 iterations and in each iteration calculated the sum of path dis-
tances that were reduced. Then, we calculated the ratio between the sum of path distances that were reduced due 
to the addition of the non-overlapping semantic links with different strengths on the phonological layer and the 
sum of path distances that were reduced due to the addition of the randomly chosen links. We also calculated 
the ratio between the number of pairs of nodes where their path distance was reduced directly by the semantic 
links and those of the randomly chosen links (each group separately). Thus, we obtained a relative effect of the 
addition of non-overlapping semantic links on the phonological layer.

Phonological‑semantic multilayer analysis.  We examined the benefit of the multilayer network by 
comparing multiplex, semantic, phonological, and a random network, consisting of the same set of nodes and 
same number of links. We compared the average distances of these networks, and how it varies as a function of 
the strength of semantic links (based on a moving non-overlapping window, from the strongest to the weakest 
link). To conduct this analysis, first, we filtered the links of the semantic network to the same average degree 
and to the same number of nodes that overlaps with the phonological network (4980 nodes). We keep the same 
nodes in both layers by applying a minimal spanning tree, which identifies the minimum number of links that 
connects this subset of nodes. Next, according to a moving percentile of link strength in the semantic network, 
where in each step we include different links in the semantic network, we add semantic links until we get to the 
same number of links (16,943) and average degree (3.5) as in the phonological network. We used a resolution of 
0.5 percent—in each step when we include weaker links. This results in two layers with the same mean degree 
and the same number of links and nodes. In order to compare the distances of the semantic network, which are 
weighted, and the phonological network, which is unweighted, we transformed each semantic network from 
weighted to unweighted. In order to create the multiplex semantic-phonological network, we merged the filtered 
semantic network with the phonological network. Then, in order to get to the same degree, we used a minimal 
spanning tree approach43. The result of this process was a multilayer network with the same set of nodes as the 
phonological and semantic networks, yet with lower degree. Additionally, at this point we have a non-equal 
number of links in the semantic and phonological network. To correct these differences in links and average 
degree, which affects the network distance, we added semantic and phonological links to get to the same number 
of semantic and phonological links in the multilayer network, and to have the same average degree in the pho-
nological and semantic networks. After constructing a phonological network, semantic networks and multilayer 
networks (from various semantic strengths), we calculated the average distance of all possible pairs of nodes in 
each of the networks.

In order to test the effect of the multilayer network structure on overall distances in the network, including 
the distribution of semantic and phonological links on this semantic network, we applied a community detec-
tion analysis using the Louvain community detection method44, with Gamma = 1 (Gamma sets the resolution of 
the community detection method)44. We applied the community analysis on the semantic unweighted filtered 
network (of the top 10% of links). Then, we compared the fraction of inter-community links (inter-links) of the 
different networks—semantic networks from different strengths, phonological network, and random network 
with a similar size.

Next, we analyzed the effect of using different proportions of semantic-phonological links on the average 
distance of the multilayer network. In order to construct a multilayer network with different proportions of 
semantic and phonological links, we merged the phonological network with the semantic unweighted network 
(from a specific window of semantic strengths). Using a minimal spanning tree approach, we achieved a specific 
proportion of semantic and phonological links (this proportion depends on the semantic strength). According 
to this specific proportion, we added semantic and phonological links until we get to the same degree of the 
phonological network, with a range of proportions of between 0.2 to 0.76 semantic links. With a resolution of 0.05 
of the semantic strength, we measured the average distance of the multiplex network. We applied this analysis on 
different multilayer networks that were based on three different semantic networks varying in semantic strength 
(top 1%, 4%, and 7% of strongest links).

