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Ribonucleic acids are driving a multitude of biological processes where they act alone or
in complex with proteins (ribonucleoproteins, RNP). To understand these processes both
structural and mechanistic information about RNA is necessary. Due to their conform-
ational plasticity RNA pose a challenge for mainstream structural biology methods. Solid-
state NMR (ssNMR) spectroscopy is an emerging technique that can be applied to
biomolecular complexes of any size in close-to-native conditions. This review outlines
recent methodological developments in ssNMR for structural characterization of RNA and
protein–RNA complexes and provides relevant examples.

Introduction
Numerous cellular activities are carried out by RNA and RNP complexes. They carry genetic informa-
tion, modulate gene expression, act like enzymes, guide the assembly of complex molecular machines
[1]. The activity of RNA and RNPs depends on their well-defined three-dimensional (3D) architecture
as well as active conformational dynamics. X-ray crystallography, nuclear magnetic resonance (NMR)
and electron microscopy (EM) are the most important methods for structural studies of biomolecules.
Both naked RNA and RNPs are challenging molecules for structural studies. RNA often does not crys-
tallize and in such cases is non-eligible for X-ray crystallography, RNA also represents a difficult
object for EM due to large conformational flexibility. Solution-state NMR, on the other hand, can deal
with flexible molecules in solution, however, encounters severe limitations when applied towards high
molecular mass molecules.
Solid-state NMR (ssNMR) is an emerging structural biology technique that does not have intrinsic

molecular mass limitation, can be readily applied to non-crystalline samples and can provide struc-
tural information on the atomic scale. ssNMR has been showing tremendous progress in understand-
ing the structure and dynamics of amyloid fibrills, membrane proteins and protein assemblies [2–5].
On the opposite, the application of ssNMR to RNA and RNPs has only emerged recently due to
many challenges. Intrinsically lower spectral resolution in ssNMR is exacerbated by the low chemical
shift dispersion of only four chemically similar ribonucleotides [6,7]. Furthermore, lower proton
density in RNA makes it difficult to correlate different nucleotides with each other and obtain long-
range distance restraints. Nevertheless, in the last decade significant progress has been achieved in the
structural biology of RNA by ssNMR; in this review, we will briefly summarize the most important
recent advances in sample preparation, resonance assignment and structural characterization of RNA
and protein–RNA complexes by ssNMR.

RNA preparation for ssNMR studies
The main methods of RNA production for NMR studies are solid-phase synthesis and in vitro tran-
scription. For better overview of different procedures of RNA synthesis and isotope labeling for
ssNMR please refer to our recent review on this topic [8]. Briefly, for ssNMR studies of RNA typically
nucleotide-type selective of even nucleotide-specific labeling of RNA is necessary. Solid-phase synthe-
sis can provide with RNAs up to 70 nt in length using commercially available phosphoramidites
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without any restriction in sequence [9] and nucleotide-specificity [10,11]. Moreover, atom-specific isotope
labeling is possible, which however requires sophisticated organochemical synthesis of corresponding phos-
phoramidites [12]. Unfortunately, this approach is not accessible to most of the laboratories. On the other
hand, an in vitro transcription method is easy to implement and can be employed to synthesize RNA longer
than 10 nt with sufficient yield and purity [13,14]. In vitro transcription can be performed as one pot reaction
(Figure 1A), and uniform or nucleotide-type selective labeling of the RNA can be obtained using 2H/13C/15N
isotope-labeled rNTPs [8,15]. To remove possible 50 and 30 inhomogeneities one can synthesize longer RNA
and then cut them at desired positions using different ribozymes [8]. Segmental labeling is necessary for large
RNAs (>40 nt), please see our recent review and comprehensive survey by Duss et al. [16] for details. After
RNA synthesis and RNA purification (via PAGE or HPLC) and (optional) assembly of RNP complex, the
sample must be prepared to be packed into ssNMR rotor (Figure 1A). To date, there are three major procedures
of RNA or protein–RNA sample preparation for ssNMR studies.
In early days of ssNMR studies on nucleic acids samples were lyophilized, which ultimately led to broad

