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Abstract

In exemplar models of categorisation, the similarity between an exemplar and category

members constitutes evidence that the exemplar belongs to the category. We test the

possibility that the dissimilarity to members of competing categories also contributes to this

evidence. Data were collected from two two-dimensional perceptual categorisation

experiments, one with lines varying in orientation and length and the other with coloured

patches varying in saturation and brightness. Model fits of the similarity-dissimilarity

generalised context model were used to compare a model where only similarity was used with

a model where both similarity and dissimilarity were used. For the majority of participants the

similarity-dissimilarity model provided both a significantly better fit and better generalisation,

suggesting that people do also use dissimilarity as evidence.
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Using dissimilarity as evidence for category membership in multidimensional perceptual

categorisation: A test of the similarity-dissimilarity generalised context model 

What is it that constitutes evidence of category membership in perceptual

categorisation? According to one very successful account - exemplar models (e.g., Medin &

Schaffer, 1978; Nosofsky, 1986) - the evidence that a stimulus belongs to a particular

category is given by the stimulus's similarity to each stored member of that category. We test

the possibility that a second factor - the dissimilarity between the stimulus and exemplars from

competing categories - can also be used as evidence for category membership. All other things

being equal we propose that, if a stimulus is highly dissimilar to members of competing

categories, then this too should be taken as positive evidence for membership in the remaining

category. 

There is already evidence from other domains that dissimilarity may be used as

evidence. In recognition memory, dissimilarity between a novel test item and previous items

might provide the basis for rejection of the test item in some circumstances (e.g., Mewhort &

Johns, 2000). In identification, Murdock's (1960) distinctiveness model assumed that ease of

item identification is a function of relative distinctiveness, where distinctiveness is effectively a

measure of the summed difference between the target item and other contextual items. In

Stewart, Brown, and Chater's (2005) model of unidimensional absolute identification, the

difference between the current stimulus and the immediately preceding stimulus is used to

derive a response to the current stimulus. In his contrast model of similarity, Tversky (1977)

argued that the similarity and dissimilarity judgements and the effects of context on these

judgements are a function of the number of common features and also the number of differing

or unique features. In judging prototypicality, Rosch and Mervis (1975) found that judgements

are a positive function of the number of features in common with members of the target

category and a negative function of the number of features in common with members of other

categories.
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There is some evidence from perceptual categorisation tasks that dissimilarity

information might be used. Stewart, Brown, and Chater (2002) and Stewart and Brown

(2004) found that a stimulus on the category borderline is significantly more likely to be

classified into the opposite category to that of a previous dissimilar stimulus when stimuli were

both from the same category (the category contrast effect, see also Jones, Love, & Maddox,

2006; Hampton, Estes, & Simmons, 2005). Stewart and Brown (2005) showed that this

observation is consistent with the predictions of a model in which dissimilarity evidence is used

(the similarity-dissimilarity generalised context model, hereafter SD-GCM), but not a model in

which only similarity information is used (the generalised context model, hereafter GCM,

Nosofsky, 1986). When only similarity is used in modelling, a distant exemplar counts as small

- but none-the-less positive - evidence that the target exemplar belongs in the same category as

the distant exemplar. Participants instead behaved as if the distant exemplar was evidence

against membership of the same category.

The purpose of the two experiments presented in this paper is to test whether the

additional use of dissimilarity as evidence will allow a significantly better description of

multidimensional perceptual categorisation data. To this end, the accompanying modelling

provides the first comparison of the GCM against the SD-GCM.

The Similarity-Dissimilarity Generalised Context Model

Here we describe the SD-GCM (Stewart & Brown, 2005) for an N-dimensional

perceptual classification. This model is a generalisation of the GCM (Nosofsky, 1986), which

itself was a generalisation of Medin and Schafer's (1978) context model. The perceptual

distance between two stimuli Si and Sj is defined as

dij=��
k=1

N

wk�xik�x jk�
r �
�1/r�

(1)

where xik is the magnitude of Stimulus Si on Dimension k. The attentional weighting of
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dimension k is wk and �
k=1

N

w
k
=1 . The Minkowski metric parameter r gives a city block metric

when r = 1 (used for separable-dimension stimuli) and a Euclidean metric when r = 2 (used for

integral-dimension stimuli) . The similarity �ij between Si and Sj is a function of the perceptual

distance between them:

