
Illinois State University
ISU ReD: Research and eData

Theses and Dissertations

3-15-2016

On the Dynamics of Boolean Gene Regulatory
Networks with Stochasticity
Yuezhe Li
Illinois State University, yuezheli@foxmail.com

Follow this and additional works at: http://ir.library.illinoisstate.edu/etd

Part of the Biostatistics Commons, and the Mathematics Commons

This Thesis and Dissertation is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more information, please contact ISUReD@ilstu.edu.

Recommended Citation
Li, Yuezhe, "On the Dynamics of Boolean Gene Regulatory Networks with Stochasticity" (2016). Theses and Dissertations. Paper 518.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ISU ReD: Research and eData

https://core.ac.uk/display/48841645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ir.library.illinoisstate.edu?utm_source=ir.library.illinoisstate.edu%2Fetd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.library.illinoisstate.edu%2Fetd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=ir.library.illinoisstate.edu%2Fetd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.library.illinoisstate.edu/etd/518?utm_source=ir.library.illinoisstate.edu%2Fetd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu

ON THE DYNAMICS OF BOOLEAN GENE REGULATORY

NETWORKS WITH STOCHASTICITY

Yuezhe Li

55 Pages

Genes are responsible for producing proteins that are essential to the construction of

complex biological systems. The mechanisms by which this production is regulated have

long been the center of widespread research efforts. Deterministic Boolean gene

regulatory models have been a particularly effective avenue of research in this field.

However, these models fall short of accounting for variations in the gene functionality due

to the uncertain internal or external environmental conditions. One of the recent attempts

to overcome this weakness is by (Murrugarra, 2012), in which a probabilistic component

is introduced as the fixed activation/degradation propensities at the cellular level. This

approach still falls short of accounting for cell-to-cell variability as well as the variability

at the molecular level. With this study, we introduce an additional stochastic element by

modeling the activation/degradation propensities using statistical distributions. This, in

turn, allows us to quantify the variability of the different connections within the dynamical

system formed by the gene activation/degradation behavior. Finally, we present a converse

method of determining the most likely propensity set for a given stochastic gene

regulatory network.

KEYWORDS: Boolean Gene Regulatory Network, Engineered Genetic Algorithm,

Particle Swarm Optimization, p53-Mdm2 Network, Stochastic Boolean Network

ON THE DYNAMICS OF BOOLEAN GENE REGULATORY

NETWORKS WITH STOCHASTICITY

YUEZHE LI

A Thesis Submitted in Partial
Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Mathematics

ILLINOIS STATE UNIVERSITY

2016

c© 2016 Yuezhe Li

ON THE DYNAMICS OF BOOLEAN GENE REGULATORY

NETWORKS WITH STOCHASTICITY

YUEZHE LI

COMMITTEE MEMBERS:

Olcay Akman, Chair

Fusun Akman

Allison Harris

Daniel Hrozencik

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisers Dr. Olcay Akman and Dr.

Daniel Hrozencik for their continuous support of my research. Their patient guidance,

constant encouragement, and immense specialized knowledge helped me throughout my

time of research and the writing of this thesis. I could not imagine better advisers and

mentors for my master’s study.

Besides my advisers, I would like to thank the other members of my thesis committee,

Dr. Fusun Akman and Dr. Allison Harris, for their insightful comments and

encouragement.

I would like to thank my parents, my aunt, my cousin, and my friends for supporting

me spiritually throughout this research and writing. They have been always there for me

and have enriched my days in so many ways.

Y. L.

i

CONTENTS

Page

ACKNOWLEDGMENTS i

CONTENTS ii

TABLES iii

FIGURES iv

CHAPTERS

I. INTRODUCTION 1

II. STOCHASTICITY AND VARIABILITY IN DISCRETE GENE
REGULATORY NETWORKS 4

III. A DETERMINISTIC MODEL OF A DISCRETE GENE
REGULATORY NETWORK 5

IV. STOCHASTIC GENE REGULATORY NETWORKS 10

Model of Stochastic Gene Regulatory Networks 10
An Example 11

V. PARAMETER ESTIMATION METHODS 14

Estimation of a Network from a Propensity Matrix 15
Estimation of Propensities Based on Transition Matrices 19
Optimization Based on Transition Matrices 19

VI. APPLICATION TO THE P53-MDM2 NETWORK 26

VII. CONCLUSIONS AND REMARKS 32

Conclusions 32
Future Work 34

REFERENCES 35

APPENDIX A: Example of the Two-Gene Regulatory Network 41

APPENDIX B: Parameter Estimation Methods 47

ii

TABLES

Table Page

1. Lac Operon Regulatory Rule 7

2. Regulatory Rule for the Example 12

3. Transition Matrix of Two-Gene Regulatory Network Example 12

4. Errors for Multi-Gene Regulatory Networks from Engineered
Genetic Algorithm Based on Transition Matrices 22

5. Regulatory Rule 28 24

6. Regulatory Rule 197 24

7. Regulatory Rule 207 25

8. Regulatory Rule for p53-Mdm2 Regulatory Network. 27

iii

FIGURES

Figure Page

1. A Model of Lambda Gene Regulatory System 5

2. Simplified Lac Operon [19, 41] 6

3. Diagram of Gene States’ Change in E.coli 7

4. Diagram of Gene States’ Change in E.coli While Culture Changes 8

5. Calculation of Random Error 16

6. Estimation Error Calculation Procedure for MME (left) and
MLE (right) Based on Propensities 17

7. Error From MME and MLE Based on Propensities Compared to
Random Error 18

8. Error From MME and MLE Based on Propensities and Error From MME
and MLE Based on Transition Matrix Compared to Random Error 20

9. Error in Reconstructed Networks from Three Different Methods,
Spread Propensity 21

10. Probability Density Function from PSO and Engineered GA,
Spread Propensity 21

11. Probability Density Function from PSO and Engineered GA,
Low, High, Medium Propensities 22

12. Probability Density Function Estimations of Four-Gene Regulatory
Network, Engineered Genetic Algorithm 23

13. Probability Density Function Estimations of Five-Gene Regulatory
Network, Engineered Genetic Algorithm 23

14. Probability Density Function Estimations of Nine-Gene Regulatory
Network, Engineered Genetic Algorithm 24

15. Object Functions Based on Different Regulatory Rules 25

16. Four-Variable Model for the P53-Mdm2 Regulatory Network 26

iv

17. Beta Distribution of Four Genes Regulatory Network, Engineered GA 28

18. Simulation of Activity of Mdm2 in the p53-Mdm2 Regulatory
Network Using Low Propensities, Zoomed in 29

19. Simulation of Activity of Each Element in the p53-Mdm2 Regulatory
Network Using Low Propensities 30

20. Simulation of Activity of Each Element in the p53-Mdm2 Regulatory
Network Using High Propensities 30

21. Simulation of Activity of Each Element in the p53-Mdm2 Regulatory
Network Using Medium Propensities 31

22. Simulation of Activity of Each Element in the p53-Mdm2 Regulatory
Network Using Spread Propensities 31

v

CHAPTER I

INTRODUCTION

There have been many experiments observing how cells with the same genotype

exhibit different phenotypes when exposed to the same environmental conditions

[13, 40, 2, 22]. Evolution of a cell’s phenotype is attributed to the interactions between

biological macromolecules inside it. In mathematical models, these macromolecules’

amount and/or states are considered as variables. Together, they form dynamical systems.

The earliest attempt to use mathematical models to analyze interactions between

biological macromolecules traces back to the 1960s [11]. Mathematical modeling has

flourished ever since.

Mathematical models of dynamical systems can be broadly divided into two classes:

continuous and discrete. The continuous models are based on differential equations, such

as ordinary differential equations, partial differential equations, functional differential

equations, and stochastic differential equations [34, 3, 14, 46, 15, 7]. These models have

applications to a broad range of biological problems such as biochemical oscillations,

epidemic outbreaks, and gene regulatory networks.

The second class of models is discrete dynamical models. Unlike continuous models

that provide quantitative outcomes on continuous scales, these dynamical systems get

updated in discrete steps. Discrete models have one significant advantage: they do not

require as many parameters, such as kinetic rates for chemical equilibria, as continuous

models. These parametric values are often difficult to obtain.

