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Abstract

Viruses and bacteria responsible for infectious diseases often mutate and are carried be-
tween geographical regions. We consider a mathematical model which begins to account for
these factors. We assume two disjoint populations that only occasionally co-mingle and two
strains of a disease present in these populations. Of interest are the equations describing
the dynamics of this system, the conditions under which epidemics will occur, and the long
term behavior of the system under various initial conditions. We find general conditions
under which a state of disease-free equilibrium is stable. Additionally, we find existence of
a biologically relevant equilibrium where two disease strains of unequal strength coexist in a
two-population system, and we demonstrate that this equilibrium point is likely to be unsta-
ble.

Keywords: SIR model, infectious diseases, epidemiology, mathematical modeling, differential
equations, metapopulation, multistrain infection, equilibrium analysis

1 Introduction

Numerous studies on the theory of the dynamics of in-
fectious diseases have been conducted using variations on
the Susceptible-Infectious-Removed (SIR) model (see, for
example, [18, 2, 15, 6]). Two common extensions of the
SIR model are to incorporate (1) multiple strains of a
disease that offer cross-immunity and thus compete for
susceptible hosts or (2) spatial heterogeneity of popula-
tions through the use of patches, commonly referred to
as a metapopulation. While these two extensions of the
SIR model appear frequently in the literature, they are
scarcely employed together (such as in [24]). In this pa-
per, we seek to build and analyze a deterministic multi-
strain, metapopulation version of the SIR model.

Multistrain models describe when multiple strains of
a single pathogen type, through the process of mutation,
arise within a population. Multistrain deterministic SIR
models have similar dynamics to ecological competition
models [26]. In these simple models, since the multiple
strains each offer cross-immunity, the strongest strain is
selected and will exclude its competitors. Many stud-
ies have been done with multistrain SIR models, such as
examining pathogen diversity in stochastic scenarios [1],
some studies even giving evidence of strain coexistence
[20]. Other studies have looked at control measures such
as optimizing finite vaccine allocation between multiple
strains [10]. Yet, because of the Competitive Exclusion
Principle, no deterministic models have been found that

allows for two competing strains to coexist in a single
population. Thus, we consider a metapopulation.

Similarly to multristrain models, a bevy of work has
been done on metapopulation SIR models (see, for ex-
ample, [3, 13, 25, 21, 12, 11, 7]). Specifically, the
metapopulation is composed of n populations, or patches,
and the system allows for infectious individuals to visit
other patches and transmit the disease between them.
The equilibrium behavior of these models is well known
[19, 14, 25, 16, 17, 2]. Yet, just as stochasticity has been
shown to allow for the coexistence of multiple strains in a
population [26], we seek to resolve if adding spatial het-
erogeneity by constructing a metapopulation would allow
for coexistence to occur.

This paper is organized as follows: In Section 2 we
present the two-strain, two-population SIR differential
equation model. We perform equilibrium and stability
analyses of the model in Section 3, while also providing
stability conditions for the disease-free equilibrium for the
general m-strain, n-population SIR model. We conclude
with a discussion in Section 4.

2 The Model

We consider two populations (i = 1 or 2) in which two
strains (α = A or B) of a single infectious disease are
present. Our model includes demography (births and
deaths). In this compartmental model, for each popu-
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lation i people are born into the susceptible (Si) class,
become infected by either strain of the disease and enter
the infectious (Iαi ) class, then transition to the removed
(Ri) class. Individuals may also leave any class through
death. Note that we make a distinction between removal
(R class) and death. A visual depiction of our model is
given in Figure 1.