�ij=e
�c d

ij

q

(2)

where c is a scaling parameter, q = 1 gives an exponential function and q = 2 gives a Gaussian

function. The evidence viA for Si's membership of Category CA is

v
iA
=s �

x
j
�C

A

t
j
�
ij
��1�s� �

x
j
�¬C

A

t
j �1��ij � (3)

where the first term gives the summed similarity to Category CA and the second term gives the

summed dissimilarity to the remaining categories. (Though here dissimilarity = 1 - similarity,

dissimilarity could, for example, be calculated over one set of features while similarity is

calculated over another.) The s parameter represents the relative contributions of similarity

and dissimilarity evidence. When s = 1, only similarity evidence is used, when s = 0 only

dissimilarity evidence is used. The tj parameter represents the weighting of exemplar Sj and

decays with the time since Sj was encountered. Specifically,

t j=e
�n	 (4)

where n is the number of trials since Sj and 	 is the decay rate. Finally, the evidences are used

in the choice rule to give the probability of responding CA.

P �C A�S i�=
�
A

v
iA �

�

�
all C

�
C
v
iC �

� (5)

where 
A is the response bias for Category CA and �all C


C
=1

. The � parameter varies the

degree of determinism in responding (e.g., Ashby & Maddox, 1993). When � = 1 the response

rule reduces to the special case originally proposed for the context model (Medin & Schaffer,
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1978; see Nosofsky, 1986, p. 42) and the GCM. For � > 1 responding is increasingly

deterministic. 

Table 1 gives a summary of the free parameters in the SD-GCM. When s = 1 (so only

similarity evidence is weighted) and 	 = 0 (so all stimuli are weighted equally) the SD-GCM

reduces to the deterministic GCM which was first proposed by Ashby and Maddox (1993).

Fixing � = 1 gives the original GCM.

(Table 1 about here)

Experiments

The two experiments differed only in the stimuli that were presented. In Experiment 1,

the stimuli were lines varying in orientation and length (separable dimensions, Garner &

Felfoldy, 1970). In Experiment 2, the stimuli were coloured patches varying in saturation and

brightness (integral dimensions, Garner & Felfoldy, 1970).

Experiment 1 Method

Participants. Eighteen undergraduate psychology students from the University of

Warwick took part in this experiment.

Stimuli. The stimulus set consisted of 56 lines, constructed from the factorial

combination of eight levels of line length and seven levels of line orientation. The first line

length level started at 2 cm and lines increased in length by 22% at each level to reach 8.05 cm

on level eight. The seven levels of line orientation started with at 80° (measured anticlockwise

from horizontal), decreasing in steps of 5° to 50°. The 56 lines were divided into two

categories (Figure 1). Stimuli were displayed using E-prime on a Sony G400 Multiscan

monitor (75 Hz vertical refresh rate, 1024x768 resolution). 
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(Figure 1 about here)

Procedure. Participants were tested individually in a quiet room. Participants were

informed that they would see lines differing in length and orientation, one after the other. They

were told that after each line they would be asked to respond with the category they thought

the line came from. Participants were not told about the category structure, but had to learn

the structure from trial-by-trial feedback. Although at first participants would have to guess,

they were informed that by attending to the correct answer displayed on the screen after each

response, they could learn which lines belonged to which category. 

There were four blocks each of 168 trials, with a break between each block. Each trial

began with the presentation of a 1000 ms fixation cross. Stimuli were presented in a random

order with the constraint that each stimulus appeared once in every set of 56 trials (i.e., three

times per block). Stimuli were presented at a random location on the screen. Participants were

able to respond with either �1� or �2� (labelled �A� and �B�, counterbalanced across

participants) on a standard keyboard. The line remained on the screen until participants

responded, whereupon it disappeared. After the participant had responded the screen went

blank for 1000 ms followed immediately by the correct answer (either �A� or �B�) for 500 ms.

Feedback was given throughout the experiment. The next trial began immediately. 

Experiment 2 Method

Participants. Nineteen undergraduate psychology students from the University of

Warwick took part in this experiment.

