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In an effort to combat diseases and disorders that impede our health, comfort and 

well-being, an abundance of prescription drugs have emerged in the past 60 years. Many 

prescription drugs have remarkable efficacy for treating the primary symptoms of these 

diseases and disorders; however, some drugs carry negative side effects that impose their 

own adverse symptoms, albeit, often to a lesser degree than the primary symptoms. Thus, 

one of the main objectives of the pharmaceutical industry is to innovate and develop 

novel therapeutics, which remediate the primary symptoms of disease and lack 

undesirable negative side effects. However, in order to develop effective novel 

therapeutics, a comprehensive understanding of the underlying mechanisms of current 

drugs is critical. The work within this thesis investigates the mechanisms of two 

neuroactive drugs, which are commonly prescribed by physicians. Chapter I investigates 

modafinil (Provigil®), which is therapeutic for sleep and psychiatric disorders, and drug 

addiction therapy. Chapter II investigates atomoxetine (Strattera®), which is prescribed 

for attention deficit hyperactivity disorder (ADHD) and possesses limited abuse potential, 



in contrast to current ADHD medications, Adderall® and Ritalin®, which are addictive. 

The effects of modafinil and atomoxetine on phasic dopamine signaling were 

investigated. Phasic dopamine signaling has been identified critical for reward learning 

and seeking, and is hypothesized to contribute to deficits in ADHD and drug addiction. 

The results herein suggest that alterations in phasic dopamine signaling are involved in 

the underlying mechanism of modafinil and atomoxetine action and may ultimately 

contribute to their therapeutic efficacy.  

 

KEYWORDS: Dopamine, Fast-scan cyclic voltammetry, Modafinil, Atomoxetine, 

Narcolepsy, Attention deficit hyperactivity disorder, Phasic dopamine signaling 
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CHAPTER I 

MODAFINIL ACTIVATES PHASIC DOPAMINE SIGNALING IN THE DORSAL 

AND VENTRAL STRIATUM OF THE RAT
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ABSTRACT 

 Modafinil (MOD) is a psychomotor stimulant exhibiting therapeutic efficacy for 

treating sleep, psychiatric disorders, and drug addiction. However, its mechanism of 

action is incompletely understood. Compared to other psychomotor stimulants inhibiting 

dopamine (DA) uptake, MOD weakly interacts with the dopamine transporter (DAT) and 

elicits lower elevations in dialysate DA in the striatum, suggesting additional MOD 

targets. However, the ability of MOD to induce wakefulness is abolished in DAT-

knockout mice, suggesting that DAT is necessary for MOD action. Another 

pharmacologic target for psychomotor stimulants, but one not established for MOD, is 

the activation of phasic DA signaling. This mode of DA neuronal communication is 

implicated in reward learning and consists of burst firing of DA neurons generating rapid 

changes in extracellular DA termed transients. Here we investigated the effects of MOD 

on phasic DA signaling in the striatum of urethane-anesthetized rats with fast-scan cyclic 

voltammetry. We found that MOD (30-300 mg/kg i.p.) robustly increased the amplitude 

of electrically evoked phasic-like DA signals in a time- and dose-dependent fashion, with 

greater enhancement in the dorsal than ventral striatum. Analysis of these evoked signals 

to assess presynaptic mechanisms demonstrated that MOD also increases DA release and 

decreases DA uptake also in a time- and dose-dependent manner. Principal component 

regression of non-electrically evoked recordings revealed negligible changes in basal DA 

levels with high-dose MOD (300 mg/kg i.p.). Lastly, in the presence of the D2 DA 

antagonist, raclopride, to relieve anesthesia blunting of burst firing by DA neurons, low-

dose MOD (30 mg/kg i.p.) robustly elicited DA transients in the dorsal and ventral 

striatum. Taken together, these results suggest that activation of phasic DA signaling is 
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an important mechanism underlying the clinical efficacy of MOD.  Figure 1 summarizes 

our findings. 
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Introduction 

 Modafinil (MOD; Provigil®) is a psychomotor stimulant exhibiting therapeutic 

efficacy for treating a variety of neuropathologies, including sleep-related disorders such 

as narcolepsy (Wise et al., 2007), obstructive sleep apnea syndrome (Pack et al., 2001), 

and shift-work sleep disorder (Czeisler et al., 2005), psychiatric disorders such as 

attention deficit hyperactivity disorder (ADHD) (Swanson et al., 2006) and schizophrenia 

(Ballon and Feifel, 2006), and drug addiction (Anderson et al., 2009; Shearer et al., 2009; 

Anderson et al., 2012). Similar to other psychomotor stimulants used therapeutically, 

such as amphetamine (Adderall®) and methylphenidate (Ritalin®), MOD enhances 

locomotor activity (Kuczenski et al., 1991; Edgar and Seidel, 1997; Kuczenski and Segal, 

2001) and wakefulness (Wisor et al., 2001; Ishizuka et al., 2008), and exhibits cognitive 

enhancing properties (Barch and Carter, 2005; Kumar, 2008; Repantis et al., 2010). 

Indeed, a recent meta-analysis study has concluded that MOD can be used safely as a 

cognitive enhancer in normal, healthy subjects (Battleday and Brem, 2015). However, 

unlike other therapeutic psychomotor stimulants, MOD exhibits limited potential for 

abuse (Deroche-Gamonet et al., 2002). This attractive property has generated 

considerable interest in establishing the neuropharmacologic mechanism of MOD. 

 Although MOD has been found to modulate various neurotransmitters in the 

brain, including histamine, hypocretin (orexin), GABA, glutamate, norepinephrine, and 

serotonin, its effects on dopamine (DA) have received the greatest attention (Tanganelli 

et al., 1992; Ferraro et al., 1997a; Ferraro et al., 1997b; Chemelli et al., 1999; de Saint et 

al., 2001; Ishizuka et al., 2003). This atypical psychomotor stimulant appears to 

preferentially interact with the dopamine transporter (DAT), compared to the transporters 
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for norepinephrine and serotonin, and to show little affinity for receptors for the 

monoamines and other neurotransmitters (Mignot et al., 1994; Madras et al., 2006; 

Zolkowska et al., 2009). However, whether MOD acts directly through DAT is 

controversial. On one hand, MOD exhibits weak affinity for DAT (Mignot et al., 1994; 

Madras et al., 2006; Zolkowska et al., 2009) and elicits only relatively modest increases 

in striatal dialysate DA (Ferraro et al., 1997b; Loland et al., 2012). On the other hand, 

MOD’s effects appear to rely on DAT, as MOD-induced wakefulness is abolished in 

DAT-knockout mice (Wisor et al., 2001). 

 Based on work investigating actions of other DAT-inhibiting psychomotor 

stimulants, another potential target for MOD is phasic DA signaling. DA neurons signal 

in two distinct modes: tonic and phasic (Grace and Bunney, 1984a; Grace and Bunney, 

1984b). Slow, irregular firing of DA neurons generates a basal extracellular level of DA 

called tone during tonic DA signaling, whereas burst firing of DA neurons generates 

rapid increases in extracellular DA called transients during phasic DA signaling (Grace 

and Bunney, 1984a; Sombers et al., 2009). Phasic DA signaling is involved in reward 

learning (Schultz et al., 1997; Day et al., 2007) and seeking (Phillips et al., 2003b), and 

alterations in phasic DA signaling are hypothesized to contribute to ADHD (Tripp and 

Wickens, 2008) and drug addiction (Covey et al., 2014). Several DAT-inhibitor 

psychomotor stimulants have been shown to activate phasic DA signaling by increasing 

burst firing of DA neurons (Shi et al., 2000; Shi et al., 2004; Koulchitsky et al., 2012) and 

the frequency of DA transients in the striatum (Venton and Wightman, 2007; Covey et 

al., 2013; Daberkow et al., 2013). DAT-inhibiting psychostimulants have also been 

shown to act presynaptically to enhance DA release in addition to inhibiting DA uptake 
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(Wu et al., 2001a; Venton et al., 2006; Chadchankar and Yavich, 2012). Whether MOD 

acts similarly to activate phasic DA signaling has not been examined. 

