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Abstract

Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. Although 

genome-wide association studies (GWASs) have identified PAU risk genes, the genetic 

architecture of this trait is not fully understood. We conducted a proxy-phenotype meta-analysis of 

PAU combining alcohol use disorder and problematic drinking in 435,563 European-ancestry 

individuals. We identified 29 independent risk variants, 19 of them novel. PAU was genetically 

correlated with 138 phenotypes, including substance use and psychiatric traits. Phenome-wide 

polygenic risk score analysis in an independent biobank sample (BioVU, n=67,589) confirmed the 

genetic correlations between PAU and substance use and psychiatric disorders. Genetic heritability 

of PAU was enriched in brain and in conserved and regulatory genomic regions. Mendelian 
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randomization suggested causal effects on liability to PAU of substance use, psychiatric status, 

risk-taking behavior, and cognitive performance. In summary, this large PAU meta-analysis 

identified novel risk loci and revealed genetic relationships with numerous other traits.

Introduction

Alcohol use and alcohol use disorder (AUD) are leading causes of death and disability 

worldwide [1]. Genome-wide association studies (GWAS) of AUD and problematic drinking 

measured by different assessments have identified potential risk genes primarily in European 

populations [2–5]. Quantity-frequency measures of drinking, for example the Alcohol Use 

Disorders Identification Test–Consumption (AUDIT-C), which sometimes reflect alcohol 

consumption in the normal range, differ genetically from AUD and measures of problematic 

drinking (e.g., the Alcohol Use Disorders Identification Test–Problems [AUDIT-P]), and 

show a divergent set of genetic correlations [3, 4]. The estimated SNP-based heritability (h2) 

of AUD ranges from 5.6% to 10.0% [2–5]. To date, more than 10 risk variants have been 

significantly associated with AUD and AUDIT-P (p < 5 × 10−8). Variants that have been 

mapped to several risk genes in multiple studies include ADH1B (Alcohol Dehydrogenase 

1B (class I), Beta Polypeptide), ADH1C (Alcohol Dehydrogenase 1C (class I), Gamma 

Polypeptide), ALDH2 (Aldehyde Dehydrogenase 2 Family Member, only in some Asian 

samples), SLC39A8 (Solute Carrier Family 39 Member 8), GCKR (Glucokinase Regulator), 

and CRHR1 (Corticotropin Releasing Hormone Receptor 1). In the context of the known 

extensive polygenicity underlying AUD and AUDIT-P, we anticipate that additional 

significant risk loci can be identified by increasing sample size; this is the pattern for GWAS 

of heterogenous complex traits in general also. We characterize both AUD itself and AUDIT-

P, as “problematic alcohol use” (PAU). To identify additional risk variants and enhance our 

understanding of the genetic architecture of PAU, we conducted genome-wide meta-analysis 

of AUD and AUDIT-P in 435,563 individuals of European ancestry. Our understanding of 

the genetic architecture of PAU in African populations lags far behind that in Europeans; the 

largest sample of African ancestry individuals published so far is 56,648 in the Million 

Veteran Program (MVP) [3] and results have not moved beyond a single genomic region that 

includes ADH1B. We limited the focus here to European samples because we could not 

achieve a substantial increment in African-ancestry subjects over previous studies.

Results

Figure 1 provides an overview of the meta-analysis of the 4 major datasets. The first is the 

GWAS of AUD in European Americans (EA) from MVP [6] (herein designated “MVP 

phase1”), comprised of 202,004 individuals phenotyped for AUD (ncase = 34,658, ncontrol = 

167,346, neffective = 114,847) using International Classification of Diseases (ICD) codes [3]. 

The second, MVP Phase2, included an additional 65,387 EA individuals from MVP (ncase = 

11,337, ncontrol = 54,050, neffective = 37,485) not previously analyzed. The third dataset is a 

GWAS of DSM-IV alcohol dependence (AD) from the Psychiatric Genomics Consortium 

(PGC), which included 46,568 European participants (ncase = 11,569, ncontrol = 34,999, 

neffective = 26,853) [2]. The fourth dataset is a GWAS of Alcohol Use Disorders 
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Identification Test–Problems (AUDIT-P; a measure of problematic drinking) scores from a 

UK Biobank sample (UKB) [7] that included 121,604 European participants [4].

The genetic correlation (rg) between MVP phase1 AUD and PGC AD was 0.965 (se = 0.15, 

p = 1.21 × 10−10) [3]. The rg between the entire MVP (meta-analysis of phase1 and phase2) 

and PGC was 0.98 (se = 0.11, p = 1.99 × 10−19), justifying the meta-analysis of AUD across 

the three datasets (neffective = 179,185). We detected 24 risk variants in 23 loci in this 

intermediary meta-analysis (Figure 2a, Supplementary Table 1). The rg between UKB 

AUDIT-P and AUD (MVP+PGC) was 0.71 (se = 0.05, p = 8.15 × 10−52), and the polygenic 

risk score (PRS) of AUD was associated with AUDIT-P in UKB (best p-value threshold 

PTbest = 0.001, R2 = 0.25%, p = 3.28 × 10−41, Supplementary Table 2, Supplementary 

Figure 1), justifying the proxy-phenotype meta-analysis of problematic alcohol use (PAU) 

across all four datasets. (AUD and AUDIT-P, though highly correlated genetically, are not 

identical traits). The total sample size was 435,563 in the discovery analysis (neffective = 

300,789).

Association results for PAU

Of 42 lead variants (mapping to 27 loci, Figure 2b, and Supplementary Table 3) that were 

genome-wide significant (GWS) for PAU, 29 were independently associated after 

conditioning on lead SNPs in the regions (see below and Table 1). Ten variants were 

previously identified through the same index SNPs or tagged SNPs, located in or near the 

following genes: GCKR, SIX3, KLB, ADH1B, ADH1C, SLC39A8, DRD2, and FTO [2–5]. 

Thus, 19 variants reported here are novel, of which 11 were located in gene regions, 

including PDE4B Phosphodiesterase 4B), THSD7B (Thrombospondin Type 1 Domain 

Containing 7B), CADM2 (Cell Adhesion Molecule 2), ADH1B (different from the locus 

identified previously), DPP6 (Dipeptidyl Peptidase Like 6), SLC39A13 (Solute Carrier 

Family 39 Member 13), TMX2 (Thioredoxin Related Transmembrane Protein 2), ARID4A 
(AT-Rich Interaction Domain 4A), C14orf2 (Chromosome 14 Open Reading Frame 2), 

TNRC6A (Trinucleotide Repeat Containing Adaptor 6A), and FUT2 (Fucosyltransferase 2). 

