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Abstract

The development of an embryo from a fertilised egg to a multicellular organism proceeds
through numerous steps, with the formation of the three germ layers (endoderm, mesoderm,
ectoderm) being one of the first. In this paper we study the mesendoderm (the tissue that
collectively gives rise to both mesoderm and endoderm) gene regulatory network for two
species, Xenopus laevis and the axolotl (Ambystoma mexicanum) using Boolean networks.
We find that previously-established bistability found in these networks can be reproduced
using this Boolean framework, provided that some assumptions used in previously-published
differential equations models are relaxed. We conclude by discussing our findings in relation
to previous work modeling gene regulatory networks with Boolean network models.

Keywords: Bistability, Gene Regulatory Networks, Finite Dynamical Systems, Boolean Net-
works, Mesendoderm, Germ Layer Formation

1 Introduction

The development of an embryo from a fertilised egg to a
multicellular organism proceeds through numerous steps,
with the formation of the three germ layers (endoderm,
mesoderm, ectoderm) being one of the first [1, 2]. In
the development of these various germ layers, the inter-
play between signaling molecules and transcription fac-
tors yields the genes and morphology that distinguish the
subsequent development of one type of gene layer from
that of the others. The particular genes expressed within
a particular cell are determined in part by the transcrip-
tion factors and signals present within and around that
cell. A gene encoding a transcription factor or a signal
may encode other transcription factors or signals, leading
to a gene regulatory network (GRN) [6]. A GRN, also
called a genetic circuit, is a group of genes whose general
protein products regulate one another’s expression [3].

During the course of embryonic development, each
germ layer gives rise to different tissue types in the de-
veloping embryo: endoderm (the inner layer) forms the
digestive system and the lungs, mesoderm (middle layer)
forms the muscle, blood and connective tissue and ecto-
derm (outer layer) forms the epidermis and nervous sys-
tem. The tissue types that collectively give rise to both
mesoderm and endoderm are called the mesendoderm [1].

In this paper we study the simplified mesendoderm
gene regulatory network (mGRN) for two species, Xeno-
pus laevis and Ambystoma mexicanum using Boolean net-

works [8, 9, 12, 10, 11]. Both Xenopus (the frog) and
Ambystoma mexicanum (the axolotl) are amphibians, but
from different orders, and these differences extend to the
topology of the mGRN for both species [1]. Mathemati-
cal models for Xenopus laevis show that a negative feed-
back loop within the mGRN can reproduce various ex-
perimental observations, which in turn gives credibility
to hypothesized mechanisms for the formation of differ-
ent cell types [6]. Specifically, the modelers assume that
there is a mutual repression of the Mix.1 and Brachyury
gene families via Goosecoid and the autoregulation of
Nodal. The repression of Mix.1 and Brachyury is the
only source of competition between mesoderm and endo-
derm in the full mGRN [5, 4]. This negative feedback
predicts the bistability seen in experimental observations
of the network—certain external initial conditions elicit
the formation of dorsal mesoderm (i.e., Brachyury ex-
pressing cells) and anterior mesendoderm (i.e., Mix and
Goosecoid co-expressing cells). Initial conditions for their
in vitro model corresponded to the size of a dose of Ac-
tivin, while in their in vivo model initial conditions cor-
responded to initial concentrations of key maternal factor
VegT [6]. Low/medium levels of Activin/VegT elicit the
formation of dorsal mesoderm, while high levels elicit the
formation of anterior mesendoderm—demonstrating the
bistability present in the system.

Mathematical models for the axolotl have been able
to reproduce this same bistable behavior, which has been
observed in laboratory experiments as well [1]. That pa-
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per’s in vivo model was able to reproduce the effect of
the key maternal factor β-Catenin’s concentration lev-
els, with low concentrations eliciting the formation of the
mesoderm and high concentrations able to induce the for-
mation of the anterior mesendoderm. The similar bista-
bility features of the axolotl models are despite the fact
that Mix is required for the expression of Brachyury in
its mGRN, while Brachyury is assumed to repress Mix.
The bistability seen in models for both Xenopus and the
axolotl, despite the differences in their mGRNs’ network
topologies, was viewed by [1] as a suprisingly stable fea-
ture of these networks.

