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Football goal distributions and extremal
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Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Abstract

We analyse the distributions of the number of goals scored by home teams, away
teams, and the total scored in the match, in domestic football games from 169
countries between 1999 and 2001. The probability density functions (PDFs) of goals
scored are too heavy-tailed to be fitted over their entire ranges by Poisson or negative
binomial distributions which would be expected for uncorrelated processes. Log-
normal distributions cannot include zero scores and here we find that the PDFs are
consistent with those arising from extremal statistics. In addition, we show that it
is sufficient to model English top division and FA Cup matches in the seasons of
1970/71 to 2000/01 on Poisson or negative binomial distributions, as reported in
analyses of earlier seasons, and that these are not consistent with extremal statistics.
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1 Introduction

Few authors have considered foot-
ball scores from a statistical point of
view. Moroney [1] showed that the
numbers of goals scored by individual
teams, and the total goal scores, were
well described by a “modification of
the Poisson”; Reep et al. [2] later
identify this as the negative bino-
mial distribution, and found similar
results for other ball games. Maher
[3] then pointed out that a negative
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binomial distribution may arise from
the aggregate of Poisson-distributed
scores with a different mean for each
team. The short-term predictabil-
ity of results has subsequently been
modelled using independent Poisson
distributions with means dependent
on teams’ past performances [4,5];
an improved model [6] includes the
scoring-rate dependence on both
time and the current score.

Other aspects of the game have been
examined including the effects of cer-
tain conditions on the scores - see [7]
for a review. Seeking a broader un-
derstanding, it has been suggested
[8] that the distribution of goals per
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player may be linked with anomalous
diffusion via the Zipf-Mandelbrot
law. In this paper we show, in agree-
ment with analyses of matches from
the 1960s [1,2], that 13, 000 En-
glish top division and 5, 000 FA
Cup matches between the seasons of
1970/71 and 2000/01 [9] are closely-
fitted by either Poisson or negative
binomial distributions. However, we
find that the number of goals scored
by home and away teams, and the
total goals, in over 135, 000 domes-
tic football games (leagues and cups,
hereafter referred to as domestic
matches) from 169 countries between
1999 and 2001 [10], cannot be fitted
over their entire ranges by Poisson
or negative binomial distributions.
Instead, we find that the data can
be modelled by extremal statistics
(explained in Sect. 3).

The ubiquity of power-law relation-
ships in both nature [16] and the field
of econophysics [17–20] has spawned
a significant amount of literature in
recent years. Intriguingly, extremal
statistics in a global measure are
found in turbulent fluids and other
highly-correlated systems [21–26].
Hence the significance and origin of
extremal and power-law-tailed dis-
tributions are currently of consider-
able interest in statistical physics;
the use of probability distributions
in the modelling of complex systems
is a topical approach to the inverse
problem. From an operational per-
spective, knowledge of the statistics
would be an important constraint on
any model for the game.

2 The probability density
function (PDF)

The first step in our analysis of each
data set is the construction of its
PDF. The PDF P (x) of a variable X
is defined such that the probability
that X lies within a small interval
dx centred on X = x, is equal to
P (x)dx. P (x) is normalised so that

∫ xmax

xmin

P (x)dx = 1. (1)

Here, x takes the integer values of
goals scored (xmin = 0 and xmax is
the maximum number of goals scored
in the sample of matches) so Eq. 1
becomes

∑xmax

xmin
P (x) = 1. We further

normalise each PDF to the sample
mean µ and standard deviation σ to
enable comparison with extremal dis-
tributions (see Sect. 3).

The Poisson distribution is defined
by

P (x | µ) =
µx

x!
e−µI(0,1,...)(x), (2)

where I(0,1,...)(x) ensures that P (x) =
0 for non-integer x. In the Poisson
PDF µ = σ2; for data to be well-
fitted by this distribution we require
µ ≈ σ2. It is explained in [1,2] that
this condition does not hold for foot-
ball goals because a constant proba-
bility per unit time of scoring a goal
is not a valid assumption. Instead, a
compound Poisson or negative bino-

mial distribution is used, defined by

P (x | r, p) =

(

r + x − 1

x

)

prqxI(0,1,...)(x)

(3)
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where x is the number of goals scored
with probability q per goal before r
“failed goals” (probability p = 1− q)
have occured. The negative binomial
PDF has µ = r(1 − p)/p and σ2 =
r(1 − p)/p2; fitting to data thus re-
quires µ/σ2 = p ≤ 1 and µp/(1−p) =
r where we round r to the nearest in-
teger.