A novel rare ADH1B variant, rs75967634 (p = 1.07 × 10−9, with a minor allele frequency of 

0.003), which causes a substitution of histidine for arginine, is in the same codon as 

rs2066702 (a well-known variant associated with AUD in African populations [3, 8], but not 

polymorphic in European populations).This association is independent of rs1229984 in 

ADH1B and rs13125415 (a tag SNP of rs1612735 in MVP phase1 [3]) in ADH1C. The 

identification of rs75967634 demonstrates the present study’s greater power to detect risk 

variants in this region, beyond the frequently reported ADH1B*rs1229984.

Moderate genetic correlation between AUD and alcohol consumption and pervasive 

pleiotropic effects of SNPs were demonstrated previously [2–4]. Some of the novel variants 

(10 of 19) identified in this study were also associated with other alcohol-related traits, 

including AUDIT-C score [3], total AUDIT score [4], and drinks per week (DrnkWk) from 

the GSCAN (GWAS & Sequencing Consortium of Alcohol and Nicotine use) study [9] 

(described below and in Supplementary Table 3). Rs1402398, close to VRK2, was 

associated with AUDIT-C score (tagged by rs2683616) [3]; rs492602 in FUT2 was 

associated with DrnkWk [9] and total AUDIT score [4]; and rs6421482, rs62250713, 
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rs2533200, rs10717830, rs1783835, rs12296477, rs61974485, and rs72768626 were 

associated with DrnkWk directly or through tag SNPs in high linkage disequilibrium (LD) 

[9]. Analysis conditioned on DrnkWk shows that 11 of the 29 independent variants were 

independently associated with PAU (i.e., not mediated by DrnkWk) (Supplementary Table 

3).

Gene-based association analysis identified 66 genes that were associated with PAU at GWS 

(p < 2.64 × 10−6, Supplementary Table 4). DRD2, which has been extensively studied in 

many fields of neuroscience, was among these genes and was previously reported in both 

UKB [4] and MVP phase1 [3]. Among the 66 genes, 46 are novel, including ADH4 
(Alcohol Dehydrogenase 4 (class II), Pi polypeptide), ADH5 (Alcohol Dehydrogenase 5 

(class III), Chi Polypeptide), and ADH7 (Alcohol Dehydrogenase 7 (class IV), Mu or Sigma 

Polypeptide), extending alcohol metabolizing gene associations beyond the well-known 

ADH1B and ADH1C; SYNGAP1 (Synaptic Ras GTPase Activating Protein 1), BDNF 
(Brain-Derived Neurotrophic Factor), and others. Certain genes show associations with 

multiple traits including previous associations with AUDIT-C (4 genes in MVP phase1, 12 

genes in UKB), total AUDIT score (19 genes in UKB), and DrnkWk (46 genes in GSCAN, 

which includes results for DrnkWk after MTAG (multi-trait analysis of GWAS) [10] 

analysis).

Examination of the 66 associated genes for known drug-gene interactions through the Drug 

Gene Interaction Database v3.0.2 [11] showed 327 interactions between 16 genes and 325 

drugs (Supplementary Table 5). Of these 16 genes with interactions, DRD2 had the most 

drug interactions (n = 177), followed by BDNF (n = 68) and PDE4B (n = 36).

SNP-based h2 and partitioning heritability enrichment

We used LD Score Regression (LDSC) [12] to estimate SNP-based h2 in the different 

datasests and the meta-analyses (Figure 3). Because of the unbalanced case/control ratio, we 

used effective sample size instead of actual sample size in MVP (following the PGC AD 

GWAS [2]). The h2 of PAU (the meta result) was 0.068 (se = 0.004). The h2 of AUD in the 

MVP metaanalysis (phases 1 and 2) was 0.095 (se = 0.006) and 0.094 (se = 0.005) in the 

meta-analysis that combined MVP and PGC.

Partitioning heritability enrichment analyses using LDSC [13, 14] showed the most 

significantly enriched cell type group to be central nervous system (CNS, p = 3.53 × 10−9), 

followed by adrenal and pancreas (p = 1.89 × 10−3), and immune and hematopoietic (p = 

3.82 × 10−3, Supplementary Figure 2). Significant enrichments were also observed in six 

baseline annotations, including conserved regions, conserved regions with 500bp extended 

(ext), fetal DHS (DNase I hypersensitive sites) ext, weak enhancers ext, histone mark 

H3K4me1 ext, and TSS (transcription start site) ext (Supplementary Figure 3). We also 

investigated heritability enrichments using Roadmap data, which contains six annotations 

(DHS, H3K27ac, H3K4me3, H3K4me1, H3K9ac, and H3K36me3) in a subset of 88 

primary cell types and tissues [14, 15]. Significant enrichments were observed for H3K4me1 

and DHS in fetal brain, and H3K4me3 in fetal brain and in brain germinal matrix 

(Supplementary Table 6). Although no heritability enrichment was observed in tissues using 
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gene expression data from GTEx [16], the top nominally enriched tissues were all in brain 

(Supplementary Figure 4).

Functional enrichments

MAGMA tissue expression analysis [17, 18] using GTEx showed significant enrichments in 

several brain tissues including cerebellum and cortex (Supplementary Figure 5). Although 

no enrichment was observed via MAGMA gene-set analysis using gene-based p-values of all 

protein-coding genes, the 152 genes prioritized by positional, expression quantitative trait 

loci (eQTL), and chromatin interaction mapping were enriched in several gene sets, 

including ethanol metabolic processes (Supplementary Table 7).

Genetic correlations with other traits

We estimated the genetic correlations between PAU and 715 publicly available sets of 

GWAS summary statistics, which included 228 published sets and 487 unpublished sets 

from the UK Biobank. After Bonferroni correction (p < 6.99 × 10−5), 138 traits were 

significantly correlated with PAU (Supplementary Table 8). Among the 26 published 

correlated traits, drinks per week showed the highest correlation with PAU (rg = 0.77, se = 

0.02, p = 3.25 × 10−265), consistent with the overall quantity of alcohol consumed being a 

key domain of PAU [5, 19]. Several smoking traits and lifetime cannabis use were positively 

genetically correlated with PAU, consistent with the high comorbidity between alcohol and 

other substance use disorders in the general population [20]. Among psychiatric disorders, 

major depressive disorder (MDD, rg = 0.39, se = 0.03, p = 1.43 × 10−40) showed the highest 

genetic correlation with PAU, extending the evidence for a shared genetic contribution to 

MDD and alcohol-related traits [21, 22]. PAU was positively correlated with risk-taking 

behavior, insomnia, CYP2A6 activity, and other traits, and negatively correlated with 

cognitive traits and parents’ age at death. These findings are in line with the known adverse 

medical, psychiatric, and social consequences of problem drinking (Figure 4).