resonances [17,18] due to insufficient hydration of RNA. However, since the molecules were typically site-
specific labeled at one or two specific positions, structural information was extracted without any difficulties
[18,19]. In the following studies, the lyophilized samples were gradually rehydrated in a controlled way to
regain optimal resolution [20–22].
The second approach of sample preparation is freezing or flash-freezing of sample together with a cryopro-

tectant at low temperatures (100–150 K). This approach is widely used in the sample preparation for dynamic
nuclear polarization (DNP) studies. Freezing of samples ultimately leads to large inhomogeneous line broaden-
ing due to freezing out of molecular motions [23]; the impact of such line broadening could be alleviated by
specific labeling, specific magnetization transfer and multidimensional experiments. Corzilius group has shown
the applicability of this approach towards RNA and is actively working in this area [24–26].
Finally, the most established method to date is the micro(nano) crystallization of RNA. This approach has

been widely used for structural studies of proteins by ssNMR [2,3,27] and since then has been also implemen-
ted for structural studies of RNA and RNPs with minor modifications [28,29]. The approach involves fast
micro-crystallization or precipitation of RNA or protein–RNA solutions by different crystallization agents (typ-
ically including polyethylene glycol (PEG) and salts) using vacuum concentrators. Micro-crystallized samples
are usually stable at broad range of temperatures and give reproducible high-resolution spectra.
Very recently Wang group has proposed a novel ethanol precipitation method, where ethanol is added to the

RNA solution to instantly precipitate RNAs [30]. This approach may provide hydrated RNA; moreover, it was
shown that Watson–Crick (WC) base pairs are preserved during this treatment. However, it remains to be seen
if this method preserves RNA fold and if it keeps tertiary structural elements like loops, kink-turns or bulges
intact [30]. Another method of sample preparation is the sedimentation of dissolved macromolecules from the

Figure 1. Solid-state NMR for studies of RNA.

(A) Schematic representation of RNA synthesis, RNA purification and conditions optimization for ssNMR sample preparation. (B) 2D 13C,13C PDSD

experiment together with its pulse sequence illustrated by a spectrum of 13C,15N labeled adenine (Alab-) 26mer box C/D RNA in complex with L7Ae

protein. The spectrum was acquired at 500 ms mixing time giving rise to a full set of intranucleotide carbon–carbon correlations. Ribose–ribose,

base–base and ribose–base correlations are enclosed by green, blue and red rectangles, respectively. Adenine nucleotide with carbon

nomenclature is shown. (C) Ribose region of 2D 13C,15N TEDOR-13C, 13C PDSD spectrum of nucleotide-type selectively labeled A,Ulab-RNA. Due to

long PDSD mixing time both intra- and inter-nucleotide peaks were observed, which are labeled in green and red, respectively. Selected

inter-nucleotide correlations are highlighted. (B) is reprinted from [36] © (2019) with permission from Elsevier. (C) is reprinted from [46].
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solution-state directly into ssNMR rotor using an ultracentrifuge [31,32]. This approach shows very promising
results for studies of protein assemblies [33], and recently it was applied to a ribosomal subunit 50S in complex
with a trigger factor [34]. However, this method has not yet been tested for any labeled RNA containing bio-
molecular complexes.

Protocol for RNA structure determination by solid-state
NMR spectroscopy
Aiming for de novo structure of RNA without any available prior structural information, a conventional
protocol of RNA structure determination by NMR must be applied. The procedure requires: (a) unambigu-
ous assignment of resonances, followed by (b) acquisition of distance and dihedral restraints, finalized
by (c) structural calculations that provide RNA structure [35,36]. Next, we will briefly outline our ssNMR
workflow for RNA structure determination (Figure 1). Please refer to our recent work for a detailed
protocol [36].
Assignment of resonances in RNA is a challenging task due to severely overlapped signals of most ribose and