Stimuli. The stimulus set consisted of 56 Munsell colour patches measuring 10cm x 10

cm, all of 10PB (purple-blue) hue but varying in saturation and brightness. These stimuli were

constructed from the factorial combination of eight levels of brightness (values  4, 4.5, 5, 5.5,

6, 6.5, 7, and 7.5) and seven levels of saturation (chromas 2, 3, 4, 5, 6, 7, and 8). A Minolta

CS100 colorimeter was used to measure the colour of the patches and adjust them to match
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the Munsell values. 

Procedure. The procedure was identical to Experiment 2 except that the colour

patches were always presented in the middle of the screen.

Results of Experiment 1

The first 20 trials from each block were considered to be practice trials and were not

analysed. The mean proportion of correct responses averaged across participants on the

remaining trials was .77 (SE = .01) and ranged from .66 to .85. Figure 2A plots the mean

proportion of A responses averaged across participants as a surface above the stimulus space.

As expected, stimuli furthest from the category boundary were categorised most accurately,

with performance at about chance for stimuli on the category boundary. There were individual

differences in the relative weighting of the two dimensions, with a few participants placing a

large reliance upon only Dimension 1 and a few placing a large reliance upon only Dimension

2. These differences were captured very well by the dimension weighting parameter w1 in the

model fitting below. 

(Figure 2 about here)

It was possible to test whether the category contrast effect, which previously has only

been shown in one-dimensional stimulus structures, also occurred for this two-dimensional

stimulus structure. Recall that, in the category contrast effect, accuracy on a borderline

stimulus which follows an extreme stimulus is higher when the extreme stimulus was from the

opposite category. In this analysis, stimuli immediately adjacent to the stimulus boundary were

considered to be borderline stimuli (i.e., (1, 7), (2, 6), ..., (7, 1) for Category A). The three

stimuli in each category most distant from the category boundary were grouped together as

extreme stimuli (i.e., (1, 1), (2, 1), and (1, 2) for Category A). Accuracy was indeed higher

when a borderline stimulus was preceded by an extreme stimulus from the opposite category
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(M = .63, SE = .03) compared to when a borderline stimulus was preceded by an extreme

stimulus from the same category (M = .51, SE = .03), t(17) = 2.76, p = .013.

We have deferred until now the discussion of an important finding by Jones et al.

(2006) who found that the category contrast effect was mainly due to perceptual contrast and

not decisional contrast. It is possible to test between perceptual and decisional accounts here.

Consider a pair of consecutive borderline stimuli. Perceptual contrast of these stimuli should

shift the representation of the second stimulus parallel to the category borderline, and predicts

no change in categorization accuracy. However decisional contrast predicts that when these

borderline stimuli differ greatly, this should be taken as evidence that the current stimulus

belongs in the opposite category from the previous stimulus, and thus that the accuracy with

which the current stimulus is categorised should depend on the similarity to the previous

stimulus. This is the pattern found in the data (Figure 3A). For consecutive stimuli on the

category borderline (e.g., on a line between (1, 7) and (7, 1) or between (1, 6) and (6, 1) for

Category A) high similarity increases accuracy if stimuli are from the same category but

decreases accuracy if stimuli are from different categories. This description is confirmed by a

similarity (high or low) x category (same or different) ANOVA, which gives a significant main

effect of category [F(1, 17) = 12.47, p = .0026], no main effect of similarity [F(1, 17) = 1.88,

p = .1882], and importantly a significant category x similarity interaction [F(1, 17) = 31.22, p

< .0001]. Considering only stimuli from the same category, accuracy is significantly lower

when stimuli differ, t(17) = 8.66, p < .0001. Considering only stimuli from different categories,

accuracy is significantly lower when stimuli are similar, t(17) = 2.84, p = .0112.

(Figure 3 about here)

Results of Experiment 2

The pattern of results was very similar to that observed in Experiment 1. Data from
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three participants performing at levels very close to chance (mean proportion of correct

responses at .47, .49, and .55) were omitted from the following analysis, though doing so did

not alter the pattern of results.

The mean proportion of correct responses averaged across participants on the

remaining trials was .80 (SE = .02) and ranged from .66 to .90. Figure 2B plots the mean

proportion of A responses averaged across participants as a surface above the stimulus space.

Just as in Experiment 1, stimuli furthest from the category boundary were categorised most

accurately, with performance at about chance for stimuli on the category boundary. Individual

differences in the relative weighting of the two dimensions were captured well by the w1

parameter.