Transcriptomic analyses

We used S-PrediXcan [23] to predict gene expression and the mediating effects of variation 

on gene expression on PAU. Forty-eight tissues from GTEx [16] release v7 and whole blood 

samples from the Depression Genes and Networks study (DGN) [24] were analyzed as 

reference transcriptomes (Supplementary Table 9). After Bonferroni correction, 103 gene-

tissue associations were significant, representing 39 different genes, some of which were 

identified in multiple tissues (Supplementary Table 10). For example, C1QTNF4 (C1q and 

TNF Related 4) was detected in 18 tissues, including brain, gastrointestinal, adipose, and 

liver. None of the four significant alcohol dehydrogenase genes (ADH1A, ADH1B, ADH4, 

and ADH5) was associated with expression in brain tissue, but they were associated with 

expression in other tissues -- adipose, thyroid, gastrointestinal and heart. These cross-tissue 

associations indicate that there are widespread functional consequences of PAU-risk-

associated genetic variation at the expression level.

Although the sample size for tissues used for eQTL analysis limits our ability to detect 

associations, there are substantial common eQTLs across tissues [16]. Integrating evidence 

from multiple tissues can increase power to detect genes relative to the tissues tested 
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individually, at least for shared eQTLs. We applied S-MultiXcan [25] to the summary data 

for PAU using all 48 GTEx tissues as reference transcriptomic data. The expression of 34 

genes was significantly associated with PAU, including ADH1B, ADH4, ADH5, C1QTNF4, 

GCKR, and DRD2 (Supplementary Table 11). Among the 34 genes, 27 overlapped with 

genes detected by S-PrediXcan.

PAU PRS for phenome-wide associations

We calculated PRS for PAU in 67,589 individuals of European descent from the Vanderbilt 

University Medical Center’s biobank, BioVU. We conducted a phenome-wide association 

study (PheWAS) of PRS for PAU adjusting for sex, age (calculated as the median age across 

an individual’s medical record), and the top 10 principal components of ancestry. We 

standardized the PRS so that the odds ratios correspond to a standard deviation increase in 

the PRS. After Bonferroni correction, 31 of the 1,372 phenotypes tested were significantly 

associated with PAU PRS, including alcohol-related disorders (OR = 1.46, se = 0.03, p = 

3.34 × 10−40), alcoholism (OR = 1.33, se = 0.03, p = 3.85 × 10−28), tobacco use disorder 

(OR = 1.21, se = 0.01, p = 2.71 × 10−38), 6 respiratory conditions, and 17 additional 

psychiatric conditions (Figure 5, Supplementary Table 12).

PAU PRS with AD in independent samples

We tested the association between PAU PRS and alcohol dependence in 3 independent 

samples: the iPSYCH group (ncase = 944, ncontrol = 11,408, neffective = 3,487); University 

College London (UCL) Psych Array (ncase = 1,698, ncontrol = 1,228, neffective = 2,851); and 

UCL Core Exome Array (ncase = 637, ncontrol = 9,189, neffective = 2,383). The PAU PRSs 

were significantly associated with AD in all three samples, with the most variance explained 

in the UCL Psych Array sample, which includes the most alcohol dependence cases (PTbest 

= 0.001, R2 = 2.12%, p = 8.64 × 10−14). In the iPSYCH group and UCL Core Exome Array 

samples, the maximal variance explained was 1.61% (PTbest = 0.3, p = 1.87 × 10−22), and 

0.77% (PTbest = 5 × 10−8, p = 1.65 × 10−7), respectively (Supplementary Table 13).

Mendelian Randomization

We tested the bi-directional causal effects between other traits and AUD (MVP+PGC), 

rather than PAU; the UKB AUDIT-P GWAS sample was excluded to minimize overlap with 

other GWAS for putative exposures. (When we refer to exposure having causal effect on 

outcome, this should be understood to mean susceptibility or liability to exposure having 

causal effect on susceptibility or liability to outcome.) We limited the exposures to those 

genetically correlated with PAU, and which yielded >10 available instruments to have a 

robust causal estimate. Among the 15 tested exposures on AUD, seven showed evidence of a 

causal effect on liability to AUD (Table 2). DrnkWk and ever smoked regularly have a 

positive causal effect on AUD risk by all four methods, without violating MR assumptions 

through horizontal pleiotropy (MR-Egger intercept p > 0.05). General risk tolerance was 

causally related to AUD risk, and the estimate was robust after correction for horizontal 

pleiotropy. The “worry” sub-cluster of neuroticism and number of sexual partners show 

evidence of positive causal effects on liability to AUD with at least one method, while 

cognitive performance and educational attainment show evidence of negative causal effects. 

As an exposure, AUD has a positive causal effect on DrnkWk, and a negative causal effect 
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on educational attainment, indicating bi-directional causality. There is no evidence of a 

causal effect of AUD on other traits (Table 3).

Joint Analysis of PAU and DrnkWk Using MTAG

We conducted a joint analysis of PAU and DrnkWk using MTAG, which can increase the 

power for each trait without introducing bias from sample overlap [10]. MTAG analysis 

increased the GWAS-equivalent sample size (nEq) for PAU to 514,790, i.e., a 71.1% increase 

from the original effective sample size (nE = 300,789, n = 435,563). In this analysis, we 

observed an increase in the number of independent variants for PAU to 119, 76 of which 

were conditionally independent (Supplementary Figure 6a, Supplementary Table 14). For 

DrnkWk, the MTAG analysis increased the nEq to 612,968 from 537,352, which yielded 141 

independent variants, 86 of which were conditionally independent (Supplementary Figure 

6b, Supplementary Table 15).

The MTAG analysis also increased the power for the functional enrichment analysis. 

MAGMA gene set analysis for PAU after MTAG analysis detected 10 enriched Gene 

Ontology terms, including ‘regulation of nervous system development’ (pBonferroni = 8.80 × 

10−4), ‘neurogenesis’ (pBonferroni = 0.010), and ‘synapse’ (pBonferroni = 0.046) 

(Supplementary Table 16).

Discussion

We report here a genome-wide meta-analysis of PAU in 435,563 individuals of European 

ancestry from the MVP, PGC, and UKB datasets. MVP is a mega-biobank that has enrolled 

>750,000 subjects (for whom genotype data on 313,977 subjects were used in this study), 

with rich phenotype data assessed by questionnaires and from the EHR. Currently, MVP is 

the largest single cohort available with diagnostic information on AUD [3, 6]. PGC is a 

collaborative consortium that has led the effort to collect smaller cohorts with DSM-IV AD 

[2]. UKB is a population-level cohort with the largest available sample with AUDIT-P data 

[4].

