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ABSTRACT 

 

Many theories of learning and memory (e.g. connectionist, associative, rational, 

exemplar-based) produce  psychological magnitude terms as output (i.e. numbers 

representing the momentary level of some subjective property). Many theories assume 

that these numbers may be translated into choice probabilities via the Ratio Rule, a.k.a. 

the Choice Axiom (Luce, 1959) or the Constant-Ratio Rule (Clarke, 1957). We present 

two categorization experiments employing artificial, visual, prototype-structured stimuli 

constructed from twelve symbols positioned on a grid. The Ratio Rule is shown to be 

incorrect for these experiments, given the assumption that the magnitude terms for each 

category are univariate functions of the number of category-appropriate symbols 

contained in the presented stimulus. A connectionist winner-take-all model of categorical 

decision (Wills & McLaren, 1997) is shown to account for our data given the same 

assumption. The central feature underlying the success of this model is the assumption 

that categorical decisions are based on a Thurstonian choice process (Thurstone, 1927, 

Case V) whose noise distribution is not double exponential in form. 
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Many theories of learning and memory employ what we shall describe as psychological 

magnitude terms. A psychological magnitude term is a continuous number which 

represents the momentary level of some subjective property. For example, a magnitude 

term could represent the subjective level of evidence for the belief that a stimulus is a 

member of a particular category.  

 

Theories which employ psychological magnitude terms include connectionist and 

associative models, many exemplar-based theories, and some normative models. Any 

connectionist model that relies on the activation of output representations to predict 

responding is employing magnitude terms (e.g. Gluck & Bower, 1988a; Kruschke, 1992; 

McClelland & Rumelhart, 1985; Seidenberg & McClelland, 1989). Similarly, the end 

product of many associative learning models is a number (e.g. the sum of associative 

strengths of cues present on a trial) which represents a prediction about level of 

responding (see e.g. Pearce, 1987; Rescorla & Wagner, 1972; Wagner, 1981). Further, 

many theories which posit the storage of specific examples or instances are magnitude-

based. For example, models which calculate summed similarity to stored instances in 

order to predict responding are magnitude-based, with the summed similarity scores being 

the magnitude terms (e.g. Estes, 1994; Kruschke, 1992; Lamberts, in press; Medin & 

Schaffer, 1978; Nosofsky, 1986). Finally some normative models, for example 

Anderson’s rational model (Anderson, 1991), employ magnitude terms. 

 

All models whose output is a set of magnitude terms must specify how these numbers 

translate into empirically testable predictions. In this paper we focus on a particular aspect 

of this decision mechanism issue, namely how are predictions about the probability of a 

specific response derived when multiple responses are possible? An answer common to 

otherwise disparate memory models is that one should invoke the Ratio Rule. The Ratio 

Rule has been proposed by a number of authors (e.g. Bradley, 1954; Clarke, 1957; Luce, 

1959) and goes under a variety of names, including the Choice Axiom (Luce, 1959) and 

the Constant-Ratio Rule (Clarke, 1957). For our current purposes, the Ratio Rule may be 

expressed, 
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∑
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where P(i) is the probability of choosing alternative i from n alternatives and vj  is the 

magnitude term for the jth alternative. Theories which employ the Ratio Rule include 

McClelland & Rumelhart’s model of word perception (McClelland & Rumelhart, 1981 

Equation 7), their distributed memory model (McClelland & Rumelhart, 1985 p. 174-

175), Gluck & Bower’s model of category learning (Gluck & Bower, 1988 Equation 3), 

Kruschke’s ALCOVE  (1992, Equation 3) and ADIT (1996, Equation 10) models, and the 

Generalized Context Model (Nosofsky, 1986, Equation 5). In some cases, the magnitude 

terms employed are transforms of the model’s output, the most common transform being  

 

v = e
ko

 ,           2 

 

where o is the model’s output and k is a scaling constant. Equation 1 implies that 

magnitude terms are non-negative because negative terms would lead to probabilities of 

less than zero. Amongst the advantages of the exponential transform of Equation 2 is that 

it ensures magnitude terms are non-negative. 

 

Whilst the Ratio Rule is commonly used to derive probability predictions from 

magnitude-based models, theorists are seldom explicit about their reasons for choosing 

this particular decision mechanism.  Research designed specifically to test the Ratio Rule 

provides some support for it, but this support is by no means definitive. For example, 

Bradley (1954) and Hopkins (1954) tested the Ratio Rule in the context of pair-

comparison experiments. In a pair-comparison experiment there are  n stimuli. For each 

possible pair of stimuli, subjects are asked to choose one stimulus on the basis of some 

criterion (e.g. pick the sweeter of two flavours). These studies show that response 

probabilities in a number of pair-comparison experiments are explicable in terms of the 

Ratio Rule. The nature of the support provided by both studies is a demonstration that 
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there are a set of magnitude terms (one for each stimulus) which, when substituted into 

the Ratio Rule, produce predictions which do not differ significantly from the observed 

data. 

 

There are at least three problems with taking these studies as good evidence in support of 

the Ratio Rule. First, no alternative theory is tested so there may be other formulations 

that would work equally well for these data (e.g. the Difference Rule previously 

investigated by Jones, Wills, & McLaren, 1998). Second, the pair-comparison 

experiments examined typically involve only a few stimuli, and hence there are almost as 

many free parameters as there are data points. For example, in one typical test there were 

four different stimuli, and hence four free parameters. There are six possible pair 

comparisons of four stimuli, and hence only six response probabilities to be predicted. It 

would perhaps be surprising if the Ratio Rule did not pass a goodness-of-fit test under 

such circumstances. The third problem is that support for the Rule is based on a null 

result. Given that the sample size in all tests is small, the results may be due to a lack of 

power in the statistical test rather than the adequacy of the Ratio Rule. 

 

Another area of research designed to test the Ratio Rule concentrates on its prediction 

that the ratio of any two choice probabilities is constant, irrespective of the total number 

of alternatives. This property of the Ratio Rule allows it to predict full-set choice 

probabilities from sub-set choice probabilities, and vice versa. For example, in an 

experiment by Clarke (1957) the full-set decision was to determine which syllable had 

just been presented in noise, given six alternative syllables to choose from. The sub-set 

decisions involved determining the syllables presented given just three of the original six 

alternatives. The full-set choice probabilities were used to derive predictions, via the 

Ratio Rule, for the sub-set choice probabilities. These predictions were then compared 

with the observed choice probabilities. Clarke concluded that the level of agreement 

between predictions and observations was good, with 95% of predictions deviating by 

less than 0.1 from the observed data. A number of other studies have come to similar 

conclusions for a variety of stimuli (e.g. Pollack & Decker, 1960). The problem in 
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accepting such studies as good evidence in support of the Ratio Rule is that, as in the 

analysis of pair-comparison experiments, no alternative theory is considered. 

 

One alternative to the Ratio Rule is to assume that people always choose the alternative 

with the largest subjective magnitude term. This may seem unlikely because the 

probability of choosing an alternative in a specific situation seems constrained to be one 

(if its magnitude term is the largest), or zero (if it is not). However, if subjective 

magnitude terms are subject to random variation across different occurrences of the same 

stimulus then probabilities other than one and zero can be predicted.  

 

If the magnitude terms are assumed to have a Gaussian distribution then this alternative 

theory corresponds to Thurstone’s (1927) theory of judgement, with our term 

psychological magnitude basically corresponding to Thurstone’s term discriminal 

process. As has been noted  previously (e.g. Luce, 1959, p. 56) the Ratio Rule and 

Thurstone’s theory can often make very similar predictions However, Yellot  (1977) 

proved for situations involving three or more choices that the predictions of Thurstone’s 

theory and the Ratio Rule can be equivalent if and only if the distributions employed in 

Thurstone’s theory are double exponential. For a two-choice situation there are 

distributions other than the double exponential which allow equivalence (e.g. an 

exponential distribution). Yellot’s demonstrations were for Case V of Thurstone’s theory, 

which assumes that all distributions have the same variance. 

 

Burke and Zinnes (1965) examined data from three different pair-comparison 

experiments and concluded that Thurstone’s theory (Case V) predicted response 

probabilities somewhat better than the Ratio Rule. In contrast, Hohle (1966) concluded 

from his examination of a different set of pair-comparison data that the Ratio Rule was 

superior. Both papers rely on the quantitative difference between observed and predicted 

response probabilities to discriminate between the two theories - they calculate χ2 

goodness-of-fit for each theory, and favour the theory which generally has the lower χ2
. 