Our model is given by the following ordinary differen-
tial equation system:

Ṡ1 = µN1 − µS1

− S1(βA11I
A
1 + βA12I

A
2 + βB11I

B
1 + βB12I

B
2 ) (1a)

Ṡ2 = µN2 − µS2

− S2(βA21I
A
1 + βA22I

A
2 + βB21I

B
1 + βB22I

B
2 ) (1b)

İA1 = S1(βA11I
A
1 + βA12I

A
2 )− (γA + µ)IA1 (1c)

İA2 = S2(βA21I
A
1 + βA22I

A
2 )− (γA + µ)IA2 (1d)

İB1 = S1(βB11I
B
1 + βB12I

B
2 )− (γB + µ)IB1 (1e)

İB2 = S2(βB21I
B
1 + βB22I

B
2 )− (γB + µ)IB2 (1f)

where µ is the per capita birth and death rate and γα is
the relative recovery rate for strain α. The average life
expectancy is 1/µ and the average time to recovery for
each strain is 1/γα. The total population size for pop-
ulation i is Ni, which is constant. This is guaranteed
because the per capita birth and death rates are equal
for each population. Also, it is assumed that the mixing
between populations is temporary (no permanent immi-
gration) and subject to preferred mixing (theory devel-
oped and discussed primarily in [8]), i.e. the majority of
each individual’s interpersonal contacts are with mem-
bers of his or her own population. We assume that ev-
ery individual follows the same mixing pattern and that
the out-of-group mixing proportion for each population
is equal.

A mixing matrix M describes the manner in which
the populations interact. Its entries mij denote the frac-
tion of contacts made by individuals from group j with
individuals from group i [5]. We assume that each pop-
ulation’s out of group mixing proportion is equal, so for
this model

M =
1

1 + ε

[
1 ε
ε 1

]
. (2)

The entries of 1 on the diagonal indicate that most
contacts are with members from an individual’s home
population while the ε entries off the main diagonal rep-
resent the small remaining proportion of each group’s
contacts. Since these entries represent fractional mixing
rates, each column must sum to 1 and thus the matrix is
properly scaled.

It is assumed that each individual, regardless of popu-
lation, has the same contact rate per unit time. Further-
more, any contact between a susceptible and an infectious

leads to successful transmission of the disease with proba-
bility dependent only on the strain. The product of these
two values gives the (strain dependent) transmission pa-
rameter, βα. Then, βαij is the relative transmission rate
of strain α from population j to i. This rate is given by

βαij =
βαmij

Ni
. (3)

Infection is governed by the standard incidence term;
susceptible individuals from population i may become in-
fected with either strain A or B of the disease, and may
acquire the infection from an individual in either popula-
tion 1 or 2.

Finally, we suppress the Ṙi equations, as the values of
Ri can be calculated by Ni− (Si + IAi + IBi ). This allows
for a reduction in model dimension.

2.1 The Basic Reproductive Number

A number of particular interest in epidemiology is the
basic reproductive number, R0. The basic reproductive
number gives the average number of secondary infections
that result from a single infectious individual over the
course of their infection in an otherwise entirely suscep-
tible population (see, for example, [2, 9]). It is often a
threshold value that will determine whether or not a ma-
jor outbreak will occur. Thus, we seek to construct a
formulation of R0 for each strain of the disease in our
model.

A next generation matrix describes the transmission
of a disease through multiple patches. The entry kij is the
number of secondary infections caused in population i by
a single infectious individual in population j [8]. Because
we are considering two disease strains, we will have two
next generation matrices, KA and KB , to describe the
transmission of each strain, given as

Kα =

 βα

(γα+µ)(1+ε)
εβα

(γα+µ)(1+ε)

εβα

(γα+µ)(1+ε)
βα

(γα+µ)(1+ε)

 (4)

where α ∈ {A,B}.
It has been shown that the next generation matrix can

be used to compute R0. The number of infectious individ-
uals increases by a factor of λ, the dominant eigenvalue
of Kα, with each generation, which matches the defini-
tion of R0 [8, 27]. Thus, Rα0 is the dominant eigenvalue
of the next generation matrix Kα so we calculate Rα0 to
be

Rα0 =
βα

γα + µ
. (5)

3 Equilibrium Analysis

We are interested in the stability of the model’s equilib-
ria, which gives insight into the long term behavior of
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Figure 1: A flow chart illustrating an individual’s movement through the two-strain, two-population SIR model. For
population i, Si represents the susceptible subpopulation, IAi and IBi represent the subpopulations that are infected
with strain A or B respectively, and Ri represents the removed subpopulation. The dashed lines between the Iα1 and
Iα2 subpopulations are indicating that the two populations temporarily mix, and thus infections can spread from one
population to the other. However, there is no permanent immigration between populations 1 and 2.

the system. The model has three types of equilibrium so-
lutions: a disease-free equilibrium, competitive exclusion
equilibria, and coexistence equilibria.

