
Efficient Parsing of Highly Ambiguous Context-Free Grammars
with Bit Vectors

Helmut Schmid
Institute for Computational Linguistics

University of Stuttgart
Azenbergstr. 12

D-70174 Stuttgart
Germany

schmid@ims.uni-stuttgart.de

Abstract
An efficient bit-vector-based CKY-style parser
for context-free parsing is presented. The parser
computes a compact parse forest representation
of the complete set of possible analyses for
large treebank grammars and long input sen-
tences. The parser uses bit-vector operations
to parallelise the basic parsing operations. The
parser is particularly useful when all analyses
are needed rather than just the most probable
one.

1 Introduction

Large context-free grammars extracted from tree-
banks achieve high coverage and accuracy, but
they are difficult to parse with because of their
massive ambiguity. The application of standard
chart-parsing techniques often fails due to excessive
memory and runtime requirements.

Treebank grammars are mostly used as probabilis-
tic grammars and users are usually only interested
in the best analysis, the Viterbi parse. To speed up
Viterbi parsing, sophisticated search strategies have
been developed which find the most probable anal-
ysis without examining the whole set of possible
analyses (Charniak et al., 1998; Klein and Manning,
2003a). These methods reduce the number of gener-
ated edges, but increase the amount of time needed
for each edge. The parser described in this paper
follows a contrary approach: instead of reducing the
number of edges, it minimises the costs of building
edges in terms of memory and runtime.

The new parser, called BitPar, is based on a bit-
vector implementation (cf. (Graham et al., 1980))
of the well-known Cocke-Younger-Kasami (CKY)
algorithm (Kasami, 1965; Younger, 1967). It builds
a compact “parse forest” representation of all anal-
yses in two steps. In the first step, a CKY-style
recogniser fills the chart with constituents. In the
second step, the parse forest is built top-down from
the chart. Viterbi parses are computed in four steps.

Again, the first step is a CKY recogniser which is
followed by a top-down filtering of the chart, the
bottom-up computation of the Viterbi probabilities,
and the top-down extraction of the best parse.

The rest of the paper is organised as follows: Sec-
tion 2 explains the transformation of the grammar
to Chomsky normal form. The following sections
describe the recogniser algorithm (Sec. 3), improve-
ments of the recogniser by means of bit-vector op-
erations (Sec. 4), and the generation of parse forests
(Sec. 5), and Viterbi parses (Sec. 6). Section 7 dis-
cusses the advantages of the new architecture, Sec-
tion 8 describes experimental results, and Section 9
summarises the paper.

2 Grammar Transformation

The CKY algorithm requires a grammar in Chom-
sky normal form where the right-hand side of each
rule either consists of two non-terminals or a sin-
gle terminal symbol. BitPar uses a modified ver-
sion of the CKY algorithm allowing also chain rules
(rules with a single non-terminal on the right-hand
side). BitPar expects that the input grammar is al-
ready epsilon-free and that terminal symbols only
occur in unary rules. Rules with more than 2 non-
terminals on the right-hand side are split into binary
rules by applying a transformation algorithm pro-
posed by Andreas Eisele1. It is a greedy algorithm
which tries to minimise the number of binarised
rules by combining frequently cooccurring symbols
first. The algorithm consists of the following two
steps which are iterated until all rules are either bi-
nary or unary.

1. Compute the frequencies of the pairs of neigh-
boring symbols on the right-hand sides of
rules. (The rule A � B C D, e.g., adds 1 to
the counts of

�
B,C � and

�
C,D � , respectively.)

2. Determine the most frequent pair
�
A,B � . Add

a new non-terminal X. Replace the symbol pair
1personal communication

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LINDAT-CLARIN repository

https://core.ac.uk/display/48909244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A B in all grammar rules with X. Finally, add
the rule X � A B to the grammar.