Taken together, it is unclear from these papers which theory is to be preferred.  
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In the current paper we report two experiments designed to test some predictions of the 

Ratio Rule for situations other than a straight-forward two-choice task. The predictions of 

the Ratio Rule for these situations are unambiguous and amenable to experimental test. 

However, these predictions are qualitatively different to those made by a model based on 

the principles of Thurstone’s theory. This alternative model is the winner-take-all (WTA) 

connectionist network proposed by Wills & McLaren (1997) and further investigated by 

Jones et al. (1998). Due to the length and complexity of exposition required, details of 

this model and the predictions it makes are presented towards the end of the paper 

 

A prediction of the Ratio Rule 

The prediction of the Ratio Rule under test in our experiments concerns a three-choice 

decision, a two-choice decision and the relationship between the two. In the three-choice 

decision, the subject is presented with stimuli to which three responses (A, B and C) are 

potentially appropriate. The subject must make one of these responses to each stimulus. 

In the two-choice decision the same stimuli are presented but one of the responses (A) is 

disallowed by the experimenter. The subject must make one of the two remaining 

responses. This procedure is an example of the full-set vs. sub-set manipulation described 

above. The prediction under test depends on the assumption that the magnitude terms for 

allowed alternatives are determined by the stimulus itself, and are not affected by whether 

a two-choice or three-choice decision is requested.  

 

The prediction concerns the relationship between two measures. The first measure is the 

probability with which subjects make response A in the three-choice decision. By the 

Ratio Rule as stated in Equation 1, this probability is predicted to be 

  

P(A : A, B,C) =
vA

vA + vB + vC

        3 

 

where vX  is the magnitude term for response x produced by a given stimulus. 
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The second measure concerns the probability of making response B to a given stimulus in 

the two-choice decision and the probability of making response B to an equivalent 

stimulus in the three-choice decision. Specifically, the measure is the difference between 

the two-choice and three-choice probabilities, expressed as a proportion of the three-

choice probability. Formally stated, this measure, which we will refer to as q, is 

 

q =
P(B : B, C) − P(B : A, B, C)

P(B : A, B,C)
       4 

 

Under the Ratio Rule, and assuming type of decision does not affect magnitude terms, q 

is predicted to be 

 

q =

v B

vB + vC

−
vB

v A + vB + vC

v B

vA + v B + vC

       5 

 

which simplifies to  

 

q =
v A

vB + vC

         6 

 

Compare Equations 3 and 6. If  vA
 
 is constant, then any change in q or P(A:A,B,C) must 

be driven by a change in (vB + vC). Further, if vA is constant,  any given change in (vB + vC 

) must produce the same direction of change in q as it does in P(A:A,B,C) [e.g. an 

increase in (vB + vC) must lead to a decrease in q and a decrease in P(A:A,B,C) ]. The 

experiments presented in this paper test this prediction in the context of a category 

learning experiment. 
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A specific prediction about category learning 

Category learning is the task of learning the correct category label for each of a set of 

presented stimuli. It has been the subject of a large number of studies, typically involving 

stimuli which are visual, novel and abstract, and a choice of labels that is limited to a few 

pre-defined alternatives (e.g. Homa, Sterling, & Trepel, 1981; Hull, 1920; Nosofsky, 

1986, Posner & Keele, 1968, amongst many others). Often the stimuli for a given 

category are all distortions of a base pattern, which is sometimes referred to as a 

prototype.  

 

Many theorists have proposed magnitude-based models to account for the data from 

category learning experiments (e.g. Estes, 1994; Gluck & Bower, 1988; Kruschke, 1992; 

McClelland & Rumelhart, 1985; Medin & Schaffer, 1978; Nosofsky, 1986), and a great 

many of these models (including all those just cited) employ the Ratio Rule to translate 

magnitude terms into response probability predictions. The widespread use of the Ratio 

Rule in models of category learning suggests that this might be an apposite procedure for 

testing its predictions. 

 

In the current experiments, subjects were presented with labelled examples from each of 

three categories (A, B and C) and were then asked to decide the category membership of 

each of a set of unlabelled transfer examples. This general methodology has been 

employed previously to investigate a variety of issues (e.g. Homa et al., 1981; Posner & 

Keele, 1968). In our experiment, half the subjects were asked to decide whether each 

transfer stimulus was an A, a B or a C. The other half  were asked, for an equivalent set of 

transfer stimuli, whether each stimulus was a B or a C. 

 

The stimuli employed were composed of a fixed number of distinct features. All transfer 

stimuli contained four category A features, and a varying number of category B and C 

features. Number of category C features was constrained by the equation 

 

xC
  
= 8 - xB          7 
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where xC
 
 is the number of category C features, and xB is the number of category B 

features. 

 

Subjects responses to these transfer stimuli were used to estimate generalization 

functions. The generalization functions considered were the probability of making a 

particular response to a stimulus as a function of its similarity to a particular category 

prototype. Our index of similarity to a category prototype was the number of features 

from that prototype the stimulus contained. 

 

The specific generalization functions considered were P(A:A,B,C), P(B:A,B,C) and 

P(B:B,C), as a function of similarity to the category C prototype. The value of q as a 

function of similarity to category C can be calculated from the P(B:A,B,C) and P(B:B,C) 

functions. Hence, the experiment was designed to provide an assay of how P(A:A,B,C) 

and q change as a function of similarity to prototype C (on our similarity index of number 

of prototype C features). What one can conclude from these empirical functions depends 

on how the manipulation of number of A, B and C features translates in to changes in the 

magnitude terms for responses A, B and C. The crucial assumption we make is that the 

magnitude terms for a response are a univariate function of the number of corresponding 

features in a stimulus. In other words, we assume that the mean magnitude term for 

response y is solely determinable from the number of category y features in the presented 

stimulus.  

 

Under this assumption, our experiment is a test of the prediction of the Ratio Rule 

derived in the previous section. The term vA will be a constant because number of 

category A features is constant. Therefore, any change in the observed values of 

P(A:A,B,C) and q as a function of number of category C features must be caused by 

changes in (vB + vC). Further, a given change in number of category C features must result 

in the same change in (vB + vC) for the q function as for the P(A:A,B,C) function because 

the same stimuli are being considered in both cases. The Ratio Rule therefore predicts 
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that the observed q  and P(A:A,B,C) functions will show the same direction of change 

over any interval of our “number of category C features” index. If our assumption of 

univariate magnitude functions holds, the accuracy with which this index represents 

psychological similarity as assessed by, for example, multi-dimensional scaling of 

identification responses (see e.g. Shepard, 1957), is not important.  

 

Further specific tests 

In the current experiments, subjects get an equal amount of training on each of the three 

categories, and the method of stimulus construction is identical for each category. Hence 

it might be reasonable to assume that each category response has the same univariate 

magnitude function. In other words, that the mean value for the magnitude term for 

response y is the same for a stimulus containing x category-appropriate elements, 

irrespective of whether y is A, B, or C. If one makes this assumption for responses B and 

C then further predictions can be derived from the Ratio Rule. First, q and P(A:A,B,C) 

must be symmetrical around xB = xC due to the relation between xB and xC given in 

Equation 7. Second, the shape of the q and P(A:A,B,C) functions is determined by the 

shape of the magnitude function.  

 

Previous categorization experiments have shown that the Ratio Rule can be rejected if 

magnitude is assumed to be a linear function of our similarity index, but not if it is 

assumed to be an exponential function (Jones et al., 1998). These experiments employed 

similar procedures and stimuli to our current experiments. If magnitude terms in the 

current experiments are an exponential (or any monotonically accelerating) function of 

our index then q and P(A:A,B,C) will be at a maximum where xB = xC. Where xB = xC, the 

magnitude terms for categories B and C will be equal. Any departure from xB = xC will 

lead to an increase in one x term and a corresponding decrease in the other, due to the 

relationship given in Equation 7. This will result in an increase in one magnitude term 

and a decrease in the other. However, as the function is accelerating, the increase in 

magnitude produced by a given change in x will be greater than the decrease in magnitude 

produced by that change (Figure 1a may make this clearer, the thinner line is an 
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accelerating function). This results in an increase in (vB + vC ), and hence a decrease in q 

and P(A:A,B,C), for any departure from xB = xC. This prediction is illustrated in Figure 

1b.  