Boolean networks are discrete dynamical models. They are represented by directed

1

graphs, where nodes represent molecular elements, such as genes, RNAs, or proteins.

Edges represent the interactions between these molecules. A function that maps a node’s

state to its next state is called a Boolean function. A collection of Boolean functions that

map all nodes in the Boolean network is a logical regulatory rule. Together, nodes, edges,

and a regulatory rule define the structure of a regulatory network.

In particular, in a gene regulatory network (GRN), nodes represent genes, which have

two states, off (no protein produced) or on (protein produced). Edges represent

interactions between genes. These interactions are of two types: activation, in which a

gene turns on another gene at the next time step, or inhibition, in which a gene prohibits

the activation of another gene at the next time step. The update function defines the rules

for updating the dynamical state of each node.

Boolean networks, in general, fail to account for the variability of protein production

in different cells that have the same genetic make-up. One way to overcome this drawback

is to introduce stochasticity at the update function level [42, 37].

Each gene has an activation and a degradation propensity. The activation propensity is

the probability that a gene activates another gene when the update function dictates that it

should. Similarly, the degradation propensity is the probability that a gene deactivates

another gene when it should. In [31], a probabilistic structure is introduced to allow for

the cases where the gene interactions fail to follow a deterministic update rule.

In this study, we introduce a stochastic propensity structure to account for the

variability due to random gene interaction failures. This approach is a way to explain the

uncertainty at the cellular and molecular levels.

In our study, we employ particle swarm optimizations and engineered genetic

algorithms to estimate propensities. A genetic algorithm (GA) is a method for solving

optimization problems based on a natural selection process that mimics biological

evolution. An engineered genetic algorithm is a genetic algorithm whose parameters are

2

tuned by a simulated annealing algorithm. The simulated annealing algorithm (SAA) is a

probabilistic technique for approximating the global optima. Particle swarm optimization

(PSO) is a population-based stochastic optimization technique inspired by the social

behavior of bird flocking or fish schooling. PSO shares many similarities with

evolutionary computation techniques such as GA. Our study uses the global optimization

toolbox in MATLAB R© 2014b.

The organization of the thesis is as follows: In Chapter 2, we examine deterministic

models of gene regulatory networks. In Chapter 3, we introduce stochastic gene

regulatory networks, while in Chapter 4, we describe our proposed model that has an

additional level of stochasticity. In Chapter 5, we focus on parameter estimation for the

statistical distributions from which propensities are drawn. Chapter 6 contains the

implementation of the proposed method on the human p53-Mdm2 regulatory network. We

analyze advantages and disadvantages of our approach, including possible future

directions, in Chapter 7.

3

CHAPTER II

STOCHASTICITY AND VARIABILITY IN DISCRETE GENE REGULATORY

NETWORKS

Deterministic discrete gene regulatory network models assume that at every step,

every molecule works steadily and precisely. In other words, the mechanisms with which

the nodes and the edges operate are identical at each time step. This is clearly a strong

assumption, and it is unlikely to happen in nature. In reality, there is always a chance that

regulatory mechanisms may not work as expected. Thus, it is reasonable to introduce

stochasticity in gene regulatory networks.

There are two commonly accepted methods of introducing stochasticity into Boolean

models. The most frequently used method is to introduce the stochasticity at the update

function level. More specifically, at each step, an update function is randomly chosen

from a set [23, 25, 24]. Another way of introducing stochasticity is to randomize the

success of an update at each node at each step. Both of these methods lead to probabilistic

Boolean models. By replacing deterministic dynamics with probabilistic dynamics, the

Boolean network gains extra flexibility without altering its structure. The continuous

counterpart of this approach is the Gillespie algorithm [33].

Probabilistic Boolean networks have an added advantage. They can be viewed as

Markov processes [43], where transitions from one state to another are specified by state

transition probabilities. This allows us to predict the future states of the networks using

the properties of Markov transition matrices.

4

CHAPTER III

A DETERMINISTIC MODEL OF A DISCRETE GENE REGULATORY NETWORK

A Boolean network is defined by a set of nodes, edges, and a list of Boolean functions

describing the updating processes. Every node in a Boolean network has two states:

deactivated, denoted by 0, and activated, denoted by 1. Directed edges are used to express

the relations between the nodes. One of the early examples is Figure 1 [23], where arrows

with solid lines indicate activations and dashed lines indicate inhibitions.

Figure 1: A Model of Lambda Gene Regulatory System

In a Boolean network, a given node transforms its inputs into an output, which is the

state or expression of the gene itself at the next time-point. All genes are assumed to

update synchronously in accordance with the functions assigned to them, and this process

is then repeated. Our goal is to determine the state of any given gene at any given time,

which is commonly referred to as the dynamics of a network. The dynamics of a

synchronous deterministic Boolean network are completely determined by regulatory

5

rules, which are sets of Boolean functions projecting networks’ current states to their next

state, and the initial state. Examples of this type of dynamical system representation are

Boolean networks and logical models [8, 44, 18]. We will present the lac operon as an

example in the rest of this chapter.

Though it is worth considering networks with more than two states for certain systems,

the focus of this study is Boolean networks where all nodes have two states.

One of the well-studied gene regulatory networks is the lac operon in E. coli. A

simplified lac operon is under the influence of three elements: Lac I, Lac Z, and lactose.

Lac I encodes the protein that inhibits RNA polymerases binding to Lac Z. Lac Z’s final

translation product is beta-galactosidase (beta-gal), an enzyme that hydrolyzes lactose.

Lactose deactivates Lac I’s protein product by allosteric regulation, releasing Lac Z from

Lac I’s inhibition (Figure 2). The regulatory rule of the lac operon is in Table 1.

Lac I Lac Z

lactose

Figure 2: Simplified Lac Operon [19, 41]

When there is little lactose around, Lac Z’s protein product barely exists. Lac I is

transcribed and translated. Its protein product is abundant and active. When there is

abundant lactose around in E.coli cell, the lactose molecule binds to the Lac I’s protein

product. Thus, the protein is deactivated but not hydrolyzed. When lactose runs low, the

lactose molecule dissociates itself from Lac I’s protein product. Consequently, Lac I’s

protein product is automatically activated again. Comparing to a gene’s transcription or

6

Lac I Lac Z lactose f1 f2 f3
0 0 0 1 0 0
0 0 1 0 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 0 0 1 0 0
1 0 1 0 0 1
1 1 0 1 0 0
1 1 1 0 0 0

Table 1: Lac Operon Regulatory Rule

010 100

Figure 3: Diagram of Gene States’ Change in E.coli

RNA’s translation, Lac I’s activation is finished much faster, or almost spontaneously

since this is an allosteric change. In other words, lactose removal and Lac I’s activation

happen at the same time [20].

We assume that an E.coli cell was in a high-lactose and glucose-free culture for some

time. Then its Lac I was turned off, and Lac Z was turned on. At time 0, it is moved to a

lactose-free culture. Hence, the initial state is 010, where the three numbers, from left to

right, are the states of Lac I, Lac Z, and lactose, respectively. Following the regulatory rule

(Table 1), the gene states change to 100 (Figure 3).

In other words, an E. coli cell will stay in a stage of Lac I activated, Lac Z silenced,

and lactose free. This is consistent with reality [41].

Forthwith we discuss a more complicated scenario. We assume that an E.coli cell, at

time 0, has its Lac I and Lac Z genes on. It stays in a lactose-free culture for some time

(state 110) until it evolves to a stable state (100). After that, it is transported to a

glucose-free culture with a high concentration of lactose (state 101). Its genes states’

changes are as in Figure 4. The thick blue line is the gene states’ transition before being

7

moved to the lactose-abundant glucose-free environment, and the cyan dotted lines mark

the gene states’ transition after being exposed to the high-lactose and glucose-free

environment.

The red text marks two critical changes in the culture to which the E.coli cell is

exposed. The first is when the E.coli cell is moved to a lactose-high glucose-free culture.

