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Abstract

N. Stewart, G. D. A. Brown, and N. Chater (2005) presented a relative judgment model

(RJM) of absolute identification, in which the current stimulus is judged relative to the

preceding stimulus. S. Brown, A. A. J. Marley, and Y. Lacouture (2007) found that the RJM

does not predict their finding of increased accuracy after large stimulus jumps, except at the

expense of other effects. In fact, the RJM does predict both the core effects and also increased

accuracy after large jumps (though it underestimates this effect) when better constrained

parameters are estimated from the trial-by-trial raw data rather than from summary plots.

Further, a modified RJM, in which the stimulus from two trials ago is sometimes used as a

referent, provides a better fit. 
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Absolute Identification is Relative

Stewart, Brown, and Chater (2005) presented a relative judgment model (RJM) of

absolute identification. In absolute identification, participants are presented with a series of

stimuli drawn from set that varies along a single dimension (e.g., tones varying in their

loudness). Stimuli are normally evenly spaced along the dimension. Participants are asked to

identify each stimulus with its rank position in the set. Stewart et al.'s RJM differs from

previous accounts in assuming that identifications are made without reference to long-term

memories of absolute stimulus magnitudes (see also Laming, 1984). Almost all existing models

utilize long-term absolute magnitude information. For example, Thurstonian models represent

long-term absolute magnitude information in the positioning of criteria along a perceptual

continuum (Durlach & Braida, 1969; Luce, Green, & Weber, 1976; Treisman, 1985).

Exemplar models represent long-term absolute magnitude information in the stored stimulus

magnitude-stimulus label pairs (Kent & Lamberts, 2005; Nosofsky, 1997; Petrov & Anderson,

2005). Connectionist models represent long-term absolute magnitude information in the

mapping between stimulus and response nodes (Lacouture & Marley, 2004). Anchor models

represent long-term absolute magnitude information as a memory for anchors at the edges of

the stimulus range (Karpiuk, Lacouture, & Marley, 1997; Marley & Cook, 1984). 

In the RJM, long-term memories of absolute magnitudes are assumed to be unavailable

and judgment is instead relative to the immediately preceding stimulus. In conjunction with the

feedback for the previous stimulus, the difference between the current stimulus and the

previous stimulus is used to identify the current stimulus. For example, if the feedback on the

previous trial is Stimulus 4 and the current stimulus is 3 response scale units higher in

magnitude, then Stimulus 7 will be given as a response. By assuming that the difference

between stimuli are confused and that there is a capacity limit in mapping between stimulus

differences and the response scale, the RJM can account for the main phenomena observed in

absolute identification (reviewed in detail by Stewart et al., 2005). 
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Brown, Marley, and Lacouture (2007) presented a more detailed examination of the

sequential effects in Lacouture's (1997) absolute identification of line length experiment.

Although the RJM accounts for the average effects well, Brown et al. claimed that it does not

account for the more detailed pattern. Specifically, Brown et al. plotted accuracy on the

current trial as a function of the difference between the current stimulus and the previous

stimulus (Figure 1A). There is a small accuracy advantage when the previous stimulus is the

same as the current stimulus and there is a larger accuracy advantage when the difference

between stimuli is as large as possible. Brown et al. suggested that this larger advantage is

problematic for the RJM. In the RJM, the number of responses represented in the mapping

process depends upon the previous feedback and the sign of the difference between the current

and previous stimuli (see Stewart et al., 2005, Equations 4 and 5). For example, when

Stimulus 1 is followed by Stimulus 10, constant noise in the mapping process produces a large

amount of noise in responding because more possible responses must be represented

(Responses 2-10) within the limited capacity. In contrast, when Stimulus 5 is followed by

Stimulus 10, fewer responses must be represented (Responses 6-10) and so the constant noise

in the mapping process produces less noise in responding. The RJM is predicting more noise

when there is a big difference between the previous and current stimuli, but Lacouture's data

show increased accuracy - not reduced accuracy - in this situation. This observation led Brown

et al. to question whether judgment is always relative. 

