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Abstract

Exemplar and distributional accounts of categorization make differing predictions for the

classification of a critical exemplar precisely halfway between the nearest exemplars of two

categories differing in variability. Under standard conditions of sequential presentation, the

critical exemplar was classified into the most similar, least variable category, consistent with

an exemplar account. However, if the difference in variability is made more salient, then the

same exemplar is classified into the more variable, most likely category, consistent with a

distributional account. This suggests that participants may be strategic in their use of either

strategy. However, when the relative variability of two categories was manipulated,

participants showed changes in the classification of intermediate exemplars that neither

approach could account for. 
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The Effect of Category Variability in Perceptual Categorization

In this article we consider the accounts of classification given by two successful models

of categorization. Exemplar models (e.g., Medin & Schaffer, 1978; Nosofsky, 1986) assume

the categorization of a new exemplar is based on the similarity of the new exemplars to the

representations of previously encountered exemplars stored in memory. An alternative is that

probability distributions are used to represent categories and that these distributions are fitted

by using the encountered exemplars. Classification of a new exemplar is based on the relative

likelihood of belonging to each distribution. This alternative will be called the distributional

approach (e.g., Ashby & Townsend, 1986). 

The difference between these two accounts may be illustrated with a simple example in

which the two accounts make qualitatively different predictions. Consider two categories (see

Figure 1). The exemplars of one category may be more variable than the exemplars of the

other category. If a critical exemplar exactly halfway between nearest exemplars of the two

categories is presented it may be classified into either category. (The term critical exemplar is

used to denote a novel test exemplar exactly halfway between the nearest neighbors of two

categories.) 

Exemplar models predict that the critical exemplar should be categorized as a member

of the low-variability category more often than the high-variability category.1 Intuitively, this is

because the critical exemplar is, on average, nearer in perceptual space to the exemplars of the

low-variability category and is therefore likely to be more similar to the exemplars of the low-

variability category. Distributional models predict that the critical exemplar is more likely to be

classified into the high-variability category. If the presumed distribution is Gaussian (see

Figure 1), then the intermediate exemplar will typically, though not definitely,2 be classified as

a member of the high variance category because the tight bunching of the low variance

exemplars means that the critical exemplar is more standard deviations from the mean of the

low variance category. (It is assumed here that the frequencies of each category are equal - in
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the experiments below, there is indeed no bias in favor of one category or the other.) 

In summary, the exemplar and distributional models often make different predictions

about the classification of a critical exemplar midway between the nearest exemplars from two

categories differing in variability. We evaluate participants' performance on such a critical

exemplar in Experiment 1. This idea is extended in Experiments 2 and 3, in which we

investigate the effect of changing the relative variability of the two categories. 

The effects of category variability on generalization have been addressed in two

important studies: Rips (1989) and Fried and Holyoak (1984). Rips used a binary

categorization with categories of differing variability to dissociate similarity and categorization

judgments. Participants were presented with sentences giving information about an object's

value on a single dimension. In one condition participants had to classify the object as a

member of one of two available categories on the basis of this information alone. In another

condition, participants were asked to choose the category to which the object was more

similar.3 The value of the object on the selected dimension was chosen to be halfway between

the participant's estimates of the lowest value of the high value category, and the highest value

of the low value category. Participants were told this is how the test value they were given

was derived. Rips found that similarity decisions favored the low-variability category but that

categorization decisions favored the high-variability category. Rips took the dissociation

between similarity and categorization as evidence that categorization decisions were not based

on similarity decisions. Empirical evidence from Smith and Sloman (1994) provided a

pertinent boundary condition on this dissociation. They found that Rips's dissociation of

categorization and similarity is only obtained under conditions that require verbal

rationalization of the categorization decision. 

Rips's (1989) study leaves open the question of the effect of category variability in

perceptual categorization, the topic of the present article, for two reasons. First, Rips used

familiar semantic categories to encourage participants to use prior knowledge from outside the
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experimental context. Such knowledge is not available for the kinds of abstract perceptual

stimuli traditionally used in perceptual categorization experiments (although it may well be

available for natural perceptual categories). Second, the effect that Rips described does not

seem to be robust in conditions most analogous to those of a typical perceptual categorization

task (where participants do not produce verbal protocols). 

Fried and Holyoak (1984) have shown that participants are sensitive to the relative

variability of perceptual categories. They found that participants classified some checkerboard

patterns physically closer to the prototype (or mean) of a lower variability category as

members of the high-variability category. Fried and Holyoak had predicted these findings with

their category density model and interpret these findings as support for a distributional

approach. However it is also consistent with exemplar-based categorization, as it is much

more likely that there will be more exemplars from the high-variability category near the

transfer checkerboard than exemplars from the low-variability category, simply because the

checkerboards from the high-variability category are more scattered from their prototype. A

second issue regarding Fried and Holyoak's interpretation is that their similarity estimate (i.e.,

number of squares in common) may lead to a incorrect assumptions about the representation

of these checkerboard stimuli. To a first approximation it may be that the largest invariant

chunk of a stimulus is learned as a feature (McLaren, 1997; Palmeri & Nosofsky, 2001;

Stewart, 2001; Wills & McLaren, 1998). Because the low-variability category's exemplars

vary less, this would lead to the creation of larger functional features for this category. If this

were the case, then an exemplar equally distant between the two categories may indeed be

more similar to the high-variability category simply because the probability of the presence of

larger chunks used to represent the low-variability category is much lower than for the high-

variability category. 

What is needed is a category structure that allows the similarity and distributional

models to be distinguished, even when memory for individual exemplars is allowed (as it is in
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the hugely successful exemplar models). Such a structure, illustrated in Figure 1, was offered

above. 

Modeling Sensitivity to Category Variability

To confirm the intuitive argument that exemplar and distributional models of

categorization make opposite predictions, we examine two existing models of categorization

in this section: the generalized context model (GCM; Nosofsky, 1986) and normal general

recognition theory (Normal GRT; Ashby & Townsend, 1986). 

First consider the predictions of the GCM. In the GCM, each encountered exemplar is

represented as a point in a perceptual space. To classify a new exemplar, the similarity

between the new exemplar and each stored exemplar is calculated. (Similarity is a decreasing

function of the distance between exemplars in perceptual space.) Similarities are then summed

for each category. Luce's (1959) choice rule is used on the summed similarities to calculate the

probability that the exemplar is classified into a given category. Figure 2A plots the probability

that the exemplar is classified into the high-variability category as a function of the exemplar's

location. This function is referred to as the generalization gradient. The different gradients

correspond to different values of the generalization parameter, c. For broad generalization

(i.e., small c) the similarity of a given exemplar to more distant exemplars will be larger than

for narrow generalization (i.e., large c). Thus when generalization is narrow, the generalization

gradient is steeper. Provided the exemplars are appropriately arranged, the model predicts that

the critical exemplar is most likely to be classified into the low-variability category for any

value of the generalization parameter. The predictions here are for the GCM with a Gaussian

function (q = 2) relating similarity to distance. The predictions of the GCM with an

exponential similarity function (q = 1) do not differ qualitatively. 