 Here we use fast-scan cyclic voltammetry (FSCV) at a carbon-fiber 

microelectrode (CFM) to investigate the effects of MOD on phasic DA signaling in 

urethane-anesthetized rats. The effects of MOD were examined in the dorsal and ventral 

striatum across a wide behaviorally relevant range of doses (30 - 300 mg/kg i.p.) (Edgar 

and Seidel, 1997; Beracochea et al., 2001; Ward et al., 2004). Two measures of phasic 

DA signaling were assessed: the amplitude of electrically evoked phasic-like DA signals 

and DA transients elicited in the presence the D2 DA antagonist, raclopride, to overcome 

anesthesia blunting of burst firing by DA neurons (Shi et al., 2000; Shi et al., 2004; 

Venton and Wightman, 2007). In addition, the effects of MOD on the presynaptic 

mechanisms of DA release and uptake (Wu et al., 2001b) and on tonic DA levels as 

analyzed using principle component regression (PCR) (Keithley et al., 2009) were also 

determined. Taken together, our results suggest that activation of phasic DA signaling is 

a novel mechanism contributing to the therapeutic efficacy of MOD.  
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Materials and Methods 

Animals. Male Sprague-Dawley rats (300-400 g) were purchased from Harlan 

(Indianapolis, IN, USA) and housed in a temperature-controlled vivarium on a diurnal 

light cycle (12h light/dark) with food and water provided ad libitum. Animal care 

conformed to the NIH Guide for the Care and Use of Laboratory Animals and 

experimental procedures were approved by the Institutional Animal Use and Care 

Committees at Illinois State University. 

Surgery. Rats were anesthetized with urethane (1.6 g/kg, i.p.) and immobilized in a 

stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). Holes for reference, 

stimulating, and two CFMs were drilled. All coordinates, anteroposterior (AP), 

mediolateral (ML) and dorsoventral (DV), are given in mm and are referenced to bregma 

(Paxinos and Watson, 1986). The stimulating electrode targeted the medial forebrain 

bundle (MFB; -4.6 AP, +1.3 ML, -7.5 DV). CFMs targeted the dorsal (+1.2 AP, +3.0 

ML, -4.5 DV) and ventral (+1.2 AP, +1.5 ML, -6.5 DV) striatum. The Ag/AgCl reference 

electrode was placed in the contralateral superficial cortex. 

Experimental Design. DA was recorded in sequential 5-minute epochs and for most 

recordings, FSCV was performed simultaneously at separate CFMs implanted in the 

dorsal and ventral striatum of a single animal. In the first experimental design, four pre-

drug and 30 post-drug epochs were collected, and electrical stimulation of the MFB was 

applied 5 seconds into each epoch. The effects of vehicle (2-hydroxypropyl)-β-

cyclodextrin (vehicle) or MOD (30, 60, 100 or 300 mg/kg) were examined on electrically 

evoked DA signals for the entire duration of DA measurements (15 min pre-drug and 160 

min post-drug. The effects of vehicle or MOD across the same dose range as above on 
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DA release and uptake were examined pre-drug and at 30 and 60 min post-drug. The 

effects of vehicle or high-dose MOD (300 mg/kg) on changes in basal DA levels were 

examined pre-drug for 40 min post-drug. In the second experimental design, electrical 

stimulation was applied pre-drug and every 30 min post-drug to assess the veracity of the 

CFM. After pre-drug recordings, raclopride (2 mg/kg) was co-administered with low-

dose MOD (30 mg/kg) and DA transients were analyzed during 5-min epochs pre-drug 

and post-drug at 15, 30, 60 and 120 min. All vehicle and drugs were administered 

intraperitoneally (i.p.) in a total volume of 2 ml. n = 4-7 each in the dorsal and ventral 

striatum. 

Electrochemistry. DA measurements were recorded with FSCV at a CFM by 

applying a triangular waveform (-0.4 to +1.3V and back) at a rate of 400V/s every 100 

ms. CFMs were fabricated by aspirating a single carbon fiber (r=3.55 µm; HexTow AS4, 

HexCel Corp., Stamford, CT, USA) into a borosilicate capillary tube (1.2mm o.d.; Sutter 

Instrument, Novato, CA, USA) and pulling to a taper using a micropipette puller 

(Narishige, Tokyo, Japan). The carbon fiber was then cut to ~100 µm distal to the glass 

seal. FSCV was performed by a Universal Electrochemistry Instrument (UEI; 

Department of Chemistry Electronic Shop, University of North Carolina, Chapel Hill, 

NC, USA) and commercially available software (ESA Bioscience, Chelmsford, MA, 

USA). Current recorded at peak oxidative potential for DA (~+0.6 V) was converted to 

DA concentration based on post-calibration of the CFM using flow-injection analysis in a 

modified TRIS buffer (Kume-Kick and Rice, 1998; Wu et al., 2001b; Phillips et al., 

2003a). DA was initially identified from the background subtracted voltammogram 

(Michael et al., 1998; Heien et al., 2004). 
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Measurements with Electrical Stimulation. Electrical stimulation was computer 

generated and passed through an optical isolator and constant-current generator 

(Neurolog NL800; Digitimer Limited, Letchworth Garden City, UK). Biphasic 

stimulation pulses were applied to a twisted bipolar electrode (Plastics One, Roanoke, 

VA, USA), with tips separated ~1 mm. Stimulus parameters were ±300 μA intensity and 

4 ms biphasic pulses (2 ms each phase), trains were applied at a frequency of 60 Hz for 

0.4 s. 

Analysis of Dopamine Release and Uptake. Electrically evoked phasic-like DA 

signals were analyzed to determine maximal amplitude ([DA]max) and parameters for 

presynaptic DA release and uptake according to (Wightman et al., 1988; Wu et al., 

2001b): 

[1] d[DA]/dt = [DA]p*f - k[DA] 

where [DA]p is the concentration of DA elicited per stimulus pulse used to index DA 

release, k is the first-order rate constant for DA uptake, and f is the frequency of electrical 

stimulation. [DA]p and k were determined by fitting data to equation 1 using a nonlinear 

regression with a simplex-minimization algorithm (Wu et al., 2001b). Temporal 

distortion in measured DA responses was accounted for using a diffusion gap model, with 

the width held constant for each CFM across pre- and post-drug measurements (Wu et al., 

2001b). 

Analysis of Basal Dopamine Levels and Dopamine Transients. Changes in non-

electrically evoked DA levels were assessed using PCR to resolve DA, pH, and 

background drift from FSCV recordings (Hermans et al., 2008; Keithley et al., 2009). In 

select files, PCR additionally resolved a repetitive background noise component. PCR 
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analysis was accepted if any current in the recordings not accounted for by the retained 

principal components of the training sets, or residual (Q), was less than the 95% 

confidence threshold (Qα). Epochs where Q exceeded Qα were not used for analysis. 

Changes in baseline DA levels (Δ[DA]) per 5 min-epoch were determined by averaging 

all data points post-stimulation of PCR-resolved traces. Data are presented as Δ[DA] 

within each five-minute epoch and not as a contiguous concatenation to avoid resetting Q 

with a new background subtraction at the start of each epoch. DA transients were 

identified in PCR-resolved traces as peaks greater than 5-times the root-mean-square-

noise using peak-finding software (MINI ANALYSIS; Synaptosoft, Decatur, GA, USA). 

Statistical Analysis. Where appropriate, data are expressed as the mean±SEM. 

Unless noted below, statistical analyses were performed with SAS version 9.3 (SAS 

Institute). Time courses for [DA]max, [DA]p, and k were analyzed using a three-way 

ANOVA with repeated measures with time, drug dose, and striatal region as factors. Path 

analysis was conducted to assess the direct and indirect influences of [DA]p and k on 

dose-dependent effects of MOD on [DA]max. Alternative path analyses were conducted to 

compare Akaike Information Criteria (AIC) of reduced models to those of the complete 

model. A two-way ANOVA with repeated measures assessed differences in DA transient 

frequency with time and dose as factors. Correlations were performed with Sigma Plot 

12.0 (Systat Software Inc., San Jose, CA, USA). Significance was set at p < 0.05. 

Drugs. Urethane, (2-hydroxypropyl)-β-cyclodextrin and raclopride were purchased 

from Sigma (St. Louis, MO, USA). MOD was provided by Research Triangle Institute-

National Institute on Drug Abuse, Raleigh, NC. Urethane and raclopride were dissolved 
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in 150 mM NaCl prior to injection. MOD was dissolved in a mixture of 50% (2-

hydroxypropyl)-β-cyclodextrin and nanopure w/v. 
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Results 

Modafinil Robustly Increases the Amplitude of Electrically Evoked Phasic-Like 

Dopamine Signals. Figure 2 shows representative effects of MOD on electrically evoked 

phasic-like DA signals collected in the dorsal (Fig. 2A) and ventral (Fig. 2B) striatum. In 

the top of each panel, electrical stimulation of MFB increased [DA] as measured by 

FSCV at a CFM. Pseudo-color plots below, which serially display all voltammograms 

collected during the recording, and individual voltammograms (inset) identify DA as the 

primary analyte recorded based on the electrochemical profile. MOD (100 mg/kg) 

increased [DA]max in both the dorsal and ventral striatum 60 minutes post-drug 

administration. 