This is clearly a significant change, since the E.coli cell has lost its major energy (carbon)

source and is forced to use a new one, the lactose. When time passes by, with no further

supply, lactose gradually runs low. The second critical moment is when lactose runs out in

this new culture. Then the chemical equilibrium moves and lactose molecules disassociate

themselves from Lac I’s protein products. This dissociation leads to allosteric changes in

Lac I’s protein product, releasing them from lactose’s inhibition. Consequently, Lac I is

activated again, and Lac Z is turned off (Figure 4).

110 100

101 001 011

110

moved to high lactose environment

Lactose in the culture is used up

Figure 4: Diagram of Gene States’ Change in E.coli While Culture Changes

Deterministic models, such as the simplified lac operon described above, are the ideal

cases. They, however, may not suit the reality due to the flexibility of macromolecules

[45]. By adding probabilities that macromolecules fail to function as they should,

stochastic Boolean networks are introduced. Stochastic Boolean networks show more

flexibility and variability than deterministic Boolean models. Each molecule is

represented by a node in the stochastic Boolean network. Probabilities of whether

8

macromolecules function properly are parameters in stochastic Boolean networks. Our

study focuses on the inference of parameters from the behavior of the dynamical system.

9

CHAPTER IV

STOCHASTIC GENE REGULATORY NETWORKS

In this chapter, we introduce stochasiticity to deterministic gene regulatory networks.

This goal is achieved by adding a propensity matrix in a gene regulatory network.

Model of Stochastic Gene Regulatory Networks

As in [31], we let G1, G2, ..., Gn represent genes in a regulatory network. Let

x1(t), x2(t), ..., xn(t) be the state of each gene at time t, where xi(t) = 0 if the gene is off

at time t, and xi(t) = 1 if the gene is on at time t. Let x(t) = [x1(t), x2(t), ..., xn(t)].

Denote all possible states of gene Gi by a set Xi, i = 1, 2, ..., n. In our case, we have

Xi = {0, 1}, i = 1, 2, ..., n. Then the state space of this gene regulatory network, X , is the

Cartesian product of all potential spaces of the genes. In symbols, we have

X = X1 ×X2 × · · · ×Xn.

Let fi : Xi → Xi be the regulatory rule for gene Gi, i = 1, 2, ..., n. Also, let p↑i and p↓i

(p↑i , p
↓
i ∈ [0, 1]) be the activation and degradation propensities, respectively, for gene Gi.

The activation (degradation) propensity is the probability that the gene Gi will be

activated (degraded) according to the update rule.

The update rule to calculate transition probabilities, πi,x(t), of the Markov process is

defined as follows:

πi,x(t)(xi(t+ 1) = fi(x(t))) =


p↑i if xi(t+ 1) < fi(x(t))

p↓i if xi(t+ 1) > fi(x(t))

1 if xi(t+ 1) = fi(x(t))

,

10

and

πi,x(t)(xi(t+ 1) = xi(t)) =


1− p↑i if xi(t+ 1) < fi(x(t))

1− p↓i if xi(t+ 1) > fi(x(t))

1 if xi(t+ 1) = fi(x(t))

.

Now, denote the propensity matrix by

p =

p1 ... p2n−1

p2 ... p2n

 ,
where p2i−1 is Gi’s activation propensity and p2i is the propensity of Gi’s deactivation,

i = 1, 2, ..., n. The dynamics of a gene regulatory network is a Markov process. Once the

regulatory rules and the propensities are given, the transition matrix of the Markov

process is known. We denote the transition matrix by P , which is a 2n × 2n matrix.

An Example

Let n = 2, X = {0, 1} × {0, 1}, and F = {f1, f2} : X → X . Table 2 represents the

regulatory rule for G1 and G2, and the propensity matrix is

p =

0.1 0.5

0.2 0.9

 ,
as given in [31]. We have the probabilities

Pr(01→ 10) = 0.1× 0.9 = 0.09, P r(01→ 00) = (1− 0.1)(0.9) = 0.81,

P r(01→ 01) = (1− 0.1)(1− 0.9) = 0.09, P r(01→ 11) = (0.1)(1− 0.9) = 0.01,

P r(10→ 10) = (1− 0.2)(1− 0.5) = 0.4, P r(10→ 01) = 0.2× 0.5 = 0.1,

11

Pr(10→ 00) = 0.2× (1− 0.5) = 0.1, P r(10→ 11) = (1− 0.2)× 0.5 = 0.4,

P r(11→ 11) = 1× (1− 0.9) = 0.1, P r(11→ 10) = 1× 0.9 = 0.9,

and Pr(00→ 00) = 1× 1 = 1.

The transition matrix is in Table 3.

G1 G2 f1 f2
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 0

Table 2: Regulatory Rule for the Example

output
00 01 10 11

00 1 0 0 0
01 0.81 0.09 0.09 0.01

input 10 0.1 0.1 0.4 0.4
11 0 0 0.9 0.1

Table 3: Transition Matrix of Two-Gene Regulatory Network Example

The algorithm illustrating the details of these calculations is given in Appendix A.

For a two-gene regulatory network, f1 and f2 would have 222 = 16 different

combinations, respectively. Thus, in total, there are 162 = 256 different gene regulatory

rules.

In this study, we propose that p1, p2, ..., p2n be distributed according to a beta

distribution, B(α, β) = xα−1(1−x)β−1

B(α,β)
; (0 ≤ x ≤ 1), and we assume that the regulatory rule

for the network is known. Once α and β are known, we can regenerate propensities that

follow B(α, β). With the propensities and the regulatory rule, we can regenerate the

network. Therefore, the network can be modeled by the parameters α and β.

12

Consequently, we are aiming to find the best α and β in a given network. By best, we

mean α and β can generate propensities that vary the least from the real ones.

13

CHAPTER V

PARAMETER ESTIMATION METHODS

As previously noted, we will consider the B(α, β) distribution, from which we

generate values of p1, p2, ..., p2n, and we assume that the regulatory rule for the network is

known. Hence, the network can be modeled by the parameters α and β. The beta

distribution is appropriate since its domain is [0, 1] and it can exhibit a broad range of

shapes accommodating a wide spectrum of propensity behaviors.

Our goal is to measure the variability inherent in a network generated by a given set of

propensities. We achieve this by optimizing α and β so that the difference between a

network generated by the beta distribution and the network generated by the fixed

propensities is minimum. Forthwith a simulated network will be referred to as a rebuilt

network, and the network generated by the fixed propensities will be referred to as the

fixed network.

We define the error of estimation using the normalized difference between a fixed

network and its rebuilt network by

E =
2n∑
i,j=1

q2ij
2n
,

where qij is the element from the ith row and jth column of P0 − P , P0 and P being the

transition matrices of the fixed and the rebuilt networks, respectively. The value of E is

between 0 and 2. The error serves as the criterion for assessing whether or not the

estimation is good. Later in this chapter, we use errors as the fitness functions in our

14

evolutionary algorithms. The smaller the error is, the better the estimation.

Furthermore, as an additional aspect of this study, we will compare the performances

of different estimation techniques in terms of bias, computational cost, and efficacy.

Namely, we will use the method of moment estimation (MME), maximum likelihood

estimation (MLE), estimation based on engineered genetic algorithms, and estimation

based on particle swarm optimizations. Further details of these algorithms can be found in

Appendix B.

We start with a two-gene regulatory network. We consider four cases:

• High Propensities: All propensities are close to 1. This implies that the network is

functioning efficiently. Every element does what it is supposed to do most of the

time.

• Low Propensities: All propensities are close to 0. This implies that the network is

functioning inefficiently. Every element is unlikely to do what it is supposed to do.

• Medium Propensities: All propensities are close to 0.5. This implies that every

element’s action is as likely to succeed as to fail.

• Spread Propensities: Propensities have a wide range. This implies that some

elements are acting efficiently while others are flawed.

For example, a network with high propensities would most likely correspond to a

left-skewed beta distribution. Similarly, a network with spread propensities would most

likely correspond to a uniform distribution, where all propensity values are equally likely.

Here, we examine the four types of propensities for all possible 256 regulatory rules

for a two-gene regulatory network.

Estimation of a Network from a Propensity Matrix

We begin with a fixed propensity matrix. Our goal is to obtain the parameters of the

beta distribution that are most likely to generate the given propensities.