We illustrate the distributional approach by using Normal GRT. Normal GRT is an

extension of standard GRT. In standard GRT each exemplar is represented by a normal

distribution in perceptual space. Thus standard GRT would make similar predictions to the
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GCM, as each model assumes (some) memory for each exemplar. In contrast, in Normal GRT

each category, rather than each exemplar, is represented by a single normal distribution. Ashby

(1992) made the strong assumption that many natural categories can be represented by a

normal distribution even when the true distribution is not normal. In Normal GRT, the

category exemplars are used to infer a population mean and variance for the normal

representation for each category. An optimal decision bound is then calculated that divides the

perceptual space into regions for each category, so that all the exemplars represented by points

in the same region are most likely to belong to a common category. In the one dimensional

case for two categories of unequal variance, the optimal decision bound will be a pair of

points, with the lower variability category in between the two points and the higher variability

category outside the pair. Perception is assumed to be noisy in GRT. Thus an exemplar near

the decision bound may sometimes be perceived to fall on one side of the bound and

sometimes on the other. To apply Normal GRT to the category structure for Experiment 1, we

used the eight exemplars for each category to generate an estimate of the population mean and

a variance of the normal distribution form which the exemplars were generated.4 The optimal

decision bound was then calculated. The exact predictions for classification of exemplars near

the decision bound depend on the level of perceptual noise (�p). Following Ashby and

Townsend (1986) we assumed the perceptual noise to be Gaussian. Figure 2B illustrates three

generalization gradients. The less noise, the steeper the generalization gradient. Crucially

though, the level of noise changes the slope of the generalization gradient but does not alter

the location of the optimal decision bound. 

In summary, for a critical exemplar that lies exactly between the nearest neighbors of

two categories that differ in variability, the GCM often predicts this critical exemplar is more

likely to be classified into the low-variability category (independent of the amount of

generalization), and Normal GRT predicts that the critical exemplar is more likely to be

classified into the high-variability category (independent of the amount of perceptual noise). 
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Experiment 1

Experiment 1 was designed to discriminate between exemplar-based classification and

distribution-based classification by using a category structure as described above. In one

condition participants were given a hint telling them that the two categories differed in

variability. E. E. Smith and Sloman's (1994) replications of Rips's (1989) study suggest that

participants categorize stimuli into the high-variability category only when their verbal

protocols show awareness of a difference in variability between the two categories. The hint

here was included to see what effect knowledge of the variability difference might have on

participants' classification. The method of presentation of the exemplars was manipulated as an

additional between participants factor. During the learning phase exemplars were either

presented sequentially or simultaneously. We hypothesized that simultaneous presentation

should make the difference in the variability of the categories more salient. 

Method

Participants. Sixty-four undergraduate students from the University of Warwick

participated for course credit. 

Design. Participants performed three binary categorization tasks. There was a separate

stimulus set for each of the three tasks. After learning 16 training exemplars, participants

classified a critical exemplar that fell halfway between the nearest exemplar of the low-

variability category and the nearest exemplar of the high-variability category. They then

classified two further verification exemplars, one from each category, before moving on to the

next classification. There were two between participants factors: (a) simultaneous or

sequential presentation of training exemplars, and (b) whether participants were given a hint

that one category was more variable than the other. 

Stimuli. An example stimulus set is shown in Figure 3. The stimuli used in this

experiment were outline circles each with a single solid dot somewhere on their circumference.

The diameter of the circle subtended approximately 2� of visual angle. The stimuli varied only
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in the position of the dot around the circumference; this position was diagnostic of category

membership. Pilot studies used the position of the dot on a straight line, but the performance

of many participants was consistent with their reports of using a rule, such as whether the dot

was more or less than halfway along the line, to make their decision. The stimuli here were

chosen so that use of rules like this (e.g., using horizontal, vertical or diagonal diameters as

decision bounds) should not be possible. 

For each participant, for each category, eight exemplars were generated from a normal

distribution. The low-variability category distribution had a standard deviation of 11�, and the

high-variability category had a standard deviation of 28�. There was a gap of 56� between the

nearest exemplars of each category, with the critical exemplar lying exactly in the center of

this gap. To ensure the gap between the nearest neighbors of each category was constant for

all participants, the means of the categories needed to be adjusted slightly for each participant.

The critical exemplar was in the 45� position for the first task, the 135� position for the second

task, and the 225� position for the third task (with 0� being at the 12 o'clock position and angle

increasing counterclockwise). The relative position of the low and high variability categories

was counterbalanced across participants.

Because the exact predictions of the GCM and GRT depend on the particular

distribution of exemplars, all of the stimulus sets were modeled to check that the critical

exemplar was indeed more similar to the low-variability category but more likely to belong to

the high-variability category. This was always the case.

Apparatus. For the sequential presentation condition stimuli were displayed on a 14-in.

(36-cm) Apple Macintosh Color Display and responses were collected by using labeled keys

on a standard qwerty keyboard (the keys A to J inclusive were labeled A, B, C, yes, D, E, and

F respectively). For the simultaneous presentation condition, stimuli were presented in an A4

booklet and responses written into the booklet. 

Procedure. The experiment began with instructions telling participants they would do
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three categorization tasks, one after the other. Participants in the hint condition received

further instructions telling them that one (but not which) category was allowed a greater

spread of dots than the other. They were instructed to try to identify the category that had the

greater spread of dots during the experiment. 

In the sequential presentation condition each trial began with a ready prompt. When a

participant pressed a yes, there was a 1.5-s blank screen before a circle with a dot appeared on

the screen for 1 s. Participants responded as quickly and accurately as they could from

stimulus onset. The assignment of category labels to the high- and low-variability categories

was counterbalanced across participants. After 1 s, the screen was cleared, whether the

participant had responded or not. After the participant responded, the correct answer was

displayed on the screen for 1.5 s, followed by a 1.5-s blank screen before the next trial began.

The feedback for the critical exemplar was random, so participants' attention was not drawn to

the special status of the critical exemplar (which might have affected performance on later

stimulus sets). 

The same stimuli were used for the simultaneous presentation condition, which began

with presentation of the first stimulus set. Each set of eight exemplars belonging to the same

category was arranged in a row, inside a rectangle, together with the category label. The two

sets were placed one above the other. The placement of the low- and high-variability

categories at the top and bottom of the page was counterbalanced across participants, as was

the assignment of labels to categories. Within a set, the exemplars were arranged in the same

(random) rank order for all participants to ensure that if the order of the exemplars on the

page affected the salience of the variability, then it would be held constant across conditions.

Participants studied the sheet of exemplars for 1 min and then it was removed from sight. The

critical exemplar was then presented in the center of a new piece of paper. Participants circled

the category label to which they thought the exemplar belonged. This was repeated with the

verification exemplars.
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Results

Data were collapsed across all three stimulus sets. For the sequential condition, the

mean training proportion correct was high (no hint: mean proportion correct = .81, SE = .02;

hint mean proportion correct = .79, SE = .02), and did not differ between the hint and no-hint

conditions, t(31)=0.85, p > .05. No training data were collected in the simultaneous

presentation condition. However, performance can be compared across the simultaneous and

sequential conditions by using the verification trials. Verification performance averaged across

all conditions was high (mean proportion correct = .93, SE = .02). A two-way analysis of

variance (ANOVA) (Hint x Presentation) revealed no effect of hint, F(1, 60) = 1.56, p > .05,

no effect of presentation, F(1, 60)=0.39, p > .05, and no significant interaction, F(1, 60) =

0.00, p > .05. In summary, knowledge that the two categories differed in variability did not

facilitate category learning and neither did presentation method.