Figure 3 shows averaged time courses of MOD effects on [DA]max expressed as a 

percent change from pre-drug in the dorsal (Fig. 3A) and ventral (Fig. 3B) striatum. All 

four doses, 30, 60, 100, 300 mg/kg MOD, appeared to elevate [DA]max compared to 

vehicle control for more than 2.5 hours post-drug administration. Consistent with 

representative recordings shown in figure 2, averaged MOD appeared to elevate [DA]max 

to a greater extent in the dorsal than in the ventral striatum. A three-way repeated 

measures ANOVA revealed significant effects of time (F33,1419 = 30.83, p = <0.0001), 

dose (F4,43 = 15.47, p = <0.0001), and region (F1,43 = 5.85, p = <0.0198); thus, MOD 

increased [DA]max in a time- and dose-dependent manner with a greater effect in the 

dorsal striatum. There were also significant time-by-dose (F132, 1419 = 9.04, p = 

<0.0001) and time-by-region (F132, 1419 = 4.17, p = 0.0207) interactions but no region-

by-dose interaction (F4, 43 = 0.70, p = <0.5970).  
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Modafinil Increases Dopamine Release and Decreases Dopamine Uptake. MOD-

induced increases in [DA]max could be mediated by enhanced DA release and/or inhibited 

neuronal DA uptake. To initially assess whether MOD decreased DA uptake, electrically-

evoked decay curves were overlaid at the same concentration (Fig. 4 inset) and the slopes 

were visually inspected between pre- and post-drug traces. The downward slope of the 

evoked trace is thought to be due to DA uptake and not DA release (Wu et al., 2001b). 

Thus, the flatter post-drug traces after MOD indicates slower DA clearance from the 

extracellular space (Fig. 4). This qualitative approach suggests that MOD appears to 

decrease DA uptake, suggesting that the increase in [DA]max may be DA uptake 

inhibition, at least in part. However, MOD-induced increases in DA release may also play 

a role, because the upward slope of the evoked trace is due to the balance of DA release 

and uptake (Wu et al., 2001b). 

To quantitatively resolve MOD’s effect on DA release and uptake on [DA]max, 

electrically evoked responses were fit to Eq. 1. Figure 5 shows [DA]max (left), DA release 

as indexed by [DA]p (middle), and DA uptake as indexed by k (right) for the dorsal (Fig. 

5A) and ventral (Fig. 5B) striatum. Three time points were assessed: pre-drug, 30 min, 

and 60 min. Three-way repeated measures ANOVA was used for statistical analysis for 

each parameter. Statistical analysis of [DA]max revealed significant effects of time (F2, 88 

= 60.28, p = <0.0001), dose (F4, 44 = 3.47, p = 0.0151), and time-by-dose interaction 

(F8, 88 = 15.59, p = <0.0001) but no significant effect of region (F1, 44 = 2.79, p = 

0.1022). The nonsignificant regional effect in this analysis was most likely attributed to 

the reduced number of time points examined at maximal drug (> 60 min) as compared to 

the complete time course in figure 3. Analysis of [DA]p revealed significant effects of 
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time (F2, 88 = 37.48, p = <0.0001), dose (F4, 44 = 3.30, p = 0.0189), and time-by-dose 

interaction (F8, 88 = 9.23, p = <0.0001) but no significant effect of region (F1, 44 = 0.18, 

p = 0.6774). Finally, analysis of k revealed significant effects of time (F2, 88 = 56.82, p = 

<0.0001) and region (F1, 44 = 7.72, p = 0.008), as well as a time-by-dose interaction (F8, 

88 = 3.82, p = 0.0023). Taken together, these results demonstrate that MOD increases DA 

release and decreases DA uptake in a time-dependent fashion.  

We next used path analysis to evaluate the respective contribution of increased 

DA release and decreased DA uptake to the dose-dependent effects of MOD on [DA]max 

in order to gain more insight into whether one of these presynaptic mechanisms is 

preferentially targeted. Path analysis is a statistical technique that tests effects of multiple 

independent variables on a dependent variable, much like multiple regression; however, 

path analysis allows for the possibility that variables can be both dependent and 

independent (i.e., variables can be both affected by dose and affect other variables). The 

output of path analysis, path coefficients, are standardized regression coefficients and 

indicate the strength and direction (i.e., positive or negative) of the relationship between 

the variables.  

Figure 6 shows the complete model for path analysis, with arrows demarcating 

direct relationships between variables and the path coefficient given above each arrow. 

Path analysis of the complete model suggests that MOD dose exerts an almost equal, but 

opposite, direct effect on DA release (+0.6359) and uptake (-0.6571); thus, increasing the 

dose of MOD increases DA release and decreases DA uptake to a similar magnitude. 

However, DA release exerted a greater effect on [DA]max as compared to DA uptake, 

+0.9192 and -0.1423 respectively, suggesting that DA release was preferentially targeted 
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by MOD to increase [DA]max. Based on 95% confidence intervals, the effect of MOD 

dose on DA release (95% confidence interval, 0.48-0.80) and uptake (95% confidence 

interval, 0.50-0.81) was not significantly different but that the effect of DA release (95% 

confidence interval, 0.88-0.96) on [DA]max was significantly greater than that of DA 

uptake (95% confidence interval, 0.09-0.20). Lastly, path analyses for alternative models 

(i.e., omitting either DA uptake or release) were conducted, and AIC values between 

were compared to determine which model was most appropriate. Omitting DA uptake or 

DA release resulted in increased AIC, (44 and 196 respectively), as compared to the 

original model (19), which included both parameters, suggesting that both DA release 

and uptake together best explain the MOD dose effects on [DA]max as compared to 

individually. Additionally, the larger AIC calculated after omission of DA release, as 

compared to DA uptake, suggests that when DA release is omitted the model has a 

weaker fit, which is consistent with path coefficients derived for the complete model. 

Modafinil Has Negligible Effects on Basal Dopamine Levels. MOD effects on 

basal DA levels were assessed by applying a chemometrics analysis technique termed 

PCR (Hermans et al., 2008; Keithley et al., 2009) to the non-electrically evoked portion 

of the raw FSCV recording. Figure 7A shows representative FSCV and PCR recordings 

for pre-drug and 60 minutes post-300 mg/kg MOD, the highest dose tested. The raw 

FSCV recording (top; black trace) shows a steady increase in current for both pre- and 

post-drug conditions (left and right, respectively). However, the current cannot be 

attributed solely to DA as the color plot below shows additional electrochemical changes 

not attributed to DA. Furthermore, the voltammogram (inset) contains other analytes 

(blue) that would mask changes in DA (black) if present. PCR resolves DA from these 
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interferents and these representative traces resolved by PCR (red) suggest negligible 

changes in basal DA levels with MOD. 

To assess MOD-induced changes in basal DA levels within individual 5 min-

epochs (Δ[DA]), all data points in PCR resolved DA files after the electrically evoked 

response returned to baseline were averaged pre-drug and for the first 40 min of drug 

response. The time period was selected to examine the initial effects of MOD on basal 

extracellular DA corresponding to the initial robust increase in electrical evoked phasic-

like DA signals (Fig. 3). Time 0 min was excluded because of noise introduced during 

drug administration. MOD had negligible effects on Δ[DA] (Fig. 7B) in either the dorsal 

(top) or ventral (bottom) striatum. The three-way repeated measures ANOVA revealed no 

significant effect of time (F10, 90 = 1.80, p = 0.1764), dose (F1, 9 = 0.11, p = 0.7433), or 

region (F1, 9 = 0.47, p = 0.5118), indicating that there was no significant effect of MOD 

on basal DA levels. Additionally, there were no significant interactions. 

To verify PCR selectivity for the DA component, a linear regression was 

performed between [DA]max from raw FSCV recordings ([DA]FSCV) and PCR-resolved 

data ([DA]PCR). The current attributed to the electrically-evoked response measured in the 

FSCV trace over short time scales has previously been described to be primarily DA 

(Wightman et al., 1986). Thus, the tight association of data points to the trend line and 

significant correlation between [DA]FSCV and [DA]PCR in both the dorsal (Fig. 7C left; r = 

0.8901, p < 0.0001) and ventral (Fig. 7C right; r = 0.9639, p < 0.0001) striatum suggests 

that PCR accurately resolved DA from the mixed analyte signal.  
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Modafinil Activates Dopamine Transients. Under anesthesia, DAT-inhibiting 

psychomotor stimulants exert an inhibitory effect on DA neuron firing (Shi et al., 2000; 

Shi et al., 2004), yet an excitatory action in freely behaving rats (Koulchitsky et al., 

2012). Co-administration of a DA D2 receptor antagonist alleviates the blunting effects 

produced under anesthesia, allowing these DAT-inhibitors to elicit burst firing of DA 

neurons (Shi et al., 2000; Shi et al., 2004) and DA transients (Venton and Wightman, 

2007) under these conditions. Similar to other DAT-inhibiting psychomotor stimulants, 

co-administration of MOD (30 mg/kg) and raclopride (2 mg/kg), a DA D2 receptor 

antagonist, induced DA transients in both the dorsal (Fig. 8A left) and ventral (Fig. 8A 

right) striatum. Asterisks demark transients on the FSCV current trace taken at the peak 

DA oxidation potential. Transients were confirmed to be DA by the electrochemical 

profile in the pseudo-color plot and comparison of the individual transient 

voltammograms (inset, red) to electrically evoked DA voltammograms (inset, black). 