15

We calculate the errors from our simulations. The steps are as follows: we simulate all

possible networks for a two-gene regulatory network. To draw a comparison, we generate

propensities from a uniform distribution on [0, 1] and use them to rebuild networks and

calculate their errors. These are errors from random guesses and will be referred to as

random errors in the future. A good estimation method should provide errors far less than

the random errors. The random errors’ calculation procedure is in Figure 5. We list how to

calculate estimation errors in Figure 6. In practice, we repeat the whole process multiple

times and use the mean of estimation errors to represent the estimation error. This way, we

can avoid random outliers.

Generate simulated propensities from uniform distribution on [0, 1]

Rebuild simulated network

Calculate random error

Figure 5: Calculation of Random Error.
In practice, we do it multiple times and employ their mean value as the error.

16

Input propensities

Calculate α, β in beta
distribution from propen-

sities using MME

Generate simulated propen-
sities from beta distri-
bution with parameters

obtained in the previous step

Rebuild simulated network

Calculate estimation
error from MME

Input propensities

Calculate α, β in beta
distribution from

propensities using MLE

Generate simulated propen-
sities from beta distri-
bution with parameters

obtained in the previous step

Rebuild simulated network

Calculate estima-
tion error from MLE

Figure 6: Estimation Error Calculation Procedure for MME (left) and MLE (right) Based
on Propensities

17

In Figure 7, plots A, B, and C show that errors from both MLE and MME are very

close to 0, and they overlap a lot, implying these two estimations are precise. Their

performance is less satisfying for spread propensities (Figure 7 D). One possible reason is

that there are only four elements in each propensity matrix, thus there is not enough

information for statistical inference.

Figure 7: Error From MME and MLE Based on Propensities Compared to Random Error.
A: Errors from Low Propensities; B: Errors from High Propensities; C: Errors from
Medium Propensities; D: Errors from Spread Propensities. In every subplot of this figure,
the filled yellow round dots mark random errors in all possible 256 regulatory networks,
each of which corresponds to a regulatory rule labeled by a number between 1 and 256;
blue stars mark errors from MLE; red hollow diamonds mark errors from MME.

18

Estimation of Propensities Based on Transition Matrices

The previous section shows that the method of moment estimation and maximum

likelihood estimations based on propensities are precise. However, propensities are hard

to measure in wetlab experiments. In contrast, transition probabilities are easier to obtain.

Thus, we base our estimation methods on elements from transition matrices. In this

section, we focus on a scenario where propensities are unknown, but transition

probabilities are known. We will still use random errors defined in the last section for

comparison.

It is easy to see in Figure 8 that errors of estimations based on transition probabilities

are significantly greater, especially for networks with high propensities (Figure 8 B). This

is not surprising, since our hypothesis is that propensities, not transition probabilities,

follow a beta distribution. Thus, we conclude that it is inappropriate to estimate beta

distribution parameters from transition matrices using maximum likelihood estimations or

method of moment estimations.

Optimization Based on Transition Matrices

From previous experiments, we conclude that beta distributions directly estimated

from propensities generally work well, while this is not true for estimations based on

transition probabilities. Sometimes it is even worse than a random guess. Therefore, in

this section, we propose more sophisticated estimation methods. We consider errors as the

goal functions that need to be minimized, and α, β are variables.

We use particle swarm optimizations (PSO) and engineered genetic algorithms

(engineered GA) to achieve our goal. Figure 9 shows errors of PSO and engineered GA

from spread propensities under different regulatory rules, as they are the ones that give the

biggest errors in the previous discussion (Figure 7). It is shown that PSO gives errors that

are almost the same as errors from MLEs based on propensities in different networks.

Engineered genetic algorithms give even better results: the errors are almost zero.

19

Figure 8: Error From MME and MLE Based on Propensities and Error From MME and
MLE Based on Transition Matrix Compared to Random Error.
A: Errors from Low Propensities; B: Errors from High Propensities; C: Errors from
Medium Propensities; D: Errors from Spread Propensities. In every subplot of this figure,
the yellow filled round dots mark random errors in all possible 256 regulatory networks,
each of which corresponds to a regulatory rule labeled by a number between 1 and 256;
blue crosses mark errors from MLE; red hollow triangle mark errors from MME.

20

Engineered genetic algorithms show similar results for low propensities, high

propensities, and medium propensities.

Figure 9: Error in Reconstructed Networks from Three Different Methods, Spread Propen-
sity

Figure 10 shows the probability density functions from different estimation methods

for the 256 networks under different regulatory rules based on a spread propensity matrix.

The thick yellow dotted lines show the probability density functions estimated based on

maximum likelihood estimation of propensities. Figure 11 shows probability density

functions from different estimation methods for 256 networks with different regulatory

rules with low, high, and medium propensities. The thick black dotted lines show the

probability density functions estimated based on maximum likelihood estimation of

propensities. It’s obvious that they are almost the same, and the engineered genetic

algorithm gives even better estimations.

Figure 10: Probability Density Function from PSO and Engineered GA, Spread Propensity

21

Figure 11: Probability Density Function from PSO and Engineered GA, Low, High,
Medium Propensities

Furthermore, we test engineered genetic algorithms on a four-gene network, a

five-gene network, and a nine-gene network. Table 4 and Figures 12, 13, 14 show the

errors and probability density functions of beta distributions based on maximum

likelihood estimation of propensities and engineered genetic algorithms based on

transition matrices. With an increasing number of genes, the errors decrease. This is as

expected, since more genes in a network mean more propensities, thus we have more

information on our beta distribution. Consequently, parameter inference is more precise.

However, the increase in precision comes with increasing computational cost. In a

two-gene regulatory network, finding α and β takes only hours, while in a nine-gene

regulatory network, finding α and β can take a week. Tuning parameters in genetic

algorithms using simulated annealing algorithms is especially problematic. This process

sometimes takes more than two weeks.

Type of Propensities Low High Medium Spread
Four-Gene Network 4.36× 10−5 5.98× 10−5 1.02× 10−5 3.05× 10−5

Five-Gene Network 3.07× 10−5 1.17× 10−5 3.18× 10−6 1.21× 10−5

Nine-Gene Network 4.77× 10−7 7.25× 10−7 6.8× 10−8 1.24× 10−6

Table 4: Errors for Multi-Gene Regulatory Networks from Engineered Genetic Algorithm
Based on Transition Matrices

22

Figure 12: Probability Density Function Estimations of Four-Gene Regulatory Network,
Engineered Genetic Algorithm

Figure 13: Probability Density Function Estimations of Five-Gene Regulatory Network,
Engineered Genetic Algorithm

Among all particle swarm optimization results, regulatory rule 28 (Table 5) gives the

minimum error. Its network dynamic corresponds to a Markov process with two absorbing

states. Gene regulatory networks like this will eventually evolve to a fixed state. Thus, the

initial state of this Markov process has no influence on the final state of any of the

networks. Hence, estimations give small errors in every network. On the other hand,

regulatory rules 197 (Table 6) and 207 (Table 7) give very big errors. These two Markov

processes will converge to periodic solutions. Their oscillatory trajectories make the

23

Figure 14: Probability Density Function Estimations of Nine-Gene Regulatory Network,
Engineered Genetic Algorithm

errors (object functions in optimizations) change sharply when propensities change

(Figure 15), which explains why the errors are big. A non-smooth object function is one

of the worst scenarios in optimization problems [32]. Regulatory rule 28 gives a perfect

object function compared to the regulatory rule 197 or the regulatory rule 207.

G1 G2 f1 f2
0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 1

Table 5: Regulatory Rule 28

G1 G2 f1 f2
0 0 1 1
0 1 0 0
1 0 0 1
1 1 0 0

Table 6: Regulatory Rule 197

24

G1 G2 f1 f2
0 0 1 1
0 1 0 0
1 0 1 1
1 1 1 0

Table 7: Regulatory Rule 207

Figure 15: Object Functions Based on Different Regulatory Rules.
Rule 197 and rule 207 Are regulatory rules whose fixed networks converge to oscillatory
trajectories. The x-axis shows the disturbance in the transition matrix, and the y-axis
shows how the object function (error) changes.