Finally, we examined the generality and validity of the multilayer network architecture having optimal path 
distances by reanalyzing data collected by Kumar, Balota, and Steyvers32. In their study, the authors estimated a 
large-scale semantic network based on the University of South Florida Free Association Norms, generated to a 
list of 5000 cues45. Aiming to replicate and extend a previous study by Kenett et al.31, Kumar et al. had participants 
make relatedness judgments to pairs of cue words that varied in the semantic distance between the words based 
on the path length in their semantic network for those two words32. The authors recorded participants decisions 
(related vs. non-related) and the reaction time (RT) by the participants to make their decisions. In line with the 
findings of Kumar et al.32 and Kenett et al.31 who found a quadratic relation between path length in semantic 
networks and participants’ RT, we focused our analysis only on path length of 1–4. We examined how our mul-
tilayer network architecture relates to the data collected by Kumar et al. in the following way: First, we identified 
links from the Kumar et al. semantic network that corresponded with our semantic network. Next, to compare 
the RTs of Kumar et al. network with our semantic and multilayer networks, we constrained our semantic and 
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multilayer networks so that their average degree matches the average degree as in the Kumar et al. network32, and 
degree distribution with high similarity (SI Fig. 7). We do so by applying a spanning tree on the semantic layer 
(that includes all links with strength larger than 2) to keep shared nodes with the phonological layer. Next, we 
randomly added semantic links to the semantic layer to achieve the same average degree (11.7) of the semantic 
network estimated by Kumar et al.32. Our multilayer network was constructed by adding phonological and 
semantic links at a 20%–80% ratio. We repeated this process for five times (constructed from different links at 
each iteration) and computed the average RT for each path length for each of these types of networks (semantic 
and multilayer networks) over these five iterations. The semantic network estimated by Kumar et al.32, however, 
has been provided after construction, thus we could not conduct a similar iterative process on it. Therefore, to 
construct a distribution of semantic networks from this network, we randomly selected 50% of the links from 
this network and re-iterated this process ten times. Such an approach matched the three types of networks—our 
semantic and multilayer networks, and the semantic network from Kumar et al.32—and allowed us to directly 
compare the effect of path length in these networks on RT, as collected by Kumar et al.32.

Results
Phonological‑semantic overlapping link analysis.  To examine the potential overlap between the two 
layers, we conducted two complementary analyses: first we examined the tendency of semantic links of different 
strength to have corresponding phonological links (Fig. 2A). We then examined the tendency of phonological 
links of different distances to have corresponding semantic links (Fig. 2B). In both analyses, we compared the 
fraction between the overlapping links in the two layers and random links (random network). The random links 
were constructed by randomly permutating pairs of phonological/semantic links so that nodes in the semantic/
phonological networks retained their original degree, but their links were completely shuffled. The random links 
were not expected to have any correspondence with the semantic/phonological network.

To conduct our analysis, we first computed the phonological path length between all possible pairs of nodes, 
according to the shortest distance between them46. For example, in the phonological layer the following nodes 
are connected to each other: intend → intent → invent → invest (Fig. 1B). As such, this chain includes the 
following phonological links between pairs of nodes with varying distances: Phonological link of distance 1—
[intend, intent], [intent, invent], [invent, invest]; Phonological link of distance 2—[intend, invent], [intent, invest]; 
Phonological link of distance 3—[intend, invest]. We conducted this classification process for all possible pairs 
of nodes in the phonological layer to compute phonological links of all possible distances. Next, we sorted the 
semantic links in an ascending order according to their link strength. We divide them into equally sized windows 
of 100,000 semantic links (“Materials and methods”). For every phonological path distance, within each window 
of semantic links, we calculated the fraction between the number of overlapping phonological links within the 
semantic links and the number of overlapping shuffled phonological links within the semantic links, for a set of 
10,000 random semantic links (out of the 100,000 links), iterated 100 times (Fig. 2A).