Prior to assessing transient frequency at select time points, DA in the FSCV traces was 

resolved with PCR. As shown in figure 8B, there were no transients pre-drug, which 

sharply contrasts the robust increase in transient frequency 15 minutes post-drug 

administration and after. A two-way repeated measures ANOVA revealed a significant 

effect of time on transient frequency (F3, 27 = 11.85, p = <0.0001). However, there were 

no significant effects of region (F1, 9 = 0.18, p = 0.6835) or a significant time-by-region 

interaction (F3, 27 = 1.72, p = 0.1932).   
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Discussion 

 Here we demonstrate using FSCV at a CFM in the anesthetized rat that MOD 

activates phasic DA signaling in both the dorsal and ventral striatum without altering 

basal DA levels. The activation of phasic DA signaling was indicated by an increase in 

the amplitude of electrically evoked phasic-like DA signals and the frequency of DA 

transients assessed in the presence of the DA D2 antagonist, raclopride. MOD 

additionally acted presynaptically to increase DA release and decrease DA uptake, 

although the former action contributed to a greater extent to the increase in evoked DA 

signal. Taken together, the results suggest that activation of phasic DA signaling is a 

novel mechanism of MOD that may contribute to its therapeutic efficacy. 

Modafinil Effects on Basal Dopamine Levels. In the current study, PCR revealed 

no significant changes in basal DA levels in either the dorsal or ventral striatum after 

administration of the highest dose of MOD tested (300 mg/kg). In contrast, microdialysis 

studies report a ~3-fold elevation in striatal DA levels at the same dose (Loland et al., 

2012). These discrepancies may be attributed to differences in analytical techniques. 

Traditionally, microdialysis has been used to measure basal DA levels due to its high 

chemical selectivity and sensitive detection limits (Watson et al., 2006), whereas FSCV is 

better suited for capturing rapid changes in DA levels, such as DA transients, based on 

fast temporal resolution and smaller probe size (Roberts et al., 2013). Due to recent 

technical improvements in FSCV, along with advances in data analysis using PCR, 

changes in basal DA levels are now beginning to be assessed with this technique 

(Keithley et al., 2009). However, discrepancies between FSCV and microdialysis in 
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measuring basal DA levels are not well understood and as a result, the definitive 

determination of whether MOD acts on basal DA levels requires further study.  

Modafinil Effects on Phasic Dopamine Signaling. Naturally occurring DA 

transients can be mimicked in amplitude and dynamics using electrical stimulation with 

judicious selection of stimulus parameters (Robinson et al., 2001). The stimulus 

parameters used here are reinforcing in the paradigm of intracranial self-stimulation 

(Garris et al., 1999; Cheer et al., 2005) and elicit DA signals whose amplitude falls within 

the range of these DA transients, albeit at the higher end (Robinson and Wightman, 

2007). DAT-inhibiting psychomotor stimulants, such as cocaine and amphetamine, have 

also been shown to robustly increase the amplitude of DA signals evoked by similar 

stimulus parameters (Venton et al., 2006; Oleson et al., 2009; Ramsson et al., 2011; 

Covey et al., 2013; Avelar et al., 2013). This increase in the electrically evoked DA 

signal is thought to be relevant to drug action on phasic DA signaling, because both 

cocaine and amphetamine also robustly activate DA transients in awake, freely behaving 

animals (Stuber et al., 2005; Aragona et al., 2008; Daberkow et al., 2013). Whether MOD 

also elicits DA transients in awake, freely behaving animals as do cocaine and 

amphetamine remains to be determined. However, we also showed that MOD elicits DA 

transients in the presence of raclopride, similar to cocaine (Park et al., 2010), further 

suggesting that the activation of phasic DA signaling we observed for MOD in 

anesthetized animals, as indexed by electrically evoked phasic-like DA signals and DA 

transients measured in the presence of a DA D2 antagonist, is indicative of drug action in 

awake, freely behaving animals. 
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 Similar to other DAT-inhibiting psychomotor stimulants such as cocaine, 

amphetamine, and methylphenidate (Venton et al., 2006; Ramsson et al., 2011; 

Chadchankar et al., 2012; Covey et al., 2013; Avelar et al., 2013; Daberkow et al., 2013), 

we show that MOD increases DA release and decreases DA uptake. Thus, our results are 

consistent with the notion that DAT-inhibiting psychomotor stimulants share a common 

action of altering both presynaptic mechanisms (Covey et al., 2014). Because the upward 

slope of the electrically evoked DA signal is determined by the balance of DA release 

and uptake (Wightman et al., 1988), both presynaptic mechanisms could in theory 

mediate the increase in amplitude of the electrically evoked phasic-like signaling elicited 

by DAT-inhibiting psychomotor stimulants. However, while indirect evidence suggests 

that the increase in DA release is more responsible for the increase in signal amplitude 

compared to the decrease in DA uptake (Venton et al., 2006; Avelar et al., 2013; Covey 

et al., 2013; Daberkow et al., 2013), this hypothesis has never been directly tested as we 

do here. Indeed, our results using path analysis suggest that MOD-induced increases in 

[DA]max are best explained by the enhancement of DA release, not the inhibition of DA 

uptake. This result, if substantiated, may inform the regulation of DA transients by DAT-

inhibiting psychomotor stimulants. For example, while it is thought that an increase in 

burst firing of DA neurons drives the increase in transient frequency (vide infra) and 

inhibited DA uptake drives the increase in transient duration, the mechanism of the 

increase in transient amplitude is debated (Covey et al., 2013). Assuming electrically 

evoked phasic-liked DA signals appropriately model DA transients, our results suggest 

that enhanced DA release, not inhibited DA uptake, is responsible for the increase in 

transient frequency with DAT-inhibiting psychomotor stimulants. However, caution is 
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urged, because there are other kinetic models available for analyzing DA release and 

uptake from the electrically evoked DA signal (Walters et al., 2014; Harun et al., 2015) 

besides the diffusion-gap model that we employed, and these models should also be 

applied to address the relative contribution of DA release and DA uptake to [DA]max.  

 Our findings show that MOD, at the lowest dose tested (30 mg/kg), elicited DA 

transients in both the dorsal and ventral striatum. Interestingly, the frequency of DA 

transient elicited was similar to that for a high affinity DAT-inhibitor, nomifensine, under 

similar conditions (Venton and Wightman, 2007), which suggests that the MOD-induced 

activation of DA transients is robust. Because co-administration of a DA D2 antagonist is 

a confound, it is difficult to compare these rates of transient frequency activation with 

those observed with DAT-inhibiting psychomotor stimulants in awake, freely behaving 

animals. The ability of MOD to increase the frequency of DA transients in the dorsal and 

ventral striatum would appear to be due to activation of burst firing of DA neurons. 

Anesthetics blunt this burst firing (Kelland et al., 1990) and under these conditions, DAT-

inhibiting psychomotor stimulants inhibit the firing rate of DA neurons (Shi et al., 2000; 

Shi et al., 2004). However, administration of a DA D2 antagonist relieves the blunting 

effects of anesthesia and reveals a drug-induced activation of burst firing of DA neurons 

similar to that observed in awake, freely behaving animals (Shi et al., 2000; Shi et al., 

2004; Koulchitsky et al., 2012). We therefore hypothesize that MOD similarly increases 

burst firing of DA neurons in awake, freely behaving animal, although this hypothesis 

remains to be tested. Taken together, our results obtained in the urethane-anesthetized rat 

suggest the MOD mechanism of eliciting burst firing of DA neurons, which generates 

DA transients in the dorsal and ventral striatum, and increasing the amplitude and 
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duration of these DA transients by the presynaptic actions of enhancing DA release and 

inhibiting DA uptake, respectively. Our results, furthermore, do not implicate an action of 

MOD on tonic DA signaling. 