Extension to Other Data Sets

I have examined three other data sets (Table 1) and repeat Brown et al.'s analysis in the

other panels of Figure 1. Kent and Lamberts (2005) used a task in which the distance between

two dots was identified (a task very similar to the identification of line lengths used by

Lacouture, 1997). Stewart et al. (2005) and Brown, Neath, and Chater (2002) both used

absolute identification of the frequency of pure tones. The same qualitative pattern can be seen

in all of the data sets. There is an accuracy advantage for stimulus repetitions and for the
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largest jump sizes compared to intermediate jump sizes. Finding this pattern in data from four

different laboratories (Lacouture's, Kent's, Stewart's, and Neath's) with two different continua

(length and pitch) shows it is reliable and I would tentatively suggest that this effect be

included in the set of benchmark phenomena that any absolute identification model should

explain. The relative ordering of performance on stimulus repetitions compared to the largest

jump sizes differs between data sets. Performance is better for large jumps in the Lacouture

data set (by .070) and the Kent and Lamberts data set (by .029), but performance is better for

repetitions in the Stewart et al. data set (by .303) and the Brown et al. data set (by 0.127). 

Relation to Other Effects

Increased accuracy on stimulus repetitions can be seen in other summary plots of the

data. For example, when accuracy plotted as a function of stimulus is parameterized by the

number of trials since a stimulus repetition (e.g., Petrov & Anderson, 2005; Rouder, Morey,

Cowan, & Pfaltz, 2004; Siegel, 1972, Stewart et al., 2005) very high accuracy is observed

when stimuli are repeated (i.e., at 0 trials since a repetition). This shows that the advantage for

repetitions is seen for all stimuli. When d' (a measure of the confusion between adjacent

stimuli) plotted as a function of stimulus is parameterized by the difference between the

current and previous stimulus higher d' is observed when the current and previous stimuli are

similar (e.g., Stewart et al., 2005) though the effect is sometimes small or null (e.g., Luce,

Nosofsky, Green, & Smith, 1982; Nosofsky, 1983; Purks, Callahan, Braida, & Durlach,

1980). 

Increased accuracy after large stimulus jumps can also be seen in other summary plots

of the data. For example, when accuracy or d' is plotted as a function of stimulus, a bow is

observed with better performance for the smallest and largest stimuli (see Stewart et al., 2005,

for a review of the bow effect). Because the largest jumps are necessarily between the smallest

and largest stimuli, high accuracy for the smallest and largest stimuli is linked with high

accuracy for the largest jumps. The bow effect in accuracy can be attributed, in part, to the
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restricted opportunity to make mistakes at the edges of the stimulus range. Increased accuracy

after large jumps can also be attributed to this restricted opportunity to make mistakes. When

the error in responding is plotted as a function of the current stimulus and the previous

stimulus, assimilation of the current response to the previous stimulus is seen for all stimulus

combinations (see Stewart et al., 2005, for a review of assimilation and contrast effects). The

amount of assimilation is roughly a constant proportion of the difference between the current

stimulus and the previous stimulus. However, assimilation is reduced for the largest stimulus

jumps - and this is directly linked to the increase in accuracy for the largest jumps.

Fits of the RJM

To examine whether the RJM predicts the effect in Figure 1, I have fitted the RJM to

each data set. Because the trial-by-trial raw data were available, I have estimated the model's

parameters separately for each participant by maximizing the likelihood of the response on

each trial using the Nelder-Mead (1965) simplex algorithm. This method is exactly equivalent

to fitting the full conditional (upon all previous stimuli) confusion matrix. (This method should

be preferred to fitting summary data, because the raw data will constrain the parameters better

and prevent the model fitting summarized effects at the expense of other, unsummarized

effects.) For each participant, the best fitting parameters were used to plot accuracy as a

function of stimulus difference. Figure 1 shows these predictions averaged across participants

(dashed line marked with circles). 

The RJM captures the qualitative pattern of increased accuracy for stimulus repetitions

and for large stimulus jumps. However, for the Lacouture (1997) and Kent and Lamberts

(2005) data sets, the original model overestimates accuracy after repetitions and

underestimates accuracy after large jumps. The overestimation in accuracy after stimulus

repetitions occurs because the RJM predicts very little noise in responding when stimuli are

repeated. As described above, the underestimation in accuracy after large stimulus jumps

occurs because a large number of responses must be represented within the limited mapping
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capacity when there is a large stimulus jump and this leads to more noise in responding. For

the Stewart et al. (2005) and Brown et al. (2002) data sets, the RJM provides a much better

quantitative fit. The model captures the high accuracy after stimulus repetitions well, though it

still underestimates accuracy after large stimulus jumps.