3 Computation of the Chart

In the first step, the parser computes the CKY-style
recogniser chart with the algorithm shown in Fig-
ure 1. It uses the transformed grammar with gram-
mar rules P and non-terminal symbol set N. The
chart is conceptually a three-dimensional bit array
containing one bit for each possible constituent. A
bit is 1 if the respective constituent has been inserted
into the chart and 0 otherwise. The chart is indexed
by the start position, the end position and the label
of a constituent2 . Initially all bits are 0. This chart
representation is particularly efficient for highly am-
biguous grammars like treebank grammars where
the chart is densely filled.

1 recognise(P,N,w � ,...,w �)
2 allocate and initialise chart[1..n][1..n][N] to 0
3 for e � 1 to n do
4 for each non-terminal A with A ���	��
 P do
5 chart[e][e] � chart[e][e] | chainvec[A]
6 for b � e � 1 down to 1 do
7 for each non-terminal A
 N do
8 if chart[b][e][A] = 0 and

derivable(P,N,b,e,A) then
9 chart[b][e] � chart[b][e] | chainvec[A]

10 derivable(P,N,b,e,A)
11 for each rule A � B C
 P do
12 for m � b to e � 1 do
13 if chart[b][m][B] = 1 and

chart[m 1][e][C] = 1 then
14 return true
15 return false

Figure 1: CKY-recogniser

Like other CKY-style parsers, the recogniser con-
sists of several nested loops. The first loop (line 3
in Fig. 1) iterates over the end positions e of con-
stituents, inserts the parts of speech of the next word
(lines 4 and 5) into the chart, and then builds in-
creasingly larger constituents ending at position e.
To this end, it iterates over the start positions b from
e-1 down to 1 (line 6) and over all non-terminals
A (line 7). Inside the innermost loop, the function
derivable is called to compute whether a con-
stituent of category A covering words ��� through� � is derivable from smaller constituents via some

2Start and end position of a constituent are the indices of
the first and the last word covered by the constituent.

binary rule. derivable loops over all rules
A � B C with the symbol A on the left-hand side
(line 11) and over all possible end positions m of
the first symbol on the right-hand side of the rule
(line 12). If the chart contains B from position b to
m and C from position m+1 to e (line 13), the func-
tion returns true (line 14), indicating that ��� through� � are reducible to the non-terminal A. Otherwise,
the function returns false (line 15).

In order to deal with chain rules, the parser precom-
putes for each category C the set of non-terminals D
which are derivable from C by a sequence of chain
rule reductions, i.e. for which D �� C holds, and
stores them in the bit vector chainvec[C]. The set
includes C itself. Given the grammar rules NP �
DT N1, NP � N1, N1 � JJ N1 and N1 � N, the
bits for NP, N1 and N are set in chainvec[N]. When
a new constituent of category A starting at posi-
tion b and ending at position e has been recognised,
all the constituents reachable from A by means of
chain rules are simultaneously added to the chart
by or-ing the precomputed bit vector chainvec[A]
to chart[b][e] (see lines 5 and 9 in Fig. 1).

The first parsing step is a pure recogniser which
computes the set of constituents to which the in-
put words can be reduced, but not their analyses.
Therefore it is not necessary to look for further anal-
yses once the first analysis of a constituent has been
found. The function derivable therefore returns
as soon as the first analysis is finished (line 13 and
14), and derivable is not called if the respective
constituent was previously derived by chain rules
(line 8).

Because only one analysis has to be found and some
rules are more likely than others, the algorithm is
optimised by trying the different rules for each cat-
egory in order of decreasing frequency (line 11).
The frequency information is collected online dur-
ing parsing.

Derivation of constituents by means of chain rules
is much cheaper than derivation via binary rules.
Therefore the categories in line 7 are ordered such
that categories from which many other categories
are derivable through chain rules, come first.

The chart is actually implemented as a single large
bit-vector with access functions translating index
triples (start position, end position, and symbol
number) to vector positions. The bits in the chart
are ordered such that chart[b][e][n+1] follows after
chart[b][e][n], allowing the efficient insertion of a
set of bits with an or-operation on bit vectors.

