Species coexistence in stochastic environments Sebastian Schreiber, University of California, Davis

Stochastic fluctuations in temperature, precipitation and a host of other environmental factors occur at multiple spatial and temporal scales. As the survival and reproduction of organisms, whether they be plants, animals, or viruses, depend on these environmental factors, these stochastic fluctuations often drive fluctuations in population abundances. This simple observation leads to a fundamental question in population biology. Namely, "under what conditions do stochastic environmental fluctuations hinder or facilitate the maintenance of biodiversity?" This question is particularly pressing in light of global climate models predicting increasing temporal variation in many climatic variables over the next century.

One fruitful approach to tackling this question from population biology is the development and analysis of models accounting for nonlinear feedbacks among species, population structure, and environmental stochasticity. In this talk, I will discuss progress in the development of a mathematical theory for stochastic coexistence where the dynamics of the interacting species are encoded by random difference equations and coexistence corresponds to the limit points of empirical measures being bounded away from an extinction set. I will illustrate the theory with empirical based examples involving checkerspot butterflies, Kansas prairies, and northern pike in Lake Windemere. Limitations of the theory and future challenges will be discussed.