3 Extremal statistics

Our data analysis presented in Sect. 4
(Figs. 1 to 3) shows that the tails of
the PDFs of goal scores in the do-
mestic matches clearly deviate from
both the Poisson and the negative bi-
nomial distributions. Here, we com-
pare the PDFs of the data with those
arising from extremal statistics. We
choose extremal distributions fitted
over the entire dataset in preference
to a piecewise fit of arbitrary func-
tions as (1) they have been observed
in a wide variety of natural systems;
(2) they may suggest a physical inter-
pretation, as they arise in situations
where only the largest events are ob-
served; (3) following normalisation of
the data, only one parameter (a) re-
mains to be estimated, and (4) un-
like log-normal PDFs, they can be
applied to data including zero values.

The two limiting distributions of
interest are “Gumbel’s asymptote”
and Fréchet [11–13]. In outline, the
limiting distributions result from
selecting the maximum value xmax

from each of a large number of large
samples whose individual members
are drawn from a distribution P (x).
When P (x) decreases more rapidly

than any power-law (as x → ∞),
“Gumbel’s asymptote” has the form

PG(xmax) = K(eu−eu

)a (4)

with u = b(x − s)

where in the limit of an infinite num-
ber of measurements a ≡ 1; the con-
stants K, b, and s are fixed by nor-
malisation as in Sect. 2 (see [14,15]).
Selecting the second largest values
from the same large samples pro-
duces a PDF of the same functional
form as Eq. 3 but with a ≡ 2.

Fréchet distributions PF (xmax) arise
in the same manner when the un-
derlying PDF P (x) is power-law; the
power-law tail of this underlying dis-
tribution is preserved in the Fréchet,
thus lending itself to the fitting of
heavy-tailed data. Mathematically,
PF (xmax) can be defined by Eq. 3
but with u = α + β ln(1 + x/G),
where K, α, and G are again fixed
by normalisation, and β = (1 − a)−1

[15]. These curves exist for a > 1.

A simple heavy-tailed distribution
often encountered in nature is the
log-normal. Log-normal distribu-
tions with the same means and vari-
ances as the datasets provide very
poor models in all cases if scores
of zero are included. The domestic
home and away scores are quite well
modelled by log-normal PDFs pro-

viding zero scores are neglected. Al-
ternatively, one goal can be added to
all scores but, since the log-normal
is not invariant under translation,
the results are no more meaningful.
Scores of zero occur frequently and
should not be removed; we seek a
single heavy-tailed PDF appropriate
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for modelling integer data from zero
upwards.

4 Results

As discussed in Sect. 1, the Poisson
distribution has been demonstrated
to be inferior to the negative bino-
mial when modelling football scores;
only where this is not the case do
we include a Poisson fit in Figs. 1-
3. In Fig. 1 we show the PDFs of
home team scores with their respec-
tive negative binomial PDFs (fitted
to µ and σ) along with the best-fit
extremal distribution (see Sect. 3)
for the domestic matches. While the
league scores follow a negative bino-
mial PDF, it is clear that the domes-
tic scores are better described by a
Fréchet distribution beyond about
µ + 3σ (a home score of about 6
goals). Although the Cup scores are
suggestive of some departure from a
negative binomial PDF, we cannot
quantify the functional form of this
tail. Counting errors caused by bin-
ning a finite dataset are omitted from
Figs. 1-3 for the purpose of clarity;
typical sizes of counting errors are
indicated by fluctuations around a
smooth trend and become apparent
in the final few bins.

We plot the away team scores in
Fig. 2. Again, the domestic scores
are consistent with a Fréchet distri-
bution above µ + 4σ (an away score
of about 6 goals) whereas negative
binomial PDFs suffice for the league
and Cup scores if the last few points
are discounted as explained above.
The total goal scores with fitted neg-

ative binomial PDFs are plotted in
Fig. 3. Here we find that the domes-
tic scores are consistent with a Gum-
bel distribution (see Sect. 3) above
µ + 3σ (9 goals), and that the league
scores are more suggestive of a Pois-
son than a negative binomial PDF.