The category contrast effect was examined in the same way as for Experiment 1 and a

similar result was found. Accuracy was higher when a borderline stimulus was preceded by an

extreme stimulus from the opposite category (M = .62, SE = .04) compared to when a

borderline stimulus was preceded by an extreme stimulus from the same category (M = .51,

SE = .02), t(15) = 3.20, p = .006.

Figure 3B shows that, as in Experiment 1, dissimilarity between consecutive borderline

stimuli is taken as evidence that the stimuli belong in different categories. This description is

confirmed by a similarity (high or low) x category (same or different) ANOVA, which gives a

significant main effect of category [F(1, 15) = 5.04, p = .0403], no main effect of similarity

[F(1, 15) = 0.02, p = 0.8930], and a significant category x similarity interaction [F(1, 15) =

8.39, p = .0111]. Considering only stimuli from the same category, accuracy is significantly

lower when stimuli differ, t(15) = 2.73, p = .0156. Considering only stimuli from different

categories, accuracy is not quite significantly lower when stimuli are similar,  t(15) = 1.79, p

= .0933.

Modelling

We examine whether there is evidence for the use of dissimilarity information by
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comparing fits of the SD-GCM with fits of a restricted version of the model in which only

similarity information is used (i.e., s = 1). The free parameters were best-fitted to the trial-by-

trial raw data separately for each participant using the Nelder-Mead simplex algorithm to

maximise the likelihood of the data given the model. For parameters bounded in the range 0 -

1, seed simplex coordinates were selected randomly from a uniform distribution with range 0 -

1. For parameters bounded in the range 0 - �, coordinates were log transformed and selected

from the range e-5 - e5. Outside this range, changes in the parameter values had essentially no

effect on model predictions. The fitting process was repeated 1000 times for each participant

and the best fit was selected.  The best-fitting parameter values for the unrestricted models

(with s free) are given in Tables 2 and 3. 

(Tables 2 and 3 about here)

In the fits presented, we assume a Euclidean distance metric (r = 2) and a Gaussian

generalisation function (q = 2). This provided a better fit than when a city-block distance

metric (r = 1) and exponential generalisation function (q = 1) were assumed for 14 out of 18

participants in Experiment 1 and 14 out of 16 participants in Experiment 2. However, a very

similar pattern of results is obtained if a city-block distance metric and exponential

generalisation function are used instead.

We compared the fit of the unrestricted SD-GCM with a restricted version where only

similarity information was used (i.e., s = 1). These models are said to be "nested". Obviously,

the more general model will always fit the data better. To test the significance of the

improvement in fit, generalised likelihood ratio tests were used to test the null hypothesis that

s differed significantly from 1 in just the same way that a single sample t-test tests whether the

population mean parameter differs significantly from some hypothesised value. (Indeed, t-tests,

ANOVA, contingency table chi-squared tests, etc., are all special cases of the likelihood ratio



Dissimilarity is used as evidence     12

test.)

Those fits that were significantly better by likelihood ratio test are marked in the s

columns of Tables 2 and 3. For Experiment 1, 17 of the 18 participants' data fitted significantly

better when s was allowed to vary freely. The average probability of the model predicting an

observed response correctly was higher when when s was free (M = .718, SE = .012) than

when s was fixed (M = .700, SE = .012). For Experiment 2, all participants' data was fitted

significantly better when s was allowed to vary freely (free: M = .742, SE = .017; fixed: M

= .720, SE = .015). In summary, for all but one participant, there is significant evidence that

they used both similarity and dissimilarity evidence in their categorisation decisions. 

Because of the importance of this conclusion, we have tested it using an alternative

methodology: cross validation. In this procedure, a model is best-fitted to part of the data. The

best-fitting parameters are then used to predict the remaining data. If the model is the correct

model and is not too flexible, it will generalise well to the remaining data. In our analysis, for

each participant, the data was randomly split in half. The likelihood of one half of the data was

calculated using the parameters that best-fitted the other half of the data. This procedure was

repeated for 100 different partitionings of the data and the average likelihood was calculated.

In Experiment 1, the similarity and dissimilarity model was found to generalise better than the

similarity only model for 16 out of 18 participants. In Experiment 2, the similarity and

dissimilarity model was found to generalise better than the similarity only model for 14 out of

16 participants. This cross validation analysis essentially replicates the analysis of the

likelihood tests, providing strong evidence for the use of both similarity and dissimilarity

information. 