3.1 Disease-Free

The disease-free equilibrium is so named because neither
strain of the disease is present in either population. The
entire metapopulation is susceptible. The point of equi-
librium is(

S1, S2, I
A
1 , I

A
2 , I

B
1 , I

B
2

)
=
(
N1, N2, 0, 0, 0, 0

)
. (6)

Figure 2 displays a model solution when the disease-free
equilibrium is stable and, thus, the solution trajectory
approaches the equilibrium.

An equilibrium point is stable whenever the real com-
ponent of each eigenvalue of the Jacobian matrix of the
system linearized around that equilibrium is negative [4].
Thus, we compute the eigenvalues of the Jacobian matrix,
J(N1, N2, 0, 0, 0, 0), and obtain

λ1 = −µ, (7a)

λ2 = −µ, (7b)

λ3 = βA − γA − µ, (7c)

λ4 =
(1− ε)βA

1 + ε
− (γA + µ), (7d)

λ5 = βB − γB − µ, (7e)

λ6 =
(1− ε)βB

1 + ε
− (γB + µ). (7f)

Since it is assumed µ > 0 we have λ1, λ2 < 0. When

RA0 = βA

γA+µ
< 1, we have λ3, λ4 < 0. Similarly, when

RB0 < 1 we have λ5, λ6 < 0. This implies that the disease-
free equilibrium is stable if and only if Rα0 is less than 1
for both strains α ∈ {A,B}.

3.1.1 Generalizing Disease-Free Equilibrium

We seek to extend this stability condition to metapopu-
lation models considering any number of disease strains
and any number of populations.

Theorem 1. In a metapopulation consisting of n pop-
ulations and m disease strains whose dynamics are gov-
erned by an SIR model with analogous assumptions as
the two-strain, two-population model given in Section 2
the disease-free equilibrium is stable if and only if Rα0 < 1
for each strain α.

Proof. Given n populations and m strains, the ordinary
differential equation system of n(1 +m) equations for the
model is

Ṡi = µNi − µSi − Si

(∑
α

n∑
j=1

βαijI
α
j

)
(8a)

İαi = Si

(
n∑
j=1

βαijI
α
j

)
− (γα + µ)Iαi (8b)

for all i ∈ {1, . . . , n} and α ∈ {1, . . . ,m}.
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Figure 2: The four infectious subpopulations against time when the solution approaches the stable, disease-free
equilibrium. Each of the four infectious subpopulations approaches zero. The solid curves are strain A, the dashed
curves are strain B, the blue curves are population 1, and the red curves are population 2. The parameter values used
were RA0 ≈ 0.67, RB0 ≈ 0.81, N1 = 100000, N2 = 150000, ε = .1, µ = 1

3640 (this value of µ gives a 70-year average
lifespan) with initial conditions of IA1 (0) = 400, IA2 (0) = 300, IB1 (0) = 200, IB2 (0) = 100, and with the remaining
individuals initially susceptible.

The disease-free equilibrium is the point

(S1, . . . , Sn, I
1
1 , . . . , I

m
n ) = (N1, . . . , Nn, 0, . . . , 0). (9)

The partial derivatives of the system with respect to the
state variables evaluated at the disease-free equilibrium
are

∂Ṡi
∂Sj

=

{
0 i 6= j

−µ i = j
(10a)

∂Ṡi
∂Iαj

= −Siβαij (10b)

∂İαi
∂Sj

= 0 (10c)

∂İαi
∂Iκj

=


0 κ 6= α

Siβ
α
ij κ = α, i 6= j

Siβ
α
ij − (γα + µ) κ = α, i = j

(10d)

Equations (10) make up the entries of the Jacobian
matrix evaluated at the disease-free equilibrium, J ∈
Rn(1+m)×n(1+m). By partitioning J into four blocks such
that