Addictive Nature of Psychomotor Stimulants. A long-held view in addiction 

research is that, despite diverse cellular actions, all drugs of abuse increase brain 

extracellular levels of DA, with a preferential action in the ventral compared to the dorsal 

striatum (Di and Imperato, 1988). More recent work has refined this view by 

hypothesizing that all drugs of abuse hyperactive phasic DA signaling (Cheer et al., 2004; 

Cheer et al., 2007; Daberkow et al., 2013; Vander Weele et al., 2014), leading to the 

hijacking of reward circuits and aberrant reward learning (Hyman et al., 2006). While 

cocaine and amphetamine conform to this general hypothesis (Venton and Wightman, 

2007; Covey et al., 2013; Daberkow et al., 2013), other mechanisms have been 

considered to explain differences in abuse potential for DAT-inhibiting psychomotor 

stimulants including, affinity for DAT (Ritz et al., 1987), speed of drug action in the 

brain (Yorgason et al., 2011), and actions on DAT mimicking G protein-coupled 

receptors, as in the so-called “transceptor” (Schmitt et al., 2013). We also show here that 

in contrast to the addictive DAT-inhibiting psychomotor stimulants, cocaine and 

amphetamine, which elicit preferential increases in phasic DA signaling in the ventral 

compared to the dorsal striatum (Ritz et al., 1987; Wu et al., 2001a; Ramsson et al., 2011; 

Covey et al., 2013), MOD either preferentially increased electrically evoked phasic-like 

DA signals in the dorsal compared to the ventral striatum or shows no striatal sub-region 

preference for activating DA transients. Consistent with this effect, nomifensine, another 

DAT-inhibiting psychomotor stimulant with limited abuse potential (Tella et al., 1997), 
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showed a similar preference for the dorsal striatum in increasing electrically evoked 

phasic-like DA signals (Wu et al., 2001a). Whether other DAT-inhibiting psychomotor 

stimulants with limited abuse potential show a similar preference for activating phasic 

DA signaling in the dorsal compared to the ventral striatum should be further pursued.  

Clinical Implications of Modafinil. Phasic DA signaling is critical in reward 

seeking and learning (Schultz et al., 1997; Adamantidis et al., 2011), and reinforcement 

deficits in ADHD patients are thought to arise from alterations in phasic DA signaling 

(Tripp and Wickens, 2008). As MOD has been shown to remediate cognitive deficits in 

ADHD (Swanson et al., 2006) and enhance cognition in non-ADHD patients (Muller et 

al., 2013), it is interesting to speculate that MOD’s ability to activate phasic DA signaling 

may contribute to its clinical efficacy. Additionally, phasic DA signaling has been linked 

to cocaine self-administration (Willuhn et al., 2014), while MOD reduces cocaine and 

methamphetamine administration in addicts (Anderson et al., 2009; Shearer et al., 2009). 

Long-access cocaine self-administration also diminishes phasic DA signaling in the 

striatum, but treatment with L-DOPA can restore phasic DA signaling and concomitantly, 

cocaine self-administration decreases (Willuhn et al., 2014). Thus, it is interesting to 

speculate that perhaps MOD’s ability to activate phasic DA signaling may restore drug-

depressed phasic DA signaling, similarly to L-DOPA, and ultimately aid in the treatment 

of drug addiction. 

 In addition to cognitive enhancement and drug addiction therapy, MOD is a well-

established wake promoting agent. The mechanism of narcoleptic therapeutics is 

incompletely understood, and MOD’s mechanism of treating narcolepsy is unknown. 

More recent evidence suggests a role for DA in sleep-wakefulness (Wisor et al., 2001; 
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Dahan et al., 2007), in addition to the well-established roles of serotonin, norepinephrine, 

and acetylcholine (Pace-Schott and Hobson, 2002). Burst-firing of DA neurons also 

changes between wake and paradoxical sleep states (Dahan et al., 2007). As burst firing 

of DA neurons generates DA transients, it is interesting to speculate that MOD’s ability 

to activate phasic DA signaling may be involved in promoting wakefulness.  

Conclusion. Our results suggest that MOD’s therapeutic efficacy may be due, at 

least in part, to its ability to activate phasic DA signaling. Further study in awake, freely 

behaving animals should be pursued to substantiate this hypothesis based on evidence 

described herein and collected in anesthetized animals.
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Figure 1. Schematic of modafinil effects on dopamine signaling. MOD generated DA 

transients in DA neuron terminal fields by activating burst firing at the level of the cell 

body. Furthermore, MOD enhanced phasic DA signaling at presynaptic levels by 

inhibiting DA uptake and enhancing DA release (top). MOD effects on phasic DA 

signaling results in increased frequency and enhanced amplitude of DA transients 

(bottom).   
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Figure 2. Representative effects of modafinil on electrically evoked phasic-like 

dopamine signals in the dorsal and ventral striatum. MOD (100 mg/kg i.p.) effects on 

electrically evoked phasic-like DA signals in the (A) dorsal and (B) ventral striatum 

measured by FSCV. (Top) Evoked DA signals elicited by electrical stimulation 

(demarcated by black line at time 0 s) pre-drug (left) and 60 minutes post-MOD (right) 

administration. INSET. Individual background subtracted cyclic voltammogram taken 

from the peak signal amplitude (white vertical line) identifies the analyte as DA. 

(Bottom) Pseudo-color plot serially displaying all background-subtracted cyclic 

voltammograms (x-axis: time; y-axis: applied potential; z-axis: current). White horizontal 

line identifies the DA peak oxidation potential where the evoked DA trace was collected. 
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Figure 3. Average time courses of modafinil effects on [DA]max in the dorsal and ventral 

striatum. MOD elicits time- and dose-dependent effects on the maximal concentration of 

the electrically evoked phasic-like DA signal amplitude ([DA]max) in the dorsal (A) and 

ventral (B) striatum. Data are expressed as a percent of pre-drug and are the mean±SEM. 

Arrow demarcates MOD administration at time 0 min. Data were analyzed for 

significance using three-way repeated measures ANOVA (n = 4-7). 
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Figure 4. Qualitative analysis of dopamine uptake on electrically evoked phasic-like 

dopamine signals. Representative time- and dose-dependent effects of MOD on 

extracellular clearance of electrically evoked DA in the (A) dorsal and (B) ventral 

striatum. FSCV traces of electrically evoked DA signals (stimulus demarcated by short 

black line) are shown for 100 mg/kg MOD (left) and 300 mg/kg MOD (right) at select 

time points. INSET. Pre- and post-drug clearance curves are overlaid beginning at the 

same dopamine concentration and illustrate DA uptake inhibition. 
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Figure 5. Effects of modafinil on [DA]max, dopamine release, and dopamine uptake. 

Increases in the maximal concentration of the electrically evoked phasic-like DA signal 

([DA]max) (left) are associated with an increase in DA release (middle) and a decrease in 

DA uptake or k (right) in the dorsal (A) and ventral (B) striatum. Data are expressed as a 

percentage of pre-drug values and are the mean±SEM. Data were analyzed for 

significance using three-way repeated measures ANOVA (n = 4-7). 
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Figure 6. Path analysis of dose-dependent effects of modafinil on [DA]max. Path analysis 

model demonstrating the direct relationships between dose, DA release, DA uptake and 

[DA]max. Values given above each arrow are path coefficients describing each direct 

effect.  
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Figure 7. Effects of modafinil on non-electrically evoked dopamine signals. MOD 

effects on changes in basal DA levels in the dorsal and ventral striatum. (A) The red line 

displays PCR resolved DA from the black FSCV trace (taken at the white horizontal line) 

for pre-drug and 60 minutes post-drug (300 mg/kg i.p.). A pseudo-color plot beneath 

displays all background subtracted cyclic voltammograms. INSET. Representative 

voltammogram (blue) collected at 285 s (white vertical line) overlaid with a 

voltammogram taken at peak electrically evoked signal (black). (B) PCR reveals no 

significant effect of MOD on baseline DA levels in the dorsal (top) and ventral (bottom) 

striatum. Data were analyzed for significance using three-way repeated measures 

ANOVA (n = 4). (C) Verification of PCR selectivity for the DA component in FSCV 

recordings. There was a strong correlation between [DA]max measured with FSCV 

([DA]FSCV) and PCR ([DA]PCR) in both the dorsal (left) and ventral (right) striatum. 
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Figure 8. Modafinil effects on dopamine transients. DA transients are elicited in both the 

dorsal and ventral striatum by co-administration of MOD (30 mg/kg, i.p.) and raclopride 

(2 mg/kg, i.p.). (A) Representative recording of DA transients in the dorsal (left) and 

ventral (right) striatum. A pseudo-color plot underneath serially displays all background-

subtracted cyclic voltammograms. Transients (denoted by red asterisks) are displayed in 

the FSCV current trace collected at the peak oxidative potential of DA (white horizontal 

line). INSET. Normalized background subtracted cyclic voltammograms taken from the 

electrically-evoked response (black line) and a DA transient (red line) collected at the 

white vertical line in the pseudo-color plot. (B) Average transient frequency per 5 minute 

epoch for pre- and post-drug administration expressed as mean±SEM. Data were 

analyzed for significance using two repeated measures ANOVA (dorsal, n = 6; ventral n 

= 5). 
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ABSTRACT 

Atomoxetine (ATX), brand name Strattera®, has been approved for the treatment 

of attention deficit hyperactivity disorder (ADHD) in children, adolescents, and adults. 