To examine the effect of phonological distance on this overlap ratio, we conducted a one-way ANOVA. This 
analysis revealed a significant main effect of phonological distance, F(2, 57) = 22.03, p < 0.001, η2 = 0.45; for 
phonological path distances of one to three, the overlap ratio is significantly higher than random (Fig. 2A). For 
example, for phonological distance of one, the probability of phonological links to overlap with semantic links 
in the window with the highest semantic strength is four times larger than in its control random network (SI 
Fig. 3a). Additionally, when measuring the fraction ratio of each phonological distance as a function of semantic 
strength, we find that for phonological distance of one, stronger semantic links have significantly higher overlap 
values than those of phonological distance two and three (all p’s < 0.001, Fig. 2A). Thus, strong semantic links 
have a higher probability to have a matching phonological link with short distances.

Next, we examine the inverse question, namely what is the probability that a phonological path of varying 
distances will have a matching semantic link of varying semantic strength (Fig. 2B). To calculate the fraction 
of overlapping semantic links with different phonological distances, we divided the semantic links into three 
equally sized groups (weak, medium, strong; “Materials and methods”). Then, we computed the fraction of 
overlapping semantic links (from the different groups) with the phonological paths of different distances. From 
each phonological path distance, we randomly chose 3,000 links and calculated the fraction of overlap between 
phonological and semantic links from the three different semantic strength groups, compared to the fraction of 
overlap with links from the random network. We iterated this process 100 times.

To examine the effect of semantic strength on this overlap ratio, we conducted a one-way ANOVA (Fig. 2B). 
This analysis revealed a significant main effect of semantic strength F(3, 2800) = 8192, p < 0.001, η2 = 0.90: Stronger 
semantic links have a higher overlap ratio (all p’s < 0.001). Our analysis also revealed a significant main effect of 
phonological distance, F(6, 2800) = 2081, p < 0.001, η2 = 0.82: Shorter phonological distances have a higher overlap 
ratio (all p’s < 0.001). Finally, our analysis revealed a significant interaction effect between phonological distance 
and semantic strength, F(18, 2772) = 1374, p < 0.001, η2 = 0.90. This interaction stems from differential effects of 
increasing phonological distance and varying semantic strength on the overlap of phonological-semantic links, 
compared to a random network: For strong and medium strength semantic links, as phonological distance 
increases, the overlap with semantic links decreases (all p’s < 0.001).

These findings suggest that phonological paths with shorter distances are highly correlated to strong semantic 
links, indicating that phonologically similar words have higher probability to also have a strong semantic rela-
tion (Fig. 2A). Furthermore, strong semantic links have a higher probability to have a short phonological path, a 
probability that decays with phonological distance (Fig. 2B). For higher phonological path distances, the overlap 
of strong semantic links becomes relatively closer to randomly chosen links.
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Phonological‑semantic non‑overlapping link analysis.  Next, we examined the relation between the 
two layers focusing on non-overlapping links. Non-overlapping links occur when two nodes are connected via 
only a phonological or a semantic link. Since these links exist in one layer of the multiplex and not in the other, 
they could be independent of each other. To test this, we added non-overlapping links from one layer to the other 
and measured their effect on reducing the overall distances between nodes in the layer, compared to the effect 
of adding random links.

First, we add non-overlapping phonological links (of various distances) to the semantic layer and measured 
their effect on reducing the overall distances between nodes in the semantic layer (Fig. 3A). Since the semantic 
network is highly connected (having about 12 M links which is over 30% of all possible links), the distances in 
the semantic network are very short (SI Fig. 1c). Thus, the effect of adding non-overlapping phonological links 
to the full semantic network is small and difficult to observe. Therefore, we analyzed the effect of adding non-
overlapping phonological links on the distances of the semantic layer comprised of the top 1% of the strongest 
semantic links, which has a broader distribution of distances. Such an effect is compared to adding randomly 
chosen links (which do not overlap with semantic and phonological links). We iterated this analysis 100 times 
(Fig. 3A). A one-way ANOVA revealed a significant main effect of phonological distance F(5, 594) = 2792.49, 
p < 0.001, η2 = 0.96. Phonological links of distance one had a significantly larger effect on reducing distances 
compared with random links. Additionally, we found a gradual decrease of this effect SD phonological distance 
increased to six (phonological distance of six is like random), suggesting that the relation of the phonological 
layer to the semantic layer gradually weakens with phonological distance (all p’s < 0.001).