J =

[
J11 J12
J21 J22

]
=

 ∂Ṡi∂Sj
∂Ṡi
∂Iαj

∂İαi
∂Sj

∂İαi
∂Iκj

 , (11)

we see that J21 is the nm × n zero matrix and so J is
block upper-triangular. Thus, the eigenvalues of J are
the union of the eigenvalues of J11 and J22 [23]. The

block J11 ∈ Rn×n is diagonal, so its eigenvalues are sim-
ply −µ (with algebraic multiplicity n). The matrix J22
is also block diagonal; it consists of m n × n sub-blocks
on the diagonal which we label Aα, while each other sub-
block is an n × n zero matrix. The diagonal sub-blocks
are

Aα =
∂İαi
∂Iαj

. (12)

Thus, the eigenvalues of J22 are the union of the eigen-
values of each sub-block Aα. The eigenvalues of each sub-
block Aα can be obtained using a lemma proven in the
appendix of this article. The eigenvalues of Aα are

λ = βα − (γα + µ) (13a)

with algebraic multiplicity 1 and

λ =
(1− ε)βα

1 + (n− 1)ε
− (γα + µ) (13b)

with algebraic multiplicity (n− 1).
To guarantee βα − (γα + µ) < 0, we have Rα0 < 1.

Also, we have

(1− ε)βα

1 + (n− 1)ε
− (γα + µ) < βα − (γα + µ), (14)

and thus each eigenvalue of Aα is negative if and only if
Rα0 < 1 for each α.

Recall that the set of eigenvalues of J was the union of
the sets of eigenvalues of blocks J11 and J22. We have just
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found the eigenvalues of J22 and determined when they
are negative, and that J11 has eigenvalues −µ, with al-
gebraic multiplicity n, which are always negative. Thus,
all of the eigenvalues of J are negative so the disease-
free equilibrium is stable if and only if Rα0 < 1 for each
strain α. �

3.2 Competitive Exclusion

The second class of equilibria for the model is competi-
tive exclusion. This type occurs when one strain in the
populations is stronger than the other strain, forcing the
weaker strain to extinction while the stronger strain re-
mains endemic in the metapopulation. An explicit for-
mula for the point of equilibrium is unruly, and so we
chose to test the stability of the equilibrium via quanti-
tative analysis. This will be outlined in subsection 3.4.
Figure 3 illustrates a model solution where a competi-
tive exclusion equilibrium is stable and is the resultant
long-term behavior.

3.3 Coexistence

The third class of equilibria for the model is coexistence.
This type of equilibrium arises when both strains of the
disease remain in the metapopulation. By setting Equa-
tions (1) to zero and examining the case when each of
Iαi > 0, we obtain the conditions for the coexistence equi-
libria. There are two different conditions, either of which
can be met to obtain a coexistence equilibrium. Either

RA0 = RB0 (15)

or

RB0 =
Ni(ε+ 1)(RA0 S

∗
i (ε− 1) +Ni)

S∗
i (ε− 1)(RA0 S

∗
i −Ni(ε+ 1))

(16)

for both i = 1 and 2, and where S∗
i is the constant value

of Si at the coexistence equilibrium. Equation (15) rep-
resents the situation when both strains are of equivalent
strength, effectively treating the system as only having
one strain. We call this equilibrium simple coexistence.
Equation (16) defines a coexistence case when the R0’s
are not equal. This situation differs from the single case
of coexistence that occurs in one-population models. We
will refer to this equilibrium as complex coexistence.

The case of simple coexistence occurs when RA0 = RB0 .
At this equilibrium, both strains coexist in each popula-
tion. Based on quantitative analysis (see subsection 3.4)
this equilibrium is stable when the R0 values are equal
and greater than one. Figure 4 illustrates a model so-
lution where the simple coexistence scenario is present;
both strains are endemic in the metapopulation.

The case of complex coexistence, in which the strains
have differing R0 values, may occur when Equation (16)

is met. As solving for an explicit formula for the com-
plex coexistence equilibrium is untenable, and because,
if it does exist, it is likely unstable (see subsection 3.4),
quantitative methods are also unable locate it. Thus, we
searched for conditions under which a biologically rele-
vant complex coexistence equilibrium could not be ruled
out.