Comparison to Brown et al.'s Fits

Brown et al. (2007) also presented fits of the RJM to the Lacouture (1997) data set.

Brown et al. used the best fitting parameters for Lacouture's data presented in Stewart et al.

(2005). Using these parameters, the RJM fails to predict increased accuracy after large

stimulus jumps. These parameters were estimated by fitting the model to a summary plot of

the error in responding on the current trial as a function of the lag and magnitude of preceding

stimuli (see Lacouture, 1997, Figure 5) to demonstrate that the model could predict the

summary pattern. However, as Stewart et al. acknowledged, fitting only the summary data

does not constrain some of the model parameters well, because information in the raw data is

discarded in the summary. The fits to raw data presented above should be preferred because

they constrain the parameters better. 

Brown et al. (2007) also presented fits using a modified parameter set, which they

obtained by fitting the RJM to several summary plots, including the plot in Figure 1. In the

RJM, a random variable representing the response is partitioned into response categories by a

set of criteria (see Stewart et al., 2005, Equations 6 and 7). The spacing of all of the criteria is

controlled by a single c parameter. The value of this parameter was smaller in Brown et al.'s

fit, which shrank the criteria towards the center of the response scale. This has the effect of

increasing accuracy for the smallest and largest stimuli, because more of the response scale

falls within these categories. In turn, this allows the model to predict increased accuracy after

large stimulus jumps because these jumps necessarily finish on the smallest or largest stimuli.

However Brown et al. found this modified parameter set caused the model to fail to predict

the smooth bow seen when d' between adjacent stimuli is plotted as a function of stimulus
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rank. The fits to raw data presented in this article do all predict a smooth bow in d', though

they do underestimate the bow (as Stewart et al. consider in detail, p. 896). 

As a follow up to Brown et al.'s (2007) investigation of criteria placement, I ran an

additional set of model fits in which each criterion's location was a separate free parameter,

instead of constraining all of the criteria with the single c parameter as in the original RJM.

Allowing the criteria to vary independently produced only a slightly better fit to the data (the

improvement in fit was not significant). In fact, the free criteria took almost exactly the same

values as when they were constrained by the c parameter. Stewart et al. (2005) presented a

related finding. They found that allowing the criteria to vary freely to maximize accuracy

(rather than the fit to the data) did not increase accuracy. Together, these two findings support

Stewart et al.'s assumption that the criteria in the RJM are optimally located to maximize

response accuracy (or information transmission).

A Simple Modification of the RJM

Thus far, I have shown that the sequential effects found by Brown et al.'s (2007) more

detailed analysis of Lacouture's (1997) data are robust and occur in three other data sets. I

have also shown that the original RJM does predict increased accuracy after large stimulus

jumps when parameters are estimated by fitting data at the trial-by-trial level rather than from

a single summary plot. However, the RJM does still underestimate the accuracy after large

stimulus jumps, particularly for the Lacouture (1997) and Kent and Lamberts (2005) data sets.

Also, for these two data sets, the RJM does overestimate accuracy when stimuli are repeated.

In the remainder of this article I show that two simple modifications of the RJM provide a

much better quantitative fit. First, a parameter that was fixed in the original model is allowed

to vary. Second, I assume that judgment is sometimes relative to the stimulus two trials ago

instead of one trial ago.

Stimulus Repetitions

The discrepancy between Stewart et al.'s (2005) and Brown et al.'s data sets (in which
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there is a large advantage for stimulus repetitions) and Lacouture's (1997) and Kent and

Lamberts's (2005) data sets (in which the advantage for stimulus repetitions is smaller) is seen

in other data sets. For example, Petrov and Anderson (2005), Rouder et al. (2004), and Siegel

(1972) found a large accuracy advantage for stimulus repetitions. Luce et al. (1982) and

Nosofsky (1983) found that d' was only slightly higher when the current and previous stimuli

were similar (though the difference was significant) and Purks et al. (1980) found no

difference. These results are not necessarily inconsistent: an increase in accuracy on stimulus

repetitions could be caused by movement of criteria within a Thurstonian framework away

from the previous stimulus, resulting in increased accuracy but unchanged d' (see Purks et al.,

1980).