 

- Figure 1 about here - 

 

Of course, the magnitude function may be neither linear, nor monotonically  accelerating. 

We consider one further class of magnitude functions in this paper -monotonically 

decelerating functions. If the magnitude terms for different categories are identical and of 

this form then q and P(A:A,B,C) will be at a minimum where xB = xC. As for accelerating 

decay functions, any departure from xB = xC will lead to an increase in one x term and a 

corresponding decrease in the other. However, because the function is decelerating, the 

decrease outweighs the increase (see Figure 1, thicker line), leading to a reduction in (vB 

+ vC ), and hence a increase in q and P(A:A,B,C). This prediction is illustrated in Figure 

1c.  

 

EXPERIMENT ONE 

 

To summarise, our first experiment had two phases. In the training phase, subjects 

learned about the category membership of training stimuli. Each training stimulus 

belonged to one of three categories - A, B or C. In the generalization phase which 

followed, subjects were asked to determine the category membership of a different, 

transfer, stimulus set. Half of the subjects were allowed to respond A, B or C. For the 

other half of subjects the response A was disallowed. In each group, the responses to 

transfer stimuli were used to derive generalization probability functions (the probability 

of making a specific response to a stimulus as a function of the difference between that 

stimulus and the appropriate category prototype). 
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The central prediction of the Ratio Rule applied to any magnitude-based model of 

categorization is that our measures P(A:A,B,C) and q derived from these generalization 

probability functions will show the same direction of change over any given section of the 

generalization function. This prediction is based on the assumption that the magnitude-

based model of categorization produces magnitude terms for each category which are 

univariate functions of the number of category-appropriate features the presented stimulus 

contains. Subsidiary predictions about the shape of the q and P(A:A,B,C) generalization 

functions, illustrated in Figure 1, can be derived by making further assumptions about the 

nature of the magnitude functions. 

 

Method 

Subjects and Apparatus 

The subjects were 24 adults, mainly Cambridge University undergraduate students. The 

experiment was run (by S.R. and N.S.) on two Acorn Risc PC computers in different, 

quiet cubicles. The computers were connected to 14" colour  monitors (Acorn AKF 60) 

which were placed at eye level and about 80 cm in front of subjects. Responses were 

recorded via the  “X”, “B” and “M” keys of a standard PC  keyboard. For the purposes of 

this experiment, the keys were re-labelled “A”, “B” and “C” using bold red letters against 

a white background. This resulted in three response keys near the centre of the bottom 

row of the keyboard, separated from each other by one key and ordered ‘A’, ‘B’, ‘C’ from 

left to right. 

 

- Figure 2 about here - 

Stimuli 

Each stimulus was a collection of twelve different small pictures (hereafter elements) in a 

4.5cm by 3.5cm rectangle outline, arranged on an invisible four-by-three grid (see Figure 

2 for an example). Every stimulus contained twelve elements drawn from the pool of 

thirty-six that we have used in previous experiments ( see Jones et al., 1998, p. 37; Wills 
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& McLaren, 1997, p. 611). At the beginning of the experiment, and separately for each 

subject, 12 elements from the pool were randomly designated as category A elements, a 

different 12 as category B elements and the remaining 12 as category C elements. Each 

training stimulus for each category was constructed by starting with all 12 elements 

characteristic of that category (e.g. category A elements for a category A training 

stimulus). Each element in the training stimulus then underwent a 10% chance of being 

replaced by a randomly chosen element from one of the other two sets (e.g. replaced by a 

B or  C element in the case of a category A training stimulus). It was these modified 

stimuli which were presented to subjects as training stimuli. This procedure produces 

training examples which are composed predominately of elements characteristic of a 

particular category but which also exhibit considerable variability in terms of the specific 

elements they contain.  Ninety training stimuli were created for each subject, thirty from 

each of the three categories. 

 

Each test stimulus contained four A elements, x B elements and (8-x) C elements, where x 

could be 0, 1, 2, 3, 4, 5, 6, 7 or 8. Ten examples of each of these nine types of test 

stimulus were created for each subject. The specific elements used to create each test 

stimulus were chosen randomly within the constraints provided by the number of A, B 

and C elements the stimulus was to contain. Ten examples of each of four dummy stimuli 

were also created, these stimuli being (8 A, 0 B, 4 C), (8 A, 4 B, 0 C), (0 A, 4 B, 8 C) and 

(0 A, 8 B, 4 C). The purpose of the dummy stimuli was to obscure from the subjects that 

all test stimuli of interest (from the perspective of the experimenters) were constant in 

terms of the number of elements from category A they contained.  

 

The position of elements within a stimulus was randomly determined for each stimulus 

presented, with the constraint that exactly one element occurred at each location in the 

four-by-three grid. Where stimuli were accompanied by a category label, this was 

presented as a large sans-serif capital A, B or C in an outline rectangle (4.5 by 3.5 cm) 

immediately  to the right of the stimulus itself 

 



RATIO RULE - 16 

Procedure 

Subjects were allocated to one of two between-subject groups such that an equal number 

(12) participated in each. The two groups, referred to hereafter as the two-choice and 

three-choice groups, differed only in the question they were asked in the test phase.  

 

After subjects had read some general instructions, the ninety training stimuli were 

presented to them sequentially and in a random order. Each example was presented for 

five seconds in the centre of the monitor, accompanied by the appropriate category label. 

Two seconds of a plain mid-grey mask in the stimulus and label rectangles  preceded the 

next example.  Subjects were not required to respond in any way in this first phase of the 

experiment. They were simply asked to concentrate on the examples shown as they would 

later be asked to classify new, unlabelled examples. This training procedure has proved 

effective for stimuli of this type in a number of previous experiments (Jones et al., 1998; 

Wills & McLaren, 1997). 

 

The training phase was followed by a test phase. There were 130 stimuli in the test phase 

(90 target stimuli and 40 dummy stimuli) which, again, were presented sequentially and 

in a random order. Test stimuli were not accompanied by a category label. Subjects in the 

two-choice condition were asked, for each stimulus, “Is this a B or a C?”. Subjects in the 

three-choice condition were asked   

“Is this an A, a B, or a C?”. In both conditions, subjects responded by pressing the 

appropriate key on the computer keyboard. Subjects then pressed the “Y” key, whereupon 

the next stimulus was immediately presented. There was no time limit for these decisions, 

and subjects were put under no pressure to respond quickly. 

 

Results 

The probabilities with which subjects responded “B” and “C” to the test stimuli allow a 

test of our subsidiary assumption that the magnitude functions for categories B and C are 

the same. If they are then the empirical generalization functions of the two categories 

should be the same. That is to say, the probability of responding “B” to a stimulus with x 
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B elements should be the same as the probability of responding “C” to a stimulus with the 

x C elements. 

 

To assess whether this assumption could be disconfirmed with the current data set, type 

of probability assessment [ P(B) or P(C) ] was included as a within-subjects factor in a 

mixed-design analysis of variance. The other two factors in this analysis were 1) the 

number of category-appropriate elements in a stimulus (i.e. B elements for P(B) and C 

elements for P(C), 9 levels, within-subject) and 2) experimental condition (two-choice vs. 

three-choice, 2 levels, between-subjects). Type of probability assessment was non-

significant as a main effect, F(1, 22) <  1, p > 0.5, and did not interact significantly with 

any other factor, p > 0.05 in all cases. However, this analysis did reveal that the type of 

question asked (two-choice or three-choice) had a significant effect on responding, 

F(1,22) = 88, p < 0.0005, as did the number of category-appropriate elements in a 

stimulus, F(8, 176) = 48, p < .05 after a conservative correction for non-sphericity 

(Greenhouse & Geisser, 1959). The interaction between number of category-appropriate 

elements and experimental condition was non-significant, F(8, 176) = 2.1, p = 0.13 after a 

Greenhouse-Geisser correction ( ˆ ε = 0.27). 

 

As the two probability assessments did not differ significantly, their average was 

employed in all subsequent analyses. Figure 3a shows these means plotted as a function 

of number of category-appropriate elements for both the two-choice and the three-choice 

conditions
1
. Values for the q statistic (as stated in Equation 4) were then calculated from 

each pair of points. Specifically, for each value of category-appropriate elements, the 

mean three-choice probability was subtracted from the mean two-choice probability and 

the resulting number divided by the mean three-choice probability. The resultant values 

of q are plotted as a function of category-appropriate elements in Figure 3b. Also plotted 

in Figure 3b is the mean probability of choosing category A in the three-choice condition 

as a function of category-appropriate elements. This is the P(A:A,B,C) function referred to 

in the introduction. Category B elements were used as the category-appropriate elements 
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when plotting this function. Using category C elements instead would simply reverse the 

function left to right. 