By selectively targeting norepinephrine neurons, its underlying mechanism differs from 

that of the primary drugs used to treat ADHD, Adderall® and Ritalin®. Altered 

reinforcement learning is a symptom of ADHD that is proposed to be mediated by 

alterations in phasic dopamine (DA) signaling. During this mode of neural 

communication, burst firing of DA neurons generate rapid changes in extracellular DA 

concentrations in DA terminal fields termed DA transients. Although Adderall® and 

Ritalin® are thought to act on phasic DA signaling, whether ATX shares this 

pharmacologic property is not known. ATX’s effect on phasic DA signaling was 

investigated with fast-scan cyclic voltammetry at a carbon fiber microelectrode targeting 

the nucleus accumbens core. Three types of phasic DA signals were assessed: (1) 

electrically evoked phasic-like DA signals, which resemble naturally occurring DA 

transients; (2) spontaneously occurring DA transients, which are not ostensibly linked to 

external stimuli; (3) DA transients elicited by unexpected food delivery, which is 

considered a primary reward. Additionally, effects of ATX on the presynaptic 

mechanisms of DA release and DA uptake, determined from the electrically evoked 

signals, and ATX effects on food-pellet consumption were also assessed. Our preliminary 

results suggest that ATX reduces electrically evoked phasic-like DA signals, food-pellet 

consumption, and Food-evoked DA transients. Taken together, we propose that alteration 

of phasic DA signaling may contribute to the mechanism of ATX action.  
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Introduction 

Attention deficit hyperactivity disorder (ADHD) is a debilitating neurodevelopmental 

disorder, which affects approximately 6.5% of the world population (Polanczyk et al., 

2014). Its two cardinal symptoms, inattention and hyperactivity-impulsivity, ultimately 

lead to poor success in academic and vocational pursuits (American Psychiatric 

Association, 2013). Current therapeutic medications for treating ADHD include two 

major classes of drugs: stimulants, amphetamine (AMPH; Adderall®) and 

methylphenidate (MPH; Ritalin®), and the non-stimulant, atomoxetine (ATX; 

Strattera®). As compared to the commonly prescribed stimulant therapeutics, ATX 

possesses limited abuse potential (Tidey and Bergman, 1998; Jasinski et al., 2008), lacks 

locomotor activation (Tzavara et al., 2006), and is efficacious in treating comorbid 

conditions associated with ADHD, including depression and anxiety (Kratochvil et al., 

2005). However, stimulant therapeutics provide immediate onset of action as opposed to 

ATX, which can take 3-4 weeks before achieving optimal therapeutic efficacy (Newcorn 

et al., 2008). ATX’s mechanism of therapeutic efficacy remains incompletely understood, 

but because of its efficacy for the treatment of ADHD with comorbid depression and 

anxiety, along with its limited negative side-effects such as limited abuse potential, an 

understanding of its mechanism is critical for future drug development. 

ADHD patients exhibit deficits in executive function, including planning, 

working memory, attention, and inhibition of inappropriate behaviors (American 

Psychiatric Association, 2013). Executive function is associated with the prefrontal 

cortex (PFC) (Alvarez and Emory, 2006), and ADHD patients are found to have altered 

PFC anatomy and function (Rubia et al., 2005; Booth et al., 2005). In addition, ADHD 
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patients exhibit associative learning deficits, including atypical responses to 

reinforcement whereby patients choose small, instantaneous rewards rather than larger, 

delayed rewards (Sonuga-Barke, 2003; Antrop et al., 2006). Associative learning is 

linked to striatal function (Schultz, 1997; Day et al., 2007), and ADHD patients also 

exhibit anatomic and functional alterations in this region (Scheres et al., 2007). 

Altogether, symptoms in ADHD patients appear to be linked to abnormalities in both the 

PFC and striatum and befittingly, conceptual models of ADHD focus on neural 

alterations in these regions and their associated behaviors.  

Current medications are thought to remediate symptoms of ADHD by 

ameliorating neurochemical alterations in the PFC. Studies in rats show that AMPH, 

MPH, and ATX enhance dopamine (DA) and norepinephrine (NE) levels in the PFC 

(Kuczenski and Segal, 2001; Bymaster et al., 2002; Kuczenski and Segal, 2002; Berridge 

and Stalnaker, 2002) and ameliorate symptoms of ADHD in humans (James et al., 2001; 

Correia Filho et al., 2005; Ince et al., 2015). These findings have contributed to the 

development of the inverted-U model of ADHD (Fig. 9). This model proposes that in the 

PFC optimal function is dependent on optimal catecholamine release, and either too low 

or too high levels of catecholamine release results in decreased PFC function (Arnsten 

and Pliszka, 2011). Furthermore, ADHD patients are suggested to have lower levels of 

catecholamine release, resulting in reduced PFC function and consequently, symptoms of 

ADHD. Medications for ADHD are thought to enhance levels of catecholamine release to 

more optimal levels, thereby enhancing PFC function and remediating symptoms of 

ADHD.  
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The inverted-U model of ADHD addresses many of the executive functions 

altered in ADHD patients, but does not address alterations of associative learning. Thus, 

alternative models of ADHD have emerged that focus on alterations in associative 

learning (e.g., reinforcement learning) in the striatum. In particular, the dopamine transfer 

deficit (DTD) theory (Fig. 10) proposes that phasic DA signaling in DA neurons 

projecting from the midbrain to the striatum is altered in ADHD patients, which results in 

reinforcement learning deficits (Tripp and Wickens, 2008). Phasic DA signaling is 

critical for associative learning (Schultz et al., 1997) and is activated by primary rewards 

(e.g., food) (Brown et al., 2011a) and reward-predictive cues (Day et al., 2007). During 

normal reinforcement learning, phasic DA signaling is initially activated during reward 

delivery. During acquisition of learning, phasic DA signals begin to be activated during 

presentation of both the reward-predictive cue and the reward. Finally, later in learning, 

phasic DA signaling is exclusively activated during presentation of reward-predicting 

cues rather than reward delivery. The DTD theory hypothesizes that in ADHD patients, 

the transfer of phasic DA signaling to the cue is incomplete, resulting in reinforcement 

learning deficits. Furthermore, the theory proposes that ADHD medications ameliorate 

alterations in reinforcement learning by enhancing the magnitude of phasic DA signaling 

in the striatum elicited by the cue. However, this hypothesis has not yet been directly 

investigated to our knowledge.  

Indeed it has been shown that drugs such as AMPH activate phasic DA signaling 

and this activation occurs through effects at the presynaptic level in the striatum (Avelar 

et al., 2013) as well as via afferent activation of DA neurons in the midbrain (Darracq et 

al., 1998; Shi et al., 2000; Shi et al., 2004). Phasic DA signaling is characterized by high 
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frequency bursts of action potential firing (i.e., burst firing) (Grace and Bunney, 1984), 

resulting in sub-second increases in DA concentration in DA terminal fields termed DA 

transients. AMPH, a potent dopamine transporter (DAT)-inhibitor, also activates phasic 

DA signaling at presynaptic terminals by inhibiting DA uptake and enhancing DA release 

(Daberkow et al., 2013; Avelar et al., 2013). The resulting activation in phasic DA 

signaling leads to enhanced frequency, amplitude and duration of DA transients. In 

addition, AMPH is a potent norepinephrine transporter (NET)-inhibitor as well and 

enhances NE levels in the PFC (Berridge and Stalnaker, 2002), which has been shown to 

indirectly activate DA neuron burst firing via glutamate afferents to the midbrain (Fig. 

11) (Darracq et al., 1998; Shi et al., 2000; Shi et al., 2004). Not unexpectedly then, 

selective NET-inhibitors enhance burst firing of DA neurons (Shi et al., 2000; Shi et al., 

2004); however, their effects may also be mediated directly by activation of NE afferents 

to the midbrain DA neurons (Fig. 3). Similarly, ATX, a selective NET-inhibitor may be 

mediating its effects on phasic DA signaling via these mechanisms. However, due to the 

absence of direct actions on DA terminals, its actions on the frequency, duration, and 

amplitude of DA transients should be different than those of AMPH. 

In the present study we sought it identify ATX’s effect on phasic DA signaling in 

the freely behaving rat. Using fast-scan cyclic voltammetry (FSCV) at a carbon fiber 

microelectrode (CFM) targeting the nucleus accumbens core (NAc), a region that is 

activated during associative learning (Day et al., 2007), we examined the effects of ATX 

on phasic DA signaling during unexpected food delivery (UFD). Specifically, we 

investigated ATX effects on electrically evoked phasic-like DA transients, spontaneously 

occurring DA transients, and DA transients associated with UFD. Furthermore, we also 
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investigated ATX effects on the presynaptic mechanisms of DA release and uptake and 

food-pellet consumption. 
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Methods and Materials 

Animals. Animal care was in accordance with NIH guidelines and approved by the 

Institutional Animal Care and Use Committee (IACUC) at Illinois State University. Male 

Sprague-Dawley rats (275-375 g) purchased from Harlan (Indianapolis, IN, USA) were 

housed in a temperature controlled vivarium on a diurnal light cycle (12h light/dark). 