Our discovery meta-analysis of PAU yielded 29 independent variants, of which 19 were 

novel, with 0.059 to 0.113 of the phenotypic variance explained in different cohorts or meta-

analyses. The h2 in the Phase1-Phase2 MVP meta-analysis was 0.095 (se = 0.006), which 

was higher than MVP phase1: 0.056 (se = 0.004, in MVP phase1 where only the actual (as 

opposed to effective) sample size was used) [3]. The h2 of AD in PGC was 0.098 (se = 

0.018), comparable to the reported liability-scale h2 (0.090, se = 0.019) [2]. Functional and 

heritability analyses consistently showed enrichments in brain regions and gene expression 

regulatory regions, providing biological insights into the etiology of PAU. Variation 

associated with gene expression in the brain is central to PAU risk, a conclusion that is also 

consistent with our previous GWASs in MVP of both alcohol consumption and AUD 

diagnosis [3]. The enrichments in regulatory regions point to specific brain tissues relevant 

to the causative genes; the specific interactions between 16 genes and 325 drugs may 

provide targets for the development of medications to manage PAU. Potential targets 

identified include the D2 dopamine receptor (encoded by DRD2) and phosphodiesterase 4B 
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(encoded by PDE4B). The presence of risk variation at these loci also suggests that they may 

be “precision medicine” targets as well.

We also found that PAU was significantly genetically correlated with 138 other traits. The 

top correlations were with substance use and substance-related disorders, MDD, 

schizophrenia, and several other neuropsychiatric traits. In a conceptually similar analysis, 

we performed a PheWAS of PAU PRS in BioVU, which confirmed in an independent 

sample the genetic correlations between PAU and multiple substance use disorders, mood 

disorders, and other psychiatric traits. We also used MR to infer causal effects of the above 

traits on liability to AUD (we tested AUD excluding UKB samples to avoid sample overlap) 

using selected genetic instruments. We found evidence of positive causal relationships from 

DrnkWk (bi-directional), ever smoked regularly, worry sub-cluster, and number of sexual 

partners, while cognitive performance and educational attainment (bi-directional) showed 

protective effects on liability to AUD. In comparison, we detected few causal effects from 

AUD to other traits, possibly because of lack of power since there are fewer instrumental 

variants for AUD available in our study than for many comparison GWAS.

The study has other limitations. First, only European populations were included; therefore, 

the genetic architecture of PAU in other populations remains largely unknown. To date, the 

largest non-European sample to undergo GWAS for alcohol-related traits is African 

American (AA), which was reported in the MVP phase1 sample (17,267 cases; 39,381 

controls, an effective sample size of 48,015), with the only associations detected on 

chromosome 4 in the ADH gene locus (where several ADH genes map) [3]. The collection 

of substantial numbers of non-European subjects will require a concerted effort by 

investigators in our field. Second, despite the high genetic correlation between AUD and 

AUDIT-P, they are not identical traits. We conducted a meta-analysis of the two traits to 

increase the power for the association study of PAU, consequently, associations specific to 

AUD or AUDIT-P could have been attenuated. Third, there was no opportunity for 

replication of the individual novel variants. Because the variants were detected in more than 

430,000 subjects and have small effect sizes, a replication sample with adequate power 

would also have to be very large, and no such sample is currently available. To validate the 

findings, we conducted PRS analyses in three independent cohorts, which showed strong 

association with AUD. Although this indicates that our study had adequate power for variant 

detection, it does not address the validity of the individual variants discovered.

This is the largest GWAS study of PAU so far. Previous work has shown that the genetic 

architecture of AUD (and PAU) differs substantially from that of alcohol consumption [2–4]. 

There have been larger studies of alcohol quantity-frequency measures [9, 26]; alcohol 

consumption data are available in many EHRs, thus they were included in many studies of 

other primary traits, like cardiac disease. AUD diagnoses are collected much less commonly. 

The 3item AUDIT-C is a widely used measure of alcohol consumption that is often available 

in EHRs, but the full 10-item AUDIT, which allows the assessment of AUDIT-P, is not as 

widely available. Despite the high genetic correlation between, for example, PAU and 

DrnkWk (rg=0.77), very different patterns of genetic correlation and pleiotropy have been 

observed via LDSC and other methods for these different kinds of indices of alcohol use [2–

5]. PAU captures pathological alcohol use: physiological dependence and/or significant 
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psychological, social or medical consequences. Quantity/frequency measures may capture 

alcohol use that is in the normal, or anyway nonpathological, range. As such, we argue that 

although quantity/frequency measures are important for understanding the biology of 

habitual alcohol use, PAU is the more clinically important trait. Thus, we did not meta-

analyze PAU with DrnkWk directly, but used MTAG analysis instead, recognizing that they 

are different traits. These circumstances underscore the need to assemble a large GWAS 

sample of PAU to inform its biology, and our study moves towards this goal via the 

identification of numerous previously-unidentified risk loci – we increased known PAU loci 

from 10 to 29, nearly tripling our knowledge of specific risk regions. Similarly, we identified 

66 gene-based associations, of which 46 were novel – again roughly tripling current 

knowledge. MTAG analysis increased locus discovery to 119, representing 76 independent 

loci, by leveraging information from DrnkWk [9]. By the same token, we provide a major 

increment in information about the biology of PAU, providing considerable fodder for future 

studies that will be required to delineate the biology and function associated with each risk 

variant. We anticipate that knowledge of the functional effects of the variants will contribute 

eventually to personalized treatment of PAU, facilitating identification of individuals with 

PAU who may be most treatment responsive or for whom a specific medication may be most 

efficacious.

Methods

MVP datasets.

The MVP is a mega-biobank supported by the U.S. Department of Veterans Affairs (VA), 

enrollment for which began in 2011 and is ongoing. Phenotypic data were collected using 

questionnaires and the VA electronic health records (EHR), and a blood sample was 

obtained from each participant for genetic studies. Two phases of genotypic data have been 

released and were included in this study. MVP phase1 contains 353,948 subjects, of whom 

202,004 European Americans (EA) with AUD diagnoses were included in a previous GWAS 

and the summary statistics were used in this study [3]. MVP phase2 released data on another 

108,416 subjects, of whom 65,387 EAs with AUD diagnosis information were included in 

this study. Following the same procedures as for MVP phase1, participants with at least one 

inpatient or two outpatient alcohol-related ICD-9/10 codes from 2000 to 2018 were assigned 

a diagnosis of AUD.

Ethics statement: The Central VA Institutional Review Board (IRB) and site-specific 

IRBs approved the MVP study. All relevant ethical regulations for work with human 

subjects were followed in the conduct of the study and informed consent was obtained from 

all participants.

Genotyping for both phases of MVP was performed using a customized Affymetrix Biobank 

Array. Imputation and quality control methods for MVP phase1 were described in detail in 

Kranzler et al. [3]. Similar methods were used for MVP phase2. Before imputation, phase2 

subjects or SNPs with genotype call rate < 0.9 or high heterozygosity were removed, leaving 

108,416 subjects and 668,324 SNPs. Imputation for MVP phase2 was done separately from 

phase1; both were performed with EAGLE2 [44] and Minimac3 [45] using 1000 Genomes 
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Project phase 3 data [46] as the reference panel. Imputed genotypes with posterior 

probability ≥ 0.9 were transferred to best-guess genotypes (the rest were treated as missing 

genotype calls). A total of 6,635,093 SNPs with INFO scores > 0.7, genotype call rates or 

best guess rates > 0.95, Hardy-Weinberg Equilibrium (HWE) p value > 1 × 10−6, minor 

allele frequency (MAF) > 0.001 were remained for GWAS.