Next, we examined what drives this effect, by investigating which semantic path distances were reduced as a 
result of adding non-overlapping phonological links, compared to adding randomly chosen links. We calculated 
the ratio between the number of pairs of nodes in the semantic layer where their path distance was reduced to 
one, due to adding non-overlapping phonological links (of one to six) and due to the addition of random links 
(Fig. 3B). A two-way (phonological distance x semantic distance) ANOVA revealed a significant main effect of 
semantic distance, F(4, 2970) = 195.34, p < 0.001, η2 = 0.21, a significant main effect of phonological distance, 
F(5, 2970) = 4.91, p < 0.001, η2 = 0.01, and a significant interaction between phonological and semantic distances, 
F(20, 2970) = 10.84, p < 0.001, η2 = 0.07. We found that for short semantic distances (< 4), adding non-overlapping 
phonological links significantly reduced more distances than by adding random links (ratio scores higher than 
one). For semantic distances above four steps, adding non-overlapping phonological links reduced fewer dis-
tances than by adding random links (ratio scores lower than one). Furthermore, this effect was stronger for 
shorter phonological distances (all p’s < 0.001). This demonstrates that phonological and semantic links are not 
independent even within the ensemble of non-overlapping links, which indicates a strong interaction between 
phonological and semantic layers. To examine the robustness of our analysis, we conducted a similar analysis 
using the top 2% and top 3% of the strongest semantic links (SI Fig. 4). These additional analyses revealed similar 
results to those found for the top 1% (SI Figs. 5, 6).

Next, we examined the effects of adding non-overlapping semantic links of varying strength to the phonologi-
cal layer. We used the same methodology as before and measured the effect of adding non-overlapping semantic 
links on reducing path distances in the phonological layer, compared to adding randomly chosen links. Since 
the semantic network is very dense, we compared the effect of adding three well separated groups of semantic 
links from various strengths (weak, medium, strong; “Materials and methods”) to the effect of adding randomly 
chosen links. We reiterated this analysis 300 times (Fig. 3C). A one-way ANOVA revealed a significant main effect 
of semantic strength F(2, 897) = 364.564, p < 0.001, η2 = 0.45; adding non-overlapping semantic links reduced 
the overall distances in the phonological layer more than by adding random links. We found a gradual effect 
of semantic links according to their strength on reducing distances compared to random links (all p’s < 0.001); 
strong semantic links have the smallest effect on distance reduction, suggesting that the relation of the semantic 
layer to the phonological layer is gradually decreasing with decreasing semantic strength.

Finally, we examined what drives this effect by investigating which specific phonological path distances were 
reduced as a result of adding each of the different groups of semantic links, compared with adding randomly 
chosen links. This was achieved by calculating the ratio between the number of pairs of nodes in the phonological 
layer where their path distance was reduced from any path distance to one (due to the addition of the semantic 
links) and their analogues from adding random links (Fig. 3D). A two-way (semantic distance ×x phonological 
distance) ANOVA revealed a significant main effect of phonological distance, F(5, 5382) = 309.61, p < 0.001, 
η2 = 0.22, a significant main effect of semantic distance, F(2, 5382) = 38.46, p < 0.001, η2 = 0.01, and a significant 
interaction between phonological and semantic distances, F(10, 5382) = 43.48, p < 0.001, η2 = 0.08. We found that 
strong semantic links reduced shorter phonological distances to one significantly more than random, and that 
this effect was reduced as semantic strength decreased (all p’s < 0.001). For example, the effect of adding strong 
semantic links in reducing phonological distance of two to one is 1.3 times random, whereas adding medium 
semantic strength is 1.2. Thus, semantic links tend to affect short phonological path distances; the stronger the 
semantic link, the stronger this effect is. These findings correspond to our findings on adding non-overlapping 
phonological links to the semantic layer (Fig. 3A,B), and further demonstrates the strong interaction between 
the semantic and phonological layers.