Of most interest is performance on the critical exemplar. Table 1 shows the proportion

of high variability responses averaged across all three critical exemplars. A two-way ANOVA

(Hint x Presentation) was run. Simultaneous presentation increased the proportion of high

variability responses, F(1, 60) = 18.56, p < .05, as did giving a hint that the two categories

differed in variability, F(1, 60) = 5.96, p < .05. There was no significant interaction, F(1, 60) =

0.52, p > .05. Planned t-tests were run to see which means differed significantly from chance

performance of .5. For the sequential presentation conditions, the proportion of high

variability responses was significantly below chance for both the hint condition, t(15) = 7.31, p

< .05 and the no-hint conditions t(15) = 13.17, p < .05. For the simultaneous presentation

condition the proportion of high variability responses was not significantly different from

chance for the no hint condition, t(15) = 0.13, p > .05, but was significantly above chance for

the hint condition, t(15) = 3.61, p > .05.

Discussion

In this experiment a critical exemplar lying midway between the nearest exemplars of
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two categories differing in their variability was significantly more likely than chance to be

classified as belonging to the lower variability category when training exemplars were

presented sequentially. This pattern of classification is consistent with the prediction of

exemplar models - that is, that the critical exemplar should be classified into the more similar

category. When training exemplars were presented simultaneously, participants were

significantly more likely to classify exemplars into the high-variability category than when they

were presented sequentially. When participants were given a hint that the two categories

differed in variability they were significantly more likely to classify the critical exemplar into

the high-variability category. In combination, simultaneous presentation and hint caused

participants to classify the critical exemplar into the higher variability category more often than

chance, consistent with the predictions of distributional models - that is, that the critical

exemplar should be classified into the category most likely to have generated it. However,

both models were originally designed to explain sequential categorization performance, and

the data collected under sequential presentation conditions here support an exemplar account

rather than a distributional account. 

Note that this experiment provides no evidence that the critical exemplar was midway

between the nearest exemplars of the two categories in participants' psychological space.

However, it is at least reasonable to assume that the psychological-space critical exemplar

must be in the region of the test critical exemplar that was actually presented. Therefore given

the large sizes of the effects of presentation and hint, even if the psychological-space critical

exemplar does not coincide precisely with the physical space critical exemplar, its classification

would also be strongly influenced by these factors.

There are two possible alternative accounts of these findings. The first is that changing

the method of presentation and providing a variability hint alters the representation of the

categories that participants form, rather than altering the classification strategy they use.

Consider how this account would work if participants were using an exemplar strategy in all



The Effect     13

conditions of this experiment. The shift to classification of the critical exemplar into the high-

variability category with simultaneous presentation and hint would have to be explained as

exemplars of the high-variability category being closer in perceptual space to the critical

exemplar under these conditions compared with the sequential presentation and no hint

conditions. However, the switch from sequential presentation and no hint to simultaneous

presentation and hint was intended to have exactly the opposite effect (i.e., to draw attention

to the variability difference). Thus although this alternative account remains a possibility, it

does not seem plausible. However, consider how the changing representation account would

explain these data if participants were using a distributional strategy throughout the

experiment. In this case, switching from sequential to simultaneous presentation and providing

the variability hint should allow participants to assign a larger variability distribution to the

more variable category in the simultaneous hint condition rather than the sequential no hint

condition. This leads to the prediction that the critical exemplar will be classified into the high-

variability category most often in the simultaneous hint condition. In the sequential condition,

when the difference in variability is not salient, participants might assume that the two

categories had equal variance. Thus as the critical exemplar is nearer to the mean of the low-

variability category, the distributional account predicts that it should be classified into this

category most often. Both of these predictions are consistent with these data.

The second alternative account of these data is that the response bias changes

systematically between these conditions. To account for these data, the bias for the high-

variability category would have to have increased when presentation was switched from

sequential to simultaneous presentation and a hint was provided. We return to this possible

account below.

Sensitivity of Exemplar and Distributional Models to Changes in the Relative

Variability of Categories

In Experiment 2 we investigate how changing the relative variability of two categories
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should affect the classification of intermediate exemplars. (The term intermediate exemplars

denotes any exemplars between the two categories, in contrast to the use of the term critical

exemplar.) The category structures used are illustrated in the top panel of Figure 4, and are

described in detail in the Design and Stimuli section of Experiment 2. The stimuli were

rectangles or ellipsis, defined by their height and width. One pair of categories had standard

deviations in the ratio of 1:2; the other pair had standard deviations in the ratio of 1:4. Across

conditions, the low-variability categories had equal means. The high-variability categories also

had equal means. Finally, the distance between the nearest neighbors of each category was

constant across the 1:2 and 1:4 conditions. 

Given the category representation of the Normal GRT, it seems likely that this model

would be sensitive to differences in the relative variability of two categories. This is indeed the

case. All the categories are represented using simple covariance matrices (� = �2I) because of

the symmetrical nature of the categories. In general, with two bivariate normal categories

differing in covariance matrix the decision bound is quadratic (Ashby, 1992, p. 460). Here we

modeled performance for stimuli lying on the line between the two category means (i.e.,

height = width). As in modeling for the category structure used in Experiment 1, the

perceptual noise changes the shape of the generalization gradient but does not bias the

decision bound (i.e., the point at which a stimulus is equally likely to be classified into either

category) one way or the other. Of interest here is the comparison of gradients for the 1:2 and

1:4 conditions. One generalization gradient for each condition is shown in Figure 5A. (The

level of perceptual noise is assumed constant across both structures, �p = 10.) As the

difference in variability between the two categories is increased the decision bound moves

nearer to the low-variability category.

The variances of each category were chosen to keep the distance between the nearest

exemplars of each category constant across the 1:2 and 1:4 conditions. This allows an

alternative comparison in which the classification of intermediate exemplars that are the same
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distance from the nearest neighbor of the low-variability category is contrasted (i.e., with the

same coordinates, relative to the nearest neighbors). Because the distance between the nearest

neighbors of each category is held constant across the 1:2 and 1:4 conditions, intermediate

exemplars that are equally distant from the nearest neighbor of the low-variability category

across conditions must also be equally distant from the nearest neighbor of the high-variability

category across conditions. For comparison of exemplars with either the same absolute

coordinates (see Figure 5A), or the same coordinates relative to the nearest neighbors (see

Figure 5C), each exemplar is always predicted to be more likely to be classified into the high-

variability category in the 1:4 condition compared with the 1:2 condition. This is always true

for any level of perceptual noise because perceptual noise alters only the slope of the

generalization gradient and not the location of the decision bound.