base atoms. This task can be divided into intranucleotide assignment (spin-system assignment and identifica-
tion) and internucleotide (sequential) assignment (connection of spin systems). Assignment strategy in ssNMR
is quite different from that in solution-state NMR due to the preservation of dipolar couplings and typically
applied 13C detection in conventional ssNMR. In most cases, nucleotide-type selective labeling is necessary to
overcome severe resonance overlap. Ribose carbons could be correlated through homonuclear 13C,13C correl-
ation experiments like symmetry-based recoupling [37], PDSD [38], DARR [39] or novel PAR [40] experi-
ments; intranucleotide ribose–base connections could be obtained through PDSD correlation as well utilizing
longer mixing time (Figure 1B). In 13C,13C PDSD experiment after initial cross-polarization (CP) from 1H to
13C, 13C chemical shifts are evolved during t1. Following,

13C magnetization is spread over ribose and base
carbons during PDSD or DARR and then detected during t2. We have utilized PDSD correlation scheme to
obtain preliminary assignment of carbons in the 26mer box C/D RNA from Pyrococcus furiosis (Pf)
(Figure 3G); this experiment is equally efficient for nucleotide-type labeled 72 nt long RNA part of 370 kDa
large box C/D RNP complex [8]. More sophisticated heteronuclear 3D CNC experiment [41] greatly reduces
resonance overlap, provides the information on nucleotide type and delivers ribose–base correlations. The
experiment contains two specific-CP [42] steps and correlates ribose C10 carbon with base C2, C6/C4, C8
carbons via nitrogen atom N1/N9 in purines and pyrimidines, respectively (Figure 2). In principle, using just
two double-nucleotide-type selective labeled samples (e.g. 13C,15N-A,Ulab-RNA and 13C,15N-G,Clab-RNA) com-
plete identification of all spin systems and complete intranucleotide assignment of ribose–base connectivities
are possible.
Alternatively to previously discussed CNC experiment, 13C,15N TEDOR experiment [43,44] coupled with

13C,13C PDSD step can be applied to correlate ribose and base carbons with N1 and N9 nitrogens in pyrimi-
dines and purines, respectively (Figures 1C and 2). This experiment was successfully implemented by Görlach
group in their studies of (CUG)97 RNA repeat [45] and then used by us in the assignment of resonances in the
26mer box C/D RNA both ambiguously [41] and sequentially [46].
Assignment of base nitrogen resonances is a more challenging task, but this step is crucial for the determin-

ation of base pairing patterns and the acquisition of inter-nucleotide distance restraints. Fortunately, 13C detec-
tion and strong dipolar couplings in conventional ssNMR overcome the disadvantage of low density of protons
in the base, which typically represents a serious challenge in solution-state NMR. In an illustrative NCC experi-
ment on RNA bases [41] magnetization is transferred from protonated imino or amino nitrogens to directly
attached carbons by specific-CP [42]. Consequent PDSD or DARR step can spread magnetization up to C10

providing a better assignment (Figure 2).
Recently fast magic angle spinning (>100 kHz) probes have become available, which allows to perform

1H-detected ssNMR studies of protonated uniformly 13C,15N labeled proteins [49,50]. In collaboration with
Pintacuda group we have developed a set of 1H-detected 3D and 4D experiments and applied them for the
study of uniformly 13C,15N labeled 26mer box C/D RNA [51]. These experiments resulted in almost complete
assignment of ribose resonances, greatly reducing preparative efforts and experimental time.
While the sequential assignment of proteins by ssNMR is straightforward and can be accomplished by com-

bination of 3D NCACX, NCOCX and CONCA experiments [52,53], sequential assignment of RNA is not
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simple due to absence of one-bond connectivities. Sequential assignment of RNA in solution-state NMR uses
sequential ribose–base NOEs or heavily overlapped Cribose–P correlations [35,54]; we have proposed similar
approach for ssNMR of RNA [46].
First successful attempts to acquire inter-nucleotide correlations and obtain sequential distance restraints in