We removed subjects with mismatched genotypic and phenotypic sex and one subject 

randomly from each pair of related individuals (kinship coefficient [47] threshold = 0.0884), 

leaving 107,438 phase2 subjects for subsequent analyses. We used the same processes as 

MVP phase1 to define EAs. First, we ran principal components analysis (PCA) on 74,827 

common SNPs (MAF > 0.05) shared by MVP and the 1000 Genomes phase 3 reference 

panels using FastPCA [48]. Then we clustered each participant into the nearest reference 

population according to the Euclidean distances between the participant and the centers of 

the 5 reference populations using the first 10 PCs. A second PCA was performed for 

participants who were clustered to the reference European population (EUR), and outliers 

were removed if any of the first 10 PCs were > 3 standard deviations from the mean, leaving 

67,268 EA subjects.

Individuals < 22 or > 90 years of age and those with a missing AUD diagnosis were 

removed from the analyses, leaving 65,387 phase2 EAs (11,337 cases; 54,050 controls). 

GWAS was then performed on the MVP phase2 dataset. We used logistic regression 

implemented in PLINK v1.90b4.4 [49] for the AUD GWAS correcting for age, sex, and the 

first 10 PCs. The mean age is 63.2 (SD=13.4) in the entire MVP sample and 92.5% are 

males. Data collection and analysis were not performed blind to the conditions of the 

experiments.

PGC summary statistics.

We used the 46,568 European ancestry subjects (11,569 cases and 34,999 controls) from 27 

cohorts that were analyzed by the Psychiatric Genomics Consortium (PGC). The phenotype 

was lifetime DSM-IV diagnosis of alcohol dependence (AD). The summary data were 

downloaded from the PGC website (https://www.med.unc.edu/pgc/) with full agreement to 

the PGC conditions. Allele frequencies were not reported in the summary data. We used 

allele frequencies from the 1000 Genome European sample as proxy measures in PGC for 

some downstream analyses.

UK Biobank summary statistics.

The UK Biobank (UKB) included 121,604 White-British unrelated subjects with available 

AUDIT-P scores. Past-year AUDIT-P was assessed by 7 questions: 1). Frequency of inability 

to cease drinking; 2). Frequency of failure to fulfil normal expectations due to drinking 

alcohol; 3). Frequency of needing a morning drink of alcohol after a heavy drinking session; 

4). Frequency of feeling guilt or remorse after drinking alcohol; 5). Frequency of memory 

loss due to drinking alcohol; 6). Been injured or injured someone else through drinking 

alcohol; 7). Had a relative, friend, or health worker who was concerned about or suggested a 

reduction in alcohol consumption. The AUDIT-P was log10-transformed for GWAS (see ref 

[4] for details). We removed SNPs with INFO < 0.7 or call rate < 0.95.
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Meta-analyses.

Meta-analyses were performed using METAL [50]. The meta-analysis within MVP (for the 

purpose of genetic correlation analysis with PGC AD) was conducted using an inverse 

variance weighted method because the two subsets were from the same cohort. The meta-

analyses for AUD (MVP+PGC) and PAU (MVP+PGC+UKB) were performed using the 

sample size weighted method. Given the unbalanced ratios of cases to controls in MVP 

samples, we calculated effective sample sizes for meta-analysis following the approach used 

by the PGC:

neffective = 4
1

ncase
+ 1

ncontrol

The calculated effective sample sizes in MVP and reported effective sample sizes in PGC 

were used in meta-analyses and all downstream analyses. AUDIT-P in UKB is a continuous 

trait, so we used actual sample sizes for that trait. For the AUD meta-analysis, variants 

present in only one sample (except MVP phase1 which is much larger than the others) or 

with heterogeneity test p-value < 5 × 10−8 were removed, leaving 7,003,540 variants. For the 

PAU meta-analysis, variants present in only one sample (except MVP phase1 or UKB) or 

with heterogeneity test pvalue < 5 × 10−8 and variants with effective sample size < 45,118 

(15% of the total effective sample size) were removed, leaving 14,069,427 variants.

AUD polygenic risk score in UKB.

We calculated AUD polygenic risk scores (PRS) for each of the 82,930 unrelated subjects in 

UKB (application number 41910) who had non-missing AUDITP information [7]. A PRS 

was calculated as the sum of the number of effective alleles with pvalues less than a given 

threshold, weighted by the effect sizes from AUD meta-analysis (MVP+PGC). We analyzed 

10 p-value thresholds: 5 × 10−8, 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 0.001, 0.05, 0.3, 0.5, 

and 1, and clumped the AUD summary data by LD with r2 < 0.3 in a 500-kb window. Then 

we tested the association between AUD PRS and AUDIT-P, corrected for age, sex, and 10 

PCs. The analysis was performed using PRSice-2 [51].

Independent variants and conditional analyses.

We identified the independent variant (p < 5 × 10−8) in each locus (1 Mb genomic window) 

based on the smallest p value and r2 < 0.1 with other independent variants and assigned 

these variants to the independent variant’s clump. Any two independent variants less than 1 

Mb apart whose clumped regions overlapped were merged into one locus. Given the known 

long-range LD for the ADH gene cluster on chromosome 4, we defined chr4q23–q24 (~97.2 

Mb – 102.6 Mb) as one locus. When multiple independent variants were present in a locus, 

we ran conditional analyses using GCTA-COJO [52] to define conditionally independent 

variants. For each variant other than the most significant one (index), we tested the marginal 

associations conditioning on the index variant using Europeans (n = 503) from the 1000 

Genomes as the LD reference sample. Variants with significant marginal associations (p < 5 

× 10−8) were defined as conditionally independent variants (i.e., independent when 
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conditioned on other variants in the region) and subject to another round of conditional 

analyses for each significant association.

For the conditionally independent variants for AUD or PAU, we also conducted a multitrait 

analysis conditioning on GSCAN drinks per week [9] using GCTA-mtCOJO [31] to identify 

variants associated with AUD or PAU, but not drinks per week, i.e., not alcohol consumption 

alone. Europeans from the 1000 Genomes were used as the LD reference. For variants 

missing in GSCAN, we used proxy variants (p < 5 × 10−8) in high LD with the locus for 

analyses. Whereas conditional analyses require the beta (effect size) and standard error, we 

calculated these using Z-scores (z), allele frequency (p) and sample size (n) from the meta-

analyses [53]:

beta =
z

2p 1 − p n + z2

SE =
1

2p 1 − p n + z2

Gene-based association analysis.