4 Using Bit-Vector Operations

The function derivable is the most time-
consuming part of the recogniser, because it is the
only part whose overall runtime grows cubically
with sentence length. The inner loop of the function
iterates over the possible end positions of the first
child constituent and computes an and-operation
for each position. This loop can be replaced by
a single and-operation on two bit vectors, where
the first bit vector contains the bits stored in
chart[b][b][B], chart[b][b+1][B] ... chart[b][e-1][B]
and the second bit vector contains the bits stored in
chart[b+1][e][C], chart[b+2][e][C] ... chart[e][e][C].
The bit-vector operation is overall more efficient
than the solution shown in Figure 1 if the extrac-
tion of the two bit vectors from the chart is fast
enough. If the bits in the chart are ordered such that
chart[b][1][A] ... chart[b][N][A] are in sequence,
the first bit vector can be efficiently extracted
by block-wise copying. The same holds for the
second bit vector if the bits are ordered such that
chart[1][e][A] ... chart[n][e][A] are in sequence.
Therefore, the chart of the parser which uses
bit-vector operations, internally consists of two bit
vectors. New bits are inserted in both vectors.

1 recognise(P,N,w � ,...,w �)
2 allocate and initialise chart[1..n][1..n][N] to 0
3 allocate vec[N]
4 for e � 1 to n do
5 initialise vec[N] to 0
6 for each non-terminal A with A ��� �
 P do
7 vec � vec | chainvec[A]
8 chart[e][e] � chart[e][e] | vec
9 for b � e � 1 down to 1 do
10 initialise vec[N] to 0
11 for each non-terminal A
 N do
12 if vec[A] = 0 and derivable(P,N,b,e,A) then
13 vec � vec | chainvec[A]
14 chart[b][e] � chart[b][e] | vec

15 derivable(P,N,b,e,A)
16 for each rule A � B C
 P do
17 vec1 � chart[b][b...e-1][B]
18 vec2 � chart[b+1...e][e][C]
19 return vec1 & vec2 �� 0

Figure 2: optimised CKY-recogniser

Due to the new representation of the chart, the in-
sertion of bits into the chart by means of the opera-
tion chart[b][e] � chart[b][e] | vec cannot be done
with bit vector operations, anymore. Instead, each
1-bit of the bit vector has to be set separately in

both copies of the chart. Binary search is used to
extract the 1-bits from each machine word of a bit
vector. This is more efficient than checking all bits
sequentially if the number of 1-bits is small. Fig-
ure 3 shows how the 1-bits would be extracted from
a 4-bit word v and stored in the set s. The first line
checks whether any bit is set in v. If so, the second
line checks whether one of the first two bits is set.
If so, the third line checks whether the first bit is 1
and, if true, adds 0 to s. Then it checks whether the
second bit is 1 and so on.

1 if ������ then
2 if ������� ��� ���� then
3 if ����� ����� ���� then
4 s.add(0)
5 if ��� � � ��� ���� then
6 s.add(1)
7 if ��� ��� �������� then
8 if ��� ��� � � ���� then
9 s.add(2)
10 if ��� ����� ������ then
11 s.add(3)

Figure 3: Extraction of the 1-bits from a bit vector

5 Parse Forest Generation

The chart only provides information about the con-
stituents, but not about their analyses. In order to
generate a parse forest representation of the set of
all analyses, the chart is traversed top-down, repars-
ing all the constituents in the chart which are part
of a complete analysis of the input sentence. The
parse forest is stored by means of six arrays named
catname, catnum, first-analysis,rule-
number, first-child, and child. cat-
num[n] contains the number of the category of
the nth constituent. first-analysis[n] is
the index of the first analysis of the nth con-
stituent, and first-analysis[n+1]-1 is the
index of the last analysis. rule-number[a] re-
turns the rule number of analysis a, and first-
child[a] contains the index of its first child
node number in the child array. The numbers
of the other child nodes are stored at the follow-
ing positions. child[d] is normally the num-
ber of the node which forms child d. How-
ever, if the child with number d is the input
word � � , the value of child[d] is �	��� � in-
stead. A negative value in the child array there-
fore indicates a terminal node and allows decod-
ing of the position of the respective word in the

sentence. catname[catnum[child[first-
child[first-analysis[n]]]]] is there-
fore the name of the category of the first child of
the first analysis of the nth constituent. The rule-
number array is not needed to represent the struc-
ture of the parse forest, but speeds up the retrieval
of rule probabilities and similar information.