Prior to training and during recovery, animals were provided food and water ad libitum. 

During magazine training and testing, animals were food restricted to approximately 95% 

original weight.  

Surgery. Preparatory survival surgery was performed under isoflurane (0.5 to 2.5 %) 

and aseptic conditions (Daberkow et al., 2013). Carprofen (5mg/kg s.c.) was administered 

as an analgesic. Rats were immobilized in a stereotaxic apparatus and holes for reference, 

stimulating, and recording electrodes and three screw holes were drilled. All stereotaxic 

coordinates were made in relation to bregma according to (Paxinos and Watson, 1986). 

The stimulating electrode was placed in the medial forebrain bundle (MFB; -4.6 AP, +1.3 

ML, ~-7.5 DV). A recording electrode targeted the NAc (+1.3 AP, +1.5 ML, ~-6.5 DV). 

The Ag/AgCl reference electrode was placed contralaterally in the superficial cortex. 

During surgery, the stimulating electrode was optimized, after which dental cement was 

used to fix the reference and stimulating electrode, and recording-electrode cannula 

positioned over the NAc. Following surgery, heparin was applied once daily to prevent 

blood clotting in the electrode cannula.  

Electrochemistry. DA signals were recorded with FSCV at a CFM by applying a 

triangular waveform (-0.4 to +1.3V and back) at a rate of 400V/s every 100 ms. CFMs 

were fabricated in house by aspirating a single carbon fiber (HexTow AS4, HexCel 
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Corp., Stamford, CT, USA) into a borosilicate capillary tube (1.2mm o.d.; Sutter 

Instrument, Novato, CA, USA) and pulling to a taper using a micropipette puller 

(Narishige, Tokyo, Japan). The carbon fiber was then cut to ~100 microns distal to the 

glass-insulated seal. FSCV was performed by a Universal Electrochemistry Instrument 

(UEI; Department of Chemistry Electronic Shop, University of North Carolina, Chapel 

Hill, NC, USA) and commercially available software (ESA Bioscience, Chelmsford, MA, 

USA). Current recorded at peak oxidative potential for DA (~+0.6 V) was converted to 

DA concentration based on post-calibration of the CFM using flow-injection analysis 

with a modified TRIS buffer (Kume-Kick and Rice, 1998; Wu et al., 2001; Phillips et al., 

2003). DA was identified from the background subtracted voltammogram (Michael et al., 

1998; Heien et al., 2004). 

Measurements with Electrical Stimulation. Electrical stimulation was computer 

generated and passed through an optical isolator and constant-current generator 

(Neurolog NL800; Digitimer Limited, Letchworth Garden City, UK). Biphasic 

stimulation pulses were applied to a twisted bipolar electrode (Plastics One, Roanoke, 

VA, USA); tips were separated ~1 mm. Stimulus parameters were a current of ±125 μA 

and a biphasic pulse duration of 4 ms (2 ms each phase), and trains were applied at a 

frequency of 60 Hz for 0.4 s. 

Unexpected Food Delivery. UFD was performed as previously described (Brown et 

al., 2011b). In brief, prior to surgery, rats were food restricted and given two sessions 

(one per day) to retrieve food-pellets in a standard operant chamber (Med Associates). 

During this magazine training single food pellets were delivered at a variable inter-trial 

interval (range 30-90 seconds; average 60 second inter-trial interval; 30 trials). After 
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surgery, rats received one additional magazine training with the headstage attached. The 

following day, a CFM was lowered and optimized for both food evoked and electrically 

evoked DA signals. DA was recorded with FSCV. After optimization, electrically evoked 

DA signals were collected pre-drug following 10 minutes of habituation followed by a 

UFD paradigm, which has identical parameters as the magazine training sessions. After 

UFD, rats were administered saline or ATX (1 or 10 mg/kg i.p.), followed by 10 minutes 

of habituation and a final UFD paradigm. After the second UFD, electrically evoked 

phasic-like DA signals were collected.  
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Results 

Atomoxetine Inhibits Food-Pellet Consumption. Our results suggest that all rats 

administered ATX (10 mg/kg) became anorexic (data not shown). Animals were 

considered anorexic if all food-pellets were not consumed during the final session of 

UFD.  

Atomoxetine Diminishes Electrically Evoked Phasic-Like Dopamine Signals. 

Figure 12 shows average effects of ATX (n=4) on electrically evoked phasic-like DA 

signals. Maximal signal amplitude is expressed as a ratio of DA elicited post-drug/pre-

drug. Our results suggest that ATX diminished electrically evoked phasic-like DA 

signals. Changes in the electrically evoked phasic-like DA signal amplitude are 

potentially mediated by DA release and/or uptake (Wu et al., 2001); however, potential 

presynaptic effects of ATX have yet to be investigated. 

Atomoxetine Reduces Food-Evoked Dopamine Transients. Figure 13 shows 

saline (A) and ATX (B) representative effects on food-evoked DA transients. Saline (A) 

showed no effect on food-evoked DA transients (pre-drug, left; post-drug, right). The top 

of each panel shows DA concentration collected as the current recorded at the peak 

oxidative potential for DA and converted to concentration by post-calibration. Pseudo-

color plots below showing sequential voltammograms and individual voltammograms 

(inset) identify DA as the primary analyte elicited initially by UFD by its electrochemical 

profile. ATX (B) in this representative example appears to entirely prevent the food-

evoked DA transient. Average (n=4) effects of ATX on food-evoked DA transients (C). 

Similar to the representative data, ATX strongly decreased the amplitude of food-evoked 

DA transients expressed as a ratio of post-drug/pre-drug transients.  
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Future Directions 

Our preliminary results suggest that ATX alters phasic DA signaling; however, further 

investigation of its effects are warranted. First, the surprising effect of ATX on 

electrically evoked phasic-like DA signals will be investigated by assessing presynaptic 

mechanisms of DA release and DA uptake. Additionally, the effects of ATX will be 

examined on spontaneous DA transients by analyzing effects of ATX on transient 

frequency, amplitude and duration. Lastly, a lower behaviorally relevant dose of ATX (1 

mg/kg) will be investigated. As dose plays an important role in drug efficacy (Berridge 

and Stalnaker, 2002), investigation of ATX at various doses is valuable in identifying 

potentially different mechanisms of action.  



52 

 

REFERENCES 

Alvarez JA, Emory E (Executive function and the frontal lobes: a meta-analytic review. 

Neuropsychol Rev 16:17-42.2006). 

American Psychiatric Association. DSM-V: Diagnostic and statistical manual of mental 

disorders (5th edn). 2013. Washington, D.C.  

Antrop I, Stock P, Verte S, Wiersema JR, Baeyens D, Roeyers H (ADHD and delay 

aversion: the influence of non-temporal stimulation on choice for delayed 

rewards. J Child Psychol Psychiatry 47:1152-1158.2006). 

Arnsten AF, Pliszka SR (Catecholamine influences on prefrontal cortical function: 

relevance to treatment of attention deficit/hyperactivity disorder and related 

disorders. Pharmacol Biochem Behav 99:211-216.2011). 

Avelar AJ, Juliano SA, Garris PA (Amphetamine augments vesicular dopamine release in 

the dorsal and ventral striatum through different mechanisms. J Neurochem 

125:373-385.2013). 

Berridge CW, Stalnaker TA (Relationship between low-dose amphetamine-induced 

arousal and extracellular norepinephrine and dopamine levels within prefrontal 

cortex. Synapse.2002). 

Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, Li W, Parrish 

TB, Gitelman DR, Mesulam MM (Larger deficits in brain networks for response 

inhibition than for visual selective attention in attention deficit hyperactivity 

disorder (ADHD). J Child Psychol Psychiatry 46:94-111.2005). 

Brown HD, McCutcheon JE, Cone JJ, Ragozzino ME, Roitman MF (Primary food 

reward and reward predictive stimuli evoke different patterns of phasic dopamine 

signaling throughout the striatum. Eur J Neurosci 34:1997-2006.2011a). 

Brown HD, McCutcheon JE, Cone JJ, Ragozzino ME, Roitman MF (Primary food 

reward and reward-predictive stimuli evoke different patterns of phasic dopamine 

signaling throughout the striatum. Eur J Neurosci 34:1997-2006.2011b). 

Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein 

JH, Morin SM, Gehlert DR, Perry KW (Atomoxetine increases extracellular 

levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential 

mechanism for efficacy in attention deficit/hyperactivity disorder. 

Neuropsychopharmacology 27:699-711.2002). 