RNA were performed by Görlach group in their study on (CUG)97 RNA repeat (Figure 3A); there homonuclear
CHHC experiment [47] acquired at different mixing times has provided sequential C20–C6 correlations [55]

Figure 2. Representative solid-state NMR experiments in the RNA structure determination workflow.

ssNMR experiments for the intranucleotide [41] and sequential assignments are shown as well as experiments for measurements of distance

restraints and base pairs patterns [36,46]. See text for details. In magnetization transfer schemes solid arrows indicate the CP or specific-CP [42]

transfers; the dotted arrows indicate PDSD [38]/DARR [39] transfers or proton spin diffusion [47]; dashed arrows indicate TEDOR [43] transfer;

dash-dotted arrows indicate 15N,15N RFDR transfers [48]; arabic numbers correspond to the spectral dimensions of 2D or 3D spectra.

Magnetization transfer schemes are reprinted from [36] © (2019) with permission from Elsevier. ssNMR structure of the 26mer box C/D RNA is

adapted from [46].
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(Figure 3B,C). Additionally, they were able to acquire CHHC/NHHN/CHHN and NHHC datasets in a single
experiment using the multi-receiver capability of their spectrometer [56]. We have implemented similar
approach in our study of the 26mer box C/D RNA using long-range 13C,13C PDSD (Figures 1B and 2) as
sequential correlation step [46]. Due to significant signal overlap, resolution of homonuclear 13C,13C correlation
experiments would not be sufficient, so we have coupled 13C,13C PDSD with heteronuclear editing
13C,15N-TEDOR [43] block to reduce spectral overlap. Double-nucleotide-type specific labeling was necessary
to perform sequential assignment. TEDOR spectrally separates purines and pyrimidines in
double-nucleotide-type selective labeled samples and allows identification of hidden/overlapped weak inter-
nucleotide peaks (Figure 1C).
Furthermore, we have also explored the applicability of Cribose–P correlations for studies of RNA by ssNMR.

13C,31P TEDOR experiment has provided C20i–Pi+1 and C30i–Pi+1 correlations (Figure 2). Unfortunately, 31P
resonances were poorly resolved in helices and sequential contacts were obtained only for non-canonical struc-
tural elements (kink-turn) [46]. Altogether, using nucleotide-type selective labeling we could assign more than
80% of site specific 13C and 15N resonances for the box C/D 26mer RNA [46]. The availability of an RNA pro-
duction platform (solid-phase synthesis) can significantly facilitate the sequence-specific assignment. We have
explored this approach in collaboration with Kreutz group by utilization of C8/C6 atom-specific labeling of
guanines and uraciles, which provided us with some sequential base–base correlations [8]. Most certainly,
proton-detected ssNMR with its superior resolution and sensitivity will provide sequential correlations in
similar manner to solution-state NMR experiment and additionally benefit from sensitive dipolar transfer
schemes in ssNMR.
Most of the correlations utilized for the sequential assignment are used to derive distance restraints. More

distance restraints can be obtained from TEDOR [43], PAR [40], CHHC [47] and NHHC [57] experiments.
However, 2D 13C,13C correlation spectra, which are sufficient for structural studies of uniformly labeled
proteins [2,3,58], might not provide sufficient spectral resolution even for nucleotide-type selective labeled
RNA. In our study of the 26mer box C/D RNA we have used long-range 13C,13C PDSD correlation coupled
with 13C,15N TEDOR block to obtain resonance assignment and long-range carbon–carbon distance
restraints. CHHC and NHHC experiments (Figure 2) delivered several useful H–H restraints. Furthermore,
we have obtained C–P and C–N distance restraints from 13C,31P and 13C,15N TEDOR experiments, respect-
ively (Figure 2). In principle, experiments like TEDOR [43] or RFDR [48] could provide precise distance
restraints by analysis of the polarization transfer trajectories in Simpson [59] or Spinach [60]. However, due
to sensitivity reasons, we have converted inter-nucleotide correlations into non-precise distance restraints
instead.
Information about base pairing pattern is a prerequisite for the structure determination of RNA by NMR.