General Discussion

In these experiments, participants categorised stimuli that varied on two dimensions

into one of two categories. In Experiment 1, stimuli were lines varying in their orientation and

length. In Experiment 2, stimuli were coloured patches varying in saturation and brightness. In



Dissimilarity is used as evidence     13

both experiments, there was significant evidence that dissimilarity information was used in

addition to similarity information. That is, if a stimulus was dissimilar to an exemplar of

Category A this counted as evidence that the stimulus belonging to Category B rather than

counting as infinitesimally small evidence that the stimulus belonged to Category A. We reach

this conclusion on the basis of two pieces of evidence. First, in both experiments, performance

on borderline stimuli was more accurate after a distant stimulus from the opposite category

compared to a distant stimulus from the same category. This finding replicates the category

contrast effect that has been found for unidimensional stimuli (Hampton et al., 2005; Stewart

et al., 2002; Stewart & Brown, 2004) and cannot be explained by the use of similarity

information only (Stewart & Brown, 2005). Second, for almost every participant in

Experiments 1 and 2, model comparisons found a significant advantage for a model in which

both similarity and dissimilarity information was used (the SD-GCM) in comparison to a

nested version in which only similarity information was used (the GCM). 

Models of the Time Course of Categorisation

There are two main models of the time course of perceptual categorisation, and each

could be modified to incorporate the use of dissimilarity information in a relatively

straightforward manner. In exemplar-based random walk model (Nosofsky & Palmeri, 1997),

the categorisation decision process is modelled as a random walk in which stored exemplars

race one another to be retrieved and add to the evidence for their category. There are at least

two ways in which the use of dissimilarity information might be incorporated into this model.

First, the size of each step in the random walk could be made to depend upon the similarity

(activation) of the retrieved exemplar. If the exemplar is very similar, a step could be taken

towards the exemplar's category bound. If the exemplar is very dissimilar, a step could be

taken away from the exemplar's category bound. Second, the dissimilarity could influence the

retrieval time. In the model, similar exemplars are more activated and thus more likely to be

retrieved sooner. It might also be the case that highly dissimilar exemplars might also be
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retrieved more quickly. This modification would cause highly dissimilar exemplars to have an

influence early on during the categorisation process. 

In the extended GCM (Lamberts, 2000), response times depend not upon the decision

process, but rather upon the accumulation of stimulus information. Stimulus elements are

repeatedly sampled, with similarity to each category calculated after each sample. The

probability that sampling stops depends upon the relative similarity to each category. When the

similarity to one category is high sampling stops and a response is emitted. The most obvious

way to include dissimilarity information is to modify the choice rule, so that the evidence for

each category includes the summed dissimilarity to exemplars of competing categories. 

Multiple Systems Categorisation Models

Performance in the information integration experiments of the sort presented in this

article is dominated by similarity (or dissimilarity) based processes in which exemplars or

regions of perceptual space are associated with category labels (see Ashby & Maddox, 2005,

for a review). But there is good evidence that categorisation involves multiple systems or

strategies (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke,

1998; Nosofsky, Palmeri, & McKinley, 1994). What these models have in common is the

assumption that one system detects single-dimension categorisation rules and that another

system categorises stimuli from multiple dimensions. In Ashby et al.'s COVIS model,

unidimensional verbal rules are augmented with a procedural learning mechanism with

associates regions of perceptual space with responses (essentially, a decision bound model). In

Erickson and Kruschke's ATRIUM model, a person learns to weight the output of

unidimensional categorisation rules with the output of a connectionist implementation of the

GCM. In Nosofsky et al.'s RULEX model, people are hypothesised to learn the exceptions to

unidimensional classification rules. The SD-GCM could be viewed as an alternative to the

multi-dimensional systems in COVIS and ATRIUM. There is no generalisation in the RULEX

model - stimuli either match a stored exception or not - and so incorporating the use of
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similarity and dissimilarity information would require further elaboration of the model. 