The generalization gradients predicted by the GCM for the two category structures are

also shown in Figure 5B, with the generalization parameter held constant (c = 0.05) across the

two structures. The predictions here are for the GCM with a Euclidean distance metric (r = 2)

and a Gaussian similarity function (q = 2): however, the pattern of the predictions is the same

for a city block distance metric (r = 1) and exponential similarity function (q = 1). The

predictions of the GCM are similar to those of Normal GRT. In the 1:4 condition, the high-

variability category's exemplars are nearer, and the low-variability category's exemplars are

further away, from a given intermediate exemplar, compared with the 1:2 condition. Therefore

exemplars intermediate between the two categories are more likely to be classified as members

of the high-variability category in the 1:4 condition than the 1:2 condition. However, when the

generalization gradients are measured relative to the two nearest neighbors, this is no longer

true (see Figure 5D). When exemplars an equal distance from the nearest neighbor of the low-

variability category in each condition are compared, classification into the high-variability

category is more likely in the 1:2 condition because the second nearest neighbors of the high-

variability category are nearer in the 1:2 condition than in the 1:4 condition and the second
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nearest neighbors are of the low-variability category are further away in the 1:2 condition than

in the 1:4 condition. (Note that this follows because (a) the exemplars of the high-variability

category are more spread out in the 1:4 condition than in the 1:2 condition and (b) the low-

variability category exemplars are less spread out in the 1:4 condition than in the 1:2

condition.) This prediction is the opposite prediction to Normal GRT. For these category

structures it is trivial to prove that this prediction is true for all amounts of generalization.5

Experiment 2

In Experiment 2 generalization gradients were obtained for participants after training

on both the 1:2 and 1:4 conditions. Experiment 2 sets out to find which model describes the

behavior of participants, both at the level of across participant averages and also at the level of

individual participants. It is important to consider performance at the level of individual

participants, particularly in view of the demonstration by Maddox (1999; see also Ashby,

Maddox, & Lee, 1994) that data averaged across participants might not reflect individual

participant data, especially when large individual differences exist. Using Monte Carlo

simulation, Maddox generated data sets from either GRT or from the GCM. When the GCM

was the correct model, averaging had little effect. However, when GRT was the correct model

and therefore perfectly described the generated data, averaging led to a better fit for the GCM.

This implies that averaging the data alters the qualitative structure of the data. Thus, averaged

data should not be used to compare the two models, as averaging the data biases the result in

favor of the GCM. 

Method

Participants. Thirty-two undergraduates from the University of Warwick participated

for course credit, or payment of £5 (U.S. $7.39). 

Design and Stimuli. Each participant completed two categorization training and

transfer tasks. In the training stage, participants learned to categorize stimuli that varied in

height and width into one of two categories, with trial-by-trial feedback. In the transfer stage
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participants classified old training exemplars and new transfer exemplars without feedback.

The tasks differed in the category structure used (see Figure 4A). Both category

structures had two categories, one with a mean of (200, 200) pixels and the other with a mean

of (300, 300) pixels. The 10 exemplars of each category were arranged in a circle around each

mean. In the 1:2 condition the low-variability category was half as variable as the high-

variability category (standard deviation of 20.0 vs. 40.0 on each dimension), and in the 1:4

condition the low-variability category was about four times less variable than the high-

variability category (standard deviation of 12.7 vs. 50.2 on each dimension). In the transfer

stage, additional exemplars intermediate in height and width between the two categories were

included to measure the generalization gradient.

The order of learning the 1:2 and 1:4 tasks was counterbalanced across participants.

To minimize carry-over effects, in one condition stimuli were rectangles of varying height and

width and in the other condition stimuli were ellipses of varying height and width. The

assignment of shape to condition was counterbalanced across participants. The assignment of

labels to categories was also counterbalanced. Finally, the assignment of variability to the

category of either small or large stimuli was also counterbalanced. That is, for half the

participants, the category with the smaller stimuli was the less variable category (as in Figure

4A), and for the other half, the category with the larger stimuli was the more variable category

(the mirror image of Figure 4A, about the line height+width = 500). 

It is not always the case that a category structure in psychological space reflects the

structure of the category in the experimenter's choice of physical space (e.g., Palmeri &

Nosofsky, 2001). A separate experiment, not reported here, was run in which pairwise

similarity judgments were obtained for the stimuli used. The individual differences

multidimensional scaling model (Carroll & Wish, 1974; Shepard, 1980) was used to derive

solutions for the 1:2 and 1:4 conditions. Examination of the solutions confirmed that the ratio

of the mean interexemplar distance within each category was greater for the 1:4 condition than
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for the 1:2 condition. This supports the key assumption in this experiment - that the

representation of one category was indeed more variable than the other, and further, that the

difference in variability was greater in the 1:4 condition than in the 1:2 condition.

There is some debate on the nature of the psychological representation of rectangles

(e.g., Feldman & Richards, 1998; Krantz & Tversky, 1975; Macmillan & Ornstein, 1998;

Monahan & Lockhead, 1977). Krantz and Tversky (1975) suggested that dimensions of area

(a = h.w) and shape (s = h/w) may be more appropriate than height (h) and width (w). Further,

the space may also be subject to Weberian compression for larger heights and widths.

However, under transformation to a s space, log(h) log(w) space and log(a) log(s) space, the

qualitative properties outlined in the previous paragraph remain unaltered.6

Apparatus. Stimuli were displayed on a 14-in (36-cm) Apple Macintosh Color Display.

Responses were collected using labeled keys on a standard qwerty keyboard. The keys Z and

X were labeled A and B respectively.

Procedure. Each trial started with presentation of a stimulus until the participant

responded. Feedback was given on the screen for 1,500 ms. The feedback was the correct

category label, presented as a letter (A or B) 50 pixels high below the stimulus. The stimulus

remained on the screen until the end of the feedback. The screen was then blank for 500 ms

before the next trial began automatically. The sequence of 100 trials comprised five repetitions

of the 20 training exemplars. In each repetition, the trials were in a random order. The 328

transfer trials comprised eight repetitions of 41 exemplars. Of the 41 exemplars, 20 were the

old training exemplars; the remaining 21 transfer exemplars were novel exemplars located in

between the two categories in height-width space. Within each repetition, the 41 exemplars

were displayed in a random order. The structure of a trial was the same as in training, except

the feedback was omitted. After a participant had responded, the screen was cleared, and the

next trial began after a 500-ms pause. When participants had completed the first categorization

task, they moved on to a second task, which was the same as the first except that the category
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structure was swapped, as was the type of shape. No instruction that the categories differed in

variability was given.

Results

Average results. Participants were very accurate in their training classifications. On

average, the mean proportion of correct responses in training was .91. A six-way ANOVA

(Category Mean and Variance Assignment x Category Label x Condition Order x Rectangle or

Ellipse x Condition x Category) was run to check that none of the counterbalanced factors or

the category structure affected training performance. There was a significant effect of category

mean and variance assignment, corresponding to a slight improvement in accuracy when the

category with the low mean had the lower variance (.94 vs. .91), F(1, 16) = 7.03, p < .05.

This effect was not found in transfer. There were no other significant main effects, F(1, 16) =

1.42, p = .25.

Performance on old training exemplars was also excellent during transfer. The

proportion of high-variability category responses to old training exemplars is shown in Table

2. A six-way ANOVA (Category Mean and Variance Assignment x Category Label x

Condition Order x Rectangle or Ellipse x Condition x Category) revealed a main effect of

category, F(1, 16) = 6.54, p < .05. Although performance was high on training exemplars in

test, exemplars of the low-variability category are classified slightly less accurately than

exemplars of the high variability category (mean proportion correct  = .89 versus .96). There

were no other significant main effects, largest F(1, 16) = 2.32, p > .05. This indicates that no

counterbalanced factor had a significant effect on old training exemplar classification in

transfer. 