 

The central prediction of the Ratio Rule under test is that the q and P(A:A,B,C) functions 

will show the same direction of change over any interval of the category-appropriate 

elements axis. Inspection of Figure 3b suggests that is not the case for our data. To 

investigate this further, we attempted to characterise the two functions by polynomial 

regression. Inspection of the P(A:A,B,C) function suggests that it exhibits a shallow 

inverted-U trend. Second-order polynomial regression of the nine data points of the mean 

P(A:A,B,C) function produced the best-fit line illustrated by the solid curve in Figure 3b. 

The equation of the line is P(A) = -0.003c
2
 + 0.021c + 0.29, where c is the number of 

category-appropriate elements. A corresponding regression of the q function produced the 

best-fit line q = 0.02c
2
 - 0.19c + 0.86, where c is the number of category-appropriate 

elements. This equation suggests a U-shaped trend in the q statistic, opposite to the trend 

in P(A:A,B,C) and hence contrary to the predictions of the Ratio Rule.  

 

- Figure 3 about here - 

 

The preceding analysis is inconclusive, however, as neither equation represents a 

signficant fit to the data, F(2,6) = 1.6, p > 0.25, for the P(A:A,B,C) function and F(2, 6) = 

1.3, p > 0.3, for the q function. Further inspection of the q statistic suggests that there may 

be a cubic component in the data. This issue is returned to in the Discussion. 

 

Given that the generalization functions of categories B and C are not significantly 

different to each other in the current data set, a further analysis of the q and P(A:A,B,C) 

functions is possible. Recall that the Ratio Rule predicts that if the magnitude functions 

for categories B and C are the same then the both functions should be symmetrical about 

the point xB = xC (which is the point 4 category-appropriate elements). Whilst inspection 

of Figure 3b suggests that the q function is not symmetrical about this point, one might 

argue that its deviation from symmetry is due to sampling error. On the basis of this 
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argument, one might average the pairs of data points at 0 & 8, 1 & 7, 2 & 6 and 3 & 5 

category-appropriate elements on the grounds that these points were equivalent and hence 

taking the average should reduce sampling error. These pairs of points can be considered 

to have a “distance” from 4 category-appropriate elements of 1, 2, 3 and 4 respectively. 

The single data point at 4 category-appropriate elements provides the zero distance point. 

 

Figure 3c shows q and P(A:A,B,C) as a function of distance from the 4 category-

appropriate elements point. Second-order polynomial regression revealed that the q 

statistic was best-fit by the function q = 0.04d
2
 -0.11d + 0.37, where d is the value on the 

ordinate of Figure 3c. This function, shown as a dotted line in Figure 3c, was a significant 

fit to the data, F(2, 2) = 116, p < 0.01, and all three of its terms were significantly 

different from zero, t(3) = 9.8, p < .005 for the d
2
 term, t(3) = 6.1, p < .001 for the d term, 

and t(3) = 31, p < .0005 for the intercept. A corresponding regression performed on the 

P(A:A,B,C) data produced a best-fit line P(A:A,B,C) = -0.03d2 + 0.08d + 0.30. This 

function, shown as a solid line in Figure 3c, suggests a downward trend but did not 

significantly fit the data, F(2, 2) = 2.9, p > 0.25. 

 

Discussion 

The results of Experiment One are somewhat at odds with the predictions of magnitude-

based models of categorization that employ the Ratio Rule. Assuming magnitude is a 

univariate function of our category-appropriate elements index, the Ratio Rule predicts 

that the q and P(A:A,B,C) functions should show the same direction of change over any 

interval of that index. 

 

The indications from Figure 3b are that this prediction is not upheld in Experiment One. 

However, the failure of both the q and the P(A:A,B,C) functions to significantly fit a 

quadratic makes it difficult to draw firm conclusions. Quadratic functions were chosen 

because this is basically the form predicted by both monotonically accelerating and 

monotonically decelerating magnitude functions. One avenue of analysis would have 

been to attempt to fit higher-order functions to the data, such as a cubic function to the q 



RATIO RULE - 20 

statistic. We did, in fact, investigate some such functions, but the results of a replication 

of this experiment in Experiment Two (reported below) subsequently led us to believe 

that the cubic component of the q statistic was not reliable. Hence, these analyses are not 

presented in this paper. 

 

Some conclusions can be drawn from the current experiment under the additional 

assumption that the magnitude functions for categories B and C are the same. No 

evidence against this assumption was found in the direct test provided by the ANOVA 

reported above. Under this additional assumption, both the q and P(A:A,B,C) functions 

should be symmetrical about the point 4 B elements. The fact that the observed q function 

is clearly not symmetrical about this point is potentially a problem for the Ratio Rule. 

Such a problem might be dismissed as sampling error by arguing that the function is 

symmetrical and deviations from symmetry are due to the relatively small sample size. 

However, if such an appeal is valid, then it must be permissible to average data points at 

corresponding distances from the mid-point of 4 category-appropriate elements. The 

prediction of the Ratio Rule remains that the q and P(A:A,B,C) functions should show the 

same direction of change over any interval of the abscissa in Figure 3c. 

 

Inspection of this figure strongly suggests that this prediction is not upheld. However, the 

failure of the P(A:A,B,C) function to fit any quadratic function whilst the q function fits 

an increasing function, allows the possibility that both functions are, in fact, increasing 

but that the trend in P(A:A,B,C) is too shallow to be detected reliably. This interpretation 

of the results would be consistent with the application of the Ratio Rule to a magnitude-

based model producing monotonically decelerating magnitude functions. However, the 

results of Experiment One are contrary to the predictions of the Ratio Rule when applied 

to a model producing linear or monotonically accelerating (e.g. exponential) magnitude 

functions. If the magnitude functions produced were monotonically accelerating then an 

inverted-U trend in both q and P(A:A,B,C) would be predicted by the Ratio Rule, and 

hence both functions in Figure 3c would be predicted to show a decreasing trend. If the 

magnitude functions produced were linear then both functions in Figure 3c would be 
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predicted to be horizontal. The significant increasing trend in the q function is contrary to 

both these predictions. Hence, for models producing linear or monotonically accelerating 

magnitude functions, the Ratio Rule is an inappropriate theory of the decision process in 

categorization (within the assumptions made). 

 

We felt that the results of Experiment One were sufficiently anomalous, from the 

perspective of the Ratio Rule theory, to merit replication. This was one of the purposes of 

Experiment Two. 

 

EXPERIMENT TWO 

 

One problem with the design of Experiment One was that category labels were not 

counter-balanced; it was always category “A” which had the constant number of elements 

at test, and which was the disallowed option in the two-choice condition. If our subjects 

had a consistent response bias towards one of the category labels then this might have led 

to a distortion of response probabilities in a way outside of the scope of the Ratio Rule as 

considered here. Experiment Two controls for this by replicating Experiment One, but 

employing equal numbers of subjects with A, B, and C as the category contributing a 

constant four elements in test stimuli and the category disallowed in the two-choice 

condition. For brevity, we shall refer to the category which provides a constant number of 

elements in test stimuli as category a, and the two categories providing variable numbers 

of elements as categories b  and c. 

 

Experiment Two extends Experiment One by the addition of a third between-subjects 

condition. Subjects in this condition received the same training stimuli and test question 

as subjects in the three-choice condition. However, in this new condition the test stimuli 

contained no elements from category a. Instead, the four category a elements were 

replaced with four elements unseen in the training phase. This manipulation was designed 

to substantially reduce the probability with which subjects responded that test stimuli 
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came from category a, without actually disallowing this response option. The addition of 

this novel-elements condition allows the computation of two further functions. The first 

function we describe as P(a:a,b,c)’, which is the probability of choosing category a  in the 

novel-elements condition. The second function is q’, calculated as q but replacing 

P(b:a,b,c), the mean probability from the two-choice condition with P(b:a,b,c)’, the mean 

probability from the novel-elements condition. 