The parse forest shown in Figure 4 is represented by

catname = [A,B,C,D]
catnum = [0,1,2,3]
first-analysis = [0,2,3,4]
rule-number = [1,2,3,4,5]
first-child = [0,2,4,5,6]
child = [1,2,1,3,-1,-2,-2]

A

B C D

b c

Figure 4: Parse forest with two analyses for A

The parse forest is built by the function parse
shown in Figure 5. The function new-
node(b,e,A) adds the number of A at the end
of the catnum array. It also adds the currently
biggest index of the first-child array plus 1 to
the first-analysis array. It returns the largest
index of the catnum array as node number. new-
node also stores a mapping from the triple

�
b,e,A �

to the respective node number n in a hash table.
The hash table is used by get-node(b,e,A)
to checks whether a constituent has already been
added to the parse forest and, if true, returns its
number. add-analysis(n,r,m) increments
the size of the child array by 2 and adds the in-
dex of the first new element to the first-child
array. It further adds the number of rule r to the
rule-number array and stores the pair

�
r,m � in

a temporary array which is later accessed in lines
17, 19, and 22. add-analysis(n,r) is sim-
ilar, but adds just one element to the child array.
Finally, the function add-child inserts the child
node indices returned by recursive calls of build-
subtree. The optimisation with bit-vector oper-
ations described in section 4 is also applicable in
lines 14 and 15.

6 Viterbi Parsing

Viterbi parses for probabilistic context-free gram-
mars (PCFGs) could be extracted from context-free

1 parse(P,N,S,w � ,...,w �)
2 recognise(P,N,w � ,...,w �)
3 return build-subtree(P,N,1,n,S)

4 build-subtree(P,N,b,e,A)
5 n � get-node(b,e,A)
6 unless defined n do
7 n � new-node(b,e,A)
8 if b = e and ! = A �"� �
 P do
9 add-analysis(n,r)
10 for each rule ! = A � B
 P do
11 if chart[b][e][B] = 1 then
12 add-analysis(n,r)
13 for each rule ! = A � B C
 P do
14 for m � b to e-1 do
15 if chart[b][m][B] = 1 and

chart[m+1][e][C] = 1 then
16 add-analysis(n,r,m)
17 for each analysis a =

�
A �#� � � of node n do

18 add-child(n,a,-e)
19 for each analysis a =

�
A � B � of node n do

20 d � build-subtree(P,N,b,e,B)
21 add-child(n,a,d)
22 for each analysis a =

�
A � B C, m � do

23 d � build-subtree(P,N,b,m,B)
24 add-child(n,a,1,d)
25 d � build-subtree(P,N,m+1,e,C)
26 add-child(n,a,2,d)
27 return n

Figure 5: Parse forest generation

parse forests, but BitPar computes them without
building the parse forest in order to save space. Af-
ter building the recogniser chart, the Viterbi version
of BitPar filters the chart as shown in Figure 6 in or-
der to eliminate constituents which are not part of a
complete analysis.

After filtering the chart, the Viterbi probabilities of
the remaining constituents are computed by the al-
gorithm in figure 7. p[b][e][A] is implemented with
a hash table. The value of prob(r) is 1 if the left-
hand side of r is an auxiliary symbol inserted during
the grammar transformation and otherwise the prob-
ability of the corresponding PCFG rule.

Finally, the algorithm of figure 8 prints the Viterbi
parse.