The models employed in [6] and [1] were both sys-
tems of differential equations, which have been most com-
monly used in the mathematical modeling of biological
processes [9]. However, for most realistic biological sys-
tems these models are sufficiently complex to the point
where they can only be analyzed using numerical/visual
simulations, which can sometimes yield limited biologi-
cal insights. Additionally, differential equation models
require parameter values that are often difficult to esti-
mate empirically, and thus modelers often choose param-
eter values that qualitatively fit the outcomes found in
experimental settings, which can limit the models’ abil-
ities to extrapolate biological outcomes stemming from
initial conditions that are outside of previously-observed
experimental states [1, 6, 9]. One way to avoid this com-
plexity problem is to use Boolean, or finite dynamical
system, models [11]. For many GRNs, one can simplify
the state variables by assuming they can only take on
the values 0/1, “off/on” or “not expressed/expressed”,
as opposed to a real number giving its level of expres-
sion or concentration, which are often poorly estimated or
are sensitive to various model parameters and/or assump-
tions. The interactions between these states (referred to
as the system’s network topology) can be preserved by im-
posing logical (AND/OR/NOT) operations on the vari-
ables. It has been shown that these discrete models can
capture key dynamic features of biological networks and
can be used for hypothesis generation ([9], [11]). Finally,
these models tend to be more intuitive and easility acces-
sible to life scientists, aiding in their increasing popularity
in systems biology [8].

In this paper we show that the in vitro results found
in [6] (for Xenopus) and [1] (for the axolotl) can also be
found when modeled by Boolean Networks. We show,
however, that the autorepressive effect of Goosecoid in
both settings forces us to make simplifying assumptions
about the system in order to reproduce the qualita-
tive state space and steady state dynamics found using
the differential equation models in those papers, which
were verified experimentally. Additionally, for the ax-
olotl model in [1] the negative feedback loop involving
Mix and Brachyury needed to be removed to elicit the

desired state space dynamics, calling into question either
(a) the importance of the Mix/Brachyury interaction in
driving the dynamics in the mGRNs for at least the ax-
olotl, or (b) the efficacy of using simple Boolean network
models to model all GRNs found in nature.

2 Model

A finite dynamical system that models a GRN with N
variables is a difference equation of the form

~x(t+ 1) = ~f(~x(t)), (1)

where the ith element of ~x(t) is an ordinal variable, which
can take values in the finite set [[0,mi]] := {0, 1, ...,mi}.
Here, each of the elements in [[0,mi]] models different
concentration levels for xi. For example, if mi = 1, then
xi(t) can take the value 0, modeling “low” concentra-
tions, or 1, modeling “high” concentrations. The sys-
tem updates during each time-step via the function ~f ,
which is a vector-valued function from the state space
S := [[0,m1]] × [[0,m2]] × · · · × [[0,mN ]] to itself. If
S = [[0, 1]]N , then (1) is a Boolean network [10].

A GRN’s “network topology” refers to the connec-
tivity structure of the network [12], with the network’s
wiring diagram defined as the graph with N vertices with
an edge from j to i if and only if fi depends on xj . The
edge is assigned a positive (resp. negative) sign if and only
if fi is increasing (resp. decreasing) with respect to xj . If
fi is neither increasing or decreasing with respect to xj ,
the edge is unassigned. For Boolean networks we use the
Boolean operators ∨, ∧, and ¬ (logical OR, AND, and
NOT, respectively). Thus, an edge from j to i is positive
(represented by a regular arrow) if and only if xj appears
in the function fi, and negative (represented by a blunt
arrow) if and only if ¬xj appears in the function fi.

A vector ~x∗ such that ~f(~x∗) = ~x∗ is called a fixed point
or steady state of the Boolean network (1).

To create Boolean models for both Xenopus and the
axolotl in the in vitro setting we use the assumptions
in [6] and [1], respectively, which manifest themselves in
the systems of differential equations used to model their
mGRNs. For Xenopus, the in vitro differential equation
model (see equation (9) in [6]) is given by

B′ = λA,BH(A)(1−H(G+M))−B

G′ = λM,GH

(
M

θM,G

)(
1−H

(
G

θG,G

))
− µGG

M ′ = λA,MH

(
A

θX,M

)(
1−H

(
B

θB,M

))
− µMM

A(0) = A0, B(0) = G(0) = M(0) = 0.