We now provide more detailed anal-
ysis of the goodness of fit of the ex-
tremal PDFs to the domestic scores.
Figures 4-6 show in linear form the
closeness of fit of various distribu-
tions to the domestic data. To quan-
tify whether the data are consistent
with the fitted PDFs, one must es-
timate the likely counting errors in
the numbers of points in the bins
(introduced by the finite size of the
dataset). We are interested in the
distribution of the number of points
in a bin, given both the total number
of data points and the probability
that any point will lie in that partic-
ular bin (given directly by the fitted
PDF). A binomial distribution of
counting errors is a reasonable esti-
mate, and one can thus estimate the
upper and lower limits of the number
of points one would expect to find in
any bin on 95% of occasions; these
are plotted with dashed lines. The
ending of a dashed line indicates that
the lower/upper limit of the expected
number of occurences of the corre-
sponding score is zero; where both
limits stop, no higher scores are ex-
pected given the size of the dataset.
From these plots we again conclude
that a Fréchet a=1.04 PDF is the
best fit to domestic home scores, a
Fréchet a=1.10 PDF is the best fit to
domestic away scores, and a Gumbel
a=1 PDF is the best fit to domestic
total scores.
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Fig. 1. PDFs of goals scored by home teams, normalised with respect to µ and σ,
showing how domestic matches are more closely fitted by a Fréchet distribution than
by a negative binomial. Coincident curves are plotted as a single line as indicated
in the legend.

The empirical PDF varies between
the negative binomial and extremal
PDF in each case; for low scores
both the negative binomial and ex-
tremal distributions provide satisfac-
tory fits. However, as shown in the
previous figures, there is a strong de-
parture from the negative binomial
on to heavier-tailed distributions for
the higher scores. Our aim here is
to identify a single distribution that
fits the whole dataset rather than
an arbitrary piecewise fit. The lat-
ter could always be achieved given a
sufficient number of independent dis-
tribution functions to fit to different

ranges of data, but would ultimately
be less informative of the underlying
processes.

In this context it is important to
note that the distribution of the ag-
gregate of many thin-tailed datasets
(i.e. the pooled data) is heavy-tailed
if the variances of the component
datasets differ [27,28]. Hence the
heavy-tails seen in worldwide foot-
ball results could arise simply from
the aggregation of scores from many
teams. Individual teams’ scores may
follow different Poisson distribu-
tions, which when pooled produce
countries’ scores following negative
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Fig. 2. PDFs of goals scored by away teams, normalised with respect to µ and σ,
showing how domestic matches are more closely fitted by a Fréchet distribution than
by a negative binomial. Coincident curves are plotted as a single line as indicated
in the legend.

binomials, and then the aggregation
of countries’ scores is heavy-tailed.
Testing this hypothesis would require
significantly more data than used
here, and would run over an interval
of time that may imply significant
changes in the game process. The
alternative – and more interesting
– possibility is that the heavy tails
are the result of some inherent pro-
cess that increases the likelihood of
high scores over their Poisson-based
expectations.

We also find that both the English
data and the worldwide domestic
results show a mean goal difference
(home score minus away score) of

0.51, an aggregate home advantage
(see [29]), and a bias towards uneven
scores as the total score rises is evi-
dent in the larger domestic dataset;
these trends are well-known in the
world of football.

It is important to note that the ob-
servation of a departure from nega-
tive binomial distributions is not the
result of a larger dataset for domes-
tic matches. Whilst more rare events
are observed in a larger sample and
the distribution extends to higher
values with lower probabilities, it is
nevertheless possible to distinguish
between the different distributions,
as we have shown, without consid-
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Fig. 3. PDFs of total goals scored, normalised with respect to µ and σ, showing
how domestic matches are more closely fitted by a Gumbel distribution than by a
negative binomial. Coincident curves are plotted as a single line as indicated in the
legend. Domestic µ = 2.9, σ = 1.9; league µ = 2.6, σ = 1.7; Cup µ = 2.8, σ = 1.8.

ering these extreme values. We have
looked briefly at other individual
countries and find similar trends to
those shown for English matches.

5 Conclusions

We have shown that the simplest
models – the thin-tailed Poisson
and negative binomial distributions
based on the assumption of uncor-
related processes – do not fit do-
mestic (worldwide) football matches
between 1999 and 2001 beyond the
low scores. Heavier-tailed distribu-

tions are required if these datasets
are to be fitted with single PDFs.
Log-normal distributions do not in-
clude zero scores whereas extremal
distributions can model the entire
range of scores. Extremal distribu-
tions have been observed in a variety
of complex systems and our results
may then inform the modelling of
football games.

In addition, using English top divi-
sion and FA Cup matches in the sea-
sons of 1970/71 to 2000/01, we con-
firm the Poisson or negative binomial
nature of English scores as reported
in analyses of earlier football seasons.
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Fig. 4. Normalised PDF of domestic home scores plotted against a range of fitted
PDFs. Straight lines indicate where the points would lie were the fits perfect, and are
separated by an arbitrary vertical displacement; dashed lines indicate 95% binomial
counting errors. Note how the Fréchet a=1.04 PDF (e) provides a superior fit to the
gumbel a=1,2 (c,d), negative binomial (b), and Poisson (a) distributions; compare
Fig. 1.
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