In the original RJM, a stimulus is identified as repeated whenever the magnitude of

perception of the difference between the current stimulus and the previous stimulus was less

than a criterion value � (see Stewart et al., 2005, Equation 5). � was assumed to be fixed at

half the stimulus spacing in Stewart et al.'s model fitting. Stewart et al. suggest the discrepancy

between data sets described above could be captured by allowing the � parameter to vary (p.

905). A smaller value of � represents a greater difficulty in (or reluctance to) identify stimulus

repetitions. For this reason I allow � to vary in the second set of fits.

Large Stimulus Jumps

Siegel's (1972) data and Stewart et al.'s (2005) data showed that there is an advantage

not only when the current stimulus (Sn) is the same as the previous stimulus (Sn - 1), but also a

smaller advantage when the current stimulus is the same as the stimulus two trials back (Sn - 2).

One possible explanation that Stewart et al. put forward (p. 904) is that people sometimes

judge Sn against Sn - 2 instead of Sn - 1. Stewart and Brown (2004) presented some evidence that

is particularly suggestive of this possibility. They showed that people were very accurate in a

binary categorization task if a recent stimulus was nearer the category boundary than the

current stimulus. In this situation, relative judgment of the current stimulus against the recent
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stimulus allows participants to determine the correct category. For example, if the previous

stimulus is in the Low Category and the current stimulus is perceived as lower in magnitude,

then the current stimulus must also be in the Low Category. Stewart and Brown found that

when Sn - 2 was nearer the boundary than Sn, accuracy was high and unaffected by Sn - 1. This

strongly suggests that participants can categorized Sn by comparing it with Sn - 2 instead of Sn - 1.

In the second set of fits I assume that, on trials when Sn - 2 is much nearer Sn than Sn - 1

is, Sn is sometimes judged relative to Sn - 2 instead of Sn - 1. For example, if the sequence of

stimuli is Sn - 2 = 9, Sn - 1 = 1, Sn = 10 I assume that Sn is compared to Sn - 2 and not Sn - 1. In these

fits, I define "much nearer" at half of the stimulus range. Using Sn - 2 only when it is "much

nearer" represents the assumption that it is easier and preferable to compare Sn to the relatively

strong trace of Sn - 1 than to the relatively weaker trace of Sn - 2. Revised equations are given in

the Appendix. 

Modified RJM Fit

The procedure for fitting this modified version of the RJM was the same as described

above. Figure 1 shows these predictions averaged across participants (dashed line marked with

squares). In comparison to the original RJM fits, the fits of the modified RJM predict a greater

accuracy advantage after large stimulus jumps and a smaller accuracy advantage after stimulus

repetitions, producing a better overall fit to the data. For the Stewart et al. (2005) and Brown

et al. (2002) data sets, the model's fit to the data is good, though the model does slightly

underestimate accuracy for repetitions and overestimates accuracy for large jumps in the

Brown et al. (2002) data.

For the Lacouture (1997) and Kent and Lambert's (2005) data, the modified model

comes much closer to capturing the pattern in the data, though it still overestimates accuracy

on stimulus repetitions and underestimates accuracy after large stimulus jumps. Each of these

deficits can be addressed by further modification of the model. First, to address the
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overestimation in accuracy after stimulus repetitions, a second, independent source of noise

can be added to the model (e.g., perceptual noise, Stewart et al., 2005, p. 897, or noise in

representing the difference between stimuli, Dn , n�1

C

), allowing a closer fit to be obtained.

Second, to address the underestimation in accuracy after the largest jumps, the RJM can be

extended so that stimuli on trials further back in the sequence can be used to judge the current

stimulus. Ultimately, one could extend the RJM so that any previous stimulus could be used.

This, effectively, would turn the model into an exemplar model of absolute identification, and

introduce long-term representation of magnitudes into the model. The RJM and the absolute

magnitude models could be viewed as opposite ends of a continuum, with only very short-

lived magnitude representations at the relative judgment end and very long-lived magnitude

representations at the absolute judgment end. In practice, extending the model to use Sn - 1

most of the time, Sn - 2 sometimes and Sn - 3 rarely allows the model to predict higher accuracy

after large stimulus jumps. 