It is the performance on the new transfer exemplars that is of interest. The responses

given to each of the 21 new transfer exemplars are collapsed into seven sets, so that responses

to stimuli whose projections onto the line height = width coincide were in the same set. Figure

6A shows a plot of the proportion of high-variability responses given to stimuli in each of the
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seven sets as a function of their size. Figure 6A can therefore be thought of as showing a

generalization gradient. A six-way ANOVA (Condition x Stimulus Set x Category Mean

Category Variance Assignment x Category Label x Condition Order x Rectangle or Ellipse)

was run. In both the 1:2 and 1:4 conditions, the proportion of high variability responses to test

exemplars increased as the location of the test exemplar moved toward the high-variability

category, F(6, 96) = 185.77, p < .05 (Huynh-Feldt � = .82). In the 1:4 condition the

proportion of high variability responses was higher than for the 1:2 condition for every set of

test stimuli, F(1, 16) = 10.52, p < .01. There was no significant interaction between stimulus

and condition, F(6, 96) = 1.67, p > .05 (Huynh-Feldt � = 1.00). There were no other

significant main effects, largest F(1, 16) = 1.06, p > .05, showing that none of the

counterbalanced factors affected responding significantly. 

By analyzing the results as above, we compared classification of exemplars that are

equally distant from the mean of the low-variability category (or the mean of the high-

variability category - the two comparisons are equivalent given the category structures used

here) across the 1:2 and 1:4 conditions. However, an exemplar that is equally distant from the

low-variability category mean in the 1:2 and 1:4 conditions is not equally distant from the

nearest exemplar of the low-variability category in both conditions. The following analysis

compares exemplars that are equally distant from the nearest exemplar of the low-variability

category across the two conditions. (As the distance between the nearest neighbors of each

category was the same for both conditions, it does not matter whether distance is measured

relative to the position of the low-variability category's nearest exemplar or to the high-

variability category's nearest exemplar.) Such a comparison is shown in Figure 6B. (If one

shifts the 1:2 data in Figure 6A one unit to the left one obtains Figure 6B.) Another six-way

ANOVA (Condition x Stimulus Set x Category Mean Category Variance Assignment x

Category Label x Condition Order x Rectangle or Ellipse) was run. Unsurprisingly, as before,

as the location of the test exemplar got nearer the exemplars of the high-variability category,
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the proportion of high variability responses increased, F(5, 80) = 170.01, p < .05 (Huynh-

Feldt � = .87). However, now that position is measured relative to the nearest neighbors of

the two categories, there is no difference between the generalization gradients for the two

conditions, F(1, 16) = 0.23, p > .05. There was no stimulus by condition interaction, F(5, 80)

= 0.41, p > .05 (Huynh-Feldt � = 1.00). There were no other significant main effects, largest

F(1, 16) = 1.19, p > .05, showing that none of the factors counterbalanced across participants

affected responding significantly. 

Individual participant results. When generalization gradients were calculated for

individual participants, many participants showed very different gradients for the two

conditions. The results averaged across participants did not represent individual performance

well. Even when the effect of nearest neighbors was controlled, many participants showed a

difference in gradients. Further, for many of these participants, the change was larger than

would be expected by chance. A chi-squared analysis was performed for each participant, with

the trial as the unit of analysis. A 2 (Variability Condition) � 2 (Response) contingency table

was constructed for each participant containing the frequencies of low- and high-variability

responses in each condition summed across transfer exemplars that were equally distant from

the nearest neighbors of each category. A chi-squared statistic was calculated on the basis of

the hypothesis that there should be no difference in the proportion of high variability responses

between the two conditions. Yates's continuity correction was not used, as there is no reason

to expect constant marginal totals, and the expected frequencies were large (Howell, 1997, p.

146). As the assumption that the response on each trial is independent of the response on any

other trial is unlikely to be true, the statistic was deflated to account for trials being

nonindependent (Altham, 1979; see also Tavaré & Altham, 1983). Thirteen of the 32

participants showed a significant difference between their responding in the two conditions, 7

increasing and 6 decreasing their proportion of high-variability responses as the difference in

variability between the two conditions increased. The probability of obtaining 13 or more
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significant differences (i.e., p < .05) by chance is 1.72�10-9, assuming that the number of

significant results is binomially distributed (n = 32, p = .05). 

Discussion

Averaged across participants, when the difference in variability between two categories

was increased, the proportion of high variability responses to intermediate exemplars

increased. This result is consistent with the predictions of the GCM and of Normal GRT. Of

interest here is the result when the presence of nearest neighbors was taken into account. This

was done by comparing exemplars that were equally distant from the nearest neighbor of the

low-variability category across the two conditions. Averaged across participants, the

generalization gradients for the two conditions were virtually identical. This is inconsistent

with the predictions of Normal GRT but is consistent with those of the GCM (when the

amount of generalization is small). However, the individual participant data were not well

described by the average results. 

A significant minority of participants showed a significant difference in their relative

position generalization gradients between the two conditions. For about half of this minority,

the relative position generalization gradient was shifted toward the low-variability category in

the 1:2 condition compared with the 1:4 condition, consistent with the predictions of the

GCM. For the other half, the shift was in the opposite direction, consistent with GRT. The

majority of participants showed no significant change in relative position generalization

gradient. Thus at the level of individual participants, some participants were behaving as if

they were using an exemplar strategy and not a distributional strategy, and some participants

were behaving as if they were using a distributional strategy and not an exemplar strategy.

These data then do not provide support for one model over the other, and instead, at least for

a significant minority of participants, challenge both models. 

There is an alternative explanation: either the perceptual spaces formed, or the

response biases used, in each condition fluctuated randomly for each participant.7 Thus,
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participants may all be using the same categorization strategy, and the differences in the

change in generalization gradient between participants may instead be due to random

fluctuations. This is consistent with the observation that for those participants who showed a

significant difference in relative position generalization gradient, half showed a shift in one

direction and half showed a shift in the other direction. We address the possibility of such

random fluctuations in Experiment 3. 

Experiment 3

In Experiment 3, we used the 1:2 condition described above and a new condition. This

new condition, 1:2 Expanded, differs only slightly from the 1:2 condition - in the 1:2

Expanded condition the five exemplars of the high-variability category that are furthest from

the low-variability category are moved to even more extreme points (see Figure 4B). These

two conditions are designed to allow the exemplar and distributional models to be further

tested. Figure 5F shows the generalization gradients predicted by the GCM (Gaussian

similarity function, Euclidean distance metric, c = 0.05) for the two conditions. The gradients

almost exactly coincide. This is true for the range of c parameters that produces acceptable

accuracy for the training exemplars (i.e., greater than 80% accuracy - participants in fact

performed at about 90% accuracy). This can be explained intuitively as follows. When

classifying exemplars from one category, the amount of generalization must be small enough

to prevent generalization to exemplars in the other category. When the generalization is this

small, the distant exemplars of the high-variability category in both category structures have

only an infinitesimal level of similarity to the intermediate exemplars and thus have a negligible

role in the classification of the intermediate exemplars. Therefore, moving these distant

exemplars to even more distant locations in perceptual space should have no effect. In

summary, if the GCM is to predict realistic accuracy for classification of old training

exemplars, it is constrained to predict no difference between classification of intermediate

exemplars between the 1:2 and 1:2 Expanded conditions. 
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As described above, the distant exemplars of the high-variability category in the 1:2

Expanded structure were moved to a distant location. This movement causes the high-

variability category mean to move to a slightly more distant location in space. Modeling with

Normal GRT for the 1:2 and 1:2 Expanded conditions shows that the effect of the increase in

variability is almost exactly canceled out by this movement of the mean (see Figure 5E). The

two generalization gradients are almost identical and are certainly empirically

indistinguishable. Normal GRT then makes the same prediction as the GCM - that is, that

there should be no difference in the generalization gradients for the two conditions. 