 

These two new functions, along with the q  function, and the P(a:a,b,c) function from the 

three-choice condition, give a total of four functions to be assessed in Experiment Two. 

Our assumption was that our novel-elements manipulation would produce a constant, 

possibly zero, magnitude term for category a at test (hereafter referred to as v6 ). Under 

this assumption, the Ratio Rule predicts that all four functions must show the same 

direction of change over any interval of our category-appropriate elements measure. The 

derivation of this prediction has already been demonstrated for q and P(a:a,b,c). Its 

extension to the other two functions is straight-forward. Predictions for the P(a:a,b,c)’ 

function can be derived from Equation 3, simply by substituting v6 for vA
 
. The Ratio 

Rule’s predictions for the q’ function are  

 

q' =
P(b : a,b,c)' −P(b : a,b,c)

P(b : a,b,c)
=

vB

v6 + vB + vC

−
vB

vA + vB + vC

vB

vA + vB + vC

   8 

 

 

which simplifies to 

 

q' =
vA − v6

vB + vC + v6

         9 

 

Note that for both q’ and P(a:a,b,c)’ variability in the function is determined by the term 

(vB + vC) in the denominator, all other terms being constant. The same conditions hold for 
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the q and P(a:a,b,c) functions. Hence, the Ratio Rule predicts that all four functions will 

show the same direction of change over any interval of category-appropriate elements. 

 

Method 

Subjects and Apparatus 

The subjects were 36 higher-education students from the Cambridge area, most were 

Cambridge undergraduate or graduate students. The experiment was run (by MS) on an 

Acorn Risc PC computer placed in one of two quiet experimental cubicles. The computer 

was connected to a 14” colour monitor (Acorn AKF 60), placed at eye-level and 

approximately 90 cm in front of the subjects. Responses were recorded via a PC keyboard 

marked-up in the manner described in Experiment One. 

 

Stimuli 

The pool of elements from which stimuli were constructed was extended from thirty-six 

to forty elements (the four extra elements used are shown on the bottom row of Figure 2). 

The pool was extended so that once twelve elements had been randomly allocated to each 

of the three categories there would be four unallocated elements. These four elements 

were designated as the novel elements, and were selected independently for each subject. 

The novel elements were not used in the two-choice or three-choice condition. In the 

novel-elements condition, the four novel elements did not appear in training stimuli, but 

did appear in every test stimulus, along with x elements from category b and (8-x) 

elements from category c, where x took the values 0, 1, 2, 3, 4, 5, 6, 7 or 8. In other 

words, the test stimuli in the novel-element condition were constructed in the same 

manner as the test stimuli in the other two conditions, except that the four randomly 

selected elements from category a were replaced by the four novel elements. In all other 

respects, the method of stimulus construction was identical to that employed in 

Experiment One. As with all other elements, the position of the novel elements within a 

stimulus was determined randomly for each stimulus. 
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Procedure 

The subjects were allocated to one of three conditions such that an equal number (12) 

participated in each. These conditions were the two-choice and three-choice conditions of 

Experiment One, plus a new novel-elements condition. The novel elements condition 

differed from the three-choice condition only in the stimuli presented in the test phase 

(see Stimuli section). In all other respects, the procedure employed in the current 

experiment was identical to the procedure of Experiment One, with the exception that, in 

the current experiment, allocation of category labels to categories was varied across 

subjects by splitting the subjects in each condition into three equal-sized sub-groups. The 

allocation of labels to categories in these sub-groups is shown in Table 1. 

 

Results 

Figure 4a shows the probability with which subjects in the three-choice and novel-

elements conditions responded with the category a label to test stimuli as a function of 

the number of category b elements they contained. The choice of category b rather than 

category c elements on the abscissa was arbitrary. For category b there are equal numbers 

of subjects who receive “A”, “B” and “C” as its label. The same holds for category c, and 

hence response bias is controlled for whichever is chosen. Number of category c elements 

equals eight minus the number of category b elements, and so choosing category c 

elements as the abscissa would simply reverse both functions left to right. 

 

Inspection of Figure 4a suggests that both the P(a:a,b,c) function from the three-choice 

condition, and the P(a:a,b,c)’ function from the novel-elements condition show an 

inverted-U shaped trend. To investigate this, second-order polynomial regression was 

performed on the nine mean data points of each function. The data from the three-choice 

condition was found to have the best-fit line P(a:a,b,c) = -0.006b
2
 + 0.037b + 0.291 (the 

dotted line in Figure 4a) where b is the number of category b elements.  This function was 
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a significantly good fit to the data, F(2,6) = 5.6, p < 0.05. The b
2
 co-efficient was 

significantly different from zero, t(7) = 2.4, p < 0.05, as was the constant, t(7) = 8.0, p < 

0.0005. The b co-efficient was not significantly different from zero, t(7) = 1.7, p > 0.1. 

These analyses confirm that the P(a:a,b,c) function has an inverted-U trend. The best-

fitting quadratic for the P(a:a,b,c)’ function (from the novel-elements condition) was 

P(a:a,b,c)’ = -0.003b
2
 + 0.016b + 0.112, shown as a solid line in Figure 4a. This best-fit 

line also shows an inverted-U trend, but the function was not a significant fit to the data, 

F(2,6) = 3.2, p > 0.1.  

 

- Figure 4 about here - 

 

The data points plotted in Figure 4b are the average of the probability with which subjects 

responded with their category b label to test stimuli with x category b elements and the 

probability with which they responded with their category c label to test stimuli with x 

category c elements. In other words, like Figure 3a from Experiment One, it shows 

response probability as a function of number of category-appropriate elements. Averaging 

these two probabilities is appropriate because, across subjects, there is no factor which 

determines which of the two categories providing variable numbers of elements to test 

stimuli should be described as category b and which as category c. 

 

For our current purposes it is not the data presented in Figure 4b which is of central 

interest, but the q and q’ functions calculated from the mean data points it displays. These 

functions are shown in Figure 4c. The q function was calculated in exactly the same way 

as it was calculated in Experiment One. In other words, for each value of category-

appropriate elements, the mean three-choice probability was subtracted from the mean 

two-choice probability and the resulting number divided by the three-choice probability. 

For q’ , the calculation was to subtract the three-choice probability from the novel-

elements probability and divide the resulting number by the three-choice probability. 
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Inspection of Figure 4c suggests that the q statistic shows an increasing trend whilst the q’ 

statistic shows a decreasing trend. In order to specify these two functions more clearly, 

each set of nine data points were used to perform a second-order polynomial regression. 

The best-fit line for the q function was q = 0.049c
2
 -0.674c +2.48, whilst for the q’ 

function it was q’ = -0.021c
2
 +0.244c -0.368, where c is the number of category-

appropriate elements. The best-fit line for the q  function is shown as a dotted line in 

Figure 4c, whilst the best-fit line for the q’ function is shown as a solid line. Both 

functions were a significant fit to the data, F(2,6) = 803, p < 0.0005 for the q function and 

F(2,6) = 17, p <  0.005 for the q’ function. The c
2
 co-efficients for both functions were 

significantly different from zero, t(7) = 14, p < 0.005, for the q function and t(7) = 3.0, p 

< .05 for the q’ function. The c co-efficients were also significantly different from zero 

for both functions, t(7) = 24, p < 0.0005, for the q function and t(7) = 4.3, p < 0.004 for 

the q’ function. Finally, both constants were significantly different from zero, t(7) = 2.5, p 

< 0.0005, for the q  function, and t(7) = 3.8, p < 0.01 for the q’ function. 

  

Discussion 

The results of Experiment Two directly contradict the predictions of the Ratio Rule acting 

on the output of a magnitude-based model of categorization, within the assumption that 

magnitude is a univariate function of category-appropriate elements. 

 

Under this assumption, our results pose two central problems for the Ratio Rule. First, the 

Ratio Rule predicts that the q and q’ statistics should show the same direction of change 

over any interval of category-appropriate elements. However, the best-fitting quadratics 

for these functions show opposite directions of change. Second, the Ratio Rule predicts 

that the q function and P(a:a,b,c) function for the three-choice condition should also 

show the same direction of change over any interval of category-appropriate elements. 

Irrespective of whether one chooses to plot P(a:a,b,c) as a function of category b 

elements or as a function of category c elements, the fact that the best-fitting quadratics 

for the q and P(a:a,b,c) functions are of opposite shape (U vs. inverted-U shape) is 

contrary to the predictions of the Ratio Rule. One argument against this conclusion might 
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be that P(a:a,b,c) is an increasing, decelerating function rather than an inverted-U 

function. As q is an increasing, accelerating function, both functions show the same 

direction of change and so the predictions of the Ratio Rule are upheld for these data. 