(2)
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Here A0, the initial concentration of Activin, is the pa-
rameter of interest in the in vitro setting, while the val-
ues of the remaining (nondimensional) parameters used
by [6] are given in Table 2 of that paper. The constant
A is the concentration of the signaling molecule Activin,
while the variables B,M and G are the concentrations of
the transcription factors Brachyury, Mix and Goosecoid,
respectively. The function H is the Hill function

H(y) =
ym

ym + 1
,

which turns into a step function as m → ∞. To con-
struct the wiring diagram in Figure 1 we assume that if
H(x) is present in the right-hand side of a differential
equation for y, then x is an activator for y in a Boolean
network. On the other hand, if 1 − H(x) is present in
a differential equation for y, then x is an inhibitor of y
(giving rise to the NOT operator in a Boolean network).
We assume multiplication in a differential equation model
corresponds to the AND operator in a Boolean network,
while addition corresponds to the OR operator. The dif-
ferential equation model (2) gives rise to the the Boolean
network

fB = A ∧ ¬(G ∨M)

fG = M ∧ ¬G
fM = A ∧ ¬B,

(3)

for the Xenopus mGRN. Notice that, while the Boolean
variables B,G and M evolve in time, A, the concentra-
tion of Activin stays its initial value for the entire time
course of the system. Also note that −B, −µGG, and
−µMM terms on the right-hand side of (2) do not need
to be taken explicitly into account in (3), since the expo-
nential decline in B,G and M in the absence of activation
in (2) simply occurs in one time-step in (3).

For the axolotl, we use the same procedure as above
to create the wiring diagram in Figure 2. The in vitro dif-
ferential equation model (see equation (7) in [1]) is given
by

B′ = λAM,BH(A)H(M)(1−H(G))−B

G′ = λM,GH

(
M

θM,G

)(
1−H

(
G

θG,G

))
− µGG

M ′ = λA,MH

(
A

θA,M

)(
1−H

(
B

θB,M

))
− µMM

A(0) = A0, B(0) = G(0) = M(0) = 0.

(4)

The parameter values used by [1] are found in Table 2 in
that paper. The differential equation model (4) gives rise
to the Boolean network

fB = A ∧M ∧ ¬G
fG = M ∧ ¬G
fM = A ∧ ¬B,

(5)

where A again is the (constant) concentration of the sig-
naling molecule Activin, while B, M , and G are the con-
centrations of the transcription factors Brachyury, Mix,
and Goosecoid, respectively. For a more detailed biologi-
cal background for these systems, see [6] and [1], as well
as the references therein.

Here, for each t, the state of the system is given by
~x(t) = (A,B,G,M)T for both models. Notice again that,
while there are similarities between the networks, the key
difference between the two is that Brachyury is inhibited
by the presence of Mix in the Xenopus mGRN and ac-
tivated by the presence of Mix in the axolotl mGRN (as
long as Goosecoid is absent). To see if these are plau-
sible models for these two species’ in vitro mGRNs, we
seek to reproduce the qualitative features seen in Fig-
ures 5 and 5 in [6] and [1], respectively. In both cases,
low/medium initial levels of Activin yield high concen-
trations of Brachyury/low levels of Mix and Goosec-
oid, signaling the formation of mesoderm, while high
levels of Activin yields high concentrations of Mix and
Goosecoid/low levels of Brachyury, signaling the forma-
tion of anterior mesendoderm. From the point of view
of Boolean networks, this bistability manifests itself by
eliciting a state space that takes the initial condition
~x0 = (A,B,G,M) = (0, 0, 0, 0)T to the stable steady
state ~x∗ = (0, 1, 0, 0)T , while taking the initial condi-
tion ~x0 = (1, 0, 0, 0)T to the stable steady state ~x∗ =
(1, 0, 1, 1)T . In the next section we show that the models
(3) and (5) are incapable of achieving such results, and
pose alternative models that are able to reproduce this
bistability.

Figure 1: The wiring diagram for Xenopus laevis, using
the network topology assumed in [6]. Here regular ar-
rows indicate activation, while blunt arrows indicate in-
hibition/downward regulation.
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Figure 2: The wiring diagram for the axolotl, using the
network topology assumed in [1]. Here regular arrows in-
dicate activation, while blunt arrows indicate downward
inhibition/downward regulation.

3 Results

Due to the self-regulation of Goosecoid in both (3) and
(5), there are no steady state solutions for these systems
wherein Goosecoid is activated. Thus, neither (3) or (5)
model the steady-state production of anterior mesendo-
derm. Furthermore, since Brachyury requires the pres-
ence of Activin, if A = 0, then B = 0 for all t, and thus
neither model predicts the the development of mesoderm,
either.