Both the exemplar and distributional approaches were unable to predict the large

variation between individuals demonstrated in Experiment 2. However, if some participants

are assumed to apply an exemplar approach and some a distributional approach, this variation

might be explained. Our aim for Experiment 3 was to discriminate between these two

possibilities. As demonstrated above, the GCM and Normal GRT predict no difference

between the generalization gradients for the 1:2 and 1:2 Expanded conditions. However, the

category structures used here are very similar to those used in Experiment 2, so there is good

reason to expect replication of the large individual differences.

Method

This experiment differs from Experiment 2 only in the category structures used. 

Participants. Thirty-two undergraduates from the University of Warwick participated

for course credit or payment of £5 (U.S. $7.39). No participant had taken part in any other

experiment in this study.

Stimuli. The stimuli in the 1:2 condition were the same as in Experiment 2. A new

category structure, 1:2 Expanded (see Figure 4B), replaced the 1:4 structure. 

As in Experiment 2, a separate multidimensional scaling experiment (not presented

here) was run. Using the same method as described in Experiment 2, the ratio of the recovered

mean within category interexemplar distances was greater in the 1:2 Expanded condition than
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in the 1:2 condition. The similarity between the intermediate exemplars and the far exemplars

of the high-variability category in both the 1:2 and 1:2 Expanded conditions (when calculated

as in the GCM) was negligible compared with the similarity to other training exemplars, for c

parameters large enough to produce acceptable accuracy on the old training exemplars in test.

This supports the assumption that the far exemplars of the high-variability category do not

influence classification of the intermediate exemplars, which was used in making predictions

for the GCM.

Results

Average results. Participants were very accurate in their training classifications. On

average, the mean proportion of correct responses in training was .91. A six-way ANOVA

(Category Mean Category Variance Assignment x Category Label x Condition Order x

Rectangle or Ellipse x Condition x Category) was run to check that none of the

counterbalanced factors, or the category structure, affected training performance. There were

no significant main effects, F(1, 16) = 2.03, p = .17. 

Performance on old training exemplars was also excellent during transfer (see Table 3).

A six-way ANOVA (Category Mean Category Variance Assignment x Category Label x

Condition Order x Rectangle or Ellipse x Condition x Category) was run to examine whether

any of the control factors had an effect on performance and to check that performance on old

training exemplars was equal for each category. There was a main effect of learning order,

F(1, 16) = 5.84, p < .05, that corresponds to a small (3%) accuracy advantage for the

participants learning the 1:2 condition before the 1:2 Expanded condition. Such an increase in

accuracy should sharpen a generalization gradient, but it should not lead to an increase in the

proportion of responses to one category, which is what we found and what is of interest here.

There were no other significant main effects, largest F(1, 16) = 1.84, p > .05. This means no

other counterbalanced factor had a significant effect on old training exemplars classification in

transfer. 
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Each new test exemplar was of equal distance from the nearest exemplar of the low-

variability category between the two conditions. (That is, the effect of nearest neighbors was

controlled across the two conditions without the adjustment required in Experiment 2.) As in

the previous experiment's analysis the responses given to each of the 21 new transfer

exemplars were collapsed into seven sets. Figure 7 plots the generalization gradient. A six-way

ANOVA (Condition x Stimulus Set x Category Mean Category Variance Assignment x

Category Label x Condition Order x Rectangle or Ellipse) was run. In both the 1:2 and the 1:2

Expanded conditions, the proportion of high variability responses to test exemplars increased

as the location of the test exemplar moved toward the high-variability category, F(6, 96) =

277.20, p < .05 (Huynh-Feldt � = 1.00). There was almost no difference between the

proportion of high-variability responses in the 1:2 and 1:2 Expanded conditions, F(1, 16) =

0.25, p > .05. There was no significant interaction between stimulus and condition, F(6, 96) =

0.61, p > .05 (Huynh-Feldt � = 0.74). None of the counterbalanced factors had a significant

effect, largest F(1, 16) = 3.88, p > .05. 

Individual participant results. As for Experiment 2, when generalization gradients

were calculated for individual participants they showed that many participants had very

different gradients for the two conditions. The results, averaged across participants, did not

represent individual performance well. When the distant exemplars of the more variable

category were moved to be more extreme points, 8 participants showed an increase in their

proportion of high-variability responses to the transfer exemplars, whereas the remaining 24

showed a decrease. Further, for many of these participants the change was larger than would

be expected by chance. As before a chi-squared analysis was performed for each participant,

with the trial as the unit of analysis. Nineteen participants showed a significant difference

between their responding in the two conditions, 4 increasing and 15 decreasing their

proportion of high-variability responses as the difference in variability between the two

conditions increased. The probability of obtaining 19 or more significant differences (i.e., p
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< .05) by chance, under the assumption that there is no difference between the proportion of

high-variability response between the two conditions is 3.52�10-17 assuming that the number

of significant results is binomially distributed (n = 32, p = .05).

As previously mentioned, an alternative account of these individual participant data is

to postulate random fluctuations in response bias between the 1:2 and 1:2 Expanded

conditions. This hypothesis could certainly predict individual differences. Some participants

would decrease their bias for the high-variability category in the 1:2 Expanded condition

compared to the 1:2 condition. These participants would therefore show a decrease in high-

variability-category responses in the 1:2 Expanded condition compared with the 1:2 condition.

Similarly, some participants could show the opposite pattern. A key prediction from this

random-response-bias hypothesis is that for any participant, the probability of showing either

pattern is .5. However only 8 out of 32 participants did show an increase in high-variability

responses between the 1:2 and 1:2 Expanded conditions. The probability of 8 or fewer

participants showing an increase is .0035, assuming a binomial distribution for the number of

participants showing an increase (n = 32, p = .5). The random-response-bias hypothesis may

therefore be rejected. It is possible that there might have been some systematic cause of

changes in response bias, which would change the probability of increasing high-variability-

category bias between the 1:2 and 1:2 Expanded conditions from a chance level of .5.

However, because the order of each condition and the assignment of condition to shapes was

counterbalanced across participants, it is not clear what the response bias could vary with,

other than the factor of interest - the change in category structure. 

Discussion 

Moving the distant exemplars of the high-variability category to more distant locations

did not alter the generalization gradient obtained from averaged participants' data. This result

is consistent with the predictions of the GCM and Normal GRT. However, as in the previous

experiment, individual participant data was not well described by the average data. For the
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majority of participants, moving the distant exemplars had a large effect on their performance

on the intermediate exemplars. Both the GCM and Normal GRT are unable to account for this

result. Further, significantly more participants than would be expected by chance showed a

decrease in the proportion of high variability responses. Thus the alternative hypothesis raised

in the Discussion section of Experiment 2 - that individual differences are due to random

fluctuations between conditions in individual's response biases or perceptual spaces - can be

rejected because this hypothesis predicts that increases and decreases in the proportion of high

variability responses should be equally likely. The possibility that these findings might be

explained by fluctuations that are nonrandom is not ruled out.

In summary, although average data are consistent with both exemplar and

distributional approaches, at the level of individual participants the data for the majority

cannot be explained by either approach. 