Görlach group was the first to demonstrate the presence of WC base pairs in (CUG)97 RNA repeat (Figure 3A)
by observing G-N1/C-N3 cross-peaks via direct N–N homonuclear correlation experiment [22] or by observing
G-N1/C-N4 correlation in NHHN-type experiment [61]. In our study of the 26mer box C/D RNA we have fol-
lowed the same approach and applied 15N,15N RDFR [48] experiment to obtain A-N1/U-N3 and G-N1/C-N3
correlations that indicated the presence of WC base pairs (Figure 2). Recently, a novel method has been sug-
gested by Wang group, where the long range 15N,15N PAR transfer coupled with proton detection was applied
to obtain inter-nucleotide C-N3/G-H1 and A-N1/U-H3 correlations from 2D hCN(PAR)NH experiment [62].
In their study PAR has allowed efficient inter-base transfer while 1H-detection has significantly increased
sensitivity.
Dihedral angles, which can be directly measured through homonuclear 3J(H,H) coupling constants in liquid-

state NMR of RNA [35] are currently out of reach for state-of-the-art ssNMR. However, indirect estimation of
ribose conformation can be obtained from ribose chemical shifts. This approach was proposed by Ebrahimi
et al. in solution-state NMR [63], confirmed by Görlach group [37], advanced by Schwalbe group in their study
of 14mer model RNA [64] and then implemented by us in the study of the 26mer box C/D RNA [46].
Information about ribose conformation allows to identify secondary structure elements and provides valuable
dihedral restraints for structure determination.
All collected distance restraints, base pair- and dihedral angle restraints can be used in any software package

of choice like ARIA [65], CYANA [66], XPLOR-NIH [67] or Haddock [68] to perform structural calculations.
In our study of the 26mer box C/D RNA we have utilized 206 distance restraints and 174 dihedral restraints in
ARIA package to calculate the structure of RNA with precision of 0.9 Å (Figure 2).
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Structural and functional studies of RNA and protein–RNA
complexes by ssNMR
The above presented ssNMR protocol opens the path for structural studies of RNA by ssNMR. However, if site-
specific labeled RNA is available or the RNA molecule of interest is small, the resonance assignment of RNA is
not required due to prior knowledge of nucleotide positions. Then, direct measurements of structural or
dynamic data are possible. This approach typically requires (a) access to sophisticated synthesis platform (solid-
phase synthesis etc.) and (b) can be practically applied only to short RNAs. This concept was successfully
implemented by Drobny group in their study of HIV TAR-RNA (Figure 3D) and its complex with the viral
regulatory protein Tat. In their pioneer study, they have incorporated specific labels in TAR RNA at positions
U23 (19F) and A27 (phosphorothioate, pS) and utilized 31P–19F REDOR [71] spectroscopy to observe change

Figure 3. Important structural studies of RNAs and RNPs by ssNMR.

(A–C) Double-stranded (CUG)97 RNA repeat. (A) Schematic representation of (CUG)97 RNA. (B) Experimental 13C,13C chemical shift correlation

spectra of the hydrated uniformly [15N,13C]-labeled (CUG)97 RNA acquired with different mixing times. Assignments of the different resonances are

indicated. (C) Intra- and inter-nucleotide 1H–1H dipolar interactions in a double-stranded A-form helical RNA, only one strand of the RNA is shown.

(Figures (A–C) are adapted from [55] with permission from John Wiley and Sons© 2006). (D–F) TAR RNA–Tat complex. (D) Sequence of TAR RNA

with indicated specific labeling at positions U23 and A27. (E) Rearrangement of the TAR-RNA binding site on Tat-derived peptide binding. Blue

spheres represent 19F and pS labels at positions U23 and A27, respectively. The 19F–pS distance decreases from 12.3 to 5.3A° on Tat binding.

(Figures (D–E) are reprinted from [18]). (F) The motions of nucleotides U23 (left) and U25 (right) in TAR RNA studied by 2H-ssNMR spectroscopy.