Conclusion

We have been concerned with whether dissimilarity information is used as evidence in

perceptual categorisation. In two experiments we found the category contrast effect which

cannot be explained without recourse to the use of dissimilarity information. In addition,

nested model comparison and cross validation both revealed significantly better performance

for a model that included both dissimilarity and similarity information (the SD-GCM)

compared to a restricted similarity-only model (the GCM). This result provides strong

evidence that people use dissimilarity information as evidence in perceptual categorisation.
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Table 1

SD-GCM Free Parameters

Parameter Description Range
wk Weighting of dimension k 0 - 1
c Generalisation parameter 0 - �
s Relative weighting of similarity and dissimilarity

evidence
0 - 1

	 Rate of decay of effect of past stimuli 0 - �

A Response bias for Category CA 0 - 1
� Response determinism parameter 0 - �
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Table 2

Best Fits of the SD-GCM to Experiment 1 Data

Subject -ln L c 
A � w1 	 s
1 327.46 0.09 0.48 0.98 0.61 0.72 0.80
2 209.17 0.11 0.61 3.77 0.57 0.01 0.52*
3 262.86 0.06 0.48 3.30 0.29 0.06 0.29*
4 208.91 0.07 0.54 4.99 0.26 0.03 0.41*
5 214.09 0.00 0.58 3.12 0.97 0.11 0.00*
6 232.14 0.47 0.48 1.67 0.78 0.02 0.93*
7 332.73 0.19 0.41 1.40 0.16 0.23 0.64*
8 229.64 0.00 0.57 3.62 0.69 0.07 0.00*
9 256.71 0.12 0.52 2.62 0.54 0.12 0.56*
10 286.67 0.33 0.62 1.39 0.99 0.09 0.83*
11 327.53 0.14 0.52 1.67 0.30 0.09 0.69*
12 277.22 0.07 0.59 1.80 1.00 0.23 0.38*
13 242.22 0.22 0.46 2.69 0.36 0.04 0.68*
14 231.61 0.19 0.62 2.64 0.58 0.10 0.76*
15 204.46 0.15 0.59 3.73 0.54 0.04 0.54*
16 263.09 0.03 0.67 3.65 0.11 0.02 0.18*
17 236.46 0.14 0.43 3.14 0.50 0.10 0.53*
18 277.81 0.62 0.50 1.27 0.71 0.05 0.93*

Note. * indicates s significantly less than 1 (p <.05).
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Table 3

Best Fits of the SD-GCM to Experiment 2 Data

Subject -ln L c 
A � w1 	 s
1 183.38 0.24 0.40 4.08 0.34 0.04 0.68*
2 200.77 0.11 0.64 3.82 0.69 0.13 0.47*
3 209.89 0.25 0.48 2.81 0.42 0.00 0.80*
4 258.72 0.29 0.56 2.32 0.41 0.10 0.74*
5 189.59 0.40 0.53 3.36 0.53 0.01 0.75*
6 301.16 0.10 0.55 2.18 0.48 0.08 0.63*
7 223.76 0.19 0.50 3.19 0.26 0.07 0.67*
8 183.39 0.24 0.54 3.61 0.50 0.00 0.73*
9 362.80 0.20 0.51 1.08 0.67 0.04 0.65*

10 213.40 0.17 0.60 3.30 0.65 0.02 0.59*
13 267.56 0.00 0.68 2.12 0.80 0.01 0.00*
14 181.55 0.00 0.59 3.54 1.00 0.03 0.01*
15 234.68 0.18 0.41 3.22 0.22 0.03 0.60*
16 234.40 0.19 0.49 3.15 0.33 0.02 0.63*
18 282.31 0.20 0.25 0.31 0.58 0.24 0.00*
19 293.16 0.00 0.61 3.15 0.27 0.00 0.82*

Note. * indicates s significantly less than 1 (p <.05).
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Figure Captions

Figure 1. The category structure used in Experiments 1 and 2. In Experiment 1, Dimension 1

was length and Dimension 2 was orientation. In Experiment 2, Dimension 1 was brightness

and Dimension 2 was saturation.

Figure 2. The mean proportion of A responses as a function of stimulus for (A) Experiment 1

and (B) Experiment 2.

Figure 3. Proportion of correct responses for a borderline stimulus following immediately

after another borderline stimulus for (A) Experiment 1 and (B) Experiment 2. Plots are

parameterised by whether the two consecutive borderline stimuli are from the same category

or not and are similar or dissimilar.
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Figure 2
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Figure 3
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