Phonological‑semantic multilayer analysis.  After analyzing the similarity of the semantic and phono-
logical layers and the interactions of these layers with each other, we examined the potential advantages of com-
bining both layers into a multilayer network on lexical access (“Materials and methods”). To do so, we compared 
for the same common nodes and the same number of links, the average distance between pairs of cue words in 
the semantic network, in the phonological network, and in a combined, multilayer phonological-semantic net-
work (equal number of total links), as a function of semantic strength (Fig. 4A). To this end, we calculated the 
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average distances (Fig. 4A) of the semantic, phonological, multilayer and of a random network from the same 
nodes with similar degree (for detailed process of how these networks were formed and processed, see “Materials 
and methods”). We conducted this process from the window of the strongest semantic links all the way down to 
the window of the 90th percentile of strongest semantic links. At the window of 90th percentile semantic links, 
the semantic network average distance was indistinguishable from the random network average distance, as 
well as the multilayer network (Fig. 4A). We illustrate a pairwise comparison of distances in the semantic and 
phonological pairs of nodes using a heatmap for the top 100% (Fig. 4B) and top 90% (Fig. 4C) of semantic links, 
which represents the two extreme points in Fig. 4A.

To examine the effect of the networks on their mean distance across the various semantic links strengths, we 
conducted a one-way ANOVA, which revealed a significant main effect of network, F(3, 60) = 59.22, p < 0.001, 
η2 = 0.75. This effect is driven by the difference in the mean overall distances in the phonological (5.66), semantic 
(4.32), multilayer (4.19) and random (4.11) networks (all p’s < 0.001). Furthermore, we found an effect of the 
strength of the semantic links on the mean overall distance of the semantic, multilayer, and random networks, 
compared to the phonological network: While the average distance (6.98) of the semantic network with the 
strongest links (100%) was higher than that of the phonological network (5.66); when moving to slightly weaker 
semantic links (99%) the average distance of the semantic network (4.87) becomes smaller than that of the pho-
nological network (5.66). In fact, taking weaker semantic links, of the top 90%, leads to an average distance that 
is comparable to a random network (Fig. 4A).

To better understand the origin of these results we apply the Louvain community detection method44 to 
examine the structure of the semantic network. This was done in order to test the effect of the network structure 
on overall distances in the network (“Materials and methods”). We found over 30 communities with between 50 
to 600 nodes. Next, we tested where the phonological, semantic, and randomly chosen links tended to appear—
within communities (intra-links) or between communities (inter-links). We found that phonological links and 
weak semantic links, almost as random links, were mostly inter-links (fraction of about 0.96 are interlinks) and, 
in marked contrast, we found that the very strong semantic links were mainly intra-links (Fig. 4D). Furthermore, 
the relative fraction of the semantic inter-links increased with the decrease of semantic link strength.

Next, we examined the effect of using different fractions of semantic and phonological links in the multilayer 
network, while keeping the same number of links. We measured the average distance of the multilayer phono-
logical-semantic network for different percentages of the top semantic links (99%, 96% and 93%) as a function 
of the fraction of the semantic links (Fig. 4E). We found that there was an optimal fraction of phonological and 
semantic links in terms of achieving a minimal (optimal) average network distance in the multilayer network: the 
optimal fraction of semantic links was higher for networks with weaker semantic links, suggesting that the role 
of phonological links is more vital in multilayer networks with stronger semantic links. Furthermore, we found 
that the overall optimal distance decreased with the decrease of semantic strengths of the multiplex (Fig. 4E).