Simply relaxing the self-regulation nature of Goosec-
oid in both of the models is not sufficient to obtain the
desired bistability, however, since at least some Activin is
required to activate Brachyury. Thus, we need (at least)
three levels of Activin in our model. In lieu of straying
from the Boolean framework, we let Am and Ah be two
Boolean variables that model medium and high levels of
Activin, respectively. In this formulation, the ordered
pairs (Am, Ah) = (0, 0), (1, 0) and (1, 1) indicate low,
medium and high levels of Activin, respectively. With
the differentiated levels of Activin, and without the self-
regulation of Goosecoid, our models become

fB = Am ∧ ¬(G ∨M)

fG = M

fM = (Am ∧Ah) ∧ ¬B
(6)

for Xenopus and

fB = Am ∧M ∧ ¬G
fG = M

fM = (Am ∧Ah) ∧ ¬B
(7)

for the axolotl. The model (6), whose wiring diagram is
given by Figure 3 predicts bistability for Xenopus, as the
initial condition ~x0 = (Am, Ah, B,G,M)0 = (1, 0, 0, 0, 0)
is in the basin of attraction for the steady state ~x∗ =
(1, 0, 1, 0, 0) corresponding to the formation of mesoderm,
while the initial condition ~x0 = (1, 1, 0, 0, 0) is in the basin

of attraction for the steady state ~x∗ = (1, 1, 0, 1, 1) corre-
sponding to the formation of anterior mesendoderm (Fig-
ure 4). Thus, medium levels of Activin yield the develop-
ment of mesoderm, while high concentrations of Activin
yield the formulation of anterior mesendoderm, as sought.

Figure 3: Updated wiring diagram for Xenopus laevis.
Solid edges are activations and downward regulations
from [6] still modeled in our Boolean network, and dashed
edges represent those omitted from our updated model.

The activation of Brachyury by Mix assumed in (7)
prohibits the existence of the bistability desired for the
axolotl, as Brachyury is incapable of appearing at high
levels in the absence of Mix, and hence the formation
of mesoderm cannot be a steady state for (7). Simply
omitting this activation is not enough to elicit the bista-
bility, either, as the initial condition ~x0 = (1, 1, 0, 0, 0) for
this model would yield ~x1 = (1, 1, 1, 0, 1), which would
yield ~x2 = (1, 1, 1, 1, 0), which in turn would come back
to ~x0 = (1, 1, 0, 0, 0), resulting in a stable three-cycle as
opposed to an equilibrium. However, omitting both the
activation of Brachyury by Mix and the inhibition of Mix
by Brachyury (Figure 5), which results in the model

fB = Am ∧ ¬G
fG = M

fM = Am ∧Ah,

(8)

elicits the desired bistability (Figure 6), where medium
levels of Activin yield the formation of mesoderm, while
high levels of Activin yield the formation of anterior
mesendoderm.

Notice that, for both species’ mGRNs, it appears as
though the concentration of Activin is the driving force in
the ultimate outcome of the system, with the downward
regulation of Brachyury by Goosecoid accounting for the
bistability seen both in the differential equation models
in [6] and [1], confirming experimental observations. In
fact, with the exception of the basin of attraction con-
taining the single state (Am, Ah, B,G,M) = (1, 1, 1, 0, 0)
in Xenopus laevis, the basins of attraction for each of
the steady states discussed in this section are determined
completely by the initial levels of Activin in the system.
In both species the size of the basin of attraction for
the zero equilibrium (where neither mesoderm or anterior
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Figure 4: State space diagram for our updated model for Xenopus laevis, using the wiring diagram in Figure 3.
Equilibria representing the lack of mesoderm/anterior mesendoderm formation (right), the formation of mesoderm
(left), and the formation of anterior mesendoderm (bottom) stemming from low, medium, and high Activin levels
are enclosed in the red ovals, with their corresponing intial conditions enclosed by blue ovals. This figure was created
using Virginia Bioinformatics Institute’s Anaysis of Dynamic Algebraic Models (ADAM) program [13].

mesendoderm are formed) is the largest, with the sizes of
the basins of attraction for the other two roughly the
same. The interaction between Mix and Brachyury, the
key difference between the mGRNs of Xenopus and the
axolotl, plays little to no role as to which initial conditions
give rise to which equilibria, but does play a role in how
quickly the state (Am, Ah, B,G,M) = (1, 1, 0, 1, 1) (mod-
eling the formation of anterior mesendoderm) is reached.
In the Xenopus laevis model it takes four time periods
for this to occur, while in the axolotl it takes just two.
In the differential equation models in [6] and [1] the con-
centration of Brachyury stays above zero for some time
before Goosecoid and then Mix increase to their equilib-
rium values. This doesn’t happen in either of our mod-
els, where the model trajectories pass through the state
(Am, Ah, B,G,M) = (1, 1, 1, 0, 1) prior to converging to
(Am, Ah, B,G,M) = (1, 1, 0, 1, 1).