However, closer study of Equations 3 and 6 reveals that both functions must be 

accelerating or decelerating over any given interval. Variability in both functions is 

determined by changes in the term (vB + vC). If the rate at which this term changes is 

increasing over a given interval then both q and P(a:a,b,c) must show an increasing rate 

of change over that interval. 

 

Experiment Two also substantially replicates the results of Experiment One. In both 

experiments the best-fitting quadratic for the P(a:a,b,c) function shows an inverted-U 

trend whilst the best-fitting quadratic for the q function shows a U-shaped trend. Any 

cubic trend in the q statistic is not replicated in the current experiment. 

 

MODELLING 

 

Wills & McLaren (1997) proposed a winner-take-all connectionist model as an alternative 

to the Ratio Rule in magnitude-based models of categorization. The work presented in 

this section demonstrates that our winner-take-all (WTA) model, unlike the Ratio Rule, 

can account for the results presented in this paper under the assumption of univariate 

magnitude functions. 

 

- Figure 5 about here - 

 

The WTA system is illustrated in Figure 5. The magnitude terms for each category are 

passed to separate units in the network as input activations. The input activations are 

constrained to be no greater than one and no less than zero. The output activity of each 

unit in the WTA system is a function of the total input it receives. In addition to the 

magnitude-term inputs, each unit in the WTA system has a fixed excitatory connection to 
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itself and fixed inhibitory connections to other units. These connections cause the units to 

“compete” with one another until only one has a non-zero activation. In our system, a 

decision is assumed to be reached when the activation of one unit exceeds that of its 

nearest competitor by some threshold value. The category whose unit has the highest 

activity is chosen at that point. Network systems based on the concepts of mutual 

inhibition and self-excitation have been proposed previously by, amongst others, 

Grossberg (1976), McClelland (1979), Page (in press) and Rumelhart & Zipser (1986). 

They have also been previously employed as models of specific experimental paradigms, 

such as serial recall (Houghton, 1990) and simple binary-choice reaction time studies 

(Usher & McClelland, 1995). 

 

The input activations to our WTA system are assumed to be noisy. In other words, whilst 

the magnitude term represents the mean level of input activity, the momentary level of 

input varies randomly about this mean. This means that, whilst the category with the 

highest magnitude term is most likely to be chosen, all other categories have a finite 

chance of being chosen. Further, it means that the WTA model can be considered as a 

connectionist implementation of the basic principles of Thurstonian choice (see 

introduction).  

 

Detailed specification of the WTA system 

Prior to the presentation of a stimulus, the output activation of all units is assumed to start 

from zero. Once the magnitude terms have been presented to the WTA system, the output 

activation of each unit is updated repeatedly until a decision has been reached. The output 

activation of unit i in the WTA system on update c  is determined by 

 

oi,c =
oi ,c−1 + Eni,c

1 + Eni ,c + D
         10 

 

if ni,c > 0 and 
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oi,c =
oi ,c−1 + Eni,c

1 − Eni ,c + D
         11 

 

otherwise, where ni,c is the total input to unit i on update c and E and D are constants 

representing the rate of excitation and decay of activation within the unit. Equations 8 and 

9 can be described as time-averaging, squashing functions. They are squashing functions 

because whatever the absolute magnitude of the input to a unit, its activity is constrained 

by these functions to fall between +1 and -1. The equations are time-averaging because 

the inclusion of the unit’s activity on the previous update in the calculation of its current 

activation means activation represents, not the instantaneous input to a unit, but an 

average of the inputs it has received in the recent past. A more detailed discussion of the 

behaviour of activation functions of this general form is provided by Grossberg (1976).  

 

The total input to a unit i on update c is given by 

 

ni ,c = ri,c + oi ,c−1 − o j ,c−1

j ≠i

∑         12 

 

The term ri,c in this equation is the value of the noisy input produced by the magnitude 

term vi  and presented to unit i on update c. In the simulations which follow, the noise 

added to vi ranges from +6 to -6, has a mean of zero, and has a rectangular distribution 

(i.e. all values from +6 to -6 are equally likely). Superimposed on this noise function is 

the constraint that  ri,c cannot  exceed one or fall below zero. The remaining terms of 

Equation 12 state that each unit receives a positive input equal to its own activation on 

the last update, and a negative input equal to the sum of the activations of the other units. 

It is these terms which specify the self-excitatory and mutually inhibitory properties of the 

WTA system. 

 

The final component of the WTA system is the decision threshold. The decision threshold 

is the amount by which the unit with the highest activation has to exceed the activation of 
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its nearest competitor in order to “win” and cause the production of its associated 

response. This value is the S parameter of the WTA model. In the current simulation, S is 

set to 0.18 for the two-choice condition, 0.65 for three-choice condition and 0.72 for the 

novel-elements condition. Employing a different value of S for each condition is in line 

with previous applications of the model where we have assumed that both the type of 

decision (two-choice vs. three-choice here), and the presence of novel elements in test 

stimuli, affects the value of S (Wills, 1998; Wills & McLaren, 1997). The use of a higher 

value for S in conditions where some elements of the test stimuli are novel represents a 

hypothesis that subjects trade-off speed for accuracy when asked to make decisions about 

stimuli that are unfamiliar. 

 

The remaining parameters, E, D and 6, are set to 0.2, 0.1 and 1.1 respectively. These 

values are the same as those employed by Wills & McLaren  (1997) in the simulation of 

their experiments, and by Wills (1998) in the simulation of the experiments presented in 

Jones et al. (1998). 

 

Specification of magnitude terms 

In order to simulate the results of Experiment Two, magnitude terms for each category at 

each value of category-appropriate elements are required. We will assume for the 

purposes of this simulation that these magnitude terms are linear functions of number of 

category-appropriate elements. Each category is assumed to have the same magnitude 

function which, in the current simulations, takes the form  

 

vi = 0.047ci + 0.012          13 

 

where ci  is the number of category i elements the stimulus contains.  

 

In previous applications of the WTA model, we have employed a single-layer, elemental, 

error-correcting network to specify the magnitude terms. This model was employed 

because it captured something of the effects of varying the number of training examples 
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presented. In the current experiments, because number of training examples does not vary 

between conditions, the performance of this network model is  characterised by a single 

linear function. Equation 13 specifies this function for the network model presented in 

Wills & McLaren (1997) when the model’s learning-rate parameter is set to 0.0025. This 

value is of the same order of magnitude as learning rates we have employed previously in 

simulating experiments of this sort. 

 

Simulation 

The simulation we present is of Experiment Two. Experiment One is not simulated 

because its two conditions are repeated in Experiment Two, and because possible 

response bias is not controlled for in Experiment One. 

 

The simulation involved presenting, in turn, every combination of magnitude terms that 

would be produced by the application of Equation 13 to the set of test stimuli employed 

in the experiment. Each combination was presented 50,000 times, and the decision made 

by the WTA system recorded each time. The probability with which each response was 

made to each type of test stimulus was then calculated from this record. This was done 

separately for each of the three experimental conditions. 

 

In the two-choice condition of our experiment, subjects were not allowed to make 

category a responses. In our WTA model this was simulated by fixing the output 

activation of the category a unit (oa ) at zero. The output activations of the category b and 

c units were allowed to take the values determined by Equations 10, 11 and 12. The 

assumption made in doing this is that only allowed responses compete for the right to 

produce a response. In the three-choice condition and in the novel elements condition, all 

three output activations were allowed to vary. In the novel-elements condition, vA was 

assumed to be zero
2
. However, the noise component of the magnitude term means that oa 

will not always be equal to zero, and hence category a will be chosen with a non-zero 

probability. 
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The response probabilities predicted by the WTA model are presented (as lines) in 

Figures 6a-c, along with the mean probabilities observed in Experiment Two (as 

unconnected plot symbols). It can be seen from this figure that the WTA model, unlike 

the Ratio Rule, can predict the correct shape for the q, q’, P(a:a,b,c) and P(a:a,b,c)’  

functions. Further, the data and predictions correspond fairly closely, although it may be 

noted that the values predicted for q and P(a:a,b,c)’ are slightly lower than those 

observed. Nevertheless, our simulation demonstrates that the WTA model is capable of 

predicting the major trends observed in our experiment. We have already determined that 

(within certain assumptions) the Ratio Rule is unable to do so. 