General Discussion

In the experiments presented in this article we investigated whether categorization

performance is based on similarity to stored category exemplars or the likelihood of the data in

relation to a probability distribution inferred from the data. Modeling using an exemplar model

(the GCM; Nosofsky, 1986) and a distributional model (Normal GRT; Ashby & Townsend,

1986) demonstrated that the two accounts make qualitatively different predictions for the

classification of a critical exemplar exactly in-between the nearest exemplars of two categories

that differ in variability. The exemplar model predicted classification of the critical exemplar

into the more similar, lower variability category, but the distributional model predicted

classification into the more likely, higher variability category. 

Experiment 1 showed that the critical exemplar was classified into the lower variability

category most often when stimuli were presented sequentially, consistent with the predictions

of the exemplar model. Models of categorization were originally intended to make predictions

for sequentially presented stimuli. However, in nonstandard conditions, in which stimuli were
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presented simultaneously and a hint was given that the two categories differed in variability

(manipulations that were intended to increase the salience of the difference in variability), the

same critical exemplar was classified into the high-variability category most often, consistent

with the predictions of the distributional model. Thus, under some conditions at least, it seems

that participants switched from using an exemplar strategy to using a distributional strategy. 

Further modeling demonstrated that the exemplar and distributional models make

opposite predictions about the effect of increasing the relative variability of the two categories

on classification of exemplars intermediate between the two categories. The exemplar model

predicted that the probability of classifying an intermediate exemplar into the high-variability

category would decrease slightly as the difference in variability increased. At odds with this

prediction, the distributional model predicted that the probability of classifying an intermediate

exemplar into the high-variability category would increase as the difference in variability

increased. 

Experiment 2 demonstrated that individual participants' classification of exemplars

intermediate between two categories varied greatly as the relative variability of the pair of

categories was increased. Some participants showed an increase in high-variability-category

responses, consistent with the predictions of Normal GRT, and others showed a decrease,

consistent with the predictions of the GCM. The best construal for GCM and Normal GRT

would be that both kinds of mechanisms are available to people and they can choose between

them. However, this seems to involve the cognitive system in unnecessary duplication, given

that the two approaches produce extremely similar answers under almost all circumstances.

Moreover, this possibility is eliminated by the results of Experiment 3. Experiment 3 replicated

the results of Experiment 2 by using two pairs of categories where both exemplar and

distributional models were constrained to predict no change in the proportion of high-

variability responses to intermediate exemplars as relative variability was increased. The

majority of participants showed a significant change at odds with the predictions of both the
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GCM and Normal GRT. At the level of data averaged across participants, these differences

disappear. That the true form of individual participant data is obscured by averaging further

illustrates the dangers of averaging across participants (Ashby et al., 1994; Maddox, 1999). 

Exemplar and distributional models can be thought of as lying at opposite ends of a

continuum of finite mixture models, where the number of distributions used to represent a

category varies from one, as in Normal GRT, to the number of exemplars of that category, as

in the GCM and standard GRT (Ashby & Alfonso-Reese, 1995; Rosseel, 1996). (Ashby and

Maddox, 1993, and Nosofsky, 1990, also formalize the relationship between exemplar and

distributional models.) Also contained in this continuum are back propagation networks with

sigmoidal activation functions (Rumelhart, Hinton, & Williams, 1986) and radial basis

functions (Moody & Darken, 1989). With small numbers of hidden units (and hence, small

numbers of free parameters in relation to the size of the data to be modeled), neural networks

are analogous to distributional models, because they can learn data only with a particular

distributional structure. But if the number of hidden units is large in relation to the amount of

data to be learned, then the neural network becomes analogous to an exemplar model in that

any data set can be modeled, whatever its structure, simply by learning each piece of data

(each exemplar) by rote. The results of Experiments 2 and 3 present a challenge to unitary

accounts of this kind that assume that categorization is achieved by a mechanism at some point

along the continuum between distributional and exemplar models.

Decision-Bound Models

Decision-bound models of categorization may be adapted to offer a potential account

of these results. Decision-bound models include general linear classifiers (e.g., Medin &

Schwanenflugel, 1981; Morrison, 1990; Nilsson, 1965; Townsend & Landon, 1983), general

quadratic classifiers (e.g., Ashby, 1992; Ashby & Maddox, 1992) , and optimal decision rules

(e.g., Fukunaga, 1972; Green & Swets, 1966; Noreen, 1981; Townsend & Landon, 1983).

Decision-bound models are closely related to Normal GRT, except that participants are
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assumed to estimate the parameters of the decision bound directly, rather than calculating the

bound from the inferred normal distributions used to represent each category. 

In the experiments presented in this article, there is a large, empty region between the

two categories, where participants have no training data. Therefore, there is a large set of

perfect decision bounds that participants could use if they are estimating the bound directly.

However, the hypothesis that the individual differences described in Experiment 3 are due to

participants choosing a bound at random from the large set of possible bounds in each

condition fails. This hypothesis predicts that participants would be as likely to move their

decision bound toward the high-variability category in the 1:2 Expanded condition compared

with the 1:2 condition as they would be to move it away from the high-variability category.

Thus, participants would be as likely to show an increase in high-variability-category

responses across conditions as they would be to show a decrease. The finding that the number

of participants showing either pattern differs significantly from this chance hypothesis can be

used to reject the random-decision-bound hypothesis, just as it was used to reject the random-

response-bias hypothesis in Experiments 2 and 3. Thus the selection of the decision bound

from the set of possible bounds must be nonrandom. However, decision-bound theory does

not provide a candidate selection mechanism. Such a mechanism would also have to account

for how the location of this bound might be influenced by knowledge and salience of the

differences in variability, as demonstrated in Experiment 1.

Prototype Models

J. D. Smith and Minda (2000) reviewed the categorization literature and found that

prototype models (e.g., Homa, Sterling, & Trepel, 1981; Posner & Keele, 1968, 1970; Reed,

1972; Rosch, 1973; Rosch, Simpson, & Miller, 1976) were able to account for performance

on novel training exemplars at least as well as exemplar models (although exemplar models

out-performed prototype models on old training exemplars). Following this renewed interest

in prototype models, the predictions of prototype models for category structures used here is
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described below. 

Prototype models predict classification of exemplars into the category with the nearest

mean. Thus, for the critical exemplar in the category structure used in Experiment 1, prototype

models predict it should be classified into the low-variability category as the mean of this

category is nearest to the critical exemplar. Because the model does not represent variability

information, the variability salience manipulations in Experiment 1 should not have had any

effect. The category means remain unaltered between the 1:2 condition and the 1:4 condition

of Experiment 2, and thus prototype models predict no difference in the (absolute position)

generalization gradients between the two conditions. A significant difference was observed,

contrary to the predictions of prototype models. For Experiment 3, the motion of the extreme

exemplars of the high-variability category to more distant locations (in the 1:2 Expanded

condition, compared to the 1:2 condition) will cause the prototype model to predict more high

variability responses to test exemplars in the 1:2 condition than in the 1:2 Expanded condition.

In Experiment 3 no significant difference was observed in the average data, and the small

numerical difference was in the opposite direction. In summary, prototype models are unable

to account for sensitivity to category variability displayed here. 