Gene-based association analysis for PAU was performed using MAGMA implemented in 

FUMA [17, 18], which uses a multiple regression approach to detect multi-marker effects 

that account for SNP p-values and LD between markers. We used default settings to analyze 

18,952 autosomal genes, with p < 2.64 × 10−6 (0.05/18,952) considered GWS.

Drug-gene interaction.

For the genes identified as significant by MAGMA, we examined druggene interaction 

through Drug Gene Interaction Database (DGIdb) v3.0.2 [11] (http://www.dgidb.org/), a 

database of integrated drug–gene interaction information based on 30 sources.

SNP-based h2 and partitioning heritability enrichment.

We used LDSC [12] to estimate the SNP-based h2 for common SNPs mapped to HapMap3 

[54], with Europeans from the 1000 Genomes Project [46] as the LD reference panel. We 

excluded the major histocompatibility complex (MHC) region (chr6: 26–34Mb).

We conducted portioning h2 enrichment analyses for PAU using LDSC in different models 

[13, 14]. First, we analyzed a baseline model consisting of 52 functional categories that 

included genomic features (coding, intron, UTR etc), regulatory annotations (promoter, 

enhancer etc), epigenomic annotations (H3K27ac, H3K4me1, H3K3me3 etc) and others (see 

ref [13] for details, Supplementary Figure 3). We then analyzed cell type group h2 

enrichments with 10 cell types: central nervous system (CNS), adrenal and pancreas, 

immune and hematopoietic, skeletal muscle, gastrointestinal, liver, cardiovascular, 

connective tissue and bone, kidney, and other (see ref [13] for details, Supplementary Figure 

2). Third, we used LDSC to test for enriched heritability in regions surrounding genes with 

the highest tissue-specific expression using 53 human tissue or cell type RNA-seq data from 

the Genotype-Tissue Expression Project (GTEx) [16], or enriched heritability in epigenetic 

markers from 396 human epigenetic annotations (six features in a subset of 88 primary cell 
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types or tissues) from the Roadmap Epigenomics Consortium [15] (see ref [14] for details, 

Supplementary Figure 4, Supplementary Table 6). For each model, the number of tested 

annotations was used to calculate a Bonferroni corrected p-value < 0.05 as a significance 

threshold.

Gene-set and functional enrichment.

We performed gene-set analysis for PAU for curated gene sets and Gene Ontology (GO) 

terms using MAGMA [17, 18]. We then used MAGMA for gene-property analyses to test 

the relationships between tissue-specific gene expression profiles and PAU-gene 

associations. We analyzed gene expression data from 53 GTEx (v7) tissues. We also 

performed gene-set analysis on the 152 prioritized genes using MAGMA. Gene sets with 

adjusted p-value < 0.05 were considered as significant.

Genetic correlation.

We estimated the genetic correlation (rg) between traits using LDSC [55]. For PAU, we 

estimated the rg with 218 published traits in LD Hub [56], 487 unpublished traits from the 

UK Biobank (integrated in LD Hub), and recently published psychiatric and behavioral traits 

[9, 32, 34–39, 42, 57, 58], bringing the total number of tested traits to 715 (Supplementary 

Table 8). For traits reported in multiple studies or in UKB, we selected the published version 

of the phenotype or used the largest sample size. Bonferroni correction was applied and 

correlation was considered significant at a p-value threshold of 6.99 × 10-5.

S-PrediXcan and S-MultiXcan.—To perform transcriptome-wide association analysis, 

we used S-PrediXcan [23] (a version of PrediXcan that uses GWAS summary statistics [59]) 

to integrate transcriptomic data from GTEx [16] and the Depression Genes and Networks 

study (DGN) [24] to analyze the summary data from the PAU meta-analysis. Forty-eight 

tissues with sample size > 70 from GTEx release v7 were analyzed, totaling 10,294 samples. 

DGN contains RNA sequencing data from whole blood of 992 genotyped individuals. The 

transcriptome prediction model database and the covariance matrices of the SNPs within 

each gene model were downloaded from the PredictDB repository (http://predictdb.org/, 

2018–01-08 release). Only individuals of European ancestry in GTEx were analyzed. S-

PrediXcan was performed for each of the 49 tissues (48 from GTEx and 1 from DGN), for a 

total of 254,345 gene-tissue pairs. Significant association was determined by Bonferroni 

correction (p < 1.97 × 10−7).

Considering the limited eQTL sample size for any single tissue and the substantial sharing 

of eQTLs across tissues, we applied S-MultiXcan [25], which integrates evidence across 

multiple tissues using multivariate regression to improve association detection. Forty-eight 

tissues from GTEx were analyzed jointly. The threshold for condition number of eigenvalues 

was set to 30 when truncating singular value decomposition (SVD) components. In total, 

25,626 genes were tested in S-MultiXcan, leading to a significant p-value threshold of 1.95 

× 10−6 (0.05/25,626).
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PAU PRS for phenome-wide associations.

Polygenic scores were generated using PRS-CS [60] on all genotyped individuals of 

European descent (n = 67,588) in Vanderbilt University Medical Center’s EHR-linked 

biobank, BioVU. PRS-CS uses a Bayesian framework to model linkage disequilibrium from 

an external reference set and a continuous shrinkage prior on SNP effect sizes. We used 

1000 Genomes Project Phase 3 European sample [46] as the LD reference. Additionally, we 

used the PRS-CS-auto option, which allows the software to learn the continuous shrinkage 

prior from the data. Polygenic scores were constructed from PRS-CS-auto adjusted 

summary statistics containing 811,292 SNPs. All individuals used for polygenic scoring 

were genotyped on the Illumina Multi-Ethnic Global Array (MEGA). Genotypes were 

filtered for SNP (95%) and individual (98%) call rates, sex discrepancies, and excessive 

heterozygosity. For related individuals, one of each pair was randomly removed (pi_hat > 

0.2). SNPs showing significant associations with genotyping batch were removed. Genetic 

ancestry was determined by principal component analysis performed using EIGENSTRAT 

[61]. Imputation was completed using the Michigan Imputation Server [45] and the 

Haplotype Reference Consortium [62] as the reference panel. Genotypes were then 

converted to hard calls, and filtered for SNP imputation quality (R2 < 0.3), individual 

missingness (>2%), SNP missingness (>2%), MAF (<1%) and HWE (p < 1 × 10−10). The 

resulting dataset contained 9,330,483 SNPs on 67,588 individuals of European ancestry.