Equation (16) is an expression for RB0 in terms of S∗
i ,

which is a state variable at equilibrium. Equation (16),
which is quadratic in S∗

i , can be expressed as

(ε− 1)RA0 R
B
0 S

∗2
i −Ni(ε2 − 1)(RB0 −RA0 )S∗

i

−N2
i (ε+ 1) = 0 (17)

and then solved for S∗
i in terms of only parameters. Con-

ditions can be constructed for S∗
i to be biologically rel-

evant by examining the discriminant. All conditions for
S∗
1 and S∗

2 to be biologically relevant, i.e.

0 ≤ S∗
1 ≤ N1 and 0 ≤ S∗

2 ≤ N2, (18)

can be combined into the following regions of feasibility
of coexistence when RA0 6= RB0 :

Rα0 > 0, (19)

and either

RA0
RB0
≤ (ε+ 1− 2

√
ε)(ε+ 1)

1− ε
(20a)

or

RA0
RB0
≥ (ε+ 1 + 2

√
ε)(ε+ 1)

1− ε
. (20b)

Notice that when there is no mixing between the pop-
ulations, ε = 0, any values for RA0 > 1 and RB0 > 1 could
potentially result in a coexistence equilibrium. This is
sensible, as when there is no mixing, if one strain ex-
ists independently in each population, there is no way for
them to competitively exclude each other. However, as
ε increases, the set of feasible R0 pairs decreases. This
also makes sense, as the amount of mixing increases, the
two populations approach the behavior of a single pop-
ulation, which has no complex coexistence equilibrium.
This phenomenon can be seen in Figure 5.

The feasible region of existence of the complex co-
existence equilibrium shrinks as ε increases. Thus, we
conjecture that if a complex coexistence equilibrium does
exist, the behavior of the system at such an equilibrium
would be that one strain persists in one population while
the other strain persists in the other population, behaving
similarly to two disjoint populations.
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Figure 3: The four infectious subpopulations against time when strain A is competitively excluded while strain B
persists. The left plot displays the initial outbreak of both strains, while the right plot displays periodic endemic
outbreaks of only strain B. The solid curves are strain A, the dashed curves are strain B, the blue curves are popula-
tion 1, and the red curves are population 2. The parameter values used were RA0 = 2.70, RB0 = 13.49, N1 = 100000,
N2 = 150000, ε = .1, µ = 1

3640 with initial conditions of 500 initial individuals in each infectious class with the
remaining individuals initially susceptible.
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Figure 4: The four infectious subpopulations against time in a simple coexistence scenario; both strains remain
endemic in the population and cause periodic outbreaks. Note that only two curves are shown, as IA1 = IB1 and
IA2 = IB2 . The blue curves are population 1, and the red curves are population 2. The parameter values used were
RA0 = 4.04, RB0 = 4.04, N1 = 100000, N2 = 150000, ε = .1, µ = 1

3640 with initial conditions of 500 initial individuals
in each infectious class with the remaining individuals initially susceptible.
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B
0 against ε to potentially yield a complex coexistence scenario as

given in Equations (20).

Parameter Units Value Varied?

N1 individuals 100000 N

N2 individuals 150000 N

γA weeks−1 0.5 N

γB weeks−1 0.5 N

ε 1 [0.01, 0.99] Y

1/µ years [32, 82] Y

βA weeks−1 [1, 50] Y

βB weeks−1 [1, 50] Y

IA1 (0) individuals [1,1000] Y

IB1 (0) individuals [1,1000] Y

IA2 (0) individuals [1,1000] Y

IB2 (0) individuals [1,1000] Y

S1(0) individuals N1 − IA1 (0)− IB1 (0) N

S2(0) individuals N2 − IA2 (0)− IB2 (0) N

Table 1: A list of parameters and initial conditions used for quantitative analysis. Each of the entries in the “Value”
column given in brackets is a range of reasonable values. The “Varied?” column lists a “Y” if the value was included
in the Latin Hypercube Sample.
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3.4 Quantitative Analysis

We used a quantitative approach to determine the sta-
bility conditions for the non-disease-free equilibria. We
chose to perform a Latin Hypercube Parameter Space
Sampling [22] (LHS) to sample 108 combinations of pa-
rameters and initial conditions. The parameter values
and ranges used for the sampling (from uniform distribu-
tions) are given in Table 1.