Finally, we compared the RTs as a function of network distance of the three networks: the semantic network 
estimated by Kumar et al., our estimated semantic network, and our multilayer network (Fig. 5). Across all 
three networks, the RTs showed similar patterns. To compare RT effects for each path length across the three 
networks, we conducted a Kruskal–Wallis independent samples test. This analysis revealed a significant effect 
for path length of two, H(2) = 12.59, p < 0.001. To examine what drives this significant main effect, we conducted 
a Mann–Whitney U independent samples test. This analysis revealed a significant difference between the RT 
of our multilayer network (mean = 756.85 ms, SD = 3.68 ms) and our semantic network (mean = 767.85 ms, 
SD = 7.93 ms), U = 0, p < 0.001, as well as the Kumar et al. semantic network (mean = 761.94 ms, SD = 1.99 ms), 
U = 2, p < 0.001. Finally, this analysis also found a significant difference between our semantic network and the 
semantic network of Kumar et al., U = 7, p < 0.03. These results suggest that our multilayer network facilitates 
shorter RT times, which are considered to be related to cognitive effort.

Discussion
Language is a complex phenomena, involving multiple linguistic compnents, such as syntax, morphology, pho-
nology and semantics1. To achieve meaningful linguistic communications, one must access and retrieve infor-
mation from their ‘mental lexicon’, which stores the representations of concepts. Thus, lexical access is a critical 
process (albeit just one of many) in human communication, yet the nature of this process remains debated until 
this day2,3. Linguistic theories agree that lexical access includes two components, a phonological and a semantic 
component. However, these theories propose different relations between these two components3,5. One promis-
ing approach to empirically investigate the relation between these two components is via applying quantitative 
tools from network science to study cognition17.

While the application of network science to cognitive phneomena15,17 has lead to quantitative insights regard-
ing phonology18,36 and semantics19,29, such insights are confined only to each of these processes separately. In 
the current study we apply a multilayer network analysis approach to examine the structure and the relation 
between a phonological layer and a semantic layer, and how this multilayer network structure could be related 
to lexical access. Multilayer networks have become increasingly popular in studying complex systems with mul-
tiple dimensions20,22, and have recently been applied to study language development and impairment23,24,47. Such 
multilayer network research currently focuses on how words sound, phonology, and their meaning, semantics. 
This line of work is only a first step in analyzing linguistic processing as a multidimensional, multilayer network 
structure. While adding more linguistic layers (such as morphology and syntax) will generalize this quantitative 
approach to study a broader range of linguistic phenomena, it will also make this analysis more complex. In 
accordance with this developing line of research, we analyze a large-scale multilayer network that is composed of 
a phonological layer and a semantic layer. Our linguistic multilayer network is estimated from a unique dataset 
of free association responses collected in English28 based on a Big Data approach, collected over several years. 
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Such a dataset provides us a unique opportunity to represent a subset of the multidimensional structure of the 
mental lexicon based on behaviourally collected data29,30. Such an approach allows us to empirically examine 
the relation between phonology and semantics in lexical access, a critical component of linguistic processing, 
but its nature is still debated.

The interactive model of lexical access2,3,48 argues that the phonological and semantic attributes of related 
words are activated automatically due to feedforward and feedbackward processes over a densely connected lexi-
cal network during the retrieval process of a particular word3. We find here that the phonological and semantic 
layers are highly similar, and are strongly interactive: The closer two nodes are in the phonological/semantic 
layer, the higher is the probability that they will also have a similar shorter path in the semantic/phonological 
layer. These findings highlight how the redundancy between the two layers may increase efficient activation and 
retrieval of concepts and contextually relevant concepts.

Next, we examine the relation between the two layers by investigating the effect of adding non-overlapping 
links from one layer to the other. We find that the effect of adding non-overlapping links strongly effects the 
shortening of path distances between nodes that have short path distances between them. Recent cognitive net-
work studies have illustrated the importance of path distances over cognitive networks both at the phonological34 
and at the semantic31 levels. At the phonological level, shorter phonological distances have been related to both 
successful retrieval of words and to increased phonological errors34. Furthermore, in a phonological association 
task (generate a word that sounds similar to a cue word), it was found that the majority of the responses (94%) 
had a distance of two or less from the cue word34. At the semantic level, path distance in a semantic network pre-
dicted participants performance in judging whether two words were related to each other31. Participants judged 
word pairs as related only for word-pairs with short distances between them (less than 4 steps)31. Importantly, 
these cognitive systems appear to strive for generally short distances while maintaining an overall structure to 
enhance lexical access, leading to a fragility-efficiency trade-off49,50.