Selective deuterated sites are indicated in red. See the text for details. (Reprinted with permission from [73] © (2010) American Chemical Society).

(G–I) 26mer box C/D RNA–L7Ae protein complex from Pf. (G) Sequence and secondary structure of the 26mer box C/D RNA. (H) Distances

between the L7Ae protein backbone 15N nuclei and the U20-31P nuclei in kink-turn 26mer box C/D RNA binding site measured based on TEDOR

experiments (Reprinted with permission from [28] © (2010) American Chemical Society). (I) Overlay of ssNMR-derived structure of L7Ae–26mer box

C/D RNP (blue, PDB ID 6TPH) with the crystallographic structure of the orthologous L7Ae–RNA complex from A. fulgidus (gold, PDB ID 4BW0 [69]).

(Reproduced from [76]). (J–K) DNP ssNMR study of hybridized hammerhead ribozyme (HHRz). (J) Secondary structure of the HHRz construct

depicting 13C-labeled uridines (yellow), adenosines (purple) and Mn2+ binding site (pink). (K) Tertiary (inter-stem) contact between U13 (orange) and

A320 (green) formed by reverse Hoogsteen base pairing, including neighboring U310 (green). Distances as extracted from the crystal structure PDB

ID 2OEU [70] are given for observed contacts by TEDOR experiment. (Reprinted from [25] ©2019 with permission from Elsevier).
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in U23–A27 distances upon binding to the Tat peptide (Figure 3E) [18]. In the following studies, Arg52 in Tat
peptide was additionally 13C,15N labeled which allowed to perform intermolecular TAR–Tat
19F–13C/19F–15N/31P–13C/31P–15N REDOR experiments [19,72]. Measured intermolecular distances resulted in
the detailed model of the TAR–Tat complex that is in good agreement with solution-state NMR derived
structure.
Not only structure, but also the dynamics of RNA can be studied by ssNMR. The only research lab currently

studying RNA dynamics by ssNMR is the Drobny group. They have performed selective deuteration at posi-
tions H5 and H6 in uridines U23, U25 and U38 in TAR RNA and have applied 2H-ssNMR spectroscopy. First,
they have shown that motions occurring at ms–ns time scale can be analyzed by simulation of 2H line shape
[20]. Following, based on the analysis of the 2H line shape both amplitudes and motion rates of residues within
the TAR binding interface have been obtained [73]. The motions of non-helical nucleotide U23 can be
described by a 24° jump linking the conformation observed for this nucleotide in free TAR-RNA to its position
observed in the TAR-RNA–Tat complex; in addition fast ±11° rotations of the base with respect to the sugar
are observed. The motions of non-helical nucleotide U25 can be characterized as a combination of a slow 30°
outward jump and slower ±40° rotation about the glycosidic bond (Figure 3F). Motions of nucleotide U38 in
helix can be characterized by combination of 13° twisting and 13° bending corresponding to the cooperative
movement of the entire upper helix with rate of ∼106 s−1 [73]. Very recently they have additionally measured
motion rates for nucleotides U40 and U42 in lower helix, which appear to be much slower (∼105 s−1) than
those in the upper helix, indicating that two helical domains reorient independently of one another [74].
Similarly, assignment and structure determination of RNA are not necessary, if prior information about the

structural arrangement of the protein–RNA complex is available from the comparison with heterologous com-
plexes. This approach has been utilized by Carlomagno group to characterize the protein–RNA interface in
L7Ae–box C/D 26mer RNA complex (Figure 3G). It was assumed that only one nucleotide (U20) is in close
vicinity to the protein backbone. In their study L7Ae protein was uniformly 15N labeled; six precise 31P–15N
distances (Figure 3H) were measured by analysis of TEDOR build-up curves between protein backbone nitro-
gens and phosphorus in the nucleotide U20 [28]. Different approach has been implemented by Reif and
Carlomagno groups in the 1H-detected ssNMR study of the same protein–RNA complex. Here, by analysis of
the reduction of 1H–15N L7Ae resonances in close proximity to protonated 26mer box C/D RNA quantitative
distance restraints up to 6 Å were obtained [75].
On the opposite, in recent contribution from our and Carlomagno group, only ssNMR data without any pre-