 

- Figure 6 about here - 

Discussion and further simulation 

The WTA model is a relatively complex system with four free parameters (E, D, 6 and s). 

The Ratio Rule, in contrast, has no free parameters - its predictions are entirely 

determined by the magnitude terms it is presented with. This contrast in complexity raises 

two related questions. First, is it simply increased complexity and, in particular, the 

presence of more parameters, that permits the WTA model to successfully account for our 

data? Second, which components of this complex model are central to producing its 

predictions, and which are unnecessary for predicting the current data set? 

 

Despite its complex statement, a simple theoretical principle lies at the heart of the WTA 

model. The principle is that one always chooses the allowed alternative with the largest 

magnitude term. If the alternative with the largest magnitude term is not chosen, this is 

because magnitude terms are noisy and the alternative chosen appeared to have the largest 

magnitude term over the finite time allowed for decision. 

 

The most basic instantiation of the central “pick the biggest” principle underlying the 

WTA model would be to take the instantaneous value of each of the noisy magnitude 

terms and pick the alternative with the largest value at that instant. The probability with 

which this simple-WTA system picks each alternative is entirely determined by the means 
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and distributions of the magnitude terms. Like the Ratio Rule, the simple-WTA system 

has no free parameters, although more information about the magnitude terms is required 

to derive predictions from the simple-WTA system. 

 

We have calculated the predictions of the simple-WTA system assuming magnitude terms 

with a rectangular distribution with a width of 0.7 and means determined by Equation 13. 

The correspondence between predictions and data is by no means as good for this 

simplified model as it is for the full model (see Figures 6d-f). However, it can be seen 

that the simple model can correctly predict the basic trends observed in the q, P(a:a,b,c) 

and P(a:a,b,c)’ functions. The q function is predicted to show an increasing trend, whilst 

the P(a:a,b,c) and P(a:a,b,c)’ functions are predicted to show an inverted-U shaped trend. 

Employing Gaussian distributions with a standard deviation of 0.28 (which have a 

rectangular equivalent with a width of 0.7) produces comparable results. 

 

The fact that the simple-WTA model can  predict the q function to be different in shape to 

the P(a:a,b,c) and P(a:a,b,c)’ functions is encouraging. It means that the success of the 

WTA class of models in predicting these functions where the Ratio Rule failed to do so is 

not simply due to the greater complexity of WTA models or the greater number of 

parameters employed. It also suggests that it is the central “pick the biggest from noisy 

alternatives” principle which underlies the success of the full WTA model, rather than the 

specific way this principle is instantiated. 

 

However, the presented simulation of the simple-WTA model does not correctly predict 

the trend in the q’ statistic. We cannot state definitively that the simple-WTA model is 

unable to predict this trend, but we believe that it is the adoption of different decision 

thresholds for the three-choice and novel-elements conditions in the full model that 

allows it to correctly predict the q’ data. Were S to take the same value in both conditions, 

the probability of choosing, say, the category b response for a stimulus with x category b 

elements would always be greater in the novel-elements condition than in the three-choice 

condition (and hence q’ would always be positive). This is because there is less 
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competition from the category a alternative in the novel-elements condition (due to the 

stimuli in that condition containing no category a elements). Increases in the value of S 

reduce the chance of choosing an alternative that does not have the highest magnitude 

term. Hence increasing the value of S in the novel-elements condition has the effect of 

reducing the response probabilities in the region three category-appropriate elements 

down to zero category-appropriate elements. At zero category-appropriate elements, the 

effect is sufficiently great to make the predicted probability of response in the novel-

elements condition lower than the predicted probability for the three-choice condition, 

causing q’ to be negative and producing a downward trend in the q’ statistic. 

 

GENERAL DISCUSSION 

 

Any theory of learning and memory whose output is a set of magnitude terms must 

specify how these terms translate into testable predictions. Where those predictions 

concern response probabilities, it is commonly assumed that the Ratio Rule provides the 

appropriate translation. With certain qualifications, this assumption has been shown to be 

incorrect for the categorization experiments presented in this paper. 

 

If any one step of a chain of inferences is incorrect then the conclusions drawn from that 

process must be brought into question. Consequently, theoretical conclusions about the 

nature of learning and memory which have been drawn from models which employ the 

Ratio Rule must be re-examined if our conclusion is valid. Conversely, if the assumptions 

we have made in coming to our conclusions can be shown to be invalid then the Ratio 

Rule is not necessarily incorrect. Below we consider some possible arguments against our 

conclusions. 

 

One general class of argument arises from the fact we have estimated the shape of our 

four functions (q, q’, P(a:a,b,c), P(a:a,b,c)’ ) from mean data rather than from the data of 

individual subjects. On this basis, one could argue that whilst we have demonstrated the 
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Ratio Rule to be incorrect for average responses, it may actually be correct for 

individuals. If this were shown to be true it would not substantially change our conclusion 

that the Ratio Rule is incorrect as most models of memory have been predominately 

applied to mean rather than individual data.  

 

Another variant of the general argument against using mean data would be that the 

assessment of functions provided is not reliable or is substantially inferior to that 

provided by multivariate methods. Whilst the q statistic appears to have a cubic 

component in Experiment One but not in Experiment Two, the presence of the same basic 

trends in these two experiments provides substantial evidence against the position that 

our assessment method is unreliable. Further, in a between-subjects design, the adoption 

of multivariate methods for the q statistic would be inappropriate because the function is 

calculated from decisions made by different people. This problem could be addressed by 

the adoption of a within-subjects design. The central problem with this approach would 

be that if any subject made exclusively category a responses at any value of category-

appropriate elements in the three-choice decision, then the value of q calculated from 

their data would be undefined (because P(b:a,b,c) would be estimated as zero, and any 

number divided by zero is undefined). There seems to be no satisfactory way of 

addressing this problem if it occurred - excluding subjects because one’s dependent 

measure cannot represent their behaviour is not really appropriate, and replacing the 

undefined values with some real number would be difficult to do in a manner which was 

both non-arbitrary and relatively atheoretical. 

 

A reasonable criticism of our experiments would be to point out that the stimuli 

employed are rather more complex than those typically used in category learning 

experiments. It may therefore be argued that the results we have found with our complex 

stimuli do not generalise to more simple stimuli, such as simple outline drawings or basic 

geometric forms. If this were shown to be true, the use of the Ratio Rule to describe 

categorical decisions about simple stimuli might be valid. If one accepts that the objects 

we have to categorize are often complex, a theory of categorical decision that can only 
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explain our decisions about stimuli which are simple seems to be of limited use. 

However, the question of whether our results generalise to simple stimuli is clearly an 

empirical one and worthy of investigation. 

 

A different line of argument against our conclusion that the Ratio Rule is incorrect would 

be to demonstrate that, for specific models of categorization, the resultant magnitude 

terms for our test stimuli were not univariate functions of the number of category-

appropriate elements. For example, magnitude terms in the Generalized Context Model 

(Nosofsky, 1986) are determined by the position of stimuli in a psychological similarity 

space. If one could determine the position of our test stimuli in such a space and 

demonstrate that they were not at a constant distance to the category a prototype then the 

GCM’s use of the Ratio Rule would potentially be appropriate. This conclusion is itself 

subject to two qualifications. First, it would have to be demonstrated that the GCM could 

actually predict our results from the psychological similarity space derived. Second, the 

positions of stimuli in psychological similarity space are determined in GCM by a model 

of identification that assumes the Ratio Rule to be correct. Some way of avoiding the 

circularity involved in trying to test a theory whilst assuming it to be true would have to 

be found. 