Given the importance of shorter path distances for phonological and semantic processing, the reduction effect 
we find may play a critical role in facilitating such cognitive processing. Thus, the interaction between these two 
layers might be crucial for allowing more efficient lexical access, by reducing path distances between nodes in a 
multiplex cognitive network. For example, in the phonological layer, the cue words intend and invest had a path 
distance of three (intend → intent → invent → invest). However, in the semantic layer these cue words intend 
and invest are directly connected (Fig. 1B). Thus, in a multilayer phonological-semantic network, the distance 
between intend and invest is much shorter than in a phonological only network, enhancing the lexicon’s efficiency 
in lexical access even in potential impairments26,51.

We examined the advantage of a linguistic multilayer network architecture on language processing, compared 
to a single layer phonological, semantic, and random networks with the same number of links. We find that the 
multilayer network has a significantly shorter average distance than the phonological and semantic layers sepa-
rately, thus providing empirical support for the benefit of a multilayer network for lexical access. Furthermore, 
we find that decreasing the semantic strength of the links that compose the semantic network has a drastic effect 
on reducing the distance in the network, the community structure of the network, and the optimal proportion 
between phonological and semantic links in the multilayer network architecture. We also find that for the strong-
est semantic links (top 100% percentile), the phonological network is more efficient than the semantic links, the 
semantic network is mostly comprised of intra-links, and a major reliance on phonological links optimizes the 
multilayer network. However, when including weaker semantic links (top 95% percentile), the semantic network 
has an average distance that is already similar to that of the multilayer network, the community structure of the 
semantic network is mostly inter-links, and a major reliance on weak semantic links optimizes the multilayer 
network architecture. This effect demonstrates the role of weaker semantic links in increasing linguistic network 
efficiency52. Our findings are in line with previous studies that highlight the role of weak semantic links in crea-
tive thinking in semantic network39,53 and multilayer54 networks. Furthermore, our findings may indicate that 
higher creative individuals can be less dependent on phonological processing for lexical access and that utilizing 
the phonological layer is most effective for people who rely less on weak semantic links.

Overall, our findings provide empirical evidence supporting the processes theorized by the interactive model 
of lexical access3: both phonological and semantic layers are highly similar, but potential interaction between 
these layers in a multilayer network lexicon architecture facilitates processing efficiency by reducing overall 
distances between concepts in a multiplex mental lexicon. To support this claim, we reanalyzed data collected by 
Kumar et al.32, who replicated and extended previous work of Kenett et al.31 showing the effect of path length in a 
semantic network on participants’ performance in judging whether word pairs were related to each other. These 
two studies aim to directly link semantic path length to the process of semantic priming—a quicker decision to 
judge that a target word is related to a prime word when these two words are conceptually related55—by show-
ing that as semantic path length increases, it becomes harder (e.g., takes more time and variability in decisions 
increases) to make such decisions. While additional non-facilitative semantic processes can affect participants’ 
response time in making such decisions56, it has been shown that semantic priming facilitates shorter response 
times55. Thus, our rationale for the reanalysis of the response times collected by Kumar et al.32 in making related-
ness judgments to word pairs with varying path length is the following: if the multilayer network architecture is 
optimal in lexical access due to a reduced distances effect, than links in our multilayer network should capture 
shorter response times in the Kumar et al. data. Indeed, this is what we find—path length of two in our multilayer 
network leads to shorter response times than those by the similar path length of the semantic network estimated 
by Kumar et al., as well as our single layer semantic network. While one needs to be cautions in interpreting 
response times55, and our networks only partially overlapped with the semantic network of Kumar et al., this 
result supports and strengthens our claim that a semantic-phonological multilayer network is optimal in facili-
tating lexical access due to its reduced distances caused by the integration of phonological and semantic links. 
Further empirical research is needed—based on the work of Kenett et al.31 and Kumar et al.32—with multilayer 
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network distances to better directly and empirically examine such beneficial effects of the multilayer network 
architecture. Finally, weaker semantic links effect the structure and efficiency of the semantic layer, which directly 
impacts the multilayer network architecture. Our findings generate novel and unique predictions for differential 
reliance on phonological versus semantic processing, and how this reliance may relate to individual differences 
in higher-level cognition. Thus, our findings further elucidate the nature of the lexical access process, an essential 
aspect of human communication.