Correia Filho AG, Bodanese R, Silva TL, Alvares JP, Aman M, Rohde LA (Comparison 

of risperidone and methylphenidate for reducing ADHD symptoms in children 



53 

 

and adolescents with moderate mental retardation. J Am Acad Child Adolesc Psychiatry 

44:748-755.2005). 

Daberkow DP, Brown HD, Bunner KD, Kraniotis SA, Doellman MA, Ragozzino ME, 

Garris PA, Roitman MF (Amphetamine paradoxically augments exocytotic 

dopamine release and phasic dopamine signals. J Neurosci 33:452-463.2013). 

Darracq L, Blanc GF, Glowinski JF, Tassin JP (Importance of the noradrenaline-

dopamine coupling in the locomotor activating effects of D-amphetamine. J 

Neurosci.1998). 

Day JJ, Roitman MF, Wightman RM, Carelli RM (Associative learning mediates 

dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 

10:1020-1028.2007). 

Grace AA, Bunney BS (The control of firing pattern in nigral dopamine neurons: burst 

firing. J Neurosci 4:2877-2890.1984). 

Heien ML, Johnson MA, Wightman RM (Resolving neurotransmitters detected by fast-

scan cyclic voltammetry. Anal Chem 76:5697-5704.2004). 

Ince TB, Karakaya E, Oztop DB (Effects of Atomoxetine and Osmotic Release Oral 

System-Methylphenidate on Executive Functions in Patients with Combined Type 

Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol 

25:494-500.2015). 

James RS, Sharp WS, Bastain TM, Lee PP, Walter JM, Czarnolewski M, Castellanos FX 

(Double-blind, placebo-controlled study of single-dose amphetamine formulations 

in ADHD. J Am Acad Child Adolesc Psychiatry 40:1268-1276.2001). 

Jasinski DR, Faries DE, Moore RJ, Schuh LM, Allen AJ (Abuse liability assessment of 

atomoxetine in a drug-abusing population. Drug Alcohol Depend 95:140-

146.2008). 

Kratochvil CJ, Newcorn JH, Arnold LE, Duesenberg D, Emslie GJ, Quintana H, Sarkis 

EH, Wagner KD, Gao H, Michelson D, Biederman J (Atomoxetine alone or 

combined with fluoxetine for treating ADHD with comorbid depressive or anxiety 

symptoms. J Am Acad Child Adolesc Psychiatry 44:915-924.2005). 

Kuczenski R, Segal DS (Locomotor effects of acute and repeated threshold doses of 

amphetamine and methylphenidate: relative roles of dopamine and 

norepinephrine. J Pharmacol Exp Ther 296:876-883.2001). 

Kuczenski R, Segal DS (Exposure of adolescent rats to oral methylphenidate: preferential 

effects on extracellular norepinephrine and absence of sensitization and cross-

sensitization to methamphetamine. J Neurosci.2002). 

Kume-Kick J, Rice ME (Dependence of dopamine calibration factors on media Ca2+ and 

Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry. J 

Neurosci Methods 84:55-62.1998). 



54 

 

Michael D, Travis ER, Wightman RM (Color images for fast-scan CV measurements in 

biological systems. Anal Chem 70:586A-592A.1998). 

Newcorn JH, Kratochvil CJ, Allen AJ, Casat CD, Ruff DD, Moore RJ, Michelson D 

(Atomoxetine and osmotically released methylphenidate for the treatment of 

attention deficit hyperactivity disorder: acute comparison and differential 

response. Am J Psychiatry 165:721-730.2008). 

Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. New York: 

Academic Press. 

Phillips PE, Robinson DL, Stuber GD, Carelli RM, Wightman RM (Real-time 

measurements of phasic changes in extracellular dopamine concentration in freely 

moving rats by fast-scan cyclic voltammetry. Methods Mol Med 79:443-

464.2003). 

Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA (ADHD prevalence 

estimates across three decades: an updated systematic review and meta-regression 

analysis. Int J Epidemiol 43:434-442.2014). 

Rubia K, Smith AB FAU - Brammer M, Brammer MJ FAU - Toone B, Toone BF, Taylor 

E (Abnormal brain activation during inhibition and error detection in medication-

naive adolescents with ADHD. Am J Psychiatry.2005). 

Scheres A, Milham MP, Knutson B, Castellanos FX (Ventral striatal hyporesponsiveness 

during reward anticipation in attention-deficit/hyperactivity disorder. Biol 

Psychiatry 61:720-724.2007). 

Schultz W (Dopamine neurons and their role in reward mechanisms. Curr Opin 

Neurobiol 7:191-197.1997). 

Schultz W, Dayan P, Montague PR (A neural substrate of prediction and reward. Science 

275:1593-1599.1997). 

Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (Dual effects of D-amphetamine on 

dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 

20:3504-3511.2000). 

Shi WX, Pun CL, Zhou Y (Psychostimulants induce low-frequency oscillations in the 

firing activity of dopamine neurons. Neuropsychopharmacology 29:2160-

2167.2004). 

Sonuga-Barke EJ (The dual pathway model of AD/HD: an elaboration of neuro-

developmental characteristics. Neurosci Biobehav Rev 27:593-604.2003). 

Tidey JW, Bergman J (Drug discrimination in methamphetamine-trained monkeys: 

agonist and antagonist effects of dopaminergic drugs. J Pharmacol Exp Ther 

285:1163-1174.1998). 

Tripp G, Wickens JR (Research review: dopamine transfer deficit: a neurobiological 

theory of altered reinforcement mechanisms in ADHD. J Child Psychol 

Psychiatry.2008). 



55 

 

Tzavara ET, Bymaster FP, Overshiner CD, Davis RJ, Perry KW, Wolff M, McKinzie 

DL, Witkin JM, Nomikos GG (Procholinergic and memory enhancing properties 

of the selective norepinephrine uptake inhibitor atomoxetine. Mol Psychiatry 

11:187-195.2006). 

Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA (Determination of release and 

uptake parameters from electrically evoked dopamine dynamics measured by 

real-time voltammetry. J Neurosci Methods 112:119-133.2001). 

  



56 

 

Figure 9. Inverted-U model of attention deficit hyperactivity disorder. Optimal 

catecholamine release results in optimal PFC function. ADHD patients are thought to 

exhibit low catecholamine release and concomitantly low PFC function. Therapeutic 

drugs for ADHD enhance catecholamine release and thereby enhance PFC function in 

ADHD patients.   
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Figure 10. Reinforcement learning and dopamine function. Phasic DA signaling is 

activated after rewards and cues predicting their rewards. Before reward-prediction 

learning, phasic DA signals are activated by rewards and not to the presentation of the 

cue. In early learning phasic DA signaling is activated by cue onset and reward delivery. 

Finally, late in learning, phasic DA signaling transfers from the reward to the cue. In 

ADHD patients, the DTD theory proposes that the transfer of phasic Da signaling from 

the reward to the cue is incomplete resulting in altered reinforcement learning. 
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Figure 11. Afferent input and midbrain dopamine neurons. Projections from the PFC and 

LC terminate on midbrain DA neurons and alter DA signaling. NE cell bodies originate 

in the LC and project to the PFC and to midbrain DA neurons, which originate in the 

VTA and SN. In the PFC, glutamate axons project to midbrain DA neurons. In the 

midbrain, DA axons project to both the striatum and PFC. Abbreviations: PFC, prefrontal 

cortex; DS, dorsal striatum; SN, substantia nigra; VTA, ventral tegmental area; LC, locus 

coeruleus. 
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Figure 12. Atomoxetine decreases amplitude of electrically evoked phasic-like dopamine 

signals. Traces show increased [DA] after electrical stimulation at 5 s. Color plots below 

and voltammograms (inset) identify DA as primary analyte. Saline (A) shows slight 

increase in electrically evoked phasic-like [DA] (A: right) compared to pre-drug (A: left). 

ATX (B: right) shows decrease in electrically evoked [DA] compared to pre-drug (B: 

left). Below (C) shows average electrically evoked phasic-like DA amplitude expressed 

as a ratio of post-drug over pre-drug and are mean ± SEM. Saline: n = 2; ATX: n = 4. 
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Figure 13. Atomoxetine decrease food-evoked dopamine transients. Representative 

saline (A) and ATX (10 mg/kg) (B) effects on Food-evoked DA transients. Average color 

plots of raw FSCV data illustrating the effect on unexpected food delivery before (left) 

and of (right) saline (A) and ATX (B). (Top) DA transients elicited by unexpected food 

delivery (left) and post-drug (right) taken at peak oxidation potential of DA (white 

dashed line). INSET: individual voltammogram taken from peak signal amplitude 

identifying the analyte as DA. Average effects of ATX and saline on Food-evoked DA 

transients (C). Data are expressed as a ratio of post-drug over pre-drug and are mean ± 

SEM. Saline: n = 3; ATX: n = 4. Saline: n = 3; ATX: n = 4.  
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