Figure 5: Updated wiring diagram for the axolotl. Solid
edges are activations and inhibitions/downward regula-
tions from [1] still modeled in our Boolean network, and
dashed edges represent those omitted from our updated
model.

4 Discussion

In this paper we constructed and analyzed Boolean net-
work models for the mGRN in both Xenopus laevis and
the axolotl in the in vitro setting. In both settings the ini-
tial Boolean network models are incapable of predicting
the bistatilbity referred to in [6] and [1], that medium lev-
els of the signalling molecule Activin elicit the formation
of mesoderm, while high levels of this signalling molecule
elicit the formation of anterior mesendoderm. In order
to achieve the desired bistability, we needed to omit the
assumption that Goosecoid is self-regulatory in all four
settings, along with allowing for three levels of Activin
(low, medium and high). We also needed to remove the
interactions between Mix and Brachyury in wiring dia-
gram for the axolotl mGRN, which was its key difference
between its network topology and that of Xenopus, cited
by [1].

One of the main themes in [1] was that, despite the
fact that mGRNs governing the development of germ lay-
ers in the Xenopus and the axolotl have different network
topologies, both species exibited the discussed bistabil-
ity. Our results seem to suggest that the activation of
Brachyury by Mix is not a substantial driver of the dy-
namics of the axolotl mGRN, and neither is the inhibition
of Mix by Brachyury, since we were only able to achieve
the desired bistability by omitting these interactions from
our wiring diagram. This may be due to the fact that
there is only one Mix gene in the axolotl mGRN, while
there are seven in that of Xenopus [1, 2]. Additional
research has modeled the fact that the spatio-temporal
dynamics of Mix and Brachyury differ considerably be-
tween Xenopus and the axolotl, meaning the synchrony
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Figure 6: State space diagram for our updated model for the axolotl, using the wiring diagram in Figure 4. Equilibria
representing the lack of mesoderm/anterior mesendoderm formation (upper right), the formation of mesoderm (left),
and the formation of anterior mesendoderm (lower right) stemming from low, medium, and high Activin levels are
enclosed in the red ovals, with their corresponding initial conditions enclosed in the blue ovals. This figure was
created using Virginia Bioinformatics Institute’s Anaysis of Dynamic Algebraic Models (ADAM) program [13].

assumed by simple Boolean or finite dynamical systems
models may not be warranted [2]. Future work should
include an analysis of similar models using asynchronous
update rules as in [7].

Our results also appear to suggest that the self-
regulatory nature of Goosecoid is also not a strong as the
other interactions in either of the species’ the wiring dia-
gram. This highlights a limitation with using Boolean
networks—as inhibition/regulation is often considered
absolute. The presence of Goosecoid one time step turns
it off the next, when often this self-regulation causes con-
vergence to an equilibrium rather than eliciting a cycle.
Moving from the Boolean framework to a more general
finite dynamical system will eventually remove this issue,
as [11] prove, but there is the increasing cost of model
complexity in this case. While Theorem 3.4 in [11] says
there is a bijection between the number of steady states
of a finite dynamical system and those of its analogous
ordinary differential equation models, the number of dis-
crete states necessary to characterize the concentration
of each of the state variables may be significantly larger
than those illustrated in Figures 4 and 6.

In conclusion, we showed that Boolean network mod-
els are capable of reproducing bistable dynamics in two
mesendoderm gene regulatory networks for Xenopus lae-
vis and the axolotl, provided that some, possibly less in-
fluential, interactions are omitted from the network topol-
ogy. The resulting network topologies for both species
indicate that the concentration of Activin is the substan-
tial driver of the mGRN dynamics, with the downward
regulation of Goosecoid on Brachyury causing the dif-
ferentiation between the development of mesoderm and
anterior mesendoderm stemming from the different Ac-
tivin levels. The differences between the mGRNs—the
interaction between Mix and Goosecoid—play a far less
substantial role in the equilibrium dynamics of these sys-
tems, which is possibly why similar bistability properties

are seen in both systems.
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