We conducted a phenome-wide association study (PheWAS) [63] of the PAU PRS by fitting 

a logistic regression model to 1,372 case/control phenotypes to estimate the odds of each 

diagnosis given the PAU polygenic score, controlling for sex, median age across the medical 

record, top 10 principal components of ancestry, and genotyping batch. We required the 

presence of at least two International Classification of Disease (ICD) codes that mapped to a 

PheWAS disease category (Phecode Map 1.2) to assign “case” status. A phenotype was 

required to have at least 100 cases to be included in the analysis. PheWAS analyses were run 

using the PheWAS R package [64]. Bonferroni correction was applied to test for significance 

(p < 0.05/1,372).

PAU PRS in independent samples.

We calculated PAU PRS in three independent samples, where we tested the association 

between PAU PRS and AD, corrected for age, sex, and 10 PCs. Ten p-value thresholds were 

applied in all samples.

iPSYCH Group.—DNA samples for cases and controls were obtained from newborn 

bloodspots linked to population registry data [65]. Cases were identified with the ICD-10 

code F10.2 (AD; n = 944); controls were from the iPSYCH group (n = 11,408; neffective = 

3,487)). The iPSYCH sample was genotyped on the Psych Array (Illumina, San Diego, CA, 

US). GWAS QC, imputation against the 1,000 Genomes Project panel [46] and association 

analysis using the Ricopili pipeline [66] were performed. The current study is part of a 

general study in iPSYCH investigating the comorbidity of alcohol misuse and psychiatric 

disorders.
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UCL Psych Array.—Cases were identified with ICD-10 code F10.2 (n = 1,698) and 

comprised 492 individuals with a diagnosis of alcoholic hepatitis who had participated in the 

STOPAH (Steroids or Pentoxifylline for Alcoholic Hepatitis) trial (ISRCTN88782125; 

EudraCT Number: 2009013897–42) and 1,206 subjects recruited from the AD arm of the 

DNA Polymorphisms in Mental Health (DPIM) study; controls were UK subjects who had 

either been screened for an absence of mental illness and harmful substance use (n = 776), or 

were random blood donors (n-452; total n = 1,228; neffective = 2,851). The sample was 

genotyped on the Psych Array (Illumina, San Diego, CA, US). GWAS QC was performed 

using standard methods and imputation was done using the haplotype reference consortium 

(HRC) panel [67] on the Sanger Imputation server (https://imputation.sanger.ac.uk/). 

Association testing was performed using Plink1.9 [49].

UCL Core Exome Array.—Cases had an ICD-10 diagnosis of F10.2 (n = 637), including 

324 individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH 

trial and 313 subjects recruited from the AD arm of the DPIM study; controls were unrelated 

UK subjects from the UK Household Longitudinal Study (UKHLS; n = 9,189; neffective = 

2,383). The sample was genotyped on the Illumina Human Core Exome Array (Illumina, 

San Diego, CA, US). GWAS QC was performed using standard methods and imputation was 

done using the HRC panel [67] on the Sanger Imputation server (https://

imputation.sanger.ac.uk/). Association testing was performed with Plink1.9 [49].

Mendelian Randomization.

We used Mendelian Randomization (MR) to investigate the bidirectional causal relationships 

between PAU liability and traits that were significantly genetically correlated (p < 6.99 × 

10−5). However, all or most of the published traits in recent large GWAS include UKB data. 

To avoid biases caused by overlapping samples in MR analysis, we only tested the 

relationship between published traits and AUD (MVP+PGC). For robust causal effect 

inference, we limited the traits studied to those with more than 10 available instruments 

(association p < 5 × 10−8). For causality on AUD, 15 exposures were analyzed (Table 2), and 

for causality from AUD on others, 23 traits were tested. We applied Bonferroni correction 

for the 38 hypotheses, interpreting p-values < 1.32×10−3 (0.05/38) as significant.

Four methods, weighted median [28], inverse-variance weighted (IVW, random-effects 

model) [27], and MR-Egger [29], implemented in the R package “MendelianRandomization 

v0.3.0” [68], MR-PRESSO [30], and GSMR [31] were used for MR inference. Evidence of 

average pleiotropic effects was examined by the MR-Egger intercept test, where a non-zero 

intercept indicates horizontal pleiotropy [29]. Individual variants with horizontal pleiotropy 

were detected by MR-PRESSO, and an outlier test was applied to correct horizontal 

pleiotropy via outlier removal. Pleiotropic variants were also detected by the HEIDI test in 

GSMR, and removed from causal inference. Instrumental variants that are associated with 

outcome (p < 5 × 10−8) were removed. For instrumental variants missing in the outcome 

summary data, we used the results of the best-proxy variant with the highest LD (r2 > 0.8) 

with the missing variant. If the MAF of the missing variant was < 0.01, or none of the 

variants within 200 kb had LD r2 > 0.8, we removed the instrumental variant from the 
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analysis. Palindromic SNPs (A/T or G/C alleles) with MAF [0.4, 0.5], which can introduce 

ambiguity into the identity of the effect allele, were also removed.

MTAG between PAU and drinks per week.

Multiple trait analysis between PAU and drinks per week (DrnkWk) from GSCAN was 

performed on summary statistics with multi-trait analysis of GWAS (MTAG) v1.0.7 [10]. 

The summary data of DrnkWk were generated from 537,352 subjects, excluding the 

23andMe samples that were not available to us for inclusion. We analyzed variants with a 

minimum effective sample size of 80,603 (15%) in DrnkWk and a minimum effective 

sample size of 45,118 (15%) in PAU, which left 10,613,246 overlapping variants.

Data Availability:

The full summary-level association data from the meta-analysis are available through 

dbGaP: [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001672.v3.p1] (accession number phs001672.v3.p1).

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Code availability:

Kinship analysis was performed using KING (http://people.virginia.edu/~wc9c/KING/); 

principal component analyses were performed using EIGENSOFT (https://

data.broadinstitute.org/alkesgroup/EIGENSOFT/); imputation was performed using 

EAGLE2 (https://data.broadinstitute.org/alkesgroup/Eagle/), Minimac3 (https://

genome.sph.umich.edu/wiki/Minimac3), Sanger imputation server (https://

imputation.sanger.ac.uk/), or RICOPILI (https://data.broadinstitute.org/mpg/ricopili/), 

depends on the sample; GWAS was performed using PLINK (https://www.coggenomics.org/

plink2); meta-analyses was performed using METAL (https://genome.sph.umich.edu/wiki/

METAL_Documentation); polygenic risk score analyses were performed using PRSice-2 

(https://www.prsice.info/) or PRS-CS (https://github.com/getian107/PRScs); GCTA (https://

cnsgenomics.com/software/gcta/#Overview) was used for identifying independent loci 

(GCTA-COJO), multi-trait conditional analysis (GCTA-mtCOJO), and Mendelian 

Randomization (GCTA-GSMR); LDSC (https://github.com/bulik/ldsc) was used for 

heritability estimate, genetic correlation analysis (also used LD-Hub, http://

ldsc.broadinstitute.org/), and heritability enrichment analyses; FUMA (https://

fuma.ctglab.nl/) was used for gene association, functional enrichment, and gene-set 

enrichment analyses; transcriptomic analyses were performed using S-PrediXcan and S-