 

A more general argument against our conclusions would be to state that magnitude terms 

are affected not only by the stimulus presented but also by the alternatives allowed for the 

decision. If this were true for our experiments then the derivation of the q statistic 

presented in Equations 4, 5 and 6 would be flawed as vB is specifically assumed to not be 

affected in this way. This argument may be seen as a qualification of our conclusions, 

which may thus be stated more fully as “the Ratio Rule is incorrect for models which 

have no process by which information about allowed decision alternatives can affect the 

magnitude terms produced”. This qualification excludes none of the categorization 

models cited in this paper from our conclusions. 
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Interestingly, a number of theorists have proposed ways in which the Ratio Rule as 

originally stated may be developed to allow it to be sensitive to the alternatives allowed 

for decision. For example Restle (1961) suggests that, in a two-alternative decision, both 

magnitude terms should have a value subtracted from them which represents the 

similarity of those two alternatives. Hence, under Restle’s theory, the decision between a 

foreign holiday, and a foreign holiday plus a peanut, is treated as a decision between a 

peanut and nothing because the holiday is received irrespective of one’s choice. Restle 

did not extend his theory to situations involving more than two alternatives and hence it 

cannot be applied the current data. Tversky (1972) proposed a similar theory which is 

applicable to the 6-alternative case, but his theory replaces the single magnitude term per 

alternative required by the Ratio Rule with a set of magnitude terms that represent the 

importance of particular aspects of each alternative. Most models which employ the Ratio 

Rule would require substantial revision in order to allow them to provide the set of 

magnitude terms required. 

 

If one needs to replace the Ratio Rule in its basic form with a much more complex theory 

of decision-making such as Tversky’s in order to explain our data, then  this would 

support our central conclusion that the Ratio Rule, as currently employed, is incorrect. 

However, an alternative approach might be to make some minor modification to the Ratio 

Rule that would allow it to account for our results. Whilst it is impractical to consider 

every possible modification, we will discuss one particular idea which has been proposed 

by a number of researchers (e.g. Aitken, 1996; Nosofsky & Zaki, 1998). 

 

The modification is to add a constant which can be thought of as representing the 

presence of background noise in the decision process. Specifically, the Ratio Rule is 

modified to 

 

P i( )=
v i + X

v j

j =1

n

∑ + nX

         14 
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where X is a constant representing background noise. This modification allows the Ratio 

Rule to account for (amongst other things) the results of Jones et al. (1998) even if linear 

magnitude functions are assumed. However, the addition of a constant will not affect the 

prediction that change in P(a:a,b,c) and change in P(a:a,b,c)’ is determined by change in 

(vB + vC).   Similarly, this modified Ratio Rule results in a prediction for q of,  

 

q =
vA + X

vB + vC + 2X
         13 

 

and for q’ of 

 

q' =
vA − v6

vB + vC + v6 + 3X
        14 

 

The addition of constants will not affect the prediction that change in q and q’ are 

determined by change in (vB + vC). Hence, this modification still predicts that all four 

empirical functions ( q, q’, P(a:a,b,c) and P(a:a,b,c)’ ) will have the same direction of 

change over any given interval of category-appropriate elements, which we have shown is 

not the case. 

 

Our central conclusion is that the Ratio Rule is an inappropriate theory of categorical 

decision and should be replaced by a system based on the principles of Thurstonian 

choice. However, the Ratio Rule and Thurstonian choice need not necessarily be 

considered as different classes of explanation. As discussed earlier, Yellot (1977) 

demonstrated that the predictions of the Ratio Rule are equivalent to a Case V 

Thurstonian choice process with double exponential noise distributions. As such, the 

Ratio Rule may be considered as a description of one member of the set of Thurstonian 

choice processes
3
. If the Ratio Rule is considered in this way then our central conclusion 

is more properly stated as “the Case V double exponential Thurstonian choice process is 

an inappopriate model of categorical decision, but other Thurstonian choice processes are 

potentially appropriate”.  However, one might alternatively consider the Ratio Rule to be 
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a statement that people make probabilistic judgements on the basis of deterministic 

magnitude terms, in contrast to the Thurstonian theory that people make deterministic 

judgements on the basis of probabilistic magnitude terms.  If considered in this manner, 

the Ratio Rule and Thurstonian choice are clearly different classes of explanation. 

 

Finally, it is important to state that the winner-take-all model presented by Wills & 

McLaren (Wills & McLaren, 1997) is just one of a large class of models which produce 

predictions about response probability and response time on the basis of a competitive 

race. Other examples of this class include a number of connectionist models (e.g. 

Houghton, 1990; Lacouture & Marley, 1991; Usher & McClelland, 1995), some instance-

based memory models (e.g. Logan, 1988; Nosofsky & Palmeri, 1997), and several other 

mathematical models of various descriptions (e.g. Karpiuk, Lacouture, & Marley, 1997; 

Ratcliff, 1978). Page (in press) provides an excellent discussion of the similarities and 

differences between some of the aforementioned theories. By using our WTA model to 

simulate the data presented in this paper we do not intend to imply that it is the only 

model of its class which has the potential to explain our results. Indeed, the partial 

success of our simple WTA model suggests that its is the general principles of 

Thurstonian choice, rather than the competitive race itself, which underly the success of 

our full model. Many models employing these general principles are likely to be able to 

explain many of our results (e.g. Ashby & Townsend, 1986), as long as the noise 

distribution employed does not render their predictions indistinguishable from those of 

the Ratio Rule. 
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FIGURE LEGENDS 

 

Figure 1: a) Two theoretical magnitude functions. The thinner line is a 

monotonically accelerating function. For any point on this curve, the change in magnitude 

caused by an increase x in similarity produces a larger change in magnitude (y’) than a 

corresponding decrease in similarity (y). The converse is true for a monotonically 

decelerating function (thicker line). b) Illustration of the Ratio Rule’s predictions if 

categories B and C have the same monotonically accelerating magnitude function. c) 

Illustration of the Ratio Rule’s predictions if categories B and C have the same 

monotonically decelerating function.  

 

Figure 2: An example stimulus. 

 

Figure 3: Results of Experiment One. a) Mean response probability as a function of 

number of category-appropriate elements in the presented test stimulus. The ordinate is 

the mean of the probability of producing a category B response to stimuli containing a 

given number of category B elements and the probability of producing a category C 

response to stimuli containing that number of  category C elements. b) Probability of 

producing a category A response in the three-choice condition, and the q statistic (see 

Equation 4), as a function of number of category-appropriate elements. c) As Figure 3b, 

but plotted as a function of “distance” from the 4 category-appropriate elements point on 

that graph. Figures 3b and 3c show data as unconnected plot symbols; the lines are the 

best-fitting quadratics to the plotted data. Figure 3a shows data as connected plot 

symbols; there are no best-fit lines shown. 

 

Figure 4: Results of Experiment Two. a) Probability of producing a category A 

response in the three-choice and novel-elements conditions as a function of the number of 

category b elements in the presented test stimulus. b) Mean response probability as a 
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function of number of category-appropriate elements in each of the three conditions of 

Experiment Two. The ordinate is the mean of the probability of producing a category B 

response to stimuli containing a given number of category B elements and the probability 

of producing a category C response to stimuli containing that number of  category C 

elements. c) The q and q’ statistics (see text) as a function of number of category-

appropriate elements. Figures 4a and 4c show data as unconnected plot symbols; the lines 

are the best-fitting quadratics to the plotted data. Figure 4b shows data as connected plot 

symbols; there are no best-fit lines shown. 

 

Figure 5: The winner-take-all model. 

 

Figure 6: Simulation of Experiment Two with the full WTA model (Figures 6a-c) 

and the simple-WTA model (Figures 6d-f). The lines show the predictions of the models. 

The observed data of Experiment 2 are re-plotted as unconnected plot symbols in Figures 

6a-6c for comparison. 
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Sub-group Category a Category b Category c 

1 A B C 

2 B C A 

3 C A B 

 

Table 1: Allocation of category labels in the three sub-groups of Experiment Two. 
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FOOTNOTES 

 

1
  Note that the abscissa in all these figures is reversed such that category-

appropriate elements reduces from left to right. This is to allow the figures to conform to 

the convention that generalization functions are plotted with negative slopes. 

 

2
  Inspection of Equation 13 might suggest that va should be set to 0.012 rather than 

zero, on the grounds that ca will be equal to zero. However, for the simple network model 

presented in Wills & McLaren (1997),  va will be equal to zero because the novel 

elements are not presented in the training phase and hence no association will form 

between them and the category labels. The predictions presented are not dependent on the 

choice of zero rather than 0.012 for the value of va. 

 

3
 Considering the Ratio Rule in this way assumes that Gaussian distributions are not a 

defining property of Thurstone’s theory. Such an assumption seems reasonable given 

Thurstone argued that “the only valid justification for bringing in the probability curve 

[i.e. the Gaussian distribution] ... is that its presence can be experimentally tested” 

(Thurstone, 1927, p. 373). 
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