25

CHAPTER VI

APPLICATION TO THE P53-MDM2 NETWORK

As an application of our method, we study the p53-Mdm2 network in human cells,

which describes the dynamics of the tumor suppressor protein, p53, and its negative

regulator, Mdm2, when DNA damage occurs, as illustrated in Figure 16 [9, 27]. Many

cancer cells show loss of function of p53. Mdm2 is the product of an oncogene, MDM2.

Mdm2 inactivates p53-mediated transcription [28].

Figure 16: Four-Variable Model for the P53-Mdm2 Regulatory Network.
P, Mc, and Mn Stand For Protein p53, Cytoplasmic Mdm2, and Nuclear Mdm2, Respectively.

Mc and Mn stand for cytoplasmic Mdm2 and nuclear Mdm2, respectively. DNA

damage caused by ionic irradiation decreases the level of nucleic Mdm2 that enables p53

to accumulate and to remain active, playing a key role in reducing the effect of the

damage. There is a negative feedback loop involving three components: p53 increases the

level of cytoplasmic Mdm2 by boosting transcription of MDM2, which, in turn, increases

the level of nucleic Mdm2. Nucleic Mdm2 reduces p53 activity. This model also contains

26

P Dam Mc Mn P Dam Mc Mn
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 1
0 0 1 1 0 0 0 1
0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0
0 1 1 0 1 1 0 1
0 1 1 1 0 1 0 1
1 0 0 0 1 0 1 0
1 0 0 1 0 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 0 0 1 1
1 1 0 0 1 1 1 0
1 1 0 1 0 1 1 0
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1

Table 8: Regulatory Rule for p53-Mdm2 Regulatory Network.
P is short for p53, Mc is short for cytoplasmic Mdm2, Mn is short for nuclear Mdm2, and
Dam is short for DNA damage.

a positive feedback loop involving two components, where p53 inhibits its negative

regulator nucleic Mdm2. Note the dual role of p53, as it positively regulates nucleic

Mdm2 through cytoplasmic Mdm2. On the other hand, p53 negatively regulates nucleic

Mdm2 by inhibiting its translocation [1]. The logical regulatory rule of this network is

shown in Table 8.

Here, we still use low, high, medium, and spread propensities to test engineered GA.

Figure 17 depicts beta distributions estimated using MLEs based on propensities and

engineered GAs based on transition probabilities, respectively. Here, beta distributions

estimated by MLEs based on propensities represent the fixed networks. We establish the

reasoning in our last chapter. We measure the difference between estimated beta

distributions from engineered genetic algorithms based on transition probabilities and

estimated beta distributions from MLEs based on propensities by calculating errors from

simulations, which we establish in our last chapter. Errors given by engineered GA

27

Figure 17: Beta Distribution of Four Genes Regulatory Network, Engineered GA

estimations are 5.6327× 10−6, 5.5904× 10−6, 5.6787× 10−6, and 5.6296× 10−6 for low,

high, medium, and spread propensities, respectively.

Figures 19, 20, 21, 22 show simulation of elements’ states of this network using

propensities, or propensities follow the estimated beta distributions, from either MLEs or

engineered GAs. Every time, our simulation results are plotted separately for four

different elements in our networks, and a group of simulations for each network and its

estimations is run four times: twice using the original network, once for the rebuilt

network from maximum likelihood estimation results, and once from engineered genetic

algorithms results. A spike in a graph shows an immediate degradation of an element after

its activation. All these graphs show that the rebuilt networks show qualitatively similar

behavior to the original networks in simulations. By qualitative resemblance, we mean the

tendency for an element to stay at a state, or to constantly change states. We see this better

when we zoom in (e.g., Figure 18). Here, the generation means how many times we run

28

the simulation. Large generation numbers show an element’s behavior in the network in

the long run.

Figure 18: Simulation of Activity of Mdm2 in the p53-Mdm2 Regulatory Network Using
Low Propensities, Zoomed in

Figure 18 shows simulations of Mdm2 in the cytoplasm (Mc) and Mdm2 in nuclear

(Mn) of the network with low propensities. Cytoplasmic Mdm2 tends to stay at the same

activation level for some time while nuclear Mdm2 tends to be deactivated soon after

being activated. We consider these as the qualitative resemblance to Mdm2 in the network.

29

Figure 19: Simulation of Activity of Each Element in the p53-Mdm2 Regulatory Network
Using Low Propensities

Figure 20: Simulation of Activity of Each Element in the p53-Mdm2 Regulatory Network
Using High Propensities

30

Figure 21: Simulation of Activity of Each Element in the p53-Mdm2 Regulatory Network
Using Medium Propensities

Figure 22: Simulation of Activity of Each Element in the p53-Mdm2 Regulatory Network
Using Spread Propensities

31

CHAPTER VII

CONCLUSIONS AND REMARKS

With this project, we developed a method for estimating the variability on the edges of

gene regulatory networks by introducing the stochasticity at the propensity level. We have

shown that one can estimate propensities using the knowledge of network edges and

regulatory rules. We employed beta distributions to stochasticize both the propensities and

the edges. In the process of determining the most likely beta distribution, we utilized the

well-known statistical estimation methods, maximum likelihood and method of moments.

We also used two novel evolutionary computing methods, engineered genetic algorithm

and particle swarm optimization.

Conclusions

As we have shown, one can simulate a network using a fitted beta distribution and

obtain realistic variability bounds on the state-to-state probabilities of a network.

We have seen that one can use the edge probabilities and the regulatory rules to

estimate the distribution of the propensities, hence yielding the variability of the edges as

described above.

It is worth noting the following:

• For small gene networks, due to the limited number of propensities, the maximum

likelihood estimates of the beta parameters are not stable. Employing the method of

moment estimators is a viable compromise.

• Evolutionary computing methods yield more accurate and precise estimates even if

only the regulatory rule and the transition matrix are known.

32

• Regulatory rules have an impact on the precision of the estimation. Networks that

converge to oscillatory behavior, if fixed, tend to have higher estimation errors.

However, the engineered genetic algorithm is more robust.

• Generally, for a fixed network and a certain estimation method, the largest error is

given by spread propensities.

In our experiments, we noticed that the engineered genetic algorithm is the most robust

estimation method. However, the major disadvantage of this algorithm is computational

complexity. The algorithm contains two steps: using simulated annealing optimization to

tune parameters in genetic algorithms, and using a genetic algorithm to optimize the

parameters, α and β, in beta distributions. Both steps are computationally expensive.

Although an engineered genetic algorithm is robust in different optimization situations,

it can be sensitive to its parameters. In other words, a bad combination of parameters in an

engineered genetic algorithm may lead to a very bad result that gives large error. Since the

simulated annealing algorithm is a heuristic algorithm, there is a potential weakness for

the engineered genetic algorithm, though we have not observed it in our experiments.

In our particle swarm optimizations, we used global neighborhoods. This choice of

neighborhoods makes particles converge fast, many of which are premature convergences

sinking into local optima. They work well when there are only two nodes in a network,

but results worsen when nodes are added.

We can further discuss applying engineered genetic algorithms to asynchronous

schemes, such as some genes moving from one state to another, while the rest stay the

same. For example, one element is updated three times more frequently than the other

elements in the network. In this situation, the lowest minimal multiple of all the genes’

update periods is defined as a common period, and under this common period, a network

motif [39] is formed. Consequently, a new Markov process is created. In this situation,

based on what we presented before, it is still a good idea to use an engineered genetic

33

algorithm to find out the best parameters for the beta distribution.

Future Work

Future work will focus on the following extensions of this study, from the modeling

and algorithm optimization aspects:

• Extending gene states to more than two states. For example, some genes can have

three states: 0 for deactivated, 1 for activated, and 2 for hyperactivated.

• Discussing networks with asynchronous updating schemes. We can further discuss

whether engineered genetic algorithm is still a robust and efficient parameter

estimation method.

• Preventing particle swarm optimization from premature convergence. For example,

replacing global neighborhood by local neighborhood in particle swarm

optimization. Then we can compare a particle swarm optimization result to an

engineered genetic algorithm optimization result and see which one is better.