The model was then solved numerically for each set
of values from the LHS in MATLAB over a timespan of
5000 simulated weeks. Each simulation output the values
of Iαi (5000) to determine which equilibrium was being ap-
proached. For simulations where RA0 = RB0 , both strains
persisted, as predicted. For simulations where the R0 val-
ues varied between strains, the dominant strain competi-
tively excluded the weaker strain. From these results, we
assert that if the complex coexistence equilibrium does
exist, it is unstable.

4 Discussion

The analysis of the previous section indicates a pattern
in the long-term behavior of a two-strain, two-population
infectious disease system. In summary, when the basic
reproductive number for both strains is below one, the
disease-free equilibrium is stable and approached by all
(biologically relevant) trajectories. Importantly, we have
generalized that result to an n-population, m-strain situ-
ation in the theorem given in subsection 3.1. When the
basic reproductive number for one strain is stronger than
the other, and is greater than one, that strain competi-
tively excludes the other. Finally, when both strains have
equal basic reproductive numbers, and are greater than
one, the strains exist simultaneously in the population
(simple coexistence).

However, our work leaves many remaining research
questions. The most obvious extension is the conclusion
of the equilibrium analyses begun here, by proving the
hypothesized stability of the competitive exclusion equi-
libria and the simple coexistence equilibrium while also
proving the instability of the complex coexistence equi-
librium. More generalizations could be made, such as
varying the mixing rates and the birth/death rates by
population, i.e. ε1 6= ε2 and µ1 6= µ2. This would yield
different formulations for R0 and could allow for more
possibilities for complex coexistence.

Additionally, our results are specific to this deter-
ministic model. Stochastic processes have previously
been shown to have significant effects in multistrain and
metapopulation models (see, for example, [26, 21, 11]). A
stochastic analogue of this model may demonstrate long-
term behavior where two strains of differing strengths
could coexist in a metapopulation.
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Appendix

In this appendix, we provide the lemma referred to in
subsection 3.1 and its proof.

Lemma 1. Given the matrix Ã ∈ Rn×n such that

Ã =


y − x̃ y . . . y

y y − x̃
. . .

...
...

. . .
. . . y

y . . . y y − x̃

 (21)

where

x̃ =
(ε− 1)β

1 + (n− 1)ε
− (γ + µ) (22a)

y =
εβ

1 + (n− 1)ε
, (22b)

the eigenvalues of Ã are

λ = β − (γ + µ) (23a)

with algebraic multiplicity 1 and

λ =
(1− ε)β

1 + (n− 1)ε
− (γ + µ) (23b)

with algebraic multiplicity (n− 1).

Proof. To find the eigenvalues of Ã, the equation det(Ã−
λI) = 0 must be solved. Notice that An×n = Ã−λI is of
the form

An×n =


y − x y . . . y

y y − x
. . .

...
...

. . .
. . . y

y . . . y y − x

 (24)
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where

x =
(ε− 1)β

1 + (n− 1)ε
− (γ + µ+ λ) (25a)

y =
εβ

1 + (n− 1)ε
. (25b)

Consider the sequences ai and bi defined by

ai =

{
y − x i = 0

(y − x)ai−1 − iybi−1 i ≥ 1
(26a)

and

bi =

{
y i = 0

yai−1 − iybi−1 i ≥ 1.
(26b)

Let Bn×n be an n× n matrix of the form

Bn×n =


y y . . . y

y y − x
. . .

...
...

. . .
. . . y

y . . . y y − x

 . (27)

We claim that the value an−1 gives the determinant
for An×n and bn−1 gives the determinant for Bn×n. We
prove this claim by induction on n. For n = 1 we have
A1×1 = det(A1×1) = y−x = a0 and B1×1 = det(B1×1) =
y = b0.