7 Discussion

BitPar was developed for the generation of parse
forests with large treebank grammars. It saves mem-
ory by splitting parsing into two steps, (1) the gen-

1 filter(P,S,chart)
2 allocate and initialise chart2[1..n][1..n][N] to 0
3 if chart[1][n][S] = 1 then
4 filter-subtree(P,1,n,S,chart,chart2)
5 chart � chart2

6 filter-subtree(P,b,e,A,chart,chart2)
7 if chart2[b][e][A] = 1 then
8 return // chart2[b][e][A] was processed before
9 chart2[b][e][A] � 1
10 for each rule A � B
 P do
11 if chart[b][e][B] = 1 then
12 filter-subtree(P,b,e,B,chart,chart2)
13 for each rule r = A � B C
 P do
14 for m � b to e-1 do
15 if chart[b][m][B] = 1 and

chart[m+1][e][C] = 1 then
16 filter-subtree(P,b,m,B,chart,chart2)
17 filter-subtree(P,m+1,e,C,chart,chart2)

Figure 6: Filtering algorithm

1 viterbi(P,N,w � ,...,w � ,chart)
2 for e � 1 to n do
3 for each A
 N with r = A � w �$
 P do
4 if chart[e][e][A] = 1 then
5 add-prob(e,0,e,A,r)
6 for b � e � 1 down to 1 do
7 for each non-terminal A
 N do
8 if chart[b][e][A] = 1 then
9 for each rule r = A � B C
 P do
10 for m � b to e � 1 do
11 if chart[b][m][B] = 1 and

chart[m+1][e][C] = 1 then
12 add-prob(b,m,e,A,r)

13 add-prob(b,m,e,A,r)
14 if r = A � w then
15 p � prob(r)
16 else if r = A � B then
17 p � prob(r) * p[b][e][B]
18 else if r = A � B C then
19 p � prob(r) * p[b][m][B] * p[m+1][e][C]
20 if undefined p[b][e][A] or p[b][e][A] < p then
21 p[b][e][A] � p
22 for each r = D � A
 P do
23 add-prob(b,0,e,D,r)

Figure 7: Computation of Viterbi probabilities

1 vparse(P,S,chart,w � ,...,w �)
2 return build-vparse(P,1,n,S)

3 build-vparse(P,b,e,A)
4 print ”(” A
5 if b = e and ! = A �"� �
 P and

p[b][e][A] = prob(r) then
6 print � � ”)” and return
7 for each rule ! = A � B
 P do
8 if chart[b][e][B] = 1 and

p[b][e][A] = p[b][e][B] * prob(r) then
9 build-vparse(P,b,e,B)
10 print ”)” and return
11 for each rule ! = A � B C
 P do
12 for m � b to e-1 do
13 if chart[b][m][B] = 1 and chart[m+1][e][C] = 1

and p[b][e][A] = p[b][m][B] * p[m+1][e][C]
* prob(r) then

14 build-vparse(P,b,m,B)
15 build-vparse(P,m+1,e,C)
16 print ”)” and return

Figure 8: Generation of Viterbi parse

eration of a recogniser chart which is compactly
stored in a bit-vector, and (2) the generation of the
parse forest. Parse forest nodes are only created for
constituents which are part of a complete analyses,
whereas standard 1-pass chart parsers create more
nodes which are later abandoned.

Viterbi parsing involves four steps. About 15 % of
the parse time is needed for building the chart, 28 %
for filtering, and 57 % for the computation of the
Viterbi probabilities. The time required for the ex-
traction of the best parse is negligible (0.04 %). The
Viterbi step spends about 80 % of the time (45 %
of the total time) on the computation of the proba-
bilities and only about 20 % on the computation of
the possible analyses. So, although Viterbi proba-
bilities are only computed for nodes which are part
of a valid analysis, it still takes almost half of the
time to compute them, and the proportion increases
with sentence length.

In contrast to most beam search parsing strategies,
BitPar is guaranteed to return the most probable
analysis, and there is no need to optimise any scor-
ing functions or parameters.

8 Experiments

The parser was tested with a grammar containing
65,855 grammar rules, and 4,444 different cate-
gories. The grammar was extracted from a ver-

sion of the Penn treebank which was annotated with
additional features similar to (Klein and Manning,
2003b). The average rule length has 3.7 (without
parent category). The experiments were conducted
on a Sun Blade 1000 Model 2750 server with 750
MHz CPUs and 4 GB memory.