A few methodological considerations must be considered. First, the methods we used to represent the net-
works lead to a weighted semantic layer and an unweighted phonological layer. The difference in these two net-
works—weighted and unweighted—provides methodological challenges in considerations for how to merge these 
types of networks together. Future research is needed to better match across methods for network representations 
across different layers (as well as incorporating directed and undirected networks, to account for asymmetrical 
linguistic phenomena), further elucidating the complexity of human language and efficient communication.

Next, the phonological network was constructed using the Levenshtein edit distance of 137. Links were placed 
between words that differed from each other by either adding, deleting, or substituting only one phoneme. While 
this method has been widely applied to represent phonological networks18, future research should examine alter-
native methods to compute phonological links, with higher (i.e., weighted) edit distances or via a phonological 
association task34. In addition, this method for estimating phonological networks leads to a strong core-periphery 
phonological network structure, with many disconnected phonological nodes, or “isolates”36. Such a phono-
logical network structure may introduce noise into our analysis. However, we only include the largest (giant) 
connected phonological component in our analysis, and we find a strong effect of adding semantic links to the 
phonological layer. Further studies are needed to assess the potential effect of such a phonological core-periphery 
structure on cognitive multilayer network architecture. Related to this potential issue, when participants generate 
free associations, these associations may also be based on phonological, and not only semantic relations. Such 
phonological-based associative responses introduces noise into how our semantic network is estimated, and 
potentially inflates the relation between our semantic and phonological layers. However, estimating semantic 
networks based on free associations is an established and widely used approach17,19. In addition, we filter out 
idiosyncratic associative responses (responses that were generated by less than two participants), to control for 
such potential noise. Future research should replicate our work using different approaches to estimate semantic 
networks, such as based on semantic fluency or relatedness judgment responses17.

A further limitation is that we interpret our findings of the benefits of reduced distances in a cognitive mul-
tilayer network architecture in facilitating communication efficiency, without directly testing for such dynamics. 
However, current cognitive network research is only recently starting to uncover and examine such cognitive 
dynamics, based on similar methods to those we applied in our work17,57. Much more research is needed to 
advance our understanding of such cognitive dynamics over memory and linguistic networks, making such work 
outside the scope of our current study. Future research is needed to start simulating activation processes over a 
cognitive multilayer network architecture (e.g.,58). However, our empirical findings that the multilayer network 
leads to shorter RTs, based on the data collected by Kumar et al.32 strengthens our interpretation of our findings.

Finally, we only examined a cognitive multilayer network that has two layers—a phonological and a semantic 
layer. Future research is needed to extend our findings in a higher dimensional cognitive multilayer network, 
that includes further components of language processing, such as morphology, syntax and orthography24. Such a 
higher dimensional cognitive multilayer network could directly lead to a more complete model of lexical access.

In conclusion, in the current study we apply a multilayer network approach to directly study the relations 
between phonology and semantics in lexical access, a core process required for efficient and meaningful human 
communication3. Our findings provide evidence for an interaction effect between the phonological and semantic 
processes and provide quantitative findings on the nature of this interactive relation. Thus, the application of 
multiplex networks in cognition can push the boundaries forward in directly examining cognitive theories of 
multidimensional systems, such as language.
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