Now suppose the claim holds for all n < k. First
we introduce some notation: Let B0

n×n = Bn×n and for

1 < i < n let Bin×n = Bi−1
n×n with rows i − 1 and i inter-

changed.
Perform cofactor expansion along the top row of

An×n. Then we have

det(An×n) = (y − x) det(A(n−1)×(n−1))

− y
n∑
i=0

det(Bi(n−1)×(n−1)). (28)

Notice that for i even we can change Bi(n−1)×(n−1)

to B0
(n−1)×(n−1) by performing an even number

of row switches, and thus det(Bi(n−1)×(n−1)) =

det(B0
(n−1)×(n−1)) = det(B(n−1)×(n−1)). Similarly, for i

odd det(Bi(n−1)×(n−1)) = −det(B(n−1)×(n−1)). Then we
have

det(An×n) = (y − x) det(A(n−1)×(n−1))

− y
n∑
i=0

det(B(n−1)×(n−1)) (29a)

= (y − x) det(A(n−1)×(n−1))

− (n− 1)y det(B(n−1)×(n−1)). (29b)

By the induction hypothesis, det(A(n−1)×(n−1)) =
an−2 and det(B(n−1)×(n−1)) = bn−2 and so

det(An×n) = (y − x)an−2 − (n− 1)ybn−2 = an−1 (30)

as claimed.
Performing cofactor expansion along the top row of

Bn×n and using the same method as above, we find

det(Bn×n) = yan−2 − (n− 1)y(bn−2) = bn−1. (31)

Thus, the claim holds for all n.
Now, we claim that the sequences ai and bi have closed

forms given by

ai = (−1)i
[
(i+ 1)xiy − xi+1

]
(32a)

bi = (−1)i(xiy). (32b)

Again, we prove this claim by induction on i. For
i = 0 we have

a0 = (y − x) = (−1)0
(
x0y − x

)
(33a)

b0 = y = (−1)0
(
x0y
)
. (33b)

Suppose that for i = k the claim holds. Then for
i = k + 1 we have

ak+1 = (y − x)ak − (k + 1)ybk (34a)

= (y − x)
[
(−1)k

(
(k + 1)xky − xk+1

)]
− (k + 1)y

[
(−1)kxky

]
(34b)

= (−1)k(k + 1)xky2 − (−1)kxk+1y

− (−1)k(k + 1)xk+1y

− (−1)k(k + 1)xky2 (34c)

= −(−1)kxk+1y − (−1)k(k + 1)xk+1y (34d)

= (−1)k+1
[
(k + 2)xk+1y − xk+2

]
(34e)

as claimed. We also have

bk+1 = yak − (k + 1)bk (35a)

= y
[
(−1)k

(
(k + 1)xky − xk+1

)]
− (k + 1)y

[
(−1)kxky

]
(35b)

= (−1)k
[
(k + 1)xky2 − xk+1y

]
− (−1)k(k + 1)xky2 (35c)

= (−1)k(−xk+1y) (35d)

= (−1)k+1(xk+1y) (35e)

as claimed. Thus the claim holds for all i.
Now that we have an expression for det(A), we can

compute the eigenvalues of Ã.
We have just shown that

det(An×n) = an−1 (36a)

= (−1)n−1
(
nxn−1y − xn

)
(36b)

= (−1)n−1xn−1(ny − x). (36c)
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Substituting in values for x and y found in Equation (25),
we have

an−1 = (−1)n−1 ·
(

(ε− 1)β

1 + (n− 1)ε
+ γ + µ+ λ

)n−1

· (β − (γ + µ)− λ) . (37)

Setting an−1 = 0 we see that(
(ε− 1)β

1 + (n− 1)ε
+ γ + µ+ λ

)n−1

= 0 (38)

or
(β − (γ + µ)− λ) = 0. (39)

The first case gives

λ =
(1− ε)β

1 + (n− 1)ε
− (γ + µ) (40)

with algebraic multiplicity (n−1). The second case gives

λ = β − (γ + µ) (41)

with algebraic multiplicity 1. Thus, the eigenvalues of Ã
are as claimed. �
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