In a first experiment, 1000 randomly selected sen-
tences from the PENN treebank containing 24,595
tokens were parsed. Viterbi parsing of these
sentences took 27,596 seconds (1.14 seconds per
word). The generation of parse forests3 for the same
sentences took 26,840 seconds (1.09 seconds per
word).

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

av
er

ag
e

pa
rs

e
tim

e
in

 s
ec

sentence length

’BitPar’
’LoPar’

x**2.6/214

Figure 9: Average parse times

In another experiment, we examined how parse
times increase with sentence length. Figure 9 shows
the average Viterbi parse times of BitPar for ran-
domly selected sentences of different lengths4 . For
comparison, the average parse times of the LoPar
parser (Schmid, 2000) on the same data are also
shown. LoPar is a 1-pass left-corner chart parser
which computes the Viterbi parse from the parse
forest. BitPar is faster for all sentence lengths and
the growth of the parse times with sentence length
is smaller than for LoPar. Although the asymp-
totic runtime complexity of BitPar is cubic, figure 9
shows that the exponent of the actual growth func-
tion in the range between 4 and 50 is about 2.6. This
can be explained by the fact that the bit-vector op-
erations become more effective as the length of the

3The parse forest were only generated but not printed.
4The two bulges of the BitPar curve were probably caused

by a high processor load. The experiment will be repeated for
the final version of the paper.

sentence and therefore the length of the bit-vectors
increases.

The memory requirements of BitPar are far lower
than those of LoPar. LoPar needs about 1 GB mem-
ory to parse sentences of length 22, whereas BitPar
allocates 180 MB during parse forest generation and
55 MB during Viterbi parsing. For the longest sen-
tence in our 1000 sentence test corpus with length
55, BitPar needed 113 MB to generate the Viterbi
parse and 3,185 MB to compute the parse forest.
LoPar was unable to parse sentences of this length.

We are planning to evaluate the influence of the dif-
ferent optimisations presented in the paper on pars-
ing speed and to compare it with other parsers than
LoPar.

9 Summary

A bit-vector based implementation of the CKY al-
gorithm for large highly ambiguous grammars was
presented. The parser computes in the first step a
recogniser chart and generates the parse forest in a
second step top-down by reparsing the entries of the
chart. Viterbi parsing consists of four steps com-
prising (i) the generation of the chart, (ii) top-down
filtering of the chart, (iii) computation of the Viterbi
probabilities, and (iv) the extraction of the Viterbi
parse. The basic parsing operation (building new
constituents by combining two constituents accord-
ing to some binary rule) is parallelised by means of
bit-vector operations.

The presented method is efficient in terms of run-
time as well as space requirements. The empirical
runtime complexity (measured for sentences with
up to 50 words) is better than cubic.

The presented parser is particularly useful when the
whole set of analyses has to be computed rather than
the best parse. The Viterbi version of the parser is
guaranteed to return the most probable parse tree
and requires no parameter tuning.

References

Charniak, E., Goldwater, S., and Johnson, M.
(1998). edge-based best-first chart parsing. In Pro-
ceedings of the Sixth Workshop on Very Larger Cor-
pora, pages 127–133. Morgan Kaufmann.
Graham, S., Harrison, M., and Ruzzo, W. (1980).
An improved context-free recognizer. ACM Trans-
actions on Programming Languages and Systems,
2(3):415–462.

Kasami, T. (1965). An efficient recognition and
syntax analysis algorithm for context-free lan-
guages. Technical Report AFCRL-65-758, Air
Force Cambridge Research Laboratory.
Klein, D. and Manning, C. D. (2003a). A* parsing:
Fast exact viterbi parse selection. In Proceedings of
HLT-NAACL 03.
Klein, D. and Manning, C. D. (2003b). Accurate
unlexicalized parsing. In Proceedings of the 41st
Annual Meeting of the Association for Computa-
tional Linguistics.
Schmid, H. (2000). LoPar: Design and Imple-
mentation. Number 149 in Arbeitspapiere des Son-
derforschungsbereiches 340. Institute for Computa-
tional Linguistics, University of Stuttgart.
Younger, D. H. (1967). Recognition of context-
free languages in time %'& . Information and Control,
10:189–208.