• Improving computational performance of engineered genetic algorithms. For

example, reducing computational complexity in engineered genetic algorithms, or

implementing parallel computing in it. As a consequence, we can further analyze

more complex gene regulatory networks and see whether our conclusions hold.

• Exploring how to infer network topology if the transition matrices and the beta

distribution that the propensities follow is known.

34

REFERENCES

[1] Wassim Abou-Jaoudé, Djomangan A Ouattara, and Marcelle Kaufman. From

structure to dynamics: frequency tuning in the p53–mdm2 network: I. logical

approach. Journal of Theoretical Biology, 258(4):561–577, 2009.

[2] Murat Acar, Jerome T Mettetal, and Alexander van Oudenaarden. Stochastic

switching as a survival strategy in fluctuating environments. Nature Genetics,

40(4):471–475, 2008.

[3] Sever Achimescu and Ovidiu Lipan. Signal propagation in nonlinear stochastic gene

regulatory networks. IEEE Proceedings-Systems Biology, 153(3):120–134, 2006.

[4] RJ Beckman and GL Tiet jen. Maximum likelihood estimation for the beta

distribution. Journal of Statistical Computation and Simulation, 7(3-4):253–258,

1978.

[5] Dimitris Bertsimas, John Tsitsiklis, et al. Simulated annealing. Statistical Science,

8(1):10–15, 1993.

[6] KO Bowman and LR Shenton. Estimation: Method of moments. Encyclopedia of

Statistical Sciences.

[7] Dmitri Bratsun, Dmitri Volfson, Lev S Tsimring, and Jeff Hasty. Delay-induced

stochastic oscillations in gene regulation. Proceedings of the National Academy of

Sciences of the United States of America, 102(41):14593–14598, 2005.

35

[8] Claudine Chaouiya, Elisabeth Remy, Brigitte Mossé, and Denis Thieffry. Qualitative

analysis of regulatory graphs: a computational tool based on a discrete formal

framework. In Positive Systems, pages 119–126. Springer, 2003.

[9] Andrea Ciliberto, Béla Novák, and John J Tyson. Steady states and oscillations in

the p53/mdm2 network. Cell Cycle, 4(3):488–493, 2005.

[10] Maurice Clerc. Stagnation analysis in particle swarm optimization or what happens

when nothing happens. Online at http://clerc. maurice. free. fr/pso, 2006.

[11] John E Dowd and Douglas S Riggs. A comparison of estimates of michaelis-menten

kinetic constants from various linear transformations. J. Biol. Chem,

240(2):863–869, 1965.

[12] Wesam Elshamy, Hassan M Emara, and Ahmed Bahgat. Clubs-based particle swarm

optimization. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages

289–296. IEEE, 2007.

[13] Naama Geva-Zatorsky, Nitzan Rosenfeld, Shalev Itzkovitz, Ron Milo, Alex Sigal,

Erez Dekel, Talia Yarnitzky, Yuvalal Liron, Paz Polak, Galit Lahav, et al. Oscillations

and variability in the p53 system. Molecular Systems Biology, 2(1), 2006.

[14] Leon Glass. Classification of biological networks by their qualitative dynamics.

Journal of Theoretical Biology, 54(1):85–107, 1975.

[15] Sui Huang, Gabriel Eichler, Yaneer Bar-Yam, and Donald E Ingber. Cell fates as

high-dimensional attractor states of a complex gene regulatory network. Physical

Review Letters, 94(12):128701, 2005.

[16] Lester Ingber. Simulated annealing: Practice versus theory. Mathematical and

Computer Modelling, 18(11):29–57, 1993.

36

[17] Lester Ingber, Antonio Petraglia, Mariane Rembold Petraglia, Maria Augusta Soares

Machado, et al. Adaptive simulated annealing. In Stochastic Global Optimization

and its Applications with Fuzzy Adaptive Simulated Annealing, pages 33–62.

Springer, 2012.

[18] DJ Irons. Logical analysis of the budding yeast cell cycle. Journal of Theoretical

Biology, 257(4):543–559, 2009.

[19] François Jacob and Jacques Monod. Genetic regulatory mechanisms in the synthesis

of proteins. Journal of Molecular Biology, 3(3):318–356, 1961.

[20] Alan Jobe and Suzanne Bourgeois. lac repressor-operator interaction: Vi. the natural

inducer of the lac operon. Journal of Molecular Biology,

69(3):397IN7405–404IN8408, 1972.

[21] Norman L Johnson, Samuel Kotz, and N Balakrishnan. Continuous Multivariate

Distributions, volume 1, Models and Applications, volume 59. New York: John

Wiley & Sons, 2002.

[22] Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory

networks. Nature Reviews Molecular Cell Biology, 9(10):770–780, 2008.

[23] Stuart Kauffman. The large scale structure and dynamics of gene control circuits: an

ensemble approach. Journal of Theoretical Biology, 44(1):167–190, 1974.

[24] Stuart Kauffman. A proposal for using the ensemble approach to understand genetic

regulatory networks. Journal of Theoretical Biology, 230(4):581–590, 2004.

[25] Stuart A. Kauffman. The Origins of Order: Self Organization and Selection in

Evolution. Oxford University Press, 1993.

37

[26] Scott Kirkpatrick, MP Vecchi, et al. Optimization by simmulated annealing.

Science, 220(4598):671–680, 1983.

[27] Galit Lahav, Nitzan Rosenfeld, Alex Sigal, Naama Geva-Zatorsky, Arnold J Levine,

Michael B Elowitz, and Uri Alon. Dynamics of the p53-mdm2 feedback loop in

individual cells. Nature Genetics, 36(2):147–150, 2004.

[28] Arnold J Levine. p53, the cellular gatekeeper for growth and division. Cell,

88(3):323–331, 1997.

[29] Vladimiro Miranda, Hrvoje Keko, and Alvaro Jaramillo Duque. Stochastic star

communication topology in evolutionary particle swarms (epso). International

Journal of Computational Intelligence Research, 4(2):105–116, 2008.

[30] Melanie Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

[31] David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, Seda Arat, and Reinhard

Laubenbacher. Modeling stochasticity and variability in gene regulatory networks.

EURASIP Journal on Bioinformatics and Systems Biology, 2012(1):1–11, 2012.

[32] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical

Programming, 103(1):127–152, 2005.

[33] Ertugrul M Ozbudak, Mukund Thattai, Iren Kurtser, Alan D Grossman, and

Alexander van Oudenaarden. Regulation of noise in the expression of a single gene.

Nature Genetics, 31(1):69–73, 2002.

[34] Jonathan M Raser and Erin K O’Shea. Noise in gene expression: origins,

consequences, and control. Science, 309(5743):2010–2013, 2005.

[35] William T Reeves. Particle systemsa technique for modeling a class of fuzzy objects.

ACM Transactions on Graphics (TOG), 2(2):91–108, 1983.

38

[36] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM

Siggraph Computer Graphics, 21(4):25–34, 1987.

[37] Andre S Ribeiro and Stuart A Kauffman. Noisy attractors and ergodic sets in models

of gene regulatory networks. Journal of Theoretical Biology, 247(4):743–755, 2007.

[38] Miguel Rocha and José Neves. Preventing premature convergence to local optima in

genetic algorithms via random offspring generation. In Multiple Approaches to

Intelligent Systems, pages 127–136. Springer, 1999.

[39] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs in the

transcriptional regulation network of escherichia coli. Nature Genetics, 31(1):64–68,

2002.

[40] François St-Pierre and Drew Endy. Determination of cell fate selection during phage

lambda infection. Proceedings of the National Academy of Sciences,

105(52):20705–20710, 2008.

[41] David T Suzuki, Anthony JF Griffiths, Jeffrey H Miller, Richard C Lewontin, et al.

An Introduction to Genetic Analysis. Number Ed. 3. WH Freeman and Company,

1986.

[42] Shunsuke Teraguchi, Yutaro Kumagai, Alexis Vandenbon, Shizuo Akira, and

Daron M Standley. Stochastic binary modeling of cells in continuous time as an

alternative to biochemical reaction equations. Physical Review E, 84(6):062903,

2011.