It may be that the RJM is not capturing some aspects of the judgment process in

Lacouture's (1997) and Kent and Lamberts's (2005) data sets. Some additional length cues

may have been available in these experiments: In Kent and Lamberts's experiment, the edges of

the screen were just visible after a little time to dark adapt. In Lacouture's experiment, distance

between each response key and the home key was 101 mm, 2 mm longer than Stimulus 9 and

13 mm shorter than Stimulus 10. The (constant) stimulus width (20 mm) was similar in length

to the shorter shorter stimulus lengths (33 mm, 38mm, ...). Relative judgment of stimuli

against these additional length cues (rather than the previous stimulus) would reduce accuracy

after stimulus repetitions and improve accuracy for the longest and shortest stimuli, which in

turn would also improve accuracy for the largest jumps (which are between the longest and

shortest stimuli). However, Luce et al. (1982) and Purks et al. (1980) found large edge effects

and small repetition effects using tones differing in loudness. Additional contextual cues were
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probably not available in these experiments because they were conducted in soundproof

chambers. So the availability of additional contextual cues is probably not the sole cause of the

difference between the Brown et al. (2002) and Stewart et al. (2005) data sets and the Kent

and Lamberts and Lacouture data sets.

Finally, I note that, in addition to capturing the effects considered here, the modified

RJM predict the effects considered by Stewart et al. (2005): limits in information transmitted;

bows in accuracy and d'; set size effects; sequence manipulation effects; and assimilation to the

previous stimulus and contrast to those further back. 

Conclusion

Brown et al. (2007) have drawn attention to a pattern of conditional accuracy that I

have found to be robust in three other data sets: Accuracy is higher after stimulus repetitions

or very large jumps compared to intermediate jumps. Here I have shown that the original RJM

can capture this qualitative pattern, though it overestimates accuracy after repetitions and

underestimates accuracy after large jumps. Exploring modifications suggested by Stewart et al.

(2005), I present a modified RJM - that maintains the hypothesis that judgment is relative -

that can capture these effects more fully. The direct experimental test of the relative judgment

hypothesis presented by Stewart et al. strongly supports the idea that absolute identification is

relative, and the data reviewed here are compatible with the relative judgment hypothesis. 
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Appendix

When Sn - 2 is much nearer Sn than Sn - 1 is, Sn - 2 is used as the base for relative judgment.

Equations 1 and 2 implement this, and replace Equations 4 and 5 from Stewart et al. (2005).

R
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When Sn - 2 is used as the base for judgment, the difference between Sn and Sn - 2 is

assumed to be estimated, and is confused with recently encountered differences Dn, n - 1, Dn - 1, n -

2, ...

D
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0
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��
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n�2



i
D

n�i , n�i�1
(3)

In the modified model, generalization on the response scale is assumed to be

exponential, not Gaussian, as in the original model. Thus, L in Equation 1 is the double

exponential or Laplace distribution, with mean 0 and scale parameter �. There are good

precedents for assuming exponential generalization (Shepard, 1957) and the exponential

function provides a better fit for 80% of participants across the four data sets modeled here.

Note that similar fits to the Figure 1 data are obtained if Gaussian generalization is retained.
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Table 1

Experimental Details for the Four Data Sets

Authors Stimulus No. participants No. trials
Brown, Neath, and Chater (2002),

Experiment 1
Pure tone
frequency

60 134

Kent and Lamberts (2005), 
Experiment 1

Dot separation 3 4000

Lacouture (1997),
Experiment 1

Line length 48 620

Stewart, Brown, and Chater (2005),
Experiment 1, Set Size 10 Condition

Pure tone
frequency

40 840
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Figure Captions

Figure 1. Accuracy plotted as a function of the difference in ranks of the current and previous

stimulus. Data (solid line) are from (a) Lacouture (1997), (b) Stewart et al. (2005), (c) Kent

and Lamberts (2005), and (d) Brown et al. (2002). Error bars are standard error of the mean.

Predictions of the RJM are shown as dashed lines. 



Absolute Identification     20

Figure 1
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