Ashby and Gott (1988)

It is worth noting the relationship between this demonstration that participants are

sensitive to the difference in variability of two categories and Ashby and Gott's (1988)

Experiment 3. They used a two dimensional category structure with two categories with

equal, nonidentity covariance matrices with positive covariance between the two dimensions

(illustrated in their Figure 4). The category means differed on a single dimension, and thus the

decision bound predicted by a minimum distance (to prototype) classifier is a straight line of

equal value on the other dimension between the two categories. The optimal linear decision

bound is a diagonal line of positive slope between the two categories. Participants'

classification was best described by the optimal linear decision bound, reflecting participants'
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sensitivity to the correlation of the two dimensions. Thus Ashby and Gott demonstrated that

participants were sensitive to within category covariance. In contrast, the experiments in this

article demonstrated that participants were sensitive to the difference in variability between

two categories. 

Kalish and Kruschke (1997)

Kalish and Kruschke (1997) investigated decision boundaries in a one-dimensional

categorization. In their Experiment 1 they used two overlapping uniformly distributed

categories of different variance. This structure is therefore similar to that used here in

Experiment 1. Although it is perhaps an unfair to use Normal GRT to predict performance on

Kalish and Kruschke's category structure, as their categories are not normally distributed, the

structure does lead to differing predictions for Normal GRT and the GCM. The GCM predicts

a two-step generalization gradient, where Normal GRT predicts a one-step function. Kalish

and Kruschke found that, of 42 participants, 23 showed a one-step function (i.e., a two step

function did not fit significantly better) and 18 showed a two-step function. These results then

provide approximately equal support for either model. 

Conclusion

Averaged across participants, under standard conditions of sequential presentation of

training exemplars, the data presented here favors an exemplar-similarity based account of

classification rather than a distributional account. However, under nonstandard conditions,

when training exemplars were presented simultaneously and participants were told that the

categories differed in variability, performance switched to that predicted by a distributional

account. However, there were large individual differences that neither model could account

for when the relative variability of two categories was manipulated. We are beginning to

explore an alternative account that differs fundamentally from those discussed here in that the

absolute magnitude of stimulus attributes are assumed to be unavailable, and instead that

stimuli are judged relative to one another (Stewart, Brown, & Chater, 2002).
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Footnotes

1The exemplar model's exact predictions for the classification of the critical exemplar of

course depends on the particular arrangement of exemplars. For example, if the high-

variability exemplars just happen to be nearer to the critical exemplar, the opposite prediction

would be made. However, if exemplars are randomly generated from normally distributed

categories, this is unlikely to be the case.

2The reason it is not certain that the critical exemplar should be categorized as a

member of the high-variability category more often than as a member of the low-variability

category is because the critical exemplar is not equidistant between the means of the two

categories (when this would always be the case). (It is worth pointing out here that if this were

the case then an exemplar model would be able to predict classification of the critical exemplar

into the high-variability category as this category is most likely to have the nearest exemplar.)

Rather, the critical exemplar is equidistant between the nearest neighbors of the two categories

and is therefore nearer the mean of the lower variability category. Thus, the difference in

variability between the two categories need be sufficiently large to counter the fact that the

low-variability category has the nearer mean. 

3Note that participants were not asked for similarity ratings between two objects as is

typical in predicting classification from similarity or identification (e.g., Nosofsky, 1986) but

rather gave ratings of the similarity between an object and a category. 

4In fact, because perception is assumed to be noisy, this method only provides the best

estimate of a participant's hypothesized mean and variance. 

5Proof follows by writing out, for each category structure, the expression for the

probability that a given intermediate exemplar will be classified into the high-variability

category according to the GCM and then showing that this value is greater for the 1:4

condition than for the 1:2 condition for all values of c, when exemplars equally distant from

the nearest neighbors of either category are compared. 
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6We thank Thomas S. Wallsten for drawing these alternative potential representations

to our attention.

7We thank Robert M. Nosofsky for suggesting this hypothesis as an alternative

explanation. 
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Table 1

The Mean Proportion of High-Variability Responses in Experiment 1, Split by Hint and

Presentation Method

Presentation

Condition Sequential Simultaneous

Hint .37 (.09) .74 (.07)

No hint .25 (.06) .51 (.08)

Note. Numbers in parentheses are standard errors of the means.
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Table 2

Mean Proportion of High-Variability Responses to Old Training Exemplars in Test for

Experiment 2

Condition

Category 1:2 1:4

Low variability .11 (.03) .12 (.03)

High variability .95 (.01) .96 (.01)

Note. Numbers in parentheses are standard errors of the means.
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Table 3

Mean Proportion of High-Variability Responses to Old Training Exemplars in Test for

Experiment 3

Condition

Category 1:2 1:2 Expanded

Low variability .07 (.01) .10 (.02)

High variability .93 (.01) .93 (.01)

Note. Numbers in parentheses are standard errors of the means.
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Figure Captions

Figure 1. A one-dimensional example of two categories differing in variability. The exemplars

of the low-variability category happen to take low values on the dimension (squares). The

probability density function from which they were generated is represented by the solid line.

The exemplars of the high-variability category take high values of the dimension (circles). The

probability density function from which they were generated is represented by the dashed line.

A critical example midway between the nearest examples of the two categories (triangle) is

more likely to belong to the high-variability category but is more similar to examples of the

low-variability category. 

Figure 2. Predictions for the probability of a high-variability category response plotted as a

function of the stimulus value for the stimuli used in Experiment 1. The category structure is

illustrated along the top of the figure, with one category more variable than the other. A:

Predictions for the generalized context model (GCM). The three lines correspond to different

values of the generalization parameter, c. (b) Predictions for normal general recognition theory

(GRT). The three lines correspond to different levels of perceptual noise, which is assumed to

be normally distributed with standard deviation �p. 

Figure 3. An example of a stimulus set from Experiment 1. 

Figure 4. The arrangement of exemplars in Experiments 2 and 3. The open shapes represent

the 1:2 condition that is used in Experiments 2 and 3. A: For Experiment 2 the solid shapes

represent the 1:4 condition. B: For Experiment 3 the solid shapes represent the 1:2 Expanded

condition (and cover all of the low-variability-category exemplars and half of the high-

variability-category exemplars from the 1:2 condition.)

Figure 5. Predictions for the probability of a high-variability-category response plotted as a

function of the stimulus width (or height) for Experiments 2 and 3. The label "absolute

position" refers to the actual size of exemplars. The label "relative position" refers to the size

of the exemplar compared to the nearest exemplar of the low- (or high-) variability category.
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A: Predictions of normal general recognition theory (GRT) for Experiment 2 (�p = 10). B:

Predictions of the genralized context model (GCM) for Experiment 2 (q = 2, r = 2, c = 0.05).

C: Normal GRT predictions for Experiment 2 shown in Panel A plotted as a function of

relative position, rather than absolute position. D: The GCM predictions for Experiment 2

shown in Panel B plotted as a function of relative position, rather than absolute position. E:

Normal GRT predictions for Experiment 3 (�p = 10). F: The GCM predictions for Experiment

3 (q = 2, r = 2, c = 0.05). In Panels E and F the gradients for the two conditions are almost

exactly coincident.

Figure 6. The results of the transfer stage of Experiment 2. In Panel A, the results are plotted

as a function of absolute position, and in Panel B the same results are plotted as a function of

relative position.

Figure 7. The results of the transfer stage of Experiment 3. 
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Figure 3.

A  Low-Variability Category Exemplars

B  High-Variability Category Exemplars

C  A Critical Exemplar
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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