[43] René Thomas. Boolean formalization of genetic control circuits. Journal of

Theoretical Biology, 42(3):563–585, 1973.

[44] René Thomas and Richard d’Ari. Biological feedback. CRC press, 1990.

39

[45] Francesco Vanzi, Chiara Broggio, Leonardo Sacconi, and Francesco Saverio Pavone.

Lac repressor hinge flexibility and dna looping: single molecule kinetics by tethered

particle motion. Nucleic Acids Research, 34(12):3409–3420, 2006.

[46] Denise M Wolf and Frank H Eeckman. On the relationship between genomic

regulatory element organization and gene regulatory dynamics. Journal of

Theoretical Biology, 195(2):167–186, 1998.

[47] Peng-Yeng Yin, Manuel Laguna, and Jia-Xian Zhu. A complementary cyber swarm

algorithm. 2011.

40

APPENDIX A

EXAMPLE OF THE TWO-GENE REGULATORY NETWORK

For n = 2 and X = {0, 1} × {0, 1}, let F = {f1, f2} : X → X , with propensity

matrix

p =

0.1 0.5

0.2 0.9

 .

x1 x2 f1 f2
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 0

Table A-1: Regulatory rule in this example

Let us focus on the Boolean functions for the first variable, which we denote by

F1 = {h1, h2, ..., hr}. For the first variable we have transitions as follows:

Pr(00→ 0) = 1,

P r(00→ 1) = 1− Pr(00→ 0) = 0,

P r(01→ 0) = 1− p↑1 = 0.9,

P r(01→ 1) = p↑1 = 0.1,

P r(10→ 0) = p↓1 = 0.2,

41

Pr(10→ 1) = 1− p↓1 = 0.8,

P r(11→ 1) = 1,

and Pr(11→ 0) = 1− Pr(11→ 1) = 0.

It is a similar calculation for the second variable:

Pr(00→ 0) = 1,

P r(00→ 1) = 1− Pr(00→ 0) = 0,

P r(01→ 0) = p↓2 = 0.9,

P r(01→ 1) = 1− p↓2 = 0.1,

P r(10→ 0) = 1− p↑2 = 0.5,

P r(10→ 1) = p↑2 = 0.5,

P r(11→ 1) = 1− p↓2 = 0.1,

and Pr(11→ 0) = p↓2 = 0.9.

Each transition probability is the joint probability of two independent transitions for

two genes take place simultaneously. These joint probabilities are

Pr(00→ 00) = Pr(00→ 0)× Pr(00→ 0) = 1,

P r(00→ 01) = Pr(00→ 0)× Pr(00→ 1) = 0,

P r(00→ 10) = Pr(00→ 1)× Pr(00→ 0) = 0,

42

Pr(00→ 11) = Pr(00→ 1)× Pr(00→ 1) = 0,

P r(01→ 00) = Pr(01→ 0)× Pr(01→ 0) = 0.9× 0.9 = 0.81,

P r(01→ 01) = Pr(01→ 0)× Pr(01→ 1) = 0.9× 0.1 = 0.09,

P r(01→ 10) = Pr(01→ 1)× Pr(01→ 0) = 0.1× 0.9 = 0.09,

P r(01→ 11) = Pr(01→ 1)× Pr(01→ 1) = 0.1× 0.1 = 0.01,

P r(10→ 00) = Pr(10→ 0)× Pr(10→ 0) = 0.2× 0.5 = 0.1,

P r(10→ 01) = Pr(10→ 0)× Pr(10→ 1) = 0.2× 0.5 = 0.1,

P r(10→ 10) = Pr(10→ 1)× Pr(10→ 0) = 0.8× 0.5 = 0.4,

P r(10→ 11) = Pr(10→ 1)× Pr(10→ 1) = 0.8× 0.1 = 0.4,

P r(11→ 00) = Pr(11→ 0)× Pr(11→ 0) = 0,

P r(11→ 01) = Pr(11→ 0)× Pr(11→ 1) = 0,

P r(11→ 10) = Pr(11→ 1)× Pr(11→ 0) = 1× 0.9 = 0.9,

and Pr(11→ 11) = Pr(11→ 1)× Pr(11→ 1) = 1× 0.1 = 0.1.

Thus, the transition matrix is as follows, and the network looks like Figure A-1.

output
00 01 10 11

00 1 0 0 0
01 0.81 0.09 0.09 0.01

input 10 0.1 0.1 0.4 0.4
11 0 0 0.9 0.1

Here, for more general cases, we give two algorithms: Algorithm 1 is a step-by-step

43

Figure A-1: Example Network from [31]

manual of how to calculate transition matrices given the regulatory rules and propensity

matrices. Algorithm 2 is a step-by-step manual of how to simulate the behavior of a given

gene regulatory network.

44

Algorithm 1: Transition probability between two states for stochastic discrete dy-
namical systems

Let z = F (x) = (f1(x), ..., fn(x));
for i = 1 to n do

Let c = 0 ;
if xi < zi then

if yi = zi then
c = p↑i

end
if yi = xi then

c = 1− p↑i
end

else
if xi < zi then

if yi = zi then
c = p↓i

end
if yi = xi then

c = 1− p↓i
end

else
if yi = xi then

c = 1
end

end
end
Px,y = Px,y × c

end

45

Algorithm 2: Next state for stochastic discrete dynamical systems

input: Initial state x0 and a SDDS F = {fi, p↑i , p
↓
i }ni=1 ;

output:y = one of the next states of x Let z = F (x0) = (f1(x0), ..., fn(x0));
for i = 1 to n do

Let r be a random number in [0, 1] ;
if xi < zi then

if r < p↑i then
yi = zi with probability p↑i

else
yi = xi with probability 1− p↑i

end
else

if xi < zi then
if r < p↓i then

yi = zi with probability p↓i
end
yi = xi with probability 1− p↓i

else
yi = xi with probability 1

end
end

end

46

APPENDIX B

PARAMETER ESTIMATION METHODS

Method of Moment Estimation

The method of moment is one of the most commonly used methods of point

estimations.

Suppose that the problem is to estimate k unknown parameters θ1, θ2, . . . , θk

characterizing the distribution fW (w; θ) of the random variable W . Also suppose that the

first k moments of the true distribution can be expressed as functions of the θs:

µ1 ≡ E[W] = g1(θ1, θ2, . . . , θk),

µ2 ≡ E[W 2] = g2(θ1, θ2, . . . , θk),

...

µk ≡ E[W k] = gk(θ1, θ2, . . . , θk).

Let a sample of size n be drawn, resulting in the values w1, . . . , wn. For j = 1, . . . , k, let

µ̂j =
1

n

n∑
i=1

wji

be the jth sample moment, an estimate of µj . The method of moments estimator for

θ1, θ2, . . . , θk, denoted by θ̂1, θ̂2, . . . , θ̂k, is defined as the solution (if there is one) to the

47

equations:

µ̂1 = g1(θ̂1, θ̂2, . . . , θ̂k),

µ̂2 = g2(θ̂1, θ̂2, . . . , θ̂k),

...

µ̂k = gk(θ̂1, θ̂2, . . . , θ̂k).

By solving the equations above, we can utilize the method of moments estimators [6].

For a beta distribution, two moments are enough to estimate the parameters α and β.

We have µ = α
α+β

and σ2 = αβ
(α+β)2(α+β+1)

, thus

α = x̄
(x̄(1− x̄)

s2
− 1
)
,

and β = (1− x̄)
(x̄(1− x̄)

s2
− 1
)
.

Here x̄ and s2 are the mean and variance of the sample, respectively [21].

Maximum Likelihood Estimation

For the beta distribution, there is no closed form of its maximum likelihood

estimation, as the differentiation of the beta function is written using a digamma function.

The secant method is one of the numerical approaches to calculate the maximum

likelihood estimation of parameters in a beta distribution [4].

Denote the probability function of beta distribution by

f(y) =
(y − a)p−1(b− y)q−1

B(p, q)(b− a)p+q−1
; (a ≤ y ≤ b).