liminary information about the relative arrangement of protein and RNA have been used to obtain first de
novo structure of protein–RNA complex [76]. In this study, we have refrained from usage of long-range dipolar
magnetization transfer due to (a) considerable overlap of resonances and (b) significant attenuation of the
signal in non-specific labeled samples due to dipolar truncation [77]. Instead, we have developed the method
that uses intermolecular paramagnetic relaxation enhancement (PRE) and chemical shift perturbation (CSP)
on protein upon RNA binding [76]. PRE effect utilizes strong dipolar interactions between nuclei and unpaired
electrons that leads to increased relaxation rates of nuclei and therefore signal attenuation [78]. In ssNMR
PREs were first used in studies from Emsley laboratory [79] and Jaroniec laboratory [80,81]. In our study, we
have developed a semi-quantitative approach, where PRE effect is observed on RNA resonances in complex
with paramagnetic spin-label tagged protein. Intra-protein PREs on protein with known 3D structure are used
to derive a PRE ruler, which is then used to obtain intermolecular protein–RNA restraints from intermolecular
PREs. Combining these restraints and protein CSPs in Haddock [68] we have obtained ssNMR-derived struc-
ture of L7Ae–box C/D 26mer RNA complex with 1.7 Å precision (Figure 3I) [76].
Unique features of unpaired electrons could be also very helpful in other techniques. In DNP, the large elec-

tron spin polarization of a paramagnetic polarizing agent is transferred to nuclear spins and increases the sensi-
tivity of the NMR experiment by several orders of magnitude [49,82–84]. Application of the hyperpolarization
technique on RNA and RNP is still at the early stages of development but it holds great promises. For instance,
Baldus group has applied DNP ssNMR to study cellular preparations and have acquired first spectra of RNA
by DNP, identifying few intra- and intermolecular contacts [85]. Corzilius group applied DNP to a paramag-
netic hammerhead ribozyme (HHRz) complex with endogenously bound Mn2+ and obtained eight times 13C
signal enhancement [24]. A 160–200 fold signal enhancement was observed when 5 mM AMUpol was used in
a nucleotide specific and also orthogonally labeled HHRz [25]. In this study using a DNP-enhanced 13C,13C
PDSD and 13C,15N TEDOR, specific investigation of relevant inter-strand and/or inter-stem contacts was per-
formed and a non-canonical reverse Hoogsteen base pairing was discovered (Figure 3J–K). Recently, Corzilius
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group have discovered a SCREAM-DNP (specific cross-relaxation enhancement by active motions) effect [86].
Polarization transfer during SCREAM is mediated by 1H–13C cross-relaxation within methyl groups due to
reorientation dynamics, and results in an enhanced and inverted 13C NMR signal. This approach allows to
spectrally isolate the complex from the unbound mixture. In their recent study, SCREAM-DNP was instrumen-
tal to provide insights into the molecular structure of RNA aptamer-selectively methyl-labeled tetracycline
complex [26].

Perspectives
• RNA and RNPs are key players in numerous cellular activities, understanding their action

mechanisms requires structural knowledge. ssNMR is a novel alternative structural biology
method that can provide structural information at the atomic level of precision for large confor-
mationally flexible biomolecules.

• Despite significant challenges in studying RNA and RNP by ssNMR, compelling progress has
been achieved in the last decade both in methodology development as well as applications,
thus opening the way to study large RNAs.

• Now and in the future, the quest to explore structure and dynamics of RNA in large molecular
machines by ssNMR is continuously supported by advances in sample preparation (specific
and segmental labeling), spectrometer hardware development (high-field magnets and new
probes), new techniques (DNP) and concepts (proton detection and multi-receiver detection)
and new approaches for spectra acquisition and processing (non-uniform sampling).
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