MultiXcan (https://github.com/hakyimlab/MetaXcan); PheWAS analyses were run using the 

PheWAS R package (https://github.com/PheWAS/PheWAS); Mendelian Randomization R 

Package (https://cran.rproject.org/web/packages/MendelianRandomization/index.html) and 

MR-PRESSO (https://github.com/rondolab/MR-PRESSO) were used for MR analyses; 

MTAG (https://github.com/omeed-maghzian/mtag) was used for Multiple trait analysis.
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Figure 1. Overview of the analysis.
The four datasets that were meta-analyzed as the discovery sample for problematic alcohol 

use (PAU) included MVP phase1, MVP phase2, PGC, and UK Biobank (UKB). MVP 

phase1 and phase2 were meta-analyzed, and the result was used to test the genetic 

correlation with PGC alcohol dependence. An intermediary meta-analysis (AUD meta) 

combining MVP phase1, phase2, and PGC was then conducted to measure the genetic 

correlation with UKB AUDIT-P. Due to the sample overlap between UKB and GSCAN, we 

used the AUD (intermediary) meta-analysis for Mendelian Randomization (MR) analysis 

rather than the PAU (i.e., from the final) meta-analysis. MTAG, which used the summary 

data from PAU and DrnkWk (drinks per week) in GSCAN (without 23andMe samples, as 

those data were not available) as input to increase the power for each trait without 

introducing bias from sample overlap, returned summary results for PAU and DrnkWk 

separately.
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Figure 2. Association results for AUD and PAU meta-analyses.
a. Manhattan and QQ plots for AUD (MVP+PGC), ncase=57,564, ncontrol=256,395, 

neffective=179,185; b. Manhattan and QQ plots for PAU, n=435,563, neffective=300,789. 

Effective sample size weighted meta-analyses were performed using METAL. Red lines 

indicate GWS after correction for multiple testing (p < 5×10–8).
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Figure 3. Estimated SNP-based h2.
h2 results for single datasets or meta-analysis between datasets, from published studies or 

analyzed here. MVP is the phase1-phase2 MVP metaanalysis, PAU is the discovery meta-

analysis. Effective sample sizes (nE) were used in LDSC. Center values are the estimated h2 

and error bars indicate 95% confidence intervals.
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Figure 4. Genetic correlations with published traits.
LDSC was applied to test genetic correlation between PAU and 715 traits. Of 228 published 

traits, 26 were genetically correlated with PAU after Bonferroni correction (p < 6.99×10−5). 

MDD, major depressive disorder; ADHD, attention deficit hyperactivity disorder. Center 

values are the estimated genetic correlation and error bars indicate 95% confidence intervals.
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Figure 5. Phenome-Wide associations with PAU PRS in BioVU.
Polygenic score for PAU was calculated in 67,588 participants in BioVU (Vanderbilt 

University Medical Center’s biobank) using PRS-CS. 1,372 phenotypes were tested and 

Bonferroni correction (p < 3.64×10−5) was applied.
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Table 1.
Genome-wide significant associations for PAU.

The total sample size is 435,563, effective sample size from each cohort was used for sample size weighted 

meta-analyses (neffective=300,789) using METAL.

Chr Pos (hg19) rsID Gene A1 A2 EAF Z P Direction

1 66419905 rs6421482 PDE4Ba A G 0.4363 −6.315 2.7×10−10 ----

1 73848610 rs61767420 [] A G 0.3999 5.714 1.11×10−8 ++++

2 27730940 rs1260326 GCKRa T C 0.4033 −9.296 1.45×10−20 --+-

2 45141180 rs494904 SIX3b T C 0.5961 −7.926 2.26×10−15 ----

2 58042241 rs1402398 VRK2b A G 0.6274 7.098 1.27×10−12 ++++

2 104134432 rs9679319 [] T G 0.4797 −6.01 1.86×10−9 ----

2 138264231 rs13382553 THSD7Ba A G 0.766 −6.001 1.97×10−9 ----

2 227164653 rs2673136 IRS1b A G 0.6387 −5.872 4.31×10−9 ----

3 85513793 rs62250713 CADM2a A G 0.368 6.049 1.46×10−9 ++++

4 39404872 rs13129401 KLBb A G 0.4532 −8.906 5.29×10−19 ----

4 100229016 rs75967634 ADH1Ba T C 0.003 −6.098 1.07×10−9 --?-

4 100239319 rs1229984 ADH1Ba T C 0.0302 −22 2.9×10−107 ---?

4 100270452 rs13125415 ADH1Ca A G 0.5849 −9.073 1.16×10−19 ----

4 103198082 rs13135092 SLC39A8a A G 0.9192 11.673 1.75×10−31 ++++

7 153489074 rs2533200 DPP6a C G 0.5163 −5.631 1.79×10−8 ----

8 57424874 rs2582405 PENKb T C 0.237 5.751 8.86×10−9 ++++

10 72907951 rs7900002 UNC5Bb T G 0.6012 −5.503 3.74×10−8 --+-

10 110537834 rs56722963 [] T C 0.2551 −6.374 1.85×10−10 ----

11 47423920 rs10717830 SLC39A13a G GT 0.674 6.422 1.34×10−10 ++++

11 57480623 rs576859 TMX2a A C 0.3272 5.67 1.43×10−8 +++?

11 113357710 rs138084129 DRD2b A AATAT 0.6274 7.824 5.13×10−15 ++++

11 113443753 rs6589386 DRD2b T C 0.4323 −7.511 5.88×10−14 ----

11 121542923 rs1783835 SORL1b A G 0.4569 −5.979 2.24×10−9 ----

12 51903860 rs12296477 SLC4A8b C G 0.5469 5.484 4.15×10−8 ++++

14 58765903 rs61974485 ARID4Aa T C 0.2646 5.506 3.67×10−8 ++++

14 104355883 rs8008020 C14orf2a T C 0.4175 6.062 1.35×10−9 ++++

16 24693048 rs72768626 TNRC6Aa A G 0.9448 5.591 2.26×10−8 ++++

16 53820813 rs9937709 FTOa A G 0.585 6.602 4.06×10−11 ++++

19 49206417 rs492602 FUT2a A G 0.5076 −6.143 8.08×10−10 ----
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Listed are the 29 independent variants that were genome-wide significant. Variants labeled in bold are novel associations with PAU. A1, effect 
allele; A2, other allele; EAF, effective allele frequency. Directions are for the A1 allele in MVP phase1, MVP phase2, PGC, and UKB datasets.

a
Protein-coding gene contains the lead SNP,

b
Protein-coding gene nearest to the lead SNP.
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