The maximum likelihood equations for the estimators p̂ and q̂ are as follows:

ψ(p̂)− ψ(p̂+ q̂) = lnG1,

48

and ψ(q̂)− ψ(p̂+ q̂) = lnG2,

where

G1 =
n∏
i=1

n

√
Yi − a
b− a

, G2 =
n∏
i=1

n

√
b− Yi
b− a

,

ψ(x) is the digamma function (the derivative of the logarithm of the gamma function), and

Yi (i = 1, 2, ..., n) are observed values for y in the beta distribution.

From previous functions, it is easy to see that ψ(p̂) = ln(G1) + ψ(p̂+ q̂),

ψ(q̂)− ln(G1) = ψ(p̂+ q̂), and ψ(p̂) = lnG1 − lnG2 + ψ(q̂), thus

p̂ = ψ−1(lnG1 − lnG2 + ψ(q̂)).

Here, we have

ψ(q̂)− ψ{[ψ−1(lnG1 − lnG2 + ψ(q̂))] + q̂} − lnG2 = 0.

Evaluating ψ−1(z) is equivalent to finding the root c of the equation ψ(c)− z = 0, and

this is accomplished by using the approximation

ψ(z) ∼ lnz − 1

2
z − 1

12
z2 +

1

120
z4 − 1

252
z6

for z ≥ 3 and the recurrence formula

ψ(z) = ψ(z + 1)− 1

z

for z < 3. These approximations generally yield 6 decimal places accuracy [4].

Genetic Algorithm

Genetic algorithms simulate natural selection. Every parameter is considered a

gene. Every individual has a genotype, which is encoded into a chromosome and

49

corresponds to a phenotype. A fitness function serves as the criterion of an individual’s

fitness. Natural selection is based on fitness. Figure B-1 is an example of how parameters

are encoded into chromosomes [30].

The simplest form of genetic algorithm involves three types of operators, selection,

crossover, and mutation [30]:

• Selection: The operator selects chromosomes in the population for reproduction.

There is a higher chance for individuals with fitter phenotypes to survive and

reproduce.

• Crossover: The operator randomly chooses a locus, and exchanges the

subsequences before and after that locus between two chromosomes, to create two

offspring. For example, the strings 10000100 and 11111111 could be crossed over

after the third locus in each to produce the two offspring: 10011111 and 11100100.

The crossover operator roughly mimics biological recombination between two sister

chromosomes.

• Mutation: The operator randomly flips some of the bits in a chromosome. For

example, the string 00000100 might be mutated in its second position to yield

01000100. Mutation can occur at each bit position in a string with some probability,

usually very small.

A fitness function projects phenotype onto fitness. In our case, the smaller the fitness,

the better is the phenotype. Between two generations, the old ones are referred to as

parents, and the new ones are referred to as children. Parents with smaller fitness have a

better chance of passing on their genotypes to children, which are commonly referred as

elite children.

There are several different established methods to avoid local optima [38]. The easiest

one is to accept non-elite children with a certain probability. This gives genetic algorithms

50

Figure B-1: Transform Parameters into Chromosomes

51

extra flexibility and a better chance to find the global optima.

Simulated Annealing Algorithm

Simulated annealing is a probabilistic method proposed in 1983 [26] to find the global

minimum of a cost function that may possess several local minima. It works by emulating

the physical process where a solid is slowly cooled, so that when eventually its structure is

”frozen”, it is at its minimum energy configuration.

Basic elements of simulated annealing (SA) include [5]:

• Domain: a finite set S;

• Cost Function: a real-valued function J defined on S;

• Sets of neighbors: ∀i ∈ S, S(i) ⊂ S − {i};

• A collection of positive coefficients: ∀i, ∃qij, j ∈ S(i) such that
∑

j∈S(i) qij = 1,

and j ∈ S(i) if and only if i ∈ S(j);

• Cooling Schedule: a nonincreasing function T : N → (0,∞), where T (t) denotes

temperature at time t;

• An initial state x(0) ∈ S.

A simulated annealing algorithm is a homogeneous Markov chain if the temperature

T (t) has a constant value, T . Assuming that this Markov chain is irreducible and periodic

with qij = qji ∀i, j, then the invariant probability distribution is given by

πT (i) =
1

ZT
exp
[
− J(i)

T

]
, i ∈ S,

where ZT is a normalized constant. For πT (i) > r, where r is a uniformly distributed

random number in [0, 1], the relatively bad result is accepted.

52

The physical analogy that is used to justify the simulated annealing algorithm is that

the cooling rate is low enough for the probability distribution of the current state to be

near thermodynamic equilibrium at all times. The ideal cooling rate, however, could be

difficult to determine beforehand, as too fast cooling leads to premature convergence, but

too slow cooling takes too much time. There are several improvements, such as adaptive

simulated annealing algorithms, that have been proposed to solve this problem [17, 16].

Engineered Genetic Algorithm

The difference between an engineered genetic algorithm (engineered GA) and

genetic algorithm is that the simulated annealing algorithm is applied to tune the

parameters in the genetic algorithm before the genetic algorithm is employed. Tunning

parameters makes sure that we use the most efficient genetic algorithm to find the best

parameters in the beta distributions.

Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic approach for

solving both continuous and discrete optimization problems. It simulates a flock of birds.

In particle swarm optimization, every agent, called a particle, emulates the behavior of

a bird moving in the search space of an optimization problem. The position of a particle

represents a candidate solution. Each particle searches for better positions in the search

space by changing its velocity according to rules originally inspired by behavioral models

of bird flocking [35, 36].

Let us denote a swarm by P = {p1, p2, ..., pk}. There are several attributes in a given

time step:

• A position inside the search space;

• The fitness value at this position;

• A velocity, which will be used to compute the position for the next time;

53

• An individual memory, which is the fitness value of the previous time step;

• A group memory, which is the best position of the particle’s neighbors found so far;

it is also referred as the precious best.

The object of optimization is minimizing the fitness function f : Θ→ R,Θ ∈ Rn,

with

Θ∗ = arg minf(~θ) = {~θ∗ ∈ Θ : f(~θ∗) ≤ f(~θ)},

where ~θ is an n-dimensional vector that belongs to the set Θ, the search space for all

feasible solutions.

In every time step for each particle, there are updates for both velocity and position. At

any time step t, pi has a position ~xit and velocity ~vit, and the individual memory is ~bi
t
.

The group memory, which is the best position obtained from the particle’s neighbors, is

denoted by ~li
t
. The update rule for velocity is given by

~vi
t+1 = w~vi

t + φ1
~U1

t
(~bi

t
− ~xi

t) + φ2
~U2

t
(~li

t
− ~xi

t),

and the update rule of position is

~xi
t+1 = ~xi

t + ~vi
t+1,

where w is the inertia weight, and φ1, φ2 are two parameters that function as acceleration

coefficients. ~U1

t
, ~U2

t
are two n× n diagonal matrices of random numbers uniformly

distributed in the interval [0, 1). At each iteration, these matrices are regenerated.

In some situations, parameter values are set as

w =
1

2 ln 2
' 0.721, c =

1

2
+ ln 2 ' 1.193

54

[10].

There are different types of neighborhoods in particle swarm optimization, and each of

them provides different features in the results and performance to particle swarm

optimization. The basic particle swarm optimization uses global neighborhood. In other

words, the group memory is the current best location for all the particles. In this version,

the algorithm convergences fast, but most of the time it converges to local optima. The

other types of the neighborhood have swarms divided into several sub-swarms. One of

them is divided based on distance, m-nearest neighborhood. There are other types of

division inspired by social structures. If we assume that there is an information link

between each particle and its neighbors, then the set of these links builds a graph, or a

communications network, which is called the topology of the PSO variant. A commonly

used social topology is the ring, in which each particle has just two neighbors, but there

are many other social topology types. The topology varies, and can be adaptive (SPSO,

stochastic star, TRIBES, Cyber Swarm, C-PSO) [47, 29, 12]. Figure B-2 shows some

topologies of neighborhoods.

Figure B-2: Different topologies for PSO neighborhoods

55

	Illinois State University
	ISU ReD: Research and eData
	3-15-2016

	On the Dynamics of Boolean Gene Regulatory Networks with Stochasticity
	Yuezhe Li
	Recommended Citation

	tmp.1469557